
Security of COFB against Chosen Ciphertext
Attacks

Mustafa Khairallah

Nanyang Technological University
Singapore, Singapore

mustafa.khairallah@ntu.edu.sg

Abstract. COFB is a lightweight Authenticated Encryption with Associated Data
(AEAD) mode based on block ciphers. It was proposed in CHES 2017 and is the basis
for GIFT-COFB, a finalist in the NIST lightweight standardization project. It comes
with provable security results that guarantee its security up to the birthday bound
in the nonce-respecting model. However, the designers offer multiple versions of the
analysis with different details and the implications of attacks against the scheme
are not discussed deeply. In this article, we look at a group of possible forgery and
privacy attacks against COFB. We show that the security for both forgery and privacy
is bounded by the number of forgery attempts. We show the existence of forgery
and privacy attacks with success probability qd/2n/2, given qd forgery attempts. In
particular, we show an attack with 2n/2 attempts using only a single known-plaintext
encryption query against COFB. While these attacks do not contradict the claims
made by the designers of GIFT-COFB, they show its limitations in terms of the number
of forgery attempts. They also show that, while COFB generates a 128-bit tag, it
behaves in a very similar manner to an AEAD scheme with 64-bit tag. As a result of
independent interest, our analysis provides a contradiction to the main theorem of
Journal of Cryptology volume 33, pages 703–741 (2020), which includes an improved
security proof of COFB compared to the CHES 2017 version. Finally, we discuss the
term nqd/2n/2 that appears in the security proof of GIFT-COFB and CHES 2017,
showing why there is a security gap between the provable results and the attacks. We
emphasize that the results in this article do not threaten the security of GIFT-COFB
in the scope of the NIST lightweight cryptography requirements or the claims made
by the designers in the specification document of the design.
Keywords: COFB · GIFT · Block Cipher · NIST · AEAD · Authenticated
Encryption · Forgery · CCA · Indistinguishability · Privacy

1 Introduction
Lightweight cryptography is the field of cryptology that deals with designing algorithms
with a small footprint or low computational complexity targeted towards constrained
devices, e.g., micro-controllers and low area/power integrated circuits. Over the past few
years, the National Institute for Standardization and Technology (NIST), USA, has been
running a lightweight cryptography standardization project. One of the categories of the
project called for Authenticated Encryption with Associated Data (AEAD) algorithms
where the amount of data that can be processed under one key is at least 250 − 1 bytes
and the cryptanalytic attacks against the algorithms are of at least 2112 computational
complexity [nis18]. The project received 57 proposals, 56 of them were selected as round
1 candidates, then narrowed down to 32 in round 2. In March 2021, 10 proposals were
announced as finalists. Among these candidates, GIFT-COFB [BCI+20] is a block cipher-
based proposal and will be the focus of this article.

mailto:mustafa.khairallah@ntu.edu.sg

Mustafa Khairallah 1

EKN

Truncate

L

ρ

A1

2L ‖ 0n
2

EK ρ

A2

22L ‖ 0n
2

. . . EK ρ

Aa

2a−13L ‖ 0n
2

Y

Y EK ρ

M1

2a3L ‖ 0n
2

C1

EK ρ

M2

2a+13L ‖ 0n
2

C2

. . . EK ρ

Mm

2a+m−232L ‖ 0
n
2

Y

Cm

Y EK T

Figure 1: The COFB mode of operation.

The GIFT-COFB mode (depicted in Figure 1) is an instance of the COmbined FeedBack
(COFB) mode, which is an AEAD mode proposed in CHES 2017 [CIMN17] as a lightweight
algorithm based on n-bit Block Ciphers (BC). It is claimed to offer the integrity of
ciphertexts up to 2n/2/n forgery attempts and privacy up to 2n/2 data complexity in the
nonce-respecting model. The integrity limit comes from a bound on the adversary’s success
probability in producing a forgery of the form nqd/2n/2 where qd is the number of forgery
attempts made by the adversary. Interestingly, this bound relies only on the number of
forgery attempts and is independent of the amount of data encrypted by the algorithm or
the computational capabilities of the adversary. It is typical to see similar terms when it
comes to generic attacks based on the authentication tag size. In particular, an AEAD
scheme that generates a τ -bit tag can be attacked by simply guessing the correct tag
corresponding to a given ciphertext. The attack’s success probability relies on the number
of forgery attempts (qd/2τ) and after 2τ the adversary would have guessed the correct tag.
However, COFB has a tag size of n bits, so the appearance of terms of the form qd/2n/2

and nqd/2n/2 is interesting. We also note that not all AEAD modes that are secure up to
the Birthday Bound (upBB) suffer from such issues. For example, the GCM [MV04] is
probably the most famous BC-based AEAD mode secure upBB but the security bound is
of the form of σ2/2n, where σ is the total amount of data processed by the algorithm given
a certain key. While σ/2n/2 ≈ σ2/2n when σ ≈ 2n/2, σ/2n/2 is significantly larger than
σ2/2n when σ is small. These observations raise some research questions. Most notably:

1. Can we break the COFB algorithm with only 2n/2/n forgery attempts and negligible
(or 0) encryption queries?

2. Can we show that COFB behaves as a scheme with a tag that is shorter than n bits,
even when an n-bit tag is generated?

These two questions are not answered by the security proofs of COFB. Provable
security is a critical tool in studying the security of new designs. It provides mathematical
guarantees for their security. However, it does not always take the adversary’s point of

2 Security of COFB against Chosen Ciphertext Attacks

view and it often does not consider what happens when the provable security bounds
are reached. It may lead to conservative bounds that cannot be matched by attacks in
practice. Besides, analyzing the schemes helps understand and verify the security proofs,
understand the different assumptions that the designers may have used or implied, and
identify errors, if any.

Given a BC with n-bit block and k-bit key, COFB expands the internal state by only
n/2 bits compared to the state of the BC (n+ k bits). The designers assume that the BC
is secure in the standard Pseudo-Random Permutation (PRP) model and that it behaves
as a Pseudo-Random Function (PRF) up to the bound derived in the PRP-PRF switching
lemma [BR06]. They assume that an adversary makes qe encryption queries that involve
σe blocks (σe invocations of the BC) and qd forgery attempts that involve σd blocks. The
authors define COFB-R, a variant of COFB where all the BC calls are replaced by calls to
one random function R sampled uniformly from the set of all random functions from n
bits to n bits. The authors presented a provable security bound that suggests that the
success probability of any single-key forgery adversary A against COFB-R as an AEAD
scheme is bounded by

Pr[A forges COFB-R] ≤ 4σe + 0.5nqd
2n/2 + qd + (qe + σe + σd)σe

2n .

Subsequently, an extended version of COFB has been published in the Journal of Cryptology
(JoC) in 2020 [CIMN20]. The provable security bound in this version implies a different
probability bound:

Pr[A forges COFB-R] ≤ 4σe
2n/2 + qd + (qe + σe + 2σd)σd

2n .

As part of the efforts surrounding the NIST lightweight cryptography project, the designers
of GIFT-COFB [BCI+20] provided the following bound in the Cryptology ePrint Archive
report 2020/738:

Pr[A forges COFB-R] ≤ 1
2n/2 + (n+ 4)qd

2n/2+1 + qd + σ2
e + (qe + σe + σd)σe

2n .

While the three bounds share a lot of similarities, some of the strategies used in each
security proof are different, which leads to the differences. More importantly, the bound
from JoC 2020 is dominated by terms of the form σ2/2n. If this bound is correct, then the
question is if it is possible to adopt that bound for GIFT-COFB, improving its security claims.
Another major difference between the different versions is the nonce size, where [CIMN17]
and [CIMN20] used an n/2-bit nonce, while [BCI+20] used an n-bit nonce. This has an
effect on one of the attacks presented. We note that the NIST Lightweight cryptography
call for submission [nis18] requires the nonce size to be at least 96 bits (3n/4 bits). In
Section 5, we discuss the effect of the nonce size and the applicability to similar algorithms,
specifically, HyENA, another design that has been a second-round candidate for the NIST
lightweight standardization process and holds a lot of resemblance to COFB.

Contributions In this article, we analyze the security of COFB. We present the first CCA
attack on the scheme with complexity 2n/2 and success probability qd/2n/2 and the first
forgery attack with complexity 2n/2 to operate with a single encryption query. Not only do
the attacks treat the BC as a black box, but they work even if the BC is replaced with a
random function. We show that the behavior of COFB is very close to that of an algorithm
with half the tag size. Table 1 shows a summary of the forgery attacks presented in the
paper against COFB, their complexity, and whether they lead to CCA distinguishability
attacks. Besides, our analysis shows an oversight in the JoC security proof and contradicts
the main theorem of [CIMN20]. We show that the adversary’s advantage for INT-CTXT

Mustafa Khairallah 3

Table 1: The designers’ claims on the data limits for successful forgery against COFB

Attack/Security Claims Decryption Encryption IND$-CCAComplexity Complexity

COFB bound on forgeries 2n/2/n - -
Block-Dropping (Section 4) [Kha20] 2n/2 2n/2+1 -

Optimized Block-Dropping (Section 4) 2n/2 O(1) -
Prefix-Suffix (Section 4) 2n/2 2n/4 -

Mask Enumeration (Section 5) 2n/2 1 Xwith n-bit nonce
Mask Enumeration (Section 5) 2n/2 2n−t Xwith t-bit nonce

is lower-bounded by qd/2n/2. Hence, it cannot be upper-bounded by a bound of the form
σ2/2n. Finally, we discuss the bounds of the form nqd/2n/2 and analyze why such bounds
appear in the security proof. We also formalize a CCA distinguishability attack that was
proposed previously against a class of nonce-respecting AEAD schemes [Mè19].

Outline The paper is organized as follows: Section 2 includes the preliminaries needed
to understand the paper. Section 3 presents a short discussion on the relation between
integrity and chosen-ciphertext privacy from an attacker’s point of view. Section 4 includes
a group of forgery attacks on COFB. Section 5 presents a CCA distinguishability/privacy
attack on COFB. Section 6 discusses the oversight in [CIMN20] and the logarithmic gap
form the birthday bound in the security claims of COFB. Section 7 includes a brief
introduction of related work and the paper is concluded in Section 8.

2 Preliminaries

2.1 Definitions and Security Notions
Notations We use ε to refer to the empty bit-string of length 0. {0, 1}b is the set of all
bit-strings of length b, while {0, 1}∗ is the set of all arbitrary length bit-strings including the
empty string ε. |X| is the length of a bit-string X, where |ε| = 0. Given two bit-strings X
and Y , X‖Y is the concatenation of the two strings. Given a bit-string X, where |X| ≥ l,
then bXcl is the bit-string consisting of the l leftmost bits of X, i.e., l-bit truncation.
(X1, .., Xl)

n←− X divides the bit-string X into l strings, each consists of n bits, except
potentially the lth block which can be smaller than n bits. We also refer to this operation
as n-bit parsing. ⊥ is a special symbol used to indicate the ciphertext is not authentic.
X

$←− X indicates that X is a random variable picked from X according to the uniform
distribution. We use superscript to indicate either the order or type of variable, e.g., Xi

indicates the ith instance of X, Xc mean challenge X and Xf means forgery X. We
use subscript to indicate the block order within a multi-block variable. For example, if
|X| = 2n, then X = X1‖X2.

Adversaries An adversary models an attacker. It is a program/routine with access to
one or more oracles. The adversary makes queries to the oracle(s) and receives responses,
and succeeds if it manages to break a given security goal.

4 Security of COFB against Chosen Ciphertext Attacks

Authenticated Encryption with Associated Data An Authenticated Encryption (AE)
scheme [BN00] is a symmetric key algorithm that provides both privacy and authenticity.
An AEAD scheme [Rog02] is similar except that both algorithms take an extra input called
associated data A which is a public portion of the message, used for authentication only.
In this paper, we focus on nonce-based AEAD, sometimes known as NAE.

Nonce-Based AEAD Syntax A nonce-based AEAD scheme, in the context of this
paper, is defined as a three-tuple Π = (K, E ,D). K = {0, 1}k is the key space. Given a key
K ∈ K, E and D are defined as follows:

(C, T)← Π.E(K,N,A,M)

M or ⊥ ← Π.D(K,N,A,C, T)

where N ∈ {0, 1}t is a public parameter corresponding to the plaintext/ciphertext, usually
referred to as nonce. C,M ∈M ⊆ {0, 1}∗, A ∈ A ⊆ {0, 1}∗ and T ∈ {0, 1}τ . For simplicity,
we drop Π when we are concerned with only one scheme, or the scheme in question is
understood from the context. We also can refer to E(K,N,A,M) as EK(N,A,M) or
EN,AK (M) and the same for D. Both E and D are deterministic algorithms, such that
DN,AK (EN,AK (M)) = M .

Nonce-Based AEAD Security A nonce-based AEAD scheme requires that N is unique
for all the invocations of E . The nonce-based AEAD schemes are required to achieve at
least two security notions: privacy and authenticity. We define both as follows:

Privacy The privacy of an AEAD scheme is defined using indistinguishability of
ciphertexts from random strings, where the adversary sends a message and the oracle
selects whether to encrypt the message using the AEAD scheme or output a string of random
bits, based on a random selection bit b. The adversary has to distinguish between these two
possibilities. Such adversaries can be classified into Chosen-Plaintext Adversaries (CPA)
and Chosen-Ciphertext Adversaries (CCA), depending on whether the adversary interacts
with only the encryption algorithm or both the encryption and decryption algorithms,
respectively. In order to define the advantage of an indistinguishability adversary, we define
a game that models the behavior and interaction between the adversary and the oracle, as
shown in Figure 2. The IND$-CPA adversary is not allowed to interact with Dec. In fact,
the depiction IND$-CPA in Figure 2 is equivalent to that in [Rog02], the inclusion of the
Dec oracle is useful in explaining one of the attacks presented later. Adversaries cannot
perform trivial decryption queries which are responses from earlier encryption queries and
cannot repeat queries.

An adversary A interacts with the game by requesting qe queries to Enc and qd queries
to Dec. The queries to Enc and Dec can be interleaved. At the end of the exchange,
A calls Finalize with its guess of d and wins if Finalize returns 1. The IND$-CCA
advantage of A against an AEAD scheme is defined as

Advind$−cca
aead (A) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1],

which measures how much better can the adversary do compared to an adversary that
randomly guesses b. We note that the adversaries can be characterized by how many
queries they perform, where qe is the number of encryption queries and qd is the number
of decryption queries. Besides, we define σe and σd as the sum of the length of encryption
and decryption queries, respectively, which can be measured in bits, bytes, or bit-blocks,
depending on the context. We use σ = qe + qd + σe + σd as the total data complexity.
We also use σ in cases where we are referring to the asymptotic data complexity of the

Mustafa Khairallah 5

Initialize
K

$←− K
b

$←− {0, 1}
S ← φ

N ← φ

Dec(N,A,C, T)
If(N,A,C, T) ∈ S then
M ←⊥

Else then
M ← DN,AK (C, T)

Return M
Enc(N,A,M)
If N ∈ N then

Return ⊥
If b = 0 then

(C, T)← EN,AK (M)
Else then

(C, T) $←− {0, 1}|M |+τ
S ← S ∪ {(N,A,C, T)}
N ← N ∪ {N}

Return(C, T)
Finalize(d)
Return b = d

Figure 2: The IND$-CCA security game as used in the paper.

adversary without distinction between encryption and decryption. Let the maximum
running time of adversaries be t, then we write the upper bound of the advantage of any
IND$-CCA adversary as

Advind$−cca
aead (qe, σe, qd, σd, t) = max

A
Advind$−cca

aead (A)

Authenticity/Integrity A nonce-based AEAD scheme Π is required to ensure the
integrity of ciphertexts (INT-CTXT). An adversary A breaks the INT-CTXT security if it
submits a decryption query (N,A,C, T) to Verify in Figure 3 whose decryption M 6=⊥
and (C, T) has never been returned by a query Enc(N,A,M). Formally, the INT-CTXT
advantage of A against an AEAD scheme is defined by

Advint−ctxt
aead (A) = Pr[A forges Π]

where A forges Π is the event that any response to a query A makes to Dec is not ⊥. We
write the upper bound on the INT-CTXT advantage as

Advint−ctxt
aead (qe, σe, qd, σd, t) = max

A
Advint−ctxt

aead (A)

In [CIMN17, BCI+20, CIMN20], the authors use a unified AEAD security notion for
both privacy and authenticity. The adversary A is defined as the combination of both
the privacy and integrity adversaries, i.e., it wins if it can beat either of IND$-CPA or
INT-CTXT games. This unified notion is actually similar to IND$-CCA, except that it
considers a successful forgery as a win for the adversary, while IND$-CCA allows forgeries
and requires the adversary to still perform a distinguishing attack. Note that unless the

6 Security of COFB against Chosen Ciphertext Attacks

Initialize
K

$←− K
S ← φ

N ← φ

Enc(N,A,M)
If N ∈ N then

Return ⊥
(C, T)← EN,AK (M)
S ← S ∪ {(N,A,C, T)}
N ← N ∪ {N}

Return (N,A,C, T)
Verify(N,A,C, T)
If(N,A,C, T) ∈ S then
M ←⊥

Else then
M ← DN,AK (C, T)

Return (M 6=⊥)

Figure 3: The INT-CTXT game.

unified adversary is able to forge a ciphertext, i.e., it can break INT-CTXT, all the calls to
Dec in Figure 2 output ⊥ and only calls to Enc output non-trivial values. If no adversary
can break the unified notion, then no adversary can break IND$-CCA. The formalization
of IND$-CCA is meant to emphasize the effect of successful forgery on privacy.

Nonce Misuse/Repetition The procedures presented in Figures 2 and 3 ensure that
the nonces are never repeated during queries to Enc. In practice, implementing such
countermeasure can be expensive. Hence, in some applications, we need to consider the
implication of repeating the nonce. The IND$-CCA and INT-CTXT games, in this case,
are similar to Figures 2 and 3, but do not implement the framed lines, which ensure
that nonces cannot be repeated. In this paper, we consider schemes that are insecure
against adversaries that can repeat nonces. When we say a scheme is IND$-CPA-insecure
(IND$-CCA-insecure) against nonce-misuse adversaries, we mean that there is an adversary
Am that can adaptively choose a pair of queries

Enc(N,A1,M1)

and
Enc(N,A2,M2),

and based on the responses can guess the value of b, such that

Advind$−cpa
aead (Am) ≈ 1.

2.2 The COFB mode
The COFB mode, shown in Figure 1, is an NAE scheme. Both encryption and decryption are
similar, where the only difference is the linear feedback function that absorbs the plaintext
during encryption and the ciphertext during decryption. The scheme starts by initializing its
internal state by encrypting the nonce N . Not only is EK(N) used to initialize the internal
state, but also to generate an n/2-bit mask L, as b(EK(N)cn/2. After the initial state and
the mask are generated, the associated data A is divided into a blocks of n bits each and

Mustafa Khairallah 7

absorbed as shown Figure 1. We define the state after absorbing the last block of A to be Ya.
We define Xi = EK(Yi−1). The message M is also divided into m blocks of n bits each and
absorbed by applying a linear feedback function (Si+a, Ci) = ρ(Xi+a−1,Mi) and the new
state Si+a+1 is masked into Yi+a = Si+a ⊕ 3pa · 2a+i−1 · L‖0n/2, where the multiplication
is done over GF(2n/2) and can be represented by a cheap Linear Feedback Shift Register
(LFSR). The tag is generated as follows: Ya+m = Sa+m ⊕ 3pa+pm · 2a+m−2 · L‖0n/2 is
calculated, then T is calculated as EK(Ya+m). pa = 1 if the last block of A is n bits and
2, otherwise. Similarly, pm = 1 is the last block of M is n bits, and 2, otherwise.

2.2.1 Combined Feedback

The combined feedback function ρ used in the COFB mode is a linear transformation
from 2n bits to 2n bits. Given an output of the BC Xi and a plaintext block Mi, it
outputs Ci = Xi ⊕Mi and Si = Mi ⊕G(Xi), where G is a linear permutation over n bits.
During decryption, it takes a ciphertext block Ci instead and outputs Mi = Xi ⊕ Ci and
Si = Xi ⊕ G(Xi) ⊕ Ci. If an adversary has access to a known-plaintext-ciphertext pair
(Mi, Ci), Xi and Si can be found by Mi ⊕ Ci and Mi ⊕G(Mi ⊕ Ci), respectively. Before
applying the next BC call, Si is masked to Yi using the mask L as shown in Figure 1.

3 Converting an INT-CTXT adversary into an IND$-CCA
adversary

Bellare and Namprempre [BN00] proved a relation between CCA indistinguishability, CPA
indistinguishability and ciphertext integrity. We can also see that an IND$-CPA adversary
Ap that runs in time t and makes qe encryption queries can be used to construct an
IND$-CCA adversary A that runs in time O(t) and makes qe encryption queries and 0
decryption queries. A runs Ap and outputs whatever Ap outputs. On the other hand,
not every INT-CTXT adversary against an NAE-Scheme can be used to construct an
IND$-CCA adversary. For example, consider the INT-CTXT adversary in Figure 4 which
flips 1 bit of a ciphertext generated from an encryption query and tries to guess the
corresponding tag of the new ciphertext. As long as d = 0, A gains no information from
the calls to Verify. A still needs to define an IND$-CCA distinguisher. An important
observation is that in the example in Figure 4, A cannot use N as the nonce of an Enc
query, as that would not be nonce respecting. Hence, A is limited in how it can use the
information it gains from Ac even if the forgery succeeds. Due to limitations like this,
it is not always clear how to use an INT-CTXT adversary to construct an IND$-CCA
adversary.

INT-CTXTAc

1 : Initialize
2 : (C, T)← Enc(N,A,M)
3 : For i in 1 · · · qd
4 : Tf

$←− {0, 1}τ
5 : d← Verify(N,A,C ⊕ 1, Tf)
6 : If d = 1 then
7 : Return d
8 : Return d

Figure 4: A simple INT-CTXT adversary against an NAE-scheme.

This issue is relevant for at least two scenarios:

8 Security of COFB against Chosen Ciphertext Attacks

1. If the concrete security against INT-CTXT adversaries is much lower that the
concrete security against IND$-CPA adversaries, this may affect the concrete secu-
rity against IND$-CCA adversaries negatively, compared to IND$-CPA adversaries.
In other words, if Advint−ctxt

aead (qe, σe, qd, σd, t) � Advind$−cpa
aead (qe, σe, t), and there

exists an INT-CTXT adversary Ac and an IND$-CCA adversary A such that
Advind$−cca

aead (A) ≈ Advint−ctxt
aead (Ac) ≈ Advint−ctxt

aead (qe, σe, qd, σd, t), then the con-
crete security against IND$-CCA adversaries is significantly less than that against
IND$-CPA adversaries.

2. IND$-CPA adversaries have no access to Dec or Verify. Hence, the number of
decryption queries qd is irrelevant to IND$-CPA security. In practice, we are interested
in different possible attacks with different complexities. One scenario of interest
is attacks that use a small (constant) number of encryption queries qe, and the
attack complexity is dominated by the number of verification/decryption queries, as
they determine how many failed forgeries can be allowed in practice. Additionally,
some protocols may tolerate occasional forgeries (INT-CTXT) but not privacy fails
(IND$-CCA).

To illustrate, consider an NAE-scheme whose advantages are bounded by

Advind$−cpa
aead (qe, σe, t) ≤

qe + t

2128

and
Advint−ctxt

aead (qe, σe, qd, σdt) ≤
qd
264 + qe + t

2128 .

Without a dedicated IND$-CCA analysis, we do not know if the advantage is close to
that of INT-CTXT, which is quite low compared to the IND$-CPA bound. This example
can be a scheme that provides 128-bit IND$-CPA security but that only has a 64-bit tag.
In a discussion on the NIST lightweight cryptography forum [Mè19], Alexandre Mège
proposed an IND$-CCA adversary against any NAE scheme that process the plaintext
in blocks of n bits, with tag size τ . The adversary requires only 1 encryption query and
and has success probability qd/2τ for qd decryption queries. To construct this adversary,
we start from a tag-guessing INT-CTXT adversary, i.e. an adversary that asks for the
decryption of a random ciphertext and tries to guess the corresponding tag. If the tag
size is τ bits then the probability of successful random guessing is qd/2τ . Additionally,
the scheme is IND$-CPA-insecure against nonce-misuse adversaries. Consider the pairs
(A,M) and (A′

,M
′) carefully selected by the adversary to satisfy a property related to the

structure of the scheme in question. Given knowledge about two tuples (N,A,M,C, T) and
(N,A′

,M
′
, C

′
, T

′), such that (C, T) = EN,AK (M) and (C ′
, T

′) = EN,A
′

K (M ′), the adversary
can guess b with overwhelming probability.

For simplicity, we formalize the attack only to schemes that satisfy the following
property:

There is an integer n > 0, s.t. if:

1. |A| = |A′ |.

2. |M | = |M ′ | = 2n.

3. M 6= M
′ .

4. (C, T) = EN,AK (M) and (C ′
, T

′) = EN,A
′

K (M ′).

Mustafa Khairallah 9

then,
bMcn = bM

′
cn implies bCcn = bC

′
cn

and
bMcn 6= bM

′
cn implies bCcn 6= bC

′
cn.

Figure 5 depicts an adversary against schemes that satisfy this property. The adversary
tries to guess the tag for a tuple (N,A,C, T). Once the adversary guesses the correct tag,
it receives the corresponding message M . The adversary transforms (A,M) into (A′

,M
′)

which satisfies the property. The running time of this adversary is probabilistic with worst
case runtime qd = 2τ . Since the sampling in step 7 never repeats the same value, then after
2τ iterations all the values of T will have been tried, i.e., the number of iterations cannot
exceed 2τ . To sum up, the attack requires 2τ forgery attempts and only one encryption
query. We emphasize that this attack, as depicted in Figure 5, applies only to schemes
that satisfy the mentioned property. However, it is easy to change it to other types of
schemes as well. The critical issue that makes a scheme vulnerable to this attack strategy
is whether the scheme is also vulnerable to nonce-misuse adversaries.

IND$-CCAMG
1 : Initialize
2 : M ←⊥
3 : C

$←− {0, 1}2n

4 : N
$←− {0, 1}t

5 : T ← φ
6 : While M =⊥
7 : T

$←− {0, 1}τ \ T
8 : T ← T ∪ {T}
9 : M ← Dec(N,A,C, T)
10 : (A′

,M
′)← (A,M ⊕ 0n‖1n)

11 : (C ′
, T

′)← Enc(N,A′
,M

′)
12 : If bCcn = bC ′cn then
13 : d← 0
14 : Else then
15 : d← 1
16 : return Finalize(d)

Figure 5: A formalization of the IND$-CCA adversary proposed in [Mè19].

4 Forgery Attacks against COFB

In this section, we present 3 forgery adversaries against COFB that require around 2n/2

forgery attempts (Verify queries). The first adversary is an application of the analysis
framework proposed in [Kha20]. Hence, it is not optimized for COFB in particular, but for
a wide class of AEAD schemes. We call this adversary the Block-Dropping (BD) adversary
and it is depicted in Figure 6. The second adversary is an optimization for the case of
COFB, called Optimized Block-Dropping (OBD) adversary and it is depicted in Figure 7.
The third adversary is a Mask-Collision (MC) adversary and it is depicted in Figure 8.

10 Security of COFB against Chosen Ciphertext Attacks

INT-CTXTBD
1 : Initialize
2 : d← False
3 : M

$←− {0, 1}2n

4 : N ← φ
5 : While d = False and {0, 1}t \ N 6= φ

6 : N
$←− {0, 1}t \ N

7 : N ← N ∪ {N}
8 : (C, T)← Enc(N, ε,M)
9 : (M1,M2) n←−M
10 : Cf ←M2 ⊕M1 ⊕ C1 ⊕G(M1 ⊕ C1)⊕G(M2 ⊕ C2)
11 : d← Verify(N, ε, Cf , T)
12 : Return d

Figure 6: The Block-Dropping INT-CTXT adversary based on the framework from [Kha20].

4.1 Block-Dropping
The BD and OBD adversaries, depicted in Figures 6 and 7, both try to drop a block
from a ciphertext that has been legitimately generated using a chosen plaintext. The
BD adversary exploits the fact that when the mask of the COFB scheme is set to 0n/2,
the mask value does not change from one block to another. In such case, the encryption
is very similar to the CBC encryption. The adversary then assumes that the mask is
always 0n/2, which, for a chosen-plaintext Enc query, gives him a candidate for the
internal state at each point of the execution. We know that for any plaintext block Mi,
the output of the previous BC call Xi−1 = Mi ⊕ Ci, while the input to next BC call is
Yi = Mi ⊕G(Xi−1)⊕ c · L‖0n/2 for some constant c. By assuming that L = 0, we have
Yi = Mi ⊕ G(Xi−1) and Yi+1 = Mi+1 ⊕ G(Xi). For the forgery, the adversary chooses
Mf such that Yi+1 = Mf ⊕G(Xi−1) and sets Cf to Mf ⊕Xi−1. In order for this forgery
attempt to work, the assumption that L = 0 must be true. Since L is generated using a
PRF (a truncated output of a PRP call), this assumption holds with 2−n/2. In order to
have a high success probability, the BD adversary needs to ask for 2n/2 chosen-plaintext
Enc queries of at least 2 blocks and try the forgery on each of them. We note that BD
may not always succeed, depending on the size of the nonce and the design of the BC.
L = b(EK(0n−t‖N))cn/2. If t is large enough, e.g. t ≈ n, then the probability that there
is at least one value of N such that L = 0 is high. However, if t is small, this is not
guaranteed. In practice, 128 ≤ t ≤ 64, while n = 128, so this is not an issue. In particular,
GIFT-COFB uses t = n = 128, in which case BD succeeds with overwhelming probability.

The OBD adversary uses a slightly more complex assumption, but improves the attack
complexity. OBD starts by asking for one chosen-plaintext query of 2 blocks (M1,M2),
and it also starts by assuming that 32 · L = ∆ = 0. Hence, for the first forgery trial, OBD
behaves like BD. However, if the first trial fails, OBD changes the assumption instead of
asking for a new Enc. It assumes that 32 · L = 1. In general, the assumption for each
forgery attempt is 32 · L = ∆, where ∆ is incremented by 1 from the previous attempt.
Note that 32 · L is the value of the mask after processing an empty string of associated
data. In the case of OBD,

X0 = M1 ⊕ C1

Y1 = M1 ⊕G(X0)⊕ 2 ·∆‖0n/2

X1 = M2 ⊕ C2

Y2 = M2 ⊕G(X1)⊕ 2 · 3 ·∆‖0n/2

Mustafa Khairallah 11

INT-CTXTOBD
1 : Initialize
2 : d← False
3 : M

$←− {0, 1}2n

4 : N
$←− {0, 1}t;∆← 0n/2

5 : (C, T)← Enc(N, ε,M)
6 : (M1,M2) n←−M
7 : While d = False
8 : Cf ← 32 ·∆‖0n/2 ⊕M2 ⊕M1 ⊕ C1 ⊕G(M1 ⊕ C1)⊕G(M2 ⊕ C2)
9 : d← Verify(N, ε, Cf , T)
10 : ∆← ∆ + 1
11 : Return True

Figure 7: An optimization of the adversary in Figure 6.

Hence, OBD choosesMf such that Y2 = Mf ⊕G(X0)⊕3 ·∆‖0n/2 and sets Cf toMf ⊕X0.
Thus,

Cf = M2 ⊕G(X1)⊕ 2 · 3 ·∆‖0n/2 ⊕G(X0)⊕X0 ⊕ 3 ·∆‖0n/2

= M2 ⊕G(M2 ⊕ C2)⊕G(M1 ⊕ C1)⊕M1 ⊕ C1 ⊕ (2 · 3⊕ 3) ·∆‖0n/2

= M2 ⊕G(M2 ⊕ C2)⊕G(M1 ⊕ C1)⊕M1 ⊕ C1 ⊕ 32 ·∆‖0n/2

Unlike, BD, OBD tries to guess the correct mask value, not wait for the mask to satisfy
a given assumption. Hence, regardless of the nonce size, OBD always terminates with
a successful forgery. Its success probability is 1 with probabilistic runtime. The worst
case complexity is 264 forgery attempts with only one encryption query. The description
of both BD and OBD can be slightly modified to have a success probability of less than
1 where BD asks for qd queries to Enc and Verify, while OBD queries Enc once and
Verify qd times. In such case, the INT-CTXT advantage of both adversaries is

qd
2n/2 .

4.2 Mask Collision
The mask collision (MC) adversary, depicted in Figure 8, merges two parts of different
ciphertexts generated legitimately. The adversary takes two ciphertexts of two or more
blocks, then merges the first part of the first ciphertext with the second part of the second
ciphertext through a "bridge" block. Let the two queries used to perform the forgery be
(Ci, T i)← Enc(N i, ε,M i) and (Cj , T j)← Enc(N j , ε,M j), where M i and M j consist of
two blocks, each. For the ith query, we have

Xi
1 = M i

2 ⊕ Ci2

and
Y i2 = G(M i

2 ⊕ Ci2)⊕M i
2 ⊕ 2 · 3 ·∆i

where ∆i = 32 · Li. MC assumes that Li = Lj , and defines the forged ciphertext as

Cf = Ci1‖Cx

where

Y j2 = G(M i
2 ⊕ Ci2)⊕Mx ⊕ 2 · 3 ·∆i = G(M j

2 ⊕ C
j
2)⊕M j

2 ⊕ 2 · 3 ·∆j ,

12 Security of COFB against Chosen Ciphertext Attacks

INT-CTXTMC
1 : Initialize
2 : N ← φ
3 : For i in 1 · · · 2n/4

4 : N i $←− {0, 1}t \ N
5 : N ← N ∪ {N i}
6 : M i $←− {0, 1}2n

7 : (Ci, T i)← Enc(N i, ε,M i)
8 : For i in 1 · · · 2n/4

9 : For j in i+ 1 · · · 2n/4

10 : (M i
1,M

i
2) n←−M i

11 : (M j
1 ,M

j
2) n←−M j

12 : (Ci1, Ci2) n←− Ci
13 : (Cj1 , C

j
2) n←− Cj

14 : Cf ← Ci1‖M i
2 ⊕ Ci2 ⊕G(M i

2 ⊕ Ci2)⊕G(M j
2 ⊕ C

j
2)⊕M j

2
15 : d← Verify(N i, ε, Cf , T j)
16 : If d = True then Return d
17 : return d

Figure 8: The Mask-Collision INT-CTXT Adversary.

Mx = G(M i
2 ⊕ Ci2)⊕G(M j

2 ⊕ C
j
2)⊕M j

2

and
Cx = Xi

1 ⊕Mx = M i
2 ⊕ Ci2 ⊕G(M i

2 ⊕ Ci2)⊕G(M j
2 ⊕ C

j
2)⊕M j

2

Essentially,MC tries to transform the internal state during the forgery attempt from the
internal state of the ith Enc query, to that of the jth Enc query. This works if there is a
collision between the masks of the ith and jth queries, which is a birthday collision. Since
it is a collision over n/2 random bits, the collision occurs with high probability when the
number of calls to Enc, qe is more than 2n/4. However, in order to detect the collision,
a successful forgery must occur. The number of potential forgeries is qd =

(
qe

2
)
. When

qe = 2n/4, qd = 2n/2+1 − 2n/4. We note that when the collision occurs, the verification
step of the attack always succeeds with probability 1. Hence, the success probability of
the attack after qe and qd encryption and decryption queries is bounded by the following
inequality.

Pr[INT-CTXTMC(qe, σe, qd, σd, t)] ≤
(
qe

2
)
qd

2n
For the parameters in Figure 8

Pr[INT-CTXTMC(2n/4, σe, 2n/2, σd, t)] ≤
2n/2−2n/4

2 × 2n/2

2n

= 2n/2 − 2n/4

2n/2+1 = 0.5− 2−n/4−1.

5 Chosen-Ciphertext Distinguishing Attack against COFB
The INT-CTXT adversaries presented in Section 4 rely on a simple observation: the chosen
plaintext queries give the adversary a somewhat restricted access to the inputs and outputs
of the underlying block cipher. In particular, the equation Xi−1 = Mi ⊕ Ci reveals the
output of the (i − 1)th BC call, while the equation Yi = G(Mi ⊕ Ci) ⊕Mi ⊕ c · L‖0n/2,

Mustafa Khairallah 13

for some constant c, reveals half of the input to the ith BC call. However, the way the
adversaries are constructed relies on satisfying an assumption on the mask L corresponding
a nonce N that has been already queried during a query Enc. In the cases of BD and
MC the assumption results in a non-negligible number of queries to Enc, with qe = 2n/2

for BD and ∼ 2n/4 forMC. OBD overcomes this limitation by relaxing the assumption
on L, where L can take any value. However, it still relies on forging using a nonce that
has been queried before. In Figure 9, we present an IND$-CCA adversary L requires 1
query to Enc, and

Advind$−cca
aead (L) = 2t − 1

2t × 1
2n−t ×

qd
2n/2 −

1
2n

IND$-CCAL
1 : Initialize
2 : N

$←− {0, 1}t

3 : M
$←− {0, 1}n

4 : (C, T)← Enc(N, ε,M)
5 : Mf ←⊥
6 : L← 0n/2

7 : While Mf =⊥
8 : V ← T
9 : P ← G(M ⊕ C)⊕M ⊕ 2 · 32 · L‖0n/2

10 : Lf ← bV cn/2
11 : 0n−t‖Nf ← P&0n−t‖1t
12 : T f ← V
13 : Af ← P ⊕ 3 · Lf‖0n/2

14 : Cf ← P ⊕ 32 · Lf‖0n/2 ⊕G(V)⊕ V
15 : Mf ← Dec(Nf , Af , Cf , T f)
16 : L← L+ 1
17 : Mr $←− {0, 1}n
18 : M0 ←Mf‖Mr

19 : (C, T)← Enc(Nf , Af ,M0)
20 : If bCcn = Cf then
21 : Return Finalize(0)
22 : Else then
23 : Return Finalize(1)

Figure 9: The L IND$-CCA against COFB.

The idea of L is to guess one input-output pair of the underlying BC. Given the
equations governing the internal state of the COFB scheme, L only needs to guess n/2
bits, to obtain the pair (P, V) such that V = EK(P). L then assumes the forgery nonce
0n−t‖Nf = P . Based on this assumption, Lf = bEK(Nf)cn/2. L constructs an associated
data block and a ciphertext block such that the input and output to every BC call during
the forgery attempt are always P and V , respectively. If the forgery is successful, L
receives Mf as the single-block decrypted plaintext corresponding to Cf . If the forgery is
unsuccessful, the adversary guesses a different value for L. Once the forgery is successful,
L knows the state of the COFB scheme after absorbing the nonce Nf and associated data
block Af . As longs as Nf has never appeared in any query to Enc, it can be used in a
subsequent query while maintaining that L is nonce-respecting. To sum up, in order for
the attack to succeed, three conditions need to be satisfied:

14 Security of COFB against Chosen Ciphertext Attacks

1. L must guess the correct mask value L of the first encryption query. The probability
of satisfying this condition for a given forgery is 2−n/2

2. For the correct guess of L, it must be possible to use P as a nonce. In particular, P
must be of the form 0n−t‖Nf . The probability of satisfying this condition is 2t−n.

3. Nf must have not been used before as a nonce during any encryption query. L, as
defined in Figure 9, makes only a single query to Enc. Hence, the probability of
that the nonce Nf is fresh is 1− 2−t ∼ 1.

Since L tries all possible values of L, the first condition will be eventually satisfied with
at most 2n/2 calls to Dec. The second and third conditions, however, may not necessarily
be satisfied in Figure 9. In order to study their effect on the complexity, we separate the
analysis into two cases: when n = t and when n > t.

5.1 Full-block nonce
When the nonce size t = n, then the attack becomes simpler. L succeeds with overwhelming
probability. Once the correct value of L is guessed, the corresponding value P can always
be used as Nf . Moreover, the probability that Nf 6= N is 1 − 2−n. This leads to the
advantage

Advind$−cca
aead (L) ≈ qd

2n/2

While this case is the simplest to analyze, it is relevant in practice as the choice n = t
is common when n = 128 and is, indeed, the case for GIFT-COFB, the NIST lightweight
cryptography finalist that uses the COFB scheme with GIFT as a BC. Hence, it can be
used to conclude that the advantage IND$-CCA adversaries against GIFT-COFB is at least
≈ qd/2n/2.

5.2 Partial-block nonce
In case the nonce size t < n, then L needs to make sure that P can be used as a nonce.
The way nonce is defined in [CIMN20] requires P = 0n−t‖Nf . At the same time, we know
that P is of the form

G(Mi ⊕ Ci)⊕Mi ⊕ c · L‖0n/2

where c is a small constant. The only unknown variable in this expression is L. The
conditions needed to satisfy P = 0n−t‖Nf apply to the leftmost n− t bits. Assuming that
the internal states at different points of execution of the first call to Enc are uniformly
distributed, based on the properties of the BC and the random choice of the chosen plaintext,
then one way to increase the probability of satisfying these conditions is increasing the
number of blocks in the query to Enc, or increasing the number of queries to Enc. The
maximum length allowed by COFB [BCI+19] for the plaintext is ∼ 251 blocks. If the
nonce length is between 128 bits and 78 bits, we perform the same attack but the initial
encryption is performed using a message of 2n−t blocks, where for each guess of L, the
adversary will find one candidate for P with high probability. If the nonce is shorter than
78 bits, we need to construct a more complex adversary.

Applicability to HyENA HyENA [CDJN19] was a round 2 candidate of the NIST
lightweight cryptography standardization project and it holds a lot of resemblance to the
COFB mode. The main differences are:

1. It uses a different feedback function known as hybrid feedback.

Mustafa Khairallah 15

2. Before calling the BC for the last time the internal state is split in two halves and
swapped.

3. The nonce is limited to 3n/4 bits concatenated with an (n/4)-bit constant during
the first call to the BC.

These differences mean that applying the attack to HyENA requires that initial encryp-
tion query is of length 2n/4 and the way to construct the messages is different, but can
still be performed.

Potential Remedy Besides the nonce size, the IND$-CCA attack presented requires the
ability to predict both the internal state and mask corresponding to a nonce N , where a
successful guess of an n/2 bit value leaks both. Currently, one PRF is used to generate
both the mask and the initial internal state. In order prevent this, we can use two different
PRF constructions to generate each value. For example, we can use L = truncate(EK(N)),
which is the same as the current situation, while the initial state (the state XORed with
the first associated data block) can be EK(EK(N)), i.e. adding an extra BC call after the
mask generation. However, while this may prevent the presented IND$-CCA attack, it
will not affect the security bounds and may introduce additional problems. Hence, this
issue requires an independent study, outside the scope of this paper.

Effective Tag Size of GIFT-COFB The second phase of the attack presented in Section 5
holds some resemblance to the attack described in Section 3 [Mè19]. They mainly differ in
two points:

1. The attack in [Mè19] targets algorithms with short tags. It works with 2n/2 forgery
attempts against algorithms with n/2-bit tags. Our attack complexity is a function
of the mask size rather than the tag size. Given an n/2-bit mask, the attack works
with 2n/2 forgery attempts, even if the tag size is larger than n/2 bits.

2. The attack in [Mè19] requires only decryption queries, and only one encryption query.
Our attack requires one additional encryption query at the beginning. However, this
encryption query may consist of one block (if the nonce size is large enough) and the
plaintext can only be known, not necessarily chosen. In practice, this limitation is
very mild and the adversary can achieve it in many cases.

Given these observations, it seems that the tag size of GIFT-COFB offers little immunity
compared to algorithms with half the tag size, and by keeping the tag size n instead of
truncating it to n/2 (or a value in between) seems to offer very minimal security advantage.

Setting the tag size for COFB instances. The attacks presented in this article show
that the attack complexity against COFB is mainly dominated by the mask size, i.e., an
instance of COFB with mask size ζ can be attacked for both privacy and integrity with
advantage of the form

qd
2ζ

Besides, the existence of attacks that are bounded by the birthday bound for the number
of encryption queries is well-established for privacy through attacks on the PRP-PRF
switching for privacy and through the work of Inoue and Minematsu [IM21] which shows
forgery attacks with advantage

σ2
e

2n
With the accumulation of these results, we find it reasonable to set the tag size τ = ζ. For
most applications, setting τ = n/2 will offer almost no security degradation compared to
the current instance of GIFT-COFB.

16 Security of COFB against Chosen Ciphertext Attacks

Generalization to many forgeries The main goal of this paper is to challenge the limits
of the security of COFB and its main real-world instance GIFT-COFB. However, the attack
can be enhanced to allow many forgeries from a single plaintext query. If the Enc query
of L includes m plaintext blocks, then after successfully guessing L, i.e., after the first
successful forgery, the adversary has m choices for Nf and can forge many blocks of Af
and Cf . Even with the single block encryption query, the adversary has only a single
choice for Nf , but can use it with different lengths of Af and Mf . In this respect, COFB
is even worse than a generic scheme with n/2-bit tag, as such scheme allows one forgery
per 2n/2 attempts, while COFB allows many forgeries once the 2n/2-attempt threshold is
met.

6 Discussion of the Security Proofs of COFB
As discussed in Section 1, there are three security proofs in the literature that cover COFB.
The attacks proposed in this paper do not contradict the proofs in [BCI+20] and [CIMN17],
whose bounds are dominated by the term nqd/2n/2. However, it does contradict Theorem
2 in [CIMN20]. This is due to an error in calculating the probability of a collision between
the internal state values in encryption and decryption queries. Let Y ji be the input to the
BC at block i in the encryption query j and Y j

′

i′
be the input to the BC at block i′ in the

decryption query j′ . The proof of Theorem 2 of [CIMN20] bounds the probability of a
collision of the form Y ji = Y j

′

i′
by

Pr[∃i, j, i
′
, j

′
, s.t. Y ji = Y j

′

i′
] ≤ (qe + σe)σf

2n
However, this assumes that the internal states are completely random. In reality, the
adversary has a lot of control over n/2 bits of the state. For example, the adversary can
force a collision on half the state by forcing half the input of the BC during a decryption
query to a value that has been observed during encryption. However, once the adversary
makes such decision, the probability of a full collision becomes 2−n/2. The adversary can
keep changing the masked half of the state during decryption until the guess is correct. This
observation is confirmed by the attacks presented in this article. It has been communicated
to the authors of [CIMN20] and has been verified by them.

Due to the aforementioned oversight, we focus the rest of the of discussion on the
security proof of GIFT-COFB [BCI+20]. The authors give the following bound for COFB-R:

Advaead
COFB−R(qe, σe, qd, σd, t) ≤

1
2n/2 + (n+ 4)qd

2n/2+1 + qd + σ2
e + (qe + σe + σd)σe

2n

which is dominated by the term 0.5nqd/2n/2. This indicates a logarithmic gap from all the
best known attacks, which have an advantage O(qd/2n/2). However, we argue that this
bound is an artefact of the proof technique used. In other words, it is impossible to find an
adversary with advantage O(nqd/2n/2). First, we look at the security proof in [BCI+20].
The term nqd/2n/2 is the upper-bound on the probability of an event that is considered a
win for the adversary. This event is defined as follows:

• Let the forgery attempt f share the first pi block cipher calls with the encryption
query i, with Nf = N i. In other words, pi + 1 includes the first difference in the
associated data and/or ciphertext between the forgery attempt f and the encryption
query i, such that Y fpi+1 6= Y ij We set pi = −1 if no such encryption query exists.
The bad event B4 is defined as

∃(s, i1, j) s.t. Y fpi+1 = Y i1j ,

where j 6= 0.

Mustafa Khairallah 17

Table 2: Expected values of σe and qf according to different values of mcollR(Y) when
n = 128.

mcoll(YR) σe qf

1 1 264

2 232.5 263

4 249.15 262

8 257.91 261

16 262.77 260

21 264.07 259.61

32 265.68 259

64 267.59 258

In order to bound the probability of such event, we consider an adversary that can
control the unmasked half of the internal state, and expects a collision on the masked
half with one or more of the internal states during encryption queries. As such, Pr[B4]
is maximized when the collision targets a value Y i1j whose unmasked half is part of the
multi-collision with the largest size mcoll(YR), where Y is the set of all the inputs to the
BC during encryption. In other words,

Pr[B4] ≤ mcoll(YR)qd
2n/2 .

We note that this bound is not independent of the number and complexity of encryption
queries, as the expected value of mcoll(YR) depends on the amount of encrypted data.
For example, when σe ≈ 2n/4, the expected value of mcoll(YR) ≈ 2, while at σe ≈ 264, the
expected value is 21. Table 2 gives expected values of σe required to get a multi-collision
of a certain size and the corresponding qd.

In [BCI+20], the authors bound mcoll(YR) < n, which leads to the simplified term
0.5nqd/2n/2. However, this simplification hides a non-negligible dependence on the encryp-
tion complexity. Given these observations on how the bound is constructed, we conjecture
that the logarithmic gap between the security bound and the best known attacks is an
artefact of the security proof and that the term dependent on the number of decryption
queries/forgery attempts in the security bound of COFB can be improved to qd/2n, but
we leave proving such bound to future work.

7 Related Work
After the attacks presented in this paper were initially published, other researchers have
also studied the security proofs of COFB. Inoue and Minematsu [IM21] showed a forgery
attack that is dominated by encryption queries. It requires about 2n/2 encryption queries
and one forgery attempt. Later, Inoue et. al. [IIM22] showed an IND$-CPA attack that
requires 2n/2 encryption queries that works when n = t. These results are independent
of the results presented here. These works can be seen as complementary to this paper,
investigating different attack strategies on COFB.

8 Conclusions
In this article, we have analyzed the COFB algorithm showing that it is secure against
IND$-CCA adversaries at most up to 2n/2 forgery attempts. We presented new forgery
attacks and the first IND$-CCA attack against COFB with negligible encryption complexity

18 Security of COFB against Chosen Ciphertext Attacks

and 2n/2 forgery attempts. We show that COFB behaves in a similar manner to a generic
AEAD scheme with n/2-bit tag, and in some scenarios even worse. As a byproduct, we
have identified an oversight in [CIMN20]. However, we emphasize that the attacks do not
threaten [BCI+20], [CIMN17] or the security of GIFT-COFB according to the requirements
of the NIST lightweight cryptography standardization project.

Acknowledgments
The author would like to thank the reviewers of ToSC for their insightful comments and
feedback. The author would also like to thank the designers of GIFT-COFB and the authors
of [CIMN20] for their comments on an earlier draft. This work was funded under the
MALEC project, Temasek Laboratories NTU grant DSOCL17101.

References
[BCI+19] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul

Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. GIFT-
COFB. NIST Lightweight Cryptography Project, 2019. https://csrc.nist.
gov/Projects/Lightweight-Cryptography/Round-1-Candidates.

[BCI+20] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul
Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. GIFT-
COFB. Cryptology ePrint Archive, Report 2020/738, 2020. https://eprint.
iacr.org/2020/738.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In Tatsuaki
Okamoto, editor, Advances in Cryptology — ASIACRYPT 2000, pages 531–545,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[BR06] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs. In Serge Vaudenay, editor,
Advances in Cryptology - EUROCRYPT 2006, pages 409–426, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[CDJN19] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, and Mridul Nandi. HyENA.
NIST Lightweight Cryptography Project, 2019. https://csrc.nist.gov/
Projects/Lightweight-Cryptography/Round-1-Candidates.

[CIMN17] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In In-
ternational Conference on Cryptographic Hardware and Embedded Systems,
pages 277–298. Springer, 2017. https://link.springer.com/chapter/10.
1007/978-3-319-66787-4_14.

[CIMN20] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In Journal
of Cryptology, pages 703–741. Springer, 2020. https://link.springer.com/
article/10.1007/s00145-019-09325-z.

[IIM22] Akiko Inoue, Tetsu Iwata, and Kazuhiko Minematsu. Analyzing the Provable
Security Bounds of GIFT-COFB and Photon-Beetle. Cryptology ePrint Archive,
Report 2022/001, 2022. https://ia.cr/2022/001.

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://eprint.iacr.org/2020/738
https://eprint.iacr.org/2020/738
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://link.springer.com/chapter/10.1007/978-3-319-66787-4_14
https://link.springer.com/chapter/10.1007/978-3-319-66787-4_14
https://link.springer.com/article/10.1007/s00145-019-09325-z
https://link.springer.com/article/10.1007/s00145-019-09325-z
https://ia.cr/2022/001

Mustafa Khairallah 19

[IM21] Akiko Inoue and Kazuhiko Minematsu. GIFT-COFB is Tightly Birthday Secure
with Encryption Queries. Cryptology ePrint Archive, Report 2021/737, 2021.
https://ia.cr/2021/737.

[Kha20] Mustafa Khairallah. Weak Keys in the Rekeying Paradigm: Application
to COMET and mixFeed. IACR Transactions on Symmetric Cryptology,
2019(4):272–289, Jan. 2020.

[MV04] David McGrew and John Viega. The galois/counter mode of operation (gcm).
submission to NIST Modes of Operation Process, 20:0278–0070, 2004.

[Mè19] Alexandre Mège, Nov 2019. https://groups.google.com/a/list.nist.gov/
g/lwc-forum/c/2a0H-HQHgqU/m/EtjdRFSmBQAJ.

[nis18] Submission Requirements and Evaluation Criteria for the Lightweight
Cryptography Standardization Process, 2018. https://csrc.nist.
gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf.

[Rog02] Phillip Rogaway. Authenticated-Encryption with Associated-Data. In Proceed-
ings of the 9th ACM Conference on Computer and Communications Security,
CCS ’02, page 98–107, New York, NY, USA, 2002. Association for Computing
Machinery.

https://ia.cr/2021/737
https://groups.google.com/a/list.nist.gov/g/lwc-forum/c/2a0H-HQHgqU/m/EtjdRFSmBQAJ
https://groups.google.com/a/list.nist.gov/g/lwc-forum/c/2a0H-HQHgqU/m/EtjdRFSmBQAJ
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

	Introduction
	Preliminaries
	Definitions and Security Notions
	The COFB mode

	Converting an INT-CTXT adversary into an IND$-CCA adversary
	Forgery Attacks against COFB
	Block-Dropping
	Mask Collision

	Chosen-Ciphertext Distinguishing Attack against COFB
	Full-block nonce
	Partial-block nonce

	Discussion of the Security Proofs of COFB
	Related Work
	Conclusions

