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Abstract

It was recently demonstrated that the Matrix Action Key Exchange
(MAKE) algorithm, a new type of key exchange protocol using the semidi-
rect product of matrix groups, is vulnerable to a linear algebraic attack
if the matrices are over a commutative ring. In this note, we establish
conditions under which protocols using matrices over a non-commutative
ring are also vulnerable to this attack. We then demonstrate that group
rings R[G], where R is a commutative ring and G is a non-abelian group,
are examples of non-commutative rings that satisfy these conditions.

1 Introduction

Since the advent of Shor’s algorithm, it has been desirable to study alternatives
to the Diffie-Hellman key exchange [1]. One approach to this problem appeals
to a more complex group structure: recall that for (semi)groups G,H and a
homomorphism θ : H → Aut(G), the semidirect product of G by H with respect
to θ, Goθ H, is the set of ordered pairs G×H equipped with multiplication

(g, h)(g′, h′) = (θ(h′)(g)g′, hh′)

Recall also that the action of a group G on a finite set X is a function (G,X)→
X, here written as g · x, satisfying 1 · x = x and g · (h · x) = (gh) · x for all
g, h ∈ G. It turns out that such an action induces a homomorphism into the
group of permutations of X; in particular, if G,H are groups, an action of H on
G specifies a homomorphism into the automorphism group of G, so specifying
such an action suffices to specify a semidirect product structure.

The semidirect product can be used to generalise the Diffie-Hellman key
exchange [2] via a general protocol sometimes known as the “non-commutative
shift”. Originally, the semigroup of 3 × 3 matrices over the group ring Z7[A5]
is proposed as the platform; however, this turned out to be vulnerable to the
type of attack (the so-called “dimension attack”) by linear algebra described
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in [3],[4]. Other platforms used include tropical algebras [5] and free nilpotent
p-groups [6]. The former is shown to be insecure in [7], [8].

The insight of the recent MAKE protocol [9] is to use the ring formed by
square matrices over a ring. This object is a group under addition and a semi-
group under multiplication, so we can follow the syntax of [2] in such a way as
to mix operations so that no power of any matrix is ever exposed. However, the
protocol is vulnerable to another linear algebraic attack [10], which relies on the
commutativity of the underlying ring. The purpose of this note is to demon-
strate that under certain circumstances, using a non-commutative underlying
ring will have the same vulnerability. In particular, we present general condi-
tions by which one can decide if a platform to be used with MAKE is unsafe.
It turns out these conditions are satisfied by group rings of the form used in [2];
note that we do not claim to present a break of [2] via our methods.

2 Matrix Action Key Exchange (MAKE)

The following is taken from [9], following an original version in which H1 = H2.
For n ∈ N and p prime, consider the additive group G of n × n matrices

over Zp, Mn(Zp), and the semigroup S = {(Hi
1, H

i
2) : i ∈ N} generated by

non-invertible matrices H1, H2 ∈ Mn(Zp). The action of S on G defined by
(Hi

1, H
i
2) · M = Hi

1MHi
2
1 induces a homomorphism into the automorphism

group of G; we can therefore define the semidirect product of G by S with
multiplication

(M, (Hi
1, H

i
2))(M ′, (Hj

1 , H
j
2)) = (Hj

1MHj
2 +M ′, (Hi+j

1 , Hi+j
2 ))

In particular one checks that for any choice of H1, H2, exponentiation has the
form

(M, (H1, H2))n =

(
n−1∑
i=0

Hi
1MHi

2, (H
n
1 , H

n
2 )

)
We use this semidirect product structure in the syntax of [2] as follows. Suppose
Alice and Bob wish to agree on a shared, private key by communicating over
an insecure channel. Suppose also that public data M,H1, H2 is available.

1. Alice picks random x ∈ N and calculates (M, (H1, H2))x = (A, (Hx
1 , H

x
2 ))

and sends A to Bob.

2. Bob similarly calculates a value B corresponding to random y ∈ N, and
sends it to Alice.

3. Alice calculates (B, ∗)(A, (Hx
1 , H

x
2 )) = (Hx

1BH
x
2 + A, ∗∗) and arrives at

her key KA = Hx
1BH

x
2 + A. She does not actually calculate the product

explicitly since she does not know the value of ∗; however, it is not required
to calculate the first component of the product.

1We rely on commutativity of S to satisfy the axioms of an action, which is why a cyclic
(semi)group is used.
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4. Bob similarly calculates his key as KB = Hy
1AH

y
2 +B.

Since A =
∑x−1
i=0 H

i
1MHi

2, B =
∑y−1
i=0 H

i
1MHi

2, we have

Hx
1BH

x
2 +A = Hx

1

(
y−1∑
i=0

Hi
1MHi

2

)
Hx

2 +A

=

x+y−1∑
i=x

Hi
1MHi

2 +

x−1∑
i=0

Hi
1MHi

2

=

x+y−1∑
i=y

Hi
1MHi

2 +

y−1∑
i=0

Hi
1MHi

2

= Hy
1AH

y
2 +B

Alice and Bob therefore both arrive at the same shared key K = KA = KB .
Attacking the protocol directly requires recovering x, y from A,B. This

leads to a natural analogue of the computational Diffie-Hellman assumption;
namely, computational infeasibility of retrieving the shared secret K given the
data (H1, H2,M,A,B)2. Clearly, this is closely related to an analogue of the
discrete logarithm problem (DLP), which is shown in [9] to be at least as hard
as the standard DLP provided certain “safe” primes p are used.

3 Attack by Cayley-Hamilton

Several protocols following the non-commutative shift syntax are vulnerable to
the dimension attack, which does not require one to solve the problems ad-
dressed in the security assumption. This class of attacks, however, deal with
schemes using only group multiplication. In our case, we have two operations;
the following attack was developed by Brown, Koblitz and Legrow in [10] and
is roughly outlined below. Suppose the public data M,H1, H2 are fixed, as well
as transmitted values A,B corresponding to exponents x, y respectively.

The attack relies on the following easily-verifiable fact: we have that

H1AH2 +M −A = Hx
1MHx

2

This identity is known as the “telescoping” equality. It is crucial to allow the
recovery of the quantity Hx

1MHx
2 from the data available to an eavesdropper

on the left-hand side of the equality.
Suppose the matrices are of size n ∈ N. We also rely on the Cayley-Hamilton

theorem, which for a square matrix A over Mn(Zp) and any x ∈ N guarantees

2This is a weaker security notion than key indistinguishability, analogue of the decisional
Diffie-Hellman assumption; the authors of [9] conduct some computational experiments sug-
gesting the latter assumption may hold. This fact is not further referenced in this paper, since
the attack does not require solving the analogue of the discrete log problem.
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the existence of coefficients pi in Zp such that

Ax =

n−1∑
i=0

piA
i

Finally, we need the following two-part lemma, the proof of which is given
in [10].

Lemma 1. Let n ∈ N. Define L : Mn(Zp)→Mn2(Zp) component-wise by

(L(Y ))jn+i,hn+g = (Hg
1Y H

h
2 )i,j

for 0 ≤ i, j, g, h ≤ n− 1, and vec : Mn(Zp)→ Zn2

p by

vec(A)jn+i = Ai,j

for 0 ≤ i, j ≤ n − 1. Then there is a vector s in Zn2

p such that L(Y )s =
vec(Hx

1 Y H
x
2 ) for any Y ∈ Mn(Zp). Moreover, for some Y ∈ Mn(Zp), a vector

u ∈ Zn2

p satisfying L(Y )u = 0 also satisfies L(H l
1Y H

l
2)u = 0 for any l ∈ N.

The attack now works as follows:

1. Using the telescoping equality, recover the value Hx
1MHx

2 .

2. Solve the n2 linear equations in n2 unknowns defined by L(M)t = vec(Hx
1MHx

2 )
to recover a vector t; by Lemma 1, there is at least one solution to this
system of equations; and any solution satisfies L(B)t = vec(Hx

1BH
x
2 ).

3. Since vec is a bijection, applying its inverse to L(B)t allows one to recover
Hx

1BH
x
2 , and therefore the shared key K by simply adding A to this

quantity.

4 Attacking Non-Commutative Rings

A key part of the above attack is the construction of the vector s, which is done
by the Cayley-Hamilton theorem. In particular, this theorem only applies to
square matrices over commutative rings; we will use the following theorem to
characterise some non-commutative rings over which the scheme is still insecure.
In the following, let R be an arbitrary non-commutative ring.

Theorem 1. Suppose there is an injective ring homomorphism φ : R→Mm(S)
for some m ∈ N and a commutative ring S. For any n ∈ N define

ψ :Mn(R)→Mmn(S)

(ψ(A))im+g,jm+h = (φ(Ai,j))g,h

where 0 ≤ i, j ≤ n− 1, 0 ≤ g, h ≤ m− 1. Then ψ is an injective ring homomor-
phism.
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Proof. To check multiplication is preserved we just check that the relevant quan-
tities agree on each entry. Let A,B in Mn(R); then

(ψ(AB))im+g,jm+h = (φ((AB)i,j))g,h

=

(
φ

(
n−1∑
k=0

Ai,kBk,j

))
g,h

=

(
n−1∑
k=0

φ(Ai,k)φ(Bk,j)

)
g,h

=

n−1∑
k=0

(φ(Ai,k)φ(Bk,j))g,h

=

n−1∑
k=0

m−1∑
l=0

φ(Ai,k)g,lφ(Bk,j)l,h

=

n−1∑
k=0

m−1∑
l=0

ψ(A)im+g,km+lψ(B)km+l,jm+h

= (ψ(A)ψ(B))im+g,jm+h

Similarly, for addition, we have

(ψ(A+B))in+g,jn+h = (φ((A+B)i,j))g,h

= (φ(Ai,j) + φ(Bi,j))g,h

= (φ(Ai,j))g,h + (φ(Ai,j))g,h

Finally, ψ(In) = Imn since φ(1) = Im, so ψ is a ring homomorphism. To
see injectivity, for A,B ∈ Mn(R) suppose ψ(A) = ψ(B). Then for each 0 ≤
i, j ≤ n − 1, 0 ≤ g, h ≤ m − 1 we have φ(Ai,j)g,h = φ(Bi,j)g,h. Therefore
φ(Ai,j) = φ(Bi,j) for each i, j. Since φ is injective, we must have A = B.

Once we have established that ψ is indeed a ring homomorphism the attack
can just be carried out on ψ applied to the public matrices. The details are
listed below for completeness.

4.1 Extending the Attack

Letting k = mn we have a function L ◦ ψ : Mn(R)→Mk2(S) defined by

(L(ψ(Y )))jk+i,hk+g = (ψ(Hg
1Y H

h
2 ))i,j

where each of the indices run from 0 to k− 1. The function vec (defined with a
different domain in Lemma 1) stacks the columns of a matrix in Mk(S) to give
a column vector of height k2.

We will need to invoke the following two propositions during the attack:
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Proposition 1. There is a vector s ∈ Sk
2

such that for all Y ∈ Mn(R), we
have

L(ψ(Y ))s = vec(ψ(Hx
1 Y H

x
2 ))

Proposition 2. Suppose some vector u is such that L(ψ(Y ))u = 0 for Y ∈
Mn(R). Then for all l ∈ N we have L(ψ(H l

1Y H
l
2))u = 0.

The proofs are somewhat tedious and similar to those given in [10]; the
interested reader can find them in the appendix.

For the public parameters H1, H2,M and fixed values of A,B we can calcu-
late

ψ(M +H1AH2 −A) = ψ(Hx
1MHx

2 )

By Proposition 1, the equation

L(ψ(M))t = vec(ψ(Hx
1MHx

2 ))

has at least one solution. We can therefore solve this system of linear equations
efficiently, for example by Gaussian elimination, and obtain a solution, say t.
We know that, with Y = B, we also have

L(ψ(B))s = vec(ψ(Hx
1BH

x
2 ))

Since the vectors t and s satisfy L(ψ(M))t = L(ψ(M))s and L preserves
addition, setting u = t− s we have, invoking Proposition 2, that

0 = L(ψ(M))u+ L(ψ(H1MH2))u+ ...+ (L(ψ(Hy−1
1 MHy−1

2 ))u

= L(ψ(M) + ψ(H1MH2) + ...+ ψ(Hy−1
1 MHy−1

2 ))u

= L(ψ(M +H1MH2 + ...+Hy−1
1 MHy−1

2 ))u

= L(ψ(B))u

Therefore L(ψ(B))t = L(ψ(B))s = vec(ψ(Hx
1BH

x
2 )), so from public infor-

mation we can recover ψ(Hx
1BH

x
2 ), and hence

ψ(K) = ψ(A+Hx
1BH

x
2 )

= ψ(A) + ψ(Hx
1BH

x
2 )

Note that the vector s is not available from public information, but at no
point is its calculation required. It is merely described to show that the vector
t recovered by the attacker will indeed suffice for recovery of ψ(K).

In general, recovering K from ψ(K) can be done by inverting φ on the n2

blocks of size m ×m of ψ(K). This is trivial if there is an explicit description
of φ.
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5 Group Ring Representations

A well-behaved and easily scalable example of non-commutative rings are group
rings of the form R[G], where R is a commutative ring and G is a non-abelian
group. For example, Z7[A5] is used in [2]. We now show that such a ring meets
the conditions required for the above modification of the attack. The following
definitions are taken from [11], to which the reader is referred for more detail.

Let G be a finite group, R be a ring. Consider the set of formal sums

R[G] =

∑
g∈G

ag.g : ag ∈ R, g ∈ G


where the multiplication refers to scalar multiplication3. Together with addition
and multiplication defined respectively by

∑
g∈G

ag.g+
∑
g∈G

bg.g =
∑
g∈G

(ag+bg).g

∑
g∈G

ag.g

(∑
h∈G

bh.h

)
=
∑
g,h∈G

(agbh).gh

R[G] is a ring that is at the same time a free left R-module with basis G.
Moreover, G acts on R[G] by left multiplication:

g ·
∑
h∈G

ah.h = g
∑
h∈G

ah.h =
∑
h∈G

ah.(gh)

Suppose |G| = m. Note that left multiplication by a group element permutes
the group, which is the basis of R[G], the R-module of rank m. As a function,
then, this multiplication is an automorphism of the R-module; there is therefore
a function T : G→ GL(k,R), where the function T (g) has matrix representation
with entries in R. This is the so-called “left-regular representation” of G over
R. Moreover, one can easily verify that this map is a group homomorphism.

The matrix representation of the function T (g) ∈ GL(k,R) is not unique
and depends on a choice of basis. However, since the group G is a basis of R[G],
and T (g) permutes this basis, we can specify the matrices as follows. Enumerate
the elements of G arbitrarily, and write Tgi for the matrix corresponding to the
function T (gi). Suppose gigj = gk, then (Tgi)k,j = 1, with all other entries in
the row 0. In this way we can construct a set of matrices {Tg : g ∈ G} from a
multiplication table of G.

5.1 Mapping to Matrices over a Commutative Ring

We can extend the left-regular representation outlined above to a map

φ : R[G]→Mm(R) :
∑
g∈G

ag.g 7→
∑
g∈G

ag.Tg

3Technically speaking, the formal sums refer to linear combinations of functions from G to
R. However, once we have defined such functions we usually dispense with them in favour of
the notation above; see [11] for further details.
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Note that the sum of scaled invertible matrices is not necessarily invertible;
hence, the map is into Mm(R), rather than GL(m,R).

Proposition 3. Suppose R is a commutative ring. We have that φ : R[G] →
Mm(R) is an injective ring homomorphism.

Proof. Clearly φ is an additive homomorphism. To show multiplication is pre-
served note that since R is commutative we have∑

g,h∈G

(agbh).Tgh =
∑
g,h∈G

(agbh).TgTh =
∑
g∈G

ag.Tg
∑
h∈G

bh.Th

Preservation of the identity is inherited from the homomorphicity of the
map T . To see that φ is injective, we first show that φ is injective exactly when
the matrices {Tg : g ∈ G} are linearly independent over R. This is because
kerφ = {0} exactly when the only coefficients ag that give

∑
g∈G ag.Tg = 0

are all zero, i.e. when the matrices are linearly independent, and the kernel
is trivial if and only if the map is injective. Suppose for contradiction that
matrices Tgi , Tgj have a 1 in the same place, say the m,nth entry. By the
construction of such matrices given above, this means that for gi 6= gj we have
gigm = gn = gjgm, which is a contradiction, since the action of a group on itself
by left multiplication is faithful. Clearly, this implies the matrices are linearly
independent, and so φ is injective.

We therefore have the required homomorphism φ, from which ψ can be
constructed as in the general case.

5.2 Inverting ψ

We can recover the unique value of K as follows. The mn ×mn matrix ψ(K)
recovered in the above consists of n2 blocks of size m × m, where the i, jth
block is given by φ(Ki,j). We know from the proof of Proposition 3 that the
matrices Tg are a basis of the image of φ, so φ(Ki,j) has unique decomposition
as φ(Ki,j) =

∑
g∈G kg,i,j .Tg. Given the values of Tg, finding this decomposition

amounts to solving m linear equations in m unknowns. By definition of φ we
have Ki,j =

∑
g∈G kg,i,j .g; repeating this procedure for each i, j, we recover K

from ψ(K) in polynomial time.

6 Conclusions

We again stress that the attack described in this paper effectively bypasses the
security assumption made in [9]. As remarked in [10] this is another example of
some inherent linearity underpinning matrix-based key exchange protocols.

The main limiting factor in the efficiency of this attack is recovering the
vector t by solving (mn)2 linear equations in (mn)2 unknowns. Since solving
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n linear equations in n unknowns has a complexity4 of O(n3), we expect the
time complexity of the attack to be O((mn)6). Should one wish to use a ring
R satisfying the conditions of Theorem 1, therefore, one should ensure that m
is large, where φ : R → Mm(S), and S is a commutative ring. For sufficiently
large values of m the attack becomes infeasible, although the complexity is still
polynomial.

In the case of group rings R[G] this is possible to achieve by increasing the
size of the group G. However, we constructed φ from the left regular repre-
sentation of G over R, where the dimension of the representation and therefore
m is always the size of G. For some groups it might be possible to construct
φ from a faithful representation of lower dimension, so one should use a group
where there is a lower bound on the dimension of a faithful representation; for
example, certain p-groups [12]. This fact was used to counter similar attacks in
[6].

It is an interesting problem to determine for which non-commutative rings
there is no injective homomorphism into matrices over a commutative ring;
such rings would be safe from the attack of [10], and the attack could not be
extended by the methods described in this paper. In some sense, then, the
criteria described in Theorem 1 serve to classify rings into “safe” or “unsafe”
for use with the MAKE protocol.

Finally, we note that although the group rings used in [2] satisfy the condi-
tions of Theorem 1, our method does not present a break of the scheme in [2].
This is effectively because the exchanged values A,B are calculated as prod-
uct, rather than a sum, and the function L does not preserve multiplication.
Moreover, whilst there is an analogue of the telescoping equality in that con-
text, it does not necessarily allow recovery of the required quantity because the
exchanged values do not always have a multiplicative inverse (in contrast to
the values exchanged during the MAKE protocol, which always have additive
inverse). On the other hand, Theorem 1 does give us access to the Cayley-
Hamilton theorem in the context of [2].
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8 Appendix

Here we detail the proofs of Propositions 1 and 2.

Proof of Proposition 1. Since we are now working with matrices over a commu-
tative ring, by the Cayley-Hamilton theorem we have pi, qi ∈ S such that

ψ(H1)x =

k−1∑
g=0

pgψ(H1)g ψ(H2)x =

k−1∑
h=0

qhψ(H2)h

With T ∈ Mk(S) defined by Ti,j = piqj and s = vec(T ) we have, for any Y
in Mk(S), that

(L(ψ(Y ))s)jk+i =
k−1∑
g,h=0

(
ψ(Hg

1Y H
h
2

)
)i,jpgqh

=

k−1∑
g,h=0

(pgψ(H1)xψ(Y )qhψ(H2)h)i,j

= (ψ(H1)xψ(Y )ψ(H2)x)i,j

= vec(ψ(Hx
1 Y H

x
2 ))jk+i

Therefore L(ψ(Y ))s = vec(ψ(Hx
1 Y H

x
2 )).

Proof of Proposition 2. Checking component-wise, from the definitions it fol-
lows that

L(ψ(H l
1Y H

l
2))u = vec

 k−1∑
g,h=0

(ψ(H1)gψ(H l
1Y H

l
2)ψ(H2)h)uhn+g


and

k−1∑
g,h=0

ψ(Hg
1Y H

h
2 )uhn+g = vec−1(L(ψ(Y ))u)

Therefore, using that ψ preserves multiplication, we have

L(ψ(H l
1Y H

l
2))u = vec

 k−1∑
g,h=0

(ψ(H1)gψ(H l
1Y H

l
2)ψ(H2)h)uhn+g


= vec

ψ(H1)l

 k−1∑
g,h=0

ψ(Hg
1Y H

h
2 )uhn+g

ψ(H2)l


= vec(ψ(H1)lvec−1(L(ψ(Y ))u)ψ(H2)l)

= vec(0) = 0.

since clearly vec(0) is the zero vector height k2, and vec is a bijection.
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