
FairMM: A Fast and Frontrunning-Resistant Crypto
Market-Maker

Michele Ciampi1, Muhammad Ishaq2, Malik Magdon-Ismail3, Rafail Ostrovsky4, and Vassilis Zikas2

1 The University of Edinburgh
michele.ciampi@ed.ac.uk

2 Purdue University
{ishaqm, vzikas}@cs.purdue.edu

3 Rensselaer Polytechnic Institute (RPI)
magdon@gmail.com

4 University of California, Los Angeles (UCLA)
rafail@cs.ucla.edu

Abstract. Frontrunning is a major problem in DeFi applications, such as blockchain-based exchanges.
Albeit, existing solutions are not practical and/or they make external trust assumptions. In this work
we propose a market-maker-based crypto-token exchange, which is both more efficient than existing
solutions and offers provable resistance to frontrunning attack. Our approach combines in a clever way a
game theoretic analysis of market-makers with new cryptography and blockchain tools to defend against
all three ways by which an exchange might front-run, i.e., (1) reorder trade requests, (2) adaptively drop
trade requests, and (3) adaptively insert (its own) trade requests. Concretely, we propose novel light-
weight cryptographic tools and smart-contract-enforced incentives to eliminate reordering attacks and
ensure that dropping requests have to be oblivious (uninformed) of the actual trade. We then prove that
with these attacks eliminated, a so-called monopolistic market-maker has no longer incentives to add
or drop trades. We have implemented and benchmarked our exchange and provide concrete evidence
of its advantages over existing solutions.

Keywords: Front-running · Market Maker · Blockchain · Fairness

1 Introduction

Since Bitcoin’s introduction in 2008, crypto-currencies have become a significant market in global finance5.
Several tools and platforms have been built to facilitate crypto-currency trading. The early exchanges e.g.
Binance, Coinbase, Bittrex, etc. have two undesirable properties. First, they were custodial, meaning that
traders transfer their assets to the exchange, and trading activity translates to updating the exchange’s
internal mapping of traders and their assets. Second, they were order-book based i.e. they only match buyers
with sellers (collectively, traders), so trading halts when there are no sellers whose ask-prices match the buyer
bid-prices. The prices are fully controlled by traders and therefore can be volatile. The later exchanges e.g.
Uniswap, Balancer, Curve, etc—collectively called Decentralized Exchanges or DEXes—are non-custodial,
have their own inventory of assets, and use a market making (MM) algorithm to adjust prices. The latter
type of exchanges, colloquially also known as market makers, leverage machine learning (ML) to increase
liquidity along with additional desirable properties for the market maker (e.g., maximizing profit) or the
market itself (e.g., stability by incentivizing traders to report true valuations).

A perennial problem with both types of exchanges (and traditional markets, too) is frontrunning, where
an adversary reorders trades to gain a price advantage. For example, say a market maker (MM) is selling an
asset t at $100 each, and the pricing function is such that for each unit sold, the price increases by $100. Say
a trader P submits a trade TP to buy one unit, a (possibly adversarial) MM A sees this pending trade and
executes, before processing TP , a different trade TA to buy one unit, i.e. the adversary A ”front-runs” the

5 Market capitalization of approx. $2 trillion during all of 2021.

trader P . Executing TA before TP raises the price to $200 for P , $100 more than he would otherwise pay.
Trades should be executed in the order they were submitted.

Frontrunning penalizes honest players, and also has a detrimental effect on the health of the underlying
crypto-currency blockchain. As an example, adversarial bots might flood the blockchain with frontrunning
orders when an opportunity for profit arises, with only few of these orders being executed. This flooding
creates a denial of service (DoS) attack. The above effects of frontrunning are worsened in decentralized
exchanges. E.g., when the exchange is implemented by a smart contract on a chain like Ethereum, e.g.,
Uniswap, frontrunning raises transaction fees (gas price on Ethereum) as traders compete to get their trades
in first. And, in theory, it can also affect the security of the underlying blockchain. Indeed, in DEXes, where
the trade ordering is affected by miners through transaction reordering, frontrunning might create incentives
for forking as the miners are more likely to pursue a chain on which they make more profit.

Traditional markets mitigate frontrunning through legislation. However, such legislation is tricky to en-
force as most frontrunning attacks do not leave an indisputable evidence, which would be necessary to
apply fines. As such, several mature markets have embedded certain controlled forms of frontrunning in
their allowed operations. The classical example of this principle is embodied in traditional stock exchange
markets, where high-profile clients might get so called privileged access, allowing them to react faster to
market changes. The above solution is unsatisfactory for crypto-currency markets. For starters, legislation
lags behind and is typically not tailored to crypto-currencies, making deterrence by regulation much harder.
But more importantly, the egalitarian nature of these assets makes preferential frontrunning an undesirable
feature for the majority of its users. The main question addressed (to the affirmative) by our work is

Can we leverage the public-observability of blockchain ledgers together with cryptographic and ma-
chine learning tools to devise a practical frontrunning resistant market maker?

Informally, solving the above problem requires: (i) ensuring a strict ordering on the trades, and (ii) making
sure the system is fast enough for high-frequency trading. The first requirement gets rid of frontrunning attack
and the second ensures the solution’s practicality. The first requirement can be further broken down into
a) preventing traders from frontrunning each other and b) preventing MM from frontrunning. For private-
state blockchains (e.g. ZCash, Dash, Monero, etc), preventing traders from frontrunning is easy because the
traders cannot see each other’s trades (due to transaction privacy). However, the mainstream blockchains
(e.g. Bitcoin, Ethereum, Cardano, etc) are not private and preventing traders from frontrunning each other
requires additional mechanisms.

Several such mechanisms have been proposed, e.g. commit-reveal, encryption, zk-rollups, speed-
bumps/retro-active pricing, and commit secret sharing. However they all cause a slowdown of the system and
are, therefore, in conflict with the second requirement (the system needs to be fast). Alternative approaches
have proposed to simulate MM as a trusted third party (TTP) through secure multi-party computation
(MPC), trusted execution environments (TEEs) and zero-knowledge proofs (ZKPs). These do solve the
frontrunning problem, but once more, conflict with the second requirement and/or make additional trust
assumptions (see also the related research section for a detailed comparison). Indeed, MPC and ZKPs are
expensive cryptographic primitives that negatively affect speed of the system and, TEEs place additional
demands on application hardware (and assumptions thereof). A viable solution needs to satisfy both of the
above requirements, ideally without additional trust assumptions.

This work, FairMM, proposes a market maker (MM) that resolves the frontrunning problem using off-
chain communication and inexpensive hash functions. This is done through a combination of techniques from
cryptography, game theory, blockchain, and machine leaning for financial economics.

At a high level, FairMM operates as follows: Traders and MM communicate off-chain via secure com-
munication channels (e.g. through TLS), traders form a queue, and a trade is processed as follows: 1) MM
issues a ticket to the trader Ti at the front of the queue, this ticket is identified by a cryptographic hash
and signed by the MM (think of the hash as a serial number), then, 2) trader Ti may decide to respond
with trade (trade) or not trade (no trade), 3) MM processes Ti’s response and moves to the next trader Ti+1.
The nature of this ticket hash (or serial number) is such that it incorporates the complete trading history
up to that point. If the MM tries to talk to more than one trader at a time, all but one of the traders will

2

get their trade incorporated into the trading history (trading history is linear, there is no way to keep all
serial numbers valid without creating branches). MM posts the trading activity to a public bulletin board
at regular intervals. The traders can read this bulletin board at any time and if they find any invalid tickets
or that their ticket is missing, they can complain to a smart contract. This smart contract, established by
the MM before its operation starts, locks a large collateral on behalf of MM. On a valid complaint, the
complainant is rewarded (with a sufficiently large but less than the collateral amount) and MM loses all
collateral. This ticketing mechanism is extremely efficient to compute.

The above ticketing mechanism already takes care of the worst-case scenario, i.e., reordering attacks. One
could plug in any market making algorithm (to adjust asset prices) and obtain a reordering-resilient system.
However, the MM can still drop trades, although it will be doing so without the knowledge of subsequent
trades. We resolve this problem by carefully choosing a market maker—a monopolistic profit seeking market
maker—that has economic incentive to not manipulate trading activity in this manner (e.g. by dropping
trades obliviously of future trade requests). A monopolistic profit seeking MM uses trade requests as signals
to determine where the true value of an asset lies (more buy trades =⇒ true value of the asset is higher,
more sell trades =⇒ true value is lower). Its core principle is that, because a monopolistic profit seeking
MM makes most profit when trading activity happens around the true value of an asset, it has no incentive
to manipulate trading requests that would make the signals from trading activity less reliable. See Section 5
for formal discussion.

In addition to proving the security of FairMM, we have implemented and evaluated our design. We show
that this design is extremely competitive. Concretely, we achieve a throughput of over 200 trades/minute.
This is despite strict serialization of trade requests and the fact that we are running off-the-chain part on a
relatively weak, consumer laptop (which communicates with an actual Ethereum node in test environment).
These figures are about 50% higher than the maximum daily volume of Uniswap [36], arguably the most
popular DEX and an order of magnitude higher than P2DEX [55], an order-book exchange implemented
using MPC. We are also better than TEX [42], also an order-book exchange, which either does not support
high frequency trading or is not frontrunning resilient. While Tesseract [38], another orderbook exchange,
reports much higher throughput, it requires both trusted hardware and a consensus group assumption for
its security guarantees. We, on the other had, require no such assumption.

In summary, our work makes the following contributions:
– We provide design of a non-custodial frontrunning resilient market-making crypto-currency exchange that

does not require sophisticated cryptographic machinery (MPC, ZKPs, etc), special hardware (TEEs) or
additional assumptions (e.g. an additional consensus group in addition to the blockchain).

– We extract a useful abstraction—Σ-trade protocols—for asset exchanges that facilitates modular design
of blockchain trading systems.

– We provide an instantiation of the system on Ethereum blockchain and demonstrate that it is very fast,
and practical for real world applications.

1.1 Related Works

Market Makers for Crypto-token Markets New emerging markets, e.g. prediction markets [10] or crypto-
token markets, are typically thin and illiquid and often have to be bootstrapped through intelligent market
makers to provide liquidity and price discovery [12]. A market maker algorithm aims at maximizing liquidity
in the market and/or maximizing its own profit. The zero-profit competitive market maker model [4, 11,
1] considers multiple MMs that compete with each other by lowering their marginal profit to eliminate
competition—such a system converges to a zero-profit. The monopolist market-maker, has been shown to
provide greater liquidity than zero-profit competitive market makers [4, 11, 1, 13]. We adopt the extension
by Das [11] (cf. Section 5).

Fair Exchange and Blockchains There is a large amount of literature on fair exchange including early MPC
works [2, 3, 5, 6, 14], which has been re-ignited with the adoption of blockchains and cryptocurrencies [16,
21, 37, 20, 24, 39]. Due to the relevance of these works to ours, we include a detailed review in Appendix B.
However, these works are not suitable for reuse in our design. Informally, the reason is that in our setting,

3

fair exchange is a subroutine of the Market Maker (MM) protocol, and MM needs to know immediately
whether a trade will settle or not on the blockchain. Therefore, we designed our own fair exchange protocol,
a Σ-trade protocol, that we proved amenable to such composition.

Decentralized exchanges Popular decentralized exchanges e.g. Uniswap, Curve, Kyber, etc [36, 44, 28, 29,
30, 62, 33, 34] do not defend against frontrunning. To our knowledge, Tesseract by Bentov et al. [38] is the
first work that addresses frontrunning in the crypto-currency space. It is orderbook based, custodial, and
simulates a trusted third party (TTP) through trusted execution environments (TEEs). The assumption
here is that since the exchange is a TTP, frontrunning does not happen. Since it relies on players to provide
it with blockchain data, there is a check-pointing mechanism on trusted blocks, and if the exchange becomes
unavailable, there is a consensus group of TEE backed nodes that can enforce/cancel transactions so that
traders do not lose funds. In a similar vein, orderbook based P2DEX [55] by Baum et al. simulates TTP
through outsourced MPC, their technique is similar to the work by Charanjit et al [19] for traditional markets.
TEX (Trustless Exchange) by Khalil et al. [42] is another orderbook exchange. It uses Zero Knowledge Proofs
(ZKPs) for its guarantees. ZKPs are an expensive primitive and, in TEX, there is a trade-off as it either does
not fully support high frequency trading or does not provide frontrunning resilience. In contrast to the above
works, our construction is a market maker, it is non-custodial, does away with expensive primitives (MPC,
ZKPs), additional requirements on hardware and/or additional check-pointing/consensus mechanisms, and
provides frontrunning defence in a high frequency trading environment (as demonstrated by our detailed
comparison with Uniswap in Section 6.3). Note however, that Tesseract supports cross-chain trading, our
work does not.

Fairy by Stathakopoulou et al. [59] solve frontrunning for Byzantine Fault Tolerant (BFT) systems by
augmenting Total Order Broadcast (TOB) protocols with input causality and sender obfuscation. They
also require TEEs. Moreover, adapting this work to address frontrunning in crypto-currencies is non-
trivial. GageMPC [53] by Almashaqbeh et al. tackles privacy preserving auctions using non-interactive MPC
(NIMPC). This work could be adapted into an exchange, but it is unclear whether it could handle high fre-
quency trading. A2MM by Zhou et al. [60] optimizes onchain swaps to mitigate frontrunning attacks. They
study two point arbitrages for two assets. Their analysis holds assuming that all exchanges on a blockchain
will be handled by A2MM . This assumption is too strict for practical applications. Flashbots [57] and Gnosis
Protocol V2 [58] both claim to resolve frontrunning. Flashbots requires strong trust (in the players to follow
protocol) and is therefore not comparable to our work. Gnosis Protocol V2 claims that it will have a defense
against frontrunning when it is built but currently there is no description of how it will be achieved. We refer
to Chainlink 2.0 [56] whitepaper for details on existing techniques to achieve strict ordering of transactions. It
also proposes a Fair Sequence Service (FSS) for Distributed Oracle Networks (DONs) that should solve this
problem in general. However, exactly how such FSS will be implemented is not specified in the whitepaper.

There are some complementary works to ours which studies frontrunning. Flash Boys 2.0 [45] by Daian
et al. give evidence that frontrunning is a serious problem on Ethereum. Bartoletti et al. [54] provide a
theoretical framework to maximize miner extractable value (MEV), Sobol et al [50] discuss frontrunning on
proof of stake blockchains, and Zhou et al. [61] study sandwich attacks.

Next we dive into technical details of the paper, due to space constraints, we have provided relevant
background in Appendix A.

2 Σ-Trade Protocols

A Σ-trade protocol Π is an interactive protocol run by a seller S and potentially many buyers B1, . . . , Bm

(seller S need not know m) where the exchange of tokens happens on blockchain E (We can think of E as
the Ethereum blockchain).

Assume two tokens t1 and t2, each buyer wants to buy tokens of type t2 in exchange of tokens of type t1.
Assume also that, each buyer Bi has an upper bound, denoted with zi, of type t1 tokens that he can spend.
The amount of t2 tokens the buyer wants to buy is decided adaptively in the last round of interaction. A
Σ-trade protocol Π consists of the following steps:

4

SCi

State: ziΞ locked for time Ti, the public keys (pkES , pk
T
S), (pk

E
i , pk

T
i) and an initially empty list of identifier

usedIDs

Input: x, y, ID, σ1, σ2. If ID /∈ usedIDs and Ver(pkEi , σ1, x||y||pkES ||ID) = 1 and Ver(pkES , σ2, x||y||pkEi ||ID) = 1

and there is a transaction with the identifier ID in its payload that moves yŤ from pkŤS to pkŤi then move xΞ
from pkEi to pkES , set zi ← zi − x and add ID to usedIDs.

Fig. 1. Smart contract SCi for the case where Bi wants to buy Ť for Ξ. The time Ti has to be set in such a way that
the seller has time to create a transaction that pays Bi and to invoke the contract to get the Ξ from Bi

1. Each buyer Bi creates a smart contract SCi on E that locks zi tokens of type t1 (more details on SCi are
provided later).

2. Bi and S exchange three off-chain messages. First, Bi sends his identities to the seller S. Note that Bi does
not yet disclose his desired quantity t2 tokens. In response, S proposes the exchange rate, askedPrice,
for the tokens.

3. Let y be the quantity of tokens of type t2 that the buyer wants to buy s.t. y · askedPrice ≤ zi. If
Bi agrees with askedPrice, then Bi sends a certificate c. This c can be used by S to invoke SCi and
withdraw x = y · askedPrice tokens of type t1 from Bi’s account. However, SCi will move the x tokens
from Bi’s account if S has moved to Bi’s account y tokens of type t2. SCi ensures atomic transactions
but can only be triggered by the seller.
Any instantiation of Σ-trade protocol can be used in our Πtrade protocol. We now show an insantiation

of Σ-trade protocol to trade Ť for Ξ.

2.1 Selling tokens for ethers

For a buyer Bi, denote with (skCi , pk
C
i) the signing-verification keys associated with account C ∈ {E, Ť},

where E represents Ethereum and Ť , a token on Ethereum. Ξ denotes Ethereum currency. Similarly for
seller, (skCS , pk

C
S) denote the signing-verification keys associated with account C ∈ {E, Ť}.

A formal description of the smart-contract and our protocol Π is in Fig. 1 and Fig. 2. Here, we give the
intuition. The smart contract SCi locks for Ti rounds ziΞ and manages a list of transaction identifiers. Upon
receiving an input (x, y, ID) that has been authenticated by both the buyer and the seller, SCi moves xΞ to
seller’s account if 1) a transaction trx that moves yŤ from the seller’s account to the buyer’s account has
been made and 2) trx contains the identifier ID in its payload. In addition, to prevent replay attacks, SCi
does not allow reusing ID. The same contract SCi can be used for multiple trades if zi is big enough.

We now describe the protocol. The buyer sends his Ethereum public key to the seller, who replies with
the exchange rate, askedPrice between Ξ and Ť . If the buyer agrees with askedPrice and wants to buy
yŤ tokens, he generates an identifier ID, computes x = y · askedPrice in Ξ, and signs x||y||ID. He sends
the signed values (and signature) to the seller. The seller, 1) posts a transaction trx that pays yŤ into the
buyer’s account, trx contains ID in its payload, and 2) signs x||y||ID, and uses the resulting signature, along
with signature from the buyer, to invoke SCi. Note that the seller could post trx and also sends it to the
buyer to indicate that the trade will occur.

3 (Fair) Ordering of Transactions

Our main contribution is the Universally Composable (UC)[8] formalization and realization of the trade
functionality Ftrade. Ftrade formally specifies the only ways in which the market maker can reorder the trades.
For simplicity, assume that there are only two assets: Ξ and Ť . Denote with priceŤ→Ξ (and priceΞ→Ť)

5

Π

Bi’s initial state:(pkΞS , pkŤS), (pk
Ξ
i , pkŤi), (sk

Ξ
i , skŤi), the smart contract SCi (see Fig. 1) and a transaction

identifier ID initialized to 0.
S’s initial state: (pkΞS , pkŤS), (sk

Ξ
S , skŤS).

Bi. Let y be the amount of Ť that Bi wants buy using Ξ. Send pkEi to S
S. Let askedPrice be the price at which S is willing to sell Ť for Ξ (i.e., 1Ť = askedPriceΞ). Upon receiving

pkEi from the party Bi do the following.
• If Bi has created a contract according to Fig. 1 then continue, otherwise stop interacting with Bi.
• Send askedPrice to Bi.

Bi. Upon receiving askedPrice from S, if askedPrice represents a good price (w.r.t. the strategy of Bi) then
do the following steps, otherwise send NO-TRADE to S.

• Compute ID← ID+ 1 and x← y · askedPrice and σ1
$←− Sign(skEi , x||y||pkES ||ID)

• Send x, y, ID, σ1, pk
Ť
i to S.

S. Upon receiving x, y, ID, σ1 from Bi do the following steps.
• If Ver(pkEi , σ1, x||y||pkES ||ID) = 1 and x = y · askedPrice then continue with the following steps, ignore

the message of Bi otherwise.

• Compute σ2
$←− Sign(skES , x||y||pkEi ||ID).

• Post a transaction trx with the identifier ID in its payload that moves yŤ from pkŤS toward pkŤi .
• Invoke SCi using the input (x, y, ID, σ1, σ2).

Fig. 2. Π, Bi wants to sell Ξ for Ť .

the price at which MM sells Ť (or Ξ) for Ξ (for Ť). Assume that trader Pi’s trade information is encoded
in tradei. That is, tradei describes the type and the amount of assets, the prices, trade direction (sell or
buy) and etc. Moreover, assume that all the parties share the procedure MMalgorithm (the MM algorithm),

which on input of a trade outputs the updated prices (priceŤ→Ξ and priceΞ→Ť). At a high level, Ftrade

works as follows. Upon receiving a request from a trader Pi, Ftrade sends the prices to Pi, and signals to
MM that Pi wants to trade. If Pi agrees with the prices, he sends trade information, tradei, to Ftrade. Upon
receiving tradei, Ftrade forwards tradei to MM who has two choices: 1) decide not to trade with Pi by sending
a command NO-TRADE to Ftrade, or 2) accept trade with Pi. If MM does any other action before doing one
of these two (e.g., MM starts trading with a party other than Pi), Ftrade allows that but also sets a special
flag abort to 1. This means that if the traders query Ftrade with the command getTrades (to get the list
of trades accepted by MM), Ftrade would return ⊥ to denote that MM has misbehaved. A corrupt MM can also
decide to set the output of Ftrade to always be ⊥. This captures the fact that MM can decide to stop working
at his will. Moreover, MM can add any trade of a corrupted party to the list of trades using the command
setAdvTrade, but this can be done only after MM has concluded any in-progress trades, as specified above.

Ftrade is parametrized by ∆, which denotes the maximum number of rounds per epoch. In each epoch MM

should allow traders to see the entire list of trades. MM can make the list of trades accessible via a special
command setOutput. If MM does not send this command at least every ∆ rounds, Ftrade will return ⊥ to
any honest party who requests trades list.

Note that Ftrade allows the adversarial MM to misbehave (e.g., by completely reordering the trades) but
this misbehavior will be notified to the honest parties. Moreover, the MM cannot modify the trades (e.g.,
change the quantity that a party Pi is willing to sell/buy). Therefore, even if the adversary reorders the
trades (at the cost of being detected), all the trades will be consistent with the prices that Ftrade sent to the
traders. The market maker still has the power to choose the parties he wants to trade with first, however,
this choice has to be made obliviously of the trade information of the honest party. Luckily, we can also argue
that for a relevant class of market-making algorithms, this does not constitute an additional useful power.
We finally note that Ftrade does not allow any real exchange of assets. However, if the output of Ftrade is
posted on a blockchain and if the trades are defined properly according to the language of the blockchain,

6

Auxiliary procedures

verifyPrices(Trades)

Constants: SPŤ→Ξ , SPΞ→Ť

Set p1 ← SPŤ→Ξ , p2 ← SPΞ→Ť and for j ← 1, . . . , |Trades|
If checkTrade(tradej , p1, p2) = 0 then return 0.a

Compute p1, p2 ← MMalgorithm(p1, p2, tradej).
return 1.

verification(hstart, h
′, h, pk, requests)

Set found← 0.
Set h1 ← hstart and for j ← 1, . . . , |requests|

Parse requests[j] as (pkj , tradej , σj).
Compute h2 ← H(h1||pkj), h1 ← H(h2||tradej).
If h2 = h and pk = pkj then

found← 1.
If trade ̸= NO-TRADE and Ver(pkj , σj , trade) ̸= 1 then return 0.b

If h′ ̸= h1 or found = 0 then return 0.
Return 1.

checkBB(hstart, h
′, requests, pkMM, e)

Set found← 1.
For any value ti := (hi, σi, pki, e) that appears on the BB (posted on the behalf of a party which is not MM)
do the following.

If Ver(pkMM, hi||pki||e, σi) = 0 then ignore ti else found ← found ∧
verification(hstart, h

′, hi, pki, requests)
Return found.

checkPrices(SPŤ→Ξ , SPΞ→Ť , Trades)

Initialize p1 ← SPŤ→Ξ , p2 ← SPΞ→Ť and abort← 0.
For j ← 1, . . . , |Trades|

parse Trades[j] as (P, trade).
if checkTrade(tradej , p1, p2) = 0 then abort← 1.
compute p1, p2 ← MMalgorithm(p1, p2, trade).

Return abort

a In this case, everybody will detect an invalid computation of the prices since the algorithm MMalgorithm is
public.

b Also in this case, everybody will detect an invalid signature and abort.

Fig. 3. Auxiliary procedures

then the MM can use the trades to trigger events on the blockchain that move the assets according to what
is described by Ftrade. We can also disincentivize any malicious behavior of the adversary by means of the
compensation paradigm over the blockchain. Indeed, given that in our protocol all the honest parties can
detect a malicious behavior without using any private state, the same can be done by a smart contract.

To simplify the description of our protocol, we make use of the procedures checkTrade and checkPrices.
checkTrade takes as input trade, priceŤ→Ξ and priceΞ→Ť , and outputs 1 if the description of a trade

trade is consistent with the prices defined by (priceŤ→Ξ , priceΞ→Ť). checkPrices takes as input a list of
trades and verifies that trade prices are consistent with MMalgorithm. These procedure are formally specified
in Fig. 3 and Ftrade in Fig. 4.

3.1 Our Protocol: how to realize Ftrade

Assume all parties have access to a bulletin board BB, all parties know the MM’s public key, and the procedure
MMalgorithm is public. Our protocol realizes Ftrade as follows. MM maintains a hash chain (that starts with a

7

Functionality Ftrade

Ftrade is parametrized by party-set P1, . . . , Pm and the market maker MM. The functionality also manages a
flag abort ← 0 and an initially empty list Trades. It is also parametrized by τ , timer (with timer initialized

to −τ), the starting prices SPŤ→Ξ and SPΞ→Ť at which MM is willing to sell (and respectively buy) Ť for Ξ,

respectively, the integers ∆, R, and the epoch index e. The functionality initializes priceΞ→Ť ← SPΞ→Ť ,

priceŤ→Ξ ← SPŤ→Ξ , R← ∆, e← 0.
Let Tnow be the current round (Tnow > 0), upon receiving any message from any party or from the adversary A
act as follows:

– Upon receiving (request, Pi) from a party Pi

• If MM is corrupted then send (request, Pi) to A else

• If Tnow − timer > τ thena send (priceΞ→Ť , priceŤ→Ξ) to Pi, send Pi to MM, set activep ← Pi and
timer← Tnow else ignore the command.

– Upon receiving (setPrice, Pi, price
Ξ→Ť , priceŤ→Ξ) from a corrupted MM then send

(priceΞ→Ť , priceŤ→Ξ) to Pi. If there is no entry (Pj ,⊥) with j ∈ [m] in Trades then add the
entry (Pi,⊥) to the list Trades, otherwise set abort← 1.

– Upon receiving (ok, tradei) from Pi

• If MM is corrupted then send (Pi, tradei) to A
• else if Pi ̸= activep then ignore the input, else

If checkTrade(tradei, price
Ξ→Ť , priceŤ→Ξ) = 1 then add (Pi, tradei) to Trades and send ok to

Pi else add (Pi, NO-TRADE) to Trades and send (ko) to Pi.
– Upon receiving (setTrade, Pi, y) from A do:

- If the entry (Pi,⊥) is on the top of the list Trades and (ok, tradei) has been received from Pi then
- if y = 1 then replace (Pi,⊥) with (Pi, tradei) in Trades, otherwise replace (Pi,⊥) with
(Pi, NO-TRADE)

- else set abort← 1.
– Upon receiving (setAdvTrade, Pi, trade) from A, if Pi is not a corrupted party then ignore the message,

otherwise do the following:
• if there is an entry (Pj ,⊥) with j ∈ [m] on the top of the list then set abort← 1 else
• add (Pi, trade) to Trades.

– Upon receiving (getTrades) from a party Pi at round Tnow do the following steps.
• If Tnow ≤ R and output = 0 then ignore the input of Pi.
• If Tnow ≥ R and output = 0 then return ⊥ else

• If output = 1 and abort = 0 and checkPrices(SPŤ→Ξ , SPΞ→Ť , Trades) = 0 and there is no entry
(Pj ,⊥) in Trades then return (Trades⋆, e) (where Trades⋆ is a copy of Trades with the expection that
each entry (P, trade) is replaced with trade in Trades⋆, in the same order, but) and set R← Tnow+∆,
e← e+ 1, output = 0.

• else return ⊥.
a This condition lets the functionality ignore any new request for at most τ rounds. Note that the first time the
functionality receives the commnad request the condition trivially holds.

Fig. 4. The trades functionality Ftrade.

8

Πtrade

1) Pi: creation of a request. Send (request, pki) to MM.

2) MM: waiting for a request. Upon receiving (request, pki) from the party Pi do the following.
– Compute h′ ← H(h||pki) and set h← h′ and σ ← Sign(skMM, h||pki||e).
– Send ticket1 := (h, σ, priceΞ→Ť , priceŤ→Ξ , pki) to Pi and ignore any request that comes from any
party Pj ̸= Pi for τ rounds.

3) Pi: finalizing the request. Upon receiving ticket1 := (h, σ, priceΞ→Ť , priceŤ→Ξ , pki) from MM, if the
received prices are not satisfactory then send NO-TRADE. Else create trade with all the required information
with trade.p1 = priceΞ→Ť and trade.p2 = priceŤ→Ξ and do the following:

– If Ver(pkMM, σ, h||pki||ei) = 1 then compute σi ← Sign(ski, h||trade) and send (trade, σi) to MM, else
ignore the message received from MM

4) MM: reply to the request of Pi. If (trade, σi) is received from Pi within τ rounds such that

Ver(pki, σi, h||trade)) = 1 and checkTrade(tradei, price
Ξ→Ť , priceŤ→Ξ) = 1 then do the following.

– Compute h′ ← H(h||trade) and set h← h′.
– Add (pki, trade, σi) to requests.

– Run MMalgorithm(trade, priceΞ→Ť , priceŤ→Ξ) thus obtaining priceΞ→Ť ′
, priceŤ→Ξ ′

and set

priceΞ→Ť ← priceΞ→Ť ′
, priceŤ→Ξ ← priceŤ→Ξ ′

.
else do the following
– Compute h′ ← H(h||NO-TRADE) and set h← h′ and add (pki, NO-TRADE, 0

λ) to requests.
Start accepting new requests from any party (i.e., goto step 2).

5) MM: posting trades to the BB. If R rounds have passed, post (h, σ, requests, σ⋆, e) to the BB, where σ ←
Sign(skMM, h) and σ⋆ ← Sign(skMM, requests||e). Set R← R+∆, update the epoch number e← e+ 1 and
reinitialize requests.

6) Pi: checking honest behavior of the MM. In each round Pi does the following
- If no message (h′, σ′, requests, σ⋆, ei) has been posted on the BB within the last ∆ rounds such that
Ver(pkMM, σ

′, h′) = 1 and Ver(pkMM, σ
⋆, requests||ei) = 1 then output ⊥, else compute ei ← ei + 1 and

continue as follows.
- If Pi has not received a new ticket ticket1 := (h, σ, priceΞ→Ť , priceŤ→Ξ , pki) during the epoch ei− 1
then continue, else if verification(hei−1, h

′, h, pki, requests) = 0 then send (h, σ, pk, ei−1) to the BB
as a proof of cheating of MM and set outputi ← ⊥.

- Set hei ← h′.

7) Pi upon receiving getTrades, if outputi = ⊥ then return ⊥ else reinitialize Trades and do the following.

- For each message (h′
j , σ

′
j , requestsj , σ

⋆
j , j) with j ∈ {0, . . . , ei − 1} such that Ver(pkMM, σ

′
j , h

′
j) = 1 and

Ver(pkMM, σ
⋆
j , requestsj ||j) = 1 posted on the BB, if checkBB(hj , h

′
j , requestsj , pkMM, j)=0 then return ⊥,

else for each (pk, trade, σ) in requestsj add trade to Trades.

- If verifyPrices(Trades) = 1 then output (Trades, ei) else output ⊥.

Fig. 5. Πtrade, the protocol that realizes Ftrade.

9

value hstart), all parties know hstart. Whenever MM receives a request from a trader Pi, he adds to the hash
chain the public identity of Pi, signs the new head (say hi), the public key of Pi and the current prices. We
call this set of information a ticket. The MM then hands over the ticket to the trader. The trader checks that
the signature is valid under the MM’s public key, and if so, Pi defines the trade tradei, signs it thus obtaining
σi, and sends (tradei, σi) to MM (σi guarantees that MM cannot change tradei). MM, upon receiving tradei
and its signature, checks if tradei is well formed (i.e., the prices used to describe tradei are consistent with
what MM sent in the previous round). If so, MM adds to the hash chain tradei, adds tradei with σi to a list
requests, run MMalgorithm on tradei and the current prices to get the new prices, and waits to receive
next trade request.

In every epoch (at most ∆ rounds) MM publishes to the bulletin board6 the head h of the hash chain
and the list requests, all authenticated with his signing key. If MM that does not post such authenticated
information within ∆ rounds then all the traders will understand this as an abort and output ⊥. Each honest
party that has access to the BB now: 1) checks that each trade in requests is either NO-TRADE or a correctly
signed trade; 2) checks that all the prices are consistent with MMalgorithm and that the hash chain that
starts at hstart and finishes at h can be constructed using the trades in requests; and, 3) checks if the hash
value hi (received as part of the ticket) is part of the hash chain.

We observe that anyone (even traders who did not trade e.g. third parties) can check if the first and the
second conditions hold. If either the first or the second condition does not hold, then all the honest traders
output ⊥. The third condition can be checked only by a trader who received a ticket. If a trader detects that
the third condition does not hold, he can post his ticket on the bulletin board. At this point all the other
parties who see BB can also determine that MM misbehaved and output ⊥. Intuitively, our protocol realizes
Ftrade because once MM sends a ticket to a trader, he also commits to a set of trades. As long as MM cannot
generate collisions for the hash function, he cannot include new trades in the hash chain. This protocol,
Πtrade, is formally specified in Fig. 5. In the protocol, MM maintains h← 0λ, an initially empty list requests
and the integers R, τ and ∆. ∆ represents the maximum number of rounds after which MM has to post the
trades on the BB, τ represents the timeout (e.g. number of seconds, or rounds) before which a party has

to reply to MM (to avoid DoS attack) and R is initialized to ∆. Let also SPŤ→Ξ and SPΞ→Ť be the starting

prices. MM also maintains an integer called epoch index denoted with e, MM initializes priceΞ→Ť ← SPΞ→Ť

and priceŤ→Ξ ← SPŤ→Ξ and e = 0. Each party maintains and initially empty list Trades, h0 ← 0λ and a
view of the current epoch index which we denote by ei.

The protocol uses utility procedures to check misbehavior. A formal description of these procedures is
presented in Fig. 3, a summary follows:

– verifyPrices takes as input a list of trades and checks each trade price is computed according to
MMalgorithm.

– verification takes as input the ticket received by a trader, the head of the hash chain and the list of
trades posted at the end of an epoch to the BB by MM, and checks whether the ticket appears in the hash
chain and its consistency of trades list with hash chain.

– checkBB checks BB for valid tickets and runs verification for each of them. If verification outputs
0, the procedure outputs 0 as well.

In Appendix C we formally prove the following theorem:

Theorem 1. Assuming that unforgeable signatures, and collision resistent hash functions exist, Πtrade re-
alizes Ftrade in the (FRO, BB)-hybrid world.

4 Combining Ftrade with Σ-Exchange Protocols.

We observe that if, in the realization of Ftrade, we replace the BB with a blockchain that supports smart
contracts, then a smart contract can act as a party registered to Ftrade that can query Ftrade with the

6 publishing can be done cheaply e.g. by only posting the hash on the blockchain and providing hash-preimages on
demand.

10

SCaccount

State: The public key pkΞMM and the integer Y . The contract remains active until round TMM.
On any payment toward pkΞMM: If the balance of pk

Ξ
MM after the payment is less than Y then accept the payment,

else reject the payment.

Fig. 6. The contract does not allow MM to gain more than Y Ξ,

command getTrades. We can program this smart contract in such a way that if the output of Ftrade is
⊥ then the MM is penalized. In our final protocol the traders and MM run a Σ-trade protocol Π, and in
parallel, invoke Ftrade with the same information as input i.e. the prices, quantity and the type of the trades
used in the execution of Π. Once that the output of Ftrade is generated, we can rely on a smart contract
to check that the trades are consistent with the transactions generated by Π. If this is not the case then
MM can be penalized. More precisely, to punish a misbehaving MM we require MM to create a smart contract
SCpenalize which locks a collateral z. SCpenalize, if queried by any party, inspects the output of Ftrade and if
it is ⊥ then SCpenalize burns the collateral of MM. Otherwise SCpenalize checks whether the trades from Ftrade

are consistent with the transactions generated by MM on the Ethereum blockchain with respect to the wallet
addresses (pkΞMM, pk

Ť
MM). If they are not, SCpenalize burns the collateral. We note that this contract is expensive

to execute (in terms of gas cost). However, if MM and the traders follow the protocol nobody will ever invoke
it. On the other hand, if MM misbehaves then a trader will detect it (from the output of Ftrade) and will
invoke SCpenalize. We incentivize the honest invocations of SCpenalize by transferring a small portion of the
locked collateral to the calling party before burning the rest of it.

SCpenalize

State: zΞ and rewardΞ locked for time T , the public key pkΞMM
Checking that MM is advancing:
- Act as a party P registered to Ftrade which receives no input.

Upon receiving the input detected from a party Pi with public key pkΞi :
- Send (getTrades) to Ftrade.
- Upon receiving output from Ftrade, if output = ⊥ then
• move rewardΞ to pkΞi and destroy zΞ, else

Else, parse output as (Trades, e) and check that each trade in Trades corresponds to a transaction on the
ethereum chain. If that is the case then do nothing, else move rewardΞ to pkΞi and destroy the zΞ.

Fig. 7. Smart contract SCpenalize that penalize MM in the case where Ftrade outputs ⊥. The gas fee required to run the
contract on the input detected is payed by the contract’s caller. We assume that this fee is strictly less than reward

(e.g., reward is 10 times the gas fee).

To finish exposition, we need to introduce yet another smart contract, SCaccount. This contract, too, is
created by MM. It checks if the transactions that pay the MM’s account exceed a certain value Y . If this is the
case, then the contract blocks additional payment towards MM. Hence it bounds the amount of commodities
that MM can trade, We do it to prevent a situation where profit of the MM exceeds the collateral and thus
makes it rational to misbehave (and get penalized). Observe that no malicious (even irrational) MM can steal
money from the traders. The worst that MM can do is to frontrun the traders (by letting Ftrade output ⊥) or
avoid posting transactions that allow the settling of the trades. Both these types of misbehavior is caught

11

by SCpenalize and MM loses collateral. Thus, if we set Y to be smaller than the collateral of SCpenalize, then it
is not a viable strategy for a rational MM to be penalized by means of SCpenalize.

Πfull

MM’s initial state: public keys (pkΞMM, pk
Ť
MM) with the corresponding secret keys (skΞMM, sk

Ť
MM) and the smart contracts

SCpenalize, SCaccount.

Pi’s initial state: the public keys of the MM (pkΞMM, pk
Ť
MM), his own public keys (pkΞi , pkŤi) with the corresponding

secret keys (skΞi , skŤi), the smart contract SCi which can be invoked by MM up to round Ti with Ti << T a and a
transaction identifier ID initialized to 0.

Pi. Before interacting with MM check that MM has created a smart-contracts SCpenalize, SCaccount prescribed in
Figs. 6 and 7. Let x be the amount of Ξ that Pi wants exchange for Ť . Send (request, pkEi) to F

trade. Upon

receiving (priceΞ→Ť , priceŤ→Ξ) from Ftrade, if the prices are not good accordingly to the Pi’s strategy,
then send NO-TRADE to Ftrade, else do the following

• Compute ID← ID+ 1 and y ← x · askedPrice and σ1
$←− Sign(skEi , x||y||pkEB ||ID)

• Define tradei as the concatenation of (x, y, ID, σ1, pk
Ť
i) and send (ok, tradei) to Ftrade.

Pi. On each round send getTrade to Ftrade. If Ftrade replies with ⊥ then invoke SCpenalize with the input
detected, else let (Trades, ei) be the output of Ftrade and do the following.
• If Ti rounds have passed (i.e., SCi cannot be invoked anymore), tradei belongs to Trades and SCi has

never stored in usedIDs the identifier ID then invoke SCpenalize with the input detected.b

MM. Upon receiving pkEi from Ftrade do the following steps.
• If Pi has created a contract SCi accordingly to Fig. 1 then continue, otherwise stop interacting with Pi.
• Sends (setPrice, priceΞ→Ť , priceŤ→Ξ) to Ftrade.

MM. Upon receiving (ok, tradei) from Ftrade, parse tradei as x, y, ID, σ1, pk
Ť
i and do the following steps.

• If Ver(pkΞi , σ1, x||y||pkΞMM||ID) = 1 and y = x · askedPrice and there are enough rounds to post a
transaction and invoke SCi then continue with the following steps, else send (setTrade, Pi, 0) to Ftrade.

• Compute σ2
$←− Sign(skΞMM, x||y||pkΞi ||ID).

• Post a transaction trx with the identifier ID in its payload that moves yŤ from pkŤMM toward pkŤi .
• Invoke SCi using the input (x, y, ID, σ1, σ2).
• Send (setTrade, Pi, 1) to Ftrade.

MM. Every ∆ rounds MM sends setOutput to Ftrade.

a We require Ti to be smaller than T (the time-lock of SCpenalize) to give time to a party to trigger the complain
mechanism of SCpenalize. The exact relation between Ti and T is given by the liveness parameter of the underling
blockchain.

b This capture the scenario where MM is honest in the execution of Ftrade but he does not post the transaction
that triggers the actual trade on-chain.

Fig. 8. Full market-maker protocol with identifiable (and punishable) misbehaviour.

The formal description of our final protocol Πfull is in Fig. 8. We describe the case when traders only
want to buy Ť for Ξ. Πfull combines the functionality Ftrade and the Σ-trade protocol. We specify SCpenalize
in Fig. 7. SCpenalize acts like a party registered to Ftrade who, when queried sends getTrades to Ftrade and
decides whether the MM misbehaved. Let T be the number of rounds for which SCpenalize has locked the
collateral, we can claim the following:

Theorem 2. If there is at least one honest party Pi then, within the first T rounds one of the following
occurs with overwhelming probability:
1. the Ftrade outputs ⊥ and the collateral locked in SCpenalize by MM is burned;

12

2. the Ftrade is not ⊥ but there is not a perfect correspondence between the trades contained in the output of
Ftrade and the transactions that appear on the blockchain E with respect to MM’s public keys. Moreover,
the collateral locked in SCpenalize is burned;

3. the Ftrade is not ⊥, there is a perfect correspondence between the trades contained in the output of Ftrade

and the transactions that appear on the blockchain E with respect to MM’s public keys and all the collateral
remains locked in SCpenalize for T rounds.

For appropriate parameters in the smart contracts, and assuming the market-maker maximizes his amount
of Ξ, we can argue that the first two cases in Theorem 2 happen with negligible probability. Indeed, let α be
the gas cost to run SCpenalize with the input detected, let reward be reward that could be given to a party
calling SCpenalize, let z be the locked collateral in SCpenalize and let Y be the maximum amount of Ξ that
MM can earn at pkΞMM. If there is at least one honest party Pi, reward > α, and z > Y then for every rational
market-maker the probability of occurrence of the first two cases of Theorem 2 is negligible.

5 Incentive Compatibility of Market Maker (MM)

We use myopic-greedy market maker from [13] in our construction. Here we provide an overview, see Ap-
pendix D for details and proofs. Let market maker’s distribution pt(v) quantify market maker’s information
on the true value V after t trades, our market maker has the following properties:

– The market discovers the originally unknown true value of the commodity based on trades with traders
who arrive with imperfect information. Empirically, the speed of this convergence is illustrated in [13]
and follows the standard 1/t convergence for Bayesian updates.

– The market maker uncertainty converges to 0. The market maker recovers the true value in expectation,
and also becomes more certain of it. Again, this convergence is standard for Bayesian updates.

– In equilibrium, the market maker spread that produces maximum single step profit monotonically in-
creases with the variance of its distribution, which converges to zero. Hence the bid-ask spread converges
to a minimum possible for a profit maximizing market maker. A market maker who knows V can always
make more expected profit than a market maker who does not.

The last bullet above is essentially the intuition behind why an optimal market maker has no incentive to
manipulate prices. The maximum profit is made when the market maker knows the true value V . Hence
the market maker is incentivized to discover the true value V as quickly as possible. The only information
available on the V is through the un-manipulated trader signals xt.

We now present the main theorem (proved in Appendix D):

Theorem 3 (Incentive compatibility). A rational profit-seeking market maker has no incentive to ma-
nipulate the price given knowledge that some trader wishes to place a trade and the direction (buy/sell) of
the trade being known.

The following lemma states that it is suboptimal for the market maker in our setting to ignore trades
without knowledge of other trades.

Lemma 1. A rational profit-seeking market maker which receives sequential trades, has no incentive to
disregard completed trades, even when the direction of the following trade is known.

6 Evaluation

We implemented Πtrade to trade Ether and ERC20 tokens on Ethereum (see Appendix E for implementation
details). Table 1 lists the gas costs. Note that the cost of executing one trade is the sum of the costs of execute
methods of the SellerContract and the BuyerContract.

13

6.1 Experiment Setup

To measure throughput, we ran several experiments on a consumer laptop equipped with Core i7-10510U
1.80 GHz CPU and 8GB of RAM running Ubuntu 20.04. Recall that in our fair trade protocol Πtrade (see
Fig. 5), the buyer Pi first sends its public keys to the seller MM. Then the seller responds by sending a ticket
and the current prices. Both of these messages can be computed very cheaply. Concretely creating the first
message takes less than 50ms (for each party) in our setup. Then the buyer either responds with NO-TRADE or
trade. This is still cheap and can be done in less than 50ms. Now the seller must respond to the trade offer.
If this offer is NO-TRADE, the buyer needs to perform very little work (concretely less than 50ms). However, if
the offer is trade, the seller must verify and create signatures, perform balance checks on appropriate assets
and create/broadcast a transaction for the trade. These operations are slow (especially the ones that involve
communicating with an Ethereum node). Concretely, it takes ≈ 350ms to prepare this message. Lastly, we
observed that the typical round trip time from buyer → seller → buyer is less than 100ms.

Our goal was to observe the system’s throughput in the following adversarial scenarios. The first is
the Standard DoS attack. Here, a malicious buyer floods the system with ticket requests and then stops
responding, slowing the system down. To this end, we performed the following experiment: n buyers connect
to the seller. The seller responds (with ticket and prices) to them in the order they connect. Upon receiving
the ticket (and prices) from the seller, an honest buyer will execute a trade (i.e., the trade scenario). On
the other hand, a corrupt buyer will stop responding. After a timeout τ , the seller will assume a NO-TRADE

response, execute the NO-TRADE scenario, and move to the next buyer. We ran experiments with n = 300
buyers, repeating 5 times and reporting the average measurement. Note that relatively few repetitions of the
experiments are not a concern because of low variance of the measured values.

The other attack scenario is aWorst-case Throughput attack. The setting remains the same as above with
one difference: the malicious buyer now waits until just before the timeout and then responds with a trade

response. This strategy is more effective at slowing down the system than the standard DoS attack. The
reason why it is the case is discussed in the next section.

6.2 Analysis of Results

The results of the experiments for Standard DoS attack are summarized in Fig. 9, and for Worst-case
Throughput attack, in Fig. 10. We observe that in Standard DoS attack (cf. Fig. 9) with no corruptions,
throughput is over 200 trades/min. Recall that the gas cost of a trade is 101K, Assuming block gas limit is
12M (i.e. the current limit) and block generation delay of 15s, Upper bound on throughput is 475 trades/min.
This upper bound assumes no other application (except ours) competes for block space. Keeping this in mind,
achieving over 200 trades/min is an excellent throughput. This number is higher than Uniswap’s[36] average
throughput/min on its highest daily volume (cf. Section 6.3). Recall also that this throughput is achieved
on a consumer laptop. A high-end server (typical machine for such use-cases) will yield higher throughput.

Interestingly, at low values of τ , the throughput of the system goes up with the number of corruptions.
This is not an anomaly. If a malicious trader does not respond within the timeout τ , the seller assumes
a NO-TRADE response which takes about one-seventh of the time it takes to execute trade response (cf.
Section 6.1). This means at low values of τ (τ < execution-timet of trade) and some corruptions, some (i.e.
the corrupt) trades are cheaper to execute compared to when there are no corruptions (because all honest
players trigger the trade scenario). This effect disappears as soon as the value of the timeout τ goes near
and above the execution-time of the trade scenario. While setting a low timeout τ may seem a good idea to
defend against malicious parties, it should not be less than the typical round-trip time (100ms in our trials),
otherwise it will cause timeouts for honest players. Note also that a trader needs to setup a smart contract
and register with the market maker before commencing trading. Therefore, Sybil attack is not trivial and
repeat offenders may be blacklisted.

A better attack strategy would be for a malicious buyer to wait until just before the timeout (for maximum
slowdown) and then respond with trade response; to trigger the more expensive (in running time) scenario
for seller. This strategy removes the above mentioned advantage. Concretely, a malicious seller would wait

14

Table 1. Gas Costs of Seller and Buyer Contracts.

Methods Gas USD†

Contract Method 47gwei/gas∗ 3,284.20 usd/eth∗

BuyerContract claimExpiry 31,619 4.88
execute 67,984 10.50

SellerContract execute 33,456 5.16

Deployments
BuyerContract 1,082,529 167.09
SellerContract 836,341 129.09

∗ Prices taken from https://coinmarketcap.com/ on 2021-09-10.
† USD cost is a bad measure of contract complexity. We list it to be consistent with other work.

until he has has just enough time left for one round-trip (100ms in our setup). Thus the amount of time he
should wait, delayBudget, can be computed as delayBudget = τ − RoundTripTime. The negative effect of
such attack is seen in Fig. 10. The throughput has gone down for all values of τ . Importantly though, observe
that the x-axis in Fig. 10 starts at τ = 200. This is because at τ = 100, the delayBudget of the adversary
is 0 i.e., he has to respond immediately and there is no longer a difference between an honest buyer and a
malicious buyer.

In conclusion, the choice for value of τ should be the typical round-trip time (with some noise). This
prevents throughput-loss even against a determined adversary who wants to pay (via trade responses) to
slow down the system. Finally, consider that in real life some honest sellers may also respond with NO-TRADE

e.g., if the prices are not favorable. Hence, the value of 205 trades per minute at τ = 100 should be considered
the lower bound.

100 200 400 600 800 1,000
50

100

200

300

400

Timeout τ (milliseconds)

T
h
ro
u
g
h
p
u
t
(t
ra
d
es

p
er

m
in
u
te
)

Standard DoS Throughput vs. Timeout τ

Corruption 0%

15% 30%

45% 60%

75% 90%

Fig. 9. Standard DoS Attack Throughput (at 0% to 90%
corruption). Values average of 5 runs. Note that x-axis
starts at ms, this is the typical RTT, and any τ < 100
may cause timeouts for honest players.

200 400 600 800 1,000
0

50

100

150

200

250

300

Timeout τ (milliseconds)

T
h
ro
u
g
h
p
u
t
(t
ra
d
es

p
er

m
in
u
te
)

Worst Case Throughput vs. Timeout τ

Corruption 0%

15% 30%

45% 60%

75% 90%

Fig. 10. Worst-case Throughput (at 0% to 90% corrup-
tions). Note: x-axis starts at 200ms because malicious
player needs a budget of at least RTT (100ms here) to
respond without risking timeout.

15

https://coinmarketcap.com/

6.3 Comparison with Uniswap

A summary of FairMM and Uniswap is presented in Table 2. See Appendix F for our analysis of Uniswap
gas costs. At the time of this writing, the throughput values in v2 are higher than v3 e.g. the highest daily
volume 3 times more for v2 (251K txns) than v3 (71K txns). So, we compare against v2.

Table 2. Comparison Summary

Feature FairMM Uniswap

Front Running Resilience Yes No
Gas Price Auctions No Yes
Miner Influence No Yes
Trade Execuction (seconds) ≈ 0.30 ≥ 15
Average Trade Cost (K) ≈ 101 ≈ 141∗

Max Trade Cost (K) ≈ 101 ≈ 1, 316†

Max Throughput‡ ≈ 475 ≈ 340

∗ Based on average cost of 1M trade transactions (block 12,162,664 to 12,231,464). Trades are calls to swap methods
of V2Router02.
† Txn: https://etherscan.io/tx/0xa87b492f2945d2a99ca1f8e2d9530599c040f00c3257f989f9c2822e20b2ed5e). There may be more

expensive transactions outside our dataset.
‡ in trades/minute. Theoretical upper bound on throughput based on average trade cost, assuming 12M block gas

limit on Ethereum network.

First, Uniswap (or any existing market maker, centralized or decentralized) has no defense against front-
running attacks without additional trust/hardware assumptions. Our construction resolves this long-standing
problem by ensuring that the market maker cannot reorder trades without getting caught.

Second, our trade execution time is bounded by the round trip time of the network, about 350ms. In
contrast, Uniswap trades are executed by the miners as part of mining a block. At the time of this writing,
etherscan shows high fees transactions (ones that get picked up the soonest) take about 30 seconds. One can
safely say that a trade in Uniswap takes at least 15 seconds (half of the value on etherscan). This is much
larger than the approx. 0.3 seconds in our system.

Third, in Uniswap and similar systems, miners are free to reorder trades. This gives them a profit
opportunity e.g. including favorable trades first. On the contrary, in our system the trade order is fixed before
the corresponding transactions are broadcast to the blockchain, nullifying miners’ influence. Moreover—
because of the above mentioned miners’ influence—traders on Uniswap have an incentive to pay high gas
price to get their trade included sooner. In fact, since the traders can see other traders’ activity, they can
actively compete with one another. Such trading behavior induces the, so called, gas price auctions attack.
Gas price auctions needlessly raise transaction cost for everyone (not just the traders). Transactions in our
system are merely moving the funds and may be mined in any order. There is no incentive to pay higher
than usual gas price.

Fourth, gas cost in Uniswap is variable. We observed an average gas cost of 141K. It can be much higher
depending on the trade e.g. over 1, 316K for txn 0xa87b492f2945d2a99ca1f8e2d9530599c040f00c3257f989f9c2822e20b2ed5e.
Recall that Uniswap is specifically designed and optimized for Ethereum. On the other hand, our system
design is general and lacks aggressive optimizations. Yet, the gas cost of our system is constant at 101K.
Notwithstanding, even if the gas cost of Uniswap transactions were much lower than ours, Uniswap’s trans-
actions would still be more costly in Ethers because of the gas price auctions mentioned above.

Finally, based on the average trade gas cost and assuming a block gas limit of 12M , the maximum
throughput of Uniswap is ≈ 340 trades per minute. This is less than our upper bound of 475. Concretely,
highest daily volume7 on Uniswap has been ≈ 251K transactions. On average, this means about 174 trades
per minute. Importantly, this throughput is achieved in a scenario where all trade data is locally available. Our
construction on the other hand, communicates with the traders in real time. The fact that this communication

7
https://etherscan.io/address/0x7a250d5630b4cf539739df2c5dacb4c659f2488d#analytics

16

https://etherscan.io/tx/0xa87b492f2945d2a99ca1f8e2d9530599c040f00c3257f989f9c2822e20b2ed5e
https://etherscan.io/address/0x7a250d5630b4cf539739df2c5dacb4c659f2488d#analytics

happens sequentially—on first come first served basis—negatively affects our throughput. Despite this, we
achieve at least 200 trades per minute (higher than the highest volume Uniswap). We stress that this
throughput was achieved on a mid-range consumer machine. A computationally powerful server will increase
throughput further. Therefore, we do not see it as a major problem in practice.

References

[1] Lawrence R. Glosten and Paul R. Milgrom. “Bid, ask and transaction prices in a specialist market
with heterogeneously informed traders”. In: Journal of Financial Economics 14.1 (1985), pp. 71–100.

[2] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets (Extended Abstract)”. In: 27th FOCS.
IEEE Computer Society Press, Oct. 1986, pp. 162–167.

[3] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play any Mental Game or A Completeness
Theorem for Protocols with Honest Majority”. In: 19th ACM STOC. Ed. by Alfred Aho. ACM Press,
May 1987, pp. 218–229.

[4] Lawrence R. Glosten. “Insider Trading, Liquidity, and the Role of the Monopolist Specialist”. In: The
Journal of Business 62.2 (1989), pp. 211–235.

[5] N. Asokan, Victor Shoup, and Michael Waidner. “Optimistic Fair Exchange of Digital Signatures (Ex-
tended Abstract)”. In: EUROCRYPT’98. Ed. by Kaisa Nyberg. Vol. 1403. LNCS. Springer, Heidelberg,
May 1998, pp. 591–606.

[6] Christian Cachin and Jan Camenisch. “Optimistic Fair Secure Computation”. In: CRYPTO 2000. Ed.
by Mihir Bellare. Vol. 1880. LNCS. Springer, Heidelberg, Aug. 2000, pp. 93–111.

[7] Ran Canetti. “Security and Composition of Multiparty Cryptographic Protocols”. In: Journal of Cryp-
tology 13.1 (Jan. 2000), pp. 143–202.

[8] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryptographic Protocols”. In:
42nd FOCS. IEEE Computer Society Press, Oct. 2001, pp. 136–145.

[9] Ran Canetti. Universally Composable Signatures, Certification and Authentication. Cryptology ePrint
Archive, Report 2003/239. https://eprint.iacr.org/2003/239. 2003.

[10] Justin Wolfers and Eric Zitzewitz. “Prediction Markets”. In: Journal of Economic Perspectives 18.2
(June 2004), pp. 107–126.

[11] Sanmay Das. “A learning market-maker in the Glosten–Milgrom model”. In: Quantitative Finance 5.2
(2005), pp. 169–180.

[12] D. Pennock and R. Sami. “Computational aspects of prediction markets”. In: Algorithmic Game The-
ory. Cambridge University Press, 2007.

[13] Sanmay Das and Malik Magdon-Ismail. “Adapting to a Market Shock: Optimal Sequential Market-
Making”. In: Proc. Advances in Neural Information Processing Systems (NIPS). Dec. 2008, pp. 361–
368.

[14] Alptekin Küpçü and Anna Lysyanskaya. “Usable Optimistic Fair Exchange”. In: CT-RSA 2010. Ed. by
Josef Pieprzyk. Vol. 5985. LNCS. Springer, Heidelberg, Mar. 2010, pp. 252–267.

[15] Jonathan Katz et al. “Universally Composable Synchronous Computation”. In: TCC 2013. Ed. by
Amit Sahai. Vol. 7785. LNCS. Springer, Heidelberg, Mar. 2013, pp. 477–498.

[16] Iddo Bentov and Ranjit Kumaresan. “How to Use Bitcoin to Design Fair Protocols”. In: CRYPTO 2014,
Part II. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617. LNCS. Springer, Heidelberg, Aug.
2014, pp. 421–439.

[17] Christian Decker and Roger Wattenhofer. “A Fast and Scalable Payment Network with Bitcoin Duplex
Micropayment Channels”. In: Proceedings of the 17th International Symposium on Stabilization, Safety,
and Security of Distributed Systems - Volume 9212. Berlin, Heidelberg: Springer-Verlag, 2015, pp. 3–
18.

[18] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin Backbone Protocol: Analysis and
Applications”. In: EUROCRYPT 2015, Part II. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057.
LNCS. Springer, Heidelberg, Apr. 2015, pp. 281–310.

17

https://eprint.iacr.org/2003/239

[19] Charanjit S. Jutla. Upending Stock Market Structure Using Secure Multi-Party Computation. Cryptol-
ogy ePrint Archive, Report 2015/550. https://eprint.iacr.org/2015/550. 2015.

[20] Waclaw Banasik, Stefan Dziembowski, and Daniel Malinowski. “Efficient Zero-Knowledge Contin-
gent Payments in Cryptocurrencies Without Scripts”. In: ESORICS 2016, Part II. Ed. by Ioannis
G. Askoxylakis et al. Vol. 9879. LNCS. Springer, Heidelberg, Sept. 2016, pp. 261–280.

[21] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. “Fair and Robust Multi-party Computation
Using a Global Transaction Ledger”. In: EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and Jean-
Sébastien Coron. Vol. 9666. LNCS. Springer, Heidelberg, May 2016, pp. 705–734.

[22] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable Off-Chain Instant Pay-
ments. 2016.

[23] Christian Badertscher et al. “Bitcoin as a Transaction Ledger: A Composable Treatment”. In:
CRYPTO 2017, Part I. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10401. LNCS. Springer,
Heidelberg, Aug. 2017, pp. 324–356.

[24] Matteo Campanelli et al. “Zero-Knowledge Contingent Payments Revisited: Attacks and Payments
for Services”. In: ACM CCS 2017. Ed. by Bhavani M. Thuraisingham et al. ACM Press, Oct. 2017,
pp. 229–243.

[25] Arka Rai Choudhuri et al. “Fairness in an Unfair World: Fair Multiparty Computation from Public
Bulletin Boards”. In: ACM CCS 2017. Ed. by Bhavani M. Thuraisingham et al. ACM Press, Oct. 2017,
pp. 719–728.

[26] Matthew Green and Ian Miers. “Bolt: Anonymous Payment Channels for Decentralized Currencies”.
In: ACM CCS 2017. Ed. by Bhavani M. Thuraisingham et al. ACM Press, Oct. 2017, pp. 473–489.

[27] Rafael Pass, Lior Seeman, and abhi shelat. “Analysis of the Blockchain Protocol in Asynchronous
Networks”. In: EUROCRYPT 2017, Part II. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen.
Vol. 10211. LNCS. Springer, Heidelberg, Apr. 2017, pp. 643–673.

[28] Will Warren and Amir Bandeali. 0x: An open protocol for decentralized exchange on the Ethereum
blockchain. 2017.

[29] AirSwap. AirSwap. 2018.
[30] Ether Delta. EtherDelta. 2018.
[31] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. “FairSwap: How To Fairly Exchange Digital

Goods”. In: ACM CCS 2018. Ed. by David Lie et al. ACM Press, Oct. 2018, pp. 967–984.
[32] Maurice Herlihy. “Atomic Cross-Chain Swaps”. In: 37th ACM PODC. Ed. by Calvin Newport and

Idit Keidar. ACM, July 2018, pp. 245–254.
[33] IDEX. IDEX. 2018.
[34] Kyber. Kyber. 2018.
[35] Raiden Network. What is Raiden Network? 2018.
[36] Uniswap. Uniswap Exchange Protocol. 2018.
[37] Bitcoin Wiki. Zero Knowledge Contingent Payment. 2018.
[38] Iddo Bentov et al. “Tesseract: Real-Time Cryptocurrency Exchange Using Trusted Hardware”. In:

ACM CCS 2019. Ed. by Lorenzo Cavallaro et al. ACM Press, Nov. 2019, pp. 1521–1538.
[39] Georg Fuchsbauer. WI Is Not Enough: Zero-Knowledge Contingent (Service) Payments Revisited.

Cryptology ePrint Archive, Report 2019/964. https://eprint.iacr.org/2019/964. 2019.
[40] Runchao Han, Haoyu Lin, and Jiangshan Yu. On the optionality and fairness of Atomic Swaps. Cryp-

tology ePrint Archive, Report 2019/896. https://eprint.iacr.org/2019/896. 2019.
[41] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. “Cross-Chain Deals and Adversarial Commerce”.

In: Proc. VLDB Endow. 13.2 (Oct. 2019), pp. 100–113.
[42] Rami Khalil, Arthur Gervais, and Guillaume Felley. TEX - A Securely Scalable Trustless Exchange.

Cryptology ePrint Archive, Report 2019/265. https://eprint.iacr.org/2019/265. 2019.
[43] Alexei Zamyatin et al. “XCLAIM: Trustless, Interoperable, Cryptocurrency-Backed Assets”. In: 2019

IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2019, pp. 193–210.
[44] Curve. Curve. 2020.

18

https://eprint.iacr.org/2015/550
https://eprint.iacr.org/2019/964
https://eprint.iacr.org/2019/896
https://eprint.iacr.org/2019/265

[45] Philip Daian et al. “Flash Boys 2.0: Frontrunning in Decentralized Exchanges, Miner Extractable
Value, and Consensus Instability”. In: 2020 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2020, pp. 910–927.

[46] Apoorvaa Deshpande and Maurice Herlihy. “Privacy-Preserving Cross-Chain Atomic Swaps”. In: FC
2020 Workshops. Ed. by Matthew Bernhard et al. Vol. 12063. LNCS. Springer, Heidelberg, Feb. 2020,
pp. 540–549.

[47] Lisa Eckey, Sebastian Faust, and Benjamin Schlosser. “OptiSwap: Fast Optimistic Fair Exchange”. In:
ASIACCS 20. Ed. by Hung-Min Sun et al. ACM Press, Oct. 2020, pp. 543–557.

[48] Joël Gugger. Bitcoin-Monero Cross-chain Atomic Swap. Cryptology ePrint Archive, Report 2020/1126.
https://eprint.iacr.org/2020/1126. 2020.

[49] Ethan Heilman, Sebastien Lipmann, and Sharon Goldberg. “The Arwen Trading Protocols”. In: Fi-
nancial Cryptography and Data Security. Ed. by Joseph Bonneau and Nadia Heninger. Cham: Springer
International Publishing, 2020, pp. 156–173.

[50] Andrey Sobol. Frontrunning on Automated Decentralized Exchange in Proof Of Stake Environment.
Cryptology ePrint Archive, Report 2020/1206. https://eprint.iacr.org/2020/1206. 2020.

[51] Bitcoin Wiki. Atomic Swap. 2020.
[52] Bitcoin Wiki. Hash Time Locked Contracts. 2020.
[53] Ghada Almashaqbeh et al. Gage MPC: Bypassing Residual Function Leakage for Non-Interactive MPC.

Cryptology ePrint Archive, Report 2021/256. https://eprint.iacr.org/2021/256. 2021.
[54] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. “Maximizing Extractable

Value from Automated Market Makers”. In: CoRR abs/2106.01870 (2021).
[55] Carsten Baum, Bernardo David, and Tore Frederiksen. P2DEX: Privacy-Preserving Decentralized

Cryptocurrency Exchange. Cryptology ePrint Archive, Report 2021/283. https : / / eprint . iacr . org/
2021/283. 2021.

[56] Lorenz Breidenbach et al. Chainlink 2.0: Next Steps in the Evolution of Decentralized Oracle Networks.
2021.

[57] Flashbots. Flashbots. 2021.
[58] Gnosis. Introducing Gnosis Protocol V2 and Balancer-Gnosis-Protocol. 2021.
[59] Chrysoula Stathakopoulou et al. “Adding Fairness to Order: Preventing Front-Running Attacks in BFT

Protocols using TEEs”. In: 40th International Symposium on Reliable Distributed Systems, SRDS 2021,
Chicago, IL, USA, September 20-23, 2021. IEEE, 2021, pp. 34–45.

[60] Liyi Zhou, Kaihua Qin, and Arthur Gervais. “A2MM: Mitigating Frontrunning, Transaction Reordering
and Consensus Instability in Decentralized Exchanges”. In: CoRR abs/2106.07371 (2021).

[61] Liyi Zhou et al. “High-Frequency Trading on Decentralized On-Chain Exchanges”. In: 2021 IEEE
Symposium on Security and Privacy (SP). 2021, pp. 428–445.

[62] Bancor. Bancor Network.

A Preliminaries and Notation

We use “=” to check equality of two different elements (i.e. if a = b then...) and “←” as the assigning operator

(e.g. to assign to a the value of b we write a← b). A randomized assignment is denoted with a
$←− A, where

A is a randomized algorithm and the randomness used by A is not explicit. We call a function ν : N→ R+

negligible if for every positive polynomial p(λ), a λ0 ∈ N exists, such that for all λ > λ0 : ν(λ) < 1/p(λ).

A.1 Signatures

Definition 1 (Signature scheme [9]). A triple of ppt algorithms (Gen, Sign, Ver) is called a signature
scheme if it satisfies the following properties.

Completeness: For every pair (s, v)
$←− Gen(1λ), and every m ∈ {0, 1}λ, we have that

Pr[Ver(v,m, Sign(s,m)) = 0] < ν(λ).

19

https://eprint.iacr.org/2020/1126
https://eprint.iacr.org/2020/1206
https://eprint.iacr.org/2021/256
https://eprint.iacr.org/2021/283
https://eprint.iacr.org/2021/283

Consistency (non-repudiation): For any m, the probability that Gen(1λ) generates (s, v) and Ver(v,m, σ)
generates two different outputs in two independent invocations is smaller than ν(λ).

Unforgeability: For every ppt A, there exists a negligible function ν, such that for all auxiliary input
z ∈ {0, 1}⋆ it holds that:

Pr[(s, v)
$←− Gen(1λ); (m,σ)

$←− ASign(s,·)(z, v)∧
Ver(v,m, σ) = 1 ∧m /∈ Q] < ν(λ)

where Q denotes the set of messages whose signatures were requested by A to the oracle Sign(s, ·).

A.2 Blockhain and Smart-Contracts

Ethereum is arguably the most popular blockchain for smart-contracts. Its protocol keeps track of each
address’ balance. Transactions are used to move funds between the addresses and to execute code of the
smart-contracts. A Smart-Contract is some code that lives on the blockchain. Storing and running contracts
requires resources from the miners. In order to pay them for their expenses, Ethereum has the concept of
Gas. Each instruction in a smart-contract costs some gas units proportional to what it does. Transaction
senders can specify the amount of Wei they are willing to pay per gas unit. This is called Gas Price.

A.3 Blockchain as a Bulletin Board

For convenience, whenever the blockchain is just used for recording events, we treat it as a bulletin board
(BB). The bulletin board has a sequential-writing pattern where every string published on the bulletin board
has a counter (its position) associated to it. We do not make any assumptions about the order in which issued
transactions are recorded, other than what is implied by the standard chain quality and transaction liveness
properties of ledgers (cf. [18, 27, 23].

Bulletin Board The bulletin board BB allows the following queries (all of which can be emulated in modern
blockchains; cf. [25] for a formal description):

– getCounter. The bulletin board returns the current value of the counter t: t← BB(getCounter).
– post. Upon receiving a value x, the bulletin board posts x and increments the counter t by 1. The value

can be retrieved by querying the bulletin board on t: t← BB(post, x).8

– getContent. Upon receiving the input t, it returns the value stored at counter value t. If t is greater
than the current counter value, it returns ⊥, else, x← BB(getContent, t).

A.4 Security framework

The Universal Composability (UC) framework introduced by Canetti in [8] is a security model capturing
the security of a protocol Π under the concurrent execution of arbitrary other protocols. All those other
protocols and processes not related to the protocol Π go through an environment Z. The environment has
the power to decide the input that the parties should use to run the Π, and to see the output of these
parties. In this framework there is also an adversary A for the protocol Π that decides the parties to be
corrupted and can communicate with Z (who knows which parties have been corrupted by A). The security
in this model is captured by the simulation-based paradigm. Let F be the ideal functionality that should
be realized by Π. The ideal functionality F can be seen as a trusted party that handles the entire protocol
execution and tells the parties what they would output if they executed the protocol correctly. We consider
the ideal process where the parties simply pass on inputs from the environment to F and hand what they
receive to the environment. In the ideal process, we have an ideal process adversary S. S does not learn

8 In [25] the output of BB consists also of a tag, that can be used to prove that a value is part of the BB, without
inspecting the BB using the command getContent defined below.

20

the content of messages sent from F to the parties, but is in control of when, if ever, a message from F is
delivered to the designated party. S can corrupt parties and at the time of corruption it will learn all inputs
the party has received and all outputs it has sent to the environment. As the real world adversary, S can
freely communicate with the environment. We compare running the real protocol with running the ideal
process and say that Π UC-realizes F if no environment can distinguish between the two worlds. This means
that the protocol is secure, if for any polynomial time A running in the real world with Π, there exists a
polynomial time S running in the ideal process with F , so no non-uniform polynomial time environment can
distinguish the two worlds.

For our formal security arguments we use the simulation paradigm. The advantage of using simulation
based security is that it supports composition which allows us to employ a constructive approach to protocol
design.Our constructions are secure in Canetti’s Universal Composability (UC) framework [8] (in fact, its
synchronous version from [15, 21, 23].) Nonetheless to make the presentation more accessible to a non-UC
expert we often use the convention and language similar to [7]. Concretely, we assume that all protocols
proceed in rounds, where in each round: the uncorrupted parties generate their messages for the current
round, as described in the protocol; then the messages addressed to the corrupted parties become known to
the adversary; then the adversary generates the messages to be sent by the corrupted parties in this round;
and finally, each uncorrupted party receives all the messages sent in this round. At the end of the computation
all parties locally generate their outputs. Using [15] it is easy to project our statement to (synchronous) UC.

A.5 The Random Oracle Functionality

The Random Oracle Functionality FRO As typically in cryptographic proofs the queries to hash function are
modelled by assuming access to a random oracle functionality: Upon receiving a query (EVAL, sid, x) from a
registered party, if x has not been queried before, a value y is chosen uniformly at random from {0, 1}λ (for
security parameter λ) and returned to the party (and the mapping (x, ρ) is internally stored). If x has been
queried before, the corresponding ρ is returned.

B Works on Fair Exchange

Several early works [2, 3, 5, 6, 14] have discussed the idea of fair exchange. In recent years, with the
increasing popularity of crypto-currencies, protocols have been designed around them to take advantage of
the blockchain guarantees [16, 21]. An interesting use-case of fair exchange is to enable sale/purchase of
assets with cryptocurrency [37, 20, 24, 39]. The general scheme is to construct smart-contracts in such a way,
that claiming payment would reveal the key to the buyer. Unfortunately, the large (often prohibitive) off-
chain cost of this technique (when the predicate is complex and/or the asset is large) hinders their adoption
in many practical applications. FairSwap [31] provided a more efficient solution in terms of off-chain costs.
OptiSwap [47] further improved over [31] for the optimistic case and also provided a defense against grieving
attack.

In addition to generic solutions for exchange assets, there has been interest in creating more efficient
solutions for specific subset of asset types. The most popular choice for this subset has been other cryp-
tocurrencies or tokens. These works broadly fall into the following two categories; 1) The works that deal
with assets on the same blockchain e.g. Uniswap [36], 0x [28], AirSwap [29], EtherDelta [30], Bancor[62],
Idex [33], Kyber [34], Curve [44], etc and 2) the ones that operate across the blockchains or crosschain. The
crosschain research has mostly been restricted to 2 parties (on 2 blockchains). Transactions in this setting
are generally called crosschain swaps and the problem is usually solved with Hash Time Lock Contracts
(HTLCs) [51, 52, 32, 43, 40, 48, 46]. HTLC in the nutshell is similar to (the on-chain contract of) ZKCPs.
The buyer locks assets for specified time, and before the lock expires, the seller produces a pre-image (or
key) of a hash. The notion of crosschain swap was generalized—with definitions and first constructions—
to crosschain deals among n parties (and m blockchains) in [41]. HTLCs technique has also been used to
workaround the scalability problem of blockchains [17, 26, 49, 35, 22].

21

C Proof of Theorem 1

Proof. We divide the proof in two parts: the first is to deal with the adversarial MM (that we denote with
MM⋆) and the second to deal with the case where MM is honest. We denote with Q the set containing all
couples of query-answer performed using the hash function (that we model as a random oracle) and propose
the formal description of the ideal world market-maker adversary SMM. The simulator SMM works as follows.

– Let hstart = htemp = h⋆ = 0λ. Initialize priceΞ→Ť ← SPΞ→Ť and priceŤ→Ξ ← SPŤ→Ξ . Initialize also
two empty lists reqList and Tickets.

– Upon receiving (request, Pi) from Ftrade, send (request, pki) to MM⋆.

– Upon receiving ticket1 = (h, σ, priceΞ→Ť , priceŤ→Ξ , pki) from MM⋆ do the following steps.

- If Ver(pkMM, σ, h||priceΞ→Ť ||priceŤ→Ξ ||pki) = 0 then ignore the message received from MM⋆, con-
tinue as follows otherwise.

- Add ticket1 to the list Tickets and send (setPrice, Pi, price
Ξ→Ť , priceŤ→Ξ) to Ftrade.

- If Pi is an honest party then do the following.
- Add (Pi, h) to reqList.
- Inspect Q to check if htemp is a prefix of the chain with head h. If it is not then send setAbort

to Ftrade, else continue as follows.
- For each couple of items (pkj , tradej) encoded in the hash chain9 that starts from htemp and
finishes in h do the following

if Pj is an honest party then send (setTrade, Pj , tradej) to Ftrade.
else send (setAdvTrade, Pj , tradej) to Ftrade.

Set htemp ← h.
– Upon receiving (Pi, y) from Ftrade, if Pi is honest then do the following.

if y = NO-TRADE then send NO-TRADE to MM

else get (Pi, h) from reqList, and compute σ ← Sign(ski, h||y) and send (y, σ) to MM.
– Upon receiving any command, if no message (h′, σ′, requests, σ⋆, e) is posted on the BB within ∆ rounds

such that Ver(pkMM, σ
′, h′)) = 1 and Ver(pkMM, σ

⋆, requests||e)) = 1 then send setAbort to Ftrade, else
do the following.
- notAbort← 1.
- For each (Pi, h) in reqList compute notAbort← notAbort∧verification(h⋆, h′, h, pki, requests)

notAbort← notAbort ∧ checkBB(h⋆, h′, requests, pkMM)
If notAbort = 0 then send setAbort to Ftrade.
Set h⋆ ← h′ and send (setOutput) to Ftrade.

SMM can fail only if one of the following occurs:

1. Ftrade aborts because the simulator sees (with respect to a party Pi) in the hash chain a value tradei
that is not consistent with the trade chosen by an honest party Pi, but in the real world Pi does not
abort. If this is the case then we can break the signature scheme since the adversary is able to provide
a new signature for pki.

2. Ftrade aborts because the simulator is unable to reconstruct the hash-chain that goes form h′ to h′′,
where h′ and h′′ are part of two different tickets given to two honest parties, whereas in the real world
at least one honest party does not abort. If this is the case, then the adversary knows how to invert a
RO value.

3. Given two hash values h′ to h′′, where h′ and h′′ part of two different tickets, there are multiple hash
chains that connect h′ to h′′. If this is the case, then we can construct an adversary that finds a collision
for FRO.

We denote with SP the simulator for the case when MM is honest and an arbitrary set of traders can be
corrupted. For we consider only the case where MM and at exactly one party Pk is honest. Formally, SP
acts as follows.

9 We note that this values can be computed by inspecting Q.

22

Initialize h ← 0λ, τ and R ← ∆ where τ represents the upper bound on the time that a party has to
reply to MM (this is to avoid DoS attack) and ∆ be the maximum number of rounds after which MM should
post the accumulated trades on the BB.

– Upon receiving (request, pki) from a corrupted party Pi send (request, Pi) to Ftrade.

– Upon receiving (priceΞ→Ť , priceŤ→Ξ) from Ftrade do the following.
• Compute h′ ← H(h||pki) and set h← h′.

• Compute σ ← Sign(skMM, h||priceΞ→Ť ||priceŤ→Ξ ||pki||e).
• Send ticket1 := (h, σ, priceΞ→Ť , priceŤ→Ξ , pki) to Pi.

– Upon receiving (trade, σi) from a corrupted Pi such that Ver(pki, σi, h||tradei)) = 1 then send
(ok, tradei) to Ftrade. If Ftrade replies with ok then do the following
• Compute h′ ← H(h||trade) and set h← h′.
• Compute σ ← Sign(skMM, h).
• Set requests[k]← (pki, trade, σi).

• Run MMalgorithm(trade, priceΞ→Ť , priceŤ→Ξ) thus obtaining priceΞ→Ť
′
, priceŤ→Ξ

′
and set

priceΞ→Ť ← priceΞ→Ť
′
, priceŤ→Ξ ← priceŤ→Ξ

′
.

If Ftrade replies with ko then do the following
• Compute h′ ← H(h||NO-TRADE) and set h← h′.
• Set requests[k]← (pki, NO-TRADE, 0

λ).
• Compute σ ← Sign(skMM, h).

– Upon receiving (getTrades) forward it to and Ftrade. If (Trades, e) is received from Ftrade then post
(h, σ, Trades, σ⋆, e) to the BB, where σ ← Sign(skMM, h) and σ⋆ ← Sign(skMM, Trades), else ignore the
command10.

Our simulator can fail only if one of the following occurs:
1. A malicious party posts on the BB a proof of cheating (h, σ, pk) such that Ver(pkMM, h||pk, σ) = 1, where

h||pk has never been signed by the simulator.
2. The simulator does not manage to post a valid message on the BB within ∆ rounds.

We can argue that due to the unforgeability of the signature scheme neither the first nor the second case
can occur. The third case instead cannot occur due to the security of the BB.

D Monopolist Profit Seeking MM

The Glosten and Milgrom model [1] has become a standard model of a zero knowledge market-maker who
trades against an informed trader. We adopt the extension by Das [11], which is also the model used in Das
and Magdon-Ismail [13]. In this model, the true price (value) of the commodity is an unknown V and we
assume the MM has a prior over V at time 0, p0(v). The prior represents all the starting information the
MM knows, and we can think of the prior as some very high-entropy distribution, for example a Gaussian
with huge variance. Number the traders t = 1, 2, . . . in the sequence they arrive. Trader t has an estimate
of the value wt = V + ϵ, where ϵ is a random perturbation (noise) of the true value which quantifies how
informed the trader is. Let us denote the cumulative distribution function (CDF) of ϵ by Fϵ, which is known
to the market maker. For simplicity, we assume the noise is symmetric, so Fϵ(−x) = 1− Fϵ(x), for example
zero mean Gaussian noise. We also assume that different traders are independent, which means their noisy
perturbations of V are independent. We now consider the MM actions for trader t, which is to set bid and
ask prices, at > bt for the trader who will arrive at time-step t. The trader will either trade or not depending
on how their signal wt relates to at, bt. Specifically, the trader buys from the market maker if wt > at, sells
to the market maker if wt < bt and makes no trade otherwise. If the trader buys, the market maker receives
the signal xt = +1, if the trader sells, the signal is xt = −1 and otherwise the signal xt = 0. When trader
t+1 arrives, we already have a sequence of trades x1, x2, . . . , xt. Let us assume by induction that the market
maker has correctly updated its distribution over V to the posterior pt(v) at time t. Here, pt(v) contains all

10 We note that by construction the trades encoded in requests are the same as in Trades.

23

the information of the MM which now only depends on the historical sequence of trades made x1, . . . , xt.
Given bid and ask prices b, a, and the value V , one can compute the probability of each type of signal,
P [xt = +1] = 1− Fϵ(a− V), P [xt = −1] = Fϵ(b− V). The market makers profit for an ask signal is a− V
and for a bid signal is V − b. To get the expected profit, we integrate over the possible values of V , b, a,

E[profit] =

∫ ∞

−∞
dv pt(v)(v − b)(F (b− v))︸ ︷︷ ︸

bid-side profit

+

∫ ∞

−∞
dv pt(v)(v − a)(1− F (a− v))︸ ︷︷ ︸

ask-side profit

.

(1)

The bid-side and ask-side profits are independently controlled by b and a respectively. Hence, to maximize
the expected profit, we can independently maximize these terms with respect to a and b respectively. Taking
derivatives and setting to zero reproduces a result from [13] that essentially tells the market maker how to
set at, bt to maximize expected profit in the next time-step.

Lemma 2. To maximize the expected profit on the next trade, the market maker sets at and bt to satisfy

bt =

∫∞
−∞ dv pt(v)(vF

′
ϵ(bt − v)− Fϵ(bt − v))∫∞

−∞ dv pt(v)F ′
ϵ(bt − v)

at =

∫∞
−∞ dv pt(v)(vF

′
ϵ(at − v) + Fϵ(v − at))∫∞

−∞ dv pt(v)F ′
ϵ(at − v)

We denote these optimal bid and ask prices the myopic optimal prices. The approximate version of this
myopic optimal bid-ask prices are computed in [13] for the case where the prior p0(v) and the trader signal
Fϵ are Gaussian. It is also shown in [13] that maximizing aggregated, discounted profit by instead solving
the Bellman equation produces higher long-term gain for market maker and simultaneously lowers initial
spreads, increasing liquidity - a win win. Our framework is general, and so can use any market maker. We
will continue the discussion with the mypoic-greedy market maker because the optimal-market maker is
computationally more expensive. Let us state some basic properties of the market maker [13], specifically
the market maker’s distribution pt(v), which quantifies how much information the market maker has on the
true value V after t trades.
– The expected value of pt(v) converges to V . That is the market discovers the originally unknown true

value of the commodity based on trades with traders who arrive with imperfect information. Empirically,
the speed of this convergence is illustrated in [13] and follows the standard 1/t convergence for Bayesian
updates.

– The market maker uncertainty as captures by the variance of pt(v) of converges to 0. Thus, not only
does the market maker recover the true value V in expectation, but also becomes more and more certain
of it. Again, this convergence is standard for Bayesian updates.

– In equilibrium, the market maker spread that produces maximum single step profit monotonically in-
creases with the variance of its distribution, which converges zero. Hence the bid-ask spread converges
to a minimum possible for a profit maximizing market maker. The multi-step (non-myopic) optimal
market maker produces even lower spreads than a zero-profit competitive market maker in high-volatile
uncertain environments. This is because optimal market makers may take early losses (with smaller than
myopic bid-ask spreads) to increase the spead of convergence to the true value. This is because the
market maker makes maximum long term profit when it trades around the true value V . To see this
formally, let r(b, a, v) be the expected profit as a function of the bid, ask and value, denoted respectively
by parameters b, a, v. Suppose the market maker does not know the true value V and instead uses W to
compute expected profit r(b, a,W) which she maximizes to set prices b∗, a∗,

(b∗, a∗) = argmax
a,b

{r(a, b,W)}.

24

The actual expected profit, however, is computed with respect to the true value V , because this is where
the traders get their signals.

true expected profit = r(a∗, b∗, V) ≤ argmax
a,b

{r(a, b, V)}.

The RHS is the expected profit from setting bid and asks optimally knowing the true value V . That is, a
market maker who knows V can always make more expected profit than a market maker who does not.

The last bullet above is essentially the intuition behind why an optimal market maker has no incentive to
manipulate prices. The maximum profit is made when the market maker knows the true value V . Hence
the market maker is incentivized to discover the true value V as quickly as possible. The only information
available on the V is through the un-manipulated trader signals xt.

Proof of Theorem 3 We now prove the main theorem 3, which is that after stating, the bid and ask prices,
a rational market maker will not deviate from these prices, i.e. manipulate them, after learning of a trader
intending to trade (say) with a buy.

Proof. Suppose the trader wishes to trade, buying from market maker at the ask-price (the argument is
analogous if the trader wishes to sell at the bid). The best the market maker can do is to try to manipulate
the price after having already posted bid and ask prices. The goal is to make more expected profit given this
additional knowledge that the trader wishes to buy. So let us consider what price the market maker should
charge to make maximum expected profit given this additional knowledge. The trader has announced an
intention to buy, and has the option to reject any final trade offered. The trader will buy provided V + ϵ ≥ at.
Hence the market maker needs to set at to maximize the expected ask-side profit. Since the expected profit
breaks into two independent terms in (1), maximizing only the ask side profit corresponds exactly to setting
the ask to mazimize the expected profit, which is exactly the prescription in Lemma 2 This means that the
bid-ask prices set by the market maker are exactly those that maximize expected profit, and hence there is
no incentive for a rational market maker to deviate from these prices after learning that a trader wishes to
buy.

Proof of Lemma 1 Lemma 1 states that it is suboptimal for the market maker in our setting to ignore
trades without knowledge of other trades. The proof follows analogously to Theorem 3 by using the fact that
by ignoring real trades, the market maker will be trading at an inferior price away from the most current
estimate of the value V . Hence, by excluding from its learning/price-discovery process these real trades (and
or their associated profits), expected profits are lower and convergence to V is slower. This in turn produces
lower long-term profit, because, as we already mentioned, the market maker makes most profit by trading
around the true value V .

E Implementation and Evaluation

In this section, we describe implementation and evaluation of our system. We begin by describing implemen-
tation of the smart-contracts, followed by the implementation of the applications for seller and buyer (to run
Πtrade, see Fig. 5). Experiment setup and analysis of evaluation results is presented in Section 6.

E.1 Smart-Contracts

We wrote our smart-contracts using Solidity and used TruffleSuite11 for development cycle management.
We also reused useful abstractions, e.g. access control, from the OpenZeppelin12 framework. Concretely for
exchangeable assets, we used Ether and ERC20 tokens.

11 https://www.trufflesuite.com/
12 https://www.openzeppelin.com/

25

Due to the way ERC20 tokens work—the token owner needs to call transfer on the token smart-contract—
the functionality of the buyer smart-contract SCi (see Fig. 1) is split into two smart-contracts: the 1) Seller-
Contract and the 2) BuyerContract. The SellerContract is about 25 lines of code. A transaction is initiated
upon a call to execute method by the seller. Internally, it calls BuyerContract, which verifies buyer’s sig-
nature and pays the seller. Upon getting paid, SellerContract pays corresponding tokens to the buyer. The
entire transaction is executed atomically. The gas cost of execute method is ≈ 33K. The BuyerContract is
implemented in about 50 lines of Solidity code. Deploying the contract locks an amount till lock expiry. Its
method, claimExpiry, claims the remaining funds after lock expires. The expensive method here is execute
which costs ≈ 67K. A trivial extension to this contract is a functionality to renew lock time/amount for
continued trading. We do not discuss the gas costs of pessimistic case here, namely the verification con-
tract. This is in line with other works in this area e.g.[31, 47]. Besides, the reward for a valid complaint to
verification contract far outweighs the gas costs, thus the gas cost is not important.

We list the costs in Table 1. Note that the cost of executing one trade is the sum of the costs of execute
methods of the SellerContract and the BuyerContract. While, we have also included the USD cost, this is
not a good metric due to variations in USD/ETH exchange rate and average gas price. Gas cost is the only
meaningful metric to compare complexity of different smart-contracts. Nevertheless, we provide USD costs
here to be consistent with the previous works.

We note that we did, slightly, deviate from the specification of Fig. 1 in our implementation. Specifically,
by initiating the transaction in SellerContract and restricting the calls to seller only, we saved one signature
verification cost i.e. ≈ 30K in gas. There may be other, more aggressive, optimizations possible.

E.2 Seller and Buyer Applications

The smart-contracts described above are only used in the last step of the Πtrade protocol. To run the Πtrade

protocol itself, we implemented the parties—seller and buyer—as nodejs13 applications. Towards this, we
used nodejs version 12.18.2. The source code was written in typescript14. The seller acts as a WebSockets
server and is implemented with ≈ 800 lines of code. The buyer is a WebSockets client and is ≈ 400 lines of
code. We used µWebSocket.js15 for WebSockets server (i.e. seller) for its excellent performance.

F Uniswap

Uniswap is the largest (in terms of market cap) decentralized exchange implemented through a collection
of smart contracts on Ethereum. At a high level, it consists a number of pools of assets (pairs of tokens).
Liquidity Providers (LPs) add liquidity to the system by depositing their tokens into pools. For their service,
they are given shares in the system (proportionate to their deposits). The traders interact with the pools to
buy/sell tokens of their interest. These tokens follow the ERC20 standards. The current version Uniswap v3
was launched recently, it primarily incorporates more fine-grained control for liquidity providers. We compare
our work with Uniswap v2. This is because v2 (because of its maturity) presents more favorable numbers for
Uniswap e.g. its highest daily volume is more than three times that of v3.

At a lower level, Uniswap contracts are divided into two catagories 1) Core contracts implement fun-
damental functionality and 2) Periphery contracts facilitate interaction with the system. In the core, there
are a number of Pair contracts that encapsulate the functionality of a market maker for a pair of tokens.
The Factory contract ensures that only one Pair contract is created per unique pair of tokens. To interact
with the pairs, the Library contracts of periphery provides convenient access to data and pricing, while the
Router contract enables trading tokens (even accross multiple pairs). The current version of router contract
is V2Router02. We observed over a million recent transactions16 to V2Router02 and averaged the gas cost

26

Table 3. Uniswap Gas Costs (relavant routines only, minimum cost)

Contract Method Gas

Factory createPair 2,512,920
setFeeTo 43,360
setFeeToSetter 28,294

Pair burn 85,206
mint 103,871
skim 48,051
swap 61,446
sync 52,012

V2Router02∗ addLiquidity 179,836
addLiquidityETH 208,694
removeLiquidity 136,412
removeLiquidityETH 153,809
removeLiquidityETHSFTT 307,229
removeLiquidityETHWithPermitSFTT 327,705
removeLiquidityWithPermit 183,505
removeLiquidityETHWithPermit 168,408
swapExactTokensForTokens 163,596
swapExactTokensForTokensSFTT 248,100
swapTokensForExactTokens 159,212
swapExactETHForTokens 131,562
swapExactETHForTokensSFTT 137,987
swapTokensForExactETH 132,490
swapExactTokensForETH 123,552
swapExactTokensForETHSFTT 194,171
swapETHForExactTokens 137,421

SFTT SupportingFeeOnTransferTokens
∗ Gas costs for V2Router02’s methods are average of one million transactions sent to it in block interval 12,162,664

to 12,231,464.

27

of the invoked methods. These are listed in Table 3. The methods prefixed with swap perform various types
of trades and are, therefore, relevant for comparison with our system.

13 https://www.nodejs.org
14 https://www.typescriptlang.org
15 https://www.github.com/uNetworking/uWebSockets.js
16 block 12,162,664 to block 12,231,464

28

	FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker

