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Abstract—Due to its amazing speed and multiplicative
properties the Legendre PRF recently finds widespread
applications e.g. in Ethereum 2.0, multiparty compu-
tation and in the quantum-secure signature proposal
LegRoast. However, its security is not yet extensively
studied.
The Legendre PRF computes for a key k on input x

the Legendre symbol Lk(x) =
(

x+k
p

)
in some finite field

Fp. As standard notion, PRF security is analysed by
giving an attacker oracle access to Lk(·). Khovratovich’s
collision-based algorithm recovers k using Lk(·) in time√

p with constant memory. It is a major open problem
whether this birthday-bound complexity can be beaten.
We show a somewhat surprising wide-ranging analogy

between the discrete logarithm problem and Legendre
symbol computations. This analogy allows us to adapt
various algorithmic ideas from the discrete logarithm
setting.
More precisely, we present a small memory multiple-

key attack on m Legendre keys k1, . . . , km in time √mp,
i.e. with amortized cost

√
p/m per key. This multiple-

key attack might be of interest in the Ethereum context,
since recovering many keys simultaneously maximizes
an attacker’s profit.
Moreover, we show that the Legendre PRF admits

precomputation attacks, where the precomputation de-
pends on the public p only – and not on a key k. Namely,
an attacker may compute e.g. in precomputation time
p

2
3 a hint of size p

1
3 . On receiving access to Lk(·) in an

online phase, the attacker then uses the hint to recover
the desired key k in time only p

1
3 . Thus, the attacker’s

online complexity again beats the birthday-bound.
In addition, our precomputation attack can also be

combined with our multiple-key attack. We explicitly
give various tradeoffs between precomputation and
online phase. E.g. for attacking m keys one may spend
time mp

2
3 in the precomputation phase for constructing

a hint of size m2p
1
3 . In an online phase, one then finds

all m keys in total time only p
1
3 .

Precomputation attacks might again be interesting
in the Ethereum 2.0 context, where keys are frequently
changed such that a heavy key-independent precompu-
tation pays off.

I. Introduction
A. Motivation

Blockchain technology received enormous attention over
the past years by enabling secure, decentralized payments
and multi party computations. One of the most famous
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and powerful implementation of this technology is the
Ethereum Blockchain. The newly proposed Ethereum 2.0
protocol [13], [14] tries to increase throughput for validating
transactions in order to become competitive with modern
credit card transaction systems.

Throughput is increased by moving away from the energy-
consuming Proof-of-Work approach to a Proof-of-Stake. As
opposed to Proof-of-Work, in Proof-of-Stake a user’s voting
power is not tied to its computing power, but to the stake
he owns. If the Legendre PRF does not provide sufficient
security, a malicious user u may let another user ū with
Legendre key k̄ download and validate transactions. User u
then recovers ū’s secret key k̄ in order to maliciously claim
ū’s reward.
More recent Legendre PRF applications are in multi-

party computation [17], and in designing quantum secure
signatures [5].

B. Related work on Legendre PRF security
Let p be a prime and x ∈ Fp. We call x a quadratic

residue in the finite field’s multiplicative group F∗p, if there
exists an y ∈ F∗p with y2 = x. We define the Legendre
symbol

(
x

p

)
=


0 if x = 0
1 if x is a quadratic residue
−1 else.

It is well-known that
(
x
p

)
= x

p−1
2 mod p. The multiplica-

tivity of the Legendre symbol follows directly.
Choose a key k ∈ Fp. Then the Legendre PRF, as pro-

posed by Damgård [8], is the function Lk : Fp → {−1, 0, 1}
with

Lk(x) =
(
x+ k

p

)
.

Therefore, the Legendre PRF satisfies for all i ∈ Fp

Lk(x+ i) =
(
x+ k + i

p

)
= L0 (x+ k + i) .

Conversely, if Lk(x+ i) = L0(y + i) for sufficiently many i,
then we can conclude that y = x+ k mod p. Thus, finding
x, y satisfying the identity Lk(x+ i) = L0(y + i) for suffi-
ciently many i gives us a way to compute k = y−x mod p.
We call (x, y) ∈ Fp × Fp a collision between the two
functions Lk(·) and L0(·) if Lk(x + i) = L0(y + i) for
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all 0 ≤ i < d3 log pe. We show in our work that, assuming
Legendre PRF security, enforcing the identity at d3 log pe
points is sufficient to guarantee that a collision (x, y) yields
the secret key k = y − x.

Notice that evaluation of L0(·) is possible using the public
p only, whereas evaluation of Lk(·) requires oracle access.
Oracle access realization is the usual cryptographic attack
model for PRFs – which is for conservative reasons quite
strong, and not always satisfied in practical applications.

Khovratovich [20] defined a memoryless algorithm with
Lk(·) oracle access for recovering a Legendre key k within
the typical birthday-type time bound Õ(√p), where the
Õ-notation suppresses factors polynomial in log p. In the
less strong attack model without oracle access, but only
M ≤ p

1
4 evaluations of Lk(·) on known points, Beullens,

Beyne, Udovenko, Vitto [4] and Kaluderovic, Kleinjung,
Kostic [19] proposed an algorithm with inferior time
complexity O(p log2 p/M2).
It was left as an open problem, whether the √p bound

can be beaten with classical algorithms. We answer this
question in the affirmative, when we either allow for (more
expensive) precomputations that do not require Lk(·) oracle
access, and/or allow for amortized cost per key in multiple-
key attacks.
On quantum computers, Russell and Shparlinski [26]

showed that k can be recovered in polynomial time given
oracle access to a quantum embedding of Lk(·) that can
be asked in superposition – a very strong and in practical
settings sometimes questionable attack model.

C. Oracle-access based Attack Model
Our results can be seen as a generalization of Khovra-

tovich’s memory-less algorithm [20] that also uses Lk(·)
oracle access. Most practical scenarios that we are aware
of however do not provide such a strong attack model.
E.g. in Ethereum 2.0 the so-called Proof-of-custody for

user u with secret key k works as follows. User u downloads
periodically public data mi, hashes to h(mi) ∈ Fp, and
publishes the bit Lk(h(mi)). After a certain time period, all
users reveal their secret key k. User u can claim a reward
on data mj only if all bits Lk(h(mi)) verify correctly for all
published mi within this time period. Hence, an attacker
obtains evaluations of Lk(·) only on random known points
h(mi), rather than points of his choice.
A similar attack scenario applies for the LegRoast

signature scheme [5] that is based on the MPC-in-the-
head paradigm [18]. Here, a user u’s public key is an n-bit
string (Lk(x1), . . . , Lk(xn)), where k is u’s secret key, and
the xi are public and randomly chosen in Fp. Again, an
attacker obtains evaluations of Lk(·) on random known
points xi.

The setting, where an attacker obtains PRF evaluations
on known (random) points is called known plaintext attack
in the literature. Many practical PRF applications, e.g.
also for AES, only allow for known plaintext attacks. Nev-
ertheless, for PRFs the well-established standard security
notion is a chosen plaintext attack (CPA) that allows an

attacker to query Lk(·) on points adaptively chosen by
himself, i.e., an attacker receives Lk(·) oracle access.
Since PRFs are widely applied in practice in various

scenarios, it is crucial to establish security even against
the stronger CPA type. In fact, our algorithms directly
use adaptive CPA queries, e.g. for achieving small memory
consumption. Thus, our cryptanalytic results are of interest
to study the security of Ethereum 2.0 and LegRoast, but
do not directly lead to an attack on these.

D. Our contributions
1) Legendre PRF vs dlog: Let us first discuss the analogy

between attacking the Legendre PRF via collisions and
collision-based discrete logarithm algorithms. Let G be a
discrete logarithm group of order q with generator g, and let
h = gk

′ be a discrete logarithm instance. By finding (x, y)
such that hgx = gy, we compute the discrete logarithm
k′ = y − x mod q, analogous to the Legendre setting.
Just as Lk(x+i

p ) = L0(y+i
p ), for sufficient many i, the

identity hgx = gy is asymmetric in the sense that only
the left-hand size depends on the secret discrete logarithm
k′, whereas the right-hand side can be computed solely
based on the group specification. This asymmetry is used
in precomputation attacks on the discrete logarithm as
introduced in Mihalcik [23] Lee, Cheon, Hong [22] and
Bernstein, Lange [3], where one performs a (rather large)
precomputation that depends on the group only, and
outputs a (rather small) hint. Upon receiving a discrete
logarithm instance, one then determines the unknown k′
more quickly using the hint. Various tradeoffs are possible,
e.g. within precomputation time Õ(q 2

3 ) one can compute a
hint of size Õ(q 1

3 ). Upon receiving h = gk
′ , the hint then

allows to determine k′ in time only Õ(q 1
3 ).

2) Legendre Precomputation Attack: As already pointed
out, in the Legendre setting the identity Lk(x+i

p ) = L0(y+i
p )

offers a similar asymmetry. The identity’s right-hand side
depends on p only and thus allows for precomputation,
whereas computation of the left-hand side requires Lk(·)
oracle access. Hence, it might not come as a surprise that
we obtain a similar Legendre key precomputation attack.
Analogous, we may spend Õ(p 2

3 ) time to compute a hint
of size Õ(p 1

3 ). Upon receiving access to Lk(·), we then
compute the secret k using only Õ(p 1

3 ) queries to Lk(·).
Not only does our precomputation attack break the √p-

bound for recovering Legendre keys – in the online phase,
once we have precomputed our hint. Our attack also ac-
counts for scenarios that only offer limited number of Lk(·)-
queries. Similar to the discrete logarithm setting, we get for
Legendre keys various tradeoffs between precomputation,
key recovery phase and success probability.

3) Legendre Multiple-Key Attack: In the discrete loga-
rithm setting, it was first noticed by Kuhn and Struick [21]
using ideas from Escott, Sager, Selkirk, Tsapakidis [11] that
m discrete logarithm instances h1 = gk

′
1 , . . . , hm = gk

′
m

can be solved memory-less more efficiently than naively
applying Pollard’s Õ(√p)-algorithm m times. Namely,
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Kuhn and Struick showed that reusing the data structure
for h1, the discrete logarithm of h2 can be found slightly
more efficient, and so on. In total, all m discrete logarithm
instances can be computed in time O(√mp).

Again, the multiple-key discrete logarithm setting trans-
fers to the Legendre PRF world. Namely, we are able to
extend Khovratovich’s Õ(√p)-algorithm — the Legendre
variant of Pollard — to a multiple-key attack on m key
simultaneously. To this end, we use some graph-based
techniques that were introduced by Fouque, Joux, Mavro-
mati [15]. As result, we obtain an attack on m Legendre
keys k1, . . . , km using oracle access to Lk1(·), . . . , Lkm(·)
that recovers all m keys in total time Õ(√mp).
Our total time in turn implies that the amortized cost

per Legendre key is only Õ(
√
p/m), again beating the√

p-bound.
4) Legendre Multiple-Key Attack with Precomputation:

In the discrete logarithm setting, Corrigan-Gibbs and Ko-
gan [7] showed that multiple-key attacks can be combined
with precomputation, again allowing for various tradeoffs.
We also transfer this combination to the Legendre key set-
ting. This implies e.g. an attack that uses precomputation
time Õ(mp 2

3 ) to build a hint of size Õ(m2p
1
3 ). Upon access

to Lk1(·), . . . , Lkm(·), one then computes all m keys in total
time only Õ(p 1

3 ).
Notice that in the multiple-key setting a large precom-

putation pays off in the sense that its cost amortizes over
all keys. This explains why the multi-key precomputation
setting is especially attractive for recovering Legendre keys.
Conclusion: Our attacks do not directly apply to
Ethereum 2.0, since they require Legendre PRF oracle
access Lk(·), that is typically not provided in a blockchain
scenario. Nevertheless, precomputation as well as multiple-
key attacks seem to be highly relevant in the Ethereum
2.0 context, where Legendre keys are frequently changed
such that heavy key-independent precomputations pay
off to optimize success probability in a (short) online
key-dependent attack phase. Moreover, the more keys an
attacker recovers in an online phase, the larger is his reward.
Therefore, amortization of attack costs over many keys also
pays off.

In the light of our novel Legendre PRF precomputation
attacks one might consider — rather than the previous
p

1
2 -security level provided by Khovratovich’s algorithm

— a more conservative lower p 1
3 -security level. Using this

third-root bound, the 256-bit prime p used by Ethereums
2.0 still provides a high security level (of at least 85-bit),
even against attacks with Lk(·) oracle access.
5) More Dlog-like Attacks and Limitations: We would

like to notice that other collision-based discrete logarithm
algorithms also transfer to the Legendre setting. This
includes Pollard’s Lambda method [25] for secrets within
a certain range, as well as the Esser-May method [12] for
secrets with low Hamming weight. However, we felt that
these attacks are less relevant in the Legendre key setting,
in which we are not aware of any application with Legendre
keys in a certain range, or with small Hamming weight.

Moreover, we would like to point out that despite the
similarities between the discrete logarithm problem and
the Legendre PRF, there also exists exist crucial differences
that introduce technical difficulties for directly transferring
discrete logarithm algorithms. Namely, the discrete loga-
rithm setting provides us with a group structure that is
heavily used in many algorithms. As an example, Corrigan-
Gibbs and Kogan [7] compute in their multiple-key attack
for some random r1, . . . , rm the value h = hr1 · . . . · hrm

that has discrete logarithm r1k
′
1 + . . .+rmk

′
m. Thus, in the

discrete logarithm setting we easily obtain random linear
combinations of the k′i. This property greatly simplifies the
analysis of Corrigan-Gibbs and Kogan’s algorithm.
As opposed to the discrete logarithm, for the Legendre

PRF we do not have a group structure. This implies that
neither can we compute a multiple r1k1, r1 ∈ Fp using the
oracle Lk1(·), nor are we able to compute k1 + k2 using
two oracles Lk1(·) and Lk2(·).

The missing group structure poses some additional tech-
nical problems, when we transfer in the subsequent chapters
the above-mentioned discrete logarithm algorithms to the
Legendre PRF setting. Nevertheless, we always succeed
to design alternative algorithms that provide analogous
complexity results.

6) Related Work and Open Problems: Our work is not
the first that uses collision-finding techniques in the context
of precomputation without having a group structure. E.g.
Coretti, Dodis, Guo and Steinberger [6] and later Akshima,
Cash, Drucker and Wee [1] designed precomputation
attacks and lower bounds for salted hash functions. They
showed that the salting technique is a good defense against
the efficacy of precomputations for hash function collisions.

We are quite confident that the lower bounds of Corrigan-
Gibbs and Kogan [7] from the discrete logarithm setting in
generic groups also transfer to our Legendre PRF setting,
when using only our limited set of allowed operations.
However, we feel that such an artificially limited generic
Legendre PRF model would only provide misleading security
guarantees. As opposed to many discrete logarithm groups,
where we only have generic attacks, the Legendre PRF
setting seems to offer a richer mathematical structure. E.g.
the attacks of Beullens, Beyne, Udovenko, Vitto [4] and
Kaluderovic, Kleinjung, Kostic [19] exploit the Legendre
symbol’s multiplicativity to reduce the number of Lk(·)
oracle calls. Unfortunately, we have to leave it open whether
similar techniques can be applied in our setting.
Since we are purely focusing on key-recovering attacks,

one might also wonder whether there exist more efficient
Legendre PRF distinguishers. Given the wide analogy
between discrete logarithm and Legendre PRF attacks,
it is tempting to adapt e.g. the more efficient DDH-like
distinguisher of Corrigan-Gibbs and Kogan [7] to the
Legendre PRF setting. We failed to construct distinguishers
with better efficiency than our key-recovery attacks, and
we leave their existence as an open problem.

Our paper is structured as follows. In Section II we
provide some basic definitions for properly defining collision-
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based random walk algorithms in the Legendre PRF setting.
Our Legendre precomputation attack is given in Section III.
For didactic reasons, we then first generalize in Section IV
our precomputation attack to the multiple-key setting,
since both algorithms share a similar analysis. Eventually,
in Section V we provide our multiple-key attack without
precomputation.

II. Legendre PRF Basics
All logarithms in this paper are base 2. Let p be prime,

and let (xp ) be the Legendre symbol of x in Fp. Since
(xp ) = x

p−1
2 mod p, the Legendre symbol can be computed

in time O(log3 p), polynomial in the bit-size of p.
For ease of notation, throughout the paper we suppress

all run time factors that are polynomial in log p, by hiding
them in soft-Oh notation, e.g. 3p log2 p = Õ(p). We call
any function inverse that grows faster than a polynomial in
log p negligible, denoted negl(p). We call success probability
1− negl(p) overwhelming.

For a key k ∈ Fp the original Legendre PRF [8] is defined
as the function

L̄k : Fp → {−1, 0, 1}, x 7→
(
x+ k

p

)
.

Obviously, if y = x+ k then L̄0(y) = L̄k(x). In order to
use collision-based algorithms, we would like to conclude
that conversely L̄0(y) = L̄k(x) implies y = x+ k. To this
end, we define a function Lk with sufficiently large range
R.

Definition 1 (Legendre point): Define r = d3 log pe and
R = {−1, 0, 1}r. We set

Lk : Fp → R, x 7→
((

x+ k

p

)
, . . . ,

(
x+ k + r − 1

p

))
.

We denote by L := L0 the key-independent function, and
we define the set of all Legendre points as P = {L(y) | y ∈
Fp} ⊂ R.

Notice that L(x) ∈ {−1, 1}r unless x = 0 or x > p− r.
For simplicity, let us for a moment exclude these border
cases. Under the assumption that L̄k is a PRF, it is not
hard to see that the r-bit range L : Fp → {−1, 1}r is a
secure PRG (pseudorandom number generator).

In fact, Damgård suggested such a Legendre pseudoran-
dom generator in [8]. Therefore, for a random seed x the
output L(x) is supposed to be pseudorandom. There is
strong theoretical and practical evidence [2], [4], [9], [19],
[24], [26] that the distribution of L(x) is even statistically
close to uniform in {−1, 1}r. For simplicity of exposition,
we heuristically assume such a uniform distribution. A
failure of our heuristic would open the door for Legendre
symbol distinguishing attacks.

Heuristic 1 (Uniformity): Let x ∈ {1, 2, . . . , p − r}
be chosen uniformly at random. Then L(x) is uniformly
distributed in {−1, 1}r. That is for all fixed c ∈ {−1, 1}r
we have Pr[L(x) = c] = 1

2r .

In the subsequent sections, we define random walks over
the set P = {L(x) | x ∈ Fp} of Legendre points. Notice
that P is not equipped with a group structure, as opposed
to the discrete logarithm setting.
The following Lemma 1 implies that |P | = p with over-

whelming probability. This in turn implies that collisions of
our random walks result in recovery of the secret Legendre
PRF key k.

Lemma 1: Let Lk : Fp → {−1, 0, 1}d3 log pe. Under
Heuristic 1, with overwhelming probability all argument
pairs x, y with y 6= x+k satisfy L(y) 6= Lk(x). Hence, with
overwhelming probability

L(y) = Lk(x) ⇒ y = x+ k.

Proof: Let r = d3 log pe, and let k ∈ Fp be chosen
uniformly at randomly. First, consider the case of argument
pairs x, y such that at exactly one of L(y), Lk(x) is in
{−1, 0, 1}r\{−1, 1}r. That is, either L(y) or Lk(x) contains
a zero entry. Then obviously L(y) 6= Lk(x). Second,
consider the case that L(y), Lk(x) both contain zeros. By
Definition 1, every Legendre point can have at most one
zero. Since y 6= x+ k the zero entries of L(y), Lk(x) must
be in different positions, again implying L(y) 6= Lk(x).

Thus, we may w.l.o.g. assume argument pairs x, y with
L(y), Lk(x) ∈ {−1, 1}r. Since k is uniformly at random, by
Heuristic 1 the Legendre point Lk(x) = L(k + x) is also
uniformly at random. Therefore,

Pr [L(y) = Lk(x) | y 6= x+ k] = 1
2r = 1

2d3 log pe ≤
1
p3 .

The number of pairs x, y with y 6= x+ k is upper-bounded
by p(p − 1), since we exclude Legendre points with zero
entries. Using Bernoulli’s inequality, all these x, y satisfy
L(y) 6= Lk(x) with probability at least(

1− 1
p3

)p(p−1)
≥ 1− p(p− 1)

p3 ≥ 1− 1
p
.

III. Precomputation Attack

Let us first give a high-level description of our Legendre
PRF precomputation attack, see also Figure 1. In a nutshell,
in the precomputation phase we perform sufficiently many
key-independent random walks W1, . . . ,Ws on the set of
Legendre points P (Definition 1), where we only store the
walks’ endpoints. The endpoints serve as a hint for the
online phase.
Upon receiving Lk(·) oracle access, we then compute

in the online phase the Legendre key k by letting a key-
dependent random walk W k – defined via Lk(·) – collide
with one of the precomputed walks. We detect the collision
using our stored endpoints.
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Figure 1: Precomputation attack

A. Random Walks – Precomputation and Online
Let R = {−1, 0, 1}d3 log pe and P = {L(y) | y ∈ Fp} ⊂ R

(Definition 1). We define a random function f : P → Fp.
Notice that f is compressing. In practice, f may be
instantiated via some appropriate hash function. The
function f helps us in a random walk W to map Legendre
points L(y) back to arguments y′ for the Legendre PRF.
We define W on P as follows.

Precomputation phase. Let y(1) ∈ Fp. Then W ’s starting
point is L(y(1)) ∈ P . Next, W computes y(2) = y(1) +
f(L(y(1))) mod p and steps to its second point L(y(2)) ∈ P .
In general, W computes an arbitrary number of steps,
where

y(i+1) = y(i) + f
(
L
(
y(i)
))

mod p for i ≥ 1 (1)

with random walk points L
(
y(i)) ∈ P . Notice that W is

key-independent, since it does not involve oracle queries
Lk(·). Thus, we can compute W in a precomputation phase
solely based on the public information p. Assume that we
walk W for t/2 steps. Then we only store the endpoint
L(y(t/2)) and its argument y(t/2). The endpoint L(y(t/2))
allows us to detect collisions between walks, whereas y(t/2)

allows us to find the Legendre key. This procedure is
repeated with s different starting points y(1)

1 , . . . , y
(1)
s .

Online phase. Now assume that we obtain Lk(·) oracle
access. We want to compute in an online phase the secret
Legendre key k. To this end we perform a key dependent
walk W k as follows. Choose x(1) ∈R Fp and compute
starting point Lk(x(1)). In general, for a key dependent
walk W k we calculate the next point as

x(i+1) = x(i) + f
(
Lk

(
x(i)
))

mod p for i ≥ 1 (2)

with random walk points Lk
(
x(i)) ∈ P.

B. Colliding Walks solve Legendre.
Assume that a key-independent walk W collides with

a key-dependent walk W k. I.e., there exist arguments
y(i), x(j) with colliding points

L(y(i)) = Lk(x(j)).

Using Lemma 1, we immediately conclude from such a
collision that

k = y(i) − x(j) mod p. (3)

Moreover, we want to show that once two chains of points
from P computed in walks W,W k collide, they stay in the
same points, i.e.

L(y(i)) = Lk(x(j))⇒ L(y(i+1)) = Lk(x(j+1)).

To this end let us assume L(y(i)) = Lk(x(j)). We already
know that this implies y(i) = x(j) + k mod p. Using
Equation (1), we obtain

y(i+1) = y(i) + f
(
L
(
y(i)
))

= x(j) + k + f
(
L
(
x(j) + k

))
mod p.

This in turn implies

L
(
y(i+1)

)
= L

(
x(j) + k + f

(
L
(
x(j) + k

)))
= Lk

(
x(j) + f

(
Lk

(
x(j)

)))
= Lk

(
x(j+1)

)
.

It remains to show that we can efficiently find arguments
y(i), x(j) with colliding points L(y(i)), Lk

(
x(j)). Since from

the first colliding point on both walks stay in the same
points, walk W k eventually reaches W ’s endpoint. Let
L(y(t/2)) = Lk(x(j)) denote this endpoint. The correspond-
ing arguments y(t/2), x(j) reveal the Legendre secret key k
via Equation (3).

The resulting precomputation attack Pre-Legendre
is described in Algorithm 1. Using the parameter choice
s = t = p

1
3 in the following Theorem 1, we achieve

precomputation in time Õ(p 2
3 ) using a hint of size Õ(p 1

3 ),
whereas the online phase runs in time Õ(p 1

3 ) with constant
success probability ε = Ω(st2/p) = Ω(1).

Theorem 1: Assume that we are given oracle access to
a Legendre PRF Lk(·) : Fp → P . Under Heuristic 1, for
any s, t ∈ N with s2t ≤ p algorithm Prep-Legendre
precomputes in time Õ(st) a hint of size Õ(s), which
allows to find k in online time Õ(t) with success probability
Ω
(
st2

p

)
.

Proof: Let us first consider correctness and success
probability. If Pre-Legendre finds a collision in line
12, then by Lemma 1 with overwhelming probability k is
the correct Legendre key. It remains to show that Pre-
Legendre does not output FAIL too often.

We show that the success probability ε = Pr(FAIL) for
finding a collision in line 12 of W k with some precomputed
walk W`’s endpoint is Ω(st2/p). Hence, we obtain constant
success probability for st2 = Ω(p), e.g. for the choice s =
t = dp 1

3 e. Our analysis closely follows the analysis from
Corrigan-Gibbs and Kogan [7] for the discrete logarithm
setting.
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Algorithm 1: Pre-Legendre
Input : p, Lk(·) : Fp → P with P = {L(y) | y ∈

Fp} ⊂ {0,±1}d3 log pe

Output : k ∈ Fp
1 begin
2 Choose s, t ∈ N s.t. st2 ≤ p. . E.g. s, t = dp 1

3 e
3 Define random f : P → Fp.
4 for ` = 1, . . . , s . Precomputation phase
5 do
6 Choose a random y

(1)
` ∈ Fp.

7 Start in L(y(1)
` ) a t/2-step walk W` (Eq. 1)

y
(i+1)
` = y

(i)
` + f

(
L
(
y

(i)
`

))
mod p

with points L
(
y

(i)
`

)
∈ P.

8 Store (L(y(t/2)
` ), y(t/2)

` ) in a list L sorted by
first argument.

9 end
10 Choose a random x(1) ∈ Fp. . Online phase
11 Start in Lk(x(j)) a t-step walk W k (Eq. 2)

x(j+1) = x(j) + f
(
Lk

(
x(j)

))
mod p

with points Lk
(
x(j)) ∈ P .

12 if Lk
(
x(j)) = L(y(t/2)

` ) with(
L(y(t/2)

` ), y(t/2)
`

)
∈ L then

13 return k = y
(t/2)
` − x(j) mod p.

14 else
15 return FAIL.
16 end
17 end

We first observe that the preprocessing walksW1, . . . ,Ws

with t/2-steps touch at most st/2 Legendre points. More-
over, we show that on expectation these s walks touch at
least st/4 distinct points.

To prove this, let X` be a random variable for the number
of points touched by precomputation walk W`, ` = 1, . . . , s.
Further, let X = X1 + . . . + Xs ≤ st/2. We show in the
following that Pr[X ≥ st/4] ≥ 1

2 .
Using Bernoulli’s inequality and st2 ≤ p, every t/2-step

walk touches the maximum number t/2 of new point with
probability at least

Pr
[
X` = t

2

]
≥
(
p− st/2

p

) t
2

=
(

1− st

2p

) t
2

≥ 1−st
2

4p ≥
3
4 .

Therefore, every walk in the precomputation phase covers
on expectation at least E[X`] ≥ 3

4 ·
t
2 = 3

8 t new points. By
linearity of expectation we have

E[X] =
s∑
`=1

E[X`] ≥
3
8st.

P
re
co
m
p
u
ta
ti
o
n

W1

W2

W3

Ws

t/(2m)

...
...

O
n
li
n
e

W k1

W k2

W k3
...

W km

L
L(y

t/(2m)
1 )

...

L(yt/(2m)
s )

Figure 2: Multiple-key precomputation attack. Here W1, . . . , Ws

denote key-independent and W k1 , . . . , W km key-dependent
random walks.

Using Markov’s inequality and X ≤ st/2, we obtain

Pr
[
X <

st

4

]
≤ Pr

[
st

2 −X ≤
st

4

]
≤

st
2 − E[X]

st
4

≤ 1
2 .

Therefore, Pr[X ≥ st/4] ≥ 1
2 as desired.

Let us assume in the following that X ≥ st/4 Legendre
points are covered during precomputation. Let E be the
event that within the first t/2 steps of the t-step online walk
W k we hit one of the X covered points. Using 1−x ≤ e−x
and 1− e−x ≥ x/2 for x ≤ 1, we obtain

Pr[E] ≥ 1−
(

1− st

4p

)t/2
≥ 1− e−

st2
8p ≥ st2

16p .

Notice that the event E implies that in the remaining t/2
steps of the online phase we must hit some precomputed
endpoint L(y(t/2)

` ) in L. This implies success probability
at least

ε = Pr[X ≥ st/4] · Pr[E] ≥ st2

32p .

Thus, with probability ε we output the secret Legendre
key k.

It remains to show the complexity statements. Precom-
putation takes time Õ(st) using memory Õ(s). The online
phase runs in time Õ(t).

Remark 1: We may amplify the success probability
of Pre-Legendre arbitrary close to 1 by running more
key-dependent walks with different starting points, while
reusing the precomputation structure. This is our strategy
in the experimental Section VI.

IV. Multiple-Key Precomputation Attack
The high-level idea of our precomputation attack on

multiple keys is similar to our precomputation attack on a
single key from the previous Section III, see also Figure 2.
Again, in a precomputation phase we run only key-

independent walks W1, . . . ,Ws, and store their endpoints

6



in a list L. The endpoints serve as a hint for the online
phase.
Let us in the online phase attack Legendre keys

k1, . . . , km, for which we obtain oracle access to Lk`
(·),

` = 1, . . . ,m. Using these oracles we define key-dependent
walks W k`

that with high probability collide into some
precomputed walk Wi. As in Section III, collisions from
W k`

are detected via hitting some precomputed endpoint
in L. A collision of W k`

enables us to recover k` using
Equation (3).
The resulting procedure is given in Algorithm 2. For

the choice s = m2p
1
3 and t = p

1
3 in Theorem 2 we obtain

precomputation time Õ(mp 2
3 ) and a hint of size Õ(m2p

1
3 ),

whereas the online phase finishes in time only Õ(p 1
3 ) for

computing all m Legendre keys with constant success
probability.

Algorithm 2: Pre-Mult-Legendre
Input : p, Lk1(·), . . . , Lkm

(·) : Fp → P with P =
{L(y) | y ∈ Fp} ⊂ {0,±1}d3 log pe

Output : {k1, . . . , km} ∈ Zmp
1 begin
2 Choose s, t ∈ N with st2 ≤ m2p.
3 Define random f : P → Fp.
4 for ` = 1, . . . , s . PRECOMPUTATION phase
5 do
6 Choose a random y

(1)
` ∈ Fp

7 Start in L(y(1)
` ) a t

2m -step walk W`

y
(i+1)
` = y

(i)
` + f

(
L
(
y

(i)
`

))
mod p

with points L
(
y

(i)
`

)
∈ P.

8 Store (L(y( t
2m )
` ), y( t

2m )
` ) in a list L sorted by

first argument.
9 end

10 for ` = 1, . . . ,m . ONLINE phase
11 do
12 Choose random x

(1)
` ∈ Fp.

13 Start in Lk`
(x(1)
` ) a t

m -step walk W k`

x
(j+1)
i = x(j) + f

(
Lki

(
x

(j)
i

))
mod p.

with points Lk`

(
x

(j)
`

)
∈ P .

14 if Lk`

(
x

(j)
`

)
= L(y(t/2)

`′ ) with(
L(y( t

2m )
`′ ), y( t

2m )
`′

)
∈ L then

15 return k` = y
(t/2)
`′ − x(j)

` .
16 else
17 return FAIL ”k`“.
18 end
19 end
20 end

Theorem 2: Assume that we are given oracle access
to m Legendre PRFs Lk1(·), . . . , Lkm

(·) : Fp → P . Under

Heuristic 1, for any s, t ∈ N with st2 ≤ m2p algorithm
Pre-Mult-Legendre precomputes in time Õ

(
st
m

)
a hint

of size Õ(s), which allows to find each k`, 1 ≤ ` ≤ m with
success probability ε` = Ω

(
st2

m2p

)
in total online time Õ(t).

Proof: Let us first consider correctness and success
probability. Here, we closely follow the analysis from the
proof of Theorem 1. If we output in line 15 of Pre-
Mult-Legendre a key k` then this key is correct by
the discussion from Section III.
It remains to show that the success probability ε` for

recovering key k` is sufficiently large. We show that ε` =
Ω( st

2

m2p ).
Let X` be a random variable for the number of new

points touched by the t
2m -step precomputation walk W`,

` = 1, . . . , s. Let X = X1 + . . . + Xs. Since X` ≤ t
2m , we

have X ≤ st
2m . Using st2 ≤ m2p and Bernoulli’s inequality,

every walk touches the maximal number t
2m of new points

with probability

Pr
[
X` = t

2m

]
≥
(
p− st

2m
p

) t
2m

=
(

1− st

2pm

) t
2m

≥ 1− st2

4m2p
≥ 3

4 .

Thus, E[Xi] ≥ 3
4 ·

t
2m = 3t

8m and E[X] ≥ 3st
8m . Using Markov’s

inequality we get

Pr
[
X <

st

4m

]
≤ Pr

[
st

2m −X ≤
st

4m

]
≤

st
2m − E[X]

st
4m

≤ 1
2 .

This implies that with probability at least 1
2 our precom-

putation structure covers X ≥ st
4m points. Assume in the

following that X ≥ st
4m . Let E` be the event that the key-

dependent walk W k`
hits within its first t

2m steps one of
the X covered point. Then

Pr[E`] ≥ 1−
(

1− st

4mp

) t
2m

≥ 1− e−
st2

8m2p ≥ st2

16m2p
.

In the event E`, we must hit by the discussion in section
III-B in the remaining t

2m steps of walkW k`
a precomputed

endpoint in L. This in turn allows us to compute k`. Thus,
we succeed to compute k` with probability at least

ε` = Pr
[
Xi ≥

st

4m

]
· Pr[E`] ≥

st2

32m2p
= Ω

(
st2

m2p

)
.

It remains to show the complexity statements. The pre-
computation phase runs in time Õ( stm ) using memory Õ(s).
The online phase runs in time Õ(t).

Remark 2: Theorem 2 guarantees constant success
probability for each key k` if st2 = Ω(m2p). If Pre-Mult-
Legendre fails to find some k`, we may simply rerun the
key-dependent walk Wk`

with a fresh starting point. This
is our strategy in the experimental Section VI.

V. Multiple-Key Attack (without
Precomputation)

The strategy for our multiple-key attack substantially
deviates from the algorithms in the previous sections. Recall

7



D

W k1

W k2

W k7

W k6

W k5

W k3

W k4

Figure 3: Multiple-key attack. D denotes a distinguished point
set and W k1 , . . . , W k7 are key-dependent random walks.

that in Sections III and IV we computed in the precompu-
tation phase fixed length key-independent walks together
with their endpoints as hint. In the online phase we then
let key-dependent walks collide into the precomputation
walks, thereby detecting collisions via endpoints.

In contrast, for our multiple-key attack without precompu-
tation we solely compute key-dependent walks, and therefore
only consider collisions between key-dependent walks, see
also Figure 3. Our key-dependent walks are of variable
length, and we stop them only if we hit some set D ⊂ P of
distinguished Legendre points. These distinguished points
allow us to detect collisions between two walks W ki ,W kj

that use Legendre keys ki, kj . Such a collision in turn gives
us a Legendre key relation for ki−kj . Upon having collected
sufficiently many of such relations, we eventually compute
the Legendre keys.
The resulting algorithm recovers m Legendre keys

k1, . . . , km in time Õ(√mp) using optimal memory Õ(m).
Notice that we already need memory Ω(m) to store all keys.
Our algorithm’s complexity Õ(√mp) should be compared
with the naive approach that takes time Õ(m√p) by
running m-times Khovratovich’s Õ(√p) attack [20].

A. High-Level idea
We run Θ(m) key-dependent walks W k`

using m oracles
Lk`

(·), 1 ≤ ` ≤ m, and as opposed to Sections III and IV
no key-independent walk. These walks give us Ω(m) mutual
collisions. Let us assume that two walks W k`

,W k`′ with
different keys ki 6= kj collide. Then there exist x(u)

` , x
(v)
`′

such that

Lki

(
x

(u)
`

)
= Lkj

(
x

(v)
`′

)
= L

(
x

(v)
`′ + kj

)
.

Using Lemma 1, we conclude that

ki − kj = x
(v)
`′ − x

(u)
` mod p. (4)

Thus, every collision among two walks defines a relation
as in Equation (4) between two keys ki, kj .
Let us define an undirected graph G = (V,E) with
|V | = m and an initially empty edge set E. Every relation
as in Equation (4) adds an edge {i, j} to E with label `ij =
x

(v)
`′ −x

(u)
` ∈ Fp. Assume that we collected sufficiently many

edges such that G gets connected, i.e. G contains a spanning
tree T . Take an arbitrary vertex i ∈ T corresponding to
key ki. Compute ki in time Õ(√p) using Khovratovich’s
algorithm. Now, traverse T starting in vertex i. Let {i, j}
be the first traversal edge with label `ij . Using the relation
from Equation (4), we conclude that kj = ki − `ij . Thus,
by traversing T we recover all m keys.

In our algorithm, we will not wait until G gets fully
connected, since by the results of Erdös, Renyi [10] this
requires Ω(m logm) relations. Instead, we use from Erdös,
Renyi [10] that after Ω(m) relations, G has a so-called
giant component VG ⊆ V , a connected set of vertices
that contains all but a (small) constant fraction of V . We
compute a spanning tree T in this giant component VG,
and recover by the above algorithm all keys within VG.
We then remove the known keys, and recursively run our
algorithm on the remaining keys.

B. How to detect collisions

Recall that we have to address a technical collision-
detection issue, since as opposed to our algorithms from
Sections III and IV we do no longer collide into some
precomputed structure. Instead, our online walks mutually
collide. In order to detect these collisions, we use the van
Oorschot-Wiener distinguished point strategy [27].
Let g = (g1, . . . , gr) ∈ P be a Legendre point. Fix a

random d ∈ {0, 1}k with k ≤ r. Then we call g distinguished
if

(g1, . . . , gk) = d,

i.e., the Legendre point g starts on its first k coordinates
with d. Under Heuristic 1, any random Legendre point is
distinguished with probability q = 2−k.

Now, we run every walk W k`
until it hits a distinguished

point g, see Figure 3. We then store this distinguished
points g in a sorted list L. In our algorithm we choose q (and
therefore k ≈ log(1/q)) such that with good probability
our walks have the desired lengths. Assume now that two
walks W ki

,W kj
with different keys ki 6= kj collide. Then

there exist x(u)
` , x

(v)
`′ such that

Lki

(
x

(u)
`

)
= Lkj

(
x

(v)
`′

)
,

from which we conclude via Equation (4) that

x
(u)
` = x

(v)
`′ + kj − ki.

Analogous to Section III we show that once W ki
,W kj

collide, they stay in the same Legendre points, i.e.

Lki

(
x

(u+1)
`

)
= Lkj

(
x

(v+1)
`′

)
.
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This follows from

Lki

(
x

(u+1)
`

)
= Lki

(
x

(u)
` + f

(
Lki

(
x

(u)
`

)))
= Lki

(
x

(v)
`′ + kj − ki + f

(
Lki

(
x

(v)
`′ + kj − ki

)))
= L

(
x

(v)
`′ + kj + f

(
L
(
x

(v)
`′ + kj

)))
= Lkj

(
x

(v)
`′ + f

(
Lkj

(
x

(v)
`′

)))
= Lkj

(
x

(v+1)
`′

)
.

Hence, W ki
,W kj

must eventually hit the same distin-
guished point g = Lki

(x(u+c)
` ) = Lkj

(x(v+c)
`′ ) ∈ L for some

c ≥ 0. This allows us to derive a relation as in Equation (4).

This ends the high-level description of our algorithm.
The resulting procedure Mult-Legendre is described in
Algorithm 3.

Theorem 3: Assume that we are given oracle access to m
Legendre PRFs Lk1(·), . . . , Lkm

(·) : Fp → P . Under Heuris-
tic 1, algorithm Mult-Legendre finds all k1, . . . , km in
total time Õ(√mp) with overwhelming success probability.

Proof: The correctness of Mult-Legendre follows
from the discussion above. In the following we show
that in a single run of Mult-Legendre we obtain with
overwhelming probability 1− negl(m) at least 98% of all
keys.
In a nutshell, we first prove that with overwhelming

probability 3m out of our 4m walks W k`,i perform at least
t
m steps. From this we conclude that we obtain at least
2m key relations as in Equation (4), which in turn gives as
a giant component in G that allows us to recover at least
98% of our Legendre keys.

Let us first prove that at least a 3
4 -fraction of our random

walks have length at least t
m . Notice that all walks either

hit a distinguished point, or run into a self loop. We detect
potential self loop in line 11, hence we may assume w.l.o.g.
that all walks end in a distinguished point.
Let X`,i be an indicator variable that takes value 1 iff

walk W k`,i has length at least t
m . We hit a distinguished

point with probability 2−k ≤ q. This implies

Pr[X`,i = 1] ≥ (1− q) t
m =

(
1− m

5t

) t
m ≥ 1− 1

5 = 4
5 .

Let X =
∑m
`=1
∑4
i=1 X`,i. Then the expected number of

walks with length at least t
m is at least E[X] ≥ 16

5 m. Let
µ = 16

5 m. Using the Chernoff bound Pr[X ≤ (1− δ)µ] ≤
e−µδ

2/2, we obtain

Pr[X ≤ 3m] ≤ e− m
160 .

Hence, with overwhelming probability 1 − negl(m) we
obtain at least 3m + 1 walks of length at least t

m . In
the following analysis, we consider those online walks with
minimum length t

m . We define an indicator variable Y`,`′

Algorithm 3: Mult-Legendre
Input : p, Lk1(·), . . . , Lkm

(·) : Fp → P with P =
{L(y) | y ∈ Fp} ⊂ {0,±1}d3 log pe

Output : {k1, . . . , km} ∈ Zmp
1 begin
2 Choose t = d√mpe.
3 Define random f : P → Fp.
4 Set q = m

5t and k = dlog(1/q)e.
5 Choose a random d ∈ {0, 1}k.
6 Let D = d× {0, 1}r−k ⊂ P .
7 for ` = 1, . . . ,m do
8 for i = 1, . . . , 4 do
9 Choose a random x

(1)
` ∈ Fp.

10 Run from Lk`
(x(1)
` ) a random walk W k`,i

x
(j+1)
` = x

(j)
` + f

(
Lk`

(
x

(j)
`

))
mod p,

until W k`,i hits a distinguished point

g` = Lk`

(
x

(j`)
`

)
∈ D.

if W k`,i takes more than 8 t
m steps then

11 go back to step 9. . detect loop

12 Store
(
g`, `, x

(j`)
`

)
in list L.

13 end
14 end
15 Sort L by its 1st entry.
16 Define an undirected graph G = ({1, . . .m}, ∅).
17 for every

(
g`, `, x

(j`)
`

)
6=
(
g`, `

′, x
(j`′ )
`′

)
∈ L do

18 if ` 6= `′ then
19 Include in E edge {`, `′} with label

x
(j`′ )
`′ − x(j`)

` .
20 end
21 Compute G’s largest connected component

VG = {v1, . . . vb} and a spanning tree T of VG.
22 Compute kv1 with Khovratovich’s algorithm.
23 return kv1 , . . . , kvb

by traversing T .
24 Recursively call Mult-Legendre with the

remaining keys {k1, . . . , km} \ {kv1 , . . . , kvb
}.

25 end

that takes value 1 iff walks W k`,i and W k`′ ,i
′ for any

i, i′ ∈ {1, 2, 3, 4} collide. Using t2 ≥ mp, we obtain

Pr[Y`,`′ = 1] ≥ 1−
(
p− t

m

p

) t
m

= 1−
(

1− t

mp

) t
m

≥ 1− e−
t2

m2p ≥ t2

2m2p
≥ 1

2m.

Note that Y`,`′ = 1 iff walksW k`,i,W k`′ ,i
′ give us a relation

on two Legendre keys. Thus, in total we obtain at least Y :=∑
1≤`<`′≤3m+1 Y`,`′ key relations. Therefore, the expected

number of relations is at least

E[Y ] ≥
(

3m+ 1
2

)
· 1

2m ≥
9
4m.
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Notice that a 1
m -fraction of the relations are useless, since

they do not satisfy condition ` 6= `′ in line 18, i.e. they
involve the same key. Moreover, Mult-Legendre may
produce the same edge {`, `′} several times. However, it is
easy to see that the expected number of these duplicates is
constant. After subtracting these (in total constant many)
useless relations, we conclude via another Chernoff bound
argument that Y ≥ 2m with overwhelming probability.

From the results of Erdös and Renyi [10] we know that
graphs with m vertices and cm := 2m > m

2 randomly
chosen edges contain with overwhelming probability a
connected component of size at least(

1− 1
2c

∞∑
k=1

kk−1

k! (2ce−2c)k
)
m > 0.98m.

This eventually enables us to recover at least 98% of all
Legendre keys in a single run of Mult-Legendre.
It remains to show the running time for recovering all

keys k1, . . . , km. Let us consider the two for-loops that
construct 4m walks. We repeat the inner loop, whenever
we encounter a walk that takes more than 8 t

m steps. This
happens with probability at most

(1− q) 8t
m ≤ e− 8

5 ≈ 0.2.

Thus, in each iteration of our for-loops with probability at
least 4

5 a walk hits a distinguished point within 8 t
m steps

and stops. Let Y be a random variable for the number of
iterations in both for-loops. Then E[Y ] ≤ 4m · 5

4 = 5m. By
Markov’s inequality

Pr[Y ≥ 10m] ≤ 5m
10m = 1

2 .

Hence, with probability at least 1
2 our walk construction

is completed by running at most 10m iterations of length
at most 8 t

m . This takes time at most Õ(t).
On walk completion, our list L contains 4m entries. Thus,

G = (V,E) can be constructed in time Õ(m). We run
Depth First Search (DFS) on G to compute a DFS tree T
of its giant component in time O(|V |+ |E|) = O(m).

Khovratovich’s algorithm in line 22 runs in time Õ(√p),
and a traversal of T can be done in time O(m). Since
m ≤ p, we have

m =
√
m ·
√
m ≤ √mp < t.

Thus, we obtain total run time Õ(t+m) = Õ(t) = Õ(√mp)
of one iteration of Mult-Legendre. As shown before,
every iteration of Mult-Legendre recovers at least a 98%-
fraction of Legendre keys. Hence, we recover all Legendre
keys in time

T (m, p) = Õ (√mp) + T (0.02m, p)

< Õ

( ∞∑
i=0

(
√

0.02)i√mp
)
< Õ (1.17√mp)

= Õ (√mp) .

16 18 20 22 24 26 28 30 32
5
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20

25

log2 p

lo
g 2

#
st
ep

s

Pre-Legendre Pre-Dlog
Pre-Mult-Legendre Pre-Mult-Dlog
Mult-Legendre Mult-Dlog

Figure 4: Number of random walk steps as a function of
p on a double logarithmic scale. Comparison of our algo-
rithm Pre-Legendre, Pre-Mult-Legendre (m = p1/6) and
Mult-Legendre (m = p1/3) to analogous discrete logarithm
algorithms. Each data point is averaged over 10 samples,
corresponding data points are interpolated by lines.

VI. Experiments
Since our algorithms for computing the Legendre symbol

involve the (natural) Heuristic 1 concerning uniformity of
Legendre points, we check the validity of Heuristic 1 and
therefore the statements of Theorems 1 to 3 experimentally.
To this end, we implemented all three Legendre key
algorithms Pre-Legendre, Pre-Mult-Legendre and
Mult-Legendre and analyzed the number of random
walk steps as a function of the field size p.

Let gk` be a discrete logarithm problem. For better
comparison with our Legendre PRF algorithms, we also
implemented discrete logarithm algorithms in the same field
Fp using analogous key-independent and key-dependent
walks

x(i+1) = gx
(i)

mod p, respectively x(i+1) = gk` ·gx
(i)

mod p.

All benchmarks were performed on an Intel i7-8550U
CPU @ 1.80GHz. Each data point represents the average
over 10 samples. Our code is publically available at https:
//github.com/FloydZ/prep-legendre.

The results are depicted in Figure 4. We see that our
Legendre algorithms require as many random walk steps as
the corresponding discrete logarithm implementations. This
is what we expect under Heuristic 1. We therefore believe
that precise estimations for the number of random walk
steps – including the constant hidden in the O-notation,
as extensively analyzed in the discrete logarithm literature
(see Table 3 in [16] for an overview) – directly translate to
the Legendre PRF setting.

We experimentally validated the run time statements of
our Theorems 1 to 3 as follows.
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a) Pre-Legendre: Using the parameter choice s =
t = p

1
3 , we precomputed a hint of size s = p

1
3 . In Figure 4,

we depict the corresponding number of random walk steps
in the online phase on a logarithmic scale. By Theorem 1,
we require online at most t = p1/3 random walk steps to
recover the Legendre key with constant success probability.
In our experiments, we repeated an unsuccessful t-step
random online walk with a different starting point, until
we eventually found the Legendre key, see also Remark 1.
Thus, we always succeeded at the cost of a slightly increased
running time. The interpolation line through our data
points has a slope of 0.34, showing that thereby we do not
significantly sacrifice run time.

b) Pre-Mult-Legendre: We chose to attack m =
p

1
6 with the parameter choice s = p

1
3 and t = p

1
2 . That is,

we again precomputed a hint of size s = p
1
3 . By Theorem 2,

we require in total only t = p
1
2 random walk steps to

recover each key with constant success probability. As in
the experiments for Pre-Legendre, we also repeated in
the multiple-key setting unsuccessful walks with different
starting points, until we eventually recovered the desired
key, see Remark 2. Thus, our data points in Figure 4 reflect
the total online time to recover all m = p

1
6 keys. The slope

of the interpolation line is 0.52, again showing that we only
marginally sacrifice run time to recover all keys.

c) Mult-Legendre: In the multiple-key setting
without precomputation, we chose to attack m = p

1
3 keys.

By the proof Theorem 3, a single run of Mult-Legendre
gives us at least 2m Legendre key relations, from which
we can recover those keys that lie in the giant component
of the graph G. Experimentally, we recover on average
3.46m relations. The collection step of our key relations
is supposed to finish in time Õ(√mp) = Õ(p 2

3 ), which is
validated by the slope 0.64 of our interpolation line.
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