
Stealth: A Highly Secured End-to-End Symmetric
Communication Protocol

1st Ripon Patgiri
Dept. Computer Science & Engineering
National Institute of Technology Silchar

Cachar-788010, Assam, India
ripon@cse.nits.ac.in

2nd Naresh Babu Muppalaneni
Dept. Computer Science & Engineering
National Institute of Technology Silchar

Cachar-788010, Assam, India
nareshbabu@cse.nits.ac.in

Abstract—Symmetric key cryptography is applied in almost
all secure communications to protect all sensitive information
from attackers, for instance, banking, and thus, it requires extra
attention due to diverse applications. Moreover, it is vulnerable to
various attacks, for example, cryptanalysis attacks. Cryptanalysis
attacks are possible due to a single-keyed encryption system.
The state-of-the-art symmetric communication protocol uses a
single secret key to encrypt/decrypt the entire communication
to exchange data/message that poses security threats. Therefore,
in this paper, we present a new secure communication protocol
based on Diffie-Hellman cryptographic algorithms, called Stealth.
It is a symmetric-key cryptographic protocol to enhance the
security of modern communication with truly random numbers.
Additionally, it applies a pseudo-random number generator.
Initially, Stealth uses the Diffie-Hellman algorithm to compute
four shared secret keys. These shared secret keys are used to
generate four different private keys to encrypt for the first block
of the message for symmetric communication. Stealth changes
its private keys in each communication, making it very hard to
break the security protocol. Moreover, the four shared secret keys
create additional complexity for the adversary to overcome, and
hence, it can provide highly tight security in communications.
Stealth neither replaces the existing protocol nor authentication
mechanism, but it creates another security layer to the existing
protocol to ensure the security measurement’s tightness.

Index Terms—Encryption, Cryptography, Symmetric-key
Cryptography, Diffie-Hellman Cryptography, Random Number
Generator, Security, Security Protocol, Computer Networking.

I. INTRODUCTION

Symmetric communication protocols are the most used
security protocol, and it is able to provide high security
due to the computation of a shared secret key. Adversaries
require years to defeat such kinds of security measures, for
instance, Diffie-Hellman cryptography [1]. Also, there are di-
verse variants of symmetric key exchange protocol to enhance
communication security, for example, Elliptic-curve Diffie-
Hellman cryptography based on Diffie-Hellman, and Elliptic-
curve cryptography.

The shared secret key is used in encrypting a message
for communication. A conventional communication system
agrees upon a fixed shared secret key and exchanges the
messages with two end-points. There is a high possibility
to find a pattern to discover the shared secret key from

a set of messages. Moreover, the brute-force method can
always discover a shared secret key for encryption if the
entire communication is performed using a single shared secret
key. However, it may take many years or may take a few
trials to reveal the secret key. Therefore, there is a high risk
involved in such kind of communication. It is not impossible to
reveal the shared secret key for the known-plaintext, chosen-
plaintext, chosen-ciphertext, linear cryptanalysis, differential
cryptanalysis, differential fault analysis, differential power
analysis, differential timing analysis, and side-channel attacker
[2]. Obviously, a cryptanalyst always tries to find a weakness
and patterns to reveal the secret keys. Thus, symmetric-
key cryptography poses a high risk of being attacked by
adversaries. Therefore, in this paper, we propose a novel
and highly secure communication protocol to secure from
different kind of attackers in symmetric cryptography, called
Stealth. Stealth is a secure symmetric communication proto-
col for highly sensitive data communication to protect from
adversaries. Therefore, it initially uses the Diffie-Hellman key
exchange protocol to compute four shared secret keys. These
shared secret keys are used to generate the four private keys
for encryption/decryption. The encryption/decryption requires
four private keys. In each communication, Stealth changes its
private keys to ensure high security. Also, these private keys
are generated using a pseudo-random number generator.

The key contribution of the paper is as follows-

• Stealth is a secure communication protocol based on
Diffie-Hellman cryptography to defend against various
attacks, and it enhances the Diffie-Hellman key exchange
protocol without incurring extra communication. Stealth
uses the same number of communication costs as well
as the Diffie-Hellman algorithm. It also enhances the
cryptography protocol, Advanced Encryption Standard
(AES), for better encryption or decryption.

• Stealth uses four private keys and changes its private
keys in each communication. Therefore, the probability
of capturing entire communication without knowing the
private keys is (1

8β
)m for β bit sized private keys and m

communications.
• Stealth uses four shared secret keys to generate four

private keys, and the probability of getting correct private978-1-6654-8544-9/22/$31.00 ©2022 IEEE

keys is 1
16β

.
Stealth works on the existing methodology for security,
namely, authentication, key exchange protocol, and block
cipher, and it does not replace the existing methods, but it
adds an extra layer to protect the communication from various
attackers. Stealth can defend diverse cryptanalysis attacks and
brute force attacks. However, it does not address the issues of
the man-in-the-middle (MITM) attack and DDoS attacks.

II. STEALTH- THE PROPOSED SYSTEMS

We propose a novel and highly secured symmetric com-
munication protocol to implement hard secrecy which ensures
high security, called Stealth. It is based on the Diffie-Hellman
cryptography algorithm. Stealth adds extra complexity in the
Diffie-Hellman algorithm to ensure end-to-end secure secret
key sharing. Moreover, it depends on the existing AES algo-
rithm. There are diverse symmetric cryptography algorithms;
however, our proposed systems implements the existing cryp-
tography algorithms. Stealth is not only a symmetric com-
munication protocol but also an enhancer of any symmetric
cryptography algorithm to provide higher security than the
conventional method. A sender A wish to send a message
to B and both parties A and B are active the same time.
The A and B use Diffie-Hellman algorithm to exchange four
secret keys. These secret keys are used to generate four private
keys to encrypting message. The three private keys are used
to encrypt a block of message and a private key is used to
generate a seed value. The second and the third private key
are XORed with original message and the first private key is
used to encrypt the block of message using AES. Each block
of communication, the private keys are changed by both the
sender A and the receiver B. Both A and B execute the same
function to produce same private keys. Otherwise, receiver
B cannot decrypt the message from the sender A. Similarly,
the AES uses the first generated private key to encryption
or decryption. The following subsections provide the detailed
descriptions of our proposed system, Stealth.

The key objectives of our proposed systems are a) to provide
high security over conventional symmetric communications, b)
to enhance Diffie-Hellman algorithms using unpredictable and
cryptographically secure random number generator, and c) to
defeat cryptanalysis attacks which is a major challenge in se-
cure symmetric communication. To achieve above objectives,
our proposed system has four assumptions which are a) the A
and B are valid entities, and both are active at a given time for
communication, b) Digital signature is used to defeat man-in-
the-middle (MITM) attacks. Therefore, Stealth assumes that
there is no MITM attack, c) Stealth depends on the Diffie-
Hellman algorithm, and therefore, we omit detailed analysis
on Diffie-Hellman algorithms, d) Also, Stealth depends on the
existing block cipher symmetric cryptography AES, and we
skip the detailed analysis of the same.

A. Diffie-Hellman Key Exchange Protocol for the Stealth

Stealth is a symmetric communication protocol. It depends
on the Diffie-Hellman cryptography algorithm [1]. Diffie-

TABLE I
DIFFIE-HELLMAN KEY EXCHANGE PROTOCOL FOR FOUR SECRET KEY

GENERATION. THE A IS A SENDER, E IS AN ATTACKER AND B IS A
RECEIVER. HOWEVER, THE SENDER CAN BE RECEIVER OR VICE-VERSA.

A E B
P , Q, R, T , β P , Q, R, β P , Q, R, T , β
e, f, g, h e, f, g, h e, f, g, h
a, b, c, d Unknown w, x, y, z
A1 = ea mod P ,
A2 = fb mod Q,
A3 = gc mod R, A4 =
hd mod T

B1 = ew mod P ,
B2 = fx mod Q,
B3 = gy mod R, B4 =
hz mod T

B1,B2,B3,B4 A1, A2, A3,
A4, B1, B2,
B3, B4

A1,A2,A3,A4

SK1 = Ba
1 mod P ,

SK2 = Bb
2 mod Q,

SK3 = Bc
3 mod R,

SK4 = Bd
4 mod T

Unknown SK1 = Aw
1 mod P ,

SK2 = Ax
2 mod Q,

SK3 = Ay
3 mod R,

SK4 = Az
4 mod T

Hellman cryptography requires a true random number that is
kept secret. Similarly, Stealth uses Diffie-Hellman cryptogra-
phy and uses eight true random numbers (a, b, c, d, w, x, y, z),
eight prime numbers (P,Q,R, T , e, f, g, & h) and the bit
sizes of the pseudo-random numbers β. Table I demonstrates
the required parameters to calculate the secret keys. The eight
true random numbers (a, b, c, d, w, x, y, z) are kept private. In
Stealth, the A and B must be active at the given time for
communication. Therefore, A calculates A1 = ea mod P ,
A2 = f b mod Q, A3 = gc mod R, A4 = hd mod T , and
the B also calculates B1 = ew mod P , B2 = fx mod Q,
B3 = gy mod R, B4 = hz mod T . The A shares A1,A2,A3,
and A4 to B, and the B shares B1,B2,B3, and B4 to A over
public channel. Let us assume that SK denotes shared secret
key. The A calculates four secret keys SK1 = Ba1 mod P ,
SK2 = Bb2 mod Q, SK3 = Bc3 mod R, and SK4 =
Bd4 mod T . Similarly, the B calculates the four secret keys
SK1 = Aw

1 mod P , SK2 = Ax
2 mod Q, SK3 = Ay

3 mod R,
and SK4 = Az

4 mod T . Thus, the A and B computes the
shared secret keys securely. These shared secret keys are used
to compute the pseudo-random number generator to generate
the private keys. A pseudo-random number generator generates
the private keys. However, the a, b, c, d, w, x, y, and z are
generated by a true random number generator. Initially, the
shared (computed) secret keys are used to generate the private
keys, and these privates keys are used to encrypt a block of
message for communication.

B. Random Number Generation

Random number generators are essential for cryptography
and many other applications. Therefore, the random number
generator is classified into two key categories; namely, pseudo-
random number generator (PRNG) [3] and true random num-
ber generator (TRNG) [4]. Both PRNG and TRNG can gen-
erate highly unpredictable and truly random numbers. Also,
these algorithms produce random bits without following any
patterns. Lacking pattern in bits creates hard to reproduce the
given bits by the adversaries. However, PRNG uses the initial
seed value as an input, while TRNG does not require any input.

Therefore, a random number can be reproduced in PRNG for
correct input.

Algorithm 1 Stealth-TRNG for generating the truly random
numbers.
1: procedure GENSTEALTHTRNG(β)
2: seed← GETCPUCLOCK()
3: i← 1
4: while i < (β − 1) do ▷ β is the required bit length
5: P ← GETCPUCLOCK()
6: l1 ← LENGTH(P)
7: Q ← GETCPUCLOCK()
8: l2 ← LENGTH(Q)
9: N1 ← HASSHFUN(P, l1, seed)

10: N2 ← HASSHFUN(Q, l2, N1)
11: seed← N2

12: Bin[i]← N1 ∧ 1 ▷ ∧ is a bitwise AND operator
13: i← i + 1
14: end while
15: Bin[i]← 1 ▷ Producing odd number by padding 1 at the end.
16: return Bin
17: end procedure

Stealth uses truly random numbers (a, b, c, d, w, x, y, and
z), and these are generated by Algorithm 1. For instance,
a ← GENSTEALTHTRNG(128) assigns a 128 bits truly ran-
dom number. The true random number generators are mainly
dependent on hardware, for instance, FPGA [5] or Quantum
devices [6]. These hardware-based true random number gener-
ators are quite faster than other conventional TRNG [7]. There
are diverse TRNG algorithms based on various parameters
to produce high quality truly random number; for instance,
currents/voltages [8], light [9], camera [10], etc.; however,
Stealth-TRNG depends on the CPU Clock values. To the best
of our knowledge, our proposed TRNG is the first variant of
true random number generator that utilizes CPU Clock and
string hash function.

Moreover, PRNG requires an initial seed value to produce
truly random numbers. This initial seed value is the attacking
point for the attackers. Brute-force attackers can discover
the initial seed value for the PRNG. Therefore, PRNG is
weaker than TRNG, but Stealth uses PRNG to secure the
communication and proves that it is much harder for brute-
force attackers even if Stealth uses PRNG. The necessary
conditions of PRNG to be used in Stealth are as follows-

• The PRNG should take input of initial key, seed value
and the bit sizes.

• The PRNG should be able to reproduce same random
number for the same initial key, the same seed value and
the same bit sizes.

• The produced bit pattern should be highly unpredictable
and does not follow any kind of patterns.

The PRNG must fulfill those above mentioned necessary
conditions. Otherwise, it is not possible to produce high-
quality random numbers. Also, it cannot produce the same
private keys for A and B. Moreover, PRNG should not depend
on non-reproducible parameters such as CPU Clock value.
Similar to TRNG, our proposed PRNG is the first variant
of pseudo-random number generator that utilizes string hash
function. The string hash function is used to mix the bits [11].

Algorithm 2 Stealth-PRNG for generating the pseudo-random
numbers.
1: procedure GENSTEALTHPRNG(SK, seed, β)
2: i← 1
3: seed1 ← seed
4: seed2 ← seed⊕ Prime number
5: while i < (β − 1) do ▷ β is the required bit length
6: l← LENGTH(SK)
7: N1 ← HASSHFUN(SK, l, seed1)
8: N2 ← HASSHFUN(SK, l, seed2)
9: seed1 ← N2

10: seed2 ← N1

11: key ← N1 ⊕N2

12: SK ← CONVERTINTOSTRING(key)
13: Bin[i]← P ∧ 1
14: i← i + 1
15: end while
16: Bin[i]← 1 ▷ Producing odd number by padding 1 at the end.
17: return Bin
18: end procedure

Algorithm 2 is a PRNG to generate highly unpredictable
bits or numbers for Stealth. The GENSTEALTHPRNG() uses
an input key, an initial seed value, and the bit sizes. Algorithm
2 can produce the same output for the same input parameters.
It requires to produce the same private keys by both sender and
receiver. Algorithm 2 is based on hash functions that mix bits
and produce unpredictable bits. The GENSTEALTHPRNG()
extract the least significant bit (LSB) and stores it in a binary
array. Moreover, the input key SK changes in each iteration in
the Algorithm 2. Here, the seed values are also changed in each
iteration. Therefore, it produces highly unpredictable LSB (ei-
ther 0 or 1). The hash functions mix the bits, and the function
GENSTEALTHPRNG() uses murmur non-cryptographic string
hash function [11]. The algorithms iterate β times, and thus,
its time complexity is O(β× l) where β is the bit size, and l is
the length of the string. The length of the string l is constant,
and therefore, the total time complexity is O(β). Moreover,
the bit size β is approximately 128 to 1024 bits. Therefore,
we can rewrite the time complexity as O(β) ≈ O(1).

C. Communication Protocol

Table II demonstrates the secure communication between
A and B. Initially, A and B establishes a connection. Let
us consider, A would like to send a message M to B,
and thus, the connection is established through public key
cryptography. Therefore, A and B can compute shared secret
keys using Diffie-Hellman cryptography. Let us denote PK be
the private key and tA be the logical timestamp of A. The A
computes PK1 = GENSTEALTHPRNG(SK1,SK4, β),
PK2 = GENSTEALTHPRNG(SK2,SK4, β),
PK3 = GENSTEALTHPRNG(SK3,SK4, β), PK4 =
GENSTEALTHPRNG(PK1,PK2, β), M1 = M1 ⊕ PK2,
Mm

1 = M1 ⊕PK3, and Mcm
1 = EncPK1(Mm

1). The A sends
the cipher (Mcm

1 , tA1) to B. B receives (Mcm
1 , tA1) from A.

The B computes PK1 = GENSTEALTHPRNG(SK1,SK4, β),
PK2 = GENSTEALTHPRNG(SK2,SK4, β),
PK3 = GENSTEALTHPRNG(SK3,SK4, β), PK4 =
GENSTEALTHPRNG(PK1,PK2, β), Mm

1 = DecPK1(Mcm
1).

M1 = Mm
1 ⊕ PK3, and retrieves original message

M1 = M1⊕PK2. Stealth uses AES symmetric cryptography

TABLE II
COMMUNICATION MECHANISM BETWEEN A AND B. B RECEIVES ALL MESSAGES IN ORDER.

A B
PK1 = GENSTEALTHPRNG(SK1,SK4, β)
PK2 = GENSTEALTHPRNG(SK2,SK4, β)
PK3 = GENSTEALTHPRNG(SK3,SK4, β)
PK4 = GENSTEALTHPRNG(PK1,PK2, β)

M1 =M1 ⊕ PK2, Mm
1 = M1 ⊕ PK3, Mcm

1 = EncPK1 (Mm
1)

Send (Mcm
1 , tA1) to B

Receives (Mcm
1 , tA1) from A

PK1 = GENSTEALTHPRNG(SK1,SK4, β)
PK2 = GENSTEALTHPRNG(SK2,SK4, β)
PK3 = GENSTEALTHPRNG(SK3,SK4, β)
PK4 = GENSTEALTHPRNG(PK1,PK2, β)

Mm
1 = DecPK1 (Mcm

1), M1 = Mm
1 ⊕ PK3, M1 = M1 ⊕ PK2

PK5 = GENSTEALTHPRNG(PK1,PK4, β)
PK6 = GENSTEALTHPRNG(PK2,PK4, β)
PK7 = GENSTEALTHPRNG(PK3,PK4, β)
PK8 = GENSTEALTHPRNG(PK5,PK6, β)

M2 =M2 ⊕ PK6, Mm
2 = M1 ⊕ PK7, Mcm

2 = EncPK5 (Mm
2)

Send (Mcm
2 , tA2) to B

Receives (Mcm
2 , tA2) from A

PK5 = GENSTEALTHPRNG(PK1,PK4, β)
PK6 = GENSTEALTHPRNG(PK2,PK4, β)
PK7 = GENSTEALTHPRNG(PK3,PK4, β)
PK8 = GENSTEALTHPRNG(PK5,PK6, β)

Mm
2 = DecPK5 (Mcm

2), M2 = Mm
2 ⊕ PK7, M2 = M2 ⊕ PK6

(block cipher) for encryption and decryption [12]. The secret
keys PK1, PK2, and PK3 strengthen the symmetric key
encryption. The generated secret key PK1 is used as a private
key for encryption. Similarly, PK2, and PK3 are used as
a mixer for mixing a block of the message and produces
cipher. The mixing operation has to be performed before the
encryption. It creates a cipher before encryption by the AES
method. Therefore, to send the second block of message, A
computes PK5 = GENSTEALTHPRNG(PK1,PK4, β),
PK6 = GENSTEALTHPRNG(PK2,PK4, β),
PK7 = GENSTEALTHPRNG(PK3,PK4, β), PK8 =
GENSTEALTHPRNG(PK5,PK6, β), M2 = M2 ⊕ PK6,
Mm

2 = M1 ⊕ PK7, Mcm
2 = EncPK5(Mm

2), and sends
(Mcm

2 , tA2) to B. The B receives (Mcm
2 , tA2) from A and

computes PK5 = GENSTEALTHPRNG(PK1,PK4, β),
PK6 = GENSTEALTHPRNG(PK2,PK4, β),
PK7 = GENSTEALTHPRNG(PK3,PK4, β), PK8 =
GENSTEALTHPRNG(PK5,PK6, β), Mm

2 = DecPK5(Mcm
2),

M2 = Mm
2 ⊕ PK7, and retrieve the original block of the

message M2 = M2 ⊕ PK6. It shows that the private keys
are not fixed, and it changes in each communication.

D. Shared Secret Key

Stealth uses Diffie-Hellman cryptography to compute shared
secret keys. Stealth requires four secret keys, and these secret
keys are computed to generate private keys for communication
or data exchanging. The secret key SK1, SK2, SK3 and SK4

are shared using Diffie-Hellman algorithm. Also, these secret
key SK1, SK2, and SK3 are used to generate initial private
keys. However, the secret key SK4 is used as the initial seed
value for the PRNG. In addition, the generated private keys are
used to generate other private keys for next communication.
This process continues to complete the communication.

E. Private Key

The secret keys are generated using the Diffie-Hellman
algorithm. These secret keys are used to generate initial private
keys PK1, PK2, PK3, and PK4 which are generated using
the four secret keys. However, PK4 is generated using two
private keys (PK1 and PK2). The secret key SK4 is replaced
by PK4. Stealth uses these private keys to encrypt or decrypt
the first block of the message. For second block of the
message, the private keys PK5, PK6 and PK7 are generated
using PK1, PK2, and PK3, respectively. The PK4 is used as
a seed value to generate the private keys PK5, PK6 and PK7.
The seed value PK8 is calculated using PK5 and PK6 to use
as a seed value for the third block of the message. Thirdly,
the private key PK9, PK10, and PK11 are calculated using
PK5, PK6 and PK7, respectively. The PK12 is calculated
using PK9 and PK10 to use as a seed value for the fourth
block of the message and so on.

III. ANALYSIS

Stealth is designed to provide higher security than con-
ventional security systems in symmetric communication. It
ensures security in each communication by providing an extra
coating to the message. Stealth requires three private keys to
be computed for a single communication and a seed value
(also a private key). The private keys are changed at each
communication. Also, the seed value is changed in each
communication. This changing nature is unpredictable in each
communication. The Diffie-Hellman algorithm’s strength lies
in random number generators. The true random number gener-
ator generates unpredictable bit patterns and cannot reproduce
it by anyone. Therefore, Stealth uses true random number
generator to generate the randomly chosen number for Diffie-
Hellman. The pseudo-random number generator generates a
truly random number based on initial inputs. It is used to

create the private keys because the private keys change in each
communication. Stealth is applicable in block cipher but not
stream cipher.

A. Shared Secret Key

The sharing of a secret key is fully dependent on the Diffie-
Hellman key exchange algorithm in our proposed algorithm.
Stealth requires four secret keys to be computed for sharing
between two parties. In Stealth, the secret keys are not used
to encrypt the message. However, these secret keys are used
to generate private keys of the first communication, i.e., first
block, and a seed value for the next communication. After
the first communication, shared secret keys are not required.
Initially, Diffie-Hellman algorithm choose a random number,
and therefore, Stealth requires eight random numbers, namely,
A chooses a, b, c and d, and B chooses w, x, y, and z. The
strength of the Diffie-Hellman lies within these random num-
bers. Therefore, Stealth uses a true random number generator
to generate these random numbers. It is difficult to guess these
random numbers by adversaries if these random numbers are
generated using a true random number generator. True random
number generator produces the bit patterns in the unpredictable
sequence, and thus, attackers are unable to guess the exact
number.

Theorem 1. The probability of getting the four shared secret
keys of Stealth by an attacker is 1

16β
where β is the bit size of

the keys.

Proof. Diffie-Hellman uses a single random number where
the guessing probability of a particular random number is
1
2β

where the β is the bit size of the random number. The
probability of not getting the exact random number is (1− 1

2β
).

For instance, β = 32, then the probability of not getting the
random number is (1 − 1

232 ≈ 1) which means it is not easy
for a conventional computer to break the security. However, it
requires a powerful computing resources to break, and it also
takes a huge time. Stealth uses four such random numbers,
and these random numbers are independent events. Let, Pr(a),
Pr(b), Pr(c), and Pr(d) be the guessing probability of a, b,
c, and d, respectively. Generating the number a, b, c, and d
are independent events. Therefore, the probability of guessing
all random numbers is denoted in Equation (1).

Pr(a ∩ b ∩ c ∩ d) = Pr(a) ∩ Pr(b) ∩ Pr(c) ∩ Pr(d)

=
1

2β
× 1

2β
× 1

2β
× 1

2β

=
1

24β
=

1

16β
≈ 0

(1)

In Stealth, it is not possible to get the same secret keys
by the adversaries. Alternatively, this probability applies in
guessing direct secret keys. Equation (1) state that the adver-
sary requires all four shared secret keys to breach the security
of Stealth, i.e., it implies that it is impossible to breach the
security if β is large enough. For instance, the bit size of β
may vary from 16 bits to 1024 bits or more, depending on
the security requirements. Let us assume that an adversary is

able to get a shared secret key by any means, and it requires
another more probability to overcome, as given in Equation
(2).

Pr((a ∩ b ∩ c) | d) = Pr(a ∩ b ∩ c) = Pr(a) Pr(b) Pr(c)

=
1

23β
=

1

8β
≈ 0

(2)

Equation (2) demonstrates that even though a shared secret key
is revealed, there is still probability of not getting other three
shared secret keys and it is 1− 1

8β
. Thus, Stealth ensures high

security in computing shared secret keys using Diffie-Hellman
algorithm.

Corollary 1. The probability of not getting the four shared
secret keys is (1− 1

16β
) ≈ 1.

B. Private Keys

The shared secret keys are the private keys in conventional
symmetric cryptography, however, these are not the private
keys in Stealth. The shared secret keys are used to generate
the private keys for encryption and decryption, i.e., private-
private cryptography. In this model, the private keys are not
fixed, and it changes in each message. Moreover, a single
private key is used in conventional communication, which is
fixed. On the contrary, Stealth changes the private keys in each
communication and uses four private keys. However, Stealth
does not require any communication to generate these private
keys after the first key exchange. The sender and receiver
generates the same private keys without communication using
a pseudo-random number generator.

Lemma 1. The probability of getting correct private keys for
a single communication is 1

16β
where the β is the bit size of

the private keys.

Proof. Theorem 1 has already proved that the probability of
getting the correct shared secret keys which is 1

16β
. Similarly,

we can easily conclude that the probability of getting the cor-
rect private keys for communication is 1

16β
. It is a probability

of a single block of a message or a single communication
between A and B. Let us assume that the adversary is able
to get the shared secret keys, and thus, the probability of
getting all the private keys is 1, because the adversary can
easily generate the private keys. However, if we assume that
the adversary cannot get the shared secret keys, getting the
private keys directly from the first message is 1

16β
. Therefore,

the probability of getting the next private keys is 1 for the
second block of message and onward because the adversary
can efficiently compute the second set of the private keys from
the first set of the private keys. Similarly, getting correct set
of the private keys for the second message or communication
without knowing the first message’s private keys is 1

16β
. Thus,

the adversary can compute the next set of the private keys,
and the probability of getting the third set of the private keys
is 1. Likewise, the probability of getting the private keys of
the last message/communication without knowing the previous
private keys is also the same. Generating private keys for the

next event is not an independent event. Therefore, the wise
way to attack Stealth is the first communication to capture
entire communication. Thus, the total probability of getting
entire private keys is restricted to 1

16β
.

Lemma 1 states that the probability of capturing entire
message is 1

16β
. Then, why should Stealth change the private

keys in each communication which introduces computation
overhead? Let us assume that an adversary is able to get
the correct private keys of a message with a probability of
1

16β
. Now, the adversary can get the entire set of the private

keys for the next communication. It means that the adversary
cannot read the previous messages. Even though a part of
communication is broken, the other (previous) part of the
communication is still secured.

Theorem 2. The probability of breaking mth block of message
and onward is 1

16β
((m− 1)− 1

(16β−1)).

Proof. The probability of breaking first block of message
using private keys is 1

16β
and the breaking probability of

remaining message is 1. Therefore, the total probability to
break the first block of message is 1

16β
(1 − 1) = 0. For

the second block of message, the probability of breaking the
message is 1

16β
and not able to break the first block of message

is (1 − 1
16β

). Therefore, the total probability of breaking is
1

16β
(1− 1

16β
). For the third block of message, the probability

of breaking the message is 1
16β

and the not able to break the
previous messages is (1 − 1

162β
). Therefore, the total proba-

bility of breaking the message at the third block and onward
is 1

16β
(1 − 1

162β
). Similarly, the probability of breaking the

fourth block of message is 1
16β

and the probability of not able
to break the previous block of messages is (1− 1

163β
). The total

probability of breaking the block of message is 1
16β

(1− 1
163β

)
and so on. The probability of breaking the last block of
message is 1

16β
and the probability of not able to break

the previous block of messages is (1 − 1
16(m−1)β). The total

probability at the last block of message is 1
16β

(1− 1
16(m−1)β).

Summing up all the total probability, it gives us

TP =
1

16β
(1− 1) +

1

16β
(1− 1

16β
) +

1

16β
(1− 1

162β
)+

1

16β
(1− 1

163β
) + . . .+

1

16β
(1− 1

16(m−1)β
)

=
1

16β
((1− 1) + (1− 1

16β
) + (1− 1

162β
)

+ (1− 1

163β
) + . . .+ (1− 1

16(m−1)β
))

=
1

16β
((m− 1)− (

1

16β
+

1

162β
+

1

163β
+ · · ·+ 1

16(m−1)β
))

=
1

16β
((m− 1)− (

1

16β
+

1

162β
+

1

163β
+ · · ·+∞))

=
1

16β
((m− 1)− 1

(16β − 1)
)

(3)

Theorem 3. The probability of being able to capture the entire
communication by the attacker without knowing the keys is(

1
8β

)m
where m is the number of communication.

Proof. Let us assume that an attacker is able to attack a
particular block without knowing the private keys, and the
probability is 1

23β
, but it does not mean that the attackers

can also decrypt the next block. Therefore, the probability
of breaking the second block is 1

8β
, and so on. Similarly,

the probability of breaking the last block of the message is
also the same. These events are independent of each other
because the communication is broken without knowing the
private keys. Therefore, the total probability of breaking the
entire communication is given in Equation (4).

Pr(M1 ∩M2 ∩ . . .Mm) = Pr(M1) Pr(M2)

Pr(M3) . . . P r(Mm)

=
1

8β
× 1

8β
× 1

8β
× . . .× 1

8β
=

(
1

8β

)m

≈ 0

(4)

Therefore, Stealth provides tight coating of messages’ block.

Corollary 2. The probability of not being able to capture
entire communication by the attacker without knowing the keys
is 1−

(
1
8β

)m ≈ 1.

Equation (4) shows that the attackers cannot easily break
the entire communication. The bit size β is 128, 256, or
512 in modern practices. Thus, the probability of capturing
entire communication using such kind of attack is almost
zero. Therefore, the attacker should attack the first block of
communication to get the four private keys or the Diffie-
Hellman algorithm.

C. Communication and Computation overhead

Stealth maintains the Diffie-Hellman communication proto-
col and introduces no communication overheads. But there
is computation overhead in encryption/decryption. Initially,
Stealth computes eight prime numbers, four random numbers.
It also performs extra costly operations. Therefore, it is slower
than the Diffie-Hellman algorithm to compute shared secret
keys. Moreover, the sender or receiver computes private keys
in each communication. This process incurs computational
overhead. Apparently, the security cannot be compromised
at any cost, and thus, these extra computational costs are
justifiable.

D. Attacks

The bitwise XOR has interesting properties, and Stealth
exploits these properties. XOR produces zero for same values,
for instance, C ⊕ C = 0. Stealth uses XOR to create a cipher.
Let, C1 be the plaintext, and C2 and C3 be the key. Let,
ζ = C1 ⊕ C2 ⊕ C3. It requires two keys to retrieve any one
key from ζ. For example, C1 = ζ⊕C2⊕C3, C2 = ζ⊕C1⊕C3

or C3 = ζ ⊕ C1 ⊕ C2. It is highly vulnerable for cryptanalyst
in one-keyed XOR-cipher. For instance, ζ = C1 ⊕ C2. The
ζ can be attacked by known-plaintext, chosen-plaintext by

cryptanalyst, or frequency analysis. Therefore, three or more
keyed XOR operations create difficulties for a cryptanalyst to
decode the original message. Therefore, private keys can be
increased from four to five for tighter security. However, it can
create all ones or zero if many keys are XORed.

Brute-force attackers attack the encrypted code by an ex-
haustive search method. It is not impossible to attack any
encrypted code, however, it takes many years to decode. Let
us assume that an attacker is able to decrypt a code in Stealth
using an exhaustive search. However, the attacker requires
two extra keys to decode the code. Brute-force attackers
need to break the first encryption and retrieved the cipher.
Again, the attacker requires two other keys to decipher the
coded message. Therefore, brute-force attack does not work
on Stealth.

Cryptanalyst uses analysis of an encrypted code and discov-
ers the patterns. There are many types of possible cryptanal-
ysis, particularly the known-plaintext attack (KPA), chosen-
plaintext attack (CPA) and chosen ciphertext attack (CCA),
differential cryptanalysis (DCA), and linear cryptanalysis. For
instance, a one-keyed XOR cipher is easy for deciphering
by the cryptanalyst. However, Stealth uses a proven existing
encryption method and extra XOR operations. Even if the
adversaries break the encryption, the encrypted code is still se-
cure due to additional XOR operation. Additionally, it requires
two keys to decipher the encrypted code. Moreover, Stealth
changes its keys in each block. Therefore, this cryptanalysis
attack does not apply in Stealth.

The dictionary attack is famous attacks in password guess-
ing systems where attacker builds a dictionary of possible
words to capture the communication. Stealth convert the
plaintext into cipher text, then the converted ciphertext into
encrypted text. Moreover, it changes private keys for encryp-
tion. Therefore, it is not possible to build a dictionary to reveal
the original messages by the attackers.

IV. EXPERIMENTAL RESULTS

We have evaluated Algorithm 1 and Algorithm 2 for Stealth-
TRNG and Stealth-PRNG, respectively, in Ubuntu Desktop
environment. We have generated 10M bits to be tested in NIST
SP 800-22 [13], [14]. We have used “5483651” as an input
key, two seed values (98899, 104723), and a bit size of 10M
for Algorithm 2. The input key can be any number or string.
However, Algorithm 1 is not reproducible due to true random
number and CPU Clock values.

Table III and Table IV demonstrate the P-values and the
success rate of random number testing on NIST SP 800-22
[13], [14] for Algorithm 1 and Algorithm 2, respectively. NIST
SP 800-22 provides statistical testing of the randomness of
given bits. We have generated 10M random bits and tested
them using NIST SP 800-22 test. It provides approximate
entropy, frequency, block frequency, cumulative sums, runs,
longest runs, rank, FFT, non-overlapping template, overlapping
template, random excursions, random excursions variant, se-
rial, linear complexity, and universal testing for bits’ random-
ness. The deciding factor of P-value is ≥ 0.01, otherwise, the

given bits are not random. It may contain certain patterns that
can easily be identified and discover the generated numbers’
pattern by adversaries. Table III and Table IV shows the
corresponding P-values, and it shows quite satisfactory results
on the randomness test for the generated bits by Algorithm 1
and Algorithm 2, respectively. The minimum success rate of
Algorithm 1 is 0.96875, 0.96875 and 0.984375 for 32 bits, 64
bits, and 128 bits streams, respectively. The maximum success
rate of Algorithm 1 is 1 for all bit streams. The lowest P-
value of Algorithm 1 are 0.035174, 0.012043, 0.017912 in 32
bits, 64 bits, and 128 bits streams, respectively. The highest
P-values are 0.976060, 0.991468 and 0.941144 in 32 bits, 64
bits, and 128 bits streams respectively. Also, Algorithm 2 test’s
success rates are as low as 0.96875, 0.96875, and 0.9765625
in 32 bits, 64 bits, and 128 bits streams, respectively. The
highest success rate is 1 (100%) for all bit streams. The lowest
P-values of 32 bits, 64 bits, and 128 bits streams are 0.016990,
0.213309, and 0.066882, respectively. The highest P-values of
32 bits, 64 bits, and 128 bits streams are 0.991468, 0.995711,
and 0.941144, respectively.

V. CONCLUSIONS

In this paper, we have demonstrated secured symmetric
communication between two endpoints, called Stealth. Stealth
provides dynamic security in symmetric communication. It
neither replaces any existing methodology of key exchange
protocol nor encryption method but it creates another security
layer to protect from various kinds of attacks. Also, Stealth is
not designed to deal with DDoS attacks and MITM. Stealth
creates a secure coating on a raw message for communication.
Initially, it depends on Diffie-Hellman algorithms to compute
the shared secret keys. These shared secret keys are altered
for the blocks of the message to communicate. Stealth uses
existing version of AES cryptography. Stealth creates another
layer to provide tight security for secured symmetric commu-
nication. However, it adds additional computational overhead
to the system, but security is intact. We have also demon-
strated PRNG and TRNG for Stealth, called Stealth-PRNG and
Stealth-TRNG, which provides a truly random number to pro-
tect from various attackers. Both Stealth-PRNG and Stealth-
TRNG are tested in NIST SP 800-22 for randomness and are
able to pass all the 15 statistical testings for randomness. We
have also compared Stealth-PRNG and Stealth-TRNG with
state-of-the-art random number generators, and are able to
outperform the existing algorithm in randomness. In addition,
we have also explored security measurement mathematically.
The probability of getting correct shared secret key is 1

16β
and

getting the correct private key is 1
16β

. Also, the probability of
getting all the correct messages or seize the entire communi-
cation without knowing the keys is (1

8β
)m for m blocks of

a message in communication, for instance, block cipher. The
patterns of the blocks of a message cannot be revealed at any
cost due to the different private keys in each communication,
which protects from the cryptanalysis attacks.

TABLE III
P-VALUES AND SUCCESS RATES OF ALGORITHMS 1 FOR 32 BITS, 64 BITS, AND 128 BITS IN NIST SP 800-22.

Test name 32 bits 64 bits 128 bits
P-value Pass rate P-value Pass rate P-value Pass rate

Approximate Entropy 0.468595 31/32 0.350485 64/64 0.875539 128/128
Frequency 0.468595 31/32 0.911413 62/64 0.739918 127/128
Block Frequency 0.122325 32/32 0.100508 64/64 0.723129 126/128
Cumulative sums 0.178278,

0.407091
32/32,
32/32

0.012043,
0.162606

62/64,
62/64

0.350485,
0.654467

128/128,
127/128

Runs 0.253551 31/32 0.035174 64/64 0.134686 127/128
Longest runs 0.739918 31/32 0.378138 61/64 0.585209 127/128
Rank 0.739918 32/32 0.671779 64/64 0.015065 128/128
FFT 0.035174 32/32 0.324180 64/64 0.422034 127/128
Non-overlapping Template 0.976060 32/32 0.991468 64/64 0.941144 128/128
Overlapping Template 0.468595 31/32 0.500934 61/64 0.452799 128/128
Random Excursions 0.437274 11/11 0.834308 15/15 0.739918 12/12
Random Excursions Variant 0.834308 11/11 0.637119 15/15 0.911413 12/12
Serial 0.671779,

0.804337
32/32,
32/32

0.378138,
0.637119

64/64,
64/64

0.017912,
0.517442

127/128,
128/128

Linear complexity 0.407091 32/32 0.195163 64/64 0.772760 127/128
Universal 0.534146 31/32 0.148094 64/64 0.407091 127/128

TABLE IV
COMPARISON OF ALGORITHMS 2 FOR 32 BITS, 64 BITS, AND 128 BITS IN NIST SP 800-22.

Test name 32 bits 64 bits 128 bits
P-value Pass rate P-value Pass rate P-value Pass rate

Approximate Entropy 0.016990 32/32 0.468595 62/64 0.788728 127/128
Frequency 0.949602 31/32 0.931952 63/64 0.337162 127/128
Block Frequency 0.949602 31/32 0.299251 63/64 0.392456 127/128
Cumulative sums 0.468595,

0.035174
31/32,
31/32

0.232760,
0.602458

63/64,
63/64

0.324180,
0.128379

126/128,
126/128

Runs 0.671779 31/32 0.213309 64/64 0.834308 128/128
Longest runs 0.253551 31/32 0.862344 64/64 0.110952 126/128
Rank 0.534146 32/32 0.500934 64/64 0.066882 128/128
FFT 0.407091 32/32 0.671779 64/64 0.100508 128/128
Non-overlapping Template 0.991468 32/32 0.995711 64/64 0.941144 128/128
Overlapping Template 0.468595 31/32 0.378138 63/64 0.253551 128/128
Random Excursions 0.637119 13/13 0.739918 12/12 0.162606 15/15
Random Excursions Variant 0.437274 13/13 0.739918 12/12 0.637119 15/15
Serial 0.350485,

0.804337
32/32,
32/32

0.911413,
0.949602

62/64,
63/64

0.819544,
0.517442

127/128,
128/128

Linear complexity 0.213309 32/32 0.350485 64/64 0.311542 125/128
Universal 0.100508 32/32 0.804337 63/64 0.484646 126/128

REFERENCES

[1] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[2] J. Black and H. Urtubia, “Side-channel attacks on symmetric encryption
schemes: The case for authenticated encryption.” in USENIX Security
Symposium, 2002, pp. 327–338.

[3] R. Patgiri, “Whisper: A curious case of valid and employed mallory in
cloud computing,” in 2021 8th IEEE International Conference on Cyber
Security and Cloud Computing (CSCloud)/2021 7th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom), 2021,
pp. 133–138.

[4] R. Patgiri, “Rando: A general-purpose true random number generator for
conventional computers,” in 2021 IEEE 20th International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom), 2021, pp. 107–113.

[5] M. Alcin, I. Koyuncu, M. Tuna, M. Varan, and I. Pehlivan, “A novel
high speed artificial neural network–based chaotic true random number
generator on field programmable gate array,” International Journal of
Circuit Theory and Applications, vol. 47, no. 3, pp. 365–378, 2019.

[6] X. Lin, S. Wang, Z.-Q. Yin, G.-J. Fan-Yuan, R. Wang, W. Chen, D.-
Y. He, Z. Zhou, G.-C. Guo, and Z.-F. Han, “Security analysis and
improvement of source independent quantum random number generators
with imperfect devices,” npj Quantum Information, vol. 6, no. 1, pp. 1–8,
2020.

[7] H. Jiang, D. Belkin, S. E. Savel’ev, S. Lin, Z. Wang, Y. Li, S. Joshi,
R. Midya, C. Li, M. Rao, M. Barnell, Q. Wu, J. J. Yang, and Q. Xia,
“A novel true random number generator based on a stochastic diffusive
memristor,” Nature Communications, vol. 8, no. 1, pp. 1–9, 2017.

[8] A. T. Erozan, G. Y. Wang, R. Bishnoi, J. Aghassi-Hagmann, and M. B.
Tahoori, “A compact low-voltage true random number generator based
on inkjet printing technology,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 6, pp. 1485–1495, 2020.

[9] K. Lee, S. Lee, C. Seo, and K. Yim, “Trng (true random number
generator) method using visible spectrum for secure communication on
5g network,” IEEE Access, vol. 6, pp. 12 838–12 847, 2018.

[10] W.-Z. Yeoh, J. S. Teh, and H. R. Chern, “A parallelizable chaos-based
true random number generator based on mobile device cameras for the
android platform,” Multimedia Tools and Applications, vol. 78, no. 12,
pp. 15 929–15 949, 2019.

[11] A. Appleby, “Murmurhash,” Retrieved on December 2020 from
https://sites.google.com/site/murmurhash/, 2008.

[12] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.
[13] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker,

“A statistical test suite for random and pseudorandom number
generators for cryptographic applications,” Booz-allen and
hamilton inc mclean va, Tech. Rep., 2001. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
22r1a.pdf

[14] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E.
Smid, E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L.
Banks et al., SP 800-22 rev. 1a. a statistical test suite for random
and pseudorandom number generators for cryptographic applications.
National Institute of Standards & Technology, 2010. [Online]. Available:
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final

