Stealth: A Highly Secured End-to-End Symmetric Communication Protocol

1st Ripon Patgiri

Dept. Computer Science & Engineering National Institute of Technology Silchar Cachar-788010, Assam, India ripon@cse.nits.ac.in 2nd Naresh Babu Muppalaneni Dept. Computer Science & Engineering National Institute of Technology Silchar Cachar-788010, Assam, India nareshbabu@cse.nits.ac.in

Abstract—Symmetric key cryptography is applied in almost all secure communications to protect all sensitive information from attackers, for instance, banking, and thus, it requires extra attention due to diverse applications. Moreover, it is vulnerable to various attacks, for example, cryptanalysis attacks. Cryptanalysis attacks are possible due to a single-keyed encryption system. The state-of-the-art symmetric communication protocol uses a single secret key to encrypt/decrypt the entire communication to exchange data/message that poses security threats. Therefore, in this paper, we present a new secure communication protocol based on Diffie-Hellman cryptographic algorithms, called Stealth. It is a symmetric-key cryptographic protocol to enhance the security of modern communication with truly random numbers. Additionally, it applies a pseudo-random number generator. Initially, Stealth uses the Diffie-Hellman algorithm to compute four shared secret keys. These shared secret keys are used to generate four different private keys to encrypt for the first block of the message for symmetric communication. Stealth changes its private keys in each communication, making it very hard to break the security protocol. Moreover, the four shared secret keys create additional complexity for the adversary to overcome, and hence, it can provide highly tight security in communications. Stealth neither replaces the existing protocol nor authentication mechanism, but it creates another security layer to the existing protocol to ensure the security measurement's tightness.

Index Terms—Encryption, Cryptography, Symmetric-key Cryptography, Diffie-Hellman Cryptography, Random Number Generator, Security, Security Protocol, Computer Networking.

I. INTRODUCTION

Symmetric communication protocols are the most used security protocol, and it is able to provide high security due to the computation of a shared secret key. Adversaries require years to defeat such kinds of security measures, for instance, Diffie-Hellman cryptography [1]. Also, there are diverse variants of symmetric key exchange protocol to enhance communication security, for example, Elliptic-curve Diffie-Hellman cryptography based on Diffie-Hellman, and Elliptic-curve cryptography.

The shared secret key is used in encrypting a message for communication. A conventional communication system agrees upon a fixed shared secret key and exchanges the messages with two end-points. There is a high possibility to find a pattern to discover the shared secret key from

a set of messages. Moreover, the brute-force method can always discover a shared secret key for encryption if the entire communication is performed using a single shared secret key. However, it may take many years or may take a few trials to reveal the secret key. Therefore, there is a high risk involved in such kind of communication. It is not impossible to reveal the shared secret key for the known-plaintext, chosenplaintext, chosen-ciphertext, linear cryptanalysis, differential cryptanalysis, differential fault analysis, differential power analysis, differential timing analysis, and side-channel attacker [2]. Obviously, a cryptanalyst always tries to find a weakness and patterns to reveal the secret keys. Thus, symmetrickey cryptography poses a high risk of being attacked by adversaries. Therefore, in this paper, we propose a novel and highly secure communication protocol to secure from different kind of attackers in symmetric cryptography, called Stealth. Stealth is a secure symmetric communication protocol for highly sensitive data communication to protect from adversaries. Therefore, it initially uses the Diffie-Hellman key exchange protocol to compute four shared secret keys. These shared secret keys are used to generate the four private keys for encryption/decryption. The encryption/decryption requires four private keys. In each communication, Stealth changes its private keys to ensure high security. Also, these private keys are generated using a pseudo-random number generator.

The key contribution of the paper is as follows-

- Stealth is a secure communication protocol based on Diffie-Hellman cryptography to defend against various attacks, and it enhances the Diffie-Hellman key exchange protocol without incurring extra communication. Stealth uses the same number of communication costs as well as the Diffie-Hellman algorithm. It also enhances the cryptography protocol, Advanced Encryption Standard (AES), for better encryption or decryption.
- Stealth uses four private keys and changes its private keys in each communication. Therefore, the probability of capturing entire communication without knowing the private keys is $(\frac{1}{8^{\beta}})^m$ for β bit sized private keys and m communications.
- Stealth uses four shared secret keys to generate four private keys, and the probability of getting correct private

keys is $\frac{1}{16^{\beta}}$.

Stealth works on the existing methodology for security, namely, authentication, key exchange protocol, and block cipher, and it does not replace the existing methods, but it adds an extra layer to protect the communication from various attackers. Stealth can defend diverse cryptanalysis attacks and brute force attacks. However, it does not address the issues of the man-in-the-middle (MITM) attack and DDoS attacks.

II. STEALTH- THE PROPOSED SYSTEMS

We propose a novel and highly secured symmetric communication protocol to implement hard secrecy which ensures high security, called Stealth. It is based on the Diffie-Hellman cryptography algorithm. Stealth adds extra complexity in the Diffie-Hellman algorithm to ensure end-to-end secure secret key sharing. Moreover, it depends on the existing AES algorithm. There are diverse symmetric cryptography algorithms; however, our proposed systems implements the existing cryptography algorithms. Stealth is not only a symmetric communication protocol but also an enhancer of any symmetric cryptography algorithm to provide higher security than the conventional method. A sender A wish to send a message to \mathbb{B} and both parties \mathbb{A} and \mathbb{B} are active the same time. The \mathbb{A} and \mathbb{B} use Diffie-Hellman algorithm to exchange four secret keys. These secret keys are used to generate four private keys to encrypting message. The three private keys are used to encrypt a block of message and a private key is used to generate a seed value. The second and the third private key are XORed with original message and the first private key is used to encrypt the block of message using AES. Each block of communication, the private keys are changed by both the sender \mathbb{A} and the receiver \mathbb{B} . Both \mathbb{A} and \mathbb{B} execute the same function to produce same private keys. Otherwise, receiver B cannot decrypt the message from the sender A. Similarly, the AES uses the first generated private key to encryption or decryption. The following subsections provide the detailed descriptions of our proposed system, Stealth.

The key objectives of our proposed systems are a) to provide high security over conventional symmetric communications, b) to enhance Diffie-Hellman algorithms using unpredictable and cryptographically secure random number generator, and c) to defeat cryptanalysis attacks which is a major challenge in secure symmetric communication. To achieve above objectives, our proposed system has four assumptions which are a) the $\mathbb A$ and $\mathbb B$ are valid entities, and both are active at a given time for communication, b) Digital signature is used to defeat man-inthe-middle (MITM) attacks. Therefore, Stealth assumes that there is no MITM attack, c) Stealth depends on the Diffie-Hellman algorithm, and therefore, we omit detailed analysis on Diffie-Hellman algorithms, d) Also, Stealth depends on the existing block cipher symmetric cryptography AES, and we skip the detailed analysis of the same.

A. Diffie-Hellman Key Exchange Protocol for the Stealth

Stealth is a symmetric communication protocol. It depends on the Diffie-Hellman cryptography algorithm [1]. Diffie-

TABLE I

DIFFIE-HELLMAN KEY EXCHANGE PROTOCOL FOR FOUR SECRET KEY GENERATION. THE $\mathbb A$ is a sender, $\mathbb E$ is an attacker and $\mathbb B$ is a receiver. However, the sender can be receiver or vice-versa.

A	\mathbb{E}	B
$\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{T}, \beta$	\mathcal{P} , \mathcal{Q} , \mathcal{R} , β	$\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{T}, \beta$
e, f, g, h	e, f, g, h	e, f, g, h
a, b, c, d	Unknown	w, x, y, z
$\mathcal{A}_1 = e^a \mod \mathcal{P},$		$\mathcal{B}_1 = e^w \mod \mathcal{P},$
$A_2 = f^b \mod Q$,		$\mathcal{B}_2 = f^x \mod \mathcal{Q},$
$\mathcal{A}_3 = g^c \mod \mathcal{R}, \mathcal{A}_4 =$		$\mathcal{B}_3 = g^y \mod \mathcal{R}, \mathcal{B}_4 =$
$h^d \mod \mathcal{T}$		$h^z \mod \mathcal{T}$
$\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3, \mathcal{B}_4$	$\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3,$	A_1, A_2, A_3, A_4
	\mathcal{A}_4 , \mathcal{B}_1 , \mathcal{B}_2 ,	
	$\mathcal{B}_3,\mathcal{B}_4$	
$\mathcal{SK}_1 = \mathcal{B}_1^a \mod \mathcal{P},$	Unknown	$\mathcal{SK}_1 = \mathcal{A}_1^w \mod \mathcal{P},$
$\mathcal{SK}_2 = \mathcal{B}_2^b \mod \mathcal{Q},$		$\mathcal{SK}_2 = \mathcal{A}_2^{\overline{x}} \mod \mathcal{Q},$
$\mathcal{SK}_3 = \mathcal{B}_3^{\tilde{c}} \mod \mathcal{R},$		$\mathcal{SK}_3 = \mathcal{A}_3^{\overline{y}} \mod \mathcal{R},$
$\mathcal{SK}_4 = \mathcal{B}_4^d \ mod \ \mathcal{T}$		$\mathcal{SK}_4 = \mathcal{A}_4^z \ mod \ \mathcal{T}$

Hellman cryptography requires a true random number that is kept secret. Similarly, Stealth uses Diffie-Hellman cryptography and uses eight true random numbers (a, b, c, d, w, x, y, z), eight prime numbers $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{T}, e, f, g, \& h)$ and the bit sizes of the pseudo-random numbers β . Table I demonstrates the required parameters to calculate the secret keys. The eight true random numbers (a, b, c, d, w, x, y, z) are kept private. In Stealth, the \mathbb{A} and \mathbb{B} must be active at the given time for communication. Therefore, A calculates $A_1 = e^a \mod \mathcal{P}$, $\mathcal{A}_2 = f^b \mod \mathcal{Q}, \ \mathcal{A}_3 = g^c \mod \mathcal{R}, \ \mathcal{A}_4 = h^d \mod \mathcal{T}, \ \text{and}$ the \mathbb{B} also calculates $\mathcal{B}_1 = e^w \mod \mathcal{P}, \ \mathcal{B}_2 = f^x \mod \mathcal{Q},$ $\mathcal{B}_3 = g^y \mod \mathcal{R}, \, \mathcal{B}_4 = h^z \mod \mathcal{T}.$ The A shares $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3,$ and A_4 to \mathbb{B} , and the \mathbb{B} shares $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$, and \mathcal{B}_4 to \mathbb{A} over public channel. Let us assume that \mathcal{SK} denotes shared secret key. The A calculates four secret keys $\mathcal{SK}_1 = \mathcal{B}_1^a \mod \mathcal{P}$, $\mathcal{SK}_2 = \mathcal{B}_2^b \mod \mathcal{Q}, \ \mathcal{SK}_3 = \mathcal{B}_3^c \mod \mathcal{R}, \ \text{and} \ \mathcal{SK}_4 =$ $\mathcal{B}_4^d \mod \mathcal{T}$. Similarly, the $\mathbb B$ calculates the four secret keys $\mathcal{SK}_1 = \mathcal{A}_1^w \mod \mathcal{P}, \, \mathcal{SK}_2 = \mathcal{A}_2^x \mod \mathcal{Q}, \, \mathcal{SK}_3 = \mathcal{A}_3^y \mod \mathcal{R},$ and $\mathcal{SK}_4 = \mathcal{A}_4^z \mod \mathcal{T}$. Thus, the A and B computes the shared secret keys securely. These shared secret keys are used to compute the pseudo-random number generator to generate the private keys. A pseudo-random number generator generates the private keys. However, the a, b, c, d, w, x, y, and z are generated by a true random number generator. Initially, the shared (computed) secret keys are used to generate the private keys, and these privates keys are used to encrypt a block of message for communication.

B. Random Number Generation

Random number generators are essential for cryptography and many other applications. Therefore, the random number generator is classified into two key categories; namely, pseudorandom number generator (PRNG) [3] and true random number generator (TRNG) [4]. Both PRNG and TRNG can generate highly unpredictable and truly random numbers. Also, these algorithms produce random bits without following any patterns. Lacking pattern in bits creates hard to reproduce the given bits by the adversaries. However, PRNG uses the initial seed value as an input, while TRNG does not require any input.

Therefore, a random number can be reproduced in PRNG for correct input.

Algorithm 1 Stealth-TRNG for generating the truly random numbers.

```
1: procedure GENSTEALTHTRNG(\beta)
         seed \leftarrow GETCPUCLOCK()
3:
         while i < (\beta - 1) do
                                                                     \triangleright \beta is the required bit length
5:
             \mathcal{P} \leftarrow \text{GETCPUCLock}()
6:
             l_1 \leftarrow \text{Length}(\mathcal{P})
7:
             Q \leftarrow GETCPUCLOCK()
8:
             l_2 \leftarrow \text{LENGTH}(\mathcal{Q})
             N_1 \leftarrow \text{HASSHFUN}(\mathcal{P}, l_1, seed)
              N_2 \leftarrow \text{HASSHFUN}(Q, l_2, N_1)
10:
11:
              seed \leftarrow N_2
              Bin[i] \leftarrow \tilde{N}_1 \wedge 1
12:
                                                                   13:
              i \leftarrow i + 1
14:
          end while
15:
          Bin[i] \leftarrow 1
                                            > Producing odd number by padding 1 at the end.
         return Bin
16:
17: end procedure
```

Stealth uses truly random numbers (a, b, c, d, w, x, y), and z), and these are generated by Algorithm 1. For instance, $a \leftarrow \text{GENSTEALTHTRNG}(128)$ assigns a 128 bits truly random number. The true random number generators are mainly dependent on hardware, for instance, FPGA [5] or Quantum devices [6]. These hardware-based true random number generators are quite faster than other conventional TRNG [7]. There are diverse TRNG algorithms based on various parameters to produce high quality truly random number; for instance, currents/voltages [8], light [9], camera [10], etc.; however, Stealth-TRNG depends on the CPU Clock values. To the best of our knowledge, our proposed TRNG is the first variant of true random number generator that utilizes CPU Clock and string hash function.

Moreover, PRNG requires an initial seed value to produce truly random numbers. This initial seed value is the attacking point for the attackers. Brute-force attackers can discover the initial seed value for the PRNG. Therefore, PRNG is weaker than TRNG, but Stealth uses PRNG to secure the communication and proves that it is much harder for brute-force attackers even if Stealth uses PRNG. The necessary conditions of PRNG to be used in Stealth are as follows-

- The PRNG should take input of initial key, seed value and the bit sizes.
- The PRNG should be able to reproduce same random number for the same initial key, the same seed value and the same bit sizes.
- The produced bit pattern should be highly unpredictable and does not follow any kind of patterns.

The PRNG must fulfill those above mentioned necessary conditions. Otherwise, it is not possible to produce high-quality random numbers. Also, it cannot produce the same private keys for \mathbb{A} and \mathbb{B} . Moreover, PRNG should not depend on non-reproducible parameters such as CPU Clock value. Similar to TRNG, our proposed PRNG is the first variant of pseudo-random number generator that utilizes string hash function. The string hash function is used to mix the bits [11].

Algorithm 2 Stealth-PRNG for generating the pseudo-random numbers.

```
1: procedure GENSTEALTHPRNG(SK, seed, \beta)
3:
         seed_1 \leftarrow seed
4:
         seed_2 \leftarrow seed \oplus Prime\ number
5:
         while i < (\beta - 1) do
                                                                        \triangleright \beta is the required bit length
6:
              l \leftarrow \text{Length}(\mathcal{SK})
7:
              N_1 \leftarrow \text{HASSHFUN}(\mathcal{SK}, l, seed_1)
8:
              N_2 \leftarrow \text{HASSHFUN}(\mathcal{SK}, l, seed_2)
9:
              seed_1 \leftarrow N_2
10:
               seed_2 \leftarrow N_1
               key \leftarrow N_1 \oplus N_2
               SK \leftarrow \text{CONVERTINTOSTRING}(key)
13:
               Bin[i] \leftarrow P \wedge 1
14:
               i \leftarrow i + 1
15:
          end while
16:
          Bin[i] \leftarrow 1
                                             ▶ Producing odd number by padding 1 at the end.
         return Bin
18: end procedure
```

Algorithm 2 is a PRNG to generate highly unpredictable bits or numbers for Stealth. The GENSTEALTHPRNG() uses an input key, an initial seed value, and the bit sizes. Algorithm 2 can produce the same output for the same input parameters. It requires to produce the same private keys by both sender and receiver. Algorithm 2 is based on hash functions that mix bits and produce unpredictable bits. The GENSTEALTHPRNG() extract the least significant bit (LSB) and stores it in a binary array. Moreover, the input key SK changes in each iteration in the Algorithm 2. Here, the seed values are also changed in each iteration. Therefore, it produces highly unpredictable LSB (either 0 or 1). The hash functions mix the bits, and the function GENSTEALTHPRNG() uses murmur non-cryptographic string hash function [11]. The algorithms iterate β times, and thus, its time complexity is $O(\beta \times l)$ where β is the bit size, and l is the length of the string. The length of the string l is constant, and therefore, the total time complexity is $O(\beta)$. Moreover, the bit size β is approximately 128 to 1024 bits. Therefore, we can rewrite the time complexity as $O(\beta) \approx O(1)$.

C. Communication Protocol

Table II demonstrates the secure communication between \mathbb{A} and \mathbb{B} . Initially, \mathbb{A} and \mathbb{B} establishes a connection. Let us consider, \mathbb{A} would like to send a message \mathcal{M} to \mathbb{B} , and thus, the connection is established through public key cryptography. Therefore, \mathbb{A} and \mathbb{B} can compute shared secret keys using Diffie-Hellman cryptography. Let us denote \mathcal{PK} be the private key and $t^{\mathcal{A}}$ be the logical timestamp of A. The A computes \mathcal{PK}_1 = GENSTEALTHPRNG($\mathcal{SK}_1, \mathcal{SK}_4, \beta$), \mathcal{PK}_2 GENSTEALTHPRNG($\mathcal{SK}_2, \mathcal{SK}_4, \beta$), GENSTEALTHPRNG($\mathcal{SK}_3, \mathcal{SK}_4, \beta$), $\mathcal{PK}_4 =$ GENSTEALTHPRNG($\mathcal{PK}_1, \mathcal{PK}_2, \beta$), $\mathbb{M}_1 = \mathcal{M}_1 \oplus \mathcal{PK}_2$, $\mathbb{M}_1^m = \mathbb{M}_1 \oplus \mathcal{PK}_3$, and $\mathbb{M}_1^{cm} = Enc^{\mathcal{PK}_1}(\mathbb{M}_1^m)$. The A sends the cipher $(\mathbb{M}_1^{cm}, t_1^{\mathcal{A}})$ to \mathbb{B} . \mathbb{B} receives $(\mathbb{M}_1^{cm}, t_1^{\mathcal{A}})$ from \mathbb{A} . The \mathbb{B} computes $\mathcal{PK}_1 = \text{GENSTEALTHPRNG}(\mathcal{SK}_1, \mathcal{SK}_4, \beta)$, \mathcal{PK}_2 GENSTEALTHPRNG($\mathcal{SK}_2, \mathcal{SK}_4, \beta$), GENSTEALTHPRNG($\mathcal{SK}_3, \mathcal{SK}_4, \beta$), \mathcal{PK}_4 GENSTEALTHPRNG($\mathcal{PK}_1, \mathcal{PK}_2, \beta$), $\mathbb{M}_1^m = Dec^{\mathcal{PK}_1}(\mathbb{M}_1^{cm})$. $\mathbb{M}_1 = \mathbb{M}_1^m \oplus \mathcal{PK}_3$, and retrieves original message $\mathcal{M}_1 = \mathbb{M}_1 \oplus \mathcal{PK}_2$. Stealth uses AES symmetric cryptography

TABLE II COMMUNICATION MECHANISM BETWEEN $\mathbb A$ and $\mathbb B$. $\mathbb B$ receives all messages in order.

A	\blacksquare
$\mathcal{PK}_1 = \text{GENSTEALTHPRNG}(\mathcal{SK}_1, \mathcal{SK}_4, \beta)$	
$\mathcal{PK}_2 = \text{GENSTEALTHPRNG}(\mathcal{SK}_2, \mathcal{SK}_4, \beta)$	
$\mathcal{PK}_3 = \text{GENSTEALTHPRNG}(\mathcal{SK}_3, \mathcal{SK}_4, \beta)$	
$\mathcal{PK}_4 = \text{GENSTEALTHPRNG}(\mathcal{PK}_1, \mathcal{PK}_2, \beta)$	
$\mathbb{M}_1 = \mathcal{M}_1 \oplus \mathcal{PK}_2, \mathbb{M}_1^m = \mathbb{M}_1 \oplus \mathcal{PK}_3, \mathbb{M}_1^{cm} = Enc^{\mathcal{PK}_1}(\mathbb{M}_1^m)$	
Send $(\mathbb{M}_1^{cm}, t_1^{\mathcal{A}})$ to \mathbb{B}	
	Receives $(\mathbb{M}_1^{cm}, t_1^{\mathcal{A}})$ from \mathbb{A}
	$\mathcal{PK}_1 = \text{GENSTEALTHPRNG}(\mathcal{SK}_1, \mathcal{SK}_4, \beta)$
	$\mathcal{PK}_2 = \text{GENSTEALTHPRNG}(\mathcal{SK}_2, \mathcal{SK}_4, \beta)$
	$\mathcal{PK}_3 = \text{GENSTEALTHPRNG}(\mathcal{SK}_3, \mathcal{SK}_4, \beta)$
	$\mathcal{PK}_4 = \text{GENSTEALTHPRNG}(\mathcal{PK}_1, \mathcal{PK}_2, \beta)$
	$\mathbb{M}_1^m = Dec^{\mathcal{PK}_1}(\mathbb{M}_1^{cm}), \mathbb{M}_1 = \mathbb{M}_1^m \oplus \mathcal{PK}_3, \mathcal{M}_1 = \mathbb{M}_1 \oplus \mathcal{PK}_2$
$\mathcal{PK}_5 = \text{GENSTEALTHPRNG}(\mathcal{PK}_1, \mathcal{PK}_4, \beta)$	
$\mathcal{PK}_6 = \text{GENSTEALTHPRNG}(\mathcal{PK}_2, \mathcal{PK}_4, \beta)$	
$\mathcal{PK}_7 = \text{GENSTEALTHPRNG}(\mathcal{PK}_3, \mathcal{PK}_4, \beta)$	
$\mathcal{PK}_8 = \text{GENSTEALTHPRNG}(\mathcal{PK}_5, \mathcal{PK}_6, \beta)$	
$\mathbb{M}_2 = \mathcal{M}_2 \oplus \mathcal{PK}_6, \mathbb{M}_2^m = \mathbb{M}_1 \oplus \mathcal{PK}_7, \mathbb{M}_2^{cm} = Enc^{\mathcal{PK}_5}(\mathbb{M}_2^m)$	
Send $(\mathbb{M}_2^{cm}, t_2^{\mathcal{A}})$ to \mathbb{B}	
	Receives $(\mathbb{M}_2^{cm}, t_2^{\mathcal{A}})$ from \mathbb{A}
	$\mathcal{PK}_{5} = \text{GENSTEALTHPRNG}(\mathcal{PK}_{1}, \mathcal{PK}_{4}, \beta)$
	$\mathcal{PK}_{6} = \text{GENSTEALTHPRNG}(\mathcal{PK}_{2}, \mathcal{PK}_{4}, \beta)$
	$\mathcal{PK}_7 = \text{GENSTEALTHPRNG}(\mathcal{PK}_3, \mathcal{PK}_4, \beta)$
	$\mathcal{PK}_8 = \text{GENSTEALTHPRNG}(\mathcal{PK}_5, \mathcal{PK}_6, \beta)$
	$\mathbb{M}_2^m = Dec^{\mathcal{PK}_5}(\mathbb{M}_2^{cm}), \mathbb{M}_2 = \mathbb{M}_2^m \oplus \mathcal{PK}_7, \mathcal{M}_2 = \mathbb{M}_2 \oplus \mathcal{PK}_6$
	2 // 2 // 2 2 0 / 10 // 1

(block cipher) for encryption and decryption [12]. The secret keys \mathcal{PK}_1 , \mathcal{PK}_2 , and \mathcal{PK}_3 strengthen the symmetric key encryption. The generated secret key \mathcal{PK}_1 is used as a private key for encryption. Similarly, \mathcal{PK}_2 , and \mathcal{PK}_3 are used as a mixer for mixing a block of the message and produces cipher. The mixing operation has to be performed before the encryption. It creates a cipher before encryption by the AES method. Therefore, to send the second block of message, A computes \mathcal{PK}_5 GENSTEALTHPRNG($\mathcal{PK}_1, \mathcal{PK}_4, \beta$), \mathcal{PK}_6 GENSTEALTHPRNG($\mathcal{PK}_2, \mathcal{PK}_4, \beta$), \mathcal{PK}_7 GENSTEALTHPRNG($\mathcal{PK}_3, \mathcal{PK}_4, \beta$), \mathcal{PK}_8 GENSTEALTHPRNG($\mathcal{PK}_5, \mathcal{PK}_6, \beta$), $\mathbb{M}_2 = \mathcal{M}_2 \oplus \mathcal{PK}_6$, $\mathbb{M}_2^m = \mathbb{M}_1 \oplus \mathcal{PK}_7, \ \mathbb{M}_2^{cm} = Enc^{\mathcal{PK}_5}(\mathbb{M}_2^m), \text{ and sends}$ $(\mathbb{M}_2^{cm}, t_2^{\mathcal{A}})$ to \mathbb{B} . The \mathbb{B} receives $(\mathbb{M}_2^{cm}, t_2^{\mathcal{A}})$ from \mathbb{A} and computes \mathcal{PK}_5 = GENSTEALTHPRNG($\mathcal{PK}_1, \mathcal{PK}_4, \beta$), \mathcal{PK}_{6} GENSTEALTHPRNG($\mathcal{PK}_2, \mathcal{PK}_4, \beta$), = GENSTEALTHPRNG($\mathcal{PK}_3, \mathcal{PK}_4, \beta$), \mathcal{PK}_8 = GENSTEALTHPRNG($\mathcal{PK}_5, \mathcal{PK}_6, \beta$), $\mathbb{M}_2^m = Dec^{\mathcal{PK}_5}(\mathbb{M}_2^{cm})$, $\mathbb{M}_2 = \mathbb{M}_2^m \oplus \mathcal{PK}_7$, and retrieve the original block of the message $\mathcal{M}_2 = \mathbb{M}_2 \oplus \mathcal{PK}_6$. It shows that the private keys are not fixed, and it changes in each communication.

D. Shared Secret Key

Stealth uses Diffie-Hellman cryptography to compute shared secret keys. Stealth requires four secret keys, and these secret keys are computed to generate private keys for communication or data exchanging. The secret key \mathcal{SK}_1 , \mathcal{SK}_2 , \mathcal{SK}_3 and \mathcal{SK}_4 are shared using Diffie-Hellman algorithm. Also, these secret key \mathcal{SK}_1 , \mathcal{SK}_2 , and \mathcal{SK}_3 are used to generate initial private keys. However, the secret key \mathcal{SK}_4 is used as the initial seed value for the PRNG. In addition, the generated private keys are used to generate other private keys for next communication. This process continues to complete the communication.

E. Private Key

The secret keys are generated using the Diffie-Hellman algorithm. These secret keys are used to generate initial private keys \mathcal{PK}_1 , \mathcal{PK}_2 , \mathcal{PK}_3 , and \mathcal{PK}_4 which are generated using the four secret keys. However, \mathcal{PK}_4 is generated using two private keys (\mathcal{PK}_1 and \mathcal{PK}_2). The secret key \mathcal{SK}_4 is replaced by \mathcal{PK}_4 . Stealth uses these private keys to encrypt or decrypt the first block of the message. For second block of the message, the private keys \mathcal{PK}_5 , \mathcal{PK}_6 and \mathcal{PK}_7 are generated using \mathcal{PK}_1 , \mathcal{PK}_2 , and \mathcal{PK}_3 , respectively. The \mathcal{PK}_4 is used as a seed value to generate the private keys \mathcal{PK}_5 , \mathcal{PK}_6 and \mathcal{PK}_7 . The seed value \mathcal{PK}_8 is calculated using \mathcal{PK}_5 and \mathcal{PK}_6 to use as a seed value for the third block of the message. Thirdly, the private key \mathcal{PK}_9 , \mathcal{PK}_{10} , and \mathcal{PK}_{11} are calculated using \mathcal{PK}_5 , \mathcal{PK}_6 and \mathcal{PK}_7 , respectively. The \mathcal{PK}_{12} is calculated using \mathcal{PK}_9 and \mathcal{PK}_{10} to use as a seed value for the fourth block of the message and so on.

III. ANALYSIS

Stealth is designed to provide higher security than conventional security systems in symmetric communication. It ensures security in each communication by providing an extra coating to the message. Stealth requires three private keys to be computed for a single communication and a seed value (also a private key). The private keys are changed at each communication. Also, the seed value is changed in each communication. This changing nature is unpredictable in each communication. The Diffie-Hellman algorithm's strength lies in random number generators. The true random number generator generates unpredictable bit patterns and cannot reproduce it by anyone. Therefore, Stealth uses true random number generator to generate the randomly chosen number for Diffie-Hellman. The pseudo-random number generator generates a truly random number based on initial inputs. It is used to

create the private keys because the private keys change in each communication. Stealth is applicable in block cipher but not stream cipher.

A. Shared Secret Key

The sharing of a secret key is fully dependent on the Diffie-Hellman key exchange algorithm in our proposed algorithm. Stealth requires four secret keys to be computed for sharing between two parties. In Stealth, the secret keys are not used to encrypt the message. However, these secret keys are used to generate private keys of the first communication, i.e., first block, and a seed value for the next communication. After the first communication, shared secret keys are not required. Initially, Diffie-Hellman algorithm choose a random number, and therefore, Stealth requires eight random numbers, namely, A chooses a, b, c and d, and \mathbb{B} chooses w, x, y, and z. The strength of the Diffie-Hellman lies within these random numbers. Therefore, Stealth uses a true random number generator to generate these random numbers. It is difficult to guess these random numbers by adversaries if these random numbers are generated using a true random number generator. True random number generator produces the bit patterns in the unpredictable sequence, and thus, attackers are unable to guess the exact number.

Theorem 1. The probability of getting the four shared secret keys of Stealth by an attacker is $\frac{1}{16^{\beta}}$ where β is the bit size of the keys.

Proof. Diffie-Hellman uses a single random number where the guessing probability of a particular random number is $\frac{1}{2^{\beta}}$ where the β is the bit size of the random number. The probability of not getting the exact random number is $(1-\frac{1}{2^{\beta}})$. For instance, $\beta=32$, then the probability of not getting the random number is $(1-\frac{1}{2^{32}}\approx 1)$ which means it is not easy for a conventional computer to break the security. However, it requires a powerful computing resources to break, and it also takes a huge time. Stealth uses four such random numbers, and these random numbers are independent events. Let, Pr(a), Pr(b), Pr(c), and Pr(d) be the guessing probability of a, b, c, and d, respectively. Generating the number a, b, c, and d are independent events. Therefore, the probability of guessing all random numbers is denoted in Equation (1).

$$Pr(a \cap b \cap c \cap d) = Pr(a) \cap Pr(b) \cap Pr(c) \cap Pr(d)$$

$$= \frac{1}{2^{\beta}} \times \frac{1}{2^{\beta}} \times \frac{1}{2^{\beta}} \times \frac{1}{2^{\beta}}$$

$$= \frac{1}{2^{4\beta}} = \frac{1}{16^{\beta}} \approx 0$$
(1)

In Stealth, it is not possible to get the same secret keys by the adversaries. Alternatively, this probability applies in guessing direct secret keys. Equation (1) state that the adversary requires all four shared secret keys to breach the security of Stealth, i.e., it implies that it is impossible to breach the security if β is large enough. For instance, the bit size of β may vary from 16 bits to 1024 bits or more, depending on the security requirements. Let us assume that an adversary is

able to get a shared secret key by any means, and it requires another more probability to overcome, as given in Equation (2).

$$Pr((a \cap b \cap c) \mid d) = Pr(a \cap b \cap c) = Pr(a) \ Pr(b) \ Pr(c)$$
$$= \frac{1}{2^{3\beta}} = \frac{1}{8^{\beta}} \approx 0$$
 (2)

Equation (2) demonstrates that even though a shared secret key is revealed, there is still probability of not getting other three shared secret keys and it is $1-\frac{1}{8^\beta}$. Thus, Stealth ensures high security in computing shared secret keys using Diffie-Hellman algorithm.

Corollary 1. The probability of not getting the four shared secret keys is $(1 - \frac{1}{16\beta}) \approx 1$.

B. Private Keys

The shared secret keys are the private keys in conventional symmetric cryptography, however, these are not the private keys in Stealth. The shared secret keys are used to generate the private keys for encryption and decryption, i.e., private-private cryptography. In this model, the private keys are not fixed, and it changes in each message. Moreover, a single private key is used in conventional communication, which is fixed. On the contrary, Stealth changes the private keys in each communication and uses four private keys. However, Stealth does not require any communication to generate these private keys after the first key exchange. The sender and receiver generates the same private keys without communication using a pseudo-random number generator.

Lemma 1. The probability of getting correct private keys for a single communication is $\frac{1}{16^{\beta}}$ where the β is the bit size of the private keys.

Proof. Theorem 1 has already proved that the probability of getting the correct shared secret keys which is $\frac{1}{16^{\beta}}$. Similarly, we can easily conclude that the probability of getting the correct private keys for communication is $\frac{1}{16^{\beta}}$. It is a probability of a single block of a message or a single communication between \mathbb{A} and \mathbb{B} . Let us assume that the adversary is able to get the shared secret keys, and thus, the probability of getting all the private keys is 1, because the adversary can easily generate the private keys. However, if we assume that the adversary cannot get the shared secret keys, getting the private keys directly from the first message is $\frac{1}{16^{\beta}}$. Therefore, the probability of getting the next private keys is 1 for the second block of message and onward because the adversary can efficiently compute the second set of the private keys from the first set of the private keys. Similarly, getting correct set of the private keys for the second message or communication without knowing the first message's private keys is $\frac{1}{16^{\beta}}$. Thus, the adversary can compute the next set of the private keys, and the probability of getting the third set of the private keys is 1. Likewise, the probability of getting the private keys of the last message/communication without knowing the previous private keys is also the same. Generating private keys for the

next event is not an independent event. Therefore, the wise way to attack Stealth is the first communication to capture entire communication. Thus, the total probability of getting entire private keys is restricted to $\frac{1}{16\beta}$.

Lemma 1 states that the probability of capturing entire message is $\frac{1}{16\beta}$. Then, why should Stealth change the private keys in each communication which introduces computation overhead? Let us assume that an adversary is able to get the correct private keys of a message with a probability of $\frac{1}{16\beta}$. Now, the adversary can get the entire set of the private keys for the next communication. It means that the adversary cannot read the previous messages. Even though a part of communication is broken, the other (previous) part of the communication is still secured.

Theorem 2. The probability of breaking m^{th} block of message and onward is $\frac{1}{16^{\beta}}((m-1)-\frac{1}{(16^{\beta}-1)})$.

Proof. The probability of breaking first block of message using private keys is $\frac{1}{16\beta}$ and the breaking probability of remaining message is 1. Therefore, the total probability to break the first block of message is $\frac{1}{16\beta}(1-1)=0$. For the second block of message, the probability of breaking the message is $\frac{1}{16\beta}$ and not able to break the first block of message is $(1-\frac{1}{16\beta})$. Therefore, the total probability of breaking is $\frac{1}{16\beta}(1-\frac{1}{16\beta})$. For the third block of message, the probability of breaking the message is $\frac{1}{16\beta}$ and the not able to break the previous messages is $(1-\frac{1}{16^{2\beta}})$. Therefore, the total probability of breaking the message at the third block and onward is $\frac{1}{16\beta}(1-\frac{1}{16^{2\beta}})$. Similarly, the probability of breaking the fourth block of message is $\frac{1}{16\beta}$ and the probability of not able to break the previous block of messages is $(1-\frac{1}{16\beta})$. The total probability of breaking the block of message is $\frac{1}{16\beta}$ and the probability of not able to break the previous block of messages is $(1-\frac{1}{16(m-1)\beta})$. The total probability at the last block of message is $\frac{1}{16\beta}(1-\frac{1}{16(m-1)\beta})$. The total probability at the last block of message is $\frac{1}{16\beta}(1-\frac{1}{16(m-1)\beta})$. Summing up all the total probability, it gives us

$$\begin{split} \mathbb{TP} &= \frac{1}{16^{\beta}} (1-1) + \frac{1}{16^{\beta}} (1 - \frac{1}{16^{\beta}}) + \frac{1}{16^{\beta}} (1 - \frac{1}{16^{2\beta}}) + \\ &\frac{1}{16^{\beta}} (1 - \frac{1}{16^{3\beta}}) + \ldots + \frac{1}{16^{\beta}} (1 - \frac{1}{16^{(m-1)\beta}}) \\ &= \frac{1}{16^{\beta}} ((1-1) + (1 - \frac{1}{16^{\beta}}) + (1 - \frac{1}{16^{2\beta}}) \\ &+ (1 - \frac{1}{16^{3\beta}}) + \ldots + (1 - \frac{1}{16^{(m-1)\beta}})) \\ &= \frac{1}{16^{\beta}} ((m-1) - (\frac{1}{16^{\beta}} + \frac{1}{16^{2\beta}} + \frac{1}{16^{3\beta}} + \cdots + \frac{1}{16^{(m-1)\beta}}) \\ &= \frac{1}{16^{\beta}} ((m-1) - (\frac{1}{16^{\beta}} + \frac{1}{16^{2\beta}} + \frac{1}{16^{3\beta}} + \cdots + \infty)) \\ &= \frac{1}{16^{\beta}} ((m-1) - \frac{1}{(16^{\beta} - 1)}) \end{split}$$

Theorem 3. The probability of being able to capture the entire communication by the attacker without knowing the keys is $\left(\frac{1}{8^{\beta}}\right)^m$ where m is the number of communication.

Proof. Let us assume that an attacker is able to attack a particular block without knowing the private keys, and the probability is $\frac{1}{2^{3\beta}}$, but it does not mean that the attackers can also decrypt the next block. Therefore, the probability of breaking the second block is $\frac{1}{8^{\beta}}$, and so on. Similarly, the probability of breaking the last block of the message is also the same. These events are independent of each other because the communication is broken without knowing the private keys. Therefore, the total probability of breaking the entire communication is given in Equation (4).

$$Pr(\mathcal{M}_1 \cap \mathcal{M}_2 \cap \dots \mathcal{M}_m) = Pr(\mathcal{M}_1) \ Pr(\mathcal{M}_2)$$

$$Pr(\mathcal{M}_3) \dots Pr(\mathcal{M}_m)$$

$$= \frac{1}{8^{\beta}} \times \frac{1}{8^{\beta}} \times \frac{1}{8^{\beta}} \times \dots \times \frac{1}{8^{\beta}} = \left(\frac{1}{8^{\beta}}\right)^m \approx 0$$
(4)

Therefore, Stealth provides tight coating of messages' block.

Corollary 2. The probability of not being able to capture entire communication by the attacker without knowing the keys is $1 - \left(\frac{1}{8^{\beta}}\right)^m \approx 1$.

Equation (4) shows that the attackers cannot easily break the entire communication. The bit size β is 128, 256, or 512 in modern practices. Thus, the probability of capturing entire communication using such kind of attack is almost zero. Therefore, the attacker should attack the first block of communication to get the four private keys or the Diffie-Hellman algorithm.

C. Communication and Computation overhead

Stealth maintains the Diffie-Hellman communication protocol and introduces no communication overheads. But there is computation overhead in encryption/decryption. Initially, Stealth computes eight prime numbers, four random numbers. It also performs extra costly operations. Therefore, it is slower than the Diffie-Hellman algorithm to compute shared secret keys. Moreover, the sender or receiver computes private keys in each communication. This process incurs computational overhead. Apparently, the security cannot be compromised at any cost, and thus, these extra computational costs are justifiable.

D. Attacks

 $=\frac{1}{16^{\beta}}((m-1)-(\frac{1}{16^{\beta}}+\frac{1}{16^{2\beta}}+\frac{1}{16^{3\beta}}+\cdots+\frac{1}{16^{(m-1)\beta}}) \stackrel{\text{The bitwise XOR has interesting properties, and Stealth}}{\exp \text{loits these properties.}} \times \text{XOR produces zero for same values,}$ $=\frac{1}{16^{\beta}}((m-1)-(\frac{1}{16^{\beta}}+\frac{1}{16^{2\beta}}+\frac{1}{16^{3\beta}}+\cdots+\infty)) \qquad \text{for instance, } \mathcal{C}\oplus\mathcal{C}=0. \text{ Stealth uses XOR to create a cipher.}$ $=\frac{1}{16^{\beta}}((m-1)-\frac{1}{(16^{\beta}-1)}) \qquad \text{for instance, } \mathcal{C}\oplus\mathcal{C}=0. \text{ Stealth uses XOR to create a cipher.}$ $\text{Let, } \mathcal{C}_1 \text{ be the plaintext, and } \mathcal{C}_2 \text{ and } \mathcal{C}_3 \text{ be the key. Let,}$ $\zeta=\mathcal{C}_1\oplus\mathcal{C}_2\oplus\mathcal{C}_3. \text{ It requires two keys to retrieve any one key from } \zeta. \text{ For example, } \mathcal{C}_1=\zeta\oplus\mathcal{C}_2\oplus\mathbb{C}_3, \mathcal{C}_2=\zeta\oplus\mathcal{C}_1\oplus\mathbb{C}_3$ $\text{(3)} \qquad \text{or } \mathcal{C}_3=\zeta\oplus\mathcal{C}_1\oplus\mathbb{C}_2. \text{ It is highly vulnerable for cryptanalyst in one-keyed XOR-cipher. For instance, } \zeta=\mathcal{C}_1\oplus\mathcal{C}_2. \text{ The}$ \Box $\zeta \text{ can be attacked by known-plaintext, chosen-plaintext by}$

cryptanalyst, or frequency analysis. Therefore, three or more keyed XOR operations create difficulties for a cryptanalyst to decode the original message. Therefore, private keys can be increased from four to five for tighter security. However, it can create all ones or zero if many keys are XORed.

Brute-force attackers attack the encrypted code by an exhaustive search method. It is not impossible to attack any encrypted code, however, it takes many years to decode. Let us assume that an attacker is able to decrypt a code in Stealth using an exhaustive search. However, the attacker requires two extra keys to decode the code. Brute-force attackers need to break the first encryption and retrieved the cipher. Again, the attacker requires two other keys to decipher the coded message. Therefore, brute-force attack does not work on Stealth.

Cryptanalyst uses analysis of an encrypted code and discovers the patterns. There are many types of possible cryptanalysis, particularly the known-plaintext attack (KPA), chosen-plaintext attack (CPA) and chosen ciphertext attack (CCA), differential cryptanalysis (DCA), and linear cryptanalysis. For instance, a one-keyed XOR cipher is easy for deciphering by the cryptanalyst. However, Stealth uses a proven existing encryption method and extra XOR operations. Even if the adversaries break the encryption, the encrypted code is still secure due to additional XOR operation. Additionally, it requires two keys to decipher the encrypted code. Moreover, Stealth changes its keys in each block. Therefore, this cryptanalysis attack does not apply in Stealth.

The dictionary attack is famous attacks in password guessing systems where attacker builds a dictionary of possible words to capture the communication. Stealth convert the plaintext into cipher text, then the converted ciphertext into encrypted text. Moreover, it changes private keys for encryption. Therefore, it is not possible to build a dictionary to reveal the original messages by the attackers.

IV. EXPERIMENTAL RESULTS

We have evaluated Algorithm 1 and Algorithm 2 for Stealth-TRNG and Stealth-PRNG, respectively, in Ubuntu Desktop environment. We have generated 10M bits to be tested in NIST SP 800-22 [13], [14]. We have used "5483651" as an input key, two seed values (98899, 104723), and a bit size of 10M for Algorithm 2. The input key can be any number or string. However, Algorithm 1 is not reproducible due to true random number and CPU Clock values.

Table III and Table IV demonstrate the P-values and the success rate of random number testing on NIST SP 800-22 [13], [14] for Algorithm 1 and Algorithm 2, respectively. NIST SP 800-22 provides statistical testing of the randomness of given bits. We have generated 10M random bits and tested them using NIST SP 800-22 test. It provides approximate entropy, frequency, block frequency, cumulative sums, runs, longest runs, rank, FFT, non-overlapping template, overlapping template, random excursions, random excursions variant, serial, linear complexity, and universal testing for bits' randomness. The deciding factor of P-value is ≥ 0.01, otherwise, the

given bits are not random. It may contain certain patterns that can easily be identified and discover the generated numbers' pattern by adversaries. Table III and Table IV shows the corresponding P-values, and it shows quite satisfactory results on the randomness test for the generated bits by Algorithm 1 and Algorithm 2, respectively. The minimum success rate of Algorithm 1 is 0.96875, 0.96875 and 0.984375 for 32 bits, 64 bits, and 128 bits streams, respectively. The maximum success rate of Algorithm 1 is 1 for all bit streams. The lowest Pvalue of Algorithm 1 are 0.035174, 0.012043, 0.017912 in 32 bits, 64 bits, and 128 bits streams, respectively. The highest P-values are 0.976060, 0.991468 and 0.941144 in 32 bits, 64 bits, and 128 bits streams respectively. Also, Algorithm 2 test's success rates are as low as 0.96875, 0.96875, and 0.9765625 in 32 bits, 64 bits, and 128 bits streams, respectively. The highest success rate is 1 (100%) for all bit streams. The lowest P-values of 32 bits, 64 bits, and 128 bits streams are 0.016990, 0.213309, and 0.066882, respectively. The highest P-values of 32 bits, 64 bits, and 128 bits streams are 0.991468, 0.995711, and 0.941144, respectively.

V. CONCLUSIONS

In this paper, we have demonstrated secured symmetric communication between two endpoints, called Stealth. Stealth provides dynamic security in symmetric communication. It neither replaces any existing methodology of key exchange protocol nor encryption method but it creates another security layer to protect from various kinds of attacks. Also, Stealth is not designed to deal with DDoS attacks and MITM. Stealth creates a secure coating on a raw message for communication. Initially, it depends on Diffie-Hellman algorithms to compute the shared secret keys. These shared secret keys are altered for the blocks of the message to communicate. Stealth uses existing version of AES cryptography. Stealth creates another layer to provide tight security for secured symmetric communication. However, it adds additional computational overhead to the system, but security is intact. We have also demonstrated PRNG and TRNG for Stealth, called Stealth-PRNG and Stealth-TRNG, which provides a truly random number to protect from various attackers. Both Stealth-PRNG and Stealth-TRNG are tested in NIST SP 800-22 for randomness and are able to pass all the 15 statistical testings for randomness. We have also compared Stealth-PRNG and Stealth-TRNG with state-of-the-art random number generators, and are able to outperform the existing algorithm in randomness. In addition, we have also explored security measurement mathematically. The probability of getting correct shared secret key is $\frac{1}{16^{\beta}}$ and getting the correct private key is $\frac{1}{16^{\beta}}$. Also, the probability of getting all the correct messages or seize the entire communication without knowing the keys is $(\frac{1}{8\beta})^m$ for m blocks of a message in communication, for instance, block cipher. The patterns of the blocks of a message cannot be revealed at any cost due to the different private keys in each communication, which protects from the cryptanalysis attacks.

TABLE III P-values and success rates of Algorithms 1 for 32 bits, 64 bits, and 128 bits in NIST SP 800-22.

Test name	32 bits		64 bits		128 bits	
	P-value	Pass rate	P-value	Pass rate	P-value	Pass rate
Approximate Entropy	0.468595	31/32	0.350485	64/64	0.875539	128/128
Frequency	0.468595	31/32	0.911413	62/64	0.739918	127/128
Block Frequency	0.122325	32/32	0.100508	64/64	0.723129	126/128
Cumulative sums	0.178278,	32/32,	0.012043,	62/64,	0.350485,	128/128,
	0.407091	32/32	0.162606	62/64	0.654467	127/128
Runs	0.253551	31/32	0.035174	64/64	0.134686	127/128
Longest runs	0.739918	31/32	0.378138	61/64	0.585209	127/128
Rank	0.739918	32/32	0.671779	64/64	0.015065	128/128
FFT	0.035174	32/32	0.324180	64/64	0.422034	127/128
Non-overlapping Template	0.976060	32/32	0.991468	64/64	0.941144	128/128
Overlapping Template	0.468595	31/32	0.500934	61/64	0.452799	128/128
Random Excursions	0.437274	11/11	0.834308	15/15	0.739918	12/12
Random Excursions Variant	0.834308	11/11	0.637119	15/15	0.911413	12/12
Serial	0.671779,	32/32,	0.378138,	64/64,	0.017912,	127/128,
	0.804337	32/32	0.637119	64/64	0.517442	128/128
Linear complexity	0.407091	32/32	0.195163	64/64	0.772760	127/128
Universal	0.534146	31/32	0.148094	64/64	0.407091	127/128

TABLE IV
COMPARISON OF ALGORITHMS 2 FOR 32 BITS, 64 BITS, AND 128 BITS IN NIST SP 800-22.

Test name	32 bits		64 bits		128 bits	
	P-value	Pass rate	P-value	Pass rate	P-value	Pass rate
Approximate Entropy	0.016990	32/32	0.468595	62/64	0.788728	127/128
Frequency	0.949602	31/32	0.931952	63/64	0.337162	127/128
Block Frequency	0.949602	31/32	0.299251	63/64	0.392456	127/128
Cumulative sums	0.468595,	31/32,	0.232760,	63/64,	0.324180,	126/128,
	0.035174	31/32	0.602458	63/64	0.128379	126/128
Runs	0.671779	31/32	0.213309	64/64	0.834308	128/128
Longest runs	0.253551	31/32	0.862344	64/64	0.110952	126/128
Rank	0.534146	32/32	0.500934	64/64	0.066882	128/128
FFT	0.407091	32/32	0.671779	64/64	0.100508	128/128
Non-overlapping Template	0.991468	32/32	0.995711	64/64	0.941144	128/128
Overlapping Template	0.468595	31/32	0.378138	63/64	0.253551	128/128
Random Excursions	0.637119	13/13	0.739918	12/12	0.162606	15/15
Random Excursions Variant	0.437274	13/13	0.739918	12/12	0.637119	15/15
Serial	0.350485,	32/32,	0.911413,	62/64,	0.819544,	127/128,
	0.804337	32/32	0.949602	63/64	0.517442	128/128
Linear complexity	0.213309	32/32	0.350485	64/64	0.311542	125/128
Universal	0.100508	32/32	0.804337	63/64	0.484646	126/128

REFERENCES

- [1] W. Diffie and M. Hellman, "New directions in cryptography," *IEEE Transactions on Information Theory*, vol. 22, no. 6, pp. 644–654, 1976.
- [2] J. Black and H. Urtubia, "Side-channel attacks on symmetric encryption schemes: The case for authenticated encryption." in *USENIX Security* Symposium, 2002, pp. 327–338.
- [3] R. Patgiri, "Whisper: A curious case of valid and employed mallory in cloud computing," in 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), 2021, pp. 133–138.
- [4] R. Patgiri, "Rando: A general-purpose true random number generator for conventional computers," in 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2021, pp. 107–113.
- [5] M. Alcin, I. Koyuncu, M. Tuna, M. Varan, and I. Pehlivan, "A novel high speed artificial neural network–based chaotic true random number generator on field programmable gate array," *International Journal of Circuit Theory and Applications*, vol. 47, no. 3, pp. 365–378, 2019.
- [6] X. Lin, S. Wang, Z.-O. Yin, G.-J. Fan-Yuan, R. Wang, W. Chen, D.-Y. He, Z. Zhou, G.-C. Guo, and Z.-F. Han, "Security analysis and improvement of source independent quantum random number generators with imperfect devices," npj Quantum Information, vol. 6, no. 1, pp. 1–8, 2020.
- [7] H. Jiang, D. Belkin, S. E. Savel'ev, S. Lin, Z. Wang, Y. Li, S. Joshi, R. Midya, C. Li, M. Rao, M. Barnell, Q. Wu, J. J. Yang, and Q. Xia, "A novel true random number generator based on a stochastic diffusive memristor," *Nature Communications*, vol. 8, no. 1, pp. 1–9, 2017.

- [8] A. T. Erozan, G. Y. Wang, R. Bishnoi, J. Aghassi-Hagmann, and M. B. Tahoori, "A compact low-voltage true random number generator based on inkjet printing technology," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 28, no. 6, pp. 1485–1495, 2020.
- [9] K. Lee, S. Lee, C. Seo, and K. Yim, "Trng (true random number generator) method using visible spectrum for secure communication on 5g network," *IEEE Access*, vol. 6, pp. 12838–12847, 2018.
- [10] W.-Z. Yeoh, J. S. Teh, and H. R. Chern, "A parallelizable chaos-based true random number generator based on mobile device cameras for the android platform," *Multimedia Tools and Applications*, vol. 78, no. 12, pp. 15929–15949, 2019.
- [11] A. Appleby, "Murmurhash," Retrieved on December 2020 from https://sites.google.com/site/murmurhash/, 2008.
- [12] J. Daemen and V. Rijmen, "Aes proposal: Rijndael," 1999.
- [13] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, "A statistical test suite for random and pseudorandom number generators for cryptographic applications," Booz-allen and hamilton inc mclean va, Tech. Rep., 2001. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
- [14] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks et al., SP 800-22 rev. 1a. a statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards & Technology, 2010. [Online]. Available: https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final