
ZK-PCPs from Leakage-Resilient Secret Sharing

Carmit Hazay

Bar-Ilan University

carmit.hazay@biu.ac.il

Muthuramakrishnan Venkitasubramaniam

University of Rochester

muthuv@cs.rochester.edu

Mor Weiss

Bar-Ilan University

mor.weiss@biu.ac.il

Abstract

Zero-Knowledge PCPs (ZK-PCPs; Kilian, Petrank, and Tardos, STOC `97) are PCPs with
the additional zero-knowledge guarantee that the view of any (possibly malicious) veri�er making
a bounded number of queries to the proof can be e�ciently simulated up to a small statistical
distance. Similarly, ZK-PCPs of Proximity (ZK-PCPPs; Ishai and Weiss, TCC `14) are PCPPs
in which the view of an adversarial veri�er can be e�ciently simulated with few queries to the
input.

Previous ZK-PCP constructions obtained an exponential gap between the query complex-
ity q of the honest veri�er, and the bound q∗ on the queries of a malicious veri�er (i.e.,
q = poly log (q∗)), but required either exponential-time simulation, or adaptive honest veri�-
cation. This should be contrasted with standard PCPs, that can be veri�ed non-adaptively (i.e.,
with a single round of queries to the proof). The problem of constructing such ZK-PCPs, even
when q∗ = q, has remained open since they were �rst introduced more than 2 decades ago.
This question is also open for ZK-PCPPs, for which no construction with non-adaptive honest
veri�cation is known (not even with exponential-time simulation).

We resolve this question by constructing the �rst ZK-PCPs and ZK-PCPPs which simulta-

neously achieve e�cient zero-knowledge simulation and non-adaptive honest veri�cation. Our
schemes have a square-root query gap, namely q∗/q = O (

√
n) where n is the input length.

Our constructions combine the �MPC-in-the-head� technique (Ishai et al., STOC `07) with
leakage-resilient secret sharing. Speci�cally, we use the MPC-in-the-head technique to construct
a ZK-PCP variant over a large alphabet, then employ leakage-resilient secret sharing to design
a new alphabet reduction for ZK-PCPs which preserves zero-knowledge.

Contents

1 Introduction 1
1.1 Our results . 3

2 Our Techniques 4
2.1 ZK-PCPs with Non-Adaptive Veri�cation and E�cient Simulation 4

2.1.1 Amplifying the Query Gap in the ZK-PCP of [IKOS07] 4
2.1.2 Alphabet Reduction for ZK-PCPs . 4
2.1.3 Amplifying to ZK Against Adaptive Veri�ers 6
2.1.4 Why Do Previous Approaches of Constructing Non-Adaptive ZK-PCPs Fail? 6

2.2 ZK-PCPPs with Non-Adaptive Veri�cation and E�cient Simulation 7
2.2.1 A ZK-PCPP with Non-Adaptive Veri�cation Over Large Alphabets 7
2.2.2 Why Do Previous Approaches of Constructing Non-Adaptive ZK-PCPPs Fail? 8

2.3 Equivocal Secret Sharing . 9
2.3.1 Equivocal SSS: De�nition . 9
2.3.2 Equivocal SSS: Construction . 9

2.4 Future Directions . 10

3 Preliminaries 10
3.1 Zero-Knowledge Probabilistically Checkable Proofs (PCPs) and PCPs of Proximity . 11
3.2 Secure Multi-Party Computation . 13
3.3 Leakage-Resilient Secret Sharing Schemes (LR-SSS) 14
3.4 Equivocal Secret Sharing . 16

3.4.1 Equivocation from Zero-Knowledge Codes . 17

4 A Tighter Analysis of the ZK-PCP of [IKOS07] 19

5 Alphabet Reduction for ZK-PCPs 22
5.1 Upgrading to ZK Against Adaptive Veri�ers . 25

6 ZK-PCPPs with Non-Adaptive Veri�cation 28
6.1 A ZK-PCPP Based on the Scheme of [IKOS07] . 28
6.2 Alphabet Reduction for ZK-PCPP . 30

1 Introduction

Probabilistically Checkable Proofs (PCPs) [ALM+92, AS92] allow a probabilistic veri�er to check the
validity of a given statement by only querying few proof bits. Zero-Knowledge (ZK) proofs [GMR85]
allow a prover to convince a veri�er of the validity of a statement, without revealing any additional
information to the veri�er. This work focuses on Zero-Knowledge Probabilistically Checkable Proofs
(ZK-PCPs) (and ZK-PCPs of proximity), which combine the advantages of these two types of proof
systems. Before describing our main results, we �rst give a short overview of these proof systems.

Probabilistically Checkable Proofs (PCPs) [ALM+92, AS92] allow a randomized e�cient
veri�er V with oracle access to a purported proof π to verify an NP-statement of the form �x ∈ L�
by reading only few bits of π. The proof can be e�ciently generated given the NP witness, and the
veri�er accepts true claims with probability 1, whereas false claims are accepted with low probability
(which is called the soundness error). The celebrated PCP theorem [ALM+92, AS92, Din06] states
that any NP language has a PCP system with soundness error 1/2, in which the veri�er reads
only O (1) bits from a polynomial-length proof (soundness can be ampli�ed through repetition).
An attractive feature of these PCP systems is that the veri�er is non-adaptive, namely it makes a
single round of queries to the proof. PCPs of Proximity (PCPPs) [DR04, BGH+04, Din06] are a
generalization of PCPs in which the veri�er does not read its entire input. Instead, V has oracle
access to x, π, and wishes to check whether x is close to L (in relative Hamming distance). The
best PCPP constructions for NP [BS08, Mie09] obtain comparable parameters to the PCP systems
described above, where any x which is δ-far from L in relative Hamming distance is rejected with high
probability, and δ is a constant or even inverse polylogarithmic (δ is called the proximity parameter).

Zero-Knowledge (ZK) proofs [GMR85] allow a randomized e�cient prover to prove an NP-
statement of the form �x ∈ L� to a randomized e�cient veri�er, while guaranteeing that true claims
are accepted with probability 1, false claims are rejected with high probability, and the veri�er learns
no information about the corresponding NP-witness. This last property, known as zero-knowledge, is
formalized by requiring that for any (possibly malicious) e�cient veri�er V∗, there exists an e�cient
simulator machine that has access only to the statement x, and can simulate the interaction of V∗
with the honest prover.

Zero-Knowledge PCPs (ZK-PCPs) [KPT97] combine the attractive features of PCPs and ZK
proofs. Speci�cally, ZK-PCPs are PCPs in which the prover P is randomized, and the proof π has
the following zero-knowledge guarantee: the view of every (possibly malicious, possibly unbounded)
veri�er V∗ that makes an a-priori bounded number of queries to the proof, can be e�ciently simulated
up to a small statistical distance. We remark that restricting V∗ to making an a-priori bounded
number of queries is inherent to obtaining ZK with polynomial-length proofs.

The �rst ZK-PCP constructions for NP [KPT97, IMS12] obtain ZK against any veri�er V∗ that
is restricted to querying at most q∗ = q∗ (|x|) proof bits, with proofs of length poly (q∗) that can be
veri�ed with polylog(q∗) queries and have a negligible soundness error. In particular, the query gap
q∗/q � the ratio between the query complexities of the malicious and honest veri�ers � obtained
by these constructions is exponential.1 Unfortunately, obtaining ZK in [KPT97, IMS12] did not
come without a cost: it required the honest veri�er to be adaptive, namely to make several rounds
of queries to the proof (where the queries of each round depend on the answers to previous queries).

1We stress that a larger gap is preferable to a smaller one, since it means the proof can be veri�ed with few queries,
while guaranteeing zero-knowledge even when a malicious veri�er makes many more queries (compared to the honest
veri�er).

1

In cryptographic applications of ZK-PCPs (e.g., in [IWY16]) this blows-up the round complexity of
resultant protocols. In particular, every round of queries which the veri�er makes to the ZK-PCP
induces two communication rounds in the interactive protocols which rely on ZK-PCPs.

Ishai and Weiss [IW14] introduce the notion of Zero-Knowledge PCPPs (ZK-PCPPs). Simi-
lar to ZK-PCPs, the ZK-PCPP prover is randomized, and zero-knowledge means that the view of
any veri�er V∗ making q∗ queries to the input and the proof can be e�ciently simulated, up to
a small statistical distance, by making only q∗ queries to the input. They use similar techniques
to [KPT97, IMS12] to obtain ZK-PCPPs for NP with comparable parameters to the ZK-PCPs
of [KPT97, IMS12], where the proximity parameter δ is constant or inverse polylogarithmic. These
ZK-PCPPs also require adaptive veri�cation, which increases the round complexity in their crypto-
graphic applications [IW14, Wei16].

As discussed in Sections 2.1.4 and 2.2.2 below, adaptive veri�cation is in fact inherent to the
constructions of [KPT97, IMS12, IW14]. Indeed, these schemes are obtained by combining a PCP
or PCPP with a weak zero-knowledge guarantee that only holds against the honest veri�er, with an
information-theoretic commitment primitive called locking schemes [KPT97]. This latter primitive
requires adaptive opening, which causes the resultant ZK-PCP veri�er to be adaptive.

Can ZK-PCPs be veri�ed non-adaptively? Motivated by the goal of obtaining ZK for PCPs
at no additional cost, Ishai et al. [IWY16] gave a partial answer to this question. Speci�cally, they
construct ZK-PCPs with similar parameters to the schemes of [KPT97, IMS12] in which the honest
veri�er is non-adaptive, but with a weaker zero-knowledge guarantee compared to standard ZK-
PCPs: the zero-knowledge simulator is ine�cient (this is also known as witness-indistinguishability).
Alternatively, they obtain ZK with e�cient simulation against computationally-bounded veri�ers, as-
suming the existence of one-way functions and a common random string. The techniques of [IWY16]
diverge from the standard method of designing ZK-PCPs [KPT97, IMS12] discussed above. Speci�-
cally, the ZK-PCP of [IWY16] is based on a novel connection to leakage-resilient circuits, which are
circuits that operate over encoded inputs, and resist certain �side channel� attacks in the sense that
such attacks reveal nothing about the input other than the output. Unfortunately, the weaker ZK
guarantee of the ZK-PCPs of [IWY16] carries over to any application in which these systems are
used. Moreover, [IWY16] give evidence that ine�cient simulation is inherent to their technique of
using leakage-resilient circuits.

Non-adaptive honest vs. malicious veri�cation. It is instructive to note that while having
non-adaptive (honest) veri�cation is a feature of the system (since it guarantees that the honest
veri�er can achieve soundness with a single round of queries), having zero-knowledge against non-
adaptive malicious veri�ers is a restriction of the system, since there is no ZK guarantee against
adaptive malicious veri�ers, that make several rounds of queries to the proof.

We note that in [IWY16], leakage-resilient circuits fall short of yielding ZK-PCPs with full-�edged
zero-knowledge not only because the simulation is ine�cient, but also because zero-knowledge holds
only against non-adaptive (malicious) veri�ers. Ishai et al. [IWY16] obtain ZK (with ine�cient simu-
lation) against adaptive veri�ers by combining leakage-resilient circuits with techniques of [CDD+01].
These techniques incur an exponential blowup in the complexity of the ZK simulator, but did not
pose a problem for [IWY16] since their simulator (even against non-adaptive malicious veri�ers) was
already ine�cient.

The current landscape of ZK-PCPs is unsatisfying. Current ZK-PCP constructions either require
adaptive veri�cation [KPT97, IMS12], or guarantee only a weak form of ZK with an ine�cient

2

simulator [IWY16]. This holds regardless of the query gap, i.e., even if we restrict malicious veri�ers
to making the same number of queries as the honest veri�er. For ZK-PCPPs, the situation is
even worse: no constructions with non-adaptive veri�cation are known (not even with ine�cient
simulation). This state of a�airs gives rise to the following natural question:

Do there exist ZK-PCPs (and ZK-PCPPs) with non-adaptive veri�cation and e�cient simulation?

As we discuss in Sections 2.1.4 and 2.2.2 below, the limitations of existing ZK-PCP and ZK-
PCPP constructions seem to be inherent to the respective techniques they employ to obtain ZK.
This seems to imply that obtaining both non-adaptive veri�cation and e�cient simulation requires
new techniques. Or maybe such objects do not even exist?

1.1 Our results

In this work, we answer our research question in the a�rmative: we construct ZK-PCPs and ZK-
PCPPs that can be veri�ed non-adaptively and have e�cient zero-knowledge simulation. Unlike the
schemes of [KPT97, IMS12, IW14, IWY16], which obtain an exponential gap between the query
complexities of the malicious and honest veri�ers, we are only able to obtain a polynomial query gap
(q∗ vs. (q∗)ϵ, for some constant ϵ ∈ (0, 1)).

In the following, we say that a PCP (PCPP, resp.) system is a non-adaptive q-query q∗-ZK-
PCP (q∗-ZK-PCPP, resp.) if it is perfectly ZK against a (possibly malicious, possibly adaptive)
veri�er making q∗ queries, and achieves a negl (q∗) soundness error where the honest veri�er makes
q non-adaptive queries to the proof.

Speci�cally, we obtain the following results:

Theorem 1 (Non-Adaptive ZK-PCPs with E�cient Simulation). There exists a constant ϵ ∈ (0, 1)
such that for any ZK parameter q∗ ∈ N there exists a non-adaptive (q∗)ϵ-query Ω (q∗)-ZK-PCP for
NP.

Theorem 2 (Non-Adaptive ZK-PCPPs with E�cient Simulation). Let n ∈ N be an input length
parameter. Then there exists a constant c > 0 such that for any proximity parameter δ ≥ 1/

√
n,

there exists a non-adaptive q-query q∗-ZK-PCPP for NP with proximity parameter δ, q∗ = Ω
(
nc+1

)
,

and q = Õ
(
nc+1/2

)
.

Our non-adaptive ZK-PCPs and ZK-PCPPs can be plugged-into the applications described
in [IW14, IWY16, Wei16], and will reduce the round complexity of the resultant protocols.2

Our constructions show that leakage-resilience techniques can be used to construct ZK-PCPs
(and ZK-PCPPs) with both non-adaptive (honest) veri�cation and e�cient simulation. Speci�cally,
we circumvent the negative result of [IWY16] on the limitations of using leakage-resilient circuits,
by relying on leakage-resilient secret sharing [DP07, DDV10] secure against local leakage [GK18,
BDIR18, ADN+19]. Compared to leakage-resilient circuits, leakage-resilient secret sharing has the
weaker guarantee of only protecting information from leakage, whereas leakage-resilient circuits also
protect computation. However, this weaker guarantee su�ces for our needs, and admits leaner
and more e�cient constructions compared to those of leakage-resilient circuits (and applications

2In this context, we note that if one only requires ZK against the honest veri�er, then non-adaptive ZK-PCPs
and ZK-PCPPs are known. (This is implicit in [KPT97] and [IW14] for ZK-PCPs and ZK-PCPPs respectively,
via standard soundness ampli�cation.) Consequently, our non-adaptive ZK-PCPs and ZK-PCPPs (with ZK against
malicious veri�ers) do not improve the round complexity in applications that only require ZK against the honest-
veri�er (e.g., the ZK arguments of [IMS12], and the commit-and-prove protocols of [IW14]).

3

using them). Speci�cally, we use leakage resilient secret sharing to design a new alphabet reduction
procedure that transforms a ZK-PCP over a large alphabet to a ZK-PCP over bits, while preserving
zero-knowledge.

2 Our Techniques

We now give more details about our ZK-PCP and ZK-PCPP constructions.

2.1 ZK-PCPs with Non-Adaptive Veri�cation and E�cient Simulation

Our starting point is a ZK-PCP implicit in the work of [IKOS07]. They use secure Multi-Party
Computation (MPC) protocols to construct a ZK-PCP variant over a large (poly-sized) alphabet
with e�cient ZK simulation, that can be veri�ed non-adaptively. Their ZK-PCP su�ers from two
disadvantages. First, strictly speaking it is not a ZK-PCP, since in standard ZK-PCPs the proof is
a bit string, whereas the ZK-PCP of [IKOS07] is over a large alphabet. Second, their construction
has no query gap, namely the proof is ZK against veri�ers querying q∗ proof symbols, but to get
soundness the honest veri�er must also make q∗ queries.

2.1.1 Amplifying the Query Gap in the ZK-PCP of [IKOS07]

To prove that x ∈ L for some NP-language L with a corresponding NP relationR = R (x,w), Ishai et
al. [IKOS07] employ an n-party protocol that computes the function fR (x,w1, . . . , wn) = R (x,⊕wi),
where x is a common input, and wi is the input of the ith party Pi. The prover executes the MPC
protocol �in its head�, obtaining the views of all parties P1, . . . , Pn in the execution (the view of
party Pi consists of its input, random input, and all messages it received during the execution). The
proof consists of all these views, where each view is a symbol in the resultant proof. To verify the
proof, the veri�er reads several views, and checks that: (1) the output reported in all views is 1; and
(2) the views are consistent, namely for every pair Vi, Vj of queried views of Pi, Pj (respectively),
the incoming messages from Pi reported in Vj are the messages Pi would send in the protocol given
its view Vi, and vice versa.

To get q∗-ZK, the protocol should be private against q∗ (semi-honest) parties, in the sense that
they learn nothing from the execution except their inputs and the output. For soundness, [IKOS07]
rely on a notion of correctness against q∗ corrupted parties (known as robustness, see Section 3.2
for the exact de�nition), guaranteeing that even if q∗ parties arbitrarily deviate from the protocol,
they cannot cause an honest party to output 1 in a protocol execution on x /∈ L. We revisit their
analysis, and show that general MPC protocols yield a square root query gap. That is, given a
q∗-private and q∗-robust MPC protocol, the resultant ZK-PCP over a large alphabet is ZK against
a (possibly malicious) veri�er querying q∗ proof symbols, and can be non-adaptively veri�ed with
only

√
q∗ queries, with a negligible soundness error. This already yields a non-trivial ZK-PCP over a

large alphabet. The analysis appears in Section 4, and is black-box in the underlying MPC protocol.

2.1.2 Alphabet Reduction for ZK-PCPs

Next, we address the fact that the ZK-PCP of [IKOS07] is over a large alphabet. For standard
PCPs, one can easily reduce the alphabet Σ over which the proof π is de�ned to {0, 1} by simply
replacing each alphabet symbol with a bit string, thus obtaining a new proof π′ over {0, 1}. This

4

would increase the proof length and the query complexity of the honest veri�er by a multiplicative
log |Σ| factor, but would not otherwise a�ect the system.3

Unfortunately, applying this transformation to zero-knowledge PCPs might render the resultant
scheme totally insecure. Indeed, while the system would still be ZK against veri�ers making q∗

queries, the query gap now reduces since the query complexity of the honest veri�er (i.e., the number
of queries it must make to obtain soundness) increases. Speci�cally, depending of |Σ|, the honest
veri�er might now need to make > q∗ queries, but π′ might not be ZK even against q∗+1 malicious
queries. As a result, π′ might not be ZK even against malicious veri�ers that make fewer queries
than the honest veri�er! Indeed, a malicious veri�er V∗ with oracle access to π′ is not restricted to
querying �whole� symbols of π, i.e., reading the entire substring of π′ that corresponds to a symbol of
π. On the contrary, V∗ might read �parts� of symbols, thus potentially gaining (partial) information
on q∗ + 1 symbols of π, and possibly violating the ZK guarantee of the original system.

The trivial alphabet reduction for PCPs described above fails because querying even a single bit
in the bit string sσ representing a symbol σ ∈ Σ might reveal information about σ. Therefore, to
make this alphabet reduction work for zero-knowledge PCPs, we must guarantee that querying few
bits of sσ reveals nothing about σ. We do so using leakage-resilient secret sharing.

At a high level, a (t-threshold) Secret Sharing Scheme (SSS) is a method of distributing a secret
s among n parties by giving each party Pi a share Shi, such that any t shares reveal no information
about s, but any t + 1 shares completely determine s. A Leakage-Resilient Secret Sharing Scheme
(LR-SSS) against local leakage [GK18, BDIR18, ADN+19] has the added feature of resisting leakage
on the shares, in the following sense. The secret s remains hidden given t shares, as well as few
leakage bits computed separately on every other share.

Given a ZK-PCP system (P,V) over a large alphabet Σ, and a LR-SSS for secrets in {0, 1}log|Σ|,
our alphabet reduction works as follows. The prover P ′ uses P to generate a proof π = σ1 . . . σN over
Σ, replaces every σi with its bit-representation sσi , which it secret shares using the LR-SSS. The
proof π′ consists of the secret sharings of sσ1 , . . . , sσN . To verify the proof, the veri�er V ′ emulates
V, where a query Q of V to its proof π is answered as follows. V ′ uses the secret sharing of sσQ

(from its own proof oracle π′) to reconstruct σQ, which it then provides to V.4
The PCP system obtained through the reduction preserves the completeness and soundness of

(P,V), and guarantees ZK against non-adaptive (possibly malicious) veri�ers that are restricted to
making (roughly) q∗∗ = q∗ℓt queries to the proof, where (P,V) is ZK against veri�ers querying q∗

proof symbols, and the LR-SSS is private against any t shares as well as ℓ leakage bits from every
other share.

To see why ZK holds, we split the proof π′ into N �sections�, where the ith section contains the
secret sharing of sσi , and sσi is the bit-representation of the ith symbol σi of the original proof π.
Roughly (and somewhat inaccurately), the queries of any non-adaptive (possibly malicious) veri�er
V∗ querying at most q∗∗ proof bits divide the sections of π′ into two groups.

1. �Light� sections, from which V∗ reads at most ℓt bits. In particular, for each such section
containing the secret shares Sh1, . . . , Shn of the bit-representation sσ of a symbol σ, there can
be at most t shares from which V∗ reads more than ℓ bits, and each other share is queried only
ℓ times. Therefore, the leakage-resilience of the LR-SSS guarantees that sσ (and consequently
also σ) remains entirely hidden.

3We note that several PCP constructions (e.g. [Din06]) use more elaborate alphabet reduction techniques for

e�ciency reasons (in particular, their goal is to achieve quasi-linear length proofs with O (1) query complexity and a
constant soundness error). A log |Σ| blowup is less signi�cant in the context of zero-knowledge PCPs, where the query
complexity is anyway ω (1) since we wish to have a negligible soundness error.

4Due to some technical issues, the construction is actually somewhat more involved, see Section 5 for the construc-
tion and further details.

5

2. �Heavy� sections, from which V∗ queries more than ℓt bits. Notice that there can only be
at most q∗ such sections, and V∗ obtains no information about the symbols of π encoded in
�light� sections, so the queries to the �heavy� sections can be simulated by the ZK of (P,V).

(The full � and accurate � analysis appears in the proof of Theorem 6 in Section 5.)
In summary, combining a ZK-PCP over a large alphabet with a SSS that resists probing leakage,

we obtain a ZK-PCP over {0, 1}. Instantiating the transformation with the ZK-PCP of [IKOS07]
(with our improved analysis) together with the LR-SSS of [SV19] yields a ZK-PCP with the param-
eters of Theorem 1 that is ZK against (possibly malicious and unbounded) veri�ers that only make
non-adaptive queries to their proof oracle.

2.1.3 Amplifying to ZK Against Adaptive Veri�ers

The analysis of our alphabet reduction for ZK-PCPs crucially relied on the fact that the malicious
veri�er V∗ was non-adaptive. Indeed, the queries to �light� and �heavy� sections are simulated di�er-
ently (using the LR-simulator of the LR-SSS, and the ZK-simulator of (P,V), respectively), meaning
the simulator for (P ′,V ′) needs to know at the onset of the simulation which sections are �heavy�
and which are �light�. Obtaining ZK against adaptive veri�ers seems to require a stronger leakage-
resilience guarantee with a two-phase �avor similar to the locking schemes of [KPT97, IMS12].
Speci�cally, in the �rst phase of the simulation, the LR-simulator SimLR should be able to answer
adaptive leakage queries as in a standard (adaptively-secure) LR-SSS. However, unlike standard LR-
SSSs, at some point the simulation may move to a second phase. In the second phase the simulator
SimLR is given a secret s, and should be able to �explain� s by providing an entire secret sharing
of s which is random subject to being consistent with the previously-simulated answers to leakage
queries. We formalize this notion, introducing equivocal SSSs as a generalization of standard LR-
SSSs, and provide a construction based on codes with leakage-resilience guarantees (see Section 2.3
for further details).

Applying our alphabet reduction to (P,V) and an equivocal SSS now yields a ZK-PCP with ZK
against any � possibly malicious and adaptive � veri�er V∗ making at most q∗∗ queries. Indeed,
the ZK-PCP simulator Sim starts the simulation by answering all queries using the LR-simulator
SimLR of the equivocal SSS. Whenever the number of queries to a certain proof section passes some
threshold, Sim uses the ZK-simulator SimZK to simulate the underlying symbol σ of π. Then, Sim
provides the bit-representation of σ to SimLR as the secret-shared secret. The equivocation property
of the SSS guarantees that SimLR can now �explain� this secret by providing an entire secret sharing
which is consistent with the previous leakage. These secret shares can be used to answer any further
queries to that section of the proof. The analysis appears in Section 5.1.

To sum up, combining a ZK-PCP over a large alphabet with an equivocal SSS against probing
leakage yields a ZK-PCP over {0, 1}, where zero-knowledge holds against adaptive veri�ers. Instan-
tiating the transformation with the ZK-PCP of [IKOS07] and the equivocal scheme described in
section 2.3.2 yields a ZK-PCP with the parameters of Theorem 1.

2.1.4 Why Do Previous Approaches of Constructing Non-Adaptive ZK-PCPs Fail?

It is instructive to discuss why our approach of combining alphabet reduction with LR secret sharing
succeeds in simultaneously obtaining non-adaptive veri�cation and e�cient simulation, whereas
previous approaches [KPT97, IMS12, IWY16] could only achieve one of these properties.

As noted above, the ZK-PCPs of [KPT97, IMS12] are obtained by combining PCPs that are ZK
against the honest veri�er with locking schemes. In e�ect, the locking schemes are used to �force�
the queries of a malicious veri�er to be distributed (almost) as the queries of the honest veri�er. This

6

transformation causes adaptive veri�cation due to two reasons: �rst, the original proof is altered in
such a way that necessitates adaptive queries to verify it. Second, the locking schemes themselves
require adaptive opening. We are faced with a similar challenge, where the queries of the malicious
veri�er might drastically deviate from those of an honest veri�er (namely, V∗ might query �parts� of
symbols, whereas the honest veri�er always queries whole symbols). However, instead of �forcing�
the queries of V∗ to �look� honest, we allow V∗ to make any set of queries, but guarantee that queries
to �parts� of symbols reveal no information on the underlying symbol.

The ZK-PCP of [IWY16] uses a di�erent approach. Their starting point is a non-ZK PCP, and
they use leakage-resilient circuits to protect the entire PCP generation. That is, the queries of the
veri�er are interpreted as leakage on the process of generating the PCP from the NP-witness, and
by protecting this entire computation from leakage, they obtain ZK. More speci�cally, they change
the NP statement which is being veri�ed: instead of verifying that (x,w) is a satisfying input for the
veri�cation circuit C of the NP-relation R, the honest veri�er checks whether the leakage-resilient
version Ĉ of C is satis�able. Therefore, soundness of the resultant ZK-PCP system crucially relies
on the fact that if there exists no w such that C (x,w) = 1, then there exists no w′ such that
Ĉ (x,w′) = 1,5 a notion which they call SAT-respecting. Ishai et al. [IWY16] give evidence that
SAT-respecting leakage-resilient circuits with e�cient LR-simulation (for the leakage classes needed
to construct ZK-PCPs) exist only for languages in BPP. The ine�cient LR-simulation is the cause
of ZK with ine�cient simulation in their ZK-PCPs. We circumvent their negative results by using
LR-SSSs to protect information � instead of using LR circuits to protect computation � and apply
the LR-SSS to PCPs with ZK guarantees (whereas [IWY16] use standard PCPs).

2.2 ZK-PCPPs with Non-Adaptive Veri�cation and E�cient Simulation

We extend our techniques to apply to PCPs of Proximity. Speci�cally, our alphabet reduction could
also be applied to ZK-PCPPs, which reduces the task of designing ZK-PCPPs with non-adaptive
veri�cation to designing such ZK-PCPPs over a large alphabet.

2.2.1 A ZK-PCPP with Non-Adaptive Veri�cation Over Large Alphabets

The �rst step is to design a ZK-PCPP over a large alphabet. We do so by presenting a variant of
the system of [IKOS07] in which the veri�er does not read its entire input. Recall that the proof
in the ZK-PCP of [IKOS07] consists of the views of all parties in an execution of an MPC protocol
for the function fR (x,w1, . . . , wn) = R (x,⊕wi), where x is a common input, and wi is the input of
the ith party Pi. In particular, a single proof symbol (i.e., a single view) reveals the entire input x.
This is problematic in the context of ZK-PCPPs, in which the proof is required to hide not only the
NP-witness w, but also most of the input x, in the sense that a veri�er making few queries learns
only few physical bits of x.

Thus, no single party can hold the entire input x. Instead, following [IW14] we introduce m
additional �input parties� (where m = |x|), such that the MPC protocol is over m + n parties
P1, . . . , Pm+n. The inputs of parties P1, . . . , Pm are x1, . . . , xm (respectively), and the inputs of
parties Pm+1, . . . , Pm+n are w1, . . . , wn (respectively). Proof generation from this revised protocol is
similar to the original construction of [IKOS07], and veri�cation is also similar, except that whenever
the veri�er queries a view of Pi, i ∈ [m], it also queries xi from its input oracle, and checks that xi
is the input of Pi reported in the view.

5In fact, Ĉ operates on encoded inputs, however to simplify the discussion we disregard this at this point, and
provide a more accurate discussion in Section 2.2.2 below.

7

If the MPC protocol is q∗-private, then we are guaranteed that q∗ queries to the proof reveal
at most q∗ bits of x. Indeed, the q∗-privacy of the protocol guarantees that the views of q∗ parties
reveal no information other than their inputs (which is at most q∗ bits of x) and their output (which
is 1).

As for soundness, we show that our improved analysis (discussed in Section 2.1.1 above) extends
to PCPPs. Speci�cally, we show that if the MPC protocol is q∗-robust then the resultant ZK-PCPP
is sound with proximity parameter δ ≥ 1/

√
|x|, namely the veri�er rejects (with high probability)

inputs that are δ-far from the language. Indeed, let x be δ-far from L, and notice that any (possibly
ill-formed) proof π∗ for x determines an e�ective input x∗ for the underlying MPC protocol (x∗

is obtained by concatenating the inputs reported in the views of P1, . . . , Pm). We show that if x∗

is δ-far from x then with overwhelming probability the veri�er will query a view on which x, x∗

di�er, in which case it rejects with probability 1. Otherwise, x∗ is δ-close to x, implying x∗ /∈ L, in
which case our improved analysis of Section 2.1.1 essentially shows that the PCPP veri�er rejects
with overwhelming probability. This yields the �rst ZK-PCPP with non-adaptive veri�cation and
e�cient simulation, but the proof is over a large alphabet. The analysis of this ZK-PCPP system
appears in Section 6.1.

Combining this ZK-PCPP over a large alphabet with our alphabet reduction, we obtain the
�rst ZK-PCPPs over {0, 1} with non-adaptive veri�cation. Moreover, the system has e�cient ZK
simulation. Speci�cally, combining the ZK-PCPP over a large alphabet with a LR-SSS gives a ZK-
PCPP with ZK against non-adaptive malicious veri�ers, whereas combining it with an equivocal
SSS gives a full-�edged ZK-PCPP. Instantiating the equivocal SSS with the scheme of Section 2.3.2
gives a ZK-PCPP with the properties of Theorem 2. The analysis appears in Section 6.2.

2.2.2 Why Do Previous Approaches of Constructing Non-Adaptive ZK-PCPPs Fail?

We now give some intuition as to why LR-SSS is useful to obtaining ZK-PCPPs with non-adaptive
veri�cation, whereas ZK-PCPP constructions based on leakage-resilient circuits seem to fail. Recall
that a leakage-resilient circuit operates over encoded inputs, where leakage from some function class
F on the internal wire values of the circuit reveals no information about the input other than the
output. In particular, this implies that the input encoding should resist leakage from F , since leakage
can be applied to the input wires (which carry the encoded inputs).

Recall that the veri�er wishes to verify that (x,w) ∈ R, namely that (x,w) satis�es the veri-
�cation circuit C of R. When using leakage-resilient circuits to verify this claim, the circuit C is
replaced with its leakage-resilient variant Ĉ, which operates over encoded inputs, where the queries
of the veri�er are interpreted as leakage on the wire values of Ĉ. This raises the question of how
to incorporate x into the computation. Syntactically, Ĉ cannot operate directly on the unencoded
input x, but if Ĉ operates on an encoding of x, the prover can cheat by providing an encoding of
some x∗ ̸= x. (The veri�er will not be able to tell the di�erence because the input encoding is
resilient against leakage, namely against the veri�er queries.) The solution of [IWY16] is to �rst
hard-wire x into C, i.e. replace C with Cx = C (x, ·), and then generate the leakage-resilient version

Ĉx of Cx. The veri�er will now verify that Ĉx is satis�able.
While this solves the problem for ZK-PCPs, it cannot be applied in the context of ZK-PCPPs.

Indeed, verifying that Ĉx is satis�able requires knowing the structure of Ĉx. This is indeed the case
for ZK-PCPs, since x is known to the veri�er in its entirety, so the veri�er can locally construct Ĉx.
However, the ZK-PCPP veri�er does not know all of x, nor do we want it to � the advantage of
ZK-PCPPs over ZK-PCPs (which is crucially exploited by cryptographic applications of ZK-PCPPs)
is that the veri�er can be sublinear in the input length, and verify the claim without learning �too
much� about the input. Therefore, we cannot hard-wire x into the veri�cation circuit, and so it is

8

unclear how the veri�er would verify consistency of its own input with the one used to evaluate C.
Finally, we note that even if one were to solve this issue of how to handle the input, using

leakage-resilient circuits would incur ine�cient ZK simulation in the resultant ZK-PCPP, due to the
negative results of [IWY16].

2.3 Equivocal Secret Sharing

We generalize the notion of LR-SSS [DP07, DDV10] secure against local leakage [GK18, BDIR18,
ADN+19] by introducing equivocal SSSs. We then construct a 1-party equivocal SSS based on codes
with probing-resilience. We note that while a 1-party SSS is useless as a means of sharing a secret,
its equivocation property gives a meaningful way of encoding a secret in a leakage-resilient (in fact,
equivocal) manner. In particular, such schemes su�ce for constructing ZK-PCPs and ZK-PCPPs as
described in Sections 2.1 and 2.2 above. Moreover, since 1-party schemes can be more e�cient than
multi-party schemes, using 1-party schemes results in more e�cient ZK-PCPs and ZK-PCPPs.

2.3.1 Equivocal SSS: De�nition

Recall that a standard t-threshold n-party SSS guarantees that the secret remains entirely hidden
given any t of the n shares. LR-SSS enhances this privacy property to hold even given leakage on the
other shares. We will focus on resisting adaptive (t, ℓ)-local probing leakage, in which the leakage
reveals t shares, as well as ℓ bits from every other share. This can be formalized by comparing the
real execution with an ideal experiment in which an e�cient simulator Sim, that has no knowledge
of the secret, answers the leakage queries.

An equivocal SSS generalizes the notion of (adaptive) LR-SSS by considering a two-phase ideal
experiment, where the �rst phase is similar to the ideal experiment of LR-SSS. At the end of the
�rst phase, the adversary can choose whether to continue to the second phase. In the second phase,
the simulator is given a secret s, and must generate an entire secret sharing of s, which is given
to the adversary. The adversary should have only a negligible advantage in distinguishing the real
execution from the ideal experiment, as long as it didn't violate the leakage restrictions. That is,
as long as at the onset of the second phase, the adversary obtained at most t shares, and probed at
most ℓ bits from every other share. Since the adversary can choose not to continue to the second
phase of the simulation, this notion strictly generalizes the notion of a LR-SSS. Notice that we make
no restriction on the computational power of the adversary. The de�nition appears in Section 3.4.

2.3.2 Equivocal SSS: Construction

We use a 1-party equivocal SSS that resists (0, ℓ)-local probing leakage [GK18, BDIR18, ADN+19],
where ℓ is a constant fraction of the share size. Considering 1-party schemes su�ces for the ZK-PCP
and ZK-PCPP application, and admit lean constructions that result in more e�cient ZK-PCPs and
ZK-PCPPs (in terms of query complexity and proof length).

Existing leakage-resilient encodings. A 1-party equivocal SSS gives a method of encoding data
such that the resultant encoding is equivocal, and consequently also leakage-resilient. We note that
leakage-resilient encodings have been considered before under di�erent names. ZK codes [DGR97,
DGR99, ISVW13] are encodings that resists non adaptive probing leakage, i.e., these are 0-threshold
1-party SSSs that resist non-adaptive probing leakage. Leakage-resilient storage [DP07, DDV10]
encodes the data into two parts that resist adaptive leakage from each part separately. Thus,
leakage-resilient storage can be though of as a ramp 2-party SSS which is private against 0 par-
ties, reconstructible given both shares, and resists adaptive leakage. We note that the schemes

9

of [DP07, DDV10] resists general local leakage (i.e., leakage which operates on each share sep-
arately, and has short output), and not just probing. An Equivocal SSS generalizes these no-
tions � while ZK codes and leakage-resilient storage are only secure as long as the number of
leakage bits does not pass an a-priori bound, equivocal schemes guarantee security even beyond
the leakage threshold. Another related notion is that of a Reconstructable Probabilistic Encoding
(RPE) [CDMW08, BDKM16, CDMW18, BDG+18]. Informally, these are leakage resilient encodings
that are also equivocal (with perfect leakage resilience and equivocation), with an additional error
correction property. RPEs and equivocal SSSs are incomparable: while RPEs are a strengthening of
1-party equivocal SSS (due to their error correction), (multi-party) equivocal SSSs guarantee leak-
age resilience even when full shares are leaked. In particular, they can potentially achieve a better
leakage rate.

A speci�c 1-party equivocal SSS construction. Our constructions will employ the ZK code
of [DGR97, DGR99]. Thy construct a linear code in {0, 1}n with constant rate, and leakage resilience
against a constant fraction of leaked bits. It is also equivocal, which follows from linearity using its
dual distance (see [BDG+18, Lemma 2]). Therefore, it is a 1-party equivocal SSS with constant rate
and security against probing of a constant fraction of codeword bits.

Why do equivocal SSSs yield non-adaptive ZK-PCPs? We note that the locking schemes
used in the constructions of [KPT97, IMS12, IW14] posses an equivocation property which is similar
to our equivocal SSS, but applying them towards constructing ZK-PCPs and ZK-PCPPs causes
the honest veri�er to be adaptive. The reason is that reconstructing (i.e., opening) the secret in a
locking scheme requires making several rounds of queries to the locking scheme. This is because
one should be able to recover the locked secret without reading the entire lock, which is needed
since locking schemes are generally much longer than the locked secret. (The blowup is inherent to
obtaining equivocation in locking schemes.) On the other hand, in an equivocal SSS the secret is
reconstructed by reading all (or most) of the shares, which can be done non-adaptively. The fact
that reconstruction requires reading many shares is not problematic in terms of e�ciency, since the
total length of all shares is usually relatively short compared to the secret.

2.4 Future Directions

Our work still leaves several open questions for future research. First, it is natural to ask whether the
query gap (between the query complexity of the malicious and honest veri�ers) in our constructions
could be improved � to a better polynomial gap, or even exponential? This could potentially be
achieved by instantiating the ZK-PCP of [IKOS07] with an MPC protocol with stringent commu-
nication requirements, in which the communication complexity (more speci�cally, the size of the
views) is sublinear in the number of parties. Another natural research direction is to construct
multi-party equivocal SSSs, and in particular ones that withstand general local leakage (and not just
probing leakage). Finally, it would be interesting to �nd further applications of equivocal SSSs in
other contexts, e.g., for adaptively-secure MPC.

3 Preliminaries

Basic notations. We denote the security parameter by κ. We say that a function µ : N → N is
negligible if for every positive polynomial p(·) and all su�ciently large κ's it holds that µ(κ) < 1

p(κ) .

We denote the set of all negligible functions by negl (κ). We use the abbreviation PPT to denote

10

probabilistic polynomial-time, and denote by [n] the set of elements {1, . . . , n} for some n ∈ N. For
a string s of length n, and a subset I ⊆ [n], we denote by s|I the restriction of s to the coordinates
in I. For an NP relation R, we denote by Rx the set of witnesses of x, and by LR its associated
language. That is, Rx = {w | (x,w) ∈ R} and LR = {x | ∃ w s.t. (x,w) ∈ R}.

Let δ ∈ (0, 1), let Σ be an alphabet, and let x, y be strings over Σn. We say that x, y are δ-close

if |{i : xi ̸=yi}|
n < δ, otherwise we say that x, y are δ-far. We say that x is δ-close to a language L if

there exists x′ ∈ L such that x, x′ are δ-close. Otherwise, we say that x is δ-far from L.

De�nition 1. Let Xκ and Yκ be random variables accepting values taken from a �nite domain Ω.
The statistical distance between Xκ and Yκ is

SD(Xκ, Yκ) =
1

2

∑
w∈Ω

∣∣Pr[Xκ = w]− Pr[Yκ = w]
∣∣.

We say that Xκ and Yκ are ε-close if their statistical distance is at most ε(κ). We say that Xκ and
Yκ are statistically close, denoted Xκ ≈s Yκ, if ε(κ) is negligible in κ.

We use the asymptotic notation O (·) and Ω (·). We will sometimes disregard polylogarithmic
factors, using Õ (n) and Ω̃ (n) to denote n · poly log n and n/poly log n ,respectively.

3.1 Zero-Knowledge Probabilistically Checkable Proofs (PCPs) and PCPs of
Proximity

Informally, a Probabilistically Checkable Proof (PCP) system for a language L consists of a prob-
abilistic polynomial time prover that given x ∈ L and a corresponding witness generates a proof
for x, and a probabilistic polynomial-time veri�er having direct access to individual symbols of the
proof. This proof string (called oracle) will be accessed only partially by the veri�er. The oracle
queries are determined by the veri�er's input and coin tosses. Formally,

De�nition 2 (PCP). A Probabilistically Checkable Proof (PCP) for a language L consists of a
PPT prover P and a PPT veri�er V such that the following holds for some negligible function
negl = negl (κ).

1. Syntax. The prover P has input 1κ, x, w, and outputs a proof πx for x over some alphabet Σ.
The veri�er V has input 1κ, x, and oracle access to π. It makes q queries to π, and outputs
either 0 or 1 (representing reject or accept, respectively).

2. Completeness: For every x ∈ L, every w ∈ Rx, and every proof πx ∈ P (1κ, x, w),

Pr[Vπx(1κ, x) = 1] ≥ 1− negl(κ)

where the probability is over the randomness of V, and κ is the security parameter.

3. Soundness: For every x /∈ L and every oracle π∗,

Pr[Vπ∗
(1κ, x) = 1] ≤ negl(κ)

where the probability is over the coin tosses of the veri�er, and κ is a security parameter. negl
is called the soundness error of the system.

11

E�ciency measures of a PCP system. We associate with a PCP system the following e�ciency
measures: the alphabet size |Σ|, the query complexity q, and the proof length |π|. We will call such
a system a q-query PCP over alphabet Σ. We are generally interested in obtaining PCPs with
Σ = {0, 1}, in which the proof length |π| is polynomial in |x|, and q is signi�cantly smaller than
|π|. We note that a PCP prover is usually deterministic, but allowing for randomized provers will
be useful when discussing zero-knowledge PCPs, as we do next.

Next, we de�ne zero-knowledge PCPs. Intuitively, these are PCPs in which the witness remains
entirely hidden throughout the veri�cation process, even when the veri�er is malicious and can
potentially make many more queries to the proof compared to the honest veri�er. We guarantee
zero-knowledge against any, possibly malicious and unbounded, veri�er - the only restriction is
on the number of queries the veri�er makes to the proof (this restriction is inherent to obtaining
zero-knowledge). Thus, we �rst de�ne the notion of a query bounded veri�er.

De�nition 3 (Query-bounded veri�er). We say that a (possibly malicious) veri�er V∗ with oracle
access to a proof π is q∗-query-bounded if it makes only q∗ queries to π.

De�nition 4 (Non adaptive veri�er). We say that a (possibly malicious) veri�er V∗ is non adaptive
if its queries are determined solely by its input x and its randomness (in particular, V∗ can make a
single round of queries to its proof oracle).

We will use the following notation. For a PCP system (P,V) and a (possibly malicious) veri�er
V∗, we use ViewV∗,P (x,w) to denote the view of V∗ when it has input x and oracle access to a
proof that was randomly generated by P on input (x,w). We are now ready to de�ne zero-knowledge
PCPs.

De�nition 5 (ZK-PCP). We say that a PCP system (P,V) for L is a (q∗, ε)-Zero-Knowledge PCP
(or ZK-PCP for short) if for any (possibly malicious and adaptive) q∗-query-bounded veri�er V∗ there
exists a PPT simulator Sim, such that for any (x,w) ∈ R, Sim(1κ, x) is distributed ε-statistically
close to ViewV∗,P (x,w).

If (P,V) is a (q∗, ε)-ZK-PCP for ε = negl (κ) then we simply say that (P,V) is a q∗-ZK-PCP. If
(P,V) is a (q∗, 0)-ZK-PCP then we say it is a perfect q∗-ZK-PCP. If the ZK property of the system
only holds against PPT veri�ers V∗ then we say the system is a computational (q∗, ε)-ZK-PCP
(or CZK-PCP for short). If the zero-knowledge property is only guaranteed against non-adaptive
veri�ers then we say the system is a ZK-PCP for non-adaptive veri�ers. If the honest ZK-PCP
veri�er is non-adaptive then we say that (P,V) is a non-adaptive ZK-PCP.

We stress that having a non-adaptive honest veri�er is a desirable feature of the system, whereas
having ZK against non-adaptive veri�ers is a weaker form of ZK (since the system has no guarantee
against malicious adaptive veri�ers).

We remark that although this de�nition requires a weaker notion with a non-universal simula-
tor, all our constructions obtain the stronger notion with a universal simulator. Furthermore, our
constructions will rely on the MPC-in-the-head approach, where the quality of ZK will be inherited
from the level of security of the underlying MPC protocol employed by the construction.

Next, we de�ne the notion of PCPs of Proximity (PCPPs). In such systems, the veri�er has
oracle access to the input statement (instead of receiving it explicitly). This allows the veri�er to be
sublinear in the input length. As for soundness, we cannot generally expect the veri�er to reject all
x /∈ L, but rather only require that inputs which are �su�ciently far� from the language are rejected.
The notion of distance which we use is relative Hamming distance.

12

De�nition 6 (PCPP). A Probabilistically Checkable Proof of Proximity (PCPP) for a language L
with proximity parameter δ consists of a PPT prover P and a PPT veri�er V such that the following
holds for some negligible function negl = negl (κ).

1. Syntax. The prover P has input 1κ, x, w, and outputs a proof πx for x over some alphabet
Σ. The veri�er V has input 1κ, |x|, and oracle access to x, π. It makes q queries to x, π, and
outputs either 0 or 1.

2. Completeness: For every x ∈ L, every w ∈ Rx, and every proof πx ∈ P (1κ, x, w),

Pr[Vx,πx(1κ, |x|) = 1] ≥ 1− negl(κ)

where the probability is over the randomness of V, and κ is the security parameter.

3. Soundness: For every x that is δ-far from L and every oracle π∗,

Pr[Vx,π∗
(1κ, |x|) = 1] ≤ negl(κ)

where the probability is over the coin tosses of the veri�er, and κ is a security parameter. negl
is called the soundness error of the system, and δ is called the proximity parameter.

We also consider a zero-knowledge variant of PCPPs. Similar to ZK-PCPs, such systems guar-
antee that the witness remains entirely hidden throughout the veri�cation, even if the veri�er is
malicious and makes many queries to the proof. Zero-knowledge PCPPs additionally guarantee that
most of the input remains hidden from the veri�er, in the sense that the view of the veri�er can be
simulated by making the same (total) number of queries to the input alone. Similar to the PCP
setting, we use ViewV∗,P (x,w) to denote the view of V∗ given oracle access to x, and a proof that
was randomly generated by P on input x,w.

De�nition 7 (ZK-PCPP). We say that a PCPP system (P,V) for L is a (q∗, ε)-Zero-Knowledge
PCPP (or ZK-PCPP for short) if for any (possibly malicious and adaptive) q∗-query-bounded veri�er
V∗ there exists a PPT simulator Sim, such that for any (x,w) ∈ R, (Simx(1κ, |x|), qSim) is distributed
ε-statistically close to (ViewV∗,P (x,w) , qV∗), where qSim denotes the number of queries which Sim

makes to x, and qV∗ denotes the number of queries which V∗ make to x and the proof.
Following the terminology for ZK-PCPs, if (P,V) is a (q∗, ε)-ZK-PCPP for ε = negl (κ) then we

simply say that (P,V) is a q∗-ZK-PCPP. If (P,V) is a (q∗, 0)-ZK-PCPP then we say it is a perfect
q∗-ZK-PCPP. If the zero-knowledge property is only guaranteed against non-adaptive veri�ers then
we say the system is a ZK-PCPP for non-adaptive veri�ers. If the honest ZK-PCPP veri�er is
non-adaptive then we say that (P,V) is a non-adaptive ZK-PCPP.

3.2 Secure Multi-Party Computation

Following the seminal works of Ishai et al. [IKOS07, IKOS09], our constructions rely on secure multi-
party computation protocols in the honest majority setting. In this context, a view Vi of a party
Pi within a protocol execution includes its input, randomness and incoming messages. Consistent
views are de�ned as follows.

De�nition 8 (Consistent views). We say that a pair of views Vi, Vj are consistent (with respect to
a protocol Π and some public input x) if the outgoing messages implicit in Vi are identical to the
incoming messages reported in Vj and vice versa.

13

We consider security of protocols in both the semi-honest (passive) and the malicious (active)
models. In the former model, one may break the security requirements into the following correctness
and privacy requirements.

De�nition 9 (Correctness). We say that Π realizes a deterministic n-party functionality F(x, r1, . . . , rn)
with perfect (resp., statistical) correctness if for all inputs (x, r1, . . . , rn), the probability that the out-
put of some party is di�erent from the output of F is 0 (resp., negligible in κ), where the probability
is over the independent choices of the random inputs r1, . . . , rn.

De�nition 10 (t-Privacy). Let 1 ≤ t < n. We say that Π realizes F with perfect t-privacy if there
is a PPT simulator Sim such that for any inputs (x, r1, . . . , rn) and every set of corrupted parties
T ⊂ [n] where |T | ≤ t, the joint view ViewT (x, r1, . . . , rn) of parties in T is distributed identically
to Sim(T, x, {ri}i∈T ,FT (x, r1, . . . , rn)). The relaxations to statistical or computational privacy are
de�ned in the natural way. That is, in the statistical (resp., computational) case we require that for
every distinguisher D (resp., D with circuit size poly(κ)) there is a negligible function δ(·) such that

|Pr[D(ViewT (κ, x, r1, . . . , rn)) = 1] −
Pr[D(Sim(κ, T, x, {ri}i∈T ,FT (x, r1, . . . , rn))) = 1]| ≤ δ(κ).

In the malicious model, in which corrupted parties may behave arbitrarily, security cannot be
generally broken into correctness and privacy as above. However, similar to [IKOS07], for our
purposes we only need the protocols to satisfy a weaker notion of security in the malicious model
that is implied by the standard general de�nition. Speci�cally, it su�ces that Π be t-private as
de�ned above, and moreover it should satisfy the following notion of correctness in the malicious
model.

De�nition 11 (r-Robustness). We say that Π realizes F with perfect (resp., statistical) r-robustness
if it is perfectly (resp., statistically) correct in the presence of a semi-honest adversary as in De�ni-
tion 9, and furthermore for any computationally unbounded malicious adversary corrupting a set T
of at most r players, and for any inputs (x, r1, . . . , rn), the following robustness property holds. If
there is no (x, r1, . . . , rn) such that F(x, r1, . . . , rn) = 1, then the probability that some uncorrupted
party outputs 1 in an execution of Π in which the inputs of the honest parties are consistent with
(x, r1, . . . , rn) is 0 (resp., is negligible in κ).

3.3 Leakage-Resilient Secret Sharing Schemes (LR-SSS)

A Secret-Sharing Scheme (SSS) allows a dealer to distribute a secret among n parties. Speci�cally,
during a sharing phase each party receives a share from the dealer, and the secret can then be
recovered from the shares during a reconstruction phase. The scheme is associated with an access
structure which de�nes subsets of authorized and unauthorized parties, where every authorized set
can recover the secret from its shares, whereas unauthorized sets learn nothing about the secret even
given all their shares. A Leakage-Resilient SSS (LR-SSS) guarantees this latter property holds even
if the unauthorized set obtains some leakage on the other shares.

We will mainly be interested in t-threshold secret sharing schemes, in which all (and only) subsets
of size at least t+1 are authorized to reconstruct the secret. We �rst de�ne secret sharing schemes.

De�nition 12 (Secret Sharing Scheme). An n-party Secret Sharing Scheme (SSS) for secrets in S
consists of the following pair of algorithms.

Sharing algorithm Share: Takes as input a secret s ∈ S and outputs shares (s1, · · · , sn) ∈ S1 ×
· · · × Sn, where si is called the share of party i, and Si is the domain of shares of party i.

14

Reconstruction algorithm Reconst: Takes as input a description G of an authorized set, and
shares {si : i ∈ G} and outputs s′ ∈ S.

The scheme is required to satisfy the following properties:

Correctness: For every s ∈ S, and every authorized set G,

Pr [Reconst (G,Share (s) |G) = s] = 1

where Share (s) |G denotes the shares of the parties in the authorized set G.

Secrecy: For any pair of secrets s, s′ ∈ S, and any unauthorized set G, Share (s) |G and Share (s′) |G
are statistically close.

In our constructions, we will use Shamir's secret sharing scheme [Sha79], which we review next.

De�nition 13 (Shamir's SSS). Let F be a �eld.

Sharing algorithm: For any input s ∈ F, pick a random polynomial p(·) of degree t in the
polynomial-�eld F[x] with the condition that p(0) = s, and output p(1), . . . , p(n).

Reconstruction algorithm: For any input (s′i)i∈S where none of the s′i are ⊥ and |S| > t, com-
pute a polynomial g(x) such that g(i) = s′i for every i ∈ S. This is possible using Lagrange
interpolation where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j

i− j
.

Finally the reconstruction algorithm outputs g(0).

We will actually require a stronger correctness property for SSSs which, informally, guarantees
unique reconstruction for any set of (possibly ill-formed) shares. This can be thought of as a weak
form of unique decoding, where we only require error detection (i.e., identifying whether or not an
error occurred), and not error correction. Alternatively, this is a weaker form of veri�able secret
sharing, which need only be secure against a corrupted dealer (i.e., all the share holders are assumed
to be honest). Formally,

De�nition 14 (Strongly-correct SSS). We say that an n-party secret sharing scheme (Share,Reconst)
for secrets in S is strongly correct if Reconst is deterministic, and the only authorized set is [n] (the
set of all parties).

We note that for any t < n, t-out-of-n Shamir's scheme (with the access structure in which the
only authorized set is [n]) is strongly correct. For this, we assume that the shares are numbered in
some arbitrary way, and reconstruction always uses the ��rst� t+ 1 shares, see Remark 3.1 below.

Remark 3.1 (Strong correctness implies unique reconstruction in threshold schemes). The strong
correctness property of De�nition 14 implies unique reconstruction in threshold schemes, when these
are thought of as ramp secret sharing schemes which are private for sets of size at most t, and
reconstructible for the set of all parties. Indeed, we assume without loss of generality that the shares
are numbered (in some arbitrary way). Given all n shares, reconstruction is performed with the �rst
t + 1 shares. These t + 1 shares determine some secret, and the fact that Reconst is deterministic
guarantees its uniqueness. In particular, we note that in this case Shamir's secret sharing scheme
has unique reconstruction.

15

Remark 3.2. We note that for our alphabet reduction for ZK-PCPs (Construction 5, Section 5)
and ZK-PCPPs (Construction 13, Section 6.2) we can make due with any SSS with deterministic
reconstruction, by having the veri�er use some arbitrary �xed minimal authorized set for reconstruc-
tion. Notice that if such a set can be e�ciently found then the veri�er in Constructions 5 and 13
will be PPT. We further note that for threshold SSSs (such as the one used in our �nal constructions
in Theorems 1 and 2), such a minimal authorized set can be found e�ciently.

Next, we de�ne leakage-resilient SSS.

De�nition 15 (Leakage-resilient SSS). We say that a secret sharing scheme (Share,Reconst) for S
is ε-leakage resilient against a family F of leakage functions if for every f ∈ F , and every pair of
secrets s, s′ ∈ S, f (Share (s)) and f (Share (s′)) are ε-statistically close.

We will be particularly interested in the local probing leakage family, which consists of all functions
that, given the n shares, output the shares of an unauthorized set in their entirety, as well as ℓ bits
from each of the other shares. More speci�cally, we will only consider the t + 1-threshold access
structure mentioned above, in which all (and only) subsets of size ≥ t+1 are authorized. Formally:

De�nition 16 ((t, ℓ)-local probing leakage). Let S1 × S2 × · · · × Sn be the domain of shares for
some secret sharing scheme. For a subset G ⊆ [n] and a sequence (I1, . . . , In) of subsets of [n], the
function fG,I1,...,In on input (s1, . . . , sn) outputs si for every i ∈ G, and outputs si|Ii for every i /∈ G.
The (t, ℓ)-local probing function family corresponding to S1 × S2 × · · · × Sn is de�ned as follows:

Ft,ℓ = {fG,I1,...,In : G ⊆ [n], |G| ≤ t,∀i /∈ G, |Ii| ≤ ℓ} .

3.4 Equivocal Secret Sharing

In this section we de�ne the notion of equivocal secret sharing, compare it to leakage-resilient secret
sharing, and present a 1-party equivocal SSS based on coding. We start with the de�nition.

At a high level, an equivocal SSS is a leakage-resilient SSS with the additional guarantee that
even after some bits are leaked from the shares, one can still �open� the secret (by providing the
entire secret sharing) consistently with the previous leakage. This is formalized (in De�nition 17) in
the simulation-based paradigm, by comparing the real world experiment with an ideal experiment,
which are described in Figure 1.

The real and ideal experiments have two phases: a leakage phase and a guessing phase. This
is captured by having the adversary and simulator consist of two separate algorithms (A1,A2) and
(Sim1, Sim2), respectively. Leakage resilience is guaranteed against a family F of leakage functions
and a leakage bound ℓ.

In the real world, the secret s is secret shared into n shares Sh1, . . . , Shn. The adversary A1 is
then given oracle access to a SHARE oracle, and a LEAK oracle. The Share oracle, given an index
i, returns the i'th share Shi. Each call to SHARE updates the set T of secret shares which the
adversary has queried so far, by adding i to T (T is initialized to ∅). The LEAK oracle takes as
input a function g ∈ F , which speci�es, for each share Shi, i /∈ T , a leakage function gi. It applies
these leakage functions to the shares Shi, i /∈ T , and returns the outputs outputi. For each such share
Shi, i /∈ T , it also updates the counter ℓi of the number of leakage bits obtained on Shi, by increasing
it by |outputi|. T and ℓ1, . . . , ℓn are treated as global parameters that can be accessed and updated
by all oracles.

At the end of the �rst phase of the experiment (the adversary A1 decides when to end the �rst
phase and move to the second phase), A1 outputs a bit bR, which speci�es whether it wishes to learn
the entire secret sharing of s. If bR = 1, i.e., the adversary chose to proceed to the second phase,

16

then it learns the entire secret sharing of s (this is done by calling the REVEAL oracle). Otherwise,
the adversary obtains no further information beyond what it obtained during the leakage phase.

At the second phase of the game, the adversary A2 outputs a guess b′R as to whether it is in
the real or ideal experiments. This guess depends on the leakage in the �rst phase of the game,
and can either depend on the secret shares of s (if bR = 1) or not (if bR = 0). The adversarial
guess is only taken into account if the adversary did not violate the leakage restrictions, i.e., only
if the following two conditions are satis�ed. First, the set T of shares which the adversary received
throughout the experiments (through SHARE queries) is an unauthorized set. Second, for every
share i, the number of bits ℓi leaked from Shi (through LEAK queries) does not exceed the leakage
bound ℓ. These checks are performed by calling the VALID oracle, where if the tests fail then the
adversary automatically loses the game (by setting its �guess� to 0).

The ideal experiment is similar to the real experiment, except that the SHARE ,LEAK, and
REVEAL oracles are emulated by the simulator. In particular, the simulator needs to simulate
shares and leakage on shares (through the SHARE and LEAK oracles). Additionally, if bI = 1 (i.e.,
the adversary chose to learn the entire secret sharing in the ideal experiment) then the simulator is
given the secret s, and needs to emulate the entire secret sharing of s consistently with the previous
leakage (this is done in the REVEAL oracle).

We note that by allowing the adversary to choose not to receive the entire secret sharing of s at
the end of the �rst phase, we capture leakage-resilient secret sharing as a special case of equivocal
secret sharing. Indeed, if the adversary chooses not to learn the secret sharing, then the simulator
is only required to adaptively simulate the leakage (with no knowledge of the secret). We elaborate
more on this in Remark 3.3 below.

De�nition 17 (Equivocal SSS). We say that an n-party secret sharing scheme (Share,Reconst) for
secrets in S is ε (n)-equivocal for leakage class F , leakage bound ℓ and access structure Acc if for
every adversary (A1,A2) there exists an e�cient simulator (Sim1, Sim2) and a negligible function
ε (n) such that for every s ∈ S,

|Pr [REALF,ℓ,Acc (s) = 1]− Pr [IDEALF,ℓ,Acc (s) = 1]| ≤ ε (n)

where REALF,ℓ,Acc (s) , IDEALF,ℓ,Acc (s) are de�ned in Figure 1, and the probability is over the
random coin tosses of SET UPR, (A1,A2) and (Sim1, Sim2).

We say that the scheme is perfectly equivocal, if it is ε-equivocal with ε = 0.

Remark 3.3 (On the connection between equivocal and LR secret sharing). We note that equivocal
secret sharing captures LR secret sharing as a special case, in the following sense. If a t-threshold
secret sharing scheme is ε-equivocal with leakage bound ℓ, then it is also 2ε-leakage resilient against
(t, ℓ)-local probing leakage. Indeed, if the REVEAL oracle is not called in Figure 1 (which happens
when b = 0) then the simulator never receives the secret s, in which case the simulated answers to
the leakage queries are required to be distributed ε-statistically close to the real execution. As this
holds for any secret, the real leakage on the shares of two di�erent secrets must be 2ε-statistically
close.

3.4.1 Equivocation from Zero-Knowledge Codes

In this section we describe a 1-party equivocal SSS that will be used in Sections 5.1 and 6 to
obtain ZK-PCPs and ZK-PCPPs with ZK against adaptive veri�ers. We note that while a 1-party
SSS is not useful towards sharing a secret, it does provide a meaningful notion of leakage resilient
encoding. Related notions were considered in the past under di�erent names, among which the

17

Equivocal SSS Security

SET UPR (s):
pick a uniformly random string r for Share

(Sh1, . . . ,Shn)← Share (s; r)
output (Sh1, . . . ,Shn)

SHARER (s, r, i):
T1 ← T1 ∪ {i}
output Shi

LEAKR (s, r, g, T):
if g /∈ F then return
(outputi)i/∈T ← g

(
(Shi)i/∈T

)
T1 ← T1 ∪ T
for every i /∈ T
ℓi ← ℓi + |outputi|

output
(
(outputi)i/∈T , (Shi)i∈T

)
REVEALR (s, r):
output (Sh1, . . . ,Shn)

VALID (ℓ,Acc):
if T1 /∈ Acc and ℓi ≤ ℓ for every i ∈ [n]
then output true

else
output false

SET UPI ():
initialize St to the empty string
St← Sim1 (St)
output St

SHAREI (i):
Shi ← Sim1 (St, i)
T1 ← T1 ∪ {i}
output Shi

LEAKI (g, T):
if g /∈ F then return(
(outputi)i/∈T , (Shi)i∈T , St

)
← Sim (St, g, T)

T1 ← T1 ∪ T
for every i /∈ T
ℓi ← ℓi + |outputi|

output
(
(outputi)i/∈T , (Shi)i∈T

)
REVEALI (s):
rev← Sim2 (St, s)
output rev

REALF,ℓ,Acc (s):
ℓ1, . . . , ℓn ← 0
T1 ← ∅
r ← SET UPR (s)

(StA, bR)← ASHARER(s,r,·),LEAKR(s,r,·,·)
1

if bR = 1 then(
Sh

′
1, . . . ,Sh

′
n

)
← REVEALR (s, r)

StA ← StA ◦
(
Sh

′
1, . . . ,Sh

′
n

)
b′R ← A2 (StA)
if VALID (ℓ,Acc) then output b′R
else output 0

IDEALF,ℓ,Acc (s):
ℓ1, . . . , ℓn ← 0
T1 ← ∅
St← SET UPI ()

(StA, bI)← ASHAREI(·),LEAKI(·,·)
1

if bI = 1 then
output← REVEALI (s)
StA ← StA ◦ output

b′I ← A2 (StA)
if VALID (ℓ,Acc) then output b′I
else output 0

Figure 1: The Security Experiments of Equivocal SSS

following notions are most relevant for us. First, the weaker notion of ZK codes [DGR97, DGR99,
ISVW13] which resist only non-adaptive probing leakage. Second, the notion of a Reconstructable
Probabilistic Encoding (RPE) [CDMW08, BDKM16, CDMW18, BDG+18] which is an incomparable

18

primitive that guarantees not only leakage resilience, reconstruction and equivocation, but also error
correction, and where privacy and equivocation are perfect (see Remark 3.4 below for a more detailed
comparison). A 1-party SSS strengthens the �rst notion (i.e., ZK codes) to be adaptively-secure and
equivocal. It also strengthens the second notion (RPEs) to allow for a more �ne-grained leakage
pro�le (in which symbols can partially leak), which might allow for a higher leakage rate. Framing
our constructions in the context of SSSs (instead of LR encodings) gives a uni�ed framework for the
design of ZK-PCPs and ZK-PCPPs (in Sections 5 and 6).

Concretely, we will use the following 1-party equivocal SSS, implicit in [DGR99]:6

Theorem 3 (1-party equivocal SSS, implicit in [DGR99]). There exists a 1-party SSS for messages
in {0, 1}n that is perfectly-equivocal against (0,Ω (n))-local probing leakage, with a share of size O (n).

Remark 3.4 (Comparison between equivocal SSSs and RPEs.). We compare equivocal SSSs to the
related notion of RPEs, �rst introduced by [CDMW08, CDMW18]. Informally, an RPE is a ran-
domized encoding scheme (Encode,Decode), associated with an additional reconstruction algorithm
Reconst. Encodings have standard error-correction properties, and are also zero-knowledge in the
sense that for any message x, a small fraction of codeword symbols in a random encoding of x are
uniformly distributed. These two properties make an RPE similar to a robust secret sharing scheme
(where each codeword symbol corresponds to a share), except that secret sharing schemes might allow
decoding from a subset of codeword symbols. What makes an RPE similar to equivocal SSSs is its
reconstruction property: for any codeword c, any su�ciently small fraction S of codeword symbols,
and any message x, the reconstruction algorithm Reconst, given S, c|S and x, generates an encod-
ing cx of x that is uniformly distributed (i.e., distributed identically to Encode (x)) conditioned on
cx|S = c|S.

Equivocal SSSs and RPEs are tightly related. In particular, in the context of secret sharing we
think of sharing a secret into a sequence of shares, which correspond to the message and codeword
symbols, respectively, in the context of RPEs. Moreover, the leakage resilience and equivocation
properties of the secret sharing correspond to the ZK and reconstruction properties of the RPE.

Despite these similarities, the notions are incomparable, as we now discuss. RPEs are stronger
than equivocal SSSs in 3 respects. First, they guarantee error correction (whereas equivocal SSSs
are not required to be robust). Second, the ZK property guarantees that few codeword symbols are
uniformly distributed, whereas equivocal SSSs only guarantee that these symbols are distributed iden-
tically/statistically close to the symbols in the sharing of any other secret/message. Thirdly, the
reconstructed encoding is identically distributed to a random encoding of the message/secret (subject
to being consistent with the known codeword symbols), whereas for equivocal SSSs the simulated secret
sharing is only required to be statistically close to a random sharing of the message.

On the other hand, equivocal SSSs are stronger since they have a more �ne-grained ZK/leakage
resilience guarantee - they guarantee ZK and equivocation/reconstruction even given leakage from
(potentially) all shares/codeword symbols. This is not allowed in RPEs, in which symbols are either
revealed in their entirety, or remain completely hidden.

Nevertheless, there are cases in which RPEs su�ce. In particular, an RPE over the binary
alphabet {0, 1} gives a probing-secure 1-party equivocal SSS. One particular such example, which we
will use in our ZK-PCP and ZK-PCPP constructions, was already noted in Theorem 3.

6Speci�cally, Decatur et al. [DGR99] construct a linear code C ⊆ {0, 1}n with constant rate and probing-resilience
against a constant fraction of leaked bits (as noted above, such codes are known as ZK codes). It was observed
in [BDG+18, Lemma 2] that linear ZK codes are also equivocal.

19

4 A Tighter Analysis of the ZK-PCP of [IKOS07]

In this section we extend the analysis from [IKOS07], proving that an honest veri�er can obtain a
negligible soundness error by querying the prover's oracle with as few as q = Õ(

√
n) queries rather

than O(n) as stated in [IKOS07], where n = Ω(κ). A dishonest veri�er that still queries the oracle
with t = O(n) queries on the other hand, does not violate the privacy of the prover due to the
t-privacy of the MPC protocol Π which implies that Π is resilient against t semi-honest corruptions.

Let R be the relation corresponding to the NP-language L. Consider a perfect t-robust t-
private honest-majority n-party MPC protocol Π for f , where f is the following (n + 1)-argument
functionality corresponding to R: f(x,w1, . . . , wn) = R(x,⊕iwi). Then we prove the following
theorem,

Theorem 4 (Non-adaptive ZK-PCP with
√
n-gap). Let n ≥ 3, R and f as above. Suppose that

Π realizes the n-party functionality f with perfect t-robustness (in the malicious model) and perfect,
statistical or computational t-privacy with simulation error εZK (in the semi-honest model), where
t = Ω(κ) and n = ct for some constant c > 1. Then there exists a non-adaptive q-query ZK-PCP over
some alphabet Σ for q = max {O (

√
nκ) , κ}, with (t, εZK)-ZK, soundness error 2−Ω(κ), and proofs

of length n. Moreover, |Σ| = poly (m,κ), where m denotes the input length. Furthermore, if Π is
private against adaptive adversaries, then the resultant ZK-PCP is ZK against adaptive veri�ers.

In particular, by setting κ = log2 n and using an MPC protocol with perfect adaptive privacy,7

we get a non-adaptive log n
√
n-query ZK-PCP over Σ with Ω (n)-ZK, negl (n) soundness error, and

proofs of length n over an alphabet of size poly (m, log n).

Proof:

Oracle πx generation. On input statement x and witness w, the prover �rst generates input
shares w1, . . . , wn for paries P1, . . . , Pn. It next emulates Π on these virtual parties to construct
their views V1, . . . , Vn. The proof consists of the views V1, . . . , Vn.

Veri�cation. The honest veri�er queries q out of the n symbols of πx and accepts if:

1. The �nal output within all queried views is 1.

2. For any pair of views Vi and Vj that the veri�er queries, the views are consistent (see De�nition
8).

Analysis. Completeness follows from the correctness of the MPC protocol. ZK against t-query
bounded (possibly malicious) veri�ers follows from the t-privacy of the MPC (with the same sim-
ulation error). Regarding the alphabet size, it depends on the size of the MPC views, which is
polynomial in the input length m and the security parameter κ.

Soundness analysis. Let V1, . . . , Vn be the views of the n parties within an execution of Π as
above. De�ne the inconsistency graph G as the graph on n nodes where there is an edge between
node i and j if the views Vi and Vj are inconsistent. Soundness is analyzed by considering the
following two cases

7An example of such a protocol is the variant of the BGW protocol [BGW88] presented in [CDN15, Theorem 5.2].

20

Case 1: There exists a vertex cover set B in G of size at most t. In this case, by perfect t-
robustness we have that every view Vi for i ̸∈ B must have its output as 0. The analysis of
this case follows similarly to [IKOS07] where the probability of not hitting a node from B is
(t/n)q ≤ c−q = 2−Ω(κ) and implies that the corrupted prover can successfully convince the
veri�er with negligible probability.

Case 2: The smallest vertex cover set in G is of size bigger than t. In this case, there must
be a matching of size > t/2 and the soundness error is bounded by the probability that the
randomly chosen subset Γ of size q misses all pairs of matched nodes.

Let B be a set of size t containing t/2 pairs of matched nodes, i.e., |B| = t. We �rst compute
the probability that fewer than qt

2n nodes are chosen from B. Let Xi denote the event that
the ith chosen sample falls in B. Then we have E[Xi] = |B|/n = t/n. Now, applying the
Hoe�ding bound with replacement.

Pr

[∑
i

Xi < qt/2n

]
≤ Pr

[∣∣∣∣∣∑
i

Xi − qt/n

∣∣∣∣∣ > qt/2n

]
≤ e−2qt2/4n2

= e−Ω(q)

where the last equality follows from setting t = Ω(n).

Conditioned on selecting at least k = qt/2n nodes from B, the probability that the veri�er

misses all edges is given by
2k(t/2k)
(tk)

.8 Now, we have

2k
(t/2

k

)(
t
k

) =
2k(t/2)!(t− k)!

t!(t/2− k)!

=
2k(t/2)(t/2− 1) · · · (t/2− k + 1)

t(t− 1) · · · (t− k + 1)
.

Next, we apply the AM-GM inequality (t/2 − a)(t/2 − k + 1 + a) ≤
(
t−k+1

2

)2
for a =

0, 1, . . . , k/2− 1. Therefore, (assuming k is even) the probability can be bounded by

(t− k + 1)k

t(t− 1) · · · (t− k + 1)
=

(
t− k + 1

t

)(
t− k + 1

t− 1

)
· · ·

(
t− k + 1

t− k + 1

)
<

(
t− k + 1

t− k/2

)k/2

=

(
1− k/2− 1

t− k/2

)k/2

<

(
1− k/4

t

)k/2

≤(1) e−(k/4t)·(k/2)

= e−k2/8t

8Namely, there are
(
t/2
k

)
ways of choosing k edges among the t/2 edges. Then we choose either of the two vertices

incident on the selected edges.

21

where the �rst inequality is obtained by only considering the �rst k/2 fractions (rounding the
others upwards to 1) and bounding each of these k/2 fractions by t−k+1

t−k/2 ; and the inequality

denote by (1) holds because 1 + x ≤ ex for all real x.

In summary, the soundness error in case 2 is at most

e−Ω(q)+e−k2/8t ≤(1) e−Ω(κ)+e−(
qt
2n)

2 1
8t = e−Ω(κ)+e−

q2t

32n2 ≤(2) e−Ω(κ)+e−Ω(q2/n) ≤(3) 2e−Ω(κ) = e−Ω(κ)

where the inequality denoted by (2) holds because t = Ω(n), and the inequalities denoted by
(1) and (3) follow from the de�nition of q.

We conclude by noting that e−Ω(κ) = negl (n) when κ = log2 n, in which case q = log n ·
√
n.

5 Alphabet Reduction for ZK-PCPs

In this section we describe a reduction for ZK-PCPs over any alphabet Σ into a ZK-PCP over {0, 1}.
In particular, this reduction preserves the zero-knowledge property. We note that for standard (non-
ZK) PCPs, one can easily transform a PCP over any alphabet Σ into a PCP over {0, 1} by simply
representing every symbol of Σ as a binary string. However, this reduction does not preserve zero-
knowledge since a malicious veri�er given access to the binary proof can read �parts� of symbols
of the original proof, and thus potentially violate the zero-knowledge guarantee of the underlying
ZK-PCP over Σ (which only guarantees zero-knowledge when most symbols are not accessed at all).

We begin by describing a general reduction, then instantiate it to obtain ZK-PCPs over {0, 1}
with a square root gap.

A General Transformation. Our starting point is the trivial transformation described above,
in which every proof symbol is replaced with a corresponding bit-string. As discussed above, this
alone does not guarantee zero-knowledge since a malicious veri�er may read parts of symbols of the
original proof. The high-level idea of preventing such malicious strategies from leaking additional
information is to �protect� each bit-string by secret-sharing it (equivalently, encoding it) using a
leakage-resilient secret sharing scheme (equivalently, leakage-resilient encoding). Recall that, very
roughly, a probing-resilient secret sharing scheme hides the secret from an adversary that sees several
secret shares, and can probe few bits in each of the other shares. The zero-knowledge property of
the new PCP system now follows from a combination of leakage-resilience and the zero-knowledge
property of the original ZK-PCP. To see why, given a malicious query-bounded veri�er V∗, we
partition the symbols of the original proof into two groups, based on the number of bits V∗ reads
from the secret-sharing of the bit-string representing the symbol. Since V∗ is query-bounded, there
are only few symbols from whose secret shares V∗ can read many bits (having many such symbols
would have violated the query bound). The zero-knowledge property of the original ZK-PCP system
guarantees that V∗ learns nothing about the witness even if it is given all these symbols in their
entirety. For the rest of the symbols, since V∗ reads only few bits from their secret shares, the
leakage-resilience of the secret sharing scheme guarantees that the secret shared symbol remains
entirely hidden. The actual analysis is slightly more involved, see the proof of Theorem 6 below for
details.

We now formally describe the transformation.

Construction 5 (Alphabet reduction for ZK-PCPs). Let κ be a security parameter. The system
(P ′,V ′) is over alphabet {0, 1}.

22

Building blocks:

� A PCP system (P,V) over alphabet Σ of size |Σ| = 2m.

� A strongly-correct secret sharing scheme (Share,Reconst) for secrets in {0, 1}m.

Prover algorithm. P ′ has input 1κ, x, w. It runs P with input 1κ, x, w to obtain a proof π over
Σ. For every proof symbol σ, it uses Share to secret-share the bit-representation of σ. (That is, the
length-m bit representation of σ is treated as the secret.) Then, P ′ outputs the concatenation of all
secret shares. We denote the proof generated by P ′ by π′.

Veri�er algorithm. V ′ is given input 1κ, x and oracle access to π′. It runs V with input 1κ, x,
and emulates the oracle π for V as follows. Whenever V reads a symbol σ from π, V ′ reads the entire
secret sharing of σ from π′. Then, it uses Reconst to recover the symbol σ, and provides σ to V as
the answer of the oracle.

The following theorem summarizes the properties of Construction 5.

Theorem 6 (Non-adaptive ZK-PCPs for non-adaptive veri�ers). Assume Construction 5 is instan-
tiated with:

� A non-adaptive q-query (q∗, ϵ)-ZK-PCP (P,V) over alphabet Σ for a language L, with proofs
of length N .9

� A strongly-correct k-party secret sharing scheme (Share,Reconst) for secrets in {0, 1}m with
secret shares in {0, 1}M which is ϵ′-leakage-resilient against (t, ℓ)-local probing leakage.

Then Construction 5 is a non-adaptive q′-query (q∗∗, ϵ′′)-ZK-PCP for non-adaptive veri�ers, where:

q′ = q ·M · k q∗∗ = (q∗ + 1) (ℓ+ 1) (t+ 1)− 1 ϵ′′ = ϵ+ ϵ′ · (N − q∗) .

Moreover, the transformation preserves the soundness and completeness of (P,V).

Proof: Completeness. The completeness of the original PCP system is preserved due to the

perfect reconstruction of the secret sharing scheme, which guarantees that V ′ perfectly emulates the
proof oracle for V. The claim regarding q′ follows directly from the construction, noting that for
strong correctness only the set of all n parties is authorized.

Soundness. Let x∗ /∈ L, and let π∗ be a proof oracle. We show that V ′, with oracle access to π∗,
rejects x∗ with the same probability as V. We divide π∗ into N sections: π∗ = π∗,1 · · ·π∗,N , where
the i'th section π∗,i contains the bits in locations (i− 1) kM + 1, . . . , ikM . (We note that in an
honestly-generated proof, the i'th section contains the secret shares of the i'th symbol in a proof
generated by P.) Let i1, . . . , iq denote the locations which V asks to query from its oracle. The
strong correctness of the SSS guarantees that there exist secrets σ1, . . . , σq that will be reconstructed
from the secret sharings in sections i1, . . . , iq i.e.,

∀1 ≤ j ≤ q : ∃σj s.t. σj = Reconst
(
π∗,ij

)
Indeed, this holds because strong correctness implies unique reconstruction (see Remark 3.1), even
if the secret sharings in the queried sections are ill-formed. Consequently, V is emulated with a proof
oracle π such that πij = σj for every 1 ≤ j ≤ q. Therefore, V ′ rejects with the same probability as
V.

9In fact, as will be evident from the proof, it su�ces that (P,V) is ZK against non-adaptive malicious veri�ers.

23

Zero-knowledge. We prove ZK by a double averaging argument. Let V∗ be a (possibly malicious,
possibly unbounded) non-adaptive q∗∗-query-bounded veri�er, and we describe a simulator Sim′ for
V∗, which takes as input 1κ, x. Let Sim denote the simulator for the underlying ZK-PCP system
(P,V) (whose existence is guaranteed from the q∗-ZK of (P,V)), let π′ denote the proof oracle of V∗,
and let π = σ1 · · ·σN denote the underlying proof oracle (over Σ) which P ′ generated by emulating
P. We partition π′ into N �sections�, where each section corresponds to a symbol of the original
proof π, and contains the k secret shares (of length M) of the binary representation of the symbol.
That is, the i'th section of π′ consists of the k secret shares of the bit representation of σi.

Notice �rst that there are at most q∗ sections such that V∗ reads at least (ℓ+ 1) (t+ 1) bits from
each of them. Indeed, if there were q∗+1 sections from which V∗ reads at least (ℓ+1)(t+1) bits, then
the total number of bits it queries would be at least (q∗+1)(ℓ+1)(t+1) > (q∗+1)(ℓ+1)(t+1)−1 = q∗∗.
Let G denote the set of symbols of π corresponding to these sections:

G = {σi : V∗ reads ≥ (ℓ+ 1) (t+ 1) bits from the ith section}

and notice that G is well de�ned (and known to Sim′) at the onset of the simulation because V∗ is
non-adaptive. If there are less than q∗ such symbols, Sim′ will arbitrarily add symbols to G until
it has exactly size q∗. Sim′ runs Sim with input 1κ, x to simulate the symbols in G (this is possible
because (P,V) is (q∗, ϵ)-ZK). Then, Sim′ replaces each symbol with its length-m bit representation,
and secret-shares it using Share. Finally, Sim′ uses the secret shares to answer the queries of V∗ to
these sections of the proof.

For every symbol σi /∈ G, notice that V∗ reads at most (ℓ+ 1) (t+ 1)−1 bits from the ith section.
Recall that the ith section consists of k secret shares of length M . By an averaging argument there
are at most t shares in the ith section such that V∗ reads at least ℓ + 1 bits from each of them,
and these shares are treated as if the veri�er knows them in full. Furthermore, since from all other
shares V∗ reads at most ℓ bits per share, the leakage resilience property of the secret sharing can be
used. Speci�cally, the (t, ℓ)-local probing leakage resilience of the secret sharing scheme guarantees
that the bits which V∗ reads from the ith section are ϵ′-statistically close to the bits in a secret
sharing of an arbitrary symbol α ∈ Σ. Thus, Sim′ can simulate the bits read from the section by
randomly secret sharing the binary representation of α, and providing the corresponding bits to V∗
as the answers of the oracle.

Finally, we analyze the simulation error, using a union bound. The simulated symbols in G
are (jointly) ϵ-statistically close to the symbols in the honestly-generated (original) proof π. Con-
sequently, so are the bits simulated in the corresponding sections (because applying a randomized
function such as Share doesn't increase the statistical distance). Moreover, for each of the re-
maining N − q∗ symbols of the original proof, the bits simulated in the corresponding section are
ϵ′-statistically close to the bits in π′, by the ϵ′-leakage resilience of the secret sharing scheme. This
implies a simulation error of ϵ′′ = ϵ+ ϵ′ · (N − q∗) as stated in the theorem.

A ZK-PCP with square root gap. The following corollary obtains a
√
n-gap between the

query complexity of the honest and malicious veri�ers, where n is the input length. It follows from
Theorem 6 by an appropriate instantiation of the building blocks.

Corollary 7 (ZK-PCP with
√
n gap for non-adaptive veri�ers). There exists a constant c > 0

such that there exists a non-adaptive q-query q∗-ZK-PCP against non-adaptive veri�ers with q∗ =
Ω
(
nc+1

)
and q = Õ

(
nc+1/2

)
and negl (n) soundness error, where n denotes the input length.

The proof of Corollary 7 will use the following theorem, which is implicit in [SV19], and obtained

24

by applying their compiler to Shamir's secret sharing scheme with appropriate parameters.10

Theorem 8 (Leakage resilient secret sharing � implicit in [SV19]). Let t < k and ℓ be natural
numbers. Then there exists a strongly-correct k-party secret sharing scheme for secrets in {0, 1}ℓ,
which is ϵ-leakage resilient against (t, ℓ)-local leakage, where ϵ = 2 (1.1ℓ+ σ) · 2−σ−1 and σ is a
security parameter. Moreover, the secret shares have length 4.1ℓ+ (α+ 1)σ, for some constant α.

We now prove Corollary 7.

Proof of Corollary 7: We instantiate Theorem 6 with the ZK-PCP system of Theorem 4 and the
LR-SSS of Theorem 8. Speci�cally, Theorem 4 is instantiated with parameter n (the input length)
and security parameter log2 n, in which case the proof has length n over an alphabet of size N = nα

for some constant α, is q∗-ZK for q∗ = Ω(n) (i.e., with simulation error ϵ = 0), and has negl (n)
soundness error with a non-adaptive veri�er that makes q = log n ·

√
n queries. We instantiate

Theorem 8 with k = n parties, ℓ = nα, σ = log2 n and t = k− 1 = n− 1, in which case the resultant
n-party scheme is ϵ′′-equivocal against (n− 1, ℓ)-local probing leakage for ϵ′′ = negl (n), with shares
of length M = O (nα).

Therefore, Theorem 6 guarantees that the resultant ZK-PCP has a negligible soundness error
with a non-adaptive honest veri�er whose query complexity is

q ·M · k = log n
√
n ·O (nα) · n = O

(
log n · nα+3/2

)
and has (q∗∗, ϵ′′)-ZK against any (possibly malicious and adaptive) veri�er, where

q∗∗ = (q∗ + 1) (ℓ+ 1) (t+ 1)− 1 = Ω (n) · nα · n = Ω
(
nα+2

)
and

ϵ′′ = ϵ′ + ϵ′′ ·N = 0 + negl (n) · n = negl (n) .

The corollary now follows by setting c = α+ 1. ■

5.1 Upgrading to ZK Against Adaptive Veri�ers

Our ZK-PCPs (Theorem 6 and Corollary 7) obtained through the alphabet reduction of Construc-
tion 5 can be veri�ed non-adaptively, but guarantee ZK only against non-adaptive veri�ers. Ideally,
we would like a ZK-PCP which can be veri�ed non-adaptively, but guarantees ZK even against
adaptive malicious veri�ers.

In this section, we show that when Construction 5 is instantiated with an equivocal SSS (see
De�nition 17) instead of a leakage-resilient SSS then the resultant ZK-PCP retains its ZK even when
the malicious veri�er is adaptive. Concretely, we prove the following:

Theorem 9. Assume Construction 5 is instantiated with:

� A non-adaptive q-query (q∗, ϵ)-ZK-PCP (P,V) over alphabet Σ for a language L, with proofs
of length N .11

� A strongly-correct k-party ϵ′-equivocal (ramp) secret sharing scheme against (t, ℓ)-local probing
leakage, for secrets in {0, 1}m with secret shares in {0, 1}M .

10We note that [SV19] do not consider strongly-correct secret sharing schemes, but their Shamir-based scheme is
strongly-correct because Shamir's scheme is strongly correct (see discussion in Section 3.3).

11We stress that (P,V) is non-adaptive in the sense that the honest veri�er is non-adaptive, but ZK holds against
possibly adaptive veri�ers.

25

Then Construction 5 is a non-adaptive q′-query (q∗∗, ϵ′′)-ZK-PCP, where

q′ = q ·M · k q∗∗ = (q∗ + 1) (ℓ+ 1) (t+ 1)− 1 ϵ′′ = ϵ+ ϵ′ ·N.

Moreover, the transformation preserves the soundness and completeness of (P,V).

Proof: Completeness, soundness, and the analysis of the query complexity q are identical to the
proof of Theorem 6. We proceed to prove ZK. Let V∗ be a (possibly malicious, possibly adaptive)
q∗∗-query bounded veri�er. We can assume without loss of generality that V∗ makes its queries one
at a time. We describe a simulator Sim for V∗, which uses as building blocks the simulator SimZK

of the underlying ZK-PCP over Σ, and the simulator SimLR of the equivocal SSS. Sim operates as
follows:

1. Sim interprets its proof as consisting of N sections, where the i'th section contains the bits
in locations (i− 1) kM + 1, . . . , ikM . Moreover, Sim interprets each section as containing k
secret shares, where the j'th secret share in the i'th section contains the bits in locations
(i− 1) km+(j − 1)M +1, . . . , (i− 1) kM + jM . (Recall that in an honestly-generated proof,
the i'th section corresponds to the secret shares of the i'th symbol in a proof generated by P.)

2. Sim initializes counters (ℓi)i∈[N], (ℓi,j)i∈[N],j∈[n] to 0, and bit strings (Shi,j)i∈[N],j∈[n] to be

empty. Then, Sim initializes an execution of SimZK andN independent executions of SimLR (one
for each section of the proof). We denote these executions by Sim1

LR
, . . . , SimN

LR
. (intuitively,

ℓi, ℓi,j count the number of queries made to the i'th section, and the j'th secret share in the
i'th section, respectively; and Shi,j holds the (partially-determined) values of the j'th secret
share in the sharing of the i'th symbol of the proof π.)

3. For every query Q of V∗:

(a) Let i, j denote the section, and secret share within the section, to which Q belongs.

(b) If the Q'th bit in Shi,j has already been determined during the simulation, then Sim uses
this bit as the oracle answer.

(c) Otherwise:

i. Sim increases ℓi,j and ℓi by 1.

ii. If ℓi ≥ (ℓ+ 1) (t+ 1) then Sim sends i to SimZK, and obtains a simulated symbol σ.12

Then Sim provides σ to Simi
LR
, and obtains simulated secret shares

(
Sh1, . . . , Shn

)
.

It overwrites Shi,j with Shj , and answers Q according to Shi,j .

iii. Else, if ℓi,j > ℓ, then Simmakes a SHARE (j) query to Simi
LR

and obtains a simulated
secret share Sh. It overwrites Shi,j with Sh, and answers Q according to Shi,j .

iv. Else, it sends the query Q to Simi
LR

and obtains a simulated bit b. It writes b in the
appropriate location in Shi,j , and returns b as the oracle answer.

We now prove that the simulated and real views of V∗ are ϵ + ϵ′N statistically close, using a
hybrid argument.

H0: This is the view of V∗ in the simulation described above.

H0
1: H0

1 is obtained from H0 by replacing the simulated answers of SimZK to Sim with the actual
proof symbols of π.

12Notice that this step uses the fact that (P,V) is ZK against possibly adaptive veri�ers.

26

We claim that H0 and H0
1 are ϵ-statistically close by the ϵ-ZK of (P,V).

Indeed, since SimZK is used to simulate the i'th proof symbol only when ℓi ≥ (ℓ+ 1) (t+ 1),
and since q∗∗ = (q∗ + 1) (ℓ+ 1) (t+ 1)− 1, SimZK is only used to simulate at most q∗ symbols,
and so the (adaptive) ZK of (P,V) can be used.

Hi
1, 1 ≤ i ≤ N : Hi

1 is obtained from Hi−1
1 by replacing the simulated answers of Simi

LR
with the

actual bits in the i'th section of the proof π′.

We claim that Hi−1
1 and Hi

1 are ϵ′-statistically close by the ϵ′-equivocation of the SSS.

To prove this claim, we �rst analyze how Sim simulates the oracle answers depending on
the counters ℓi and ℓi,j . Notice �rst that if V∗ makes at least (ℓ+ 1) (t+ 1) queries to the
i'th section, then when query number (ℓ+ 1) (t+ 1) is made then the simulation of Simi

LR

enters its second phase. Therefore, the �rst phase of the simulation of Simi
LR

contains at most
(ℓ+ 1) (t+ 1) − 1 queries to the secret sharing in the i'th section of π′, meaning at most t
shares of that section are queried more than ℓ times. When the ℓ + 1 query to a share j is
made, it results in a SHARE (j) query to Simi

LR
(and the simulated share is used to answer all

further queries to the j'th share). In summary, during the �rst phase of the simulation, Simi
LR

receives at most t SHARE (·) queries, and at most ℓ bits are probed from each other share.
Therefore, the ϵ′-equivocation of the SSS against (t, ℓ)-local probing leakage can be used, and
it guarantees that Hi−1

1 and Hi
1 are ϵ′-statistically close.

We conclude the proof by noting that HN
1 is distributed identically to the real view of V∗ (because

all the simulated answers are consistent with the real proof oracle).

Corollary 10 (ZK-PCP with
√
n gap). There exists a constant c > 0 such that there exists a non-

adaptive q-query perfect q∗-ZK-PCP with q∗ = Ω
(
nc+1

)
and q = Õ

(
nc+1/2

)
, with negl (n) soundness

error, where n denotes the input length.

Proof: We instantiate Theorem 9 with the ZK-PCP system of Theorem 4 and the equivocal secret
sharing scheme of Theorem 3. Speci�cally, Theorem 4 is instantiated with parameter n and security
parameter log2 n, in which case the proof has length n over an alphabet of size log Σ = nα for some
constant α, is q∗-ZK for q∗ = Ω(n) (i.e., with simulation error ϵ = 0), and has negl (n) soundness
error with a non-adaptive veri�er that makes q = log n ·

√
n queries. We instantiate Theorem 3 with

input length nα, in which case the resultant 1-party scheme is perfectly-equivocal against (0, ℓ)-local
probing leakage for ℓ = Ω(nα), with shares of length M = O (nα).

Therefore, Theorem 9 guarantees that the resultant ZK-PCP has a negligible soundness error
with a non-adaptive honest veri�er whose query complexity is

q ·M · k = log n
√
n ·O (nα) · 1 = O

(
log n · nα+1/2

)
and has (q∗∗, ϵ′′)-ZK against any (possibly malicious and adaptive) veri�er, where

q∗∗ = (q∗ + 1) (ℓ+ 1) (t+ 1)− 1 = Ω (n) · Ω (nα) · 1− 1 = Ω
(
nα+1

)
and has perfect ZK because

ϵ′′ = ϵ′ + ϵ′′ ·N = 0 + 0 · n = 0.

The corollary now follows by setting c = α.

We are now ready to prove Theorem 1.

27

Proof of Theorem 1: We repeat the proof of Corollary 10, except we instantiate the ZK-PCP
system of Theorem 4 with parameter (q∗)β , where β = 1/(α + 1), and α is the constant speci�ed

in the proof of Corollary 10. This gives a ZK-PCP with ZK against Ω
(
(q∗)β

)
queries, and the

soundness error is negl (q∗) with a veri�er that makes O
(
log (q∗)β · (q∗)β/2

)
queries. Moreover, the

proof has length N = (q∗)β over alphabet Σ with log Σ = (q∗)αβ . We instantiate the equivocal SSS
of Theorem 3 with input length (q∗)αβ , in which case the scheme is perfectly-equivocal against (0, ℓ)-

local probing leakage for ℓ = Ω
(
(q∗)αβ

)
, with a secret share of size O

(
(q∗)αβ

)
. Then by Theorem 9,

the resultant scheme has perfect ZK against Ω
(
(q∗)β(α+1)

)
= Ω(q∗) queries, and has a negl (q∗)

soundness error with an honest veri�er that makes O
(
log q∗ · (q∗)β(α+1/2)

)
= Õ

(
(q∗)β(α+1/2)

)
≤

(q∗)ϵ queries, for any ϵ which is larger than α+1/2
α+1 (and for a su�ciently large q∗). ■

6 ZK-PCPPs with Non-Adaptive Veri�cation

In this section we extend our techniques to also apply to PCPs of Proximity (PCPPs), thus obtaining
the �rst ZK-PCPPs that can be veri�ed non-adaptively. This is obtained in two steps. First, in
Section 6.1 we extend the construction of [IKOS07] to a ZK-PCPP system (over a large alphabet),
by describing a variant in which the veri�er is not required to read its entire input. This construction
uses ideas from [IW14]. Then, in Section 6.2 we show that our alphabet reduction of Section 5 can
also be applied to PCPs of proximity.

Remark 6.1 (A clarifying note on PCPPs over large alphabets.). We note that the �large alphabet�
is used solely to write the proof. That is, in all PCPP systems that we consider, the input is always
a bit string. Thus, even if a PCPP is over a large alphabet, input queries are to single bits, whereas
proof queries are to proof symbols (which might be represented using a long bit string).

6.1 A ZK-PCPP Based on the Scheme of [IKOS07]

In this section we describe and analyze a variant of the construction of [IKOS07] which gives a ZK-
PCP of proximity. Recall from Section 4 that [IKOS07] associate a function f with an NP-relation
R, where f (x,w1, . . . , wn) = R (x,⊕wi), and f is then evaluated using an n-party MPC protocol in
which the input of party i is (x,wi). In the context of ZK-PCPPs, giving the input x to all parties is
problematic, since then the view of any single party Pi determines x. Instead, we consider the (m+n)-
input function f ′ (where m = |x|) de�ned as: f ′ (x1, . . . , xm, w1, . . . , wn) = R ((x1, . . . , xm) ,⊕wi).
Given this function, proof generation works as in [IKOS07], whereas verifying the proof requires also
checking its consistency with x (for every queried view among the �rst m views). This construction
is formalized in Figure 2.

We now show that the system of Figure 2 is a ZK-PCPP:

Theorem 11 (Non-adaptive ZK-PCPP over a large alphabet). Let m be an input length parameter,
and let δ ∈ (0, 1) be a proximity parameter. Let n ≥ 3 such that m = Ω(n), and let R and f ′ be
as above. Suppose that Π realizes the (m + n)-party functionality f ′ with perfect t-robustness (in
the malicious model) and perfect, statistical or computational t-privacy (in the semi-honest model),
where t = Ω(κ), t < n, and additionally m + n = ct for some constant c > 1. Then there exists

a non-adaptive 2q-query ZK-PCPP over some alphabet Σ where q = max
{√

κ · (n+m), κδ ·
m+n
m

}
,

with t-ZK, proximity parameter δ, and soundness error 2−Ω(κ). Moreover, the proof has length n+m.

28

A ZK-PCPP over a Large Alphabet

Oracle πx generation. On input 1κ, an m-bit statement x and a witness w, the prover �rst
generates witness shares w1, . . . , wn for paries Pm+1, . . . , Pm+n. It then emulates Π on the virtual
parties P1, . . . , Pm+n, where the inputs of parties P1, . . . , Pm are x1, . . . , xm (respectively, where xi

denotes the ith bit of x), and the inputs of parties Pm+1, . . . , Pm+n are w1, . . . , wn (respectively),
to construct their views V1, . . . , Vm+n. The proof πx consists of the views V1, . . . , Vm+n.

Veri�cation. The veri�er has input 1κ, |x|, and oracle access to x and the proof πx. The veri�er
randomly picks i1, . . . , iq and queries these symbols from πx. In addition, for every 1 ≤ j ≤ q such
that ij ≤ m, the veri�er also queries xij . Finally, the veri�er accepts if:

1. The �nal output within all queried views is 1.

2. For any pair of views Vi and Vj that the veri�er queries, the views are consistent (see
De�nition 8).

3. For every view Vi such that 1 ≤ i ≤ m, the input reported in Vi is xi.

Figure 2: A ZK-PCPP based on [IKOS07]

The following is an immediate corollary of Theorem 11 (obtained by setting n = m and δ =
1/
√
m):

Corollary 12. Let m be an input length parameter. Then for any δ ≥ 1/
√
m, any NP-language L

has a non-adaptive 4κ
√
m-query Ω (m)-ZK-PCPP over some alphabet Σ, with proximity parameter

δ, soundness error 2−Ω(κ), and proofs of length 2m where log |Σ| = poly (m).

We now prove Theorem 11.
Proof: Completeness. Follows directly from the perfect robustness of the underlying MPC
protocol.

t-ZK. The t-privacy of Π guarantees that the veri�er can query t′ ≤ t views without learning
anything except the inputs and outputs of the corrupted parties. The output in this case is 1
(because the prover is honest and x ∈ L). The inputs are either secret shares of w, which reveal no
information about w because t′ ≤ t < n, or bits of x, where each view contains a single secret share
or a single bit of x. In particular, all these views can be (perfectly, statistically or computationally,
depending on the quality of privacy guaranteed by Π) simulated given the t′ ≤ t bits of x contained
in those views. Since the ZK simulator is allowed to query t′ bits of x, it will be able to simulate
the oracle answers for the (possibly malicious) veri�er.

Soundness. Let x be δ-far from L, and let π∗ be a (possibly ill-formed) proof oracle. Notice that
the views V1, . . . , Vm reported in π∗ determine an e�ective input x∗ = (x∗1, . . . , x

∗
m). We consider

two cases.
First, if x∗ is δ-far from x, then let I = {i : xi ̸= x∗i }, so |I| ≥ δm. Notice that if the veri�er

queries a view Vi for i ∈ I then it rejects (with probability 1). Therefore, it su�ces to bound the
probability that the veri�er �misses� all of I.

Pr [Veri�er misses I] = (Pr [Single veri�er query misses I])q ≤
(
n+m− δm

n+m

)q

=

(
1− δ · m

n+m

)q

.

Since m = Ω(n), there exists a constant c > 0 such that m ≥ c (m+ n). Therefore, when q ≥ κ
cδ

then (
1− δ · m

n+m

)q

≤ (1− cδ)q ≤(∗)
(
e−cδ

)q
≤ e−cδ· κ

cδ = e−κ

29

where in the inequality denoted by (∗) we use the fact that 1 + x ≤ ex for all real x.
Second, assume that x∗ is not δ-far from x. In this case, x∗ /∈ L. Therefore, for any w∗

1, . . . , w
∗
n,

f ′ (x∗1, . . . , x
∗
m, w∗

1, . . . , w
∗
n) = 0, and we show that the analysis from the proof of Theorem 4 still

holds. That is, in this case the �rst two checks which the veri�er performs (checking the output,
and checking consistency between pairs of views) already guarantees that the veri�er will reject with
high probability. We proceed with the formal argument.

Consider the inconsistency graph G de�ned in the proof of Theorem 4, and we consider two
cases. First, assume G has a vertex cover B of size ≤ t. In this case, for every i /∈ B, the output
reported in Vi is 0 (this follows from the perfect robustness of Π). Therefore, the veri�er accepts

only if all its queries are to nodes in B, which happens with probability
(

t
n+m

)q
= 2−Ω(q) where the

equality holds because t = Ω(n+m). In particular, this probability is 2−Ω(κ) whenever q = Ω(κ).
Second, assume the minimal vertex cover of G has size > t, in which case G has a matching of size

> t/2. Let B be a set of t/2 pairs of nodes partaking in this matching, and notice that the veri�er
accepts only if it misses all the edges between nodes in B. Noticing that we now have m+n nodes in
total (whereas in Theorem 4 we only had n nodes), and that t = Ω(n+m), a similar analysis to that
provided in the proof of Theorem 4 shows that except with probability 2−Ω(q), the veri�er queries
at least k = qt

2(n+m) nodes from B. Conditioning on the event that the veri�er queried at least k
nodes from B, the analysis in the proof of Theorem 4 shows that the veri�er reveals an edge of B,

except with probability e−k2/8t = e−Ω(q2/(n+m)), where the equality holds because t = Ω(n+m).

In particular, this probability is 2−Ω(κ) whenever q = Ω
(√

κ · (n+m)
)
.

6.2 Alphabet Reduction for ZK-PCPP

In this section we show that the alphabet reduction of Construction 5 (Section 5) can also be applied
to ZK-PCPs of proximity. Combining this with the non-adaptive ZK-PCPP over large alphabets
(Theorem 11), we obtain the �rst ZK-PCPP with a non-adaptive honest veri�er.

We �rst describe a slight variant of the alphabet reduction of Construction 5 which works for
ZK-PCPPs.

Construction 13 (Alphabet reduction for ZK-PCPPs). The alphabet reduction for ZK-PCPPs is
similar to the alphabet reduction of Construction 5, with the following modi�cations: V ′ has input
1κ, |x| and oracle access to x, π′. It runs V with input 1κ and gives it access to its own oracle x.
Queries of V to its proof oracle are emulated as in Construction 5.

Next, we show that Construction 13 preserves ZK against non-adaptive malicious veri�ers.

Theorem 14 (Non-adaptive ZK-PCPPs against non-adaptive malicious veri�ers). Assume there
exist:

� A non-adaptive q-query (q∗, ϵ)-ZK-PCPP (P,V) over alphabet Σ for a language L, with prox-
imity parameter δ, and proofs of length N .13

� A strongly-correct k-party secret sharing scheme (Share,Reconst) for secrets in {0, 1}m with
secret shares in {0, 1}M which is ϵ′-leakage-resilient against (t, ℓ)-local probing leakage.

Then L has a non-adaptive q′-query (q∗∗, ϵ′′)-ZK-PCPP for non-adaptive veri�ers with proximity
parameter δ, where:

q′ = q ·M · k q∗∗ = (q∗ + 1) (ℓ+ 1) (t+ 1)− 1 ϵ′′ = ϵ+ ϵ′ · (N − q∗) .

13In fact, as will be evident from the proof, it su�ces that (P,V) is ZK against non-adaptive malicious veri�ers.

30

Moreover, the transformation preserves the soundness and completeness of (P,V). Furthermore, the
resultant ZK-PCPP has the following feature: the view of any q∗∗-query bounded (possibly malicious)
veri�er V∗ that makes q′′ input queries can be simulated with only q′′ + q∗ queries to the input.

Proof (sketch): We apply the alphabet reduction of Construction 13 to (P,V), and show that
the resultant system has the desired properties. The proof is very similar to the proof of Theorem 4,
we focus on describing the di�erences.

Completeness follows identically to the proof of Theorem 6, as does the analysis for q′. We note
that the query complexity of V ′ might actually be smaller than q′, because some of the queries of V
might be to x, in which case these do not cause additional queries in the reduction.

Soundness follows similarly to the proof of Theorem 6. The only di�erence is that soundness need
only hold for x which is δ-far from L, in which case one can use the soundness of the underlying
ZK-PCPP over Σ.

Zero-knowledge follows similarly to the proof of Theorem 6. The only di�erence is in how the
input is treated. Speci�cally, the simulator Sim′ is now given 1κ, |x| as input, and has oracle access to
x. It answers queries of V∗ to the input oracle using its own input oracle. As for queries to the proof,
Sim′ identi�es the ≤ q∗ sections of the proof to which V∗ makes at least (ℓ+ 1) (t+ 1) queries, and
uses the simulator Sim of (P,V) to simulate the symbols corresponding to these sections. (If there
are < q∗ such sections then Sim′ arbitrarily adds sections to get exactly q∗ such sections.) During
its simulation, Sim sends ≤ q∗ queries to x, which Sim′ answers using its own oracle x. Given the
simulated symbols generated by Sim, Sim′ answers the queries of V ′ as in the proof of Theorem 6.
The rest of the analysis follows identically to the proof of Theorem 6.

Finally, we note that Sim′ queries its input oracle in one of two cases: either when V∗ queries
his oracle, or when Sim does. The �rst case occurs q′′ times (by the assumptions of the theorem),
whereas the second case incurs at most q∗ queries (because Sim is asked to simulate at most q∗

queries), so in total Sim′ makes at most q′′ + q∗ input queries. ■

A ZK-PCPP with square root gap. The following corollary obtains a
√
n-gap between the

query complexity of the honest and malicious veri�ers (where n is the input length), and follows
from Theorem 14 by an appropriate instantiation of the building blocks.

Corollary 15 (ZK-PCPP with
√
n gap for non-adaptive veri�ers). Let n ∈ N be an input length

parameter. Then there exists a constant c > 0 such that for any proximity parameter δ ≥ 1/
√
n, there

exists a non-adaptive q-query q∗-ZK-PCPP against non-adaptive veri�ers with proximity parameter
δ, q∗ = Ω

(
nc+1

)
, and q = Õ

(
nc+1/2

)
.

Proof: We instantiate Theorem 14 with the ZK-PCPP system of Corollary 12 and the LR-SSS
of Theorem 8. Speci�cally, Corollary 12 is instantiated with input length n, proximity parameter
δ and security parameter log2 n, in which case the proof has length 2n over an alphabet of size
N = nα for some constant α, is q∗-ZK for q∗ = Ω(n) (i.e., with simulation error ϵ = 0), and
has negl (n) soundness error with proximity parameter δ and a non-adaptive veri�er that makes
q = O

(
log2 n ·

√
n
)
queries. We instantiate Theorem 8 with k = n parties, ℓ = nα, σ = log2 n and

t = k− 1 = n− 1, in which case the resultant n-party scheme is ϵ′′-equivocal against (n− 1, ℓ)-local
probing leakage for ϵ′′ = negl (n), with shares of length M = O (nα).

Therefore, Theorem 14 guarantees that the resultant ZK-PCPP has a negligible soundness error
with a non-adaptive honest veri�er whose query complexity is

q ·M · k = O
(
log2 n

√
n
)
·O (nα) · n = O

(
log2 n · nα+3/2

)
31

and has (q∗∗, ϵ′′)-ZK against any (possibly malicious and adaptive) veri�er, where

q∗∗ = (q∗ + 1) (ℓ+ 1) (t+ 1)− 1 = Ω (n) · nα · n = Ω
(
nα+2

)
and

ϵ′′ = ϵ′ + ϵ′′ · (N − q∗) = 0 + negl (n) ·O (n) = negl (n) .

The corollary now follows by setting c = α+ 1.

Next, we show that when Construction 13 is instantiated with an equivocal SSS then the resultant
ZK-PCPP is ZK against adaptive malicious veri�ers:

Theorem 16 (Non-adaptive ZK-PCPPs). Assume there exist:

� A non-adaptive q-query (q∗, ϵ)-ZK-PCPP (P,V) over alphabet Σ for a language L, with prox-
imity parameter δ, and proofs of length N .14

� A strongly-correct k-party ϵ′-equivocal secret sharing scheme against (t, ℓ)-local probing leakage,
for secrets in {0, 1}m with secret shares in {0, 1}M .

Then L has a non-adaptive q′-query (q∗∗, ϵ′′)-ZK-PCPP with proximity parameter δ, where:

q′ = q ·M · k q∗∗ = (q∗ + 1) (ℓ+ 1) (t+ 1)− 1 ϵ′′ = ϵ+ ϵ′ ·N.

Moreover, the resultant ZK-PCPP has the same soundness and completeness guarantees as the ZK-
PCPP over Σ, as well as the following feature: the view of any q∗∗-query bounded (possibly malicious)
veri�er V∗ that makes q′′ input queries can be simulated with only q′′ + q∗ queries to the input.

Proof (sketch): Completeness, soundness, and the calculations regarding the query complexity
q′ are identical to the proof of Theorem 14. The proof of the ZK property is very similar to that
of Theorem 9, so we only sketch the di�erences. Speci�cally, we describe a simulator Sima which
operates identically to the simulator Sim from the proof of Theorem 9, except for the following
modi�cations to Step 3:

1. If the query Q is to the input x, then Sima uses its input oracle to answer it. Otherwise, Sima

computes i, j as Sim does.

2. In Step 3(c)ii, SimZK may query its input oracle during the simulation, and Sima answers such
queries using its own input oracle.

The hybrids are de�ned identically to the proof of Theorem 9, and the indistinguishability proof is
similar, where the claim regarding the statistical distance of H0,H0

1 uses the fact that Sima perfectly
simulates the input oracle of Sim.

The analysis regarding the number of input queries which Sima makes is identical to the proof
of Theorem 14. ■

We are now ready to prove Theorem 2.

14We stress that (P,V) is non-adaptive in the sense that the honest veri�er is non-adaptive, but ZK holds against
possibly adaptive veri�ers.

32

Proof of Theorem 2: We instantiate Theorem 16 with the ZK-PCPP system of Corollary 12
and the equivocal secret sharing scheme of Theorem 3. Speci�cally, Corollary 12 is instantiated
with input length n, proximity parameter δ and security parameter log2 n, in which case the proof
has length 2n over an alphabet of size log Σ = nα for some constant α, is q∗-ZK for q∗ = Ω(n)
(i.e., with simulation error ϵ = 0), and has negl (n) soundness error with proximity parameter δ
and a non-adaptive veri�er that makes q = O

(
log2 n ·

√
n
)
queries. We instantiate Theorem 3 with

input length nα, in which case the resultant 1-party scheme is perfectly-equivocal against (0, ℓ)-local
probing leakage for ℓ = Ω(nα), with shares of length M = O (nα).

Therefore, Theorem 16 guarantees that the resultant ZK-PCPP has a negligible soundness error
with a non-adaptive honest veri�er whose query complexity is

q ·M · k = O
(
log2 n

√
n
)
·O (nα) · 1 = O

(
log2 n · nα+1/2

)
and has perfect q∗∗-ZK against any (possibly malicious and adaptive) veri�er, where

q∗∗ = (q∗ + 1) (ℓ+ 1) (t+ 1)− 1 = Ω (n) · Ω (nα) · 1− 1 = Ω
(
nα+1

)
since

ϵ′′ = ϵ′ + ϵ′′ ·N = 0 + 0 · n = 0.

The theorem now follows by setting c = α. ■

Acknowledgments

We thank the anonymous ITC`21 reviewers for their helpful comments, in particular for pointing
out the connection to RPEs and noting that the ZK code of [DGR99, Theorem 2.2] is equivocal.

The �rst and third authors are supported by the BIU Center for Research in Applied Cryp-
tography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister's O�ce. The �rst author is supported by ISF grant No. 1316/18. The �rst and second
authors are supported by DARPA under Contract No. HR001120C0087. Any opinions, �ndings and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily re�ect the views of the United States Government or DARPA.

References

[ADN+19] Divesh Aggarwal, Ivan Damgård, Jesper Buus Nielsen, Maciej Obremski, Erick Purwanto,
João L. Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-malleable secret shar-
ing schemes for general access structures. In CRYPTO, Proceedings, Part II, pages 510�539,
2019.

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof veri-
�cation and hardness of approximation problems. In FOCS, Proceedings, pages 14�23, 1992.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new characterization of
NP. In FOCS, Proceedings, pages 2�13, 1992.

[BDG+18] Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-malleable
codes for small-depth circuits. In FOCS, pages 826�837, 2018.

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local leakage
resilience of linear secret sharing schemes. In CRYPTO, Proceedings, pages 531�561, 2018.

[BDKM16] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable codes for
bounded depth, bounded fan-in circuits. In EUROCRYPT, pages 881�908, 2016.

33

[BGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. In STOC, Proceedings, pages 1�10,
2004.

[BGW88] Michael Ben-Or, Sha� Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages 1�10,
1988.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM J. Comput.,
38(2):551�607, 2008.

[CDD+01] Ran Canetti, Ivan Damgård, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. On adaptive vs.
non-adaptive security of multiparty protocols. In EUROCRYPT, Proceedings, pages 262�279,
2001.

[CDMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box construction
of a non-malleable encryption scheme from any semantically secure one. In TCC, pages 427�444,
2008.

[CDMW18] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. A black-box construction
of non-malleable encryption from semantically secure encryption. J. Cryptol., 31(1):172�201,
2018.

[CDN15] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure Multiparty Computation and

Secret Sharing. Cambridge University Press, 2015.

[DDV10] Francesco Davì, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient storage. In SCN,

Proceedings, pages 121�137, 2010.

[DGR97] Scott E. Decatur, Oded Goldreich, and Dana Ron. A probabilistic error-correcting scheme.
IACR Cryptol. ePrint Arch., 1997:5, 1997.

[DGR99] Scott E. Decatur, Oded Goldreich, and Dana Ron. Computational sample complexity. SIAM J.

Comput., 29(3):854�879, 1999.

[Din06] Irit Dinur. The PCP theorem by gap ampli�cation. In STOC, Proceedings, pages 241�250, 2006.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In FOCS, Pro-

ceedings, pages 227�237, 2007.

[DR04] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the PCP-
theorem. In FOCS, Proceedings, pages 155�164, 2004.

[GK18] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In STOC, Proceedings, pages
685�698, 2018.

[GMR85] Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowledge complexity of interactive
proof-systems (extended abstract). In STOC, Proceedings, pages 291�304, 1985.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In STOC, Proceedings, pages 21�30, 2007.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput., 39(3):1121�1152, 2009.

[IMS12] Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On e�cient zero-knowledge PCPs. In
TCC, Proceedings, pages 151�168, 2012.

[ISVW13] Yuval Ishai, Amit Sahai, Michael Viderman, and Mor Weiss. Zero knowledge LTCs and their
applications. In RANDOM, Proceedings, pages 607�622, 2013.

[IW14] Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-knowledge.
In TCC, Proceedings, pages 121�145, 2014.

34

[IWY16] Yuval Ishai, Mor Weiss, and Guang Yang. Making the best of a leaky situation: Zero-knowledge
PCPs from leakage-resilient circuits. In TCC, Proceedings, pages 3�32, 2016.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with zero knowl-
edge. In STOC, Proceedings, pages 496�505, 1997.

[Mie09] Thilo Mie. Short PCPPs veri�able in polylogarithmic time with O(1) queries. Ann. Math. Artif.

Intell., 56(3-4):313�338, 2009.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612�613, 1979.

[SV19] Akshayaram Srinivasan and Prashant Nalini Vasudevan. Leakage resilient secret sharing and
applications. In CRYPTO, Proceedings, pages 480�509, 2019.

[Wei16] Mor Weiss. Secure computation and probabilistic checking. PhD Thesis, 2016.

35

	Introduction
	Our results

	Our Techniques
	ZK-PCPs with Non-Adaptive Verification and Efficient Simulation
	Amplifying the Query Gap in the ZK-PCP of IshaiKOS07
	Alphabet Reduction for ZK-PCPs
	Amplifying to ZK Against Adaptive Verifiers
	Why Do Previous Approaches of Constructing Non-Adaptive ZK-PCPs Fail?

	ZK-PCPPs with Non-Adaptive Verification and Efficient Simulation
	A ZK-PCPP with Non-Adaptive Verification Over Large Alphabets
	Why Do Previous Approaches of Constructing Non-Adaptive ZK-PCPPs Fail?

	Equivocal Secret Sharing
	Equivocal SSS: Definition
	Equivocal SSS: Construction

	Future Directions

	Preliminaries
	Zero-Knowledge Probabilistically Checkable Proofs (PCPs) and PCPs of Proximity
	Secure Multi-Party Computation
	Leakage-Resilient Secret Sharing Schemes (LR-SSS)
	Equivocal Secret Sharing
	Equivocation from Zero-Knowledge Codes

	A Tighter Analysis of the ZK-PCP of IshaiKOS07
	Alphabet Reduction for ZK-PCPs
	Upgrading to ZK Against Adaptive Verifiers

	ZK-PCPPs with Non-Adaptive Verification
	A ZK-PCPP Based on the Scheme of IshaiKOS07
	Alphabet Reduction for ZK-PCPP

