
Signed (Group) Diffie-Hellman Key Exchange with Tight Security

Jiaxin Pan ID ∗, Chen Qian ID , and Magnus Ringerud ID

Department of Mathematical Sciences
NTNU – Norwegian University of Science and Technology, Trondheim, Norway,

{jiaxin.pan, chen.qian, magnus.ringerud}@ntnu.no

Abstract. We propose the first tight security proof for the ordinary two-message signed Diffie-Hellman key
exchange protocol in the random oracle model. Our proof is based on the strong computational Diffie-Hellman
assumption and the multi-user security of a digital signature scheme. With our security proof, the signed DH
protocol can be deployed with optimal parameters, independent of the number of users or sessions, without
the need to compensate any security loss. We abstract our approach with a new notion called verifiable key
exchange.

In contrast to a known tight three-message variant of the signed Diffie-Hellman protocol (Gjøsteen and Jager,
CRYPTO 2018), we do not require any modification to the original protocol, and our tightness result is proven
in the “Single-Bit-Guess” model which we know can be tightly composed with symmetric cryptographic prim-
itives to establish a secure channel. Finally, we extend our approach to the group setting and construct the first
tightly secure group authenticated key exchange protocol.

Keywords: Authenticated key exchange, group key exchange, signed Diffie-Hellman, tight security.

1 Introduction

Authenticated key exchange (AKE) protocols are protocols where two users can securely share a session key in
the presence of active adversaries. Beyond passively observing, adversaries against an AKE protocol can modify
messages and adaptively corrupt users’ long-term keys or the established session key between users. Hence, it is
very challenging to construct a secure AKE protocol.

The signed Diffie-Hellman (DH) key exchange protocol is a classical AKE protocol. It is a two-message
(namely, two message-moves or one-round) protocol and can be viewed as a generic method to transform a pas-
sively secure Diffie-Hellman key exchange protocol [18] into a secure AKE protocol using digital signatures.
Figure 1 visualizes the protocol. The origin of signed DH is unclear to us, but its idea has been used in and serves
as a solid foundation for many well-known AKE protocols, including the Station-to-Station protocol [19], IKE
protocol [25], the one in TLS 1.3 [41], and many others [32,28,29,7,23].

TIGHT SECURITY. Security of a cryptographic scheme is usually proven by constructing a reduction. Asymptoti-
cally, a reduction reduces any efficient adversaryA against the scheme into an adversaryR against the underlying
computational problem. Concretely, a reduction provides a security bound for the scheme, εA ≤ ` · εR, where εA
is the success probability of A and εR is that of R. We say a reduction is tight if ` is a small constant and the
running time of A is approximately the same as that of R. For the same scheme, it is more desirable to have a
tight security proof than a non-tight one, since a tight security proof enables implementations without the need to
compensate a security loss with increased parameters.

MULTI-CHALLENGE SECURITY FOR AKE. An adversary against an AKE protocol has full control of the com-
munication channel and, additionally, it can adaptively corrupt users’ long-term keys and reveal session keys. The
goal of an adversary is to distinguish between a (non-revealed) session key and a random bit-string of the same
length, which is captured by the Test query. We follow the Bellare-Rogaway (BR) model [5] to capture these
capabilities, but formalize it with the game-based style of [27]. Instead of weak perfect forward secrecy, our model
captures the (full) perfect forward secrecy.

Unlike the BR model, our model captures multi-challenge security, where an adversary can make T many
Test queries which are answered with a single random bit. This is a standard and well-established multi-challenge

∗ While working on this full version, Pan was partially supported by the Research Council of Norway under Project No.
324235.

https://orcid.org/0000-0002-7459-6850
https://orcid.org/0000-0003-4429-7267
https://orcid.org/0000-0002-1276-3350

Alice (pkA, skA) Bob (pkB, skB)

x $← Zp, X := gx

σA
$← Sign(skA,X) y $← Zp, Y := gy

σB
$← Sign(skB, (X, Y))

TB := u||Y||sr

TA := u||v||cl σB
$← Sign(skB, TB)

σA
$← Sign(skA, TA)

k̂A := Yx, KA := H(k̂A) u
?= H(X)

k̂B := Xy, KB := H(k̂B)

KA := H(ctxt, Yx) KB := H(ctxt,Xy)

(X, σA) or u := H(X)

(Y, σB)

(X, σA)

ctxt := (pkA, pkB,X, σA, Y, σB)

Fig. 1. Our signed Diffie-Hellman key exchange protocol and the tight variant of Gjøsteen and Jager [23]. The functions H
and H are hash functions. Operations marked with a gray box are for our signed DH protocol, and dashed boxes are for
Gjøsteen and Jager’s. Operations without a box are performed by both protocols. All signatures are verified upon arrival with
the corresponding messages, and the protocol aborts if any verification fails.

notion, and [27] called it “Single-Bit-Guess” (SBG) security. Another multi-challenge notion is the “Multi-Bit-
Guess” (MBG) security where each Test query is answered with a different random bit. Although several tightly
secure AKE protocols [2,23,45,35] are proven in the MBG model, we stress that the SBG model is well-established
and allows tight composition of the AKE with symmetric cryptographic primitives, which is not the case for the
non-standard MBG model. Thus, the SBG multi-challenge model is more desirable than the MBG model. More
details about this have been provided by Jager et al.[27, Introduction] and Cohn-Gordon et al.[14, Section 3].

THE NON-TIGHT SECURITY OF SIGNED DH. Many existing security proofs of signed DH-like protocols [28,29,7]
lose a quadratic factor, O(µ2S2), where µ and S are the maximum numbers of users and sessions. In the SBG model
with T many Test queries, these proofs also lose an additional multiplicative factor T .

At CRYPTO 2018, Gjøsteen and Jager [23] proposed a tightly secure variant of it by introducing an additional
message move into the ordinary signed DH protocol. They showed that if the signature scheme is tightly secure
in the multi-user setting then their protocol is tightly secure. They required the underlying signature scheme to be
strongly unforgeable against adaptive Corruption and Chosen-Message Attacks (StCorrCMA) which is a notion
in the multi-user setting and an adversary can adaptively corrupt some of the honest users to see their secret
keys. Moreover, they constructed a tightly multi-user secure signature scheme based on the Decisional Diffie-
Hellman (DDH) assumption in the random oracle model [4]. Combining these two results, they gave a practical
three message fully tight AKE. We note that their tight security is proven in the less desirable MBG model, and,
to the best of our knowledge, the MBG security can only non-tightly imply the SBG security [27]. Due to the
“commitment problem”, the additional message is crucial for the tightness of their protocol. In particular, the
“commitment problem” seems to be the reason why most security proofs for AKEs are non-tight.

1.1 Our Contribution

In this paper, we propose a new tight security proof of the ordinary two-message signed Diffie-Hellman key
exchange protocol in the random oracle model. More precisely, we prove the security of the signed DH protocol
tightly based on the multi-user security of the underlying signature scheme in the random oracle model. Our proof
improves upon the work of Gjøsteen and Jager [23] in the sense that we do not require any modification to the
signed DH protocol and our tight multi-challenge security is in the SBG model. This implies that our analysis
supports the optimal implementation of the ordinary signed DH protocol with theoretically sound security in a
meaningful model.

2

Our technique is a new approach to resolve the “commitment problem”. At the core of it is a new notion called
verifiable key exchange protocols. We first briefly recall the “commitment problem” and give an overview of our
approach.

TECHNICAL DIFFICULTY: THE “COMMITMENT PROBLEM”. As explained in [23], this problem is the reason
why almost all proofs of classical AKE protocols are non-tight. In a security proof of an AKE protocol, the
reduction needs to embed a hard problem instance into the protocol messages of Test sessions so that in the end
the reduction can extract a solution to the hard problem from the adversary A. After the instance is embedded, A
has not committed itself to which sessions it will query to Test yet, and, for instance, A can ask the reduction
for Reveal queries on sessions with a problem instance embedded to get the corresponding session keys. At
this point, the reduction cannot respond to these Reveal queries. A natural way to resolve this is to guess which
sessionsA will query Test on, and to embed a hard problem instance in those sessions only. However, this intro-
duces an extremely large security loss. To resolve this “commitment problem”, a tight reduction should be able to
answer both Test and Reveal for every session without any guessing. Gjøsteen and Jager achieved this for the
signed DH by adding an additional message.

In this paper, we show that this additional message is not necessary for tight security.

OUR APPROACH: VERIFIABLE KEY EXCHANGE. In this work we, for simplicity, use the signed Diffie-Hellman
protocol based on the plain Diffie-Hellman protocol [18] (as described in Figure 1) to explain our approach. In the
technical part, we abstract and present our idea with a new notion called verifiable key exchange protocols. Our
approach is motivated by the two-message non-tight AKE in [14].

Let G := 〈g〉 be a cyclic group of prime-order p where the computational Diffie-Hellman (CDH) problem is
hard. Let (gα, gβ) (where α, β $← Zp) be an instance of the CDH problem. By its random self-reducibility, we can
efficiently randomize it to multiple independent instances (gαi , gβi), and, given a gαiβi , we can extract the solution
gαβ .

For preparation, we assume that a Test session does not contain any forgeries. This can be tightly justified
by the StCorrCMA security of the underlying signature scheme which can be implemented tightly by the recent
scheme in [16].

After that, our reduction embeds the randomized instance (gαi , gβi) into each session. Now it seems we can
answer neither Test nor Reveal queries: The answer has the form K := H(ctxt, gxy), but the term gxy cannot
be computed by the reduction, since gx is from either adversary A or the CDH problem challenge. However, our
reduction can answer this by simulating the random oracle H. More precisely, we answer Test and Reveal
queries with a random K, and we carefully program the random oracle H so that adversary A cannot detect this
change. To achieve this, when we receive a random oracle query H(ctxt,Z), we answer it consistently if the secret
element Z corresponds to the context ctxt and ctxt belongs to one of the Test or Reveal queries. This check
can be efficiently done by using the strong DH oracle [1].

The approach described above can be abstract by a notion called verifiable key exchange (VKE) protocols.
Roughly speaking, a VKE protocol is firstly passively secure, namely, a passive observer cannot compute the
secret session key. Additionally, a VKE allows an adversary to check whether a session key belongs to some hon-
estly generated session, and to forward honestly generated transcripts in a different order to create non-matching
sessions. This VKE notion gives rise to a tight security proof of the signed DH protocol. We believe this is of
independent interest.

ON THE STRONG CDH ASSUMPTION. Our techniques require the Strong CDH assumption [1] for the security
of our VKE protocol. We refer to [15, Appendix B] for a detailed analysis of this assumption in the Generic Group
Model (GGM). Without using the GGM, we can use the twinning technique [13] to remove this strong assumption
and base the VKE security tightly on the (standard) CDH assumption. This approach will double the number of
group elements. Alternatively, we can use the group of signed Quadratic Residues (QR) [26] to instantiate our
VKE protocol, and then the VKE security is tightly based on the factoring assumption (by [26, Theorem 2]).

REAL-WORLD IMPACTS. As mentioned earlier, the signed DH protocol serves as a solid foundation for many
real-world protocols, including the one in TLS 1.3 [41], IKE [25], and the Station-to-Station [19] protocols. We
believe our approach can naturally be extended to tighten the security proofs of these protocols. In particular, our
notion of VKE protocols can abstract some crucial steps in a recent tight proof of TLS 1.3 [15].

Another practical benefit of our tight security proof is that, even if we implement the underlying signature with
a standardized, non-tight scheme (such as Ed25519 [8] or RSA-PKCS #1 v1.5 [39]), our implementation does
not need to lose the additional factor that is linear in the number of sessions. In today’s Internet, there can be easily
260 sessions per year.

3

1.2 Protocol Comparison

We compare the instantiation of signed DH according to our tight proof with the existing explicitly authenticated
key exchange protocols in Figure 2. For complete tightness, all these protocols require tight multi-user security of
their underlying signature scheme. We implement the signature scheme in all protocols with the recent efficient
scheme from Diemert et al. [16] whose signatures contain 3 Zp elements, and whose security is based on the DDH
assumption. The implementation of TLS is according to the recent tight proofs in [15,17], and we instantiate the
underlying signature scheme with the same DDH-based scheme from [16].

Protocol Comm.
(G, {0, 1}λ,Zp)

#Msg. Assumption Auth. Model State
Reveal

Security
loss

TLS∗ [15,17] (2, 4, 6) 3 StCDH + DDH expl. SBG no O(1)
GJ [23] (2, 1, 6) 3 DDH expl. MBG no O(1)
LLGW [35] (3, 0, 6) 2 DDH expl. MBG no O(1)
JKRS [27] (5, 1, 3) 2 DDH expl. SBG yes O(1)
This work (2, 0, 6) 2 StCDH + DDH expl. SBG no O(1)

Fig. 2. Comparison of AKE protocols. We denote Comm. as the communication complexity of the protocols in terms of the
number of group elements, hashes and Zp elements (which is due to the use of the signature scheme in [16]). The column
Model lists the AKE security model and distinguishes between multi-bit guessing (MBG) and the single-bit-guessing (SBG)
security.

We note that the non-tight protocol from Cohn-Gorden et al. [14], whose security loss is linear in the number
of users, has better communication efficiency (2, 0, 0). However, its security is weaker than all protocols listed in
Figure 2, since their protocol is only implicitly authenticated and achieves weak perfect forward secrecy.

We detail the comparison with JKRS [27]. Using the DDH-based signature scheme in [16], the communication
complexity of our signed DH protocol is (2, 0, 6), while that of JKRS is (5, 1, 3). We suppose the efficiency of
our protocol is comparable to JKRS.

Our main weakness is that our security model is weaker that that of JKRS. Namely, ours does not allow ad-
versaries to corrupt any internal secret state. We highlight that our proof does not inherently rely on any decisional
assumption. In particular, if there is a tightly multi-user secure signature scheme based on only search assump-
tions, our proof directly gives a tightly secure AKE based on search assumptions only, which is not the case for
[27].

1.3 An Extension and Open Problems

We extend our approach to group AKE (GAKE) protocols, where a group of users can agree on a session key,
and construct the first tightly secure GAKE protocol. Research on GAKE has a long history and several GAKE
protocols have been constructed in the literature [9,11,10,24,30]. However, none of the existing GAKE protocols
enjoy a tight security proof. We suppose that tight security is more desirable for GAKE than AKE, since many
applications require GAKE protocols (such as online audio-video conference systems and instant messaging [42])
are often in a truly large-scale setting.

Similar to the two-party setting, we propose the notion of verifiable group key exchange (VGKE) protocols
and transform a VGKE to GAKE using a signature scheme. Our transformation is tightness-preserving. As an
instantiation of our approach, we prove that under the strong CDH assumption the classical Burmester-Desmedt
protocol is a tightly secure VGKE protocol [12]. Combining with a tightly StCorrCMA-secure signature (for
instance, [16]), it yields the first tightly secure GAKE protocol. Alternatively, our transformation can be viewed as
a tight improvement on the (non-tight) generic compiler of Katz and Yung [30] where we require the underlying
non-authenticated group key exchange protocol to be verifiable.

OPEN PROBLEMS. We do not know of any tightly multi-user secure signature schemes with corruptions based
on a search assumption, and the schemes in [38] based on search assumptions do not allow any corruption. It
is therefore insufficient for our purpose, and we leave constructing a tightly secure AKE based purely on search
assumptions as an open problem.

4

1.4 History of This Paper

This is the full version of a paper published at CT-RSA 2021 [37]. The main change here is to extend our approach
in the group key exchange setting and propose the first tightly secure GAKE protocol (cf. Section 6). Due to
this main extension, we (slightly) change the title to the current one. Moreover, we give a detailed proof for the
multi-user security of Schnorr’s signature scheme in the generic group model (cf. Appendix A).

2 Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. For a finite set S, we denote the sampling of a uniform random element x by
x $← S. By JBK we denote the bit that is 1 if the evaluation of the Boolean statement B is true and 0 otherwise.

ALGORITHMS. For an algorithm A which takes x as input, we denote its computation by y ← A(x) if A is
deterministic, and y $← A(x) if A is probabilistic. We assume all the algorithms (including adversaries) in this
paper to be probabilistic unless we state it. We denote an algorithm A with access to an oracle O by AO.

GAMES. We use code-based games [6] to present our definitions and proofs. We implicitly assume all Boolean
flags to be initialized to 0 (false), numerical variables to 0, sets to ∅ and strings to ⊥. We make the convention
that a procedure terminates once it has returned an output. GA ⇒ b denotes the final (Boolean) output b of game
G running adversary A, and if b = 1 we say A wins G. The randomness in Pr[GA ⇒ 1] is over all the random
coins in game G. Within a procedure, “abort ” means that we terminate the run of an adversary A.

DIGITAL SIGNATURES. We recall the syntax and security of a digital signature scheme. Let par be some system
parameters shared among all participants.

Definition 1 (Digital Signature). A digital signature scheme SIG := (Gen,Sign,Ver) is defined as follows.
– The key generation algorithm Gen(par) returns a public key and a secret key (pk, sk). We assume that pk

implicitly defines a message spaceM and a signature space Σ.
– The signing algorithm Sign(sk,m ∈M) returns a signature σ ∈ Σ on m.
– The deterministic verification algorithm Ver(pk,m, σ) returns 1 (accept) or 0 (reject).

SIG is perfectly correct, if for all (pk, sk) ∈ Gen(par) and all messages m ∈M, Ver(pk,m,Sign(sk,m)) = 1.
In addition, we say that SIG has α bits of (public) key min-entropy if an honestly generated public key pk is

chosen from a distribution with at least α bits min-entropy. Formally, for all bit-strings pk′ we have Pr[pk = pk′ :
(pk, sk) $← Gen(par)] ≤ 2−α.

Definition 2 (StCorrCMA Security [23,16]). A digital signature scheme SIG is
(t, ε, µ,Qs,QCOR)-StCorrCMA secure (Strong unforgeability against Corruption and Chosen Message Attacks), if
for all adversaries A running in time at most t, interacting with µ users, making at most Qs queries to the signing
oracle SIGN, and at most QCOR (QCOR < µ) queries to the corruption oracle Corr as in Figure 3, we have

Pr[StCorrCMAA ⇒ 1] ≤ ε.

GAME StCorrCMA:
01 for i ∈ [µ]: (pki, ski) $← Gen(par)
02 (i∗,m∗, σ∗) $← AO({pki}i∈[µ])
03 return JVer(pki∗ ,m∗, σ∗)K
∧J(i∗,m∗, σ∗) /∈ LSK ∧ Ji∗ /∈ LCK

SIGN(i,m):
04 σ := Sign(ski,m)
05 LS := LS ∪ {(i,m, σ)}
06 return σ

Corr(i):
07 LC := LC ∪ {i}
08 return ski

Fig. 3. StCorrCMA security game for a signature scheme SIG. A has access to the oracles O := {Sign,Corr}.

SECURITY IN THE RANDOM ORACLE MODEL. A common approach to analyze the security of signature schemes
that involve a hash function is to use the random oracle model [4] where hash queries are answered by an oracle H,
where H is defined as follows: On input x, it first checks whether H(x) has previously been defined. If so, it returns
H(x). Otherwise, it sets H(x) to a uniformly random value in the range of H and then returns H(x). We parameterize
the maximum number of hash queries in our security notions. For instance, we define (t, ε, µ,Qs,QCOR,QH)

5

-StCorrCMA as security against any adversary that makes at most QH queries to H in the StCorrCMA game.
Furthermore, we make the standard convention that any random oracle query that is asked as a result of a query
to the signing oracle in the StCorrCMA game is also counted as a query to the random oracle. This implies that
Qs ≤ QH.

SIGNATURE SCHEMES. The tight security of our authenticated key exchange (AKE) protocols are established
based on the StCorrCMA security of the underlying signature schemes. To obtain a completely tight AKE, we use
the recent signature scheme from [16] to implement our protocols.

By adapting the non-tight proof in [22], the standard unforgeability against chosen-message attacks (UF-CMA)
notion for signature schemes implies the StCorrCMA security of the same scheme non-tightly (with security
loss µ). Thus, many widely used signature schemes (such as the Schnorr [43], Ed25519 [8] and RSA-PKCS #1
v1.5 [39] signature schemes) are non-tightly StCorrCMA secure. We do not know any better reductions for these
schemes. We leave proving the StCorrCMA security of these schemes without losing a linear factor of µ as a
future direction. However, our tight proof for the signed DH protocol strongly indicates that the aforementioned
non-tight reduction is optimal for these practical schemes. This is because if we can prove these schemes tightly
secure, we can combine them with our tight proof to obtain a tightly secure AKE with unique and verifiable private
keys, which may contradict the impossibility result from [14].

For the Schnorr signature, we analyze its StCorrCMA security in the generic group model (GGM) [44,36]. We
recall the Schnorr signature scheme below and show the GGM bound of its StCorrCMA security in Theorem 1.

Let par = (p, g,G), where G = 〈g〉 is a cyclic group of prime order p with a hard discrete logarithm problem.
Let H : {0, 1}∗ → Zp be a hash function. Schnorr’s signature scheme, Schnorr := (Gen,Sign,Ver), is defined as
follows:

Gen(par):
01 x $← Zp

02 X := gx

03 pk := X
04 sk := x
05 return (pk, sk)

Sign(sk,m):
06 parse x =: sk
07 r $← Zp; R := gr

08 h := H(R,m)
09 s := r + x · h
10 return (h, s)

Ver(pk,m, σ):
11 parse (h, s) =: σ
12 parse X =: pk
13 R = gs · X−h

14 return JH(R,m) = hK

Theorem 1 (StCorrCMA Security of Schnorr in the GGM). Schnorr’s signature SIG is (t, ε, µ,Qs,QCOR,QH)-
StCorrCMA-secure in the GGM and in the programmable random oracle model, where

ε ≤ (QG + µ+ 1)2

2p
+ (µ− QCOR)

p
+ QHQs + 1

p
, and t′ ≈ t.

Here, QG is the number of group operations queried by the adversary.

The proof of Theorem 1 is following the approach in [3,31]: We first define an algebraic interactive assumption,
CorrIDLOG, which is tightly equivalent to the StCorrCMA security of Schnorr, and then we analyze the hardness
of CorrIDLOG in the GGM. CorrIDLOG stands for Interactive Discrete Logarithm with Corruption. It is motivated
by the IDLOG (Interactive Discrete Logarithm) assumption in [31]. CorrIDLOG is a stronger assumption than
IDLOG in the sense that it allows an adversary to corrupt the secret exponents of some public keys. Details are
given in Appendix A.

3 Security Model for Two-Message Authenticated Key Exchange

In this section, we use the security model in [27] to define the security of two-message authenticated key exchange
protocols. This section is almost verbatim to Section 4 of [27]. We highlight the difference we make for our
protocol: Since our protocols do not have security against (ephemeral) state reveal attacks (as in the extended
Canetti-Krawczyk (eCK) model [33]), we do not consider state reveals in our model.

A two-message key exchange protocol AKE := (GenAKE, InitI,DerR,DerI) consists of four algorithms which
are executed interactively by two parties as shown in Figure 4. We denote the party which initiates the session
by Pi and the party which responds to the session by Pr. The key generation algorithm GenAKE outputs a key
pair (pk, sk) for one party. The initialization algorithm InitI inputs the initiator’s long-term secret key ski and
the responder’s long-term public key pkr, and outputs a message mi and a state st. The responder’s derivation
algorithm DerR takes as input the responder’s long-term secret key, the initiator’s public key pki and a message

6

Party Pi (pki, ski) Party Pr (pkr, skr)

(mi, st)← InitI(ski, pkr)
(mr,K)← DerR(skr, pki,mi)

K := DerI(ski, pkr,mr, st)

mi

mr
st

Fig. 4. Running an authenticated key exchange protocol between two parties.

mi. It computes a message mr and a session key K. The initiator’s derivation algorithm DerI inputs the initiator’s
long term key ski, the responder’s long term public key pkr, the responder’s message mr and the state st. Note that
the responder is not required to save any internal state information besides the session key K.

We give a security game written in pseudocode. We define a model for explicit authenticated protocols achiev-
ing (full) forward secrecy instead of weak forward secrecy. Namely, an adversary in our model can be active and
corrupt the user who owns the Test session sID∗, and the only restriction is that if there is no matching session
to sID∗, then the peer of sID∗ must not be corrupted before the session finishes.

Here explicit authentication means entity authentication in the sense that a party can explicitly confirm that
he is talking to the actual owner of the recipient’s public key. The key confirmation property is only implicit [20],
where a party is assured that the other identified party can compute the same session key. The game IND-FS is
given in Figure 5 and Figure 6.

GAME IND-FS
00 for n ∈ [µ]
01 (pkn, skn)← GenAKE
02 b $← {0, 1}
03 b′ ← AO(pk1, · · · , pkµ)
04 for sID∗ ∈ S
05 if Fresh(sID∗) = false
06 return b �session not fresh
07 if Valid(sID∗) = false
08 return b �no valid attack
09 return Jb = b′K

SessionR((i, r) ∈ [µ]2,mi)
10 cntS ++
11 sID := cntS

12 (init[sID], resp[sID]) := (i, r)
13 type[sID] := “Re”
14 peerCorrupted[sID] := corrupted[i]
15 (mr,K)← DerR(skr, pki,mi)
16 (I[sID],R[sID], sKey[sID]) := (mi,mr,K)
17 return (sID,mr)

Test(sID)
18 if sID ∈ S return ⊥ �already tested
19 if sKey[sID] = ⊥ return ⊥
20 S := S ∪ {sID}
21 K∗0 := sKey[sID]
22 K∗1 $← K
23 return K∗b

SessionI((i, r) ∈ [µ]2)
24 cntS ++
25 sID := cntS

26 (init[sID], resp[sID]) := (i, r)
27 type[sID] := “In”
28 (mi, st)← InitI(ski, pkr)
29 (I[sID], state[sID]) := (mi, st)
30 return (sID,mi)

DerI(sID ∈ [cntS],mr)
31 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
32 return ⊥ �no re-use
33 (i, r) := (init[sID], resp[sID])
34 st := state[sID]
35 peerCorrupted[sID] := corrupted[r]
36 K := DerI(ski, pkr,mr, st)
37 (R[sID], sKey[sID]) := (mr,K)
38 return ε

Reveal(sID)
39 revealed[sID] := true
40 return sKey[sID]

Corr(n ∈ [µ])
41 corrupted[n] := true
42 return skn

Fig. 5. Game IND-FS for AKE.A has access to oracles O := {SessionI,SessionR,DerI,Reveal,Corr,Test}. Helper
procedures Fresh and Valid are defined in Figure 6. If there exists any test session which is neither fresh nor valid, the game
will return b.

EXECUTION ENVIRONMENT. We consider µ parties P1, . . . ,Pµ with long-term key pairs (pkn, skn), n ∈ [µ].
Each session between two parties has a unique identification number sID and variables which are defined relative
to sID:

– init[sID] ∈ [µ] denotes the initiator of the session.
– resp[sID] ∈ [µ] denotes the responder of the session.

7

Fresh(sID∗)
00 (i∗, r∗) := (init[sID∗], resp[sID∗])
01 M(sID∗) := {sID | (init[sID], resp[sID]) = (i∗, r∗) ∧ (I[sID],R[sID]) =

(I[sID∗],R[sID∗]) ∧ type[sID] 6= type[sID∗]} �matching sessions
02 if revealed[sID∗] or (∃sID ∈M(sID∗) : revealed[sID] = true)
03 return false �A trivially learned the test session’s key
04 if ∃sID ∈M(sID∗) s. t. sID ∈ S
05 return false �A also tested a matching session
06 return true

Valid(sID∗)
07 (i∗, r∗) := (init[sID∗], resp[sID∗])
08 M(sID∗) := {sID | (init[sID], resp[sID]) = (i∗, r∗) ∧ (I[sID],R[sID]) =

(I[sID∗],R[sID∗]) ∧ type[sID] 6= type[sID∗]} �matching sessions
09 for attack ∈ Table 1
10 if attack = true return true
11 return false

Fig. 6. Helper procedures Fresh and Valid for game IND-FS defined in Figure 5. Procedure Fresh checks if the adversary
performed some trivial attack. In procedure Valid, each attack is evaluated by the set of variables shown in Table 1 and checks
if an allowed attack was performed. If the values of the variables are set as in the corresponding row, the attack was performed,
i. e. attack = true, and thus the session is valid.

– type[sID] ∈ {“In”, “Re”} denotes the session’s view, i. e. whether the initiator or the responder computes the
session key.

– I[sID] denotes the message that was computed by the initiator.
– R[sID] denotes the message that was computed by the responder.
– state[sID] denotes the (secret) state information, i. e. ephemeral secret keys.
– sKey[sID] denotes the session key.

To establish a session between two parties, the adversary is given access to oracles SessionI and SessionR,
where the first one starts a session of type “In” and the second one of type “Re”. The SessionR oracle also
runs the DerR algorithm to compute it’s session key and complete the session, as it has access to all the required
variables. In order to complete the initiator’s session, the oracle DerI has to be queried.

Following [27], we do not allow the adversary to register adversarially controlled parties by providing long-
term public keys, as the registered keys would be treated no differently than regular corrupted keys. If we would
include the key registration oracle, then our proof requires a stronger notion of signature schemes in the sense that
our signature challenger can generate the system parameters with some trapdoor. With the trapdoor, the challenger
can simulate a valid signature under the adversarially registered public keys. This is the case for the Schnorr
signature and the tight scheme in [16], since they are honest-verifier zero-knowledge and the aforementioned
property can be achieved by programming the random oracles. However, for readability, we treat the registered
keys as corrupted keys.

Finally, the adversary has access to oracles Corr and Reveal to obtain secret information. We use the
following boolean values to keep track of which queries the adversary made:

– corrupted[n] denotes whether the long-term secret key of party Pn was given to the adversary.
– revealed[sID] denotes whether the session key was given to the adversary.
– peerCorrupted[sID] denotes whether the peer of the session was corrupted and its long-term key was given to

the adversary at the time the session key is computed, which is important for forward security.
The adversary can forward messages between sessions or modify them. By that, we can define the relationship
between two sessions:

– Matching Session: Two sessions sID and sID′ match if the same parties are involved (init[sID] = init[sID′]
and resp[sID] = resp[sID′]), the messages sent and received are the same (I[sID] = I[sID′] and R[sID] =
R[sID′]) and they are of different types (type[sID] 6= type[sID′]).

Our protocols use signatures to preserve integrity so that any successful no-match attacks described in [34] will
lead to a signature forgery and thus can be excluded.

Finally, the adversary is given access to oracle Test, which can be queried multiple times and which will
return either the session key of the specified session or a uniformly random key. We use one bit b for all test
queries, and store test sessions in a set S. The adversary can obtain information on the interactions between two

8

A gets (Initiator, Responder) co
rr

up
te

d[
i∗

]

co
rr

up
te

d[
r∗

]

pe
er

C
or

ru
pt

ed
[sI

D
∗
]

ty
pe

[sI
D
∗
]

|M
(s

ID
∗
)|

0. multiple matching sessions – – – – > 1

1.+2. (long-term, long-term) – – – – 1

5.+6. (long-term, long-term) – – F – 0

Table 1. Distilled table of attacks for adversaries against explicitly authenticated two-message protocols without ephemeral
state reveals. An attack is regarded as an AND conjunction of variables with specified values as shown in the each line, where
“–” means that this variable can take arbitrary value and F means “false”.

A gets (Initiator, Responder) co
rr

up
te

d[
i∗

]

co
rr

up
te

d[
r∗

]

pe
er

C
or

ru
pt

ed
[sI

D
∗
]

ty
pe

[sI
D
∗
]

|M
(s

ID
∗
)|

0. multiple matching sessions – – – – > 1

1. (long-term, long-term) – – – “In” 1
2. (long-term, long-term) – – – “Re” 1

3. (long-term, ⊥) – T T “In” 0
4. (⊥, long-term) T – T “Re” 0
5. (long-term, long-term) – – F “In” 0
6. (long-term, long-term) – – F “Re” 0

Table 2. Full table of attacks for adversaries against explicitly authenticated two-message protocols. The trivial attacks where
the session’s peer is corrupted when the key is derived, and the corresponding variables are set to T, are marked with gray .
The ⊥ symbol indicates that the adversary cannot query anything from this party, as he already possesses the long-term key.

parties by querying the long-term secret keys and the session key. However, for each test session, we require that
the adversary does not issue queries such that the session key can be trivially computed. We define the properties
of freshness and validity which all test sessions have to satisfy:

– Freshness: A (test) session is called fresh if the session key was not revealed. Furthermore, if there exists
a matching session, we require that this session’s key is not revealed and that this session is not also a test
session.

– Validity: A (test) session is called valid if it is fresh and the adversary performed any attack which is defined
in the security model. We capture this with attack Table 1.

ATTACK TABLES. We define validity of different attack strategies. All attacks are defined using variables to indi-
cate which queries the adversary may (not) make. We consider three dimensions:

– whether the test session is on the initiator’s (type[sID∗] =“In”) or the responder’s side (type[sID∗] =“Re”),
– all combinations of long-term secret key reveals, taking into account when a corruption happened (corrupted

and peerCorrupted variables),
– whether the adversary acted passively (matching session) or actively (no matching session).

This way, we capture all kind of combinations which are possible. From the 6 attacks in total presented in Table 2,
two are trivial wins for the adversary and can thus be excluded:

– Attack (3.)+(4.): If there is no matching session, and the peer is corrupted, the adversary will trivially win, as
he can forge a signature on any message of his choice, and then compute the session key.

Other attacks covered in our model capture forward secrecy (FS) and key compromise impersonation (KCI) attacks.
An attack was performed if the variables are set to the corresponding values in the table.

9

However, if the protocol does not use appropriate randomness, it should not be considered secure. Thus, if the
adversary is able to create more than one matching session to a test session, he may also run a trivial attack. We
model this in row (0.) of Table 2.

Note that we do not include reflection attacks, where the adversary makes a party run the protocol with himself.
For the KEDH protocol, we could include these and create an additional reduction to the square Diffie-Hellman
assumption (given gx, to compute gx2

), but for simplicity of our presentation we will not consider reflection attacks
in this paper.

HOW TO READ THE TABLES. As an example, we choose row (5.) of Table 2. Then, if the test session is an ini-
tiating session (namely, type[sID∗] = “In”), the responder is not corrupted when the key is computed, and there
does not exist a matching session (namely, |M(sID∗)| = 0), this row will evaluate to true. In this scenario, the
adversary is allowed to query both long-term secret keys. Note that row (6.) denotes a similar attack against a
responder session. Since the session’s type does not change the queries the adversary is allowed to make in this
case, we merge these rows in Table 1. For the same reason, we also merge lines (1.) and (2.).

The purpose of these tables are to make our proofs precise, by listing all the possible attacks. We note that
while in our case it would have been possible to simply write out the attacks, the number of possible combinations
get too large if state-reveals are considered. As we adopt our model from [27], which does include state-reveals,
we stuck to their notation.

For all test sessions, at least one attack has to evaluate to true. Then, the adversary wins if he distinguishes the
session keys from uniformly random keys which he obtains through queries to the Test oracle.

Definition 3 (Key Indistinguishability of AKE). We define game IND-FS as in Figures 5 and 6. A protocol
AKE is (t, ε, µ, S,T,QCOR)-IND-FS-secure if for all adversaries A attacking the protocol in time t with µ users, S
sessions, T test queries and QCOR corruptions, we have∣∣∣∣Pr[IND-FSA ⇒ 1]− 1

2

∣∣∣∣ ≤ ε.
Note that if there exists a session which is neither fresh nor valid, the game outputs the bit b, which implies that
Pr[IND-FSA ⇒ 1] = 1/2, giving the adversary an advantage equal to 0. This captures that an adversary will not
gain any advantage by performing a trivial attack.

4 Verifiable Key Exchange Protocols

A key exchange protocol KE := (InitI,DerR,DerI) can be run between two (unauthenticated) parties i and r, and
can be visualized as in Figure 4, but with differences where (1): parties does not hold any public key or private key,
and (2): public and private keys in algorithms InitI,DerR,DerI are replaced with the corresponding users’ (public)
identities.

The standard signed Diffie-Hellman (DH) protocol can be viewed as a generic way to transform a passively
secure key exchange protocol to an actively secure AKE protocol using digital signatures. Our tight transformation
does not modify the construction of the signed DH protocol, but requires a security notion (i.e. One-Wayness
against Honest and key Verification attacks, or OW-HV) that is (slightly) stronger than passive security: Namely,
in addition to passive attacks, an adversary is allowed to check if a key corresponds to some honestly generated
transcripts and to forward transcripts in a different order to create non-matching sessions. Here we require that all
the involved transcripts must be honestly generated by the security game and not by the adversary. This is formally
defined by Definition 4 with security game OW-HV as in Figure 7.

Definition 4 (One-Wayness against Honest and key Verification attacks (OW-HV)). A key exchange protocol
KE is (t, ε, µ, S,QV)-OW-HV secure, where µ is the number of users, S is the number of sessions and QV is the
number of calls to KVer, if for all adversaries A attacking the protocol in time at most t, we have

Pr[OW-HVA ⇒ 1] ≤ ε.

We require that a key exchange protocol KE has α bits of min-entropy, i.e that for all messages m′ we have
Pr[m = m′] ≤ 2−α, where m is output by either InitI or DerR.

10

GAME OW-HV
01 (sID∗,K∗) $← AO(µ)
02 if sID∗ > cntS

03 return 0
04 else
05 return KVer(sID∗,K∗)

KVer(sID,K)
06 return JsKey[sID] = KK

DerI(sID, Y)
07 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
08 return ⊥
09 if ∀sID′ ∈ [cntS] : R[sID′] 6= Y
10 return ⊥ �Y is not honest
11 (i, r) := (init[sID], resp[sID])
12 st := state[sID]
13 K := DerI(i, r, Y, st)
14 (R[sID], sKey[sID]) := (Y,K)
15 return ε

SessionI((i, r) ∈ [µ]2) �i 6= r
16 cntS ++
17 sID := cntS

18 (init[sID], resp[sID]) := (i, r)
19 type[sID] := “In”
20 (X, st) $← InitI(i, r)
21 (I[sID], state[sID]) := (X, st)
22 return (sID,X)

SessionR((i, r) ∈ [µ]2,X) �i 6= r
23 if ∀sID ∈ [cntS] : I[sID] 6= X
24 return ⊥ �X is not honest
25 cntS ++
26 sID′ := cntS

27 (init[sID′], resp[sID′]) := (i, r)
28 type[sID′] := “Re”
29 I[sID′] := X
30 (Y,K′) $← DerR(r, i,X)
31 R[sID′] := Y
32 sKey[sID′] := K′

33 return (sID′, Y)

Fig. 7. Game OW-HV for KE. A has access to oracles O := {SessionI,SessionR,DerI,KVer}.

4.1 Example: Plain Diffie-Hellman Protocol

We show that the plain Diffie-Hellman (DH) protocol over prime-order group [18] is a OW-HV-secure key ex-
change under the strong computational DH (StCDH) assumption [1]. We use our syntax to recall the original DH
protocol KEDH in Figure 8.

Let par = (p, g,G) be a set of system parameters, where G := 〈g〉 is a cyclic group of prime order p.

Definition 5 (Strong CDH Assumption). The strong CDH (StCDH) assumption is said to be (t, ε,QDH)-hard
in par = (p, g,G), if for all adversaries A running in time at most t and making at most QDH queries to the DH
predicate oracle Dha, we have:

Pr
[

Z = Ba
∣∣∣∣a, b $← Zp; A := ga B := gb

Z $← ADha(A,B)

]
≤ ε,

where the DH predicate oracle Dha(C,D) outputs 1 if D = Ca and 0 otherwise.

InitI(i, r):
01 st := x $← Zp

02 X := gx

03 return (X, st)

DerR(r, i,X ∈ G)
04 y $← Zp

05 Y := gy

06 K := Xy

07 return (Y,K)

DerI(i, r, Y ∈ G, st ∈ Zp)
08 K := Yst

09 return K

Fig. 8. The Diffie-Hellman key exchange protocol, KEDH, in our syntax definition.

Lemma 1. Let KEDH be the DH key exchange protocol as in Figure 8. Then KEDH has α = log2 p bits of min-
entropy, and for every adversaryA that breaks the (t, ε, µ, S,QV)-OW-HV-security of KEDH, there is an adversary
B that breaks the (t′, ε′,QDH)-StCDH assumption with

ε′ = ε, t′ ≈ t, and QDH = QV + 1. (1)

Proof. The min-entropy assertion is straightforward, as the DH protocol generates messages by drawing exponents
x, y $← Zp uniformly as random.

We prove the rest of the lemma by constructing a reduction B which inputs the StCDH challenge (A,B) and
is given access to the decisional oracle Dha. B simulates the OW-HV security game for the adversary A, namely,

11

BDha (A,B)
01 (sID∗,K∗) $← AO(µ)
02 if sID∗ > cntS or KVer(sID∗,K∗) = 0
03 return 0
04 else
05 (X, Y) := (I[sID∗],R[sID∗])
06 fetch sID1 s.t. type[sID1] = “In” and I[sID1] = X
07 fetch sID1 s.t. type[sID2] = “Re” and R[sID2] = Y
08 Z := K∗/(Yα[sID1] · Aα[sID2])
09 return JZ ∈WinStCDHK �break StCDH

KVer(sID,K)
10 (X, Y) := (I[sID],R[sID])
11 fetch sID1 s.t. type[sID1] = “In” and I[sID1] = X
12 fetch sID1 s.t. type[sID2] = “Re” and R[sID2] = Y
13 if sID1 = ⊥ or sID2 = ⊥
14 return ⊥
15 return Dha(Y,K/Yα[sID1])

DerI(sID, Y)
16 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
17 return ⊥
18 if ∀sID′ ∈ [cntS] : R[sID′] 6= Y
19 return ⊥ �Y is not honest
20 return ε

SessionI((i, r) ∈ [µ]2) �i 6= r
21 cntS ++
22 sID := cntS

23 (init[sID], resp[sID]) := (i, r)
24 type[sID] := “In”
25 α[sID] $← Zp

26 X := A · gα[sID]

27 (I[sID], state[sID]) := (X,⊥)
28 return (sID,X)

SessionR((i, r) ∈ [µ]2,X) �i 6= r
29 if ∀sID ∈ [cntS] : I[sID] 6= X
30 return ⊥ �X is not honest
31 cntS ++
32 sID′ := cntS

33 (init[sID′], resp[sID′]) := (i, r)
34 type[sID′] := “Re”
35 I[sID′] := X
36 α[sID′] $← Zp

37 Y := B · gα[sID′]

38 R[sID′] := Y
39 return (sID′, Y)

Fig. 9. Reduction B that breaks the StCDH assumption and simulates the OW-HV game for A, when A = ga and B = gb for
some unknown a and b.

answersA’s oracle access as in Figure 9. More precisely, B uses the random self-reducibility of StCDH to simulate
the whole security game, instead of using the InitI and DerR algorithms. The most relevant codes are highlighted
with bold line numbers.

We show that B simulates the OW-HV game for A perfectly:
– Since X generated in line 26 and Y generated in line 37 are uniformly random, the outputs of SessionI and
SessionR are distributed as in the real protocol. Note that the output of DerI does not get modified.

– For KVer(sID,K), if K is a valid key that corresponds to session sID, then there must exist sessions sID1
and sID2 such that type[sID1] = “In” (defined in line 24) and type[sID2] = “Re” (defined in line 34) and

K = (B · gα[sID2])(a+α[sID1]) = Ya · Yα[sID1]. (2)

where I[sID] = I[sID1] = A · gα[sID1] (defined in line 26) and R[sID] = R[sID2] = Y := B · gα[sID2] (defined
in line 37). Thus, the output of KVer(sID,K) is the same as that of Dha(Y,K/Yα[sID1]).
Finally, A returns sID∗ ∈ [cntS] and a key K∗. If A wins, then KVer(sID∗,K∗) = 1 which means that there

exists sessions sID1 and sID2 such that type[sID1] = “In”, type[sID2] = “Re” and

K∗ = g(a+α[sID1])(b+α[sID2]) = gab · Aα[sID2] · Bα[sID1]gα[sID1]α[sID2] = gab · Aα[sID2] · Yα[sID1],

where Y = R[sID2] = B · gα[sID2]. This means B breaks the StCDH with gab = K∗/(Yα[sID1] · Aα[sID2]) as in
line 08, if A break the OW-HV of KEDH. Hence, ε = ε′. The running time of B is the running time of A plus
one exponentiation for every call to SessionI and SessionR, so we get t ≈ t′. The number of calls to Dha is the
number of calls to KVer, plus one additional call to verify the adversary’s forgery, and hence QDH = QV + 1.

Group of Signed Quadratic Residues Our construction of a key exchange protocol in Figure 8 is based on the
StCDH assumption over a prime order group. Alternatively, we can instantiate our VKE portocol in a group of
signed quadratic residues QR+

N [26]. As the StCDH assumption in QR+
N groups is tightly implied by the factoring

assumption (by [26, Theorem 2]), our VKE protocol is secure based on the classical factoring assumption.

5 Signed Diffie-Hellman, revisited

Following the definition in Section 3, we want to construct a IND-FS-secure authenticated key exchange protocol
AKE = (GenAKE, InitI,DerI,DerR) by combining a StCorrCMA-secure signature scheme SIG = (Gen,Sign,Ver),

12

GenAKE(par):
01 (pk, sk) $← Gen(par)
02 return (pk, sk)

DerR(skr, pki,X, σi)
03 if Ver(pki,X, σi) = 0
04 return ⊥
05 (Y,K∗)← DerR

′(r, i,X)
06 σr

$← Sign(skr, (X, Y))
07 ctxt := (pki, pkr,X, σi, Y, σr)
08 K := H(ctxt,K∗)
09 return ((Y, σr),K)

InitI(ski, pkr):
10 (X, st) $← Init′I(i, r)
11 σi

$← Sign(ski,X)
12 return (X, st, σi)

DerI(ski, pkr, Y, σr, st)
13 if Ver(pkr, (X, Y), σr) = 0
14 return ⊥
15 K∗ := Der′I(i, r, Y, st)
16 ctxt := (pki, pkr,X, σi, Y, σr)
17 K := H(ctxt,K∗)
18 return K

Fig. 10. Generic construction of AKE from SIG, KE and a random oracle H.

a OW-HV-secure key exchange protocol KE = (Init′I,Der′I,DerR
′), and a random oracle H. The construction is

given in Figure 10, and follow the execution order from Figure 4.
We now prove that this construction is in fact a secure AKE protocol.

Theorem 2. For every adversary A that breaks the (t, ε, µ, S,T,QH,QCOR)-IND-FS-security of a protocol AKE
constructed as in Figure 10, we can construct an adversary B against the (t′, ε′, µ,Qs,Q′COR)-StCorrCMA-security
of a signature scheme SIG withα bits of key min-entropy, and an adversary C against the (t′′, ε′′, µ, S′,QV)-OW-HV
security of a key exchange protocol KE with β bits of min-entropy, such that

ε ≤ 2ε′ + ε′′

2 + µ2

2α+1 + S2

2β+1

t′ ≈ t, Qs ≤ S, Q′COR = QCOR

t′′ ≈ t, S′ = S, QV ≤ QH.

(3)

Proof. We will prove this by using the following hybrid games, which are illustrated in Figure 11.

GAME G0: This is the IND-FS security game for the protocol AKE. We assume that all long term keys, and all
messages output by InitI and DerR are distinct. If a collision happens, the game aborts. To bound the probability
of this happening, we use that SIG has α bits of key min-entropy, and KE has β bits of min-entropy. We can
upper bound the probability of a collision happening in the keys as µ2/2α+1 for µ parties, and the probability of
a collision happening in the messages as S2/2β+1 for S sessions, as each session computes one message. Thus we
have

Pr[IND-FSA ⇒ 1] ≤ Pr[GA0 ⇒ 1] + µ2

2α+1 + S2

2β+1 . (4)

GAME G1: In this game, when the oracles DerI and SessionR try to derive a session key, they will abort if the
input message does not correspond to a previously sent message, and the corresponding signature is valid w.r.t. an
uncorrupted party (namely, A generates the message itself).

This is the preparation step for reducing an IND-FS adversary of AKE to an OW-HV adversary of KE. Note
that in this game we do not exclude all the non-matching Test sessions, but it is already enough for the “IND-FS-
to-OW-HV” reduction. For instance, A can still force some responder session to be non-matching by reusing
some of the previous initiator messages to query SessionR, and then A uses the non-matching responder session
to query Test.

The only way to distinguish G0 and G1 is to trigger the new abort event in either line 19 (i.e. AbortDerR) or
line 39 (i.e. AbortDerI) of Figure 11. We define the event AbortDer := AbortDerI ∨ AbortDerR and have that∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ Pr[AbortDer].

To bound this probability, we construct an adversary B against the (t′, ε′, µ,Qs,Q′COR)-StCorrCMA-security of
SIG in Figure 12.

We note that AbortDer is true only ifA performs attacks 5+6 in Table 1 which may lead to a session without
any matching session. If AbortDer = true then Σ is defined in lines 26 and 42 of Figure 12 and Σ is a valid
StCorrCMA forge for SIG. We only show that for the case when AbortDerR = true here, and the argument is
similar for the case when AbortDerI = true. Given that AbortDerR happens, we have that Ver(pki,X, σi) = 1
and peerCorrupted[sID] = false. Due to the criteria in line 40, the pair (X, σi) has not been output by SessionI

13

GAMES G0-G2
01 cntS := 0 �session counter
02 for n ∈ [µ]
03 (pkn, skn) $← GenAKE
04 b $← {0, 1}
05 b′ $← AO(pk1, · · · , pkµ)
06 for sID∗ ∈ S
07 if Fresh(sID∗) = false
08 return b
09 if Valid(sID∗) = false
10 return b
11 return Jb = b′K

SessionR((i, r) ∈ [µ]2, (X, σi))
12 cntS ++
13 sID := cntS

14 (init[sID], resp[sID]) := (i, r)
15 type[sID] := “Re”
16 peerCorrupted[sID] := corrupted[i]
17 ((Y, σr),K) $← DerR(skr, pki, (X, σi))
18 if peerCorrupted[sID] = false and

@ sID′ : (init[sID′], type[sID′], I[sID′])
= (i, “In”, (X, σi)) �G1-2

19 AbortDerR := true �G1-2
20 abort �G1-2
21 (I[sID],R[sID]) := ((X, σi), (Y, σr))
22 sKey[sID] := K
23 return (sID, (Y, σr))

SessionI((i, r) ∈ [µ]2)
24 cntS ++
25 sID := cntS

26 (init[sID], resp[sID]) := (i, r)
27 type[sID] := “In”
28 (X, st, σi) $← InitI(ski, pkr)
29 (I[sID], state[sID]) := ((X, σi), st)
30 return (sID, (X, σi))

DerI(sID, (Y, σr))
31 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
32 return ⊥ �no re-use
33 (i, r) := (init[sID], resp[sID])
34 st := state[sID]
35 peerCorrupted[sID] := corrupted[r]
36 K := DerI(ski, pkr, Y, σr, st)
37 (X, σi) := I[sID]
38 if peerCorrupted[sID] = false and
@ sID′ : (resp[sID′], type[sID′], I[sID′],R[sID′])
= (r, “Re”, (X, σi), (Y, σr)) �G1-2

39 AbortDerI := true �G1-2
40 abort �G1-2
41 (R[sID], sKey[sID]) := ((Y, σr),K)
42 return ε

Test(sID)
43 if sID ∈ S return ⊥ �already tested
44 if sKey[sID] = ⊥ return ⊥
45 S := S ∪ {sID}
46 K∗0 := sKey[sID] �G0-1
47 K∗0 $← K �G2
48 K∗1 $← K
49 return K∗b

Fig. 11. Games G0-G2. A has access to oracles O := {SessionI,SessionR,DerI,Reveal,Corr,Test}, where
Reveal and Corr are simulated as in the original IND-FS game in Figure 5. Game G0 implicitly assumes that there is
no collision between long term keys or messages output by the experiment.

on input (i, r) for any r, and hence (i,X) has never been queried to the SIGN′ oracle. Therefore, B aborts A in
the IND-FS game and returns (i,X, σi) to the StCorrCMA challenger to win the StCorrCMA game. Therefore, we
have

Pr[AbortDerR] ≤ ε′, (5)

which implies that ∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ Pr[AbortDerI] + Pr[AbortDerR] ≤ 2ε′. (6)

The running time ofB is the same as that ofA, plus the time used to run the key exchange algorithms Init′I,DerR
′,Der′I

and the signature verification algorithm Ver. This gives t′ ≈ t. For the number of signature queries we have Qs ≤ S,
since SessionR can abort before it queries the signature oracle, and the adversary can reuse messages output by
SessionI. For the number of corruptions, we have Q′COR = QCOR.

GAME G2: The Test oracle always returns a uniformly random key, independent on the bit b.
Since we have excluded collisions in the messages output by the experiment, it is impossible to create two

sessions of the same type that compute the same session key. Hence, an adversary must query the random oracle
H on the correct input of a test session to detect the change between G1 and G2 (which is only in case b = 0).
More precisely, we have Pr[GA2 ⇒ 1 | b = 1] = Pr[GA1 ⇒ 1 | b = 1] and

∣∣Pr[GA2 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ = 1

2
∣∣Pr[GA2 ⇒ 1 | b = 0] + Pr[GA2 ⇒ 1 | b = 1]

− Pr[GA1 ⇒ 1 | b = 0]− Pr[GA1 ⇒ 1 | b = 1]
∣∣

= 1
2
∣∣Pr[GA2 ⇒ 1 | b = 0]− Pr[GA1 ⇒ 1 | b = 0]

∣∣ . (7)

14

BCorr′, SIGN′(pk1, . . . , pkµ)
01 b $← {0, 1}
02 b′ ← AO(pk1, . . . , pkµ)
03 for sID∗ ∈ S
04 if Fresh(sID∗) = false
05 return b
06 if Valid(sID∗) = false
07 return b
08 return JΣ ∈WinStCorrCMAK �break StCorrCMA

SessionI((i, r) ∈ [µ]2)
09 cntS ++
10 sID := cntS

11 (init[sID], resp[sID]) := (i, r)
12 type[sID] := “In”
13 (X, st) $← Init′I(i, r)
14 σi

$← SIGN′(pki,X)
15 (I[sID], state[sID]) := ((X, σi), st)
16 return (sID, (X, σi))

DerI(sID, (Y, σr))
17 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
18 return ⊥ �no re-use
19 (i, r) := (init[sID], resp[sID])
20 st := state[sID]
21 peerCorrupted[sID] := corrupted[r]
22 if Ver(pkr, (X, Y), σr) = 0
23 return ⊥
24 if peerCorrupted[sID] = false and

@ sID′ : (resp[sID′], type[sID′], I[sID′],R[sID′])
= (r, “Re”, (X, σi), (Y, σr))

25 AbortDerI := true
26 Σ := (r, (X, Y), σr) �valid forgery
27 abort
28 K∗ := Der′I(i, r, Y, st)
29 ctxt := (pki, pkr,X, σi, Y, σr)
30 K := H(ctxt,K∗)
31 (R[sID], sKey[sID]) := ((Y, σr),K)
32 return ε

SessionR((i, r) ∈ [µ]2, (X, σi))
33 cntS ++
34 sID := cntS

35 (init[sID], resp[sID]) := (i, r)
36 type[sID] := “Re”
37 peerCorrupted[sID] := corrupted[i]
38 if Ver(pki,X, σi) = 0
39 return ⊥
40 if peerCorrupted[sID] = false and
@ sID′ : (init[sID′], type[sID′], I[sID′])
= (i, “In”, (X, σi))

41 AbortDerR := true
42 Σ := (i,X, σi) �valid forgery
43 abort
44 (Y,K∗) $← DerR

′(r, i,X)
45 σr

$← SIGN′(pkr, (X, Y))
46 ctxt := (pki, pkr,X, σi, Y, σr)
47 K := H(ctxt,K∗)
48 (I[sID],R[sID]) := ((X, σi), (Y, σr))
49 sKey[sID] := K
50 return (sID, (Y, σr))

Corr(n ∈ [µ])
51 corrupted[n] := true
52 skn ← Corr′(n)
53 return skn

H(pki, pkr,X, Y,K
∗)

54 ctxt := (pki, pkr,X, Y)
55 if H[ctxt,K∗] = K
56 return K
57 K $← K
58 H[ctxt,K∗] := K
59 return K

Fig. 12. Adversary B against the (t′, ε′, µ,Qs,Q′COR)-StCorrCMA-security of SIG. The StCorrCMA game provides oracles
SIGN′,Corr′. The adversaryA has access to oracles O := {SessionI,SessionR,DerI,Reveal,Corr,Test,H}, where
Reveal and Test remain the same as in Figure 4. We highlight the most relevant codes with bold line numbers.

To bound Equation (7), we construct an adversary C to (t′′, ε′′, µ, S′,QV)-break the OW-HV security of KE.
The input to C is the number of parties µ, and system parameters par. In addition, C has access to oracles
SessionI

′,SessionR
′,DerI

′ and KVer.
We firstly show that the outputs of SessionI, SessionR and DerI (simulated by C) are distributed the same

as in G1. Due to the abort conditions introduced in G1, for all sessions that has finished computing a key without
making the game abort, their messages are honestly generated, although they may be in a different order and there
are non-matching sessions. Hence, SessionI, SessionR and DerI can be perfectly simulated using SessionI

′,
SessionR

′ and DerI
′ of the OW-HV game and the signing key.

It is also easy to see that the random oracle H simulated by C has the same output distribution as in G1. We
stress that if line 66 is executed then adversaryAmay use the sID to distinguish G2 and G1 for b = 0, which is the
only case for A to see the difference. At the same time, we obtain a valid attack Σ := (sID,K∗) for the OW-HV
security. Thus, we have ∣∣Pr[GA2 ⇒ 1 | b = 0]− Pr[GA1 ⇒ 1 | b = 0]

∣∣ ≤ ε′′.
As before, the running time of C is that of A, plus generating and verifying signatures, and we have t′′ ≈

t. Furthermore, S′ = S, as the counter for the OW-HV game increases once for every call to SessionI and
SessionR.

15

CO
′
(µ)

01 for n ∈ [µ]
02 (pkn, skn) $← Gen(par)
03 b $← {0, 1}
04 b′ ← AO(pk1, . . . , pkµ)
05 for sID∗ ∈ S
06 if Fresh(sID∗) = false
07 return b
08 if Valid(sID∗) = false
09 return b
10 return JΣ ∈WinOW-HVK

SessionI((i, r) ∈ [µ]2)
11 (sID,X) $← SessionI

′(i, r)
12 cntS++
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “In”
15 σi

$← Sign(ski,X)
16 I[sID] := (X, σi)
17 return (sID, (X, σi))

DerI(sID, (Y, σr))
18 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
19 return ⊥ �no re-use
20 (i, r) := (init[sID], resp[sID])
21 peerCorrupted[sID] := corrupted[r]
22 (X, σi) := I[sID]
23 if Ver(pkr, (X, Y), σr) = 0
24 return ⊥
25 if peerCorrupted[sID] = false and

@ sID′ : (resp[sID′], type[sID′], I[sID′],R[sID′])
= (r, “Re”, (X, σi), (Y, σr))

26 abort
27 ctxt := (pki, pkr,X, σi, Y, σr)
28 DerI

′(sID, Y)
29 if ∃K∗ : H[ctxt,K∗, 1] = K
30 sKey[sID] := K
31 elseif H[ctxt,⊥,⊥] = K
32 sKey[sID] := K
33 else K $← K
34 H[ctxt,⊥,⊥] := K
35 sKey[sID] := K
36 R[sID] := (Y, σr)
37 return ε

SessionR((i, r) ∈ [µ]2, (X, σi))
38 if Ver(pki,X, σi) = 0
39 return ⊥
40 (sID, Y) $← SessionR

′(i, r,X)
41 cntS++
42 peerCorrupted[sID] := corrupted[i]
43 if peerCorrupted[sID] = false and

@ sID′ : (init[sID′], type[sID′], I[sID′])
= (i, “In”, (X, σi))

44 abort
45 (init[sID], resp[sID]) := (i, r)
46 type[sID] := “Re”
47 I[sID] := (X, σi)
48 σr

$← Sign(skr, (X, Y))
49 R[sID] := (Y, σr)
50 ctxt := (pki, pkr,X, σi, Y, σr)
51 if ∃K∗ : H[ctxt,K∗, 1] = K
52 sKey[sID] := K
53 elseif H[ctxt,⊥,⊥] = K
54 sKey[sID] := K
55 else K $← K
56 H[ctxt,⊥,⊥] := K
57 sKey[sID] := K
58 return (Y, σr)

H(pki, pkr,X, σi, Y, σr,K∗)
59 ctxt := (pki, pkr,X, σi, Y, σr)
60 if H[ctxt,K∗, ·] = K
61 return K
62 h := ⊥
63 if H[ctxt,⊥,⊥] = K and ∃sID :

(I[sID],R[sID]) = ((X, σi), (Y, σr))
64 DerI

′(sID, Y)
65 if KVer(sID,K∗) = 1
66 Σ := (sID,K∗) �attack for OW-HV
67 replace (⊥,⊥) in H[ctxt,⊥,⊥]

with (K∗, 1)
68 return K
69 else h := 0
70 K $← K
71 H[ctxt,K∗, h] := K
72 return K

Fig. 13. Reduction C against the (t′′, ε′′, µ, S′,QV)-OW-HV-security of KE. The OW-HV game provides oracles O′ :=
{SessionI

′,SessionR
′,DerI

′,KVer}. The adversary A has access to oracles O := {SessionI,SessionR,DerI,
Reveal,Corr,Test,H}, where Reveal,Corr and Test are defined as in G2 of Figure 11. We highlight the most
relevant codes with bold line numbers. The center dot ‘·’ in this figure means arbitrary value.

16

At last, for game G2 we have Pr[GA2 ⇒ 1] = 1
2 , as the response from the Test oracle is independent of the

bit b. Summing up all the equations, we obtain

ε ≤
∣∣∣Pr[IND-FSA ⇒ 1]− 1

2

∣∣∣
≤
∣∣∣∣Pr[GA0 ⇒ 1] + µ2

2α+1 + S2

2β+1 − Pr[GA2 ⇒ 1]
∣∣∣∣

=
∣∣∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1] + Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1] + µ2

2α+1 + S2

2β+1

∣∣∣∣
≤
∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣+
∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣+ µ2

2α+1 + S2

2β+1

≤ 2ε′ + ε′′

2 + µ2

2α+1 + S2

2β+1 ,

and t′ ≈ t, Qs ≤ S, Q′COR = QCOR, t′′ ≈ t, S′ = S, QV ≤ QH.

6 An Extension: Tightly Secure Group Authenticated Key Exchange

6.1 Security Model for Group Authenticated Key Exchange

We consider two-round broadcast group authenticated key exchange protocol that are executed interactively be-
tween µ > 2 parties. Each round corresponds to a messages broadcast. Formally, it is defined as GAKE =
(GenGAKE, Init,Res,Der) consisting of four algorithms. It is visualized as in Figure 14. We denote the set of po-
tential participants by P = (P1, . . . ,Pµ). Before the protocol is run for the first time, each party Pi ∈ P runs the
algorithm GenGAKE(par) to generate his own long-term public and private keys (pki, ski).

Our two-round GAKE protocol allows all parties in a group Q ⊆ P to establish a common secret key. For a
party Pi we say that Pi is the rest of the group from Pi’s view, and we can writeQ = {Pi} ∪ Pi. By a slight abuse
of notation, we will often write j ∈ Pi instead of Pj ∈ Pi.

In the first round, each party Pi ∈ Q starts the session sID by executing the initialization algorithm Init(ski, {pkj}j∈Pi)
which outputs a message mi and a state st. The party Pi publishes (i,mi) and keeps the internal state st.

In the second round, letMi denote the set of all pairs (j,mj) received by Pi in the first round. Then, each party
Pi ∈ Q executes the response algorithm Res(ski, {pkj}j∈Pi , st,Mi) to obtain a message m̂i and an updated state
st. Same as the first round, Pi broadcasts (i, m̂i) and keeps the state st.

In the final phase, let M̂i denote the set of all pairs (j, m̂j) received by party Pi in the second round. To obtain
the common group session key, each party Pi can execute Der(ski, {pkj}j∈Pi , st,Mi,M̂i) which outputs the key
K. An illustration is given in Figure 14.

Pi(pki, ski)
(mi, st) $← Init(ski, {pkj}j∈Pi)

(m̂i, st) $← Res(ski, {pkj}j∈Pi , st,Mi)

K := Der(ski, {pkj}j∈Pi , st,Mi,M̂i)

Pi

(i,mi)

(i, m̂i)

Mi = {(j,mj)}j∈Pi

M̂i = {(j, m̂j)}j∈Pi

Fig. 14. Illustration of running a group authenticated key exchange from party Pi’s point of view. All messages are broadcast
to all parties, and every party runs all the algorithms.

Similar to our two-party key exchange protocol, our security game is written in pseudo-code. In our model,
GAKE achieves forward secrecy and has both explicit authentication and implicit key confirmation property. In
the group key exchange setting, explicit authentication means entity authentication for every message transmitted

17

in the sense that every party can explicitly confirm that the initial message is issued by the actual owner of the
associated public key. Moreover, the key confirmation property is also implicit for our GAKE, where every party
in a groupQ is assured implicitly that all members of the group will have the same session key. The security game
is given in Figure 15 and Figure 16. Our model can be viewed as a careful extension of our two-party model to µ
parties. Moreover, we note that Poettering et al. [40] proposed a general framework for defining security of GAKE
protocols. To the best of our knowledge, our model can be viewed as a specified use case of their framework. For
instance, we do not consider Expose queries to reveal the local session-state.

GAME IND-G-FS
01 for n ∈ [µ]
02 (pkn, skn)← GenGAKE(par)
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkµ)
05 for sID∗ ∈ S:
06 if Fresh(sID∗) = false
07 return 0 �session not fresh
08 if Valid(sID∗) = false
09 return 0 �no valid attack
10 return Jb = b′K

SessionI(i ∈ [µ],Pi ⊆ [µ])
11 cntS ++
12 sID := cntS

13 owner[sID] := i
14 peer[sID] := Pi

15 Q[sID] := peer[sID] ∪ {i}
16 (mi, st) $← Init(ski, {pkj}j∈Pi)
17 I[sID] := {(i,mi)}
18 st[sID] := st
19 return (sID,mi)

SessionR(sID ∈ [cntS],Mi)
20 (i,Pi) := (owner[sID], peer[sID])
21 if |Mi| 6= |Pi|
22 return ⊥ �all peers must have broadcasted
23 peerCorrupted[sID] :=

∨
j∈Pi

corrupted[j]

24 M[sID] :=Mi

25 (m̂i, st) $← Res(ski, {pkj}j∈Pi , st[sID],Mi)
26 R[sID] := {(i, m̂i)}
27 st[sID] := st
28 return m̂i

Der(sID ∈ [cntS],M̂i)
29 if sKey[sID] 6= ⊥
30 return ⊥
31 (i,Pi) := (owner[sID], peer[sID])
32 if |M̂i| 6= |Pi| return ⊥
33 peerCorrupted[sID] :=

∨
j∈Pi

corrupted[j]

34 M̂[sID] := M̂i

35 Mi :=M[sID]
36 K := Der(ski, {pkj}j∈Pi , st[sID],Mi,M̂i)
37 sKey[sID] := K
38 return ε

Reveal(sID)
39 revealed[sID] := true
40 return sKey[sID]

Corr(n ∈ [µ])
41 corrupted[n] := true
42 return skn

Test(sID)
43 if sID ∈ S return ⊥ �already tested
44 if sKey[sID] = ⊥ return ⊥
45 S := S ∪ {sID}
46 K∗0 := sKey[sID]
47 K∗1 $← K
48 return K∗b

Fig. 15. Game IND-G-FS for GAKE. |Mi| denotes the number of messages in setMi and |Pi| denotes the number of parties
in Pi.

EXECUTION ENVIRONMENT. We consider µ parties P = (P1, . . . ,Pµ) with long-term key pairs (pki, ski), i ∈ [µ].
For each group key exchange, every party in a group Q has their own session with a unique identification number
sID and variables which are defines relative to sID:

– owner[sID] ∈ [µ] denotes the owner of the session.
– peer[sID] ⊆ [µ] denotes the peers of the session.
– Q[sID] denotes all the participants of the session.
– I[sID] denotes the message sent by the owner during the first round.
– M[sID] denotes the messages received by the owner during the first round.
– R[sID] denotes the message sent by the owner during the second round.
– M̂[sID] denotes the messages received by the owner during the second round.
– state[sID] denotes the (secret) state information i.e. ephemeral secret keys.
– sKey[sID] denotes the session key.

18

ADVERSARY MODEL. Similar to the AKE security notion, we do not allow the adversary to register adversarially
controlled parties by providing long-term public keys, and the adversary has access to oracles Corr and Reveal
as described in Figure 15. We use the following boolean values to store which queries the adversary made:

– corrupted[i] denotes whether the long-term secret key of party Pi was given to the adversary.
– revealed[sID] denotes whether the group session key is given to the adversary.
– peerCorrupted[sID] denotes whether one of the peers in the group session was corrupted and its long-term key

was given to the adversary at the time when the session key was derived.

MATCHING SESSIONS. Extending the matching session’s definition in the two-party case, we define the matching
session in the GAKE setting as follows.

– Matching Sessions: Two sessions sIDi, sIDj are matching if:

owner[sIDi] 6= owner[sIDj] (Different owners)
Q[sIDi] = Q[sIDj] (Identical participants)

I[sIDi] ∪M[sIDi] = I[sIDj] ∪M[sIDj] (Identical messages in the first round)

R[sIDi] ∪ M̂[sIDi] = R[sIDj] ∪ M̂[sIDj] (Identical messages in the second round)

As in the AKE setting, we assume that the protocols consist only of group elements, and they are not vulnerable
to no-match attacks described in [34].

TEST SESSION. The adversary is given access to the test oracle Test. This oracle can be queried multiple times
and depending on a randomly chosen bit b $← {0, 1} (which is shared between all test queries), it outputs either a
uniformly random key, or the specified session key.

Fresh(sID∗)
01 (i∗,Q∗) := (owner[sID∗],Q[sID∗])
02 M(sID∗) := {sID | owner[sID] 6= i∗ ∧ Q[sID] = Q∗

∧ I[sID] ∪M[sID] = I[sID∗] ∪M[sID∗]
∧ R[sID] ∪ M̂[sID] = R[sID∗] ∪ M̂[sID∗]} �matching sessions

03 if revealed[sID∗] or (∃sID ∈M(sID∗) : revealed[sID] = true)
04 return false �A trivially learned the test session’s key
05 if ∃sID ∈M(sID∗) s. t. sID ∈ S
06 return false �A also tested a matching session
07 return true

Valid(sID∗)
08 (i∗,Q∗) := (owner[sID∗],Q[sID∗])
09 M(sID∗) := {sID | owner[sID] 6= i∗ ∧ Q[sID] = Q∗

∧ I[sID] ∪M[sID] = I[sID∗] ∪M[sID∗]
∧ R[sID] ∪ M̂[sID] = R[sID∗] ∪ M̂[sID∗]} �matching sessions

10 for attack ∈Table 3
11 if attack = true return true
12 return false

Fig. 16. Helper procedures Fresh and Valid for game IND-G-FS defined in Figure 15. Procedure Fresh checks if the
adversary performed some trivial attack. In procedure Valid, each attack is evaluated by the set of variables shown in Table 3
and checks if an allowed attack was performed. If the values of the variables are set as in the corresponding row, the attack was
performed, i. e. attack = true, and thus the session is valid.

6.2 Verifiable Group Key Exchange

To achieve tight security, we extend the verifiable key exchange in the two-party setting to µ-party. As for the
regular two party AKE, we construct our tightly secure group authenticated key exchange based on a verifiable
(non-authenticated) group key exchange (GKE) that has One-Wayness against Honest and key Verification attacks
(aka. OW-G-HV security). A (non-authenticated) group key exchange (GKE) protocol consists of a tuple of algo-
rithms GKE := (Init,Res,Der), where parties do not hold any public or private key and Init algorithms now take
users’ identities (i,Pi) as input.

The OW-G-HV security is formally defined by Definition 6 with the security game OW-G-HV as in Figure 17.

19

A gets (owner[sID∗],Pi := peer[sID∗])

pe
er

C
or

ru
pt

ed
[sI

D
∗
]

|M
(s

ID
∗
)|

0. multiple matching sessions – > |Pi|
1. (long-term, long-term) – = |Pi|
2. (long-term, long-term) F < |Pi|

Table 3. Table of attacks for adversaries against explicitly authenticated group key exchange protocols without ephemeral state
reveals. An attack is regarded as an AND conjunction of variables with specified values as shown in the each line, where “–”
means that this variable can take arbitrary value and F means “false”.

GAME OW-G-HV
00 cntS := 0 �total session counter
01 (sID∗,K∗)← AO([µ])
02 if sID∗ > cntS

03 return ⊥
04 return KVer(sID∗,K∗)

SessionI(i ∈ [µ],Pi ⊆ [µ])
05 cntS ++
06 sID := cntS

07 owner[sID] := i
08 peer[sID] := Pi

09 Q[sID] := peer[sID] ∪ {i}
10 (mi, st) $← Init(i,Pi)
11 I[sID] := {(i,mi)}
12 st[sID] := st
13 return (sID,mi)

SessionR(sID,Mi)
14 (i,Pi) := (owner[sID], peer[sID])
15 if |Mi| 6= |Pi|
16 return ⊥
17 M[sID] :=Mi

18 (m̂i, st) $← Res(i,Pi, state[sID],Mi)
19 state[sID] := st
20 return m̂i

Der(sID,M̂i)
21 if sKey[sID] 6= ⊥
22 return ⊥
23 (i,Pi) := (owner[sID], peer[sID])
24 if |M̂i| 6= |Pi|
25 return ⊥
26 M̂[sID] := M̂i

27 Mi :=M[sID]
28 K := Der(i,Pi, state[sID],Mi,M̂i)
29 sKey[sID] := K
30 return ε

KVer(sID,K)
31 return JsKey[sID] = KK

Fig. 17. Game OW-G-HV for GKE. A has access to oracles O := {SessionI,SessionR,Der,KVer}.

Definition 6 (Group One-Wayness against Honest and Key Verification Attacks (OW-G-HV)). A group key
exchange protocol GKE is (t, ε, µ, S,QV)-OW-G-HV-secure where µ is the number of users, S is the number of
sessions and QV is the number of call to KVer, if for all adversaries A attacking the protocol in time at most t,
we have:

Pr[OW-G-HVA ⇒ 1] ≤ ε.

We require that a group key exchange protocol GKE has α-bits of min-entropy, namely if for all messages m′

we have Pr[m = m′] ≤ 2−α, where m is output by either Init or Res.

6.3 Instantiation of OW-G-HV with Burmester-Desmedt

We show that the Burmester-Desmedt group key exchange protocol [12] is OW-G-HV secure. We begin by describ-
ing the protocol in our framework, and then prove its security based on the strong computational Diffie-Hellman
assumption.

Let par = (p, g,G) define a prime-order cyclic group G := 〈g〉. Identities of participants are ordered in a
cycle. So, for a group of users Q with |Q| = n, we have Pn+1 = P1 and mi+n = mi and m̂i+n = m̂i for all i ∈ [n].

The Burmester-Desmedt protocol is described in Figure 18, and for correctness we show that all parties com-
pute the key

K = gr1r2+r2r3+···rn−1rn+rnr1 . (8)

20

Init(i, {j}j∈P):
01 st := ri

$← Zp

02 mi := gri

03 return (mi, st)

Res(i, {j}j∈P , st,M):
04 m̂i := (mi+1/mi−1)st

05 return m̂i

Der(i, {j}j∈P , st,M,M̂):
06 K := mn·st

i−1 · m̂
n−1
i · m̂n−2

i+1 · · · m̂i−2

Fig. 18. The Burmester-Desmedt protocol, GKEBD.

Recall that for user i, we have st := ri. We define the following values:

Ai−1 := mst
i−1 = gri−1ri

Ai := mst
i−1 · m̂i = griri+1

Ai+1 := mst
i−1 · m̂i · m̂i+1 = gri+1ri+2

...
...

Ai−2 := mst
i−1 · m̂i · m̂i+1 · · · m̂i−2 = gri−2ri−1 .

It then follows that for the key computed in line 06 of Figure 18, we have

K = mn·st
i−1 · m̂

n−1
i · m̂n−2

i+1 · · · m̂i−2 = Ai−1AiAi+1 · · ·Ai−2 = gr1r2+r2r3+···rn−1rn+rnr1 .

Lemma 2. Let GKEBD be the Burmester-Desmedt group key exchange protocol as in Figure 18. Then GKEBD has
α = log2 p bits of min-entropy, and for every adversaryA that breaks the (t, ε, µ, S,QV)-security of GKEBD, there
exists an adversary B which breaks the (t′, ε′,Q′V)-security of StCDH with

ε ≤ ε′, t ≈ t′, Q′V = QV + 1. (9)

Proof. The entropy statement is again straightforward, since ri being drawn uniformly at random implies that both
mi and m̂i are uniformly random as well.

We now construct a simulator B, which on input (gx, gy) breaks the CDH assumption by simulating the
OW-G-HV game to A.

To simulate SessionI(i ∈ [µ],Pi ⊆ [µ]), B proceeds as in Figure 17, but instead of running the Init algorithm
in line 10, it does the following:

– if i is odd, B draws an element ai
$← Zp and sets and returns mi := gxgai

– if i is even, B draws an element ai
$← Zp and sets and returns mi := gygai .

All mi’s are uniformly distributed, exactly as in the original protocol.
To simulate SessionR, B does not know the discrete logarithm of mi’s, but it can compute m̂i in the following

way: If i is even, B compute m̂i := mai+1−ai−1
i , since we have

m̂i := (mi+1/mi−1)y+ai = (gx+ai+1/gx+ai−1)y+ai = (gai+1−ai−1)y+ai = (gy+ai)ai+1−ai−1 = mai+1−ai−1
i . (10)

Simulation of m̂i for odd i is similar. Equation (10) shows that the simulated m̂i are distributed the same as in the
real distribution.

To simulate Der, B follows the steps in Figure 17, but skips the key derivation in line 28 and leaves the
corresponding session key empty. Since there are no session-key-reveal oracles in this game, A will not notice
that and the simulation is perfect from A’s viewpoint.

To simulate the KVer oracle on input (sID,K), for readability, we label ri := x + ai for odd i and ri := y + ai

for even i and mi = gri for all i. Recall that the derived session key in GKEBD is K = gr1r2+r2r3+···rn−1rn+rnr1 .
We then write

griri+1 = g(x+ai)(y+ai+1) = g(xy+xai+1+ai(y+ai+1)) = gxy(gx)ai+1(gy)ai gaiai+1

for odd i, and
griri+1 = g(y+ai)(x+ai+1) = g(xy+xai+ai+1(y+ai)) = gxy(gx)ai(gy)ai+1 gaiai+1

21

for even i. Note that all ai are known. If K is valid of an sID, we have

K = gr1r2+r2r3+···rn−1rn+rnr1

=
n∏

i=1
griri+1

=
∏
i≤n

i≡1 mod 2

griri+1
∏

1≤i≤n
i≡0 mod 2

griri+1

=
∏

1≤i≤n
i≡1 mod 2

gxy(gx)ai+1(gy)ai gaiai+1
∏

1≤i≤n
i≡0 mod 2

gxy(gx)ai(gy)ai+1 gaiai+1

= gnxyg
∑n

i=1
aiai+1

∏
1≤i≤n

i≡1 mod 2

(gx)ai+1(gy)ai
∏

1≤i≤n
i≡0 mod 2

(gx)ai(gy)ai+1 .

Note that all ai’s are known. This implies that we can compute

K̃ :=

K/

g
∑n

i=1
aiai+1

∏
1≤i≤n

i≡1 mod 2

(gx)ai+1(gy)ai
∏

1≤i≤n
i≡0 mod 2

(gx)ai(gy)ai+1




n−1

. (11)

If K is valid for an sID, we have K̃ = gxy. Hence, B queries Dhx
(
gy, K̃

)
to verify the key, and returns the answer.

This completes the simulation.
IfA is able to compute a valid session key, then B wins the StCDH game, and hence ε ≤ ε′. The running time

of B is that of A plus one exponentiation for each SessionI and SessionR call, and 6 exponentiations and one
inversion (disregarding the inversion of n, which is essentially free) for each call to KVer, since we can sum the
various exponents together before we perform the exponentiations in the denominator. The total number of queries
Q′V to Dhx is Q′V = QV + 1, as we get one additional call to KVer when we verify the adversaries forgery. This
completes the lemma.

6.4 Our Generic Transformation for GAKE

Following the construction from Section 5, we construct an IND-G-FS-secure authenticated group key exchange
protocol GAKE = (GenGAKE, Init,Res,Der) by combining a StCorrCMA-secure signature scheme SIG = (Gen,
Sign,Ver), an OW-G-HV-secure group key exchange protocol GKE = (Init′,Res′,Der′), and a random oracle H.
The construction is given in Figure 19

Theorem 3. For every adversary A that breaks the (t, ε, µ, S,QH,QCOR)-IND-G-FS security of a protocol GAKE
constructed as in Figure 19, we can construct an adversary B that breaks the (t′, ε′, µ,Qs,QH,Q′COR)-StCorrCMA
security of the underlying signature scheme SIG with α bits of key min-entropy, or (t′′, ε′′, µ, S′,QV) breaks
OW-G-HV security of the underlying key exchange protocol Π with β bits of min-entropy, such that

ε ≤ 2ε′ + ε′′ + µ2

2α+1 + S2

2β+1 ,

t′ ≈ t, Qs ≤ S, Q′COR = QCOR,

t′′ ≈ t, S = S′, QV ≤ QH.

Proof. We will prove this by using the following hybrid games, which are illustrated in Figure 20.

GAME G0: This is the original IND-G-FS for the protocol GAKE. We assume that all long-term keys, and all
messages generated by Init and Res are distinct. The security game aborts if the collision happens. Using the fact
that SIG has α-bits of key min-entropy and GKE has β-bits of message min-entropy, the collision in keys happens
with probability at most µ2/2α+1, and the collision in messages happens with probability at most S2/2β+1, where
µ is the number of users and S is the number of sessions. Thus, we have:

Pr[IND-G-FSA ⇒ 1] = Pr[GA0 ⇒ 1]− µ2

2α+1 −
S2

2β+1 . (12)

22

GenGAKE(par):
00 (pk, sk) $← Gen(par)
01 return (pk, sk)
Res(ski, i,P,Mi, st) :
02 Q := {i} ∪ P
03 parse ({mj, σj}j∈P) =:Mi

04 for j ∈ P
05 if Ver(pkj,mj, σj) = 0
06 return ⊥
07 parse (ŝt,mi) =: st
08 (m̂i, ŝt′) $← Res′(i,P, {mj}j∈P , ŝt)
09 st′ := (ŝt′,mi, m̂i)
10 πi

$← Sign(ski, ({mj}j∈P , m̂i))
11 return (m̂i, πi, st′)

Init(ski, i,P) :
12 Q := {i} ∪ P
13 (mi, ŝt) $← Init′(i,P)
14 st := (ŝt,mi)
15 σi

$← Sign(ski,mi)
16 return (mi, σi, st)
Der(ski, i,P,Mi,M̂i, st) :
17 Q := {i} ∪ P
18 parse ({mj, σj}j∈P) =:Mi

19 parse ({m̂j, πj}j∈P) =: M̂i

20 parse (ŝt,mi, m̂i) =: st
21 for j ∈ P
22 if Ver(pkj,mj, σj) = 0 or
23 Ver(pkj, ({mj}j∈P , m̂j), πj) = 0
24 return ⊥
25 K∗ := Der′(ski,P, {mj, m̂j}j∈Q, ŝt)
26 ctxt := (Q, {mj, m̂j}j∈Q)
27 K := H(ctxt,K∗)
28 return K

Fig. 19. Generic construction of GAKE from SIG, GKE and a random oracle H.

GAME IND-G-FS
01 for n ∈ [µ]
02 (pkn, skn)← GenGAKE(par)
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkµ)
05 for sID∗ ∈ S:
06 if Fresh(sID∗) = false
07 return 0 �session not fresh
08 if Valid(sID∗) = false
09 return 0 �no valid attack
10 return Jb = b′K

SessionI(i ∈ [µ],P ⊆ [µ])
11 cntS ++
12 sID := cntS

13 owner[sID] := i
14 peer[sID] := P
15 Q := peer[sID] ∪ {i}
16 (mi, st) $← Init(ski,P)
17 I[sID] := (i,mi)
18 st[sID] := st
19 return (sID,mi)

SessionR(sID ∈ [cntS],Mi)
20 (i,P) := (owner[sID], peer[sID])
21 Q := {i} ∪ P
22 if |Mi| 6= |P|
23 return ⊥ �need to have all first round messages
24 parse {(j,mj)}j∈P =:Mi

25 peerCorrupted[sID] :=
∨

j∈P
corrupted[j]

26 if peerCorrupted[sID] = false �G1-2
27 for j ∈ P �G1-2
28 if @sID′j : (owner[sID′j], peer[sID′j], I[sID′j])

= (j,Q \ {j}, (j,mj)) �G1-2
29 AbortSessR = true �G1-2
30 abort �G1-2
31 (m̂i, st) $← Res(ski, i,P,Mi, st[sID])
32 R[sID] := (i, m̂i)
33 st[sID] := st
34 return (sID, m̂i)

Der(sID ∈ [cntS],Mi,M̂i)
35 if sKey[sID] 6= ⊥
36 return ⊥
37 (i,P) := (owner[sID], peer[sID])
38 Q := {i} ∪ P
39 if |M̂i| 6= |P| return ⊥
40 parse {j,mj}j∈P =:Mi

41 parse {j, m̂j}j∈P =: M̂i

42 peerCorrupted[sID] :=
∨

j∈P
corrupted[j]

43 if peerCorrupted[sID] = false �G1-2
44 for j ∈ P �G1-2
45 if @sID′j : (owner[sID′j], peer[sID′j], I[sID′j],R[sID′j])

= (j,Q \ {j}, (j,mj), (j, m̂j)) �G1-2
46 AbortDer = true �G1-2
47 K := Der(ski, i,P,Mi,M̂i, st)
48 sKey[sID] := K
49 return ε

Reveal(sID)
50 revealed[sID] := true
51 return sKey[sID]

Corr(n ∈ [µ])
52 corrupted[n] := true
53 return skn

Test(sID)
54 if sID ∈ S return ⊥ �already tested
55 if sKey[sID] = ⊥ return ⊥
56 S := S ∪ {sID}
57 K∗0 := sKey[sID] �G0-1
58 K∗0 $← K �G2
59 K∗1 $← K
60 return K∗b

Fig. 20. Games G0-G2

23

GAME G1: In this game, SessionR and Der abort upon input a session id and a message set which do not

correspond to a previously broadcast message set (i.e. all messages are honestly generated by using the given
oracles, however there may still have non-matching sessions), and all signatures with respect to each non-corrupted
participants in the group are valid. We denote such event as AbortGAKE := AbortSessR ∪ AbortDer, where
AbortSessR and AbortDer correspond to the aborting event in line line 29 and line 46 of Figure 20 respectively.
Since the only difference between G0 and G1 is the aborting events AbortGAKE, using Lemma 3 we have

Pr[GA1 ⇒ 1] ≥ Pr[GA0 ⇒ 1]− Pr[AbortSessR]− Pr[AbortDer] = Pr[GA0 ⇒ 1]− 2ε′ (13)

GAME G2: In this game, the Test oracle always returns a uniformly random key, independent on the bit b. Since
we already assume in G0 that all messages generated by Init and Res are distinct and we are in the random oracle
model, the only way forA to compute a valid session key K is query the exact same input. Therefore, by Lemma 4
we can reduce the difference between G2 and G1 to the OW-G-HV security of GKE, we have

Pr[GA1 ⇒ 1] ≥ Pr[GA1 ⇒ 1]− ε′′ (14)

In summary, we have

ε ≤ 2ε′ + ε′′ + µ2

2α+1 + S2

2β+1 ,

t′ ≈ t, Qs ≤ S, Q′COR = QCOR,

t′′ ≈ t, S = S′, QV ≤ QH.

Lemma 3. For every adversary C running in time t0,1 that distinguishes G0 from G1 within probability ε0,1,
we can construct an adversary B against (t′, ε′, µ,QH,Q′COR)-StCorrCMA security of the underlying signature
scheme SIG, where

t0,1 ≈ t′, ε0,1 ≤ 2ε′, Q′COR = QCOR.

Proof. Since the only difference between G0 and G1 is the aborting events AbortSessR and AbortDer. To bound
the probability of the aborting events, we build an adversary B against the StCorrCMA of the underlying signature
scheme SIG as in the Figure 21. B will successfully generate a valid forgery if and only if AbortSessR or AbortDer
happens.

More precisely, if AbortGAKE is true, then both the signatures defined in line 35 and in line 56 of Figure 21
are valid forgeries for CorrCMA security of SIG. Here, we only prove the case where AbortSessR = true. The
other case where AbortDer = true follows the same idea. Given the fact that AbortSessR happens, we have for all
j ∈ P , V(pkj,m[j], σj) = 1 and peerCorrupted[sID] = false. Moreover, due to the criteria of line 32, there exists
j∗ ∈ P such that (j∗, (m[j∗], σj∗)) has never been output by SessionI. Therefore, (m[j∗], σj∗) is a valid forgery for
the CorrCMA security of SIG, and we have

Pr[AbortSessR] ≤ ε′.

Similarly, we also have Pr[AbortDer] ≤ ε′. Overall, we have

t0,1 ≈ t′, ε0,1 ≤ 2ε′, Q′COR = QCOR.

Lemma 4. For every PPT adversary C running in time t1,2 that distinguishes G1 from G2 with probability ε1,2, we
can construct an adversary B against (t′′, ε′′, µ, S′,QV)-OW-G-HV security of the underlying group key exchange
protocol, where

t1,2 ≈ t′′ ε1,2 ≤ ε′′ S = S′

Proof. Notice that when b = 1, the Test oracle always returns a uniformly random key in both G2 and G1,
therefore the only difference between the game G2 and the G1 occurs only when b = 0, and we have Pr[GA2 ⇒
1 | b = 1] = Pr[GA1 ⇒ 1 | b = 1], and∣∣Pr[GA2 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ = 1
2
∣∣Pr[GA2 ⇒ 1 | b = 0]− Pr[GA1 ⇒ 1 | b = 0]

∣∣ (15)

24

BCorr′,Sign′(pk1, . . . , pkµ)
01 for n ∈ [µ]
02 (pkn, skn)← GenGAKE(par)
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkµ)
05 for sID∗ ∈ S:
06 if Fresh(sID∗) = false
07 return 0 �session not fresh
08 if Valid(sID∗) = false
09 return 0 �no valid attack
10 return JΣ ∈WinStCorrCMAK �break StCorrCMA

SessionI(i ∈ [µ],P ⊆ [µ])
11 cntS ++
12 sID := cntS

13 owner[sID] := i
14 peer[sID] := P
15 Q := peer[sID] ∪ {i}
16 (mi, st) $← Init(ski,P)
17 σi

$← Sign(ski,mi)
18 I[sID] := (i, (mi, σi))
19 st[sID] := st
20 return (sID,mi)

SessionR(sID ∈ [cntS],Mi)
21 (i,P) := (owner[sID], peer[sID])
22 if |Mi| 6= |P|
23 return ⊥ �all peers must have responded
24 Q := {i} ∪ P
25 parse {(j, (mj, σj))}j∈P =:Mi

26 peerCorrupted[sID] :=
∨

j∈P
corrupted[j]

27 for j ∈ P
28 if V(pkj,mj, σj) = 0
29 return ⊥
30 if peerCorrupted[sID] = false
31 for j ∈ P
32 if @sID′j : (owner[sID′j], peer[sID′j], I[sID′j])

= (j,Q \ {j}, (j, (mj, σj)))
33 AbortSessR = true
34 abort
35 Σ := (pkj, (Q \ {j},mj), σj) �valid forgery
36 (m̂i, st) $← Res(ski,P,Mi, st[sID])
37 πi

$← Sign(ski, ({mj}j∈Q, m̂i))
38 R[sID] := (i, (m̂i, πi))
39 st[sID]) := st
40 return (sID, m̂i)

Der(sID ∈ [cntS],Mi,M̂i)
41 if sKey[sID] 6= ⊥
42 return ⊥
43 (i,P) := (owner[sID], peer[sID])
44 if |M̂i| 6= |P| return ⊥
45 Q := {i} ∪ P
46 parse {(j, (mj, σj))}j∈P =: Mi, {(j, (mj, πj))}j∈P =:
M̂i

47 parse (i, (mi, σi)) =: I[sID]
48 peerCorrupted[sID] :=

∨
j∈P

corrupted[j]

49 for j ∈ P
50 if V(pkj, ({mk}k∈Q, m̂j), πj) = 0
51 return ⊥
52 if peerCorrupted[sID] = false
53 for j ∈ P
54 if @sID′j : (owner[sID′j], peer[sID′j], I[sID′j],R[sID′j])

= (j,Q \ {j}, (j, (mj, σj)), (j, (m̂j, πj)))
55 AbortDer := true
56 Π := (pkj, (Q \ {j}, {mj}j∈Q, m̂j), πj) �valid
forgery
57 K∗ := Der(ski,P,Mi,M̂i, st[sID])
58 ctxt := (Q,Mi ∪ {I[sID]},M̂i ∪ {R[sID]})
59 K := H(ctxt,K∗)
60 sKey[sID] := K
61 return ε

Corr(n ∈ [µ])
62 corrupted[n] := true
63 skn ← Corr′(n)
64 return skn

H(ctxt,K∗)
65 if H[ctxt,K∗] = K
66 return K
67 K $← K
68 H[ctxt,K∗] := K
69 return K

Fig. 21. Adversary C against the (t′, ε′, µ,Qs,QCOR)-StCorrCMA of SIG. The StCorrCMA game provides oracles
Sign′,Corr′. The adversary B has access to oracles o := {SessionI,SessionR,Der,Reveal,Corr,Test,H}, where
Reveal and Test remain the same as in Figure 15. We highlight the most relevant codes with bold line numbers.

To bound Equation (15), we construct an adversary B that (t′′, ε′′, µ, S′,QV)-breaks the OW-G-HV security
of the underlying GKE as in Figure 22.

Firstly, we show that the output of Session′I, Session
′
R, and Der′ are identically distributed as in G1. Due to

the abort conditions introduced in G1, for all sessions that has finished computing a key without making the game
abort, their messages are honestly generated, altough they may be in a different order and there are non-matching
sessions. Hence, SessionI, SessionR, and Der are perfectly simulated by Session′I, Session

′
R, and Der′ of

the OW-G-HV game and the signing key.
Then, we show that the random oracle H simulated by B has the same output distribution as in G1. The only

difference is when b = 0, and the line 76 is executed. At the same time, we obtain a valid attack (sID,K∗) for the
OW-G-HV security. In summary, we have

Pr[GA2 ⇒ 1 | b = 0]− Pr[GA1 ⇒ 1 | b = 0] ≤ ε′′.

25

Bo′(µ)
01 for n ∈ [µ]
02 (pkn, skn)← GenGAKE(par)
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkµ)
05 for sID∗ ∈ S:
06 if Fresh(sID∗) = false
07 return 0 �session not fresh
08 if Valid(sID∗) = false
09 return 0 �no valid attack
10 return JΣ ∈WinOW-G-HVK �break OW-G-HV

SessionI(i ∈ [µ],P ⊆ [µ])
11 (sID,mi) $← Session′I(i,P)
12 owner[sID] := i
13 peer[sID] := P
14 Q := P ∪ {i}
15 σi

$← Sign(pki, (P,mi))
16 I[sID] := (i, (mi, σi))
17 return (sID,mi)

SessionR(sID ∈ [cntS],Mi)
18 (i,P) := (owner[sID], peer[sID])
19 if |Mi| 6= |P|
20 return ⊥ �all peers must have responded
21 parse {(j, (mj, σj))}j∈P :=Mi

22 parse (i, (mi, σi)) =: I[sID]
23 Q := {i} ∪ P
24 for j ∈ P
25 if Ver(pkj, (P,mj), σj) = 0
26 return ⊥
27 (sID, m̂i) $← Session′R(sID,Mi)
28 peerCorrupted[sID] :=

∨
j∈P

corrupted[j]

29 for j ∈ P
30 if V(pkj,mj, σj) = 0
31 return ⊥
32 if peerCorrupted[sID] = false
33 for j ∈ P
34 if @sID′j : (owner[sID′j], peer[sID′j], I[sID′j])

= (j,Q \ {j}, (j,mj, σj))
35 AbortSessR = true
36 abort
37 πi

$← Sign(ski, (P, {mj}j∈Q, m̂i))
38 R[sID] := (i, (m̂i, πi))
39 return (sID, m̂i)

Der(sID ∈ [cntS],Mi,M̂i)
40 if sKey[sID] 6= ⊥
41 return ⊥
42 (i,P) := (owner[sID], peer[sID])
43 if |M̂i| 6= |P| return ⊥
44 parse {(j,mj, πj)}j∈P =:Mi; {(j, m̂j, πj)}j∈P =: M̂i

45 parse (i, (mi, σi)) =: I[sID], (i, (m̂i, πi)) =: R[sID]
46 Q := P ∪ {i}
47 for k ∈ P
48 if Ver(pkk, (P, {mj}j∈Q, m̂j), πj) = 0
49 return ⊥
50 Der′(sID,Mi,M̂i)
51 peerCorrupted[sID] :=

∨
j∈P

corrupted[j]

52 for j ∈ P
53 if V(pkj, ({mk}k∈Q, m̂j), πj = 0
54 return ⊥
55 if peerCorrupted[sID] = false
56 for j ∈ P
57 if @sID′j : (owner[sID′j], peer[sID′j], I[sID′j],R[sID′j])

= (j,Q \ {j}, (j, (mj, σj)), (j, (m̂j, πj)))
58 AbortDer := true
59 ctxt := ({pkj}j∈Q,Mi ∪ I[sID],M̂i ∪ R[sID])
60 Der′(sID,Mi,M̂i)
61 if ∃K∗,K : H[ctxt,K∗, 1] = K
62 sKey[sID] := K
63 elseif H[ctxt,⊥,⊥] = K
64 sKey[sID] := K
65 else K $← K
66 H[ctxt,K∗, 0] := K; sKey[sID] := K
67 return ε

H(ctxt,K∗)
68 ctxt := (Q,MQ,M̂Q)
69 if H[ctxt,K∗, ·] = K
70 return K
71 h := ⊥
72 for j ∈ Q
73 if H[ctxt,⊥,⊥] = K and

∃sID′j : (owner[sID′j], peer[sID′j], I[sID′j],R[sID′j])
= (j,Q \ {j}, (j, (mj, σj)), (j, (m̂j, πj)))

74 Der′(sID,MQ \ I[sID′j],M̂Q \ R[sID′j])
75 if KVer(sID′j ,K

∗) = 1
76 Σ := (sID′j ,K

∗) �attack for OW-G-HV
77 replace (⊥,⊥) in H[ctxt,⊥,⊥]

with (K∗, 1)
78 return K
79 else h := 0
80 K $← K
81 H[ctxt,K∗, h] := K
82 return K

Fig. 22. Adversary B against the (t′′, ε′′, µ, S′,QV)-OW-G-HV of GKE. The OW-G-HV game provides
oracles o′ := {Session′I ,Session′R,Der′,KVer}. The adversary C has access to oracles o :=
{SessionI,SessionR,Der,Reveal,Corr,Test,H}, where Reveal,Corr,Test are defined as in the original
IND-G-FS security game.

Acknowledgement

We thank the anonymous reviewers from CT-RSA 2021 for their many insightful suggestions to improve our
paper.

References
1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache,

D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (Apr 2001)

26

2. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg (Mar 2015)

3. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: Tight reductions and non-rewinding proofs for schnorr
identification and signatures. Cryptology ePrint Archive, Report 2020/416 (2020), https://eprint.iacr.org/
2020/416

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D.E.,
Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993)

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO’93. LNCS, vol. 773,
pp. 232–249. Springer, Heidelberg (Aug 1994)

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun 2006)

7. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security: An efficient and generic construction
in the standard model. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (Mar / Apr 2015)

8. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. In: Preneel, B., Takagi,
T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 124–142. Springer, Heidelberg (Sep / Oct 2011)

9. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group Diffie-Hellman key exchange – the dynamic
case. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (Dec 2001)

10. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group Diffie-Hellman key exchange under standard assumptions.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (Apr / May 2002)

11. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenticated group Diffie-Hellman key exchange.
In: Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001. pp. 255–264. ACM Press (Nov 2001)

12. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system (extended abstract). In: Santis,
A.D. (ed.) EUROCRYPT’94. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (May 1995)

13. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (Apr 2008)

14. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly efficient key exchange protocols with optimal
tightness. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer,
Heidelberg (Aug 2019)

15. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols. Cryptology ePrint Archive,
Report 2020/1029 (2020), https://eprint.iacr.org/2020/1029

16. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with tight multi-user security. In: Garay, J.
(ed.) PKC 2021, Part II. LNCS, vol. 12711, pp. 1–31. Springer, Heidelberg (May 2021)

17. Diemert, D., Jager, T.: On the tight security of TLS 1.3: Theoretically-sound cryptographic parameters for real-world
deployments. Cryptology ePrint Archive, Report 2020/726 (2020), https://eprint.iacr.org/2020/726

18. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654
(1976)

19. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges. Designs, Codes and Cryp-
tography 2(2), 107–125 (Jun 1992)

20. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key exchange: A formal treatment and implica-
tions for TLS 1.3. In: 2016 IEEE Symposium on Security and Privacy. pp. 452–469. IEEE Computer Society Press (May
2016)

21. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr signatures. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 512–531. Springer, Heidelberg (Dec 2014)

22. Galbraith, S.D., Malone-Lee, J., Smart, N.P.: Public key signatures in the multi-user setting. Inf. Process. Lett. 83(5),
263–266 (2002), http://dx.doi.org/10.1016/S0020-0190(01)00338-6

23. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (Aug 2018)

24. Gorantla, M.C., Boyd, C., González Nieto, J.M.: Modeling key compromise impersonation attacks on group key exchange
protocols. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 105–123. Springer, Heidelberg (Mar 2009)

25. Harkins, D., Carrel, D.: The internet key exchange (IKE). RFC 2409 (1998), https://www.ietf.org/rfc/
rfc2409.txt

26. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (Aug 2009)

27. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-Secure Authenticated Key Exchange, Revisited. In: Eurocrypt 2021
(2021), https://ia.cr/2020/1279

28. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg (Aug 2012)

29. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Authenticated confidential channel establishment and the security of TLS-
DHE. Journal of Cryptology 30(4), 1276–1324 (Oct 2017)

30. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 110–125. Springer, Heidelberg (Aug 2003)

27

https://eprint.iacr.org/2020/416
https://eprint.iacr.org/2020/416
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/726
http://dx.doi.org/10.1016/S0020-0190(01)00338-6
https://www.ietf.org/rfc/rfc2409.txt
https://www.ietf.org/rfc/rfc2409.txt
https://ia.cr/2020/1279

31. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes. In: Robshaw, M., Katz,
J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 33–61. Springer, Heidelberg (Aug 2016)

32. Krawczyk, H.: SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman and its use in the IKE protocols.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (Aug 2003)

33. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu,
Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (Nov 2007)

34. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: Defining trivial attacks for security protocols is
not trivial. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1343–1360. ACM Press
(Oct / Nov 2017)

35. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with explicit authentication and tight security. In:
Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Heidelberg (Dec 2020)

36. Maurer, U.M.: Abstract models of computation in cryptography (invited paper). In: Smart, N.P. (ed.) 10th IMA Interna-
tional Conference on Cryptography and Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (Dec 2005)

37. Pan, J., Qian, C., Ringerud, M.: Signed diffie-hellman key exchange with tight security. In: Paterson, K.G. (ed.) CT-
RSA 2021. LNCS, vol. 12704, pp. 201–226. Springer, Heidelberg (May 2021)

38. Pan, J., Ringerud, M.: Signatures with tight multi-user security from search assumptions. In: Chen, L., Li, N., Liang, K.,
Schneider, S.A. (eds.) ESORICS 2020, Part II. LNCS, vol. 12309, pp. 485–504. Springer, Heidelberg (Sep 2020)

39. PKCS #1: RSA cryptography standard. RSA Data Security, Inc. (Jun 1991)
40. Poettering, B., Rösler, P., Schwenk, J., Stebila, D.: SoK: Game-based security models for group key exchange. In: Paterson,

K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 148–176. Springer, Heidelberg (May 2021)
41. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed Standard (2018), https:

//tools.ietf.org/html/rfc8446
42. Rösler, P., Mainka, C., Schwenk, J.: More is less: On the end-to-end security of group chats in signal, whatsapp, and

threema. In: 2018 IEEE European Symposium on Security and Privacy (EuroS P). pp. 415–429 (2018)
43. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (Jan 1991)
44. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT’97. LNCS, vol.

1233, pp. 256–266. Springer, Heidelberg (May 1997)
45. Xiao, Y., Zhang, R., Ma, H.: Tightly secure two-pass authenticated key exchange protocol in the CK model. In: Jarecki, S.

(ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 171–198. Springer, Heidelberg (Feb 2020)

Appendices

A Security of Schnorr in the Generic Group Model

We show the StCorrCMA security of Schnorr’s signature scheme in the generic group model (GGM) which has
been formally stated in Theorem 1. This section also gives a proof of the theorem.

We proceed as follows: Firstly, we propose a variant of the IDLOG assumption [31], CorrIDLOG, by introduc-
ing an additional corruption oracle. Secondly, by using a slightly different version of [31, Lemma 5.8], we prove
that Schnorr’s signature is tightly StCorrCMA-secure based on the CorrIDLOG assumption. Finally, we prove the
hardness of CorrIDLOG.

Note that in [31] it has been proven that IDLOG tightly implies the multi-user security of Schnorr with-
out corruptions, which does not necessary give us tight multi-user security with corruptions. However, our new
CorrIDLOG assumption tightly implies the multi-user security of Schnorr with corruptions. We believe that our
CorrIDLOG assumption is of independent interest.

Let par = (p, g,G) be a set of system parameters. The CorrIDLOG assumption is defined as follow:

Definition 7 (CorrIDLOG). The CorrIDLOG problem is (t, ε, µ,QCh,QDL)-hard in par, if for all adversaries A
interacting with µ users, running in time at most t and making at most QCh queries to the challenge oracle Ch
and QDL queries to the corruption oracle DL, we have:

Pr

gs ∈ {Xhj
i · Rj|i 6∈ LC ∧ j ∈ [QCh]}

∣∣∣∣∣∣
for i ∈ [µ]

xi
$← Zp; Xi := gxi

s $← ACh(·),DL(·)({Xi}i∈[µ])

 ≤ ε,
where on the j-th challenge query Ch(Rj ∈ G) (j ∈ [QCh]) Ch returns hj

$← Zp to A, and on a corruption query
DL(i) for i ∈ [µ], DL returns xi to A and adds i into the corruption list LC (namely, LC := LC ∪ {i}).

28

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446

Before proving the hardness of CorrIDLOG in the GGM, Lemma 5 shows that CorrIDLOG tightly implies the
StCorrCMA security of Schnorr in the random oracle model (without using the GGM). Note that this lemma does
not contradict the impossibility result of [21], since our assumption is interactive. In fact, following the framework
in [31, Section 3], one can easily prove that the standard DLOG assumption non-tightly implies the CorrIDLOG
assumption in the standard model.

Lemma 5 (CorrIDLOG tight−−→ StCorrCMA). If CorrIDLOG is (t, ε, µ,QCh,QDL)-hard in par, then Schnorr’s
signature Schnorr is (t′, ε′, µ,Qs,QDL,QH)-StCorrCMA in the programmable random oracle model, where

t′ ≈ t, ε′ ≤ ε+ QHQs + 1
p

, QCh = QH.

Proof. This proof is straightforward by [31], but for completeness we prove it in details here. LetA be an adversary
against StCorrCMA security. We construct B against CorrIDLOG.

B({Xi}∈[µ]): �CorrIDLOG adversary
00 for i ∈ [µ]
01 pki := Xi

02 (i∗,m∗, σ∗) $← ACorr,Sign({pki}i∈[µ])
03 parse (h∗, s∗) =: σ∗
04 return s∗

Hash(R,m) :
05 if ∃h : ((R,m), h) ∈ LH
06 return h
07 h $← Ch(R)
08 LH := LH ∪ {((R,m), h)}
09 return h

Sign(i,m) :
10 parse Xi =: pki
11 s, h $← Zp

12 R := gs · X−h
i

13 if ∃h′ : ((R,m), h′) ∈ LH
14 abort
15 LH := LH ∪ {((R,m), h)}
16 σ := (h, s)
17 LS := LS ∪ {(i,m, σ)}
18 return
Corr(i) :
19 return DL(Xi)

Fig. 23. Adversary B against the CorrIDLOG assumption.

Firstly, we argue that B perfectly simulates the experiment StCorrCMA unless B aborts in line 14, namely,
(R,m) collides with a previous hash query. Since R is distributed uniformly at random, by the union bound the
probability that B aborts in line 14 is bounded by QHQs/p.

Secondly, we show that B’s forgery s∗ is a valid CorrIDLOG forgery. Given the (h∗, s∗) from A, we have
R∗ = gs∗ · X−h∗

i∗ and Hash(R∗,m∗) = h∗. We make our argument in the following steps:
1. With high probability, there exists ((R∗,m∗), h∗) ∈ LH. Otherwise, it means A was able to guess the hash

value of (R∗,m∗) without querying Hash. This event is bounded by 1/p.
2. If ((R∗,m∗), h∗) was added to LH by the signing oracle Sign, then Sign must have chosen an s′ such that

gs′ ·X−h∗
i∗ = R∗ = gs∗ ·X−h∗

i∗ , which means s′ = s∗. However, if (h∗, s∗) fromA is a valid StCorrCMA forgery,
then s′ = s∗ cannot happen.

3. Now ((R∗,m∗), h∗) can only be added to LH by the hashing oracle Hash. This is equivalent to R∗ = Rj and
h∗ = hj for some j ∈ [QG]. Thus gs∗ = R∗ · Xh∗

i∗ = Rj · X
hj
i∗ , and s∗ is a valid attack in the CorrIDLOG security

game.
This concludes the proof of Lemma 5.

Combining Lemma 5 and Lemma 6 (namely, the generic hardness of CorrIDLOG), we can conclude the
StCorrCMA security of Schnorr’s signature in Theorem 1.

A.1 Generic Hardness of CorrIDLOG

GENERIC GROUP MODEL. In the GGM for prime-order groups G [44,36], operations in G can only be carried
out via black-box access to the group oracle OG(·, ·), and adversaries only get non-random handles of the group
elements. Since groups (G, ·) and (Zp,+) are isomorphic, every element in G is internally identified as a Zp

element. To consistently simulate the group operations, the simulator maintains a list LG internally and a counter

29

cnt that keeps track of the number of entries in LG. LG contains entries of the form (z(~x),Cz), where z(~x) ∈ Zp[~x]
represents a group element and the positive integer Cz is its counter.

We assume A can make at most QG queries to OG.

Lemma 6. For any adversary A that (t, ε, µ,QCh,QDL)-breaks the CorrIDLOG assumption, we have

ε ≤ (QG + µ+ 1)2

2p
+ (µ− QDL)

p
.

We recall the Schwartz-Zippel Lemma that is useful for proving Lemma 6.

Lemma 7 (Schwartz-Zippel Lemma). Let f (x1, . . . , xn) be a non-zero multivariant polynomial of maximum
degree d ≥ 0 over a field F. Let S be a finite subset of F and a1, . . . , an be chosen uniformly at random from S.
Then, we have

Pr[f (a1, . . . , an) = 0] ≤ d
|S|

.

Proof (of Lemma 6). A is an adversary against the CorrIDLOG assumption. B is simulator that simulates the
CorrIDLOG security game in the GGM and interacts with A. The simulation is described in Figure 24

B: �CorrIDLOG in the GGM
01 LG := {(1,C1 := 1)}
02 for i ∈ [µ]
03 ai

$← Zp

04 Cxi := i + 1
05 LG := LG ∪ {(xi,Cxi)}
06 pki := Cxi

07 cnt := µ+ 1 �tracking the size of LG
08 ~x := (x1, . . . , xµ)
09 ~a := (a1, . . . , aµ)
10 s∗ $← AO({pki}i∈[µ])
11 if ∃(f1(~x),C1), (f2(~x),C2) ∈ LG :

f1(~x) 6= f2(~x) ∧f1(~a) = f2(~a)
12 BadG := 1; abort
13 for (C∗, h∗) ∈ LCh

14 fetch (r∗(~x),C∗) ∈ LG
15 if ∃i∗ ∈ [cnt] \ LC : s∗ = ai∗ · h∗ + r∗(~a)
16 return 1
17 return 0

OG(C1,C2): �Group operation
18 if (C1,C2) /∈ [cnt]2
19 return ⊥
20 fetch (f1(~x),C1), (f2(~x),C2) ∈ LG
21 z(~x) := f1(~x) + f2(~x)
22 if ∃Cz ∈ [cnt] : (z(~x),Cz) ∈ LG
23 return Cz

24 else
25 cnt ++
26 Cz := cnt
27 LG := LG ∪ {(z(~x),Cz)}
28 return Cz

Chall(C): �k-th query (k ∈ [QCh])
29 if C /∈ [cnt]
30 return ⊥
31 else
32 hk

$← Zp

33 LCh := LCh ∪ {(C, hk)}
34 return hk

DL(i): �Corruption oracle
35 LC := LC ∪ {i}
36 return ai

Fig. 24. B simulates the CorrIDLOG security game in the GGM and interacts with A. The adversary A has access to the
oracles O := (OG,Chall,DL).

B simulates the CorrIDLOG game in a symbolic way using degree-1 polynomials. The internal list LG stores
the entries of the form (f (~x),Cf (~x)), where f (~x) ∈ Zp[x1, . . . , xµ] is a degree-1 polynomial and Cf (~x) ∈ N identifies
which entry it is. B also keeps track of the size of LG by cnt. AfterA outputs an attack, all the variables (x1 . . . xµ)
will be assigned a value (a1, . . . , aµ) $← Zµp chosen uniformly at random.

We remark that B perfectly simulates the CorrIDLOG security game in the GGM if none of the distinct poly-
nomials zi and zj stored in LG collide when evaluating on the random vector ~a over Zp. Applying the union bound

30

over all pairs of distinct polynomials in LG, we have:

Pr[BadG] := Pr
~a $←Zµ

p

[∃(i, j) ∈ [cnt]2 : zi(~x) 6= zj(~x) ∧ zi(~a) = zj(~a)]

≤
(

QG + µ+ 1
2

)
· 1

p
≤ (QG + µ+ 1)2

2p
,

where the factor 1
p comes from Lemma 7 and the fact thatLG contains only degree-1 polynomials and (a1, . . . , aµ)

is chosen uniformly at random from Zµp .
We give an upper bound of the success probability of A as follows:

ε ≤ Pr[BadG] + Pr
~a $←Zµ

p

[∃i∗ ∈ [µ] \ LC : s∗ = ai∗h∗ + r∗(~a)]

≤ (QG + µ+ 1)2

2p
+ (µ− QDL)

p
.

The second term (µ−QDL)
p comes from the fact that for each i∗ ∈ [µ] \LC A has no information about xi∗ . Thus for

a fixed i∗ ∈ [µ] \ LC , we get that xi∗h∗ + r∗(~x)− s∗ is a degree-1 polynomial, and by Lemma 7

Pr
~a $←Zµ

p

[s∗ = ai∗h∗ + r∗(~a)] ≤ 1
p
.

By the union bound, we have

Pr
~a $←Zµ

p

[∃i∗ ∈ [µ] \ LC : s∗ = ai∗h∗ + r∗(~a)] ≤ µ− QDL

p
.

31

	 Signed (Group) Diffie-Hellman Key Exchange with Tight Security

