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Abstract
We present Hyperproofs, the first vector commitment (VC)
scheme that is efficiently maintainable and aggregatable. Sim-
ilar to Merkle proofs, our proofs form a tree that can be ef-
ficiently maintained: updating all n proofs in the tree after a
single leaf change only requires O(logn) time. Importantly,
unlike Merkle proofs, Hyperproofs are efficiently aggregat-
able, anywhere from 10× to 41× faster than SNARK-based
aggregation of Merkle proofs. At the same time, an individ-
ual Hyperproof consists of only logn algebraic hashes (e.g.,
32-byte elliptic curve points) and an aggregation of b such
proofs is only O(log(b logn))-sized. Hyperproofs are also
reasonably fast to update when compared to Merkle trees
with SNARK-friendly hash functions.

As another benefit over Merkle trees, Hyperproofs are ho-
momorphic: digests (and proofs) for two vectors can be homo-
morphically combined into a digest (and proofs) for their sum.
Homomorphism is very useful in emerging applications such
as stateless cryptocurrencies. First, it enables unstealability, a
novel property that incentivizes proof computation. Second,
it makes digests and proofs much more convenient to update.

Finally, Hyperproofs have certain limitations: they are not
transparent, have linear-sized public parameters, are slower to
verify, and have larger aggregated proofs and slower verifica-
tion than SNARK-based approaches. Nonetheless, end-to-end,
aggregation and verification in Hyperproofs is 10× to 41×
faster than in SNARK-based Merkle trees.

1 Introduction

Vector commitment (VC) schemes [21, 39] such as Merkle
trees [40] are fundamental building blocks in many protocols.
In a VC scheme, a prover computes a succinct digest d of a
vector a = [a1, . . . ,an] and proofs π1, . . . ,πn for each position.
A verifier who has the digest d can later verify a proof πi
that ai is the correct value at position i. Some VCs, such as
Merkle trees, are maintainable: when the vector changes all
proofs can be efficiently updated in sublinear time, rather than

recomputed from scratch in linear time. Other VCs, such as
Pointproofs [28], are aggregatable: the prover can take several
proofs πi for i ∈ I and efficiently aggregate them into a single,
succinct proof πI .

Unfortunately, no current VC scheme is both maintainable
and aggregatable; at least not efficiently. Yet emerging appli-
cations such as stateless cryptocurrencies [12,22,28,41,52,56,
58] rely on dedicated nodes to efficiently maintain all proofs
and also on miners to efficiently aggregate proofs. While
generic argument systems (e.g., SNARKs [30, 49]) can be
used to add aggregation to maintainable VCs such as Merkle
trees, this is too slow in practice (see §5.2). This brings us
to this paper’s main concern: Can we build an efficient VC
that is both maintainable and aggregatable? In this paper,
we answer this positively and present Hyperproofs. Similar
to Merkle trees, Hyperproofs are logn-sized and determine a
tree. This makes updating all proofs very efficient in logarith-
mic time. However, Hyperproofs are built from polynomial
commitments [32,46] rather than hash functions such as SHA-
256. This enables a natural aggregation algorithm that is 10×
to 41× faster than “SNARKing" multiple Merkle proofs.

In addition to aggregation and maintainability, Hyperproofs
have another very useful property: homomorphism. Specif-
ically, trees (and digests) for two vectors can be combined
into a single tree (and digest) for their sum. This has sev-
eral applications. First, homomorphism allows us to obtain
unstealability, a property which incentivizes proof computa-
tion in applications such as stateless cryptocurrencies [63].
In a nutshell, unstealability allows a prover to watermark
the proofs she computes with her identity, in an irreversible
manner. This way, honest provers can be rewarded for the
proofs they compute while malicious provers cannot steal
other provers’ proofs. Second, homomorphism makes updat-
ing digests (and Hyperproofs) more convenient than updating
Merkle roots (and proofs), which requires having the proof(s)
for the changed position(s) in the vector. Third, homomor-
phism allows authenticating data in a streaming setting [48].

Challenges. In designing Hyperproofs, we surmount three
key challenges. First, computing n proofs in Papamanthou-



Shi-Tamassia (PST) polynomial commitments [46] takes
O(n2) time and is too slow. Second, aggregation of PST proofs
is difficult without generic SNARKs [30,49], which would be
too expensive. Third, unstealable proofs must remain main-
tainable and aggregatable. This precludes solutions based on
computing SNARKs over proofs which, in addition to being
slow (see §5.2), would sacrifice updatability (see “Strawmen”
in §3.4). Furthermore, unstealable proofs must continue to ver-
ify with respect to one global digest. This precludes solutions
that embed the identity of the prover inside the vector, which
results in as many digests as there are provers (and would
only be practical in a small-scale, permissioned setting).
Evaluation. In §5.1, we show Hyperproofs are small (1.44
KiB), they verify quickly (17.4 milliseconds) and are fast to
maintain (2.6 milliseconds per update). In §5.2, we show Hy-
perproof aggregation is much faster than Merkle proof aggre-
gation: 10× faster when using Poseidon hashes [29], which
likely need more cryptanalysis, and 41× faster when using
provably-secure Pedersen hashes. However, our faster aggre-
gation comes at a cost of slower verification for aggregated
proofs and a larger 52 KiB aggregate proof size. Nonetheless,
when considering the end-to-end aggregation and verification
time in stateless cryptocurrencies, Hyperproofs remain 10×
to 41× faster and outperform Merkle trees (see §5.3).
Limitations. To commit to a vector of size n, Hyperproofs
requires public parameters consisting of 2n− 1 group ele-
ments, which must be generated via a trusted setup, typically
decentralized via multi-party computation protocols [15]. In
future work, we hope to have a transparent setup by using
assumptions in hidden-order groups. We also do not explore
the subtleties of fully-integrating unstealable proofs into a
statelessly-validated cryptocurrency. Lastly, our macrobench-
marks only measure the computational overhead of VCs that
arises on the critical path to a consensus decision. While our
results show Hyperproofs lead to 10× faster decisions, we
do not claim this is sufficient to make the stateless setting
practical.

1.1 Overview of Techniques

Vectors as multilinear extensions (MLEs). We build upon
previous work [67,68] that represents a vector of size n= 2ℓ as
a multilinear extension (MLE) polynomial. For example, the
MLE of a= [5,2,8,3] is f (x2,x1)= 5(1−x2)(1−x1)+2(1−
x2)x1 + 8x2(1− x1)+ 3x2x1. Note that f correctly “selects”
the right ai given the binary expansion of i as input: f (0,0) =
5, f (0,1) = 2, f (1,0) = 8 and f (1,1) = 3.

PST commitments to MLEs. To commit to a vector,
we compute a Papamanthou-Shi-Tamassia (PST) commit-
ment [46] to its MLE (see §2.2) . For example, the
PST commitment to f above is C = g f (s1,s2)

1 ∈ G1, where
(s1,s2) ∈ Z2

p are secret points encoded in the public pa-
rameters of the scheme and g1 is the generator of G1.

For vectors of size 4, these public parameters consist of
gs1

1 ,g1−s1
1 ,g(1−s2)(1−s1)

1 , g(1−s2)s1
1 ,gs2(1−s1)

1 ,gs2s1
1 . Importantly,

we show that the selectively-secure variant of PST commit-
ments is actually adaptively-secure when restricted to only
proving evaluations on the Boolean hypercube {0,1}ℓ (see
§2.2). This reduces our proof size compared to previous work
based on PST [67, 68].

Multilinear trees. To prove that ai is the ith value in the vec-
tor a = [a0, . . . ,an−1], we compute a PST evaluation proof for
f (iℓ, . . . , i1) = ai w.r.t. the commitment C, where (iℓ, . . . , i1) is
the binary representation of i. Unfortunately, this takes O(n)
time per position. Thus, computing all n proofs would take
O(n2) time which is prohibitive. We reduce this to O(n logn)
by computing a novel multilinear tree (MLT) of proofs us-
ing a divide-and-conquer approach. Importantly, our MLT is
maintainable: updating all proofs after a change to the vector
only requires O(logn) time.

Proof aggregation. A proof πi for ai consists of PST com-
mitments (wi,ℓ, . . . ,wi,1) ∈Gℓ

1 defined in Fig. 2, such that the
following pairing equation holds:

e(C/gai
1 ,g2) = ∏

j∈[ℓ]
e(wi, j,g

s j−i j
2 ) , (1)

where e : G1×G2→GT is a pairing and g
s j
2 ’s are additional

O(ℓ)-sized PST public parameters in G2. To aggregate b
proofs, we prove knowledge of wi, j’s that pass Eq. 1 for each i,
resulting in a succinct O(log(bℓ)) aggregated proof size. Our
key ingredient is an inner-product argument (IPA) by Bünz et
al. [17] for proving several pairing equations hold.

Homomorphism and unstealablity. As we mentioned, Hy-
perproofs are homomorphic: exponentiating a PST evaluation
proof (wi,ℓ, . . . ,wi,1) by a constant α yields a proof for posi-
tion i but in a vector whose values are multiplied by α. We ob-
serve that if α is the secret key of a proof-serving node (PSN),
this makes the proof unstealable by other nodes who do not
have α. Importantly, the proof can still be verified against the
digest C, except the verifier must also give the node’s corre-
sponding public key gα

2 : e(C/gai
1 ,g

α
2 ) = ∏ j∈[ℓ] e(wα

i, j,g
s j−i j
2 ).

As an optimization, proof-serving nodes can exponentiate the
PST public parameters by α before computing proofs. This
way, when computing a multilinear tree (MLT) with these
parameters, all proofs are implicitly unstealable and the MLT
remains maintainable.

1.2 Related work
Below, we relate our VC to previous work and summarize in
Table 1.

Merkle trees. Our proofs consist of logn (algebraic) hashes
and can be as small as Merkle proofs if using 256-bit elliptic
curves [6]. However, Hyperproofs are orders of magnitude



Table 1: Comparison with other VCs, which are not simultaneously aggregatable and maintainable (see “Agg time” and “UpdAllProofs time” columns). n is
the size of the vector, πi is a proof for position i and πI is an aggregated proof for k positions. Proof sizes and time complexities are in terms of group elements
and group exponentiations / field operations, respectively. (In RSA-based VCs [12, 20, 21, 37], we count O(ℓ) group operations as an exponentiation, where ℓ is
the bit-width of VC elements.) Items in red indicate worse performance than Hyperproofs. All schemes∗ support UpdDig and UpdProof (see Def. 2.1).

Scheme |πi| |πI | OpenAll
time

Agg
time

UpdAllProofs
time

Trans-
parent?

Homo-
morphic?

Gen
time |pp|

AMT [57] logn ××× n logn ××× logn ××× ✓ n2 n logn

aSVC [58] 1 1 n logn k log2 k n ××× ✓ n logn n

BBF [12] 1 1 n log2 n k logn n logn ×××† ××× 1 1

CF-CDH [21, 28, 37] 1 1 n2 k n ××× ✓ n2 n2

CF-RSA [20, 21, 37] 1 1 n logn k log2 k n ×××† ✓ 1 1

CFG+RSA [20] 1 1 n log2 n k logk logn n ×××† ××× 1 1

Lattice [48, 51] logn ××× n ××× logn ✓ ✓ 1 logn

Merkle logn ××× n ××× logn ✓ ××× 1 1

Merkle SNARK logn 1 n k logn log(k logn) logn ××× ××× 1 1

Pointproofs [28] 1 1 n logn k n ××× ✓ n n

Hyperproofs logn log(k logn) n logn k logn logn ××× ✓ n n

†: BBF, CF-RSA and CFG+RSA avoid the trusted setup if instantiated using class groups of imaginary quadratic order, which are known to be slower than RSA groups.
∗: Merkle trees, BBF and CFG+RSA require dynamic update hints, rather than static update keys, for digest and proof updates. Only the weakly-binding variant of CFG+RSA supports

digest updates. CF-CDH and Pointproofs have O(n)-sized update keys, which can be too large for some applications.

slower to compute and update, when compared to normal
Merkle trees hashed with SHA-256. Nonetheless, when com-
pared to aggregatable Merkle trees that use SNARK-friendly
hash functions (e.g., Poseidon-128 [29]), Hyperproofs are
only slightly slower to compute and update (see §5.3) but
have faster aggregation, homomorphism and unstealability.

SNARK-based works. Ozdemir et al. [45] explore using
SNARKs to prove knowledge of changes that update a vector
with digest d into a new vector with digest d′. Lee et al. [38]
also use SNARKs to prove correctness of state transitions in
replicated state machines, without having to send the state
changes. Neither work explores unstealability nor maintaining
and aggregating proofs efficiently. Similar to our work, ag-
gregating SNARK proofs [17] and some proof-carrying data
(PCD) schemes [16] also rely on inner-product arguments.

Algebraic VCs. Zhang et al. [67, 68] were the first to
build VCs from PST commitments to MLEs. However, their
O(logn)-sized proofs are concretely larger and do not support
updates. Some VCs have O(1)-sized proofs [12, 20, 21, 28,
35, 37, 58], which inherently require Θ(n) time to update all
proofs after a change. Aggregation and verification in these
VCs is concretely, and sometimes asymptotically, faster (see
Table 1). They also have smaller aggregated proofs. However,
these VCs are not efficiently maintainable (see §5.1), which
precludes using them in settings where provers are rewarded
to maintain proofs (see §4).

Previous maintainable VCs [48, 51, 57, 59] do not sup-
port aggregation; at least not without expensive generic argu-
ment systems (e.g., SNARKs). The lattice-based construction
from [48, 51] is also homomorphic and additionally transpar-

ent, with constant-sized public parameters. However, it is too
slow for practice and non-aggregatable. The authenticated
multipoint evaluation tree (AMT) construction from [57, 59]
can be viewed as the dual to our construction, but from uni-
variate polynomials rather than multivariate. Unfortunately, it
is non-aggregatable, its trusted setup requires O(n2) time and
it has larger O(n logn)-sized public parameters.

Recent work [3, 12, 60] enhances VCs into key-value com-
mitments (KVCs), where arbitrary keys (rather than vector
positions) are mapped to values. Unfortunately, all of these
constructions have constant-sized proofs and are thus not
maintainable. Some VCs have transparent setup [12, 20, 37],
support incremental aggregation [20], have a “specialiazable”
CRS [20] and provide time/space trade-offs when computing
proofs [12,20]. Hyperproofs do not have any of these features.

Unstealability. To the best of our knowledge, Katz et al. are
the first to observe that (carefully) tying the identity of the
prover to a proof she computes allows rewarding the prover
for her effort [33]. However, their work focuses on watermark-
ing zero-knowledge proofs of knowledge of a secret witness. In
contrast, in our work, our proofs need not be zero-knowledge
and they need not prove knowledge of secret witnesses. Fur-
thermore, unlike Katz et al.’s result, our notion of unsteal-
ability captures the difficulty of extracting useful informa-
tion from watermarked proofs that might help an adversary
steal proofs faster than computing them from scratch. Subse-
quently, Wesolowski explores such watermarked proofs in the
context of verifiable delay functions (VDF) [63]. In contrast,
we are the first to explore watermarking VC proofs and to
give security definitions.



Although no previous VC scheme is unstealable, some can
be made so using our pairing-based techniques from §3.4.
Specifically, VCs from pairing-based polynomial commit-
ments [28, 58, 59] appear compatible with our techniques.
On the other hand, RSA-based VCs [12, 20, 21], which lack
pairings, are less amenable to our techniques. While proofs-of-
knowledge of exponent (PoKEs) [12] could be used to replace
the reliance on pairings, this would come at the cost of losing
maintainability of watermarked proofs. Lastly, our pairing-
based techniques do not apply to Merkle trees as they are
based on hash functions. Instead, we discuss watermarking
Merkle proofs via SNARKs and their pitfalls in §3.4, under

“Strawmen”.

2 Preliminaries

Notation. Let [0,n) = {0,1, . . . ,n− 1}. An ℓ-bit number i
has binary representation i = (iℓ, . . . , i1) if, and only if, i =
∑
ℓ−1
k=0 ik+12k. Note that iℓ is the MSB of i and i1 is the LSB.

We often use i as i’s binary representation and ik as its kth
bit, without explicit definition. Let r ∈R S denote picking an
element from S uniformly at random.

Pairings. (p,G1,G2,GT ,e,g1,g2) ← BilGen(1λ) denotes
generating groups G1, G2 and GT of prime order p, with gi
a generator of Gi, and a pairing e : G1×G2→GT such that
∀u ∈G1,w ∈G2 and a,b ∈ Zp,e(ua,wb) = e(u,w)ab. A use-
ful property of e(·, ·) is that e(u,h)e(v,h) = e(uv,h),∀u,v,h ∈
G2

1×G2. In this paper, we assume Type III bilinear groups
(i.e., without efficiently-computable homomorphisms be-
tween G1 and G2 or viceversa), which are needed by the
inner-product argument from §2.4 and are also more efficient
in practice. Let 1G denote the identity in a group G.

Vectors. Bolded, lower-case symbols such as a =
[a0, . . . ,an−1] ∈ Zn

p typically denote vectors of field elements.
Bolded, upper-case symbols such as A = [A1, . . . ,Am] ∈
Gm typically denote vectors of group elements. |A| de-
notes the size of the vector A. Ax = [Ax

1, . . . ,A
x
m],x ∈ Zp,

A◦B= [A1B1,A2B2, . . . ,AmBm], and ⟨A,B⟩=∏
m
j=1 e(A j,B j)

denotes a pairing product. Let AL = [A1, . . . ,Am/2] and AR =
[Am/2+1, . . . ,Am] denote the left and right halves of A. Let
A||1G denote a vector of size 2|A| that “extends” A to the
right with the identity of G. (Similarly, 1G||A “extends” A to
the left.)

2.1 Multilinear extension (MLE) of a vector

Let n = 2ℓ and x = (xℓ, . . . ,x1). A vector a = [a0, . . . ,an−1] ∈
Zn

p can be represented as a multilinear extension polynomial
f : Zℓ

p→ Zp which maps each position i to ai:

f (i) = f (iℓ, . . . , i2, i1) = ai,∀i ∈ [0,n) (2)

For example, the MLE of a = [5,2,8,3] is f (x2,x1) defined
as:

5(1− x2)(1− x1)+2(1− x2)x1 +8x2(1− x1)+3x2x1 (3)

In general, the unique multilinear extension f of a is:

f (x) = f (xℓ, . . . ,x1) =
n−1

∑
j=0

a jS j,ℓ(xℓ, . . . ,x1) =
n−1

∑
j=0

a jS j,ℓ(x) (4)

where S j,ℓ, j ∈ [0,2ℓ) are selector multinomials defined as:

S j,ℓ(x) =
ℓ

∏
k=1

sel jk (xk),s.t. sel jk (xk) =

{
xk, if jk = 1

1− xk, if jk = 0
, (5)

with S0,0(x) = 1. In our example from Eq. 3, we have ℓ =
2 and so: S0,2(x) = (1− x2)(1− x1), S1,2(x) = (1− x2)x1,
S2,2(x) = x2(1− x1) and S3,2(x) = x2x1. We often refer to
sel jk as a selector monomial. Importantly, note that:

S j,ℓ(iℓ, . . . , i1) = S j,ℓ(i) =

{
1, i = j
0, i ̸= j

,∀i ∈ [0,2ℓ) (6)

By these properties above, we can see why Eq. 2 holds for
any i:

f (i) =
n−1

∑
j=0

a jS j,ℓ(i) = aiSi,ℓ(i)+
n−1

∑
j=1, j ̸=i

a jS j,ℓ(i) = ai ·1+0

In other words, an MLE f acts as a “multiplexer”, choosing
the right ai based on the input position i, given as i in binary.

MLE decomposition. An MLE of size n = 2ℓ can be de-
composed into two MLEs of size n/2 [68]. For example,
split a from Eq. 3 into its left and right halves a0 = [5,2]
and a1 = [8,3], with MLEs f0 = 5(1− x1)+ 2x1 and f1 =
8(1− x1)+3x1, respectively. Then, observe that the MLE f
for a is a combination of f0 and f1: i.e., f = (1−x2) f0+x2 f1.
In general, the MLE f of any a decomposes as:

f (x) = (1− xℓ) f0(xℓ−1, . . . ,x1)+ xℓ f1(xℓ−1, . . . ,x1) (7)

Note that for a = [a0,a1] of size 2, the MLEs f0, f1 are trivial
(i.e., of size 1) and are simply set to a0 and a1, respectively.
We use fbℓbℓ−1...bk to denote the MLE of the abℓbℓ−1...bk sub-
vector, which is a subvector of all ai’s with iℓ = bℓ, iℓ−1 =
bℓ−1, . . . , ik = bk. For example, in a vector a = [a0, . . . ,a7],
f01 is the MLE of a01, which contains all (three bit) positions
i whose first two bits are 01: i.e., a01 = [a2,a3] because, in
binary, 2 and 3 are 010 and 011, respectively.

2.2 PST commitments to MLEs
Papamanthou, Shi and Tamassia [46] extend Kate-Zaverucha-
Goldberg (KZG) univariate polynomial commitments [32]



g1

g(1−s1)
1

g(1−s1)(1−s2)
1

g(1−s1)(1−s2)(1−s3)
1

g(1−s1)(1−s2)s3
1

g(1−s1)s2
1

g(1−s1)s2(1−s3)
1

g(1−s1)s2s3
1

gs1
1

gs1(1−s2)
1

gs1(1−s2)(1−s3)
1

gs1(1−s2)s3
1

gs1s2
1

gs1s2(1−s3)
1

gs1s2s3
1

Figure 1: PST (and Hyperproofs) public parameters. The uth path in this
tree is actually the update key upku from Eq. 16.

to multivariate ones. We refer to their scheme as PST and
restrict its use to multilinear extensions, introduced above.

Commitments. PST works over a bilinear group obtained via
BilGen. The PST commitment to a multilinear extension f
for a vector a of size n = 2ℓ is a single group element in G1:

pst( f ) = g f (sℓ,...,s1)
1 = g

∑
n−1
j=0 a jS j,ℓ(s)

1 =
n−1

∏
j=0

(
g

S j,ℓ(s)
1

)a j
(8)

Here, s = (sℓ, . . . ,s1) are trapdoors generated via a trusted

setup that outputs n-sized public parameters: g
S j,ℓ(s)
1 =

g
S j,ℓ(sℓ,...,s1)

1 ,∀ j ∈ [0,2ℓ). Importantly, the setup discards s,
since knowledge of it directly breaks PST’s security [47].
We stress that pst( f ) can be computed without knowing s, as
per Eq. 8. Lastly, PST commitments are homomorphic, with
pst( f + f ′) = pst( f )pst( f ′) for any MLEs f , f ′.

Evaluation proofs. Papamanthou, Shi and Tamassia give a
way to prove evaluations f (i) against pst( f ) [46], where i is
the binary representation of i ∈ [0,n). Their key observation,
which we refer to as the PST decomposition, is that:

f (i) = z⇔∃q j’s, f (x)− z = ∑
j∈[ℓ]

q j(x j−1, . . . ,x1) · (x j− i j) (9)

This yields a PST evaluation proof for f (i) = z consisting

of commitments w j = g
q j(s)
1 to the quotient polynomials q j.

To compute the q j’s, the prover first divides f by xℓ − iℓ,
obtaining qℓ and a remainder rℓ. Then, the prover continues
recursively on the remainder rℓ, which no longer has variable
xℓ. Specifically, the prover divides rℓ by xℓ−1− iℓ−1, obtaining
qℓ−1 and rℓ−1. And so on, until he obtains the last quotient
q1 with remainder r1 = f (i) (see Fig. 2 and [47, Lemma
1]). Overall, this takes T (n) = O(n)+T (n/2) = O(n) time,
including the time to commit to the q j’s.

Note that the q j’s are actually MLEs of size n/2,n/4, . . . ,1.

As a result, PST’s actual public parameters are g
S j,k(s)
1 ,∀k ∈

[0, ℓ],∀ j ∈ [0,2k), so as to also be able to commit to these
quotient MLEs. Lastly, the parameters form a tree (see Fig. 1)
and are thus of size 2n−1 G1 elements.

A verifier who has the commitment pst( f ), the claimed
evaluation (i, f (i) = z) and a logarithmic-sized, publicly-
known verification key g

s j
2 ,∀ j ∈ [ℓ] can verify the proof using

PST.Prove( f , ℓ, i = (iℓ, . . . , i1))→ πi:

1. If ℓ= 0 (i.e., f is a constant), return ∅.

2. Otherwise, divide f by xℓ− iℓ, obtaining quotient qℓ(xℓ−1, . . . ,x1)
and remainder rℓ(xℓ−1, . . . ,x1) such that f = qℓ · (xℓ− iℓ)+ rℓ.

3. Return
(

gqℓ(s)
1 ,PST.Prove(rℓ, ℓ−1,(iℓ−1, . . . , i1))

)
Figure 2: O(n)-time algorithm for computing a single PST evaluation proof
πi for f (i) w.r.t. an MLE f of size n = 2ℓ.

ℓ+1 pairings:

e(pst( f )/gz
1,g2) = ∏

j∈[ℓ]
e(w j,g

s j−i j
2 ) (10)

The check above ensures Eq. 9 holds when x = s, which is
sufficient for security since s is random and secret. In con-
structing our VC, we prove a stronger notion of security for
PST commitments (see §6).

2.3 Vector Commitments (VCs)
We formalize VCs below, similar to Catalano and Fiore [21].

Definition 2.1 (VC). A VC scheme is a set of PPT algorithms:

Gen(1λ,n)→ pp: Given security parameter λ and maximum vector size
n, outputs randomly-generated public parameters pp.

Compp(a)→ C: Outputs digest C of a = [a0, . . . ,an−1] ∈ Zn
p.

Openpp(i,a)→ πi: Outputs a proof πi for position i in a.

OpenAllpp(a)→ (π0, . . . ,πn−1): Outputs all proofs πi for a.

Aggpp(I,(ai,πi)i∈I)→ πI : Combines individual proofs πi for values ai

into an aggregated proof πI .

Verpp(C, I,(ai)i∈I ,πI)→{0,1}: Verifies proof πI that each position i∈ I
has value ai against digest C.

UpdDigpp(u,δ,C)→ C′: Updates digest C to C′ to reflect position u
changing by δ ∈ Zp.

UpdProofpp(u,δ,πi)→ π′i: Updates proof πi to π′i to reflect position u
changing by δ ∈ Zp.

UpdAllProofspp(u,δ,π0, . . . ,πn−1)→ (π′0, . . . ,π
′
n−1): Updates all

proofs πi to π′i to reflect position u changing by δ ∈ Zp.

Observations: For simplicity, we give our algorithms oracle
access to the public parameters pp of the scheme. This way,
each algorithm can easily access the subset of the parameters
it needs.

We formalize OpenAll and UpdAllProofs since, in some
VCs, these algorithms are faster than n calls to Open and
UpdProof, respectively. In this sense, we stress that the
UpdAllProofs algorithm can work in sublinear time, since it
does not necessarily need to read all input or write all output
(e.g., in Merkle trees, UpdAllProofs only reads logn sibling
hashes and overwrites another logn hashes).



Correctness and soundness. We define VC correctness in
Def. B.1 and VC soundness in Def. B.2.

2.4 Inner Product Arguments (IPA)
LetCM denote a commitment scheme by Abe et al. [1] for vec-
tors A,B ∈Gm

1 ×Gm
2 and their pairing product Z = ⟨A,B⟩=

∏
m
i=1 e(Ai,Bi). CM uses a randomly-generated commitment

key ck = (v,w) ∈Gm
1 ×Gm

2 to commit to A,B and Z as:

C = CM(ck;A,B,Z) = (⟨A,v⟩, ⟨w,B⟩, Z) def= (C1,C2,C3) (11)

This commitment scheme is not hiding but is binding un-
der Symmetric-eXternal Diffie-Hellman (SXDH) (see Assum.
A.1) [1, 2].

Bünz et al. [17] give a non-interactive inner-product ar-
gument (IPA) where a prover convinces a verifier, that the
prover knows how to open an Abe et al. commitment C to
(A,B,⟨A,B⟩); i.e. they give an argument for the language:

Lm
IPA = {(ck,C) | ∃A ∈Gm

1 ,B ∈Gm
2 , s.t.C = CM(ck;A,B,⟨A,B⟩)}

We abstract Bünz et al.’s [17] non-interactive argument for
LIPA as three algorithms:

GIPA(1λ,m)→ (PK,V K): Returns PK =V K = ⟨BilGen(1λ),ck = (v∈R

Gm
2 ,w ∈R Gm

1 )⟩
PIPA(PK,A,B)→ π: Returns a proof π that C = CM(ck;A,B,⟨A,B⟩)

VIPA(V K,C,π)→{0,1}: Verifies proof π that C = CM(ck;A,B,⟨A,B⟩)

IPA complexity. PIPA takes O(m) time, VIPA takes O(logm)
time and the proof size is |π|= O(logm) (see App. A).

3 Hyperproofs

In this section, we intuitively explain how Hyperproofs work,
often referring to a prover who computes the vector’s digest,
as well as proofs, and to a verifier who verifies proofs against
this digest. Without loss of generality, our discussion will
assume vectors of size exactly n = 2ℓ. Hyperproofs represents
a vector a = [a0, . . . ,an−1] as a multilinear extension (MLE):

f (x) =
n−1

∑
i=0

aiSi,ℓ(x) ,

where Si,ℓ are selector multinomials as per Eq. 5. The di-
gest of the vector a is a Papamanthou-Shi-Tamassia (PST)
commitment to f :

pst( f ) = g f (s)
1 ,

where s is the PST trapdoor (see §2.2). Thus, our public pa-
rameters are the same as PST’s parameters depicted in Fig. 1.

f1− f0

f01− f00

f001− f000

f000
= a0

f001
= a1

f011− f010

f010
= a2

f011
= a3

f11− f10

f101− f100

f100
= a4

f101
= a5

f111− f110

f110
= a6

f111
= a7

Figure 3: A multilinear tree (MLT) of size 8. Recall from §2 that fbℓbℓ−1...bk
denotes the MLE of abℓbℓ−1...bk . Each node stores a PST commitment to the
depicted MLE: e.g., root stores pst( f1− f0), not f1− f0. The proof for ai
consists of all commitments along ai’s path to the root (e.g., for a4, the boxed
nodes). Sibling leaves [a2 j,a2 j+1] have the same proof. If, say, a4 changes,
all pink-colored MLEs change, and all boxed commitments must be updated.

3.1 Multilinear trees (MLTs)
A Hyperproof for position i is just a PST evaluation proof
(see §2.2) for f (i). Unfortunately, if one uses the PST.Prove
algorithm from Fig. 2 to compute all PST evaluation proofs,
this takes O(n2) time. Below, we show how to compute all
n proofs faster, in O(n logn) time, by avoiding unnecessary
computations (see Fig. 4).

Denote the proof for f (i) as πi = (πi,ℓ, . . . ,πi,1). Next, ob-
serve that if we compute all proofs πi via n calls to:

PST.Prove( f , ℓ,(iℓ, . . . , i1)),∀i ∈ [n] ,

they actually all have the same first quotient qℓ committed in
πi,ℓ! This is because all n PST.Prove calls initially divide f by
xℓ− iℓ, which actually yields the same quotient, independent
of iℓ. To see this, recall the MLE decomposition from Eq. 7
and reorganize it in two ways as:

f = (1− xℓ) · f0 + xℓ · f1⇔
f = ( f1− f0) · (xℓ−1)+ f1 (12)
= ( f1− f0) · xℓ+ f0 , (13)

where f0 is the MLE for the left half a0 of a and f1 is the MLE
for the right half a1 (recall from §2). Since both divisions
yield the same qℓ = f1− f0 quotient, all πi’s share the same
πi,ℓ commitment to qℓ! We depict this qℓ as the root of a
multilinear tree (MLT) in Fig. 3.

Next, recall that each one of the n PST.Prove calls recurses
on its remainder, which was either f0 or f1 (as per Eqs. 12
and 13). Specifically, the first n/2 calls for i ∈ [0,n/2) (i.e.,
iℓ = 0) recurse on PST.Prove( f0, ℓ− 1,(iℓ−1, . . . , i1)), and
the other n/2 calls for i ∈ [n/2+ 1,n) (i.e., iℓ = 1) recurse
on PST.Prove( f1, ℓ−1,(iℓ−1, . . . , i1)). But by the same argu-
ment above, each group of n/2 calls returns the same first
quotient commitment. For example, for the first group, we
have quotient f01− f00:

f0 = ( f01− f00)(xℓ−1−1)+ f01 (14)



MLT.Compute( f , ℓ)→ [t1, . . . , t2ℓ−1]:

1. If ℓ= 0 (i.e., f is a constant), return ∅.

2. Otherwise, ∀b ∈ {0,1}, divide f by xℓ−b, obtaining quotient f1− f0

and remainder fb such that f = ( f1− f0) · (xℓ−b)+ fb.

3. Return
(

g( f1− f0)(s)
1 ,MLT.Compute( f0, ℓ−1),MLT.Compute( f1, ℓ−1)

)
Figure 4: Computes an MLT in O(n logn) time consisting of PST evaluation
proofs for all f (i) w.r.t. an MLE f of a of size n = 2ℓ. In contrast, n naive
calls to PST.Prove would take O(n2). Recall that f0 and f1 are MLEs for
the left and right halves of a. Returns the tree stored in preorder in an array.

= ( f01− f00)xℓ−1 + f00 , (15)

Similarly, for the second group, the quotient will be f11−
f10. Both quotients are depicted as the children of the root
in Fig. 3. Continuing recursively in this fashion yields our
multilinear tree (MLT) from Fig. 3. We describe the algorithm
for computing it in Fig. 4 and we argue correctness of MLT
proofs in App. B.

3.2 Updates and homomorphism

Updating digests and MLTs. Suppose a4 changes by δ in
our MLT from Fig. 3. Then, by Eq. 4, we know that a’s MLE
will change to:

f ′ = f + x3(1− x2)(1− x1)δ = f +S4,3(x)δ

But what about the MLT? The following highlighted MLEs
from Fig. 3 will be updated to:

f ′100 = f100 +δ

f ′10 = f10 +(1− x1)δ

f ′1 = f1 +(1− x2)(1− x1)δ

f ′ = f + x3(1− x2)(1− x1)δ

These MLEs changing affect the MLEs along a4’s path. For
example, the root MLE f1− f0 also changes by the same
amount as f1: i.e., by + (1− x2)(1− x1)δ. Furthermore,
their corresponding commitments are easy to update via
the PST homomorphism. For example, the new root will be
pst( f1− f0) ·g(1−s2)(1−s1)δ

1 . However, note that updating com-
mitments requires knowing g(1−s2)(1−s1)

1 , which is referred to
as an update key. We delve into this next.

Update keys. Recall that Su,k(x) is the selector multinomial
for position u ∈ [0,2k) in an MLE of size 2k (see Eq. 5).
However, to easily reason about updates, it is useful to define
Su,k even when u ≥ 2k as Su,k = Su mod 2k,k. As explained
above, updating the MLT after au changes by δ requires some
auxiliary information referred to as an update key for position
u. This consists of commitments to all selector multinomials
for u in MLEs of size 1,2, . . . ,2ℓ:

upku =
{

g
Su,k(s)
1 : k ∈ [0, ℓ]

}
=
{
upku,k : k ∈ [0, ℓ]

}
(16)

Recall that Su,0(x) = 1, so that upku,0 = g1,∀u∈ [0,2ℓ). Then,
the MLT commitments (wu,ℓ, . . . ,wu,1) along u’s path are up-
dated as:

w′u,k = wu,k · (upku,k−1)
δ = wu,k · (g

Su,k−1(s)
1 )δ,∀k ∈ [ℓ] (17)

Note that this implies that any proof πi = (wi,ℓ, . . . ,wi,1) can
be updated after a change at u: one simply has to identify
the “intersection” of u’s proof with i’s proof and apply the
update as above, as if updating a pruned MLT consisting of
just πi. More formally, suppose i and u have the same t most
significant bits (i.e., ik = uk,∀k ∈ {ℓ,ℓ− 1, . . . , ℓ− t + 1}).
Then, the updated proof π′i is initially set to πi and (partially)
updated as:

w′i,k = wi,k · (upku,k−1)
δ,∀k ∈ {ℓ, . . . , ℓ− t},1≤ k ≤ ℓ (18)

The digest updates more simply as:

pst( f ′) = pst( f ) ·gSu,ℓ(s)
1 = pst( f ) ·

(
upku,ℓ

)δ (19)

Lastly, we note that the update keys actually coincide with
our public parameters (see Fig. 1).

MLTs are homomorphic. Since our multilinear tree stores
an MLE commitment at each node, we observe that the MLT
itself is homomorphic: the MLT for a+b can be obtained
by “node-by-node multiplying” a’s MLT with b’s MLT. In
other words, every node w in the new MLT is the prod-
uct of the nodes w in the MLTs for a and b. Specifically,
pst( f ′′w) = pst( fw + f ′w) = pst( fw)pst( f ′w), where fw, f ′w, f ′′w
denote the MLE stored at node w in the MLT for a,b and
a+b, respectively. This enables our unstealability construc-
tion from §3.4 and has other applications to authenticating
data in the streaming setting [48].

3.3 Aggregating proofs
Recall that a proof (w1, . . . ,wℓ) for ai in the vector a of size
n = 2ℓ is just an ℓ-sized PST evaluation proof (see §2.2) and
verifies as:

e(C/gai
1 ,g2) =

ℓ

∏
k=1

e(wk,g
sk−ik
2 ) , (20)

where C is the digest and (gsk−ik
2 )k∈[ℓ] is position i’s public

verification key.

Warm-up: Compressing proofs. It is useful to first discuss
compressing a size-ℓ proof for ai to size logℓ via the IPA from
§2.4. For this, we let A = [w1 . . .wℓ], B = [gs1−i1

2 . . .gsℓ−iℓ
2 ],

Z = e(C/gai
1 ,g2) and prove that (Z,B) is in the following

language:

Lℓ
PROD =

{
Z ∈GT ,B ∈Gℓ

2

∣∣∣ ∃A ∈Gℓ
1,Z = ⟨A,B⟩

}
(21)



GBATCH(1λ,b, ℓ)→ (PK,V K): Return GIPA(1λ,b · ℓ)

PBATCH(PK,(Ai,Bi)i∈[b])→ π:

1. Let A = [A1||A2|| . . . ||Ab] and B = [B1||B2|| . . . ||Bb]

2. Let C1 = ⟨A,v⟩ (i.e., 1st component of CM(ck;A,B′,1GT ))

3. Let ri = H(C1,B, i) ∈ Zp for i = 1, . . . ,b

4. Let B′ = [Br1
1 ||B

r2
2 || . . . ||B

rb
b ]

5. Let π∗ = PIPA(ck,A,B′) and return π = (C1,π
∗).

VBATCH(V K,(Bi,Zi)i∈[b],π)→{0,1}:

1. Parse the proof π = (C1,π
∗)

2. Let ri = H(C1,B, i) ∈ Zp for i = 1, . . . ,b

3. Let B′ = [Br1
1 ||B

r2
2 || . . . ||B

rb
b ] and Z′ = ∏

b
i=1 Zri

i

4. Let C2 = ⟨w,B′⟩ (i.e., 2nd component of CM(ck;A,B′,1GT ))

5. Let C = (C1,C2,Z′) and return VIPA(ck,C,π∗).

Figure 5: Our argument for Lb,ℓ
BATCH used to aggregate Hyperproofs. H is a

random oracle and (GIPA,PIPA,VIPA) is the Bünz et al. IPA from §2.4.

Next, we can use the IPA from §2.4. Specifically, assume
our LPROD prover and verifier share a commitment key
ck = (v,w). First, the prover gives C1 = ⟨A,v⟩ to the verifier.
Second, the verifier computes C2 = ⟨w,B⟩ and lets C3 = Z.
Thus, the verifier now has a commitment C = (C1,C2,C3)
to A,B and Z. Third, the prover simply runs PIPA from §2.4
and convinces the verifier that the committed values satisfy
Z = ⟨A,B⟩ and thus that the Hyperproof verifies as per Eq. 20.

Aggregating proofs. Next, we observe that aggregating
many proofs (π1, . . . ,πb), each for a position pi in a, reduces
to proving membership in Lℓ

PROD for each (Zi,Bi), where
Zi = e(C/g

api
1 ,g2) and Bi is position pi’s verification key. But

doing this naively would result in a large, O(b logℓ) aggre-
gated proof size. Instead, we seek a more succinct argument
for the following new language:

Lb,ℓ
BATCH =

{
(Zi ∈GT ,Bi ∈Gℓ

2)i∈[b]
∣∣∣ ((Zi,Bi) ∈ Lℓ

PROD)i∈[b]
}

(22)

=
{
(Zi ∈GT ,Bi ∈Gℓ

2)i∈[b]
∣∣∣ (∃Ai ∈Gℓ

1,Zi = ⟨Ai,Bi⟩)i∈[b]
}

In other words, membership in Lb,ℓ
BATCH guarantees that ∀i ∈

[b],∃Ai:

Zi =
ℓ

∏
j=1

e(Ai, j,Bi, j), (23)

where Ai, j is the jth entry of Ai. Note that we cannot use the
TIPP argument from [17] to prove membership in LBATCH,
since it can only prove that ∀i,Zi = e(Xi,Yi), where (Xi,Yi) ∈
G1×G2. Instead, we design a new argument for Lb,ℓ

BATCH (see
Fig. 5) which uses a random linear combination to combine
the ℓ-sized equations from above into a single bℓ-sized one:

b

∏
i=1

Zri
i =

b

∏
i=1

(
ℓ

∏
j=1

e(Ai, j,Bi, j)

)ri

(24)

Gen(1λ,n)→ pp: Let (p,G1,G2,GT ,e,g1,g2)← BilGen(1λ). Let s =
(s1, . . . ,sℓ) ∈R Zℓ

p, where n = 2ℓ. Let pp consist of

• pst(S j,k) = g
S j,k(s)
1 ,∀k ∈ [0, ℓ],∀ j ∈ [0,2k);

• gsk
2 ,∀k ∈ [ℓ];

• (PK,V K)← GBATCH(1λ,b, ℓ).
We refer to (gsk−ik

2 )k∈[ℓ] as position i’s verification key.

Compp(a)→ C: Let C = pst( f ) = g f (s)
1 = g f (s1 ,...,sℓ)

1 , where f is a’s
MLE.

OpenAllpp(a)→ (π0, . . . ,πn−1): Return the MLT as per §3.1.

Openpp(i,a)→ πi: Compute only the ith path in the MLT and return it.

Aggpp(I,{ai,πi}i∈I)→ πI : Let m = |I| and let A1,A2, . . . ,Am denote
proofs (πi)i∈I , ordered by i, and B1, . . . ,Bm denote their corresponding
verification keys. Return PBATCH(PK,(Ak,Bk)k∈[m]).

Verpp(C, I,{ai}i∈I ,πI)→{0,1}: If I = {i}, parse πI = (w1, . . . ,wℓ) and
ensure that

e(C/gai
1 ,g2) =

ℓ

∏
j=1

e(w j,g
s j−i j
2 ) .

Otherwise, let m = |I| and B1, . . . ,Bm denote the verification keys for
the proofs, ordered by their position i. Let Z1,Z2, . . . ,Zm be all the
e(C/gai

1 ,g2)’s, also ordered by i. Return VBATCH(V K,(Bk,Zk)k∈[m],πI).

UpdDigpp(u,δ,C)→ C′: Let C′ = C · (gSu,ℓ(s)
1 )δ.

UpdProofpp(u,δ,πi)→ π′i: Update via UpdAllProofs (see below) as if
πi was a pruned, single-path MLT (see Eq. 18).

UpdAllProofspp(u,δ,π0, . . . ,πn−1)→ (π′0, . . . ,π
′
n−1): Assume u’s MLT

path is (w1, . . . ,wℓ). Update this path as w′k = wk · (upku,k−1)
δ (for k =

1, . . . , ℓ) as per Eq. 17.

Figure 6: Algorithms for Hyperproofs, implicitly parameterized by the max
number of proofs b that can be aggregated into a single proof.

It is well known that, if the ri’s are uniformly random,
verifying the combined equation above is sufficient (see
Lemma A.1). As a result, our argument for Lb,ℓ

BATCH uses the
IPA from §2.4 on this combined equation in a black-box man-
ner. (This is similar to the previous Lℓ

PROD argument, except it
involves larger vectors and randomization.) We give a precise
description of its (GBATCH,PBATCH,VBATCH) algorithms in
Fig. 5, show how it fits in our VC construction in Fig. 6, and
prove security in App. A.

Aggregation time and proof size. It is easy to see from Fig. 5
that the PBATCH time (i.e., the time to aggregate b proofs) is
O(b · ℓ) and the VBATCH time (i.e., the time to verify the ag-
gregated proof) is O(b · ℓ). Unfortunately, even though our
Lb,ℓ
BATCH argument uses the IPA with fast, O(log(b · ℓ))-time

KZG-based verification (see §2.4), the VBATCH verifier still
needs to do O(b · ℓ) work on the Bi vectors. (Note that this
O(b · ℓ) verifier work seems inherent for processing the b ver-
ification keys.) Lastly, the argument size (i.e., the aggregated
proof size) is O(log(b · ℓ)) = O(logb+ logℓ).

Cross-aggregation. In addition to aggregating proofs w.r.t.
the some digest C, we can also cross-aggregate proofs w.r.t.
different digests [28]. Specifically, suppose we have b proofs



πi for positions pi, each w.r.t. a (potentially-different) di-
gest Ci for a vector with MLE fi. Then, we can use the
same PBATCH prover from Fig. 5 to cross-aggregate these
proofs. To verify, the verifier now computes the Zi’s given to
VBATCH by using the right digest and evaluation point: i.e.,
Zi = e(Ci/g fi(pi)

1 ,g2).

3.4 Unstealable proofs
In this subsection, we show how to incentivize proof compu-
tation by allowing provers, who store the vector and maintain
proofs, to watermark the proofs they compute. Such water-
marked proofs are cryptographically-bound to their prover’s
identity, which means the prover can be monetarily rewarded
for having computed them (e.g., in cryptocurrencies). Im-
portantly, this cryptographic binding cannot be undone by
adversaries. In other words, “stealing” a proof by replacing
its watermark with your own, is no easier than computing the
proof from scratch like everyone else. We call such water-
marked proofs unstealable, formalize and prove their security
and make Hyperproofs unstealable. We show why and how
unstealability is helpful in the cryptocurrency setting in §4.
We also envision other applications could benefit from it.

Unstealability goals. First, any vector a should continue to
have a single digest C against which all correct proofs verify,
whether proofs are watermarked or not. Put differently, un-
stealability must work in our previous setting where there is a
single Com algorithm for everyone, which does not take the
identity of the prover as input. Specifically, only the Open and
Ver algorithms are given the identity of the prover to water-
mark proofs and verify them. This ensures compatibility with
stateless cryptocurrencies, where the state must have a single
(prover-independent) digest against which (prover-dependent)
watermarked proofs can be verified. Second, a prover should
still be able to precompute all its (now) unstealable proofs and
efficiently maintain them over time as the vector changes. In
particular, solutions that require provers to watermark proofs
“on the fly” would be too expensive. Third, unstealable proofs
should remain aggregatable.

Strawmen. One idea for unstealability is to have each prover
commit to the original vector a but “extended” with its identity
id as aid = (ai||id)i∈[n]. Unfortunately, this results in having
multiple, prover-specific digests Cid for a. Another idea is to
add a digital signature on the VC proof. However, the signa-
ture can simply be removed by the adversary and replaced
with their own. A last attempt would be to use a non-malleable
SNARK [5] to augment a VC proof with a proof of knowledge
of (1) the committed vector and (2) a secret associated with
the prover’s identity. This would require a stealing adversary
to maul the SNARK proof so as to verify for their identity.
However, this approach would be too slow and would not
preserve maintainability due to the non-malleability of the
SNARK.

Unstealability via exponentiations. We make a proof πππi =
(wi,ℓ, . . . ,wi,1) unstealable by exponentiating it with α as:

πππ
α
i = (wα

i,ℓ, . . . ,w
α
i,1)

def
= (ŵi,ℓ, . . . , ŵi,1) , (25)

where α is the prover’s watermarking secret key (WSK). The
corresponding watermarking public key (WPK) is gα

2 together
with a zero-knowledge proof of knowledge (ZKPoK) of α

(e.g., a Schnorr proof [53] as per App. A). To verify a proof
watermarked with gα

2 , one first checks that the ZKPoK of
α verifies and that α ̸= 0. Second, one checks the proof as
normal as per Eq. 20, but accounts for the WPK gα

2 :

e(C/gai
1 ,g

α
2 )

?
= ∏

k∈[ℓ]
e(ŵi,k,g

sk−ik
2 ) (26)

The ZKPoK of α is used to prevent stealing by exponentiating
πππα

i with a δ known by the adversary, since the adversary would
have to prove knowledge of α ·δ. As a result, the adversary’s
only recourse is to remove α from the watermarked proof,
but this seems to require exponentiating by α−1, which the
adversary does not know. Indeed, in Thm. B.4, we prove in
the algebraic group model (AGM) [26] that no PPT adversary
can steal proofs.

Aggregation-preserving unstealability. One important prop-
erty of our unstealable proofs is that they remain aggregatable
via a call to Agg from Fig. 6. Intuitively, this is because the
right-hand side of the watermarked verification from Eq. 26
remains the same as for normal verification in Eq. 20. How-
ever, the left-hand side changes. Thus, when verifying an
aggregated proof via Ver in Fig. 6, the verifier has to account
for the WPKs when computing the Zi’s given to VBATCH in
Fig. 5. In other words, the verifier needs to have these WPKs.
In our application setting from §4, we anticipate the verifier
will already have all of the WPKs, instead of receiving them
with the aggregated proof.

Homomorphism-preserving unstealability. Our approach
to watermarking proofs preserves the PST and MLT homo-
morphisms. This has a few advantages. First, watermarked
proofs can still be updated. Specifically, assuming position u
changed by δ, the watermarked proof πππα

i from Eq. 25 can be
updated as before (see Eq. 18) if one uses watermarked up-
date keys (upku,k)

α. Second, an MLT of watermarked proofs
can be computed directly, if the prover uses watermarked
public parameters. The prover can obtain these in a one-time
pre-processing step that exponentiates all parameters from
Fig. 1 with the WSK α:

ĝ
Su,k(s)
1

def
=
(

g
Su,k(s)
1

)α

= g
αSu,k(s)
1 ,∀k ∈ [0, ℓ],∀u ∈ [0,2k) (27)

Importantly, these are still valid Hyperproofs parameters, ex-
cept under a new base ĝ1 = gα

1 . As a result, the prover can
directly compute a watermarked MLT using these new pa-
rameters. This is important, as it allows precomputing water-
marked proofs, ensuring that serving such proofs is as efficient



as serving normal proofs. Third, a watermarked MLT is ef-
ficiently maintainable, just like a normal MLT. This follows
from the updatability of watermarked proofs argued above.

New UVC algorithms. We must slightly change our VC
API from Def. 2.1 into an unstealable VC (UVC) API that
accounts for watermarked proofs and watermarking key-pairs.
First, we introduce two new algorithms:

1. WtrmkGen(1λ) → (wsk,wpk): Generates a random
(wsk,wpk) watermarking key pair.

2. WtrmkParams(pp,wsk) → wpp: Returns watermarked
public parameters wpp, under wsk, as per Eq. 27.

Second, the algorithm Verpp(C, I,(ai,wpki)i∈I ,πI) addition-
ally takes as input the watermarking PK wpki that each proof
πi is watermarked with. Third, the algorithms for creating and
updating proofs now operate on watermarked public parame-
ters. In the interest of brevity, we give the full UVC API, with
a new correctness definition, in the appendix (see Def. B.3).

UVC soundness. We model UVC soundness similar to VC
soundness, except we account for watermarked proofs. Infor-
mally, we prevent adversaries from creating two inconsistent
proofs for the same position k, even if those proofs are wa-
termarked with different, adversarially-generated WPKs (see
Def. B.5 in the appendix).

UVC unstealability. In Def. B.6, we formalize our notion of
unstealability which captures that an adversary cannot com-
pute a watermarked proof on a WPK it knows asymptotically
any faster than the Open algorithm, despite having adaptive
access to a watermarking oracle on arbitrary choices of WPK.
We provide a game-based definition where the challenger
picks a random vector for A . Such a randomly-selected vec-
tor ensures that it is not trivial for A to compute proofs. We
prove that Hyperproofs is unstealable in the algebraic group
model (AGM) [26].

In particular, we show that an adversary who outputs a new
watermarked proof (after having access to the watermarking
oracle) and runs asymptotically faster than the time it takes
to run Open (thus breaking Def. B.6) can neither explicitly
include the oracle proofs in the output watermarked proof (or
otherwise discrete log is broken) nor use the oracle proofs in
any other way to speed up computation (or otherwise q-SDH
is broken).

4 Hyperproofs for Cryptocurrencies

In this section, we discuss how Hyperproofs can be used to
speed up validation in payment-only stateless cryptocurren-
cies.

Stateless validation. In account-based cryptocurrencies [64],
validators such as miners and P2P nodes store a large amount
of state to validate transactions and blocks in the consensus
protocol. This state consists of each user’s account balance

and can be represented as a vector that maps each user’s public
key to their balance. Recent work [12, 22, 28, 41, 52, 56, 58]
trades off storage of the state with additional bandwidth and
computation. This approach, known as stateless validation,
commits to the state using a vector commitment (VC) scheme
and allows validators to store only the digest rather than the
full state. Next, transactions and blocks are augmented with
proofs for the accessed state, so validators can check validity
against the digest, instead of storing the full state.

Practical relevance. We believe stateless validation addresses
two important problems in cryptocurrencies. First, in smart-
contract-based cryptocurrencies, every block validator in the
network has to store the full state in order to validate. This
leads to a state explosion problem [18, 43], which could be
ameliorated by having validators store succinct digests of the
state. Then, each smart contract owner could store its own
state and maintain its VC proofs, as proposed in previous
work [28].

Second, in sharded cryptocurrencies, validators have to
be frequently shuffled between shards to prevent adversaries
from corrupting a majority of validators within a shard [34].
However, shuffling a validator from shard A to shard B re-
quires that validator to download shard B’s state. This worsens
performance, but could be ameliorated by statelessly validat-
ing against a digest of the shard’s state. As a result, when mov-
ing to shard B, a validator need only download that shard’s
digest, which is very small.

Challenges. There are several challenges in stateless vali-
dation. First, when creating a transaction, the sending user
needs to include a proof that they have enough balance. In
this sense, users should be able to fetch their proof from proof-
serving nodes (PSNs) [52, 58], who maintain (a subset of) all
proofs. Thus, PSNs should be able to efficiently update all
proofs, as new blocks are confirmed. Second, PSNs should
be incentivized to maintain proofs. Third, a miner must now
include each transaction’s proof in a proposed block, so that
other miners can statelessly validate this block. This calls
for proofs to be efficiently aggregatable, to save block space.
Finally, when validating a block, miners must now verify such
an aggregated proof. Thus, aggregated proofs should verify
fast.

Why rely on proof-serving nodes? In theory, each user can
maintain their proof locally by keeping up with all confirmed
transactions and updating their proof (e.g., as per Eq. 18).
However, this overwhelms users with large computation (i.e.,
updating proofs) and large communication (i.e., downloading
new blocks). This is why well-incentivized, efficient proof-
serving nodes (PSNs) are important: they eliminate this bur-
den from users by allowing them to fetch their latest proof.
We discuss below how unstealability helps implement well-
incentivized PSNs.

Hyperproofs for stateless validation. As described above,
in the stateless validation setting, it is important to mini-



Table 2: Single-threaded microbenchmarks for Hyperproofs. Running times
with an asterisk symbol (*) are too long and have been interpolated. We
measure aggregation of 1024 proofs. OpenAll and Com are only measured
once. UpdDig and UpdAllProofs times are averages after a batch of 1024
changes to the vector. All algorithms are parallelizable.

ℓ= log2 n 22 24 26 28 30

Com (min) 3.1 12.6 50 201* 807*

OpenAll (hrs) 0.7 2.7 12* 52* 225*

UpdDig 47.76 µs

UpdAllProofs (ms) 1.74 1.96 2.15 2.37 2.58

Indiv. Ver (ms) 8.15 8.22 9.10 10.09 10.93

Agg (s) 105 109 114 118 123

Aggr. Ver (s) 13 14 15 16 17

Indiv. proof size (KiB) 1.06 1.15 1.25 1.34 1.44

Aggr. proof size (KiB) 51.6

mize the time for (1) PSNs to update all proofs to reflect
the latest block, (2) miners to propose a new block, with
aggregated proofs and (3) validators (i.e., miners and P2P
nodes) to verify this block, including its aggregated proof. In
§5.3, we show experimentally that Hyperproofs outperforms
other VCs in this task. This is because VCs with O(1)-sized
proofs [20, 21, 28, 37, 58] require O(n) time to update all
proofs, while Hyperproofs only requires O(logn). Further-
more, when compared to Merkle trees, aggregation is 10× to
41× faster in Hyperproofs (see §5.2).

How unstealable proofs help. As highlighted above, proof-
serving nodes should be rewarded for the proofs they serve.
One approach would be for users to simply pay the PSN be-
fore they receive their proof. Unfortunately, this is vulnerable
to a fair-exchange problem: a malicious PSN will take the pay-
ment but not send the proof. An alternative approach would
be for PSNs to first serve the proof and expect payment after.
This approach poses two challenges.

First, we must ensure the payment always goes through.
Fortunately, this can be achieved via the cryptocurrency’s con-
sensus mechanism. Specifically, the miners can enforce a PSN
fee whenever a valid PSN proof is included in a block. Second,
and most importantly, we must ensure that the payment goes
only to the PSN who served the proof. This requires that a
proof served by PSN A cannot be mauled to appear as a proof
served by (a malicious) PSN B. In other words, PSN B should
have no recourse but to compute a proof from scratch like
everyone else. Our unstealability design from §3.4 guarantees
exactly this property.

5 Evaluation

In this section, we measure the performance of Hyperproofs
and explore their applicability for stateless validation. We do
not directly compare to VCs with constant-sized proofs due
to their impractical O(n) cost to update all proofs (see §5.1).

Table 3: The size of the public parameters from Fig. 1 for various values of
ℓ= log2 n. Recall that the verification key consists of all selector monomial
commitments gsk

2 ,∀k ∈ [ℓ], while the proving key consists of all selector

multinomial commitents g
S j,k(s)
1 ,∀k ∈ [0, ℓ], j ∈ [0,2k) (see Fig. 1).

ℓ= log2 n
Verification

key
Proving

key

22 2.11 KiB 384 MiB

24 2.3 KiB 1.5 GiB

26 2.49 KiB 6 GiB

28 2.68 KiB 24 GiB

30 2.88 KiB 96 GiB

Instead, we focus on Merkle trees with SNARK-based aggre-
gation. We use the Golang bindings of the mcl library [42]
to implement Hyperproofs1. We use BLS12-381, a pairing-
friendly elliptic curve, which offers 128 bits of security. A
serializedG1,G2 andGT element in mcl takes 48, 96, and 576
bytes, respectively. A single exponentiation takes 106 µs in
G1 and 250 µs in G2. Each experiment ran single-threaded
on an Intel Core i7-4770 CPU @ 3.40GHz with 8 cores and
32 GiB of RAM. Unless stated otherwise, we perform 4 runs
of each experiment and report their average. Also, vectors in
this section are of size n = 2ℓ.

5.1 Microbenchmarks
We microbenchmark Hyperproofs in Table 2. All microbench-
marks pick vectors and updates randomly and are single-
threaded, but trivially parallelizable.

Public parameters. To commit to vectors of size n, Hyper-
proofs needs a large proving key consisting of 2n− 1 G1
elements depicted in Fig. 1. For ℓ= 28, this requires around
24 GiB of space (see Table 3). Verification keys are all derived
from (gsk

2 )k∈[ℓ]. Furthermore, to aggregate b proofs, Abe et al.
commitment keys [2] are needed consisting of ℓ · b G1 and
ℓ · b G2 elements. For ℓ = 28 and b = 1024, this only adds
3.94 MiB. Watermarking the public parameters as per §3.4
requires 2n−1 exponentiations in G1. For ℓ= 28, this takes
15.87 hours. However, this is a one-time cost.

Committing and computing multilinear trees. We commit
to a vector of size n via an O(n)-sized multi-exponentiation.
For ℓ= 28, this takes 202 minutes. Computing a multilinear
tree (MLT) involves committing to the MLEs in each node
via a multi-exponentiation (see Fig. 3). For ℓ= 28, this takes
52.2 hours (or 1.63 hours with 32 threads). We expect to
at least double performance via faster multi-exponentiation
algorithms, which mcl lacks.

Updating the digest and the multilinear tree. For updating
the digest, we measure the time to apply a batch of 1024

1Our code is available at: https://github.com/hyperproofs/hyperproofs

https://github.com/hyperproofs/hyperproofs


updates via a multi-exponentiation, divide this time by 1024
and obtain an average time of 48 µs per update. For the MLT,
we also measure the time to apply a batch of 1024 updates.
This way, we can use multi-exponentiations when updating
nodes in the tree. Dividing the total time by 1024, gives us an
average time of 1.74 (ℓ= 22) to 2.58 milliseconds (ℓ= 30)
per update. Recall from §3.4 that updates will be just as fast
for watermarked multilinear trees.

Proof size and verification time. Individual proof size is ℓG1
elements and is competitive with Merkle trees (e.g., for ℓ= 30,
1.44 KiB in MLTs versus 960 bytes in MHTs). Verifying
a proof requires ℓ+ 1 pairings, which we optimize into a
multi-pairing (i.e., first compute ℓ+1 Miller loops and then
compute a single final exponentiation). This way, verifying
a proof ranges from 8.2 (ℓ= 22) to 11 milliseconds (ℓ= 30).
If the proof is watermarked, we discount the WPK from the
proof size, since the verifier could already have the WPK,
depending on the application. Furthermore, this overhead
would be acceptable: 224 bytes (see App. A). Lastly, verifying
the ZKPoK for the WPK requires two G2 exponentiations,
which adds around 500 µs to the proof verification time.

Proof aggregation. Let I be the set of transactions to be
aggregated via Aggpp, which calls PBATCH from Fig. 5. In our
benchmarks, b= |I|= 1024. As shown in Table 2, aggregating
1024 transactions takes between 105 (ℓ= 22) to 123 seconds
(ℓ= 30). Verifying such an aggregated proof takes between
13 (ℓ = 22) to 17.5 (ℓ = 30) seconds. These times are not
affected by watermarking. In §5.2, we show our aggregation
is 10× to 41× faster than SNARKs.

Aggregated proof size. Our aggregated proof size is 52 KiB
for any ℓ= 22, . . . ,30. This is an artifact of the IPA proof size
depending on the smallest power of two ≥ log(b · ℓ), which is
the same for all ℓ’s above when b = 1024. As with individual
proofs, watermarking does not affect proof size when the
verifier has the WPKs.

Comparison with Pointproofs. One of the main advantages
over aggregatable VCs with constant-sized proofs such as
Pointproofs is that Hyperproofs are maintainable. For ex-
ample, in Pointproofs, updating all n = 2ℓ proofs involves n
exponentiations, taking 31.7 hours for ℓ = 30. Importantly,
multi-exponentiations cannot be used here. In contrast, Hy-
perproofs only takes 3.2 milliseconds. (Unlike the numbers
from Table 2, these numbers assume no batching.)

5.2 Comparison with SNARKs
In this subsection, we show that Hyperproof aggregation is
anywhere from 10× to 41× faster than Merkle proof aggre-
gation via SNARKs (see Fig. 7), depending on the choice of
hash function. This comes at the cost of larger proofs (52 KiB
versus 192 bytes) and slower verification. Nonetheless, the
end-to-end time to aggregate-and-verify remains around 10×
to 41× faster in Hyperproofs. We find this design trade-off to

be a good one for stateless cryptocurrencies where, although
fast verification is important, aggregation times cannot be too
high (see §5.3).

Experimental setting. We fix the height of both the Merkle
tree and our MLT to ℓ= 30, and measure performance when
aggregating b ∈ {22,24, . . . ,214} proofs. We compare to an
implementation by Ozdemir et al. [45] in Rust [44] which uses
the state-of-the-art SNARK by Groth [30] to prove knowledge
of changes to a Merkle tree, updating it from digest d to digest
d′. To benchmark proof aggregation, we notice that proof ag-
gregation would involve half of the work done by the Ozdemir
et al. prover, and directly use their code. This is because prov-
ing knowledge of k changes involves first verifying k Merkle
proofs for the original values “inside the SNARK” and then
updating the Merkle root with the changes, which also in-
volves k Merkle path verifications. For the SNARK verifier,
we directly measure its work, which involves an O(b)-sized
G1 multi-exponentiation and 3 pairings.

Choice of Merkle hash function. Choosing a “SNARK-
friendly” hash function for the Merkle tree can signifi-
cantly reduce the prover time. In this sense, we use the
recently-proposed Poseidon-128 hash function [29], which
only requires 316 R1CS constraints per invocation inside the
SNARK, but lacks sufficient cryptanalysis. As a more secure
choice, we also use the Pedersen hash function [65] used in
Zcash [7], which is collision-resistant under the hardness of
discrete log, but requires 2753 constraints per invocation [45].

Proving time. The SNARK prover time is dominated by
several multi-exponentiations and Fast Fourier Transforms
(FFTs) of size linear in the number of R1CS constraints. For
example, aggregating b = 210 proofs in a Poseidon-hashed
Merkle tree of height ℓ= 30, involves 10 million constraints.
As a result, SNARK aggregation is very slow, taking 1224
seconds. In contrast, when aggregating b Hyperproofs, also
in a height ℓ MLT, our IPA-based prover from Fig. 5 only
computes O(bℓ) pairings and O(bℓ) G1,G2 and GT expo-
nentiations. This only takes 123 seconds. On average, as
shown in Fig. 7(a), aggregating Hyperproofs is 10× faster
than aggregating Merkle-Poseidon proofs and 41× faster than
Merkle-Pedersen.

Prover memory. The SNARK prover also requires memory
at least linear in the number of constraints. As a result, on
our machine with 32 GiB of RAM, SNARK aggregation runs
out of memory when aggregating ≥ 211 proofs with Poseidon
hashing (20 million constraints) or≥ 28 proofs with Pedersen
(23 million constraints). Nonetheless, we extrapolate the prov-
ing times in Fig. 7. In contrast, our IPA-based aggregation
from Fig. 5 has a much lower memory footprint and never
runs out of memory.

Verification time. In general, verifying a SNARK proof re-
quires 3 pairings and a G1 multi-exponentiation of size equal
to the number of verifier-provided inputs [30]. In particular,
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Figure 7: SNARK-based Merkle proof aggregation versus Hyperproof aggregation. The x-axis is log2(# of proofs being aggregated). Dotted lines are
extrapolated, due to the SNARK prover running out of memory. We use the 128-bit secure variant of Poseidon.

when aggregating b Merkle proofs, this multi-exponentiation
will be of size 2b+ 1, since the verifier must input the di-
gest and the b leaves (i,vi)i∈I being verified. We implement
verification in Golang using mcl [42] and report the times
in Fig. 7(b). (We cannot use the Ozdemir et al. code, since
the verifier only inputs two digests and checks knowledge
of b changes to the Merkle tree.) When aggregating b = 210

proofs, it takes 0.11 seconds to verify a SNARK proof and
17.4 seconds to verify an aggregated Hyperproof. While veri-
fication is slower in Hyperproofs, when accounting for both
the time to prove and verify in Fig. 7(c), Hyperproofs are
faster.

SNARKs without trusted setup. Recent SNARKs [19, 55,
66] are transparent (i.e., do not need a trusted setup). Even
better, these SNARKs often have faster provers than pairing-
based SNARKs. However, compared to Hyperproofs, they are
still too slow, have larger proof sizes and consume too much
memory. For example, aggregating b = 214 Merkle proofs
requires 228 R1CS constraints if using Poseidon hashes. The
prover time would be around 2.58 hours using Spartan [55,
Figure 7] and 1.53 hours using Virgo [66]. This is close to
5× and 3× slower than Hyperproofs, respectively. The proof
size would be around 1.83 MiB using Spartan and 350 KiB
using Virgo (estimated using the open-source code of [66]).
This is around 36× and 7× bigger than Hyperproofs, respec-
tively. The performance is even worse with Pedersen hashes.
Moreover, these transparent SNARKs are not as memory-
efficient as Hyperproofs: Virgo scales to 224 constraints, sim-
ilar to pairing-based SNARKs (i.e., fails aggregating when
b≥ 211 proofs) while Spartan scales to 226 constraints (i.e.,
fails for b ≥ 213). Lastly, other transparent arguments (e.g.,
STARKs [9], Aurora [10], Hyrax [61], Ligero [4]) have simi-
lar drawbacks. We defer to [55, 66] for a detailed discussion
on trade-offs.

5.3 Macrobenchmarks
Our single-threaded experiments measure the VC-induced
overheads of statelessly reaching consensus on a new block,
as discussed in §4. This consists of three measurements. First,

the block proposal time (P) to verify individual proofs, ag-
gregate them into a new block and update the digest. Second,
the block validation time (V) to verify the aggregated proof
and the updated digest in this new block, as it propagates
through the P2P network. In particular, we assume the P2P
network has diameter h = 20. Third, the proof maintenance
time (M) for a proof-serving node (PSN) to update all proofs
after applying the updates from this new block, so that the
next proposed block can use these proofs.

We estimate the VC overhead as P+(h ·V)+M and sum-
marize our results in Table 4. Note that we account for P2P
nodes not forwarding a block before validating it by multiply-
ing V by h. Overall, Hyperproofs’ overhead is 10× smaller
than Poseidon-hashed Merkle trees and 41× smaller than
Pedersen-hashed. This is because Merkle-based stateless vali-
dation involves a slower, more complex SNARK prover (dis-
cussed below). Furthermore, Hyperproofs remain competitive
in terms of proof maintenance cost (M).

Setting: We assume MLTs and Merkle trees of height ℓ= 30
and blocks of 1024 transactions. We do not compare to VCs
with O(1)-sized proofs, due to their large proof maintenance
cost (i.e., 2ℓ G1 exponentiations, or 31.7 hours).

Limitations: Our macrobenchmarks do not account for all
the subtleties that would arise in a full prototype, such as
communication overheads, or miners needing to update the
proofs in the current block they are working on due to another
competing block. They also do not account for the overhead
of signature verification, which is not affected by the chosen
VC scheme. Instead, they focus on the three key operations
whose overheads should be minimized: block proposal, block
validation and proof maintenance. Lastly, while we show
Hyperproofs are faster than other VCs for stateless validation,
we do not claim they make the stateless setting practical.

Block transitions with Hyperproofs versus Merkle trees.
In a stateless cryptocurrency, the ith block stores the digest di
of all users’ balances at that point in time. When block i+1
arrives, it must prove that its new digest di+1 correctly reflects
the updated balances, after applying its transactions. With



Hyperproofs, the block includes an aggregated proof for the
balance of each user sending money. This way, a validator can
ensure that a block is spending valid coins and then can com-
pute di+1 from di via UpdDig, subtracting coins from each
sending user’s account and adding coins to each receiving
user.

With SNARK-based Merkle trees, it is not possible to up-
date the digest di+1 given the old digest di, the SNARK aggre-
gation proof, and the changes in balances: the Merkle proofs
for all the changed leaves are also needed as auxiliary infor-
mation. But including these Merkle proofs in the block would
defeat the point of aggregating them via SNARKs! Therefore,
the SNARK circuit must be extended to also verify the transi-
tion between di and di+1. Specifically, the circuit additionally
proves that di+1 is obtained by applying the changes in the
block to di. A block of b transactions involves 2b changes to
the Merkle tree, and each change requires two Merkle path
verifications inside the circuit. Therefore, the circuit involves
4 ·b Merkle path verifications (4× more expensive than the
aggregation circuit from §5.2).

Block overhead. As described above, stateless cryptocur-
rency blocks additionally store the digest of the state and
an aggregated proof for all transactions. Both Merkle trees
and Hyperproofs have similar digest sizes (i.e., 32 bytes ver-
sus 48 bytes). However, aggregated Hyperproofs are 52 KiB,
whereas SNARK-aggregated Merkle proofs are only 192
bytes. Nonetheless, relative to the size of the full block, Hy-
perproof overhead is modest and only decreases with larger
blocks. Furthermore, we foresee optimizing the IPA from
Fig. 8 to reduce the proof size. Lastly, using unstealability
to incentivize proof-serving nodes (which Merkle trees do
not support) adds 224 bytes of WPK overhead for each PSN
involved in the block. As an alternative, if the set of PSNs is
fixed or grows slowly, then WPKs can be stored as part of the
public parameters of the system.

Transaction overhead. Transactions propagating through the
P2P network in a stateless cryptocurrency need to include
proofs. With Hyperproofs, this only requires a 1.44 KiB proof
for the sender’s balance. With Merkle trees, whether Poseidon-
or Pedersen-hashed, this requires two 960 byte proofs, or
1.875 KiB, one for the sender and one for the receiver. This is
because, to update the Merkle root, the miner also needs the
receiver’s Merkle proof as auxiliary information, whereas in
Hyperproofs the digest can be updated homomorphically.

Block proposal. With Hyperproofs, a miner proposing a block
with 1024 transactions has to (1) verify 1024 individual Hyper-
proofs, (2) aggregate these proofs, (3) and update the digest.
With Merkle trees, this remains the same, except steps (2)
and (3) are done in the SNARK prover. Table 4 shows block
proposal is 36× (Poseidon) to 149× (Pedersen) faster in Hy-
perproofs than in SNARKs due to faster aggregation/digest
updates.

Table 4: Single-threaded, stateless cryptocurrency macrobenchmarks that
measure the time to prepare a block for proposal (P), to validate a proposed
block (V) and to update all proofs (M) after a new block is seen. A block
propagates through a P2P network of diameter h = 20. Trees have height
ℓ= 30 and blocks have 1024 transactions. A Poseidon-128 hash takes 113
µs using the go-iden3-crypto library [27]. A Pedersen hash takes 37 µs
using the sapling-crypto library [50].

Scheme Hyperproofs Merkle w/
Poseidon

Merkle w/
Pedersen

Block proposal (P) 2.23 min 81 min 332 min

Block validation (V) 17.5 sec 0.18 sec 0.18 sec

Proof maintenance (M) 5.14 sec 4.7 sec 1.54 sec

Total (P+(h ·V)+M) 8 min 81 min 332 min

Block validation. To validate an incoming block, a miner has
to verify its aggregated proof and check its digest was com-
puted correctly via UpdDig. In Table 4, we see that SNARKs
are 97× faster to verify than an aggregated Hyperproof of
b = 1024 proofs, which require O(bℓ) G1,G2 and GT expo-
nentiations to verify. While SNARK verification also incurs
O(b) cost, this only involves a fast G1 multi-exponentiation.
Nonetheless, when considering the time to propose and vali-
date a block (P+h ·V), Hyperproofs remains 10× (Poseidon)
to 41× (Pedersen) faster.

Proof maintenance. Recall that having updated proofs ready
to be served is important in stateless cryptocurrencies, since
users need to fetch and include their proofs when sending
a transaction to a miner. Fortunately, a PSN can update all
proofs in O(ℓ) time in both Hypeproofs and Merkle trees.
Table 4 gives the concrete batch update time after 1024 trans-
actions (or 2048 changes to the tree). Batch-updating Merkle
trees is slightly faster than applying each update sequentially,
because each node in the Merkle tree need only be updated
once, by recomputing a hash (i.e., 113 µs for Poseidon and
37 µs for Pedersen). In contrast, when batch-updating MLTs,
each node still needs to be updated several times to account
for all the leaves that changed underneath it, as per Eq. 18.
While we optimize this using a multi-exponentiation, MLTs
will be slightly slower.

6 Discussion

Selective versus adaptive security for PST commitments.
Papamanthou et al. prove security under ℓ-SDH (see Assum.
A.2), but only in a selective sense. Specifically, the (selective)
adversary, whose goal is to equivocate about f (i), must first
decide on an i and reveal it to the challenger [47, Appendix
C.1]. In contrast, we prove adaptive security for any point on
the Boolean hypercube. Specifically, the (adaptive) adversary
reveals nothing to the challenger about the point i it equiv-
ocates on and, in our security proof, the reduction simply
“guesses” this i (see Thm. B.1). One negative consequence of



this guessing is a security loss of log2 n bits, which we hope
to address in future work.

Large public parameters. Hyperproofs for vectors of size n
require O(n)-sized public parameters (see §2.2) which must
be generated via a trusted setup. In practice, this setup would
have to be implemented securely as a multi-party computation
(MPC) protocol [8, 14, 15]. Recently, cryptocurrency projects
have demonstrated the viability of this approach at the scale
of n≈ 227 [13, 25, 62]. We hope to scale these techniques to
n≈ 230 in future work. Alternatively, large public parameters
can be avoided by splitting a large vector up into k chunks
and committing to each chunk. This saves a factor of k in
the size of the public parameters but leads to a k-sized digest.
Importantly, one can still aggregate proofs in such a chunked
vector since Hyperproofs support cross-aggregation. Lastly,
Hyperproofs can be modified to work in a decentralized set-
ting where the trapdoor s= (s1, . . . ,sℓ) is secret-shared among
a set of servers, similar to recent work for bilinear accumu-
lators [31]. This precludes the need to generate O(n) public
parameters and could be useful for applications in the permis-
sioned setting.

Choice of public parameters. The most popular account-
based cryptocurrency, Ethereum, currently has less than 185
million accounts. Thus, it would be sufficient to set ℓ = 28
in Hyperproofs. Furthermore, once Ethereum’s consensus
layer will partition accounts over 64 shards [23], a smaller
ℓ = 22 would suffice. To determine the maximum number
of aggregated proofs b, we need only consider the maximum
number of transactions in a block. For example, to handle 2×
more than the average number of transactions in a Bitcoin
block, setting b = 4000 is more than adequate.

Future work. It would be interesting to apply our aggrega-
tion and unstealability techniques to Verkle trees [36, 39],
which are q-ary rather than binary Merkle trees. This would
also help extend Hypeproofs into a key-value commitment
(KVC) scheme that maps arbitrary keys to values. Building
Hyperproofs from assumptions in hidden-order groups would
eliminate the large public parameters and, potentially, the
trusted setup. Using more malleable inner-product arguments
would allow us to update aggregated proofs too. Lastly, opti-
mizing the arguments from Figs. 5 and 8 for our Hyperproof
setting could speed up aggregation and verification times as
well as reduce proof size.
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A Assumptions, definitions and primitives

Our work builds upon the inner product argument (IPA) by
Bünz et al. (see §2.4), which in turn relies on Abe et al. com-
mitments to group elements [1], which are secure under the
Symmetric-eXternal Diffie-Hellman (SXDH) assumption de-
fined below.

Assumption A.1 (SXDH). Let (p,G1,G2, GT ,e, g1, g2)←
BilGen(1λ). The Decisional Diffie-Hellman (DDH) problem
in G is to decide whether c = ab, given (g,ga,gb,gc) where
g ∈R G. The SXDH assumption is that DDH holds in both G1
and G2.

We prove Hyperproofs satisfy soundness, as per Def. B.2,
under q-Strong Diffie-Hellman (q-SDH) assumption, defined
below.

Assumption A.2 (q-SDH [11]). For any PPT adversary A ,

Pr

 (p,G1,G2,GT ,e,g1,g2)← BilGen(1λ),s ∈R Z∗p,
pp= ((p,G1,G2,GT ,e,g1,g2),gs

2,g
s
1, . . . ,g

sq

1 ) :

(a,g
1

s+a
1 )← A(1λ,pp)

≤ negl(λ)

The faster verifier for the Bünz et al. IPA from §2.4 relies
on a modified Abe et al. commitment scheme which uses
“structured” commitment keys. This modified commitment
scheme is binding under the q-Auxiliary Structured Double
Pairing (q-ASDBP) assumption in G1 and G2 introduced in
[17]. First, we present this assumption in G2 below.

Assumption A.3 (q-ASDBPG2 ). For any PPT adversary A,

Pr


(p,G1,G2,GT ,e,g1,g2)← BilGen(1λ),β ∈R Z∗p,
pp= ((p,G1,G2,GT ,e,g1,g2),g

β

1 ,
(

gβ2i

2

)
i∈[1,q)

(A0, . . . ,Aq−1)← A(1λ,pp) :

(A0, . . . ,Aq−1) ̸= 1G1 ∧1GT ̸= ∏
q−1
i=1 e(Ai,g

β2i

2 )

≤ negl(λ)

Second, the G1 variant of q-ASDBP is defined similarly
by swapping G2 with G1. Third, the q-ASDBP assumption
holds in the generic group model [17].

Definition A.1 (Non-interactive arguments of knowledge).
Let L be an NP relation such that x ∈ L if, and only if, there
exists a witness w such that L(x;w) = 1. A non-interactive
argument of knowledge for L (e.g., SNARKs [49]) allows
a verifier to efficiently verify that x ∈ L , without using w,
but via a (small) proof provided by an untrusted prover. A
non-interactive argument of knowledge consists of three PPT
algorithms, (G ,P ,V ):

1. (PK,V K)← G(1λ,L): Generates the proving and veri-
fication key for the program L .

2. π← P (PK,x;w): Generates a proof π to prove that
there exists w such that L(x;w) = 1.

3. {0,1}← V (V K,π,x): Checks if the proof π is valid for
x using the verification key V K.

Definition A.2 (Knowledge soundness). We say that an argu-
ment of knowledge (G ,P ,V ) for NP relation L has knowl-
edge soundness if, for any PPT A , there is a PPT extractor E
such that:

Pr

 1← V (V K,π,x)

∣∣∣∣∣∣∣∣
(PK,V K)← G(1λ,R ),

(π,x)← A(PK,V K),

w← E(PK,V K,π,x),
L(x;w) ̸= 1

≤ negl(λ)

Observation: The intuition behind Def. A.2 is that, if the
verifier accepts a proof for x, then the prover must “know" a
witness w for x and therefore x ∈ L . Knowledge is modeled
by an extractor E that can output such a w by inspecting the
prover’s tape.

Zero-knowledge proofs of knowledge (ZKPoKs). Recall
from §3.4 that a watermarking public key (WPK) gα

2 must
come with a ZKPoK of α. For this, we rely on Schnorr
ZKPoKs of α [53], defined as zkpokα = (z,c) ∈ Z2

p, where:

κ ∈R Zp, y = gκ
2 , c = H(g2,gα

2 ,y), z = κ+ c ·α

To verify zkpokα, one checks if:

c ?
= H(g2,gα

2 ,g
z
2/(g

α
2 )

c)
?
= H(g2,gα

2 ,g
(κ+c·α)
2 /gc·α

2 )⇔
?
= H(g2,gα

2 ,g
κ
2) = H(g2,gα

2 ,y) = c (28)
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P↔IPA(ck = (v,w);A,B): V↔IPA(ck = (v,w);C)→{0,1}:

If m = 1

A = [A1],B = [B1]

Return 1 iff.

C ?
= CM(ck; [A1], [B1],e(A1,B1))

Else (i.e., if m≥ 2)

ZL = ⟨AR,BL⟩
CL = CM(ck;AR||1G1 ,1G2 ||BL,ZL)
ZR = ⟨AL,BR⟩
CR = CM(ck;1G1 ||AL,BR||1G2 ,ZR)

CL,CR

x ∈R Zp

A′ = AL ◦ (AR)
x

v′ = vL ◦ (vR)
(x−1)

B′ = BL ◦ (BR)
(x−1) Computes v′,w′ just like the prover

w′ = wL ◦ (wR)
x C′ = (CL)

x ◦C◦ (CR)
(x−1)

Recurse on (ck′ = (v′,w′),A′,B′) Recurse on (ck′ = (v′,w′),C′)

Figure 8: The interactive IPA by Bünz et al. for m = 2k (wlog). The prover
convinces the verifier that he knows (A,B) ∈Gm

1 ×Gm
2 such that A,B,Z are

committed in C (under commitment key ck) and that Z = ⟨A,B⟩. See §2 for
IPA-specific notation such as 1Gb ,AL,A◦B,CM,AR||1G or Ax

L.

where H(·) is modeled as a random oracle.

Inner Product Arguments (IPA). We give the interactive
variant of the Bünz et al. [17] IPA in Fig. 8. Here, the prover
interacts with the verifier over logm rounds. This interactive
IPA is knowledge-sound assuming Abe et al. commitments
are binding [17, Theorem 1]. It is made non-interactive via
the Fiat-Shamir transform [24] and proved secure in a new
algebraic commitment model and in the random oracle model
(ROM) [17, Appendix D.2].

Faster verifier. As described Fig. 8, the prover and verifier
take O(m) time and the proof size is |π| = O(logm), if the
argument is made non-interactive via the Fiat-Shamir trans-
form [24]. However, Bünz et al. show how to reduce the veri-
fier time by using a “structured” commitment key ck = (v,w),
similar to a q-SDH common reference string (see Assum.
A.2). This allows the verifier to outsource the computations
of v′ and w′ to the untrusted prover and reduces verification
time from O(m) to O(logm). However, this comes at the cost
of additionally relying on the q-SDH assumption (see Assum.
A.2) and the q-ASDBP assumption (see Assum. A.3). Our
work implicitly assumes this optimized verifier, which we
later implement in §5. We refer the reader to [17, Section 5]
for the details of this optimization, which is beyond the scope
of this paper.

Lemma A.1 (Random linear combinations lemma). Let Zi ∈
GT , Ai ∈Gm

1 and Bi ∈Gm
2 for i = 1, . . . ,N. Assume each ri is

chosen uniformly at random from Zp. Then, with probability
at least 1−1/p, all Eq. 23 are satisfied iff. Eq. 24 is satisfied.

Proof (sketch) for Lemma A.1. Clearly if Eq. 23 are satisfied
then Eq. 24 is also satisfied. For the other direction, by the
Schwartz-Zippel lemma [54,69], if at least one equation from
Eq. 23 does not hold, Eq. 24 holds at randomly selected values
ri with probability 1/p, completing the proof.

Theorem A.1. (GBATCH,PBATCH,VBATCH) from Fig. 5 is
a non-interactive argument of knowledge for Lb,ℓ

BATCH from
Eq. 22 that has knowledge soundness according to Def. A.2
under the same assumptions as the non-interactive IPA from
§2.4 (i.e., algebraic commitment model [17], the random ora-
cle model, (2bℓ)-SDH, (bℓ)-ASDBP).

Proof (sketch) for Thm. A.1. This follows from Lemma A.1
and the knowledge soundness of the Bünz et al. IPA, which is
used in a black box fashion.

B VCs and Hyperproofs

MLT correctness. We argue below why our multilinear tree
from §3.1 yields correct proofs as per Def. B.1. Formally, the
quotients q j(x j, . . . ,x1), ∀ j ∈ [ℓ] for a proof πi in our MLT
from Fig. 3 are computed as:

q j(x j−1, . . . ,x1) = fiℓ,...,i j+1,1− fiℓ,...,i j+1,0 (29)

One can prove that that these quotients satisfy the PST de-
composition from Eq. 9, and thus yield a correct proof, for
any i via induction. Here, we just show this intuitively. Begin
with the first term in the PST decomposition sum from Eq. 9,
which is qℓ(x)(xℓ− iℓ). By Eq. 29, this term is equal to:

qℓ(x)(xℓ− iℓ) = ( f1(x)− f0(x))(xℓ− iℓ)

= xℓ f1(x)− iℓ f1(x)− xℓ f0(x)+ iℓ f0(x)

= (1− xℓ) f0(x)+ xℓ f1(x)− (1− iℓ) f0(x)− iℓ f1(x)

= f (x)− fiℓ(x)

The next term in the sum from Eq. 9 would be qℓ−1(x)(xℓ−1−
iℓ−1) which, by similar reasoning, equals fiℓ(x)− fiℓ,iℓ−1(x).
Adding these two terms up, the fiℓ(x)’s cancel out, leaving
us with f (x)− fiℓ,iℓ−1(x). Continuing with the other terms,
everything cancels out except for f (x)− fiℓ,...,i1(x) = f (x)−
f (i), as per Eq. 9. Therefore, the quotients defined in our MLT
from Fig. 3 are correct.

Definition B.1 (VC Correctness). A VC is correct, if for
all λ ∈ N and n = poly(λ), for all pp ← Gen(1λ,n), for
all vectors a = [a0, . . . ,an−1], if C = Compp(a) and πi =
Openpp(i,a),∀i ∈ [0,n) (or from OpenAllpp(a)), then, for
any polynomial number of updates (u,δ) resulting in a
new vector a′, if C′ and π′i, for all i, are the updated
digest and proofs obtained via calls to UpdDigpp and
UpdProofpp (or to UpdAllProofspp) respectively, then (1)
Pr[1←Verpp(C

′,{i},a′i,π′i)] = 1 for all i; (2) ∀I⊆ [n],Pr[1←
Verpp(C

′, I, (a′i)i∈I , Aggpp(I,(a′i,π
′
i)i∈I))] = 1.



Observation: At a high-level, correctness says that proofs
created via Open or OpenAll verify successfully via Ver, even
in the presence of updates and aggregated proofs.

Definition B.2 (VC Soundness). ∀ PPT adversaries A ,

Pr


pp← Gen(1λ,n),

(C, I,J,(ai)i∈I ,(a′j) j∈J ,πI ,π
′
J)← A(1λ,pp) :

1← Verpp(C, I,(ai)i∈I ,πI) ∧
1← Verpp(C,J,(a′j) j∈J ,π

′
J) ∧

∃k ∈ I∩ J s.t. ak ̸= a′k

≤ negl(λ)

Observation: Soundness says that no adversary can output
two inconsistent proofs for different values ak ̸= a′k at position
k with respect to an adversarially-produced digest d. Note
that such a definition allows the digest C to be produced
adversarially. This is stronger than what is required in our
cryptocurrency setting from §4, where the digest is produced
correctly from the agreed transactions. Nonetheless, having
a stronger definition makes our VC from §3 more widely
useful.

Theorem B.1 (Individual Hyperproofs are sound). Our in-
dividual logn-sized (non-aggregated) proofs from §3.1 are
sound as per Def. B.2 under q-SDH (see Assum. A.2).

Proof for Thm. B.1. Suppose there exists an adversary A that
breaks Def. B.2. We show how to build another adversary
B that breaks the ℓ-SDH assumption (see Assum. A.2). We
first assume A returns individual (non-aggregated) proofs and
then generalize to A returning aggregated proofs.

B is given ℓ-SDH public parameters pp =

((p,G1,G2,GT ,e,g1,g2), gs
2,g

s
1, . . . ,g

sℓ
1 ), and must (some-

how) break ℓ-SDH by outputting (a,g
1

s−a
1 ) for some a ̸= s.

For this, B will leverage A into helping him.
First, B “guesses” the position i on which A will forge,

which he can do with probability 1/poly(λ), where λ is our
security parameter. Second, B “tweaks” the ℓ-SDH public
parameters into the Hyperproofs public parameters from
Fig. 1, which he then calls A with. Specifically, B sets
sk − ik = rk(s− i1),∀k ∈ [ℓ], where r1 = 1, the rest of the
rk’s are random, and iℓ, . . . , i1 is the binary representation of i.
Importantly, note that B can do this without knowledge of s,
since B can compute any product g∏i∈S si

1 ,S ∈ 2{1,2,...,ℓ} from
the gsi

1 ’s. Similarly, B can compute any gsk
2 from gs

2. Third, B
calls A with the “tweaked” public parameters as input and
obtains a digest C and two inconsistent proofs π = (wk)k∈[ℓ],
π′ = (w′k)k∈[ℓ] for position i having values both v and v′. (If A
outputs proofs for a different position i′ ̸= i, B retries.)

Since both proofs verify, the following equations hold,
where iℓ, . . . , i1 is the binary expansion of the position i:

e(C/gv
1,g2) = ∏

k∈[ℓ]
e(wk,g

sk−ik
2 ) (30)

e(C/gv′
1 ,g2) = ∏

k∈[ℓ]
e(w′k,g

sk−ik
2 ) (31)

Next, dividing the top equation by the bottom one and substi-
tute sk− ik = rk(s− i1),∀k ∈ [ℓ]:

e(gv′
1 /gv

1,g2) = ∏
k∈[ℓ]

e(wk/w′k,g
sk−ik
2 )⇔ (32)

e(gv′−v
1 ,g2) = ∏

k∈[ℓ]
e(wk/w′k,g

rk(s−i1)
2 )⇔ (33)

e(g1,g2)
v′−v =

(
∏
k∈[ℓ]

e(wk/w′k,g
rk
2 )

)s−i1

⇔ (34)

e(g1,g2)
1

s−i1 =

(
∏
k∈[ℓ]

e(wk/w′k,g
rk
2 )

) 1
v′−v

⇔ (35)

e(g
1

s−i1
1 ,g2) = ∏

k∈[ℓ]
e
((

wk/w′k
) rk

v′−v ,g2

)
⇔ (36)

e(g
1

s−i1
1 ,g2) = e

(
∏
k∈[ℓ]

(
wk/w′k

) rk
v′−v ,g2

)
(37)

Thus, g
1

s−i1
1 = ∏k∈[ℓ]

(
wk/w′k

) rk
v′−v and B can output (i1,g

1
s−i1
1 )

and break ℓ-SDH.

Theorem B.2 (Aggregated Hyperproofs are sound). Our ag-
gregated proofs from §3.3 are sound as per Def. B.2 under
the knowledge-soundness of the LBATCH argument (see Thm.
A.1).

Proof for Thm. B.2. Suppose there exists A that
outputs (C, I,J,(ai)i∈I ,(a′j) j∈J , πI ,π

′
J) such that

1← Verpp(C, I,(ai)i∈I ,πI) and 1← Verpp(C,J, (a′j) j∈J ,π
′
J),

while ∃t ∈ I ∩ J s.t. at ̸= a′t . By Thm. A.1, there exist
extractors that extract the individual logn-sized proofs. Let
πππi = (wi,1, . . . ,wi,ℓ) denote the extracted proofs for all i ∈ I
and πππ′j = (w′j,1, . . . ,w

′
k,ℓ) denote the ones for all j ∈ J. Recall

that for t ∈ I ∩ J, πππt verifies for at while πππ′t verifies for a
different a′t . Thus, we have:

e(C/gat
1 ,g2) =

ℓ

∏
k=1

e(wt,k,g
sk−tk
2 ) (38)

e(C/ga′t
1 ,g2) =

ℓ

∏
k=1

e(w′t,k,g
sk−tk
2 ) (39)

By the same argument from Thm. B.1, this breaks q-SDH.

Definition B.3 (UVC). An unstealable VC (UVC) scheme
consists of the following algorithms:



Gen(1λ,n)→ pp: Given security parameter λ and vector length n, it
outputs public parameters pp.

WtrmkGen(1λ)→ (wsk,wpk): Outputs a randomly-generated water-
marking secret key (WSK) wsk and its corresponding watermarking
public key (WPK) wpk.

WtrmkParams(pp,wsk)→ wpp: Returns watermarked public param-
eters that can be used to directly compute watermarked proofs under
wsk.

Compp(a)→ C: Outputs the digest C of a = (a0, . . . ,an−1) ∈ Zn
p.

Openwpp(i,a)→ πi: Outputs a proof πi for position i in a, watermarked
with the WSK from wpp.

OpenAllwpp(a)→ (π0, . . . ,πn−1): Outputs all proofs πi for a, water-
marked with the WSK from wpp.

Aggpp(I,(ai,πi)i∈I)→ πI : Combines individual proofs πi for values ai

into an aggregated proof πI .

Verpp(C, I,(ai,wpki)i∈I ,πI)→{0,1}: Verifies proof πI that each posi-
tion i ∈ I has value ai against digest C. Additionally checks that the proof
for ai was watermarked using wpki.

UpdDigpp(u,δ,C)→ C′: Updates digest C to C′ to reflect position u
changing by δ ∈ Zp.

UpdAllProofswpp(u,δ,π0, . . . ,πn−1)→ (π′0, . . . ,π
′
n−1): Updates all wa-

termarked proofs πi to π′i after changing position u by δ.

UpdProofwpp(u,δ,πi)→ π′i: Updates watermarked proof πi to π′i after
changing position u by δ.

B.1 Unstealable VCs

In §3.4, we briefly explained how to change our VC API from
Def. 2.1 to account for unstealability. We give the full API for
an UVC in Def. B.3 and we give definitions of correctness,
security and unstealability below. Changes from §2.3 are
highlighted in blue.

Definition B.4 (UVC Correctness). An unstealable VC
(UVC) is correct, if for all λ ∈ N and n = poly(λ), for all
pp← Gen(1λ,n), for all vectors a = [a0, . . . ,an−1], if C =
Compp(a) and πi =Openwppi

(i,a),∀i ∈ [0,n), where wppi =

WtrmkParams(pp,wski) and (wski,wpki) =WtrmkGen(1λ)
(or from any combination of OpenAllwppi

(a) calls, with dif-
ferent wppi’s), then, for any polynomial number of updates
(u,δ) outputting a new vector a′, if C′ and π′i, for all i, are
the updated digest and proofs via calls to UpdDigpp and
UpdProofwppi

(or UpdAllProofswppi
) respectively, then:

1. Pr[1← Verpp(C
′,{i},(a′i,wpki),π

′
i)] = 1 for all i

2. Pr[1←Verpp(C
′, I,(a′i,wpki)i∈I ,Aggpp(I,(a′i,π

′
i)i∈I))]=

1, ∀I ⊆ [n].

Definition B.5 (UVC Soundness). ∀ PPT adversaries A:

Pr



pp← Gen(1λ,n),(
C,

I,πI ,(ai,wpki)i∈I ,

J,π′J ,(a
′
j,wpk j) j∈J

)
← A(1λ,pp) :

1← Verpp(C, I,(ai,wpki)i∈I ,πI)∧
1← Verpp(C,J,(a′j,wpk j) j∈J ,π

′
J)∧

∃k ∈ I∩ J s.t. ak ̸= a′k

≤ negl(λ)

Theorem B.3. The unstealable variant of Hyperproofs from
§3.4 is sound as per Def. B.5.

Proof sketch for Thm. B.3. We assume proofs are not aggre-
gated. (Can generalize similar to Thm. B.2 when proofs are
aggregated.) The proof proceeds the same as in Thm. B.1,
except the reduction B that calls the adversary A needs to
know the WSKs α,β corresponding to wpk and wpk’ respec-

tively in order to output an ℓ-SDH solution (i1,g
1

s−i1
1 ). Indeed,

since the WPKs come with a ZKPoK, B can extract α,β
with non-negligible probability. Next, let π = (w1, . . . ,wℓ)
and π′ = (w′1, . . . ,w

′
ℓ) be the two inconsistent proofs. Similar

to the proof in Thm. B.1, B knows that:

e(C/gai
1 ,g

α
2 ) =

ℓ

∏
k=1

e(wi,k,g
sk−ik
2 ) (40)

e(C/ga′i
1 ,g

β

2) =
ℓ

∏
k=1

e(w′i,k,g
sk−ik
2 ) (41)

Dividing the top by the bottom equation yields:

e(ga′i−ai
1 ,g2) = ∏

k∈[ℓ]
e(w1/α

k /w′1/β

k ,gsk−ik
2 ) (42)

=

(
∏
k∈[ℓ]

e(w1/α

k /w′1/β

k ,grk
2 )

)s−i1

(43)

Thus, B can output the ℓ-SDH solution (i1,g
1

s−i1
1 ) where

g
1

s−i1
1 = ∏k∈[ℓ]

(
w1/α

k /w′1/β

k

) rk
a′i−ai .

Definition B.6 (UVC Unstealability). Let the worst-case
complexity of Open be O(g(n)). An UVC is unstealable if
∀ security parameters λ, ∀n = poly(λ), ∀ PPT adversaries A
running in o(g(n)) time:

Pr
[
UnstealabilityA

UVC(λ,n) = 1
]
≤ negl(λ) .



UnstealabilityA
UVC(λ,n):

1: PP← Gen(1λ,n)
2: a = [a0, . . . ,an−1] ∈R Zn

p
3: C← ComPP(a)
4: Initialize oracle Owatrm

PP,a (·, ·) with S=∅

5: (iF ,WPK∗,Q∗)← AOwatrm
PP,a (·,·)(PP,a)

6: return true if and only if:
1: VerPP(C, iF ,(aiF ,WPK∗),Q∗) = 1∧
2: (·,WPK∗) /∈ S

Owatrm
PP,a (o,WPK):

1. if WPK =⊥ or cannot find (wsk,WPK) ∈ S

2. (wsk,WPK)←WtrmkGenPP(1λ)

3. S← S∪{(wsk,WPK)}
4. wpp←WtrmkParams(PP,wsk)
5. Q←Openwpp(o,a)
6. return (Q,WPK)

Theorem B.4 (Hyperproofs Unstealability). Hyperproofs is
unstealable as per Def. B.6 in the AGM, under discrete log
and q-SDH assumption.

Proof for Thm. B.4. Since the adversary is algebraic, when-
ever it outputs a group element it also returns a vector of
field elements as the representation. Thus, in line 5 of the
UnstealabilityA

UVC(λ,n) game, an algebraic adversary will re-
turn (⃗ck ,⃗zk)∀k∈[ℓ] along with Q∗ = (W∗

k)∀k∈ℓ, where c⃗k’s cor-
responds to the public parameters and z⃗k’s corresponds to
group elements computed by the oracle. Let m be the number
of non-zero elements across all vectors (⃗ck ,⃗zk)∀k∈[ℓ] and let T
be the time that A takes to output Q∗. Clearly T = Ω(m) but
we also know that T = o(n). The group element returned by
the A can be computed as a multi-exponentiation of size m.
Since the adversary runs in o(n) time, m = o(n); otherwise,
the adversary would have to run in more than o(n) time to
accomodate for the additional exponentiations.

Suppose A breaks unstealability, then it outputs a valid wa-
termarked proof Q∗ = (W∗

1, . . . ,W
∗
ℓ) for aiF under a WPK∗

different than the oracle’s WPK1, . . . ,WPKq. Since the ad-
versary is algebraic, we can reason about the representation
(c⃗k, z⃗k) of each W∗

k in this proof:

W∗k =

 ∏
i∈[|PPG1 |]

(
PPG1,i

)ck,i

 ·(∏
i∈[q]

∏
j∈[ℓ]

(
W∗i, j

)zk,i, j

)
,∀k ∈ [ℓ]

(44)

Thus W∗
k’s can be represented as:

W∗
k = g

∑i∈[q] fk,i(s)+l∗k (s)
1 ,∀k ∈ [ℓ] (45)

where:

fk,i(x) =
ℓ

∑
j=1

zk,i, j ·wi, j(x) (46)

l∗k (x) =
|PPG1 |

∑
i=0

ck,i ·φi(x) (47)

Here, the wi, j(X) polynomials are the quotient polynomials
committed in the W∗

i, j’s and computed via Open for a. The
φi(X) polynomials are the selector multinomials committed
in PPG1,i.

We argue unstealability of Hyperproofs by considering the
following two cases: When,

1. ∀k ∈ [ℓ],
(

∏i∈[q] ∏ j∈[ℓ]
(

W∗
i, j

)zk,i, j
)
= 1.

2. Otherwise.

In the first case, adversary has access to oracle watermarked
proofs, but does not incorporate them to compute a valid proof.
Whereas, in the second case, adversary incorporates oracle
watermarked proofs to compute a valid proof.

Case 1: Assume that A breaks unstealability, then we can
build another adversary B that breaks the ℓ-SDH assumption
(see Assum. A.2). B is given ℓ-SDH public parameters pp

and must output (c,g
1

s−c
1 ) for some c ̸= s.

1. B does the following:

• Samples rk ∈R Zp and sets sk = rk · s,∀k ∈ [ℓ].

• Computes PPG1 = g∏i∈S si
1 ,S ∈ 2{1,...,ℓ} using ri’s

and gsi

1 ’s (from pp).
• Computes PPG2 = gsk

2 using ri’s and gs
2.

• Sets PP = (PPG1 ,PPG2)

2. B samples a random vector a. This, defines the oracle
Owatrm

PP,a (·, ·).

3. B calls A , giving it the public parameters PP and the
vector a.

4. A queries the watermarking oracle at most u times on
each (WPKi)∀i∈[q].

(a) B initializes S= /0

(b) For each query, B:
• if WPKi =⊥ or cannot find (αi,WPKi) ∈ S

– Picks αi ∈R Zp

– Adds (αi,g
αi
2 ) to S

• Gets (wski,WPKi) from S

• Computes zkpok of αi w.r.t gαi
2 .

(c) B watermarks the public parameters PP with wski,
obtaining wppi.

(d) Since B has the vector a and watermarked public
parameters wppi, it can compute a watermarked
proof Qi = (Wi,1, . . . ,Wi,ℓ) via Openwppi

.



5. A outputs a valid watermarked proof Q∗=(W∗1, . . . ,W
∗
ℓ)

for aiF under a WPK∗ different from the
WPK1, . . . ,WPKq queried to the oracle. Addi-
tionally, A also outputs a proof of knowledge zkpok∗

for the wsk∗ associated with WPK∗.

Recall that ∀k ∈ [ℓ],
(

∏i∈[q] ∏ j∈[ℓ]
(

W∗
i, j

)zk,i, j
)
= 1, thus

A’s representation could have used elements only from PPG1,i
to compute Q∗. As A performs o(n) G1-group exponen-
tiations in total, it must have used at most o(n) group el-
ements from PPG1,i to output a valid watermarked proof
Q∗ = (W∗

k)k∈[ℓ].
Let C← ComPP(a). Since A returns a valid proof Q∗:

VerPP(C,{iF},(aiF ,WPK∗,zkpok∗),Q∗) = 1

Thus, B can extract β from the proof-of-knowledge zkpok∗

such that WPK∗ = gβ

2 . Let (b1, . . . ,bℓ) be the binary repre-
sentation of the position iF returned by A .

e(C/g
aiF
1 ,WPK∗) = ∏

k∈[ℓ]
e(W∗

k ,g
sk−bk
2 )

e(C/g
aiF
1 ,gβ

2) = ∏
k∈[ℓ]

e(W∗
k ,g

sk−bk
2 )

e(g
β(a(s)−aiF )

1 ,g2) = ∏
k∈[ℓ]

e(g
(sk−bk)·l∗k (s)
1 ,g2)

e(g
β(a(s)−aiF )

1 ,g2) = e(g
∑k∈[ℓ](sk−bk)·l∗k (s)
1 ,g2)

g
β(a(s)−aiF )−∑k∈[ℓ](sk−bk)l∗k (s)
1 = 1 (48)

Since B knows β,a(x),aiF , l
∗
k (x), it can compute the poly-

nomial d(x):

d(x) = β(a(x)−aiF )− ∑
k∈[ℓ]

(xk−bk)l∗k (x) (49)

Now we argue that d(x) = 0 with negligible probability. If
d(x) = 0, we have

a(x)−aiF =
1
β

∑
k∈[ℓ]

(xk−bk)l∗k (x) (50)

=
1
β

∑
k∈[ℓ]

(xk−bk)

|PPG1 |

∑
i=0

ck,i ·φi(x)

=
1
β

∑
k∈[ℓ]

|PPG1 |

∑
i=0

(xk−bk)φi(x) · ck,i, (51)

where the total number of non-zero ck,i is m = o(n). The total
number of possible polynomials defined by Eq. 51 can be com-
puted in the following way. The total number of possible non-
zero locations in (ck,i)i∈[|PPG1 |],k ∈ [ℓ] is

(|PPG1 |ℓ
m

)
=
(2nℓ

m

)
.

At each non-zero location, the total number of distinct val-
ues is p−1. Thus the total number of possible polynomials
defined by the r.h.s of Eq. 49 is at most

(2nℓ
m

)
(p− 1)m. As

a(x)− aiF = 1
β

∑k∈[ℓ] ∑
|PPG1 |
i=0 (xk− bk)φi(x) · ck,i, there are at

most
(2nℓ

m

)
(p− 1)m such a(x)− aiF with d(x) = β(a(x)−

aiF )−∑k∈[ℓ](xk−bk)l∗k (x) = 0. Finally, as a(x) is chosen ran-
domly, the probability that it is one of such polynomials is(2nℓ

m

)
(p−1)m

pn <

(2nℓ
m

)
pm

pn

<

(2nℓ
nℓ

)
pm

pn

≤ (2e)nℓpm−n = (2e)nℓ2O(λ)m−O(λ)n .

As p = 2O(λ), λ > O(ℓ) and m = o(n), the above is negligible.
Note that B computed (sk = rk · s)∀k∈[ℓ] and B knows rk’s.

Thus, B can substitute xk as rk ·x and obtain d(x), a univariate
polynomial. Moreover, d(x) is also a non-zero polynomial,
as rk’s are independent and uniformly distributed. B picks
c ∈R Zp and computes q(x) and d(c), such that d(x) = (x−
c)q(x)+d(c), where d(c) is a non-zero constant.

From Eq. 48,

gd(s)
1 = gd(s)

1 = 1 (52)

g(s−c)q(s)+d(c)
1 = gq(s)

1 ·gd(c)/(s−c)
1 = 1 (53)

g1/(s−c)
1 = g−q(s)/d(c)

1 (54)

Thus, B solves the ℓ-SDH challenge.
Note that the adversary enjoys access to watermarking

oracle, unlike the Open. But, the adversary is limited from
including the oracle proofs in the representation vector, how-
ever this does not preclude the adversary from using oracle
proofs in any other way. We ease this restriction on the adver-
sary in the next part of the proof and show that it is in fact
not possible to include the oracle proofs in the representation
vector.

Case 2: Assume that the A breaks unstealability, then we can
build another adversary B that breaks the discrete log (DL)
assumption. Specifically, B gets a DL challenge gα

1 ,g
α
2 and

must output α.

1. B does the following:

• Picks a random s = (s1, . . . ,sℓ) ∈R Zℓ
p

• Computes PP = (PPG1 ,PPG2)

2. B samples a random vector a. This defines the oracle
Owatrm

PP,a (·, ·).

3. B calls A , giving it the public parameters PP and the
vector a.

4. A does q oracle queries on positions o1, . . . ,oq.



(a) For each query i, B:
• Picks ri ∈R Zp

• Sets αi = ri ·α and WPKi = gαi
2

• Programs the random oracle H(·) for the
Schnorr proof system and simulates a zkpok
of αi w.r.t. gαi

2 . Specifically, B picks
(z,c) ∈R Z2

p, sets y = gz
2/(g

αi
2 )c and programs

H(g2,g
αi
2 ,y) to return c.

(b) B watermarks the public parameters PP with wski,
obtaining wppi. Note that B can easily do this since
it knows the trapdoor s,gwski

1 .

(c) Since B has the vector a and watermarked public
parameters wppi, it can compute a watermarked
proof Qi = (Wi,1, . . . ,Wi,ℓ) via Openwppi

(oi,a).

5. A outputs a valid watermarked proof Q∗=(W∗1, . . . ,W
∗
ℓ)

for aiF under a WPK∗ different than the oracle’s
WPK1, . . . ,WPKq. Additionally, A also outputs a proof
of knowledge zkpok∗ for the wsk associated with
WPK∗.

By reasoning about the representation (c⃗k, z⃗k)k∈[ℓ] of each W∗k
in this proof:

W∗
k =

 ∏
i∈[|PPG1 |]

(PPG1,i)
ck,i

 ·∏
i∈[q]

(
∏
j∈[ℓ]

(Wi, j)
zk,i, j

)
,∀k ∈ [ℓ]

Since the reduction B knows the polynomials committed in
PPG1,i and in the Wi, j’s, we can write:

W∗
k = g

∑i∈[q] αi fk,i(s)+lk(s)
1 ,∀k ∈ [ℓ] (55)

where fk,i(x) is from Eq. 46 and lk(x) is from Eq. 47. Let
C← ComPP(a). Recall that Q∗ is valid:

VerPP(C,{iF},(aiF ,WPK∗,zkpok∗),Q∗) = 1

Thus, B can extract β from the proof-of-knowledge zkpok∗

such that WPK∗ = gβ

2 . Let (b1, . . . ,bℓ) be the binary represen-
tation of the position iF returned by A . Next, from the validity
of the proof, it follows that:

e
(
C/g

aiF
1 ,gβ

2

)
=

ℓ

∏
k=1

e
(

W∗
k ,g

sk−bk
2

)
⇔ (56)

e
(

g
a(s)−aiF
1 ,gβ

2

)
=

ℓ

∏
k=1

e
(

g
∑i∈[q] αi fk,i(s)+lk(s)
1 ,gsk−bk

2

)
(57)

From the bilinearity of the pairing, we have:

e
(

g1,g
β(a(s)−aiF )

2

)
=

ℓ

∏
k=1

e
(

g
∑i∈[q] α·ri fk,i(s)
1 ,gsk−bk

2

)
·

ℓ

∏
k=1

e
(

glk(s)
1 ,gsk−bk

2

)
(58)

= e
(

g1,g
∑
ℓ
k=1 α(∑i∈[q] ri fk,i(s))(sk−bk)

2

)
·

e
(

g1,g
∑
ℓ
k=1 lk(s)(sk−bk)

2

)
(59)

Re-arranging the equation above:

β(a(s)−aiF ) = α

ℓ

∑
k=1

(
∑

i∈[q]
ri fk,i(s)

)
(sk−bk)+

ℓ

∑
k=1

lk(s)(sk−bk)

Thus, B can compute α as:

α =
β(a(s)−aiF )−∑

ℓ
k=1 lk(s)(sk−bk)

∑
ℓ
k=1
(
∑i∈[q] ri fk,i(s)

)
(sk−bk)

(60)

=
β(a(s)−aiF )−∑

ℓ
k=1 lk(s)(sk−bk)

∑
ℓ
k=1(sk−bk) ·∑i∈[q] ri ·∑ℓ

j=1 zk,i, j ·wi, j(s)
(61)

=
β(a(s)−aiF )−∑

ℓ
k=1 lk(s)(sk−bk)

∑i∈[q] ri ·∑ℓ
k=1(sk−bk) ·∑ℓ

j=1 zk,i, j ·wi, j(s)
(62)

Note that B can compute both the numerator and the denomi-
nator above. In the following, we argue that the denominator
cannot be zero:

∑
i∈[q]

ri ·
(

ℓ

∑
k=1

(sk−bk) ·
(

ℓ

∑
j=1

zk,i, j ·wi, j(s)

))
̸= 0 (63)

Let:

Ψ(x) = ∑
i∈[q]

ri

(
ℓ

∑
k=1

(xk−bk) ·
(

ℓ

∑
j=1

zk,i, j ·wi, j(x)

))

ψi(x) =
ℓ

∑
k=1

(
(xk−bk) ·

(
ℓ

∑
j=1

zk,i, j ·wi, j(x)

))

=
ℓ

∑
k=1

ℓ

∑
j=1

zk,i, j · (xk−bk) ·wi, j(x)

Thus,
Ψ(x) = ∑

i∈[q]
riψi(x)

Claim B.1. ∀i′ ∈ {i ∈ [q] : ∃k ∈ [ℓ],∃ j ∈ [ℓ],zk,i, j ̸= 0},

ψi′(x) =
ℓ

∑
k=1

ℓ

∑
j=1

zk,i′, j · (xk−bk) ·wi′, j(x) ̸= 0 (64)

Proof. Let ρi′, j(x) = ∑
ℓ
k=1 zk,i′, j · (xk − bk) · wi′, j(x), thus

ψi′(x) = ∑
ℓ
j=1 ρi′, j(x). Note that wi′, j(x)’s are the quotient

polynomials committed in the nodes of the MLT Fig. 3. Since
the elements of a are sampled from an i.i.d. distribution and
wi′, j(x)’s are honestly computed, the coefficients of wi′, j(x)



are distinct and non-zero with high probability. Also, observe
from the MLT that the deg(wi′, j(x)) is j−1 and deg(ρi′, j(x))
is j.

Let j′ = max{ j : ∃ j ∈ [ℓ],∃k ∈ ×[ℓ],zk,i′, j ̸= 0}. Thus,

ψi′(x) can be rewritten as: ρi′, j′(x) +∑
j′−1
j=1 ρi′, j(x). We in-

spect each terms individually:

1. Observe from the MLT that there is a single maximum
degree monomial term in wi′, j′(x) and it is of the form

∏
j′−1
j=1 x j. When this is multiplied by any (xk−bk), the

maximum degree monomial term of the product is of
the form xk ∏

j′−1
j=1 x j. To compute ρi′, j′(x), wi′, j′(x) is

multiplied by different (xk−bk)’s and there is only one
maximum degree monomial in wi′, j′(x). Thus, no two
distinct (xk− bk,xk′ − bk′)k ̸=k′’s can result in the same
maximum degree monomial term in the final product.
This concludes that there will be at least a single non-
zero monomial of degree j′ in ρi′, j′(x).

Table 5: Each cell shows the maximum degree of (xk − bk) ·wi, j , when
ℓ= 4. Observe that no two monomials in the same column share the same
maximum degree monomial and no two maximum degree monomials in a
row share the same degree.

Maximum degree of wi, j

Coefficient wi,1
(Const)

wi,2
(x1)

wi,3
(x1x2)

wi,4
(x1x2x3)

x1−b1 x1 x2
1 x2

1x2 x2
1x2x3

x2−b2 x2 x1x2 x1x2
2 x1x2

2x3
x3−b3 x3 x1x3 x1x2x3 x1x2x2

3
x4−b4 x4 x1x4 x1x2x4 x1x2x3x4

2. Since the polynomial ∑
j′−1
j=1 ρi′, j(x) has a maximum de-

gree of j < j′, it cannot cancel out the j′-th degree term
of ρi′, j′(x). Thus, ψi′(x) = ρi′, j′(x)+∑

j′−1
j=1 ρi′, j(x) ̸= 0.

Note that ri’s are independent and uniformly distributed.
Since Ψ(x) is a random linear combination of ψi(x)’s, it is
sufficient to argue that ∃ψi(x) ̸= 0. Since the A succeeds,
∃(k∗, i∗, j∗) ∈ [ℓ]× [q]× [ℓ] such that zk∗,i∗, j∗ ̸= 0. From the
claim above we kwow that ψi∗(x) ̸= 0, thus Ψ(x) ̸= 0.

As s is independent and uniformly distributed, by
Schwartz–Zippel lemma, the probability of Ψ(s) = 0 is negli-
gible. Thus, (Eq. 63), is non-zero with overwhelming probabil-
ity. This implies that the reduction can successfully compute
α in the discrete log challenge.

Note that in the current exposition, the A queries on each
WPKi exactly once. In future work, we aim generalize the
current proof to support multiple oracle queries on the same
WPKi.
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