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Abstract

In recent years, leakage-resilient cryptography—the design of cryptographic protocols re-
silient to bounded leakage of honest players’ secrets—has received significant attention. A major
limitation of known provably-secure constructions (based on polynomial hardness assumptions)
is that they require the secrets to have sufficient actual (i.e., information-theoretic), as opposed
to computational, min-entropy even after the leakage.

In this work, we present barriers to provably-secure constructions beyond the “information-
theoretic barrier”: Assume the existence of collision-resistant hash functions. Then, no NP
search problem with (2n

ε

)-bounded number of witnesses can be proven (even worst-case) hard
in the presence of O(nε) bits of computationally-efficient leakage of the witness, using a black-box
reduction to any O(1)-round assumption. In particular, this implies that O(nε)-leakage resilient
injective one-way functions, and more generally, one-way functions with at most 2n

ε

pre-images,
cannot be based on any “standard” complexity assumption using a black-box reduction.
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1 Introduction

Modern Cryptography relies on the principle that cryptographic schemes are proven secure based
on mathematically precise assumptions; these can be general—such as the existence of one-way
functions—or specific—such as the hardness of factoring products of large primes. The security
proof is a reduction that transforms any attacker A of the scheme into a machine that breaks the
underlying assumption (e.g., inverts an alleged one-way function). This study has been extremely
successful, and during the past three decades many cryptographic tasks have been put under
rigorous treatment and numerous constructions realizing these tasks have been proposed under
a number of well-studied complexity-theoretic hardness assumptions. In this work, we focus on
black-box (a.k.a. Turing) reductions M that only use the presumed attacker A as a black-box.

Leakage-resilient Cryptography In recent years, leakage-resilient cryptography [ISW03, MR04,
DP08, AGV09]—the design of cryptographic protocols resilient to some forms of leakage of hon-
est players’secrets—has received significat attention. Our focus on one of the most popular and
simplest way of formalizing leakage resilience—the bounded leakage model [Mau92, AGV09]—
where the attacker may receive some bounded amount of leakage on the secret. For concrete-
ness, consider a one-way function f . We say that a one-way function is `(·)-leakage resilient
[Mau92, AGV09, KV09, ADW09] if no efficient attacker can invert y = f(x) for a randomly
sampled x even if it gets access to an oracle leakx(·) that on input a circuit C outputs C(x), as
long as the total amount of bits received from the oracle is bounded by `(|x|). We emphasize that
the attacker may repeatedly access the oracle and may adaptively select the leakage function based
on earlier leakage. access In other words, it should be hard to find a pre-image, even if you get
to see arbitrary efficiently computable but adaptively-selected “leakage” functions of a pre-image
x, as long as the total length of the leakage is bounded by `(|x|). Clearly, no one-way function f
can be leakage resilient to `(·)-leakage when `(n) = n, as this enables leaking the whole pre-image.
Yet, every one-way function f is `(·)-leakage resilient for `(n) = O(log n), as an efficient attacker
can simply guess the leakage with inverse polynomial probability.

The non-trivial problem is to construct cryptographic schemes that are polynomially (i.e.,
`(n) = nε for some ε > 0) or even linearly (i.e., `(n) = O(n)) leakage resilient. Of course, if we
assume that a one-way function f is subexponentially (resp. exponentially) secure, then the same
guessing argument suffices to conclude that f is polynomially (resp. linearly) leakage resilient.
More interestingly, as shown in [KV09, ADW09]1 any sufficiently compressing second-preimage re-
sistant hash function (which can be constructed from any (polynomially-secure) one-way function
[Rom90]) is also linearly leakage resilient.

It is instructive to recall their argument. Recall that a second-preimage resistant hash function
h is a function such that no efficient attacker can, given random i← {0, 1}p(n), x← {0, 1}n, find an
x′ 6= x such that h(i, x) = h(i, x′). Given a second-preimage resistant hash function h, consider the
function f(i, x) = i, h(i, x); we aim to show that f is a leakage resilient one-way function. Towards
this, assume for contradiction that there exists an efficient attacker A that, on input i, y = h(i, x)
and bounded leakage on x, manages to find a pre-image (i, x′). We can use this attacker to break the
second-preimage resistance property of h as follows: Given i, x, we run A(i, h(i, x)) and simulate the
answers to A’s leakage queries by computing the leakage function on x until A outputs an inverse
(i, x′). Now, if the number of pre-images to y = h(i, x) is sufficiently large—which is guaranteed
by the compressing property of h—a bounded number of bits of leakage does not suffice to even

1As far as we know, this was first observed by Ramarathan Venkatesan in 2005 (in personal communication).
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information-theoretically determine x and thus with high probability, x′ 6= x and A must have
found a “second” (different) preimage, thus breaking the second-preimage resistance property of h.

Leakage resilience beyond the information-theoretic barrier? Note that a central part
of the above argument (as well as arguments to analyze other cryptographic primitives in the
presence of leakage, based on the polynomial security of standard assumption), is that even after
the leakage queries, there is still sufficient min-entropy in the original secret (i.e., the input x). In
essence, the original input/secret x is information-theoretically unpredictable given the output of
the function and the leakage. A natural question is whether leakage resilience for secrets that are
only computationally hidden can be based on standard (polynomial) hardness assumptions. For
instance:

Can we base polynomial leakage resilience of an injective one-way function on “stan-
dard” complexity assumptions?

Note that for an injective one-way function f , the output of the function, y = f(x), fully determines
the secret x and thus there is no actual entropy in x (even before leakage). More generally, is it
possible to just slightly beat the “information-theoretic barrier”? We say that a function has B(·)-
bounded number of preimages if for every x ∈ {0, 1}n, there exists at most B(n) values x′ ∈ {0, 1}n
such that f(x′) = f(x). For a function f with B(n)-bounded number of preimages, (logB(·)) bits
of leakage is required to information-theoretically determine the input, so:

Can we base O(logB(·))-leakage resilience of a one-way function with B(·)-bounded
number of preimages on “standard” complexity assumptions?

Towards barriers for leakage resilience An elegant work by Wichs from 2013 [Wic13] presents
some initial barriers to affirmatively answering question 1. He shows that certain restricted types
of black-box reductions cannot be used to base polynomially leakage-resilient injective one-way
functions on any assumption that can be modelled as a security game between a challenger C
and a polynomial-time attacker (such as all standard cryptographic assumptions). The restriction
imposed by his result is that the black-box reduction does not get to access the code of the leakage
queries issues by the attacker, and can simply “run” the code as a black-box.

The idea behind his result is simple: Consider a black-box reduction M that, given any attacker
A that breaks polynomial leakage resilience of some injective one-way function f , breaks some
assumption C. Consider an (unbounded) attacker A that given an image y, issues a random oracle
leakage query H, and next upon getting a response z, inverts f on y to get a pre-image x and
returns x if and only if H(x) = z, and ⊥ otherwise. The point is that this attacker A is essentially
never useful to the reduction:

• If M does not query the random oracle on the actual (and unique by the injective property
of f) pre-image x, then with overwhelming probability, the answer z to the leakage query will
not satisfy the condition that H(x) = z (we here rely on the fact that H is a random oracle)
and thus A will answer ⊥;

• and if M queries H on x, it already knows the pre-image itself, and thus can perfectly emulate
the answer of A. So M never needs to use A and can break C on its own!

Let us point out, however, that the restriction to only allowing M to access the leakage query as
a black-box (which is what enables the ideal attacker A to issue random oracle leakage queries) is
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quite severe: it prevents us from distinguishing between computationally unbounded leakage (which
clearly is unrealistic) and computationally restricted classes of leakage, which more realistically
model “real-life” leakage. In fact, as demontrated in a beautiful work by Barak et al [BHHI10]
(see also [MPS16]), in the closely related context of key-dependent message (KDM) security, there
are non-trivial black-box reductions that (inherently) treat leakage queries in a non black-box way
to establish feasibility results for a-priori bounded polynomial-sized leakage. Thus, in light of the
above issue, even just question 1 remains largely open.

1.1 Our Results

In this work, assuming the existence of collision-resistant hash functions, we present strong barriers
to providing an affirmative answer to question 2 (and thus also question 1) from any “standard”
complexity assumption w.r.t. any black-box (i.e., Turing) reduction. Our impossibility rules out
not just leakage-resilient one-way functions but even (worst-case) leakage-resilient hardness of NP-
search problems with subexponentially bounded number of witnesses. More precisely, we say that
an NP-relation RL for a language L is (`, s)-leakage resilient if there does not exists an efficient
attacker A such that for every x ∈ L, y ∈ RL(x), A given x and `(|x|) bits of leakage on y that
is computable by s(|x|) size circuits, recovers a witness y′ ∈ RL(x) with probability 1. We remark
that leakage-resilience of search problems was first considered by Aggarwal and Maurer [AM11],
where they relate the leakage-resilience limit ` of a search problem to various other computational
task related to the search problem; most notably, to the success probability of the best PPT
algorithm for solving the problem (without leakage). We note that their results do not present
any limitations on leakage-resilience for search problems but rather emphasize the importance of
studying leakage-resilience of search problems.

Our main result presents a barrier to leakage-resilience of NP-search problems beyond the
information-theoretic limit with respect to polynomial-size computable leakage.

Theorem 1 (informally stated). Assume the existence of collision-resistant hash functions and let
RL be an NP-relation where statements of length n have at most 2n

ε
witnesses. Then there exists

some polynomial s such that if there exists a black-box reduction M for basing (O(nε · r(n), s(n))-
leakage resilience of RL on some r(n)-round assumption C, then C can be broken in polynomial-time.

By an r(·)-round assumption C, we refer to a security game between a challenger C and a
polynomial-time attacker A that proceed in r(n) rounds (given security parameter n), and the
goal of the attacker is to make the challenger output 1. We note that all “standard” complexity
assumptions used in Cryptography (e.g., hardness of factoring, discrete logarithms, lattice-problems
etc) can be modeled as 2-round assumptions. r(·)-round assumptions for r(n) > 2 capture an even
larger class of assumption (e.g., the assumption that an r(n)-round protocol hides some secret).

We emphasize that every leakage-resilient one-way function f with (2n
ε
)-bounded number of

preimages directly yields an leakage-resilient NP-relation with (2n
ε
)-bounded number of witnesses

and as such Theorem 1 shows barriers to basing (weak forms of) leakage-resilient one-wayness of
any function with 2n

ε
-bounded number of pre-images on “standard” complexity assumptions using

a black-box reduction.
We also highlight that we do not impose any restrictions on the black-box reduction. In partic-

ular, we allow the reduction to access the code of the leakage circuit. As a consequence, (in contrast
to [Wic13]), our impossibility only applies to assumptions with an a-priori bounded, r(n), number
of rounds. This is inherent, as otherwise the assumption that an efficiently computable function f is
an (`(·), s(·))-leakage resilient one-way function can itself be modeled as an `(·)-round assumption.
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(We remark, however, that our impossibility result relies on the existence of collision-resistant hash
functions, whereas Wichs’ result is unconditional.)

On non-black-box reductions We emphasize that in our leakage model, the attacker gets
“interactive” leakage on the secret x—i.e., it gets to repeatedly and adaptively select the leakage
functions as a result of answers to earlier queries. A more restricted notion of leakage resilience
provides the attacker with just a single non-adaptive leakage query. In general, the two leakage
models are equivalent (see e.g., [AM11]) as we can view the whole leakage-selection process by
the attacker as a single leakage query; this transformation, however, uses the attacker in a non-
black-box way. This observation shows that non-black-box reductions can be used to overcome
our barrier in its most general form: the assumption that a particular function f is (`, s)-leakage
resilient can be based on a 2-round assumption where the attacker first submits an “attack circuit”
(of unbounded polynomial size) and the challenger checks whether the circuit indeed breaks (`, s)-
leakage resilience of f . This “non-black-box feasibility” is not specific to the particular tasks we
consider—rather, it shows that any (multi-round) falsifiable assumption (i.e., assumption where
the challenger runs in polynomial time) can be based on a 2-round falsifiable assumption using a
non-black-box reduction. Given this “trivial” non-black-box reduction, the best way to interpret
our results is as a barrier to basing leakage-resilience on “adversary-independent” assumptions
where the communication complexity of the security game is some fixed polynomial (independent
of the attacker). This restriction on the assumption (which indeed is satisfied by all “standard”
complexity assumption) prevents relying on the trivial non-black-box reduction (which requires
communicating the code of the attacker).

1.2 Impossibility v.s. Unprovability

We briefly mention a related work by Ilan Komargodski [Kom18] that shows impossibility of leakage-
resilient one-way functions in the presence of “one-way leakage”. More precisely, Komargodksi
considers a model where the attacker can receive leakage of unbounded length, but the leakage
function is restricted to be one way (so that the input cannot be trivially leaked). He shows, using
various obfuscation-type assumptions, that for every one-way function f , there exists some one-way
leakage function h such that given h(x) alone, x is (computationally) hard to recover, yet given
both f(x) and h(x), x can be recovered. His result motivates why restricting to bounded-length
leakage is crucial.

We note that the key difference between our results and his is that he considers a notion of
leakage that makes leakage resilience impossible. In contrast (as we restrict the leakage to being
short), the notion of leakage-resilience we consider is weak and it is generally believed that the
primitives we consider exists. Indeed, as mentioned above, any subexponentially-secure one-way
permutation is polynomially leakage resilient. Rather, our results are unprovability results: we
show that leakage-resilient primitives, beyond the information-theoretic barrier, cannot be based
on standard (bounded-round) assumptions using polynomial-time black-box reductions.

1.3 Proof Overview

Assume there exists a security reduction M such that MA breaks the assumption C whenever
A breaks leakage resilience of some witness relation RL with 2n

ε
bounded number of witnesses.

We want to use M to directly break C without the help of A. So, following the meta-reduction
paradigm of [BV98], the goal will be to efficiently emulate A for M—that is, we will construct a
meta-reduction that uses the underlying reduction M to break C.
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Ruling out “simple” reductions To explain the ideas, let us first assume that M only invokes
a single instance of A and does not rewind A—this is clearly oversimplifying a lot, but we shall
see later on how to overcome these restrictions. These types of reductions are sometimes referred
to as “simple” reductions. Additionally, let us (for now) restrict our attention to assumptions C
that only have two rounds (i.e., the challenger sends a single message, and the attacker provides
his response).

Consider a particular unbounded attacker A that on input a statement x picks a 2-universal
hash function h : {0, 1}∗ → {0, 1}3nε and issues h as a leakage query—we highlight that h is not a
random oracle but rather a concrete hash function sampled from a 2-universal family of functions.
Looking forward, the idea for this leakage query is to ensure that, conditionned on this leakage, the
witness is uniquely defined (with high probability).

After receiving back an answer z (supposedly z = h(y) where y ∈ RL(x)), A next “requests” to
hear a succint interactive argument of knowledge [Kil92] of the statement that “there exists some
y′ such that h(y′) = z and y′ ∈ RL(x)”. Such argument systems exist based on the existence
of collision-resistant hash functions [Kil92] and relying on the PCP theorem [BFLS91, FGL+96].
Additionally, the prover in such an argument can be deterministic. As such, and due to the succinct
nature of the argument—in particular, due to the fact that the prover’s messages are “short”—the
prover’s next-messages function can be viewed as bounded polynomial-time computable leakage
query to the witness. Finally, if A gets convinced by the argument of knowledge (that it requests
through its leakage queries), it recovers (in exponential time) a witness y′′ ∈ RL(x) such that
h(y′′) = z, and returns it.

We remark that the idea of using a succint arguments of knowledge to present impossibility
results for leakage resilience originated in [NVZ14] and was subsequently used in [OPV15]; this
idea goes back to even earlier work in a related context [HMR08]. While we use this idea here for
a very similar purpose, we note that these earlier works used them to rule out leakage resilience
to significantly more complex primitives (secure computations [Yao86, GMW87] and black-box
zero-knowledge proofs [GMR89, GK96]). As such, we will have to work a bit harder to present an
impossibility result for just leakage-resilience of a search problem.

We would now like to argue that M can simulate the answer to queries to this particular A on
its own (and thus break C in polynomial time). The point is that for A to “say anything useful”
(i.e., to provide a witness y′), M first needs to provide a convincing argument of knowledge of
the statement “there exists some y′ such that H(y′) = z and y′ ∈ RL(x)” to A, and from this
argument of knowledge—and since M is only invoking a single instance of A and does not rewind
A—a witness y′′ such that y′ ∈ RL(x)” and H(y′′) = z can be extracted in (expected) polynomial
time. M can thus simulate A’s response by sending y′′ to itself. Note that we here also need to
rely on the fact that C only has 2 rounds, so that when we extract a witness from A, this can be
done without having to rewind C.

It remains, however, to argue that y′′ is distributed in the same way as the witness y′ that
A would have returned. This follows from the fact that, with overwhelming probability over the
choice of h, by the 2-universal property of h, there exists a unique y′ such that h(y′) = z and
y′ ∈ RL(x)—we here rely on the fact that the leakage is “beyond the information-theoretic limit”
so that the output of h can uniquely determine y′.

Dealing with general (i.e., rewinding) reductions The above proof sketch, however, relies
on the fact that M does not rewind A; if M can rewind A and reset A, and start many concurrent
sessions with A, then it is no longer clear how to extract a witness from the proof it is providing.
In particular, if the proof is not “resettably-sound” [BGGL01], then a rewinding reduction may
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convince A of even false statements!
Additionally, as mentionned, it also relies on C only having 2 rounds, or else, we may rewind

C when extracting the witness. Luckily, both of these problems have arisen in earlier black-box
separations for interactive proofs. Consider some assumption C with r(n) communication rounds. In
[Pas11], a technique was developed for extracting witnesses from reductions that arbitrarily rewind
its oracle—even if they start many interleaved, concurrent, interactions with the oracle—as long
as the reduction needs to provide sufficiently many sequential interactive arguments of knowledge
of a certain ”special-sound” [CDS94] type. More precisely, O(r(n) · nε) sequential proofs of this
special-sound type need to be provided to ensure an appropriate level of “resettable-soundness”,
while avoiding rewindings communication with C. We here show how to adopt the above proof idea
to fit into the framework of [Pas11], which we need to generalize as it only considers languages with
unique witnesses. More precisely, we proceed in two steps:

• We show how to modify Kilian’s protocol to satisfy an appropriate special-soundness property
needed for the meta reduction in [Pas11]—doing this, however, requires making the commu-
nication complexity of the protocol greater than n, and thus the protocol no longer seems
useful! The point is that, even if the communication complexity is large, the prover of the
protocol is laconic—in other words, the length of the prover messages is still small and thus
we can still view the prover messages as “short” leakage.

• Rather than reproving the result from [Pas11], we rely on the meta-reduction from [Pas11] in a
black-box way, and instead present a meta-reduction that turns our attacker into an attacker
for a primitive (namely sequentially witness hiding public-coin arguments for unique-witness
relations) that is covered by the impossibility of [Pas11]. In more details, we present a meta-
reduction showing that any reduction for leakage-resilience can be turned into a different
reduction that satsifies the “unique witness” requirement needed for the result in [Pas11] to
kick in. We can then apply the meta-reduction of [Pas11] on top of our meta-reduction. As far
as we know, this techniques of “nested” meta-reductions (or composition of meta-reductions)
is new and we hope that is may be useful elsewhere.

2 General Preliminaries

In this section we recall some standard definitions and preliminaries.

2.1 Notation

Integer, Strings and Vectors. We denote by N the set of natural numbers: 0, 1, 2, . . .. Unless
otherwise specified, a natural number is presented in its binary expansion (with no leading 0s)
whenever given as an input to an algorithm. If n ∈ N , we denote by 1n the unary expansion of n
(i.e., the concatenation of n 1’s). Given a string x, we let x|i denote the i’th bit of x. We denote
by ~x a finite sequence of elements x1, x2, . . . xn, and we let |~x| denote the number of elements in
the sequence.

Algorithms. We employ the following notation for algorithms.

Probabilistic algorithms. By a probabilistic algorithm we mean a Turing machine that receives an
auxiliary random tape as input. If M is a probabilistic algorithm, then for any input x, the
notation “Mr(x)” denotes the output of the M on input x when receiving r as random tape.
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We let the notation “M(x)” denote the probability distribution over the outputs of M on
input x where each bit of the random tape r is selected at random and independently, and
then outputting Mr(x).

Interactive Algorithms. We assume familiarity with the basic notions of an Interactive Turing
Machine [GMR89] (ITM for brevity) and a protocol. (Briefly, a protocol is pair of ITMs
computing in turns. In each turn, called a round, only one ITM is active. A round ends with
the active machine either halting—in which case the protocol halts—or by sending a message
m to the other machine, which becomes active with m as a special input. By an interactive
algorithm we mean a (probabilistic) interactive Turing Machine.

Given a pair of interactive algorithms (A,B), we let 〈A(a), B(b)〉(x) denote the probability
distribution over the outputs of B(b) after interacting with A(a) on the common input x.

Oracle algorithms. An oracle algorithm is a machine that gets oracle access to another machine.
We will restrict our attention to oracle algorithms that get access to deterministic interactive
algorithms. Given a probabilistic oracle algorithm M , and a deterministic interactive algo-
rithm A, we let MA(1n) denote the probability distribution over the outputs of the algorithm
M on input 1n, when given oracle access to a function that on input a partial transcript
T = (q1, r1, .., ql) outputs the next message ri sent by A on input 1n and receiving the mes-
sages (q1, .., ql) if r1, . . . rk−1 are the correct next-messages of A on all the earlier prefixes of
T and ⊥ otherwise. Note that this is well defined since we only consider deterministic oracles
A.

Negligible and overwhelming functions. The term “negligible” is used for denoting functions
that are asymptotically smaller than the inverse of any fixed polynomial. More precisely, a function
ν(·) from non-negative integers to reals is called negligible if for every constant c > 0 and all
sufficiently large n, it holds that ν(n) < n−c. A function µ(·) is overwhelming if there exists some
negligible function ν(·) such that µ(n) ≥ 1− ν(n) for all n.

2.2 Witness Relations

We recall the definition of a witness relation for an NP language [Gol01].

Definition 1 (Witness relation). A witness relation for a language L ∈ NP is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by L = {x :
∃w s.t. (x,w) ∈ RL}.

We say that w is a witness for the membership x ∈ L if (x,w) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership x ∈ L, i.e., RL(x) = {w : (x,w) ∈ L}. If for each
x ∈ L, there exists a single w ∈ RL(x), we say that RL is a unique witness relation. If for each
x ∈ L, there exists at most k(·) different witnesses w ∈ RL(x), we say that RL is a k(·)-witness
relation. If there exists some constant ε such that RL is a 2n

ε
-witness relation, we refer to RL as a

witness relation with subexponentially bounded number of witnesses.

2.3 Interactive Proofs and Arguments

We recall the standard definitions of interactive proofs and arguments.
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Definition 2 (Interactive Proofs and Arguments [GMR89, BCC88]). A pair of probabilistic inter-
active algorithms (P, V ) is called an interactive proof system for a language L with witness relation
RL if V is polynomial-time and the following two conditions hold.

• Completeness: For every x ∈ L, and every y ∈ RL(x),

Pr
[
〈P (y), V 〉(x) = 1

]
= 1

• Soundness: For every interactive algorithm P ∗, there exists a negligible function ν such that
for every x /∈ L, every z ∈ {0, 1}∗,

Pr
[
(〈P ∗(z), V 〉(x) = 0

]
≥ 1− ν(|x|)

In case that the soundness condition holds only with respect to a provers P ∗ whose running-time is
polynomially bounded in the common input, the pair (P, V ) is called an interactive argument system.
If P is probabilistic polynomial-time, (P, V ) is an efficient prover interactive proof/argument system.

2.4 Intractability Assumptions and Black-box Reductions

Our definition of intractability assumptions and black-box reductions closely follows [Pas11] (the
text below is taken almost verbatim from there). Following Naor [Nao03] (see also [DOP05, HH09,
RV10]), we model an intractability assumption as an interactive game between a probabilistic
machine C—called the challenger—and an attacker A. Both parties get as input 1n where n is the
security parameter. For any t(n) ∈ [0, 1] and any “adversary” A, if Pr [〈A, C〉(1n) = 1] ≥ t(n)+p(n),
then we say that A breaks C with advantage p(n) over the “threshold” t(n). When this happens,
we might also say that A breaks (C, t) with advantage p(n). Any pair (C, t) intuitively corresponds
to the following assumption:

For every polynomial-time adversary A, there exists a negligible function ν(·) such that
for every n ∈ N, A breaks C with advantage at most ν(n) over the threshold t(n).

We refer to (C, t) as an r(·)-round assumption if C on input 1n communicates with the attacker A
in at most r(n) communication rounds.

Black-box Reductions. We consider probabilistic polynomial-time Turing reductions—i.e., black-
box reductions. A black-box reduction refers to a probabilistic polynomial-time oracle algorithm.
Roughly speaking, a black-box reduction for basing the security of a primitive P on the hardness
of an assumption (C, t), is a probabilistic polynomial-time oracle machine M such that whenever
the oracle O “breaks” P with respect to the security parameter n, then MO “breaks” (C, t) with
respect to a polynomially related security parameter n′ such that n′ can be efficiently computed
given n; see Figure 1.

We restrict ourselves to the case where n′ = n, since without loss of generality we can always
redefine the challenger C so that it acts as if its input was actually n′ (since n′ can be efficiently
computed given n). To formalize this notion, we thus restrict ourselves to oracle machines M that
on input 1n always query the oracle on inputs of the form (1n, ·).

Definition 3. We say that M is a fixed-parameter black-box reduction if M is an oracle machine
such that M(1n) only queries its oracle with inputs of the form (1n, x), where x ∈ {0, 1}∗.
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M(1k)C(1k)

O1k, x

yα0

α1

0/1

Figure 1: A black-box reduction M .

A more liberal notion of a black-box reduction allows the reduction M to (on input 1n) query
its oracle on multiple security parameters (that are all polynomially related to n). In our eyes,
such a liberal notion is less justified from a practical point of view (and as far as we are aware,
cryptographic reductions typically do not rely on such liberal reductions); nevertheless, our proofs
directly applies also for such a notion of black-box reductions.

Remark 1 (On expected polynomial-time reductions). It is often helpful to use a more general no-
tion of a probabilistic expected polynomial-time black-box reduction M , which is identically defined
except that the running time of the reduction needs only be polynomially bounded in expected over
the randomness of the reduction and the randomness of the challenger C (but independent of the
attacker A it is communicating with). We note, however, that any reduction M with expected time
T (n) and advantage 1

p(n) can be turned into a strict polynomial-time reduction with running time

2p(n)T (n) and avantage 1
2p(n) by truncating the execution of M after 2p(n)T (n) steps and relying

on the Markov bound. Thus, although expected polynomial-time reductions often are more natural
to construct, it is without loss of generality to restrict our attention to simply strict polynomial-time
reductions.

3 Preliminaries from [Pas11]

We recall some notions and results from [Pas11] which will be useful to us. (Some of the text is
taken almost verbatim from there.)

Special Soundness We start by recalling a strong notion of a proof of knowledge [GMR89,
FFS87] that will be instrumental to us. Recall that a three-round public-coin interactive proof is
said to be special-sound [CDS94], if a valid witness to the statement x can be efficiently computed
from any two accepting proof-transcripts of x which have the same first message but different
second messages. [Pas11] considers a relaxation of this notion—referred to as computational special-
soundness—where (a) the number of communication rounds is any constant (instead of just three),
(b) the extractor may need a polynomial number of accepting transcripts (instead of just two),
and (c) extraction need only succeed if the transcripts are generated by communicating with a
computationally-bounded prover.

Definition 4 (Computational Special-Soundness). Let (P, V ) be a k-round (where k is a constant)
public-coin interactive argument for the language L ∈ NP with witness relation RL. (P, V ) is said
to be computationally special-sound if there exists a constant i < k, some polynomial m(·), and a
polynomial-time extractor machine X, such that for every polynomial-time deterministic machine
P ∗, and every polynomial p(·), there exists a negligible function µ(·) such that the following holds
for every x ∈ L and every auxiliary input z for P ∗. Let ~T = (T1, T2, . . . Tp(|x|)) denote transcripts
in p(|x|) random executions between P ∗(x, z) and V (x) where V uses the same randomness for the
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first k − i− 1 messages (thus, the first k − i− 1 messages are the same in all transcripts). Then,
the probability (over the randomness used to generate ~T ) that:

1. ~T contains a set of m(|x|) accepting transcripts with different round k − i messages; and

2. X(~T ) does not output a witness w ∈ RL(x)

is smaller than µ(|x|). We say that a computationally special-sound protocol has a large challenge
space if the length of the verifier challenge is ω(log n) on common inputs of length n.

In this work, we introdue a relaxation of computational special soundness where above extraction
property only needs to hold on instances x that have a unique witness (i.e., only for x ∈ L such
that there exits a single y ∈ RL(x)); we refer to such a notion as unique-witness computational
special-soundness.

Witness Hiding A desirable property of interactive proofs is that they “hide” the witness used
by the prover. We will consider a very weak notion of worst-case sequential witness hiding: roughly
speaking, a protocol is said to be worst-case sequential witness hiding if no polynomial time attacker
can always recover the witness for any statement x that it hears `(|x|) sequential proofs of.

Definition 5 (Worst-case Witness Hiding). Let (P, V ) be an argument for the language L with
witness relation RL. We say that (a potentially unbounded) A breaks worst-case `(·)-sequential
witness hiding of (P, V ) with respect to RL if for every n ∈ N, x ∈ L ∩ {0, 1}n, and w ∈ RL(x),
A wins in the following experiment with probability 1: Let A(x) sequentially communicate with
P (x,w) `(n) times; A is said to win if it outputs a witness w′ such that w′ ∈ RL(x). (P, V ) is
called worst-case `(·)-sequentially witness hiding w.r.t RL if no polynomial time algorithm A breaks
worst-case `(·)-sequential witness hiding of (P, V ) w.r.t RL.

Definition 6 (Black-box Reductions for Worst-case Sequential Witness Hiding). We say that M
is a black-box reduction for basing worst-case `(·)-sequential witness hiding of (P, V ) w.r.t RL on
the hardness of (C, t) if M is a probabilistic polynomial-time oracle machine, such that for every
deterministic machine A that breaks worst-case `(·)-sequential witness hiding of (P, V ) with respect
to RL, there exists a polynomial p(·) such that for infinitely many n ∈ N, SA breaks the assumption
(C, t) with advantage 1

p(n) on input 1n.

The Result of [Pas11] We now state (a simplified form) of the main result of [Pas11].

Theorem 2 (Main Result of [Pas11]). Let (P, V ) be a computationally-special-sound argument
with large challenge space for the language L with a unique witness relation RL, and let (C, t) be
an r(·)-round assumption where r(·) is a polynomial. Let `(n) = r(n)nε for some constant ε > 0.
If there exists a fixed-parameter black-box reduction M for basing worst-case `(·)-sequential witness
hiding of (P, V ) w.r.t RL on the hardness of (C, t), then there exists a polynomial p(·) and an
efficient algorithm B such that B(1n) breaks (C, t) with advantage 1

p(n) on input 1n for infinitely
many n ∈ N .

For convenience of the reader (and because we will need to slightly generalize this result), let
us provide a very high-level overview of the proof of this theorem. Assume there exists a security
reduction M such that MA breaks the assumption C whenever A breaks worst-case sequential
witness hiding of a (computationally) special-sound argument (P, V ) for a language with unique
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witnesses. We want to use M to directly break C without the help of A—that is, we will construct
a “meta-reduction” [BV98] B that uses the underlying reduction M to break C.

Towards this, we consider a particular computationally unbounded oracle A that after hearing
an appropriate number of proofs using (P, V ) (acting as a verifier) simply outputs a witness to the
statement proved. The meta-reduction B next needs to efficiently emulate A for M and thereby
can efficiently break C (without the help of A). To enable such an emulation of A, the idea is to
“extract” out the witness that A would have provide to M from M itself by “rewinding” M—since
(P, V ) is computationally special-sound, M , intuitively, must know a witness for all statements x
that it proves to A. See Figure 2 for an illustration of the mechanics of this paradigm.

M A

C

-�

?

6

breaks Π
inefficient

breaks C
M A

C

-�

?

6

(emulated)
efficient

(run by B)

B (meta-reduction), breaks C

Figure 2: The meta-reduction paradigm. Left: M breaks the assumption C by using the “ideal”
inefficient adversary A as an oracle. Right: the meta-reduction B runs M (forwarding its commu-
nication with C) and efficiently emulates A to break C.

There are several obstacles in formalizing this approach. The main one is that the reduction M
is not a “stand-alone” prover—it might rewind and reset the oracle A—so it is no longer clear that
it needs to “know” a witness for x in order to convince A of x. It is here that the proof of [Pas11]
relies on the fact that there are multiple proofs being provided by S; this gives the meta-reduction
more opportunities to rewind M , which enables extraction even if M “nests” its queries to A in an
arbitrary way. Let us point out that the unique witness requirement is needed to guarantee that
the witness extracted out by the meta-reduction is identically the same as the witness used by the
unbounded attacker A.

We remark that the proof in [Pas11] directly also extends to languages without unique witnesses
as long as the reduction rarely “hits” instances that do not have unique witnesses; additionally,
we only require the special soundness condition to hold whenever the statement proved has a
unique witness. (As can be seen in the high-level description above, this this suffices to ensure that
the witnesses extracted by the meta-reduction is identically the same as the witness used by the
unbounded attacker A with overwhelming probability.)

Theorem 3 (Slight generalization of [Pas11]). Let (P, V ) be a unique-witness computationally-
special-sound argument with large challenge space for the language L with witness relation RL,
and let (C, t) be an r(·)-round assumption where r(·) is a polynomial. Let `(n) = r(n)nε for some
constant ε > 0. Let M be a fixed-parameter black-box reduction for basing worst-case `(·)-sequential
witness hiding of (P, V ) w.r.t RL on the hardness of (C, t). Assume further that with overwhelming
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probability, M(1n) only queries its oracle on statements x that have a unique witness w ∈ RL(x).
Then, there exists a polynomial p(·) and an efficient algorithm B such that B(1n) breaks (C, t) with
advantage 1

p(n) on input 1n for infinitely many n ∈ N .

4 Leakage-Resilient Witness Relations and The Main Theorem

To define leakage-resilient witness relations, we consider an attacker A that receives as input a
statement x and may adaptively ask for leakage of a witness y; A succeeds if it recovers any witness
to x, while having seen less than `(|x|) bits of leakage of y. More formally, let leaky(·) be a function
that on input a circuit C outputs C(y).

Definition 7 (Leakage-resilient Relations). Let RL be a witness relation for the language L. We
say that (a potentially unbounded) A breaks (`(·), s(·))-leakage resilience of RL if for every n ∈
N, x ∈ L ∩ {0, 1}n, y ∈ RL(x), with probability 1, it holds that (a) Aleak

y (1n, x) ∈ RL(x) and (b) A
received at most `(|x|) bits from its oracle and (c) A only queries its oracle with circuits of size at
most s(|x|), where the probability is over the randomness of A. RL is said to be a (`(·), s(·))-leakage
resilient if there does not exists an efficient attacker A that breaks (`(·), s(·)-leakage resilience of
RL.

Let us make some remarks about this notion of leakage resilience:

• (0, s)-leakage resilience of an NP-relation is equivalent to stating that the NP search prob-
lem associated with it is hard for probabilistic polynomial time; thus, (0, s)-leakage resilient
witness relations exists assuming NP 6⊆ BPP. (O(log n), s)-leakage resilience of a witness
relation is equivalent to (0, s)-leakage resilence since we can simply enumerate all possible
answers to the leakage queries.

• By enumerating the answers to all leakage queries, (nε, s)-leakage resilience of a witness
relation RL can be based on the assumption that the NP search problem associated with it
cannot be solved in time poly(2n

ε
).

Our main result will present barriers to basing leakage-resilient relations on polynomial-time
hardness assumption. Towards this, we turn to defining what it means to base leakage resilience of
RL on some assumption using a black-box reduction.

Definition 8 (Black-box Reductions for Leakage-resilient Relations). We say that M is a black-
box reduction for basing (`(·), s(·))-leakage resilience on the hardness of (C, t) if M is a probabilistic
polynomial-time oracle machine, such that for every deterministic machine A that breaks (`(·), s(·))-
leakage resilience of RL, there exists a polynomial p(·) such that for infinitely many n ∈ N, SA breaks
the assumption (C, t) with advantage 1

p(n) on input 1n.

The Main Theorem We are now ready to state our main theorem.

Theorem 4. Assume the existence of families of collision-resistant hash functions. Let RL be a
(2n

ε
)-witness relation for some constant ε > 0, let (C, t) be a r(·)-round assumption where r(·)

is a polynomial.. Then there exists some polynomial s and some constant c ≥ 1 such that for
`(n) = c · r(n) · nε, if there exists a fixed-parameter black-box reduction M for basing (`(·), s(·))-
leakage resilience of RL on the hardness of (C, t), then there exists a polynomial p(·) and an efficient
algorithm B such that B(1n) breaks (C, t) with advantage 1

p(n) on input 1n for infinitely many n ∈ N .
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5 Proof of the Main Theorem

Towards proving Theorem 4, we first present a O(1)-round unique-witness computationally special-
sound argument for NP with a small prover communication complexity (i.e., with a laconic prover)
and with a deterministic, efficient, prover strategy.

Next, as a warm up (and stepping-stone) to the complete proof of Theorem 4, we focus on
leakage resilience of unique witness relations and observe that any leakage resilient unique witness
relations with a black-box security proof together with our laconic prover argument, yields a O(1)-
round computationally special-sound worst-case O(nε)-sequentially witness hiding argument for a
unique witness language: we can simply view the prover messages (which are deterministic and
efficiently computable) as leakage—which is small as the length of the prover messages, as well as
the number of sequential repetitions, are small—and as such leakage resilience of the relation implies
worst-case witness hiding. The special case of Theorem 4 for unique witness relations can next be
concluded by appealing to Theorem 2 (which rules out black-box reductions for basing worst-case
O(nε)-sequential witness hiding for unique witness languages on bounded-round assumptions) . In
fact, if we rely on the (more general) Theorem 3, we can conclude an even stronger version that
applies to any (potentially non-unique) witness relations, as long as we restrict to reductions that
(with overwhelming probability) only query its oracle on instances with unique witnesses.

To conclude the full proof of Theorem 4, we next show that for any witness relation RL with
subexponentially bounded number of witnesses, there exists a different witness relation RL′ such
that any reduction for basing leakage resilience of RL on some assumption (C, t) can be turned
into a reduction M̃ for basing leakage resilience of RL′ on (C, t) such that, with overwhelming
probability, M̃ only queries its oracle on instances that have a unique witness (and as such, by the
result above, is ruled out).

This is done by letting RL′ be the set of pairs ((x, h, z), y) such that y ∈ RL(x) and h(y) = z
and having M̃ internally emulating M but for every interaction with the oracle that M initiates
on input an instance x, M̃ first samples a 2-universal hash function h and internally issues h
as a leakage query to M . Upon receiving an answer z (which is supposed to be h(y) such that
y ∈ RL(x)), M̃ next queries the outside oracle on the instance (x, h, z) and subsequentially forwards
all communication between M and the leakage oracle. By the 2-universal property of the hash
function (and a union bound), it follows that if the output of the hash function is sufficiently long,
then with overwhelming probability, there exists a unique pre-image for every image z and thus
M̃ only queries its oracle on instances with unique witnesses. The point is that if the number of
witnesses of x is bounded by 2n

ε
, it suffices to make the length of the output of the hash function

3nε to ensure uniqueness (while at the same time ensuring that the length of the leakage is small).

5.1 A Laconic-Prover Computationally Special-sound Argument for NP

We here present a laconic-prover (namely with prover communication-complexity O(nε) for any
ε) unique-witness computationally special-sound argument for every language in NP with a de-
terministic prover, based on the existence of collision-resistant hash functions. This construction
will rely on Kilian’s [Kil92] succinct argument for NP, which in turn relies on the PCP theorem
[BFLS91, FGL+96].

Theorem 5. Assume the existence of families of collision-resistant hash functions. Then, for every
ε > 0 and every language L with witness relation RL, there exists a constant c and an efficient-
prover unique-witness computationally special-sound interactive argument Π = (P, V ) for L,RL
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with large challenge space, where (a) the prover is deterministic, and (b) the prover communication
complexity is bounded by c · nε.

Proof. Recall that by the result of Kilian [Kil92], assuming the existence of families of collision-
resistant hash function, for every ε > 0 and every language L with witness relation RL, there exists
an efficient-prover 4-round interactive argument for L,RL where the prover strategy is deterministic,
and the prover communication complexity is O(nε). The protocol (P, V ) proceeds as follows on
common input a statement x ∈ L, and a witness y ∈ RL(x) as private input to P . Let p(n) be a
polynomial upper-bound on the length of witnesses for statements of length n.

• V picks a uniformly random string r ← {0, 1}p(|x|) and sends it to P .

• P returns b =
∑p(|x|)

i=1 yiri mod 2.

• P and V next invokes Kilian’s (4-round) interactive argument, letting P prove that b =∑p(|x|)
i=1 yiri mod 2 and y ∈ RL(x).

It follows directly by Gaussian elimination and the soundness of the efficient argument that (P, V ) is
a unique-witness computationally special-sound interactive argument. (Note that extraction using
Gaussian eliminaiton is only guaranteed to work when the witness is unique or else the malicious
prover may potentially mix and match witnesses.) By definition, P is deterministic and for each
ε > 0, we can ensure that the communication complexity of P is bounded by c · nε for some
sufficiently large constant c. Additionally, by the efficient prover property of Kilian’s argument, P
can also be implemented in polynomial time.

5.2 Unprovability of Leakage-Resilient Unique-Witness Relations

As a stepping stone (and warm-up), we start by showing barriers to showing that unqiue witness
relations are (O(nε, poly)-leakage resilient, for any constant ε > 0. In fact, we directly show black-
box unprovability of (O(nε, poly)-leakage resilience of (potentially non-unique) witness relations
using any reduction that with overwhelming probability only queries its oracle on instances with
unique witnesses.

Lemma 1. Assume the existence of families of collision-resistant hash functions. Let RL be a
witness relation, let (C, t) be an r(·)-round assumption where r(·) is a polynomial, and let ε > 0.
Then, there exists some polynomial s(·) such that for `(n) = c · r(n) · nε, if (1) there exists a
fixed-parameter black-box reduction M for basing (`, s)-leakage resilience of RL on the hardness of
(C, t) and (2) with overwhelming probability, M only queries its oracle on instances with unique
witnesses, then there exists a polynomial p(·) and an efficient algorithm B such that B(1n) breaks
(C, t) with advantage 1

p(n) on input 1n for infinitely many n ∈ N .

Proof. Consider RL, ε, r(·) and (C, t) as in the statement of the lemma and assume the existence
of families of collision-resistant hash functions. Pick a constant ε′ such that 0 < ε′ < ε. By
Theorem 5, there exists some polynomial s(·) and a unique-witness computationally special-sound
argument (P, V ) for RL with communication complexity c ·nε′ and with a deterministic prover with
computational complexity s(n). Let m(n) = r(n)nε−ε

′
and let `(n) = c · r(n)nε and consider some

fixed-parameter black-box reduction M for basing (`, s)-leakage resilience of RL on the hardness of
(C, t), such that with overwhelming probability M only queries its oracle on instances with unique
witnesses.
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We will show how to construct a reduction M̃ for basing worst-case m(n)-sequential witness
hiding of the protocol (P, V ) w.r.t. L,RL on (C, t) such that with overwhelming probability M̃
only queries its oracle on instances with unique witnesses. By Theorem 3, this implies that there
exists a polynomial p(·) and an efficient algorithm B such that B(1n) breaks (C, t) with advantage
1

p(n) on input 1n for infinitely many n ∈ N , and thus concludes the proof of the lemma.

Let codeP (x, q1, . . . , qk) denote the circuit C(·) that on input y computes P ’s (k+ 1)’st message
given the input (x, y) and receiving messages q1, . . . , qk. M̃(1n) internally emulates M(1n) and
proceeds as follows:

• Whenever M wants to send an oracle query (x, p1, q1, . . . , pk), M̃
′ externally forwards it to

its oracle. Upon receiving back a reponse qk+1, if k = 2m(n) (i.e., the response is the last
message from the oracle for this interaction, that is a witness), or if qk+1 = ⊥, M̃ simply
returns qk+1 to M . Otherwise, it returns codeP (q1, . . . , qk+1) to M .

• All messages that M wants to send to C are forwarded externally without modification, and
messages that M̃ receives from C are directly forwarded to M .

Consider some attacker A that breaks worst-case m(n)-sequential witness hiding of (P, V ) with
probability 1. Let Ã be a “wrapped” version of A that post-processes responses from A in exactly
the same way as M̃ does. It directly follows from the definition of Ã and the fact that (P, V ) has
prover communication complexity c · nε′ and computation complexity s(n) that Ã breaks leakage
resilience of RL with probability 1 using

c · nε′ ·m(n) = c · nε′ · r(n) · nε−ε′ = c · r(n) · nε = `(n)

bits of leakage. Thus, Ã breaks (`, s)-leakage resilience of RL with probability 1, and consequently,

M Ã breaks (C, t) with advantage 1
p(n) on input 1n for infinitely many n ∈ N for some polynomial

p(·). It follows that the same holds with respect to M̃A = M Ã, and thus M̃ is a black-box
reduction for basing worst-case witness hiding of (P, V ) w.r.t. RL on (C, t). Additionally, since
with overwhelming probability, M only queries its oracle on instances x that have unique witnesses,
the same holds for M̃ .

5.3 Unprovability of Leakage-Resilent Bounded-Witness Relations

We proceed to prove Theorem 4 in its full generality. Recall that we will do this by arguing that it
is essentially without loss of generality to consider reductions that with overwhelming probability
only query its oracle on instances with unique witnesses. To do this, we will rely on 2-universal
hash functions.

Definition 9 (2-Universal Hash Functions [CW79]). A family of hash functions H = {h : S → T}
is 2-universal if for every x1 6= x2 ∈ S, it holds that

Pr [h(x1) = h(x2)] ≤
1

|T |

where the probability is over h← H.

Recall that for every prime p and every N ∈ N, H = {ha,b(x) = (ax+ b mod p) mod N}a,b∈Zp
is a family of 2-universal hash functions [CW79]. Thus for every m ≥ n ∈ N, by picking a prime
p between 2n and 2n+1, letting N = 2n, and using truncation, we have that exists a family of 2-
universal hash functions over H = {hi = {0, 1}m → {0, 1}n} where each hi can be computed using
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a polynomial-size circuit. Furthemore, by Chebychev’s theorem on the concentration of primes, we
can also efficiently sample such functions in expected polynomial time, or in strict polynomial-time
with overwhelming probability.

The following simple lemma shows how we can use a 2-universal hash function to turn a
subexponentially-bounded witness relation into an “almost” unique witness relation. Given a wit-
ness relation RL, let RL′ be the set of pairs ((x, h, z), y) such that y ∈ RL(x) and h(y) = z.

Lemma 2. Let RL be a 2n
ε
-witness relation; let p(n) be a polynomial upper-bound on the length

of a witness for statements of length n, Tn = {0, 1}3nε and Hn = {h : {0, 1}p(n) → Tn} be a family
of 2-universal hash functions. Then, for every n, every x ∈ {0, 1}n, with probability 1− 2−n

ε
over

h← Hn, it holds that for every z ∈ Tn, there exists at most one y such that ((x, h, z), y) ∈ RL′.

Proof. Consider some x ∈ {0, 1}n. By definition, there exists at most 2n
ε

witnesses y such that
(x, y) ∈ RL; let Sx be the set of these witnesses. By the 2-universal property of the hash function,
for every two y1 6= y2 ∈ Sx,

Pr [h(y1) = h(y2)] ≤
1

|Tn|
=

1

23nε

where the probability is over the choice of h. By a union bound over y1, y2 ∈ Sx, it follows that the
probability (over h) that there exists y1 6= y2 ∈ S such that h(y1) = h(y2) is bounded by

22n
ε

23nε
= 2−n

ε
.

We now use this lemma to show how to turn any reduction for basing leakage resilience of a
witness relation with subexponentially bounded number of witnesses on some assumption (C, t)
into a reduction M̃ for basing leakage resilience of RL′ on (C, t) such that, with overwhelming
probability, M̃ only queries its oracle on instances that have a unique witness.

Lemma 3. Let ε > 0, let s(·), r(·) be polynomials, let RL be a (2n
ε
)-witness relation, let (C, t) be an

r(·)-round assumption and let `(n) ≥ nε be a polynomial. There exist some polynomial s′(·) such
that, if there exists a fixed-parameter black-box reduction M for basing (4`(·), s′(·) + s(·))-leakage
resilience of RL on the hardness of (C, t), then there exists a witness relation RL′ and a fixed-
parameter black-box reduction M̃ for basing (`(·), s(·))-leakage resilience of RL′ on the hardness
of (C, t). Furthermore, with overwhelming probability M̃ only queries its oracle on instances with
unique witnesses.

Proof. Consider RL, (C, t),M, r(·), `, s, ε be as in statement of the lemma. Let s′(n) be a polynomial
bounding the circuit size of every h ∈ Hn. Consider the relation RL′ defined above, and consider
a black-box reduction M̃ that internally emulates M but for every interaction with the oracle that
M initiates on input an (new) instance x, M̃ first samples a h ← Hn and returns h as a “leakage
query” to M . Recall that sampling h← Hn requires sampling a random poly(n)-bit prime, which
can be done with overwhelming probability in strict polynomial time. If the sampling fails, M
simply lets h be a dummy circuit that outputs 0. Upon receiving an answer z, M̃ next queries the
outside oracle on the instance (x, h, z) and subsequently forwards messages back and forth between
the oracle and M for that interaction.

Consider some attacker A that breaks (`, s)-leakage resilience of RL′ with probability 1. Let g(n)
be a polynomial that bounds the amount of randomness used to sample h (as done by M̃). Given
some function f : {0, 1}n → {0, 1}g(n) (later we will instantiate f with a truly random function), let
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Ãf be a “wrapped” version of A that on input x picks a hash function h ∈ Hn using randomness
f(x) (in the same way as M̃ does), and next responds with h; upon receiving z as a response,
it feeds the statement (x, h, z) to A and subsequently simply forwards all external messages back
and forth to A. Note that since A breaks (`, s)-leakage resilience of RL′ with probability 1, Ã
breaks (`(n) + 3nε ≤ 4`(n), s′(n) + s(n))-leakage resilience of RL with probability 1. Thus, for

every function f , M Ãf breaks (C, t) with advantage 1
p(n) on input 1n for infinitely many n ∈ N for

some polynomial p(·); it follows that the same holds with respect to M̃A = M ÃRO where RO is a
randomly chosen function over {0, 1}n → {0, 1}g(n). Additionally, note that by Lemma 2, we have
that if the sampling of h succeeds, M̃A only queries A on instances x that have unique witnesses,
except with probability 2−n

ε
. Finally, recall that the sampling of h succeeds with overwhelming

probibility, thus by a union bound we have that with overwhelming probability, M̃ only queries A
on instances with unique witnesses.

Concluding the proof of Theorem 4. Let RL be a (2n
ε
)-witness relation for some constant

ε > 0 and let (C, t) be a r(·)-round assumption where r(·) is a polynomial. Let c, s be, respectively,
the constant and polynomial guaranteed to exist due to Lemma 1, and let `(n) = c · r(n) · nε. By
Lemma 3, there exists some polynomial s′ such that the existence of a fixed-parameter black-box
reduction M for basing (4`, s + s′)-leakage resilience of RL on the hardness of (C, t) implies the
existence of some witness relation RL′ and a fixed-parameter black-box reduction M̃ for basing
(`, s)-leakage resilience of RL on the hardness of (C, t), such that with overwhelming probability M
only queries its oracle on instances with unique witnesses. By Lemma 1, this implies the existence
of a polynomial p(·) and an efficient algorithm B such that B(1n) breaks (C, t) with advantage 1

p(n)
on input 1n for infinitely many n ∈ N .
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