
Making Synchronous BFT Protocols Secure in the Presence of
Mobile Sluggish Faults

Justin Kim

justin314kim@gmail.com

Montgomery High School

Vandan Mehta

vandan.mehta2000@gmail.com

Rutgers University

Kartik Nayak

kartik@cs.duke.edu

Duke University

Nibesh Shrestha

nxs4564@rit.edu

Rochester Institute of Technology

ABSTRACT
BFT protocols in the synchronous setting rely on a strong assump-

tion: every message sent by a party will arrive at its destination

within a known bounded time. To allow some degree of asynchrony

while still tolerating a minority corruption, recently, in Crypto’19,

a weaker synchrony assumption called mobile sluggish faults was

introduced. In this work, we investigate the support for mobile

sluggish faults in existing synchronous protocols such as Dfinity,

Streamlet, Sync HotStuff, OptSync and the optimal latency BFT

protocol. We identify key principles that can be used to “compile”

these synchronous protocols to tolerate mobile sluggish faults.

1 INTRODUCTION
Byzantine fault tolerant (BFT) protocols relying on a network syn-

chrony assumption can tolerate up to one-half Byzantine faults.

However, the synchrony assumption may be too strong in practice;

it requires every message sent by a replica to arrive at its destina-

tion within a known bounded delay Δ. In practice, this assumption

may not hold all the time due to irregularities in the sender’s or

receiver’s network. To tolerate such aberrations, one can rely on a

partially synchronous or asynchronous network. However, under

these network assumptions, consensus is impossible in the presence

of more than one-third fraction of Byzantine faults.

In a recent work from Crypto’19, Guo, Pass, and Shi [7] presented

a weakly synchronous model where the synchrony assumption

holds for most of the network but allows for messages from a few

replicas to be arbitrarily delayed. In particular, the model states

that, at any time, a fraction of the replicas are honest and prompt,

i.e., they respect the synchrony assumption. The remaining replicas

can either be sluggish (their messages can be delayed) or Byzantine.

Moreover, during the protocol execution, the sluggish replicas can

be mobile. Thus, over the course of execution of the protocol, it

is possible for every honest party to be sluggish at some point. A

subsequent work, thus, referred to this model as themobile sluggish
synchronous model [2]. This model is stronger than partial syn-

chrony or asynchrony; however, we have a better fault tolerance.

As Guo et al. [7] show, we can have consensus protocols where

the fraction of Byzantine and sluggish replicas together is up to

one-half. The model is also a strict generalization of synchrony

since synchrony requires there to be no sluggish replicas.

Subsequent to the work of Guo et al. [7], there have beenmultiple

works presenting consensus protocols under a synchrony assump-

tion as well as a version that tolerates mobile sluggish faults [2, 3, 5].

In these works, the techniques to make a synchronous protocol

tolerant to mobile sluggish faults seem specific to the protocol itself.

In this work, we ask,

What support do existing synchronous protocols have for mobile
sluggish faults? Can we compile existing synchronous protocols to
their mobile sluggish counterparts?

We address these questions by analyzing many of the existing

synchronous protocols, namely, Dfinity [8], Streamlet [4], Opt-

Sync [9], Sync HotStuff [2] and the optimal latency BFT protocol [3],

and presenting their mobile sluggish counterparts. We identify a

common theme to make these protocols secure under the weaker

synchrony model. Compiling any synchronous protocol to one

under the weaker model still remains an open question.

2 MODEL AND NOTATIONS
We consider 𝑛 replicas in a reliable, authenticated all-to-all network,

where up to 𝑓 replicas can be Byzantine or sluggish at any time 𝑡 .

Honest replicas that are not sluggish are prompt. Messages sent by

sluggish replicas may suffer arbitrary delays while messages sent by

prompt replicas will respect the synchrony bound. Specifically, if a

replica 𝑟 is prompt at time 𝑡 , then any message sent by 𝑟 at time ≤ 𝑡

will arrive at a replica 𝑟 ′ prompt at time 𝑡 ′ if 𝑡 ′ ≥ 𝑡 + Δ. The set of
sluggish replicas can arbitrarily change at every instant of time. We

denote the number of sluggish replicas by 𝑑 and Byzantine replicas

by 𝑏 such that 𝑓 = 𝑏 + 𝑑 . Without loss of generality, we assume

𝑛 = 2𝑓 + 1. Thus, at least 𝑓 + 1 replicas are honest and prompt at

any time. We assume standard digital signatures and public-key

infrastructure (PKI). We use ⟨𝑥⟩𝑝 to denote a signed message 𝑥 by

replica 𝑝 and 𝐻 (𝑥) to denote the invocation of the random oracle

𝐻 on input 𝑥 .

All of the protocols we consider make progress through a series

of numbered views. A view is usually coordinated by a distinct

leader where the leader proposes values in the form a block to

make progress. Each block references its predecessor to form a

block chain. We call a block’s position in the chain as its height.

A block 𝐵𝑘 at height 𝑘 has the format, 𝐵𝑘 := (𝑏𝑘 , 𝐻 (𝐵𝑘−1)) where
𝑏𝑘 denotes the proposed payload at height 𝑘 , 𝐵𝑘−1 is the block at

height 𝑘 − 1 and 𝐻 (𝐵𝑘−1) is the hash digest of 𝐵𝑘−1. A block 𝐵𝑘
extends a block 𝐵𝑙 (𝑘 ≥ 𝑙) if 𝐵𝑙 is an ancestor of 𝐵𝑘 .

A block certificate on a block 𝐵𝑘 consists of 𝑓 + 1 distinct sig-

natures in a view 𝑣 and is represented by C𝑣 (𝐵𝑘). Two blocks 𝐵𝑘
and 𝐵′

𝑘′
equivocate one another if they are not equal to and do not

extend one another.

3 TOLERATING MOBILE SLUGGISH FAULTS:
KEY IDEA

Synchronous protocols require all messages sent by every honest

replica to arrive at its destination within a known bounded delay.

At a high level, these messages are used by a replica to (i) learn

the state of other replicas, or (ii) make deductions based on ab-

sence of messages within a specific time. Partially synchronous

and asynchronous protocols rely only on the former; typically, a

replica updates its state after receiving messages from a quorum

of other replicas. The use of absence-of-messages crucially enables

synchronous protocols to circumvent the lower bound by Dwork

et al. [6].

In the presence of mobile sluggish faults, a key requirement,

thus, is to enable communication between sluggish and prompt

honest replicas.Wemake a simple observation: if a sluggish replica 𝑠

receives amessage𝑚 from a quorum of 𝑓 +1 replicas, thenwithin the
next Δ time all honest and prompt replicas will receive the message

𝑚 too (assuming𝑚 was sent in an all-to-all communication). This is

because at least one of the 𝑓 + 1 senders of𝑚 is honest and prompt

at a time before 𝑠 receives this quorum of messages. Assuming

all-to-all communication is used by the protocol, all replicas will

receive𝑚 within Δ time. Moreover, from the perspective of 𝑠 , only

one of the 𝑓 + 1 messages is guaranteed to be from an honest and

prompt replica; the remaining messages can potentially be from

Byzantine or sluggish replicas.

In the context of protocols that we analyzed, the above generally

breaks down to two simple rules. In order to commit a block 𝐵𝑘 , a

mobile-sluggish protocol needs to have: (i) the certificate for 𝐵𝑘 , i.e.,

C𝑣 (𝐵𝑘), should be buried deep enough and a replica needs to wait

at least Δ time after receiving a sufficiently buried certificate, (ii) a

replica needs to commit only after hearing from 𝑓 +1 replicas stating
that it has not received equivocations or equivocating certificates.

The first constraint ensures that at least one replica, say replica

𝑝 , that voted for 𝐵𝑘 is honest and prompt when a replica starts

waiting (say, at time 𝑡). So, all prompt replicas will learn about 𝐵𝑘
within next Δ time (i.e., by time 𝑡 + Δ). This prevents the prompt

replicas from deciding on other conflicting values. How deep should

a certificate be buried depends on the underlying synchronous con-

sensus protocol. For example, protocols like Dfinity and Streamlet

make decisions based on whether or not there are any equivocating

certificates. In order for certificates to be propagated among the

prompt replicas, C𝑣 (𝐵𝑘) should be buried at least 2 deep, i.e., a

replica needs to receive C𝑣′ (C𝑣 (𝐵𝑘)) before it starts waiting. When

the replica does not detect any equivocation or equivocating cer-

tificates, the replica makes a decision on 𝐵𝑘 and we call this step as

pre-commit.
Despite receiving a sufficiently deep certificate and waiting long

enough, a sluggish replica may still not detect equivocation or

equivocating certificates and commit on conflicting values. The

second constraint prevents conflicting commits on such occasions.

Waiting for confirmations from 𝑓 +1 replicas ensures safety because
either equivocation or equivocating certificates could not have

missed all 𝑓 + 1 replicas.

We note that Sync HotStuff [2] used similar ideas to tolerate

mobile-sluggish faults. In this work, we abstract these ideas so they

can be applied more generally to other protocols. Existing protocols

like Dfinity [1, 8] and Streamlet [4] already meet the first criteria we

presented. Thus, adding the second rule of waiting confirmations

from 𝑓 + 1 replicas can easily make these protocols tolerate mobile-

sluggish faults. We present detailed protocols in the subsequent

sections.

In general, the above rules suffice for all protocols that we ana-

lyzed. However, the first rule requires a party to wait for at least Δ
time after burying C𝑣 (𝐵𝑘). Protocols like OptSync [9] are designed
to commit faster and decide as soon as a unique certificate for a

value is formed (and achieve responsiveness). Modifying this pro-

tocol to meet above constraints does make the protocol secure in

the presence of mobile-sluggish faults at the expense of slower fast

commits. In Section 6, we explore an alternative direction to allow

the protocol to commit responsively.

4 DFINITY UNDER MOBILE SLUGGISH
FAULT MODEL

We now present Dfinity [1, 8] secure under mobile sluggish fault

model using our guideline. In each view, every replica makes a

proposal and waits for 2Δ time. A block 𝐵𝑘 proposed by a replica

𝑝 in view 𝑘 has the following format: 𝐵𝑘 = ⟨𝑏𝑘 , 𝑟 , C𝑘−1 (𝐵𝑘−1)⟩𝑝
where 𝑟 is a unique verifiable rank obtained using Verifiable Random

Functions (VRF). In Dfinity, a smaller rank is a better rank and the

replica with the smallest rank is the leader of the view.

After the wait, each replica votes for the best ranked block(s) it

has received so far. Whenever a replica votes for a block, it also

forwards the block to all other replicas. If a replica is forwarded

a block with a rank equal to or better than the best ranked block

it has voted so far, it votes for the block. This process continues

until a certificate is formed. As soon as an honest replica obtains

a certificate, it broadcasts the certificate to all other replicas and

enters the next view.

A replica pre-commits a block 𝐵𝑘−2 (proposed in view 𝑘 − 2)

in view 𝑘 and sends commit message for block 𝐵𝑘−2 if all valid

view 𝑘 − 1 blocks it has seen so far extends a common block 𝐵𝑘−2.
Observe that this condition was sufficient for Dfinity protocol to

commit. However to handle mobile-sluggish failures, replicas only

pre-commit with this condition. An honest replica commits when

it receives 𝑓 + 1 commit messages in the same view. Observe that

Dfinity protocol decides based on whether an equivocating cer-

tificate exists or not. Thus, as per our guideline, we ensure there

is a double certificate on block 𝐵𝑘−2 and wait for 𝑓 + 1 commit
messages.

4.1 Safety and Liveness
Lemma 1 (Uniqe extensibility). If an honest replica commits

a block 𝐵𝑘−2 in view 𝑘 , then 𝐵𝑘−2 is uniquely extensible.

Proof. Suppose an honest replica 𝑝 received 𝑓 +1 ⟨commit, 𝐵𝑘−2, 𝑘⟩
messages for block 𝐵𝑘−2 in view 𝑘 and commits a block 𝐵𝑘−2. A set

𝑅 of at least 𝑑 + 1 honest replicas pre-committed 𝐵𝑘−2 in view 𝑘 .

Suppose for the sake of contradiction 𝐵𝑘−2 is not uniquely ex-

tensible. Then at some point 𝐵′
𝑘−2 is extended by some block 𝐵′

𝑘−1.
For 𝐵′

𝑘−1 to be certified, at least one honest and prompt replica, say

replica 𝑝 ′, has to vote for 𝐵′
𝑘−1 in iteration 𝑘 − 1. Let 𝑡 be the time

when replica 𝑝 ′ votes for 𝐵′
𝑘−1 in view 𝑘 − 1. However, if replica

Local state. A replica 𝑝 keeps track of all valid iteration-𝑘 blocks in a set B𝑘 .

(1) Propose and wait. Arbitrarily select a certified block 𝐵𝑘−1 ∈ B𝑘−1. Create 𝐵𝑘 := ⟨𝑣, 𝑟, C(𝐵𝑘−1)⟩𝑝 and broadcast it. Wait for 2Δ
time.

(2) Vote. Let 𝐵𝑘 be the best ranked block in B𝑘 . If replica 𝑝 has not voted for 𝐵𝑘 , vote for 𝐵𝑘 and forward it to all replicas. If multiple

blocks tie for the best rank, vote for and forward all of them. Repeat this step until a certificate C(𝐵𝑘) for some 𝐵𝑘 is received.

(3) Forward certificates. Upon receiving a certificate C(𝐵𝑘), broadcast it and enter the next iteration.

(4) Pre-commit iteration (𝑘 − 2). If all valid 𝐵𝑘−1 have the same predecessor block 𝐵𝑘−2, pre-commit 𝐵𝑘−2 and broadcast

⟨commit, 𝐵𝑘−2, 𝑘⟩𝑝 to all replicas. ⊲ This step can be executed anytime after Step 1.

(5) Commit: On receiving ⟨commit, 𝐵𝑘 , 𝑘 + 2⟩ from 𝑓 + 1 replicas, commit 𝐵𝑘 and all its ancestors.

Figure 1: Dfinity protocol under mobile-sluggish fault model.

𝑝 ′ votes for 𝐵′
𝑘−1 at time 𝑡 in view 𝑘 − 1, at least 𝑓 + 1 honest and

prompt replicas will receive 𝐵′
𝑘−1 at time 𝑡 + Δ time before they

pre-commit in view 𝑘 . At least one of these prompt replicas belongs

to set 𝑅 and would not pre-commit. A contradiction. □

Theorem 2 (Safety). Honest replicas always commit the same
block 𝐵𝑘 for each view 𝑘 .

Proof. Suppose an honest replica 𝑝 commits a block 𝐵𝑘 in view

𝑗 ≥ 𝑘 + 2 by committing block 𝐵 𝑗−2 and another honest replica 𝑝 ′

commits 𝐵′
𝑘
in view 𝑗 ′ ≥ 𝑘 + 2 by committing 𝐵 𝑗 ′−2. Due to the

commit rule, 𝐵 𝑗−2 and𝐵 𝑗 ′−2 are both uniquely extensible (Lemma 1).

If 𝑗 = 𝑗 ′, 𝐵 𝑗−2 and 𝐵 𝑗 ′−2 must be the same block (and extend the

same 𝐵𝑘) in order for both to be uniquely extensible. Else, without

loss of generality, assume 𝑗 ′ > 𝑗 . Since 𝐵 𝑗−2 is uniquely extensible,

𝐵 𝑗 ′−2 extends 𝐵 𝑗−2, and the two blocks extend the same 𝐵𝑘 . □

Theorem 3 (Liveness). If the leader of view 𝑘 is honest and
prompt, view-𝑘 block 𝐵𝑘 is committed at the end of view 𝑘 + 2.

Proof. Since an honest leader does not equivocate, the block

proposed by the honest leader is uniquely extensible. If the leader

of view 𝑘 is honest, block 𝐵𝑘 is uniquely extensible. Moreover, if

the leader is prompt, 𝑓 + 1 honest and prompt replicas will vote for

𝐵𝑘 and hence will be committed at the end of view 𝑘 + 2. □

5 STREAMLET UNDER MOBILE SLUGGISH
FAULT MODEL

We now explain how to make Streamlet [4] secure under mobile

sluggish fault model using our guideline (refer Figure 2). In each

view 𝑒 , a designated leader 𝐿𝑒 proposes a block 𝐵𝑘 by extending on a

longest certified chain. Replicas vote on block 𝐵𝑘 only if 𝐵𝑘 extends

the longest certified chain it has seen so far. An honest replica 𝑝

pre-commits 𝐵𝑘 and sends commitmessage for 𝐵𝑘 if it has observed

six consecutive blocks 𝐵𝑘 though 𝐵𝑘+5 are certified and does not

detect certification of an equivocating block at these same 6 lengths.

Observe that this condition was sufficient for Streamlet to commit

block 𝐵𝑘 . Since, Streamlet makes decision based on certification of

equivocating block and it already makes decision on blocks that

are six-block deep, as per our guideline, the protocol only needs to

wait 𝑓 + 1 commit message before committing.

5.1 Safety and Liveness
Lemma 4. If block 𝐵𝑘 is certified in view 𝑒 , then 𝑓 +1 honest replicas

must have received C𝑣 (𝐵𝑘−1) by the beginning of view 𝑒 + 2 where
𝐵𝑘 extends 𝐵𝑘−1.

Proof. Since 𝐵𝑘 is certified in view 𝑒 , at least one honest and

prompt replica (say replica 𝑝) has voted for 𝐵𝑘 in the vote phase

in view 𝑒 . Replica 𝑝’s vote arrives a set of 𝑓 + 1 honest and prompt

replicas by the beginning of view 𝑒 + 1 and receive C𝑣 (𝐵𝑘−1). Triv-
ially, 𝑓 + 1 honest replicas receive C𝑣 (𝐵𝑘−1) by the the beginning

of view 𝑒 + 2.

□

Lemma 5. Suppose there is a certified chain in honest view con-
taining 2 adjacent blocks 𝐵𝑘 and 𝐵𝑘+1 with consecutive view numbers
𝑒 and 𝑒 + 1, respectively, then no block of height 𝑘 on an view greater
than 𝑒 + 2 can be certified in an honest view.

Proof. By Lemma 4 , 𝑓 + 1 honest replicas have observed the

predecessor block 𝐵𝑘 of block 𝐵𝑘+1 by the beginning of view 𝑒 + 3.

Hence 𝑓 + 1 replicas will not vote for an equivocating block at

height 𝑘 or lower in an view 𝑒 + 3 or greater. Hence no block of

length 𝑘 or less and view number greater than 𝑒 + 2 can be certified

in an honest view. □

Theorem 6 (Safety). Suppose two certified chains containing
𝐵𝑘...𝑘+5 and 𝐵′

𝑘′...𝑘′+5 both trigger commit rule, then it must be that
one of these blocks must extends the other.

Proof. Suppose for the sake of contradiction that the above is

not true and two conflicting chains 𝐵𝑘...𝑘+5 and 𝐵′
𝑘′...𝑘′+5 trigger

commit rule i.e., 𝐵𝑘 ≠ 𝐵′
𝑘
and 𝐵𝑘+1 ≠ 𝐵′

𝑘+1. Suppose 𝐵𝑘 through

𝐵𝑘+5 were proposed in views 𝑒 through 𝑒 + 5. Given than 𝐵𝑘 trigger

commit rule, a set 𝑅 of at least 𝑑 + 1 honest replicas pre-commit

𝐵𝑘 and all replicas in 𝑅 observed certification of blocks 𝐵𝑘 through

𝐵𝑘+5 and no certification of equivocating blocks at height 𝑘 through

𝑘 + 5.

Since 𝐵′
𝑘′

is committed, both 𝐵′
𝑘
and 𝐵′

𝑘+1 must have been cer-

tified. By Lemma 5, no block of height 𝑘 can be certified in view

𝑒 + 3 or greater. Thus, if block 𝐵′
𝑘+1 was certified, it must be in

view 𝑒 ′ ≤ 𝑒 + 2. However, if 𝐵′
𝑘+1 was certified, by Lemma 4, 𝑓 + 1

honest replicas would have received a certificate for 𝐵′
𝑘
by view

𝑒 ′ + 2. At least one of them, say replica 𝑝 belongs to set 𝑅. Thus,

replica 𝑝 would not pre-commit and 𝐵𝑘 would not be committed.

A contradiction. □

Theorem 7 (Liveness). If there are 8 honest and prompt leaders
in consecutive views 𝑒, 𝑒 + 1, . . . , 𝑒 + 7, then a new block that was not
committed before view 𝑒 will be committed.

Proof. Since honest leaders do not equivocate and there are

𝑓 + 1 honest and prompt replicas at any time, there will be a series

For every view e = 1, 2, . . . :

(1) Propose. At the beginning of view 𝑒 , view 𝑒’s leader 𝐿 does the following: The leader 𝐿 broadcasts ⟨propose, 𝐵𝑘 , 𝑒, C𝑣 (𝐵𝑘−1)⟩𝐿
where 𝐵𝑘 extends 𝐵𝑘−1 and 𝐵𝑘−1 is one of the longest certified chains 𝐿 has seen so far.

(2) Vote. During view 𝑒 , every replica 𝑝 does the following. Upon receiving the first valid proposal ⟨propose, 𝐵𝑘 , 𝑒, C𝑣 (𝐵𝑘−1)⟩𝐿 from

view 𝑒’s leader 𝐿, vote for the proposed block iff it extends from one of the longest certified chains it has seen at the time. To vote

for the proposed block 𝐵𝑘 , replica 𝑖 simply broadcasts ⟨vote, 𝑒, 𝐵𝑘 ⟩𝑝 .
(3) Pre-Commit. On observing last 6 blocks with consecutive view numbers and moreover no conflicting block has been certified

at these same 6 lengths, then, pre-commit the prefix of this chain removing the last 5 blocks. Let 𝐵𝑘 be the prefix, then broadcast

⟨commit, 𝑒 ′, 𝐵𝑘 ⟩𝑝 .
(4) Commit. On receiving ⟨commit, 𝑒 ′, 𝐵𝑘 ⟩ from 𝑓 + 1 distinct replicas, commit 𝐵𝑘 and all its ancestors.

Figure 2: Streamlet under mobile-sluggish model.

of blocks proposed by leaders of view 𝑒 + 2 through 𝑒 + 7. Thus,

block proposed by honest leader of view 𝑒 + 2 will committed. □

6 OPTSYNC UNDER MOBILE SLUGGISH
FAULT MODEL

OptSync [9] is an optimistically responsive synchronous protocol

that commits at network speed when some optimistic conditions are
met i.e, ⌊3𝑛/4⌋ + 1 replicas behave honestly. It contains two distinct
commit rules that exist simultaneously–(i) the optimistic commit

rule that commits immediately when ⌊3𝑛/4⌋ + 1 replicas vote for

a block (ii) synchronous commit rule that commit within 2Δ from

voting and detecting no equivocation. A set of ⌊3𝑛/4⌋ + 1 votes for

a block 𝐵𝑘 forms a unique certificate , we call responsive certificate
(denoted by C3/4

𝑣 (𝐵𝑘)). We use the notion of chain certificate and

ranking introduced in OptSync for ranking chains. Due to space

constraints, we refer readers to OptSync [9] for more details on

chain certificates and chain ranking rules.

We can follow the guidelines presented in Section 3 to make

OptSync mobile-sluggish secure at the expense of slower commits.

In order to facilitate responsive commits, we first present an alterna-

tive direction, we call two-blames technique, to support responsive

commits that helps in propagating the unique certificate among

prompt replicas to ensure a conflicting certificate cannot be formed

at some later point in time.

Two blames technique. First, the protocol is modified to commit

when a set 𝑅 of 𝑓 + 1 replicas say they have the unique certificate.

Second, the fallback protocol (e.g., view-change protocol) is modified

to include two types of blame messages. When a replica receives

𝑓 + 1 blame messages (blame certificate) , it forwards the blame
certificate along with the unique certificate and sends second blame
message (e.g., quit-view message in Figure 4). If a replica receives

𝑓 + 1 quit-view (quit-view certificate) messages at time 𝑡 , at least

one of them, say replica 𝑝 , should be prompt at time 𝑡 . Since, replica

𝑝 forwarded a blame certificate at time ≤ 𝑡 , prompt replicas at time

𝑡 + Δ will receive the blame certificate. At least one of the prompt

replicas at time 𝑡 + Δ belongs to set 𝑅 which broadcasts the unique

certificate. Within next Δ time, 𝑓 + 1 prompt replicas receive the

unique certificate by time 𝑡 + 2Δ. The safety of the protocol relies

on the fact that these 𝑓 + 1 honest replicas that received the unique

certificate do not vote for conflicting values.

Using the above guideline, we present mobile-sluggish secure

version of OptSync is presented in Figures 3 and 4. In order to make

the synchronous commit rule secure in the presence of mobile-

sluggish faults, a replica waits for a double certificate for block 𝐵𝑘
and waits for 2Δ time and no equivocation before pre-committing.

Waiting for double certificate for block 𝐵𝑘 ensures 𝑓 + 1 honest

replicas receive C𝑣 (𝐵𝑘) before view-change is executed. Note that
the optimistic commit rule commits immediately. As per our guide-

line, we modify the view-change protocol of OptSync with the two

blames technique (refer Figure 4) to propagate the unique respon-

sive certificate. In addition, the protocol also requires a replica to

wait for 𝑓 + 1 pre-commits before committing to prevent sluggish

replicas from committing before hearing from majority replicas.

Observe that the protocol has two different commit messages i.e.,

sync-commit for synchronous pre-commits and resp-commit for
responsive pre-commits.

6.1 Safety and Liveness
Claim 8. If a block 𝐵𝑘 is pre-committed directly in view 𝑣 using

the responsive pre-commit rule, then a responsive certificate for an
equivocating block 𝐵′

𝑘′
does not exist in view 𝑣 .

Proof. If replica 𝑟 pre-commits 𝐵𝑘 due to the responsive pre-

commit rule in view 𝑣 then, 𝑟 must have received ⌊3𝑛/4⌋ + 1 votes,

i.e., C3/4
𝑣 (𝐵𝑘), forming a quorum for 𝐵𝑘 in view 𝑣 . A simple quo-

rum intersection argument shows that a responsive certificate for

equivocating block 𝐵′
𝑘′

cannot exist. □

Claim 9. If 𝑑 + 1 honest replicas pre-commit 𝐵𝑘 in view 𝑣 using
synchronous pre-commit rule, then (i) no equivocating block is certified
in view 𝑣 (ii) 𝑓 + 1 honest replicas lock on a chain certificate CC such
that tip(CC) extends 𝐵𝑘 before entering view 𝑣 + 1.

Proof. Suppose a set 𝑅 of 𝑑 + 1 honest replicas pre-commit a

block 𝐵𝑘 using synchronous pre-commit rule. Let replica 𝑟 ∈ 𝑅 be

the earliest replica that pre-committed at time 𝑡 . Replica 𝑟 must

have received 𝑓 + 1 proposals for 𝐵𝑘+1 (which contains C𝑣 (𝐵𝑘))
by time 𝑡 − 2Δ. At least one of them, say replica 𝑟 ′, is honest and
prompt at time 𝑡 − 2Δ. Let 𝑅′

be the set of 𝑓 + 1 honest and prompt

replicas at time 𝑡 − Δ. Every replica in 𝑅′
receives the proposal for

𝐵𝑘+1 by time 𝑡 − Δ.
Observe that no replica in 𝑅′

will vote for equivocating blocks

after time 𝑡 −Δ. If any replica in 𝑅′
voted for an equivocating block

before 𝑡 − Δ, its broadcast of the equivocating propose message

will reach all honest replicas that are prompt at time 𝑡 by time 𝑡 .

At least one replica in 𝑅 would be prompt at time 𝑡 . This replica

would have detected an equivocation and would not pre-commit; a

Let 𝑣 be the view number and replica 𝐿 be the leader of the current view. While in view 𝑣 , a replica 𝑟 runs the following steps in iterations:

(1) Propose. If replica 𝑟 is the leader 𝐿, upon receiving C𝑣 (𝐵𝑘−1), it broadcasts ⟨propose, 𝐵𝑘 , 𝑣, C𝑣 (𝐵𝑘−1)⟩𝐿 where 𝐵𝑘 extends 𝐵𝑘−1.
(2) Vote. Upon receiving the first proposal ⟨propose, 𝐵𝑘 , 𝑣, C𝑣 (𝐵𝑘−1)⟩𝐿 with a valid view 𝑣 certificate for 𝐵𝑘−1 (not necessarily from 𝐿)

where 𝐵𝑘 extends 𝐵𝑘−1, forward the proposal to all replicas, broadcast a vote in the form of ⟨vote, 𝐵𝑘 , 𝑣⟩𝑟 . Set commit-timer𝑣,𝑘−2 to
2Δ and start counting down.

(3) Pre-commit. Replica r pre-commits block 𝐵𝑘 using either of the following rules if r is still in view v:

(a) Responsive. If ⌊3𝑛/4⌋ + 1 votes for 𝐵𝑘 , i.e., C
3/4
𝑣 (𝐵𝑘) have been received, pre-commit 𝐵𝑘 and broadcast ⟨resp-commit, 𝐵𝑘 , 𝑣⟩𝑟 .

(b) Synchronous. If commit-timer𝑣,𝑘 reaches 0, pre-commit 𝐵𝑘 and broadcast ⟨sync-commit, 𝐵𝑘 , 𝑣⟩.
(4) (Non-blocking) Commit. If replica 𝑟 is still in view 𝑣 , 𝑟 commits 𝐵𝑘 using the following rules:

(a) Responsive. On receiving 𝑓 + 1 resp-commit messages for 𝐵𝑘 in view 𝑣 , commit 𝐵𝑘 and all its ancestors. Stop commit-timer𝑣,𝑘 .
(b) Synchronous. On receiving 𝑓 + 1 sync-commit messages for 𝐵𝑘 , commit 𝐵𝑘 and all its ancestors.

(5) (Non-blocking) Blame and quit view.
- Blame. For 𝑝 > 0, if fewer than 𝑝 proposals trigger 𝑟 ’s votes in (2𝑝 +4)Δ time in view 𝑣 broadcast ⟨blame, 𝑣⟩𝑟 . If leader equivocation
is detected, broadcast ⟨blame, 𝑣⟩𝑟 along with the equivocating proposals.

- Quit view on 𝑓 + 1 blame messages. Upon gathering 𝑓 + 1 distinct blame messages, broadcast ⟨quit-view, 𝑣,𝐶𝐶⟩ along with 𝑓 + 1

blame messages where CC is the highest ranked chain certificate known to 𝑟 . Abort all view 𝑣 timers, and stop voting in view 𝑣 .

Figure 3: OptSync Steady state protocol under mobile sluggish model.

Let 𝐿 and 𝐿′ be the leader of view 𝑣 and 𝑣 + 1, respectively.

(1) Status. On receiving 𝑓 + 1 quit-view messages, quit view 𝑣 , set view-timer𝑣+1 to 2Δ and start counting down. When view-timer𝑣+1
expires, update its chain certificate CC to the highest possible rank. Set lock𝑣+1 to CC and send ⟨status, lock𝑣+1⟩𝑟 to 𝐿′. Enter view
𝑣 + 1.

(2) NewView.Upon receiving a setS of 𝑓 +1 distinct statusmessages after entering view 𝑣+1, broadcast ⟨new-view-resp, 𝑣+1, lock𝑣+1⟩𝐿′
along with S where lock𝑣+1 is highest ranked chain certificate in S.

(3) First Vote. Upon receiving the first ⟨new-view-resp, 𝑣 + 1, lock′⟩𝐿′ along with S, if lock′ has a highest rank in S, update lock𝑣+1 to
lock′, broadcast ⟨new-view-resp, 𝑣 + 1, lock′⟩𝐿′ , and ⟨vote, tip(lock′), 𝑣 + 1⟩𝑟 .

Figure 4: The view-change protocol with mobile sluggish faults

contradiction. Thus, an equivocating block will not get any vote

from 𝑅′
in view 𝑣 and will not be certified in view v. This proves

part (i) of the claim.

Again, observe that no replica in 𝑅′
has quit view 𝑣 by time

𝑡 − Δ. Otherwise, at least one replica in 𝑅 would have seen 𝑓 + 1

blame message and wouldn’t pre-commit. Thus, every replica in 𝑅′

receives C𝑣 (𝐵𝑘) before quitting view 𝑣 . By part (i) an equivocating

certificate does not exist in view 𝑣 . This implies, every replica in

𝑅 locks on a chain certificate CC such that tip(CC) extends 𝐵𝑘
before entering view 𝑣 + 1. □

Claim 10. If an honest replica commits a block 𝐵𝑘 in view 𝑣 using
synchronous commit rule, then (i) no equivocating block is certified
in view 𝑣 (ii) 𝑓 + 1 honest replicas lock on a chain certificate CC such
that tip(CC) extends 𝐵𝑘 before entering view 𝑣 + 1.

Proof. If an honest replica commits a block 𝐵𝑘 in view 𝑣 using

synchronous commit rule, then at least 𝑑 + 1 honest replicas pre-

commit 𝐵𝑘 in view 𝑣 using synchronous pre-commit rule. The rest

of the proof follows trivially from Claim 9. □

Claim 11. If an honest replica commits a block 𝐵𝑘 in view 𝑣 using
responsive commit rule, then there does not exist a chain certificate
CC in view 𝑣 , such that CC > (C3/4

𝑣 (𝐵𝑘),⊥) where a block in CC
equivocates 𝐵𝑘 .

Proof. Suppose replica 𝑟 receives a set 𝑅 of 𝑓 + 1 resp-commit
messages for block 𝐵𝑘 in view 𝑣 and commits using responsive com-

mit rule. At least one of them is from an honest replica. By Claim 8,

no equivocating block can have a responsive block certificate. So all

responsive block certificates must extend 𝐵𝑘 . Since we assume that

CC > (C3/4
𝑣 (𝐵𝑘),⊥) then it must be that either CC is of the form

(C3/4
𝑣 (𝐵𝑘), C

1/2
𝑣 (𝐵ℓ)) and by definition 𝐵ℓ extends 𝐵𝑘 , or CC is of

the form (C3/4
𝑣 (𝐵𝑘′), C

1/2
𝑣 (𝐵ℓ′)) where 𝐵𝑘′ extends 𝐵𝑘 and again

by transitivity 𝐵ℓ′ must extend 𝐵𝑘 . □

Claim 12. If an honest replica commits a block 𝐵𝑘 using responsive
commit rule in view 𝑣 , then 𝑓 +1 honest replicas lock a chain certificate
CC such that tip(CC) extends 𝐵𝑘 before entering view 𝑣 + 1.

Proof. Suppose replica 𝑟 commits a block 𝐵𝑘 using responsive

commit rule in view 𝑣 . Then, a set 𝑅 of 𝑑 + 1 honest replicas pre-

commit 𝐵𝑘 using responsive pre-commit rule in view 𝑣 . Since, quit-

view happens after a pre-commit, whenever replicas in 𝑅 quit view

𝑣 , they will send a chain certificate CC such that tip(CC) extends
𝐵𝑘 .

Let replica 𝑟1 be the earliest honest replica that enters view 𝑣 + 1

at time 𝑡 . Replica 𝑟1 must have received quit-view message from

𝑓 + 1 distinct replicas at time 𝑡 − 2Δ (due to 2Δ wait during view-

change). At least one of them, say replica 𝑟2, must be honest and

prompt at time 𝑡 − 2Δ. Replica 𝑟2 forwards quit-view messages at

time 𝑡 − 2Δ.

Denote the set of 𝑓 + 1 honest and prompt replicas at time 𝑡 − Δ
by 𝑅1. Replicas in 𝑅1 receive 𝑟2’s quit-view message by time 𝑡 and

broadcasts quit-view messages. At least one of the replicas in 𝑅

must be prompt at time 𝑡−Δ. This replica sends a quit-viewmessage

containing CC. Again, denote the set of 𝑓 + 1 honest and prompt

replicas at time 𝑡 by 𝑅2. The quit-view message containing CC
arrives replicas in 𝑅2 by time 𝑡 . We now prove that set 𝑅2 is the

required set that satisfies the claim. Since, no honest replicas entered

a higher view using synchronous quit view rule, replicas in 𝑅2 will

receive and lock CC before entering view 𝑣 + 1. □

Lemma 13. If a block 𝐵𝑘 is committed in view 𝑣 , 𝑓 + 1 honest
replicas lock on a chain certificate CC such that tip(CC) extends 𝐵𝑘
before entering view 𝑣 + 1.

Proof. Straight forward from Claim 10 part (ii) and Claim 12.

□

Lemma 14 (Uniqe Extensibility). If an honest replica directly
commits a block 𝐵𝑘 in view 𝑣 , and C𝑣′ (𝐵𝑘′) is a view 𝑣 ′ > 𝑣 block
certificate, then 𝐵𝑘′ extends 𝐵𝑘 . Moreover, all honest replicas have
lock𝑣′ such that tip(lock𝑣+1) extends 𝐵𝑘 .

Proof. The proof is by induction on views 𝑣 ′ > 𝑣 . For a view

𝑣 ′, we prove that if C𝑣′ (tip(lock′)) exists then it must extend 𝐵𝑘 . A

simple induction shows that all later block certificates must also

extend tip(lock′), this follows directly from the vote rule.

For the base case, where 𝑣 ′ = 𝑣 +1, the proof that C𝑣′ (tip(lock′))
extends 𝐵𝑘 follows from Lemma 13 because the only way such

a block can be certified is some honest votes for it. However, all

honest replicas are locked on a block that extends 𝐵𝑘 and a chain

certificate with a higher rank for an equivocating block does not

exist. Thus, no honest replica will first vote for a block that does

not extend 𝐵𝑘 . The second part follows directly from Lemma 13.

Given that the statement is true for all views below 𝑣 ′, the proof
that C𝑣′ (tip(lock′)) extends 𝐵𝑘 follows from the induction hypoth-

esis because the only way such a block can be certified is if some

honest votes for it. An honest party with a lock lock will vote only

if tip(lock𝑣′) has a valid block certificate and lock ≥ lock𝑣′ . Due to
Lemma 13 and the induction hypothesis on all block certificates of

view 𝑣 < 𝑣 ′′ < 𝑣 ′ is must be that C𝑣′ (tip(lock)) extends 𝐵𝑘 . □

Theorem 15 (Safety). Honest replicas do not commit conflicting
blocks for any height ℓ .

Proof. Suppose for contradiction that two distinct blocks 𝐵ℓ and

𝐵′
ℓ
are committed at height ℓ . Suppose 𝐵ℓ is committed as a result

of 𝐵𝑘 being directly committed in view 𝑣 and 𝐵′
ℓ
is committed as a

result of 𝐵′
𝑘′

being directly committed in view 𝑣 ′. This implies 𝐵𝑘
extends 𝐵ℓ and 𝐵

′
𝑘′

extends 𝐵′
ℓ
. Without loss of generality, assume

𝑣 ≤ 𝑣 ′; if 𝑣 = 𝑣 ′, further assume 𝑘 ≤ 𝑘 ′. If 𝑣 = 𝑣 ′ and 𝑘 ≤ 𝑘 ′,
by Claim 11 and Claim 10, 𝐵′

𝑘′
extends 𝐵𝑘 . Similarly, if 𝑣 < 𝑣 ′, by

Lemma 14, 𝐵′
𝑘′

extends 𝐵𝑘 . Thus, 𝐵
′
ℓ
= 𝐵ℓ . □

7 EXISTING MOBILE SLUGGISH PROTOCOLS
7.1 Sync HotStuff
Sync HotStuff [2] presents a simple synchronous consensus pro-

tocol. In Sync HotStuff, upon receiving a block 𝐵𝑘 , a replica votes

for the block and waits for 2Δ time. If no equivocation has been

detected during the wait, the replica commits 𝐵𝑘 immediately. In

the same work, a mobile sluggish version of the protocol was pre-

sented. In mobile-sluggish version, a replica commits a block 𝐵𝑘−2
upon receiving a proposal for block 𝐵𝑘 , waiting for 2Δ time and

receiving 𝑓 + 1 commit messages. Essentially, this implies a replica

waits for two consecutive certificates on a block 𝐵𝑘−2 and waits

for 2Δ time and 𝑓 + 1 commit messages. Hence, mobile-sluggish

Sync HotStuff follows our guideline. In addition, this strengthens

our guideline.

7.2 Optimal Latency BFT under Mobile
Sluggish Fault Model

Optimal latency BFT protocol [3] presents an optimal latency syn-

chrous BFT protocol that commits in Δ + 𝑂 (𝛿) time. At a high

level, the protocol is as follows: On receiving a block proposal 𝐵𝑘 ,

a replica sends an ack message and waits for Δ time. After Δ wait,

if the replica does not hear equivocation, it votes for 𝐵𝑘 . Voting for

𝐵𝑘 after sending an ack message and Δ wait ensure uniqueness of

certificate for block 𝐵𝑘 . On receiving a certificate for 𝐵𝑘 , the replica

commits immediately.

The same paper presents mobile-sluggish version of the optimal

latency BFT. The synchronous protocol is modified as follows. First

the replica waits for 𝑓 + 1 ack messages for block 𝐵𝑘 and waits

for Δ time. After Δ wait, if the replica does not hear an equivoca-

tion, it votes for 𝐵𝑘 . On receiving a certificate for 𝐵𝑘 , the replica

pre-commits and broadcasts commit messages. A replica commits

immediately if it receives 𝑓 + 1 commit messages.

Observe that a replica commits immediately on receiving 𝑓 + 1

commit messages and does not wait for propagation of the unique

certificate for 𝐵𝑘 . As a result, the view-change phase of this protocol

requires two blames technique to ensure the unique certificate for

𝐵𝑘 is received by 𝑓 + 1 honest replicas. This protocol follows our

guideline.

REFERENCES
[1] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2018. Dfinity Consen-

sus, Explored. IACR Cryptol. ePrint Arch. 2018 (2018), 1153.
[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.

Sync hotstuff: Simple and practical synchronous state machine replication. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 106–118.

[3] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2020. Optimal good-

case latency for byzantine broadcast and state machine replication. arXiv preprint
arXiv:2003.13155 (2020).

[4] Benjamin Y Chan and Elaine Shi. 2020. Streamlet: Textbook streamlined

blockchains. In Proceedings of the 2nd ACM Conference on Advances in Finan-
cial Technologies. 1–11.

[5] TH Hubert Chan, Rafael Pass, and Elaine Shi. [n.d.]. Pili: A simple, fast, and
robust family of blockchain protocols. Technical Report. Cryptology ePrint Archive,
Report 2018/980, 2018. https://eprint. iacr. org

[6] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

Presence of Partial Synchrony. J. ACM 35, 2 (April 1988), 288–323. https://doi.

org/10.1145/42282.42283

[7] Yue Guo, Rafael Pass, and Elaine Shi. 2019. Synchronous, with a chance of partition

tolerance. In Annual International Cryptology Conference. Springer, 499–529.
[8] TimoHanke, MahnushMovahedi, and DominicWilliams. 2018. Dfinity technology

overview series, consensus system. arXiv preprint arXiv:1805.04548 (2018).
[9] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. 2020. On the Op-

timality of Optimistic Responsiveness. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 839–857.

https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283

	Abstract
	1 Introduction
	2 Model and Notations
	3 Tolerating Mobile Sluggish Faults: Key Idea
	4 Dfinity under Mobile Sluggish Fault Model
	4.1 Safety and Liveness

	5 Streamlet under Mobile Sluggish Fault model
	5.1 Safety and Liveness

	6 OptSync under Mobile Sluggish Fault Model
	6.1 Safety and Liveness

	7 Existing mobile sluggish protocols
	7.1 Sync HotStuff
	7.2 Optimal Latency BFT under Mobile Sluggish Fault Model

	References

