
Proof of Assets in the Diem Blockchain

Panagiotis Chatzigiannis1 and Konstantinos Chalkias2

1 George Mason University
2 Novi Financial / Facebook Research

Abstract. A great challenge for distributed payment systems is their
compliance with regulations, such as anti-money laundering, insolvency
legislation, countering the financing of terrorism and sanctions laws.
After Bitcoin’s MtGox scandal, one of the most needed auditing func-
tionalities for financial solvency and tax reporting purposes is to prove
ownership of blockchain reserves, a process known as Proof of Assets
(PoA). This work formalizes the PoA requirements in account-based
blockchains, focusing on the unique hierarchical account structure of the
Diem blockchain, formerly known as Libra. In particular, we take into
account some unique features of the Diem infrastructure to consider dif-
ferent PoA modes by exploring time-stamping edge cases, cold wallets,
locked assets, spending-ability delegation and account pruning, among
the others. We also propose practical optimizations to the byte-size of
PoA in the presence of light clients who cannot run a full node, including
skipping Validator updates, while still maintaining the 66.67% Byzantine
fault tolerance (BFT) guarantee.

Keywords: Diem blockchain · solvency · tax reporting · light clients.

1 Introduction

During the last decade, many distributed payment systems have emerged as an
alternative to centralized banking. While blockchains were initially in anarchy,
the need for regulation became apparent to ensure their compliance with laws,
regulations and tax reporting. One aspect of such requirement is Proof of Assets
(PoA), a fundamental part for proving financial solvency on behalf of custo-
dial wallets [21, 23], also known as Virtual Asset Providers (VASPs). Briefly,
it is a cryptographic evidence that the organization possesses sufficient assets
which, combined with its proved liabilities, offers the so called Proof of Solvency
(PoSolv). The need of such proofs became even more apparent after infamous
cryptocurrency exchange collapses, such as MtGox [24, 36] or even the recent
withdrawals suspension from OKEx [4].

Our work focuses on practical PoA solutions in the Diem blockchain, how-
ever parts of our proposal apply to other systems as well. As regulatory compli-
ance, transparency and fund safety are among the top priorities for Diem [12],

Panagiotis Chatzigiannis did part of this work during an internship at Novi Finan-
cial/Facebook Research.



2 Panagiotis Chatzigiannis and Konstantinos Chalkias

PoA should be an important feature to achieve a safer wallet ecosystem. Diem’s
unique hierarchical account model differs from other blockchains and allows for
several different PoA types that are not possible in other platforms. Our goal
is to formalize and explore many different types of asset proofs in the Diem
blockchain. Additionally, as we will show, Diem’s PoA, in combination to Know-
Your-Customer (KYC) identity verification, can also be useful to mitigate tax
evasion, something that is not straight-forward in other blockchains where one
can deny ownership of an address. In Diem, wallet addresses are pinned to par-
ticular entities, and thus VASPs cannot hide their owned assets on purpose.

In the following, we provide a summary of related work, a detailed analysis of
PoA variants handcrafted to Diem’s design, and finally practical recommenda-
tions for proof compression, aiming to make it more friendly for light (potentially
mobile) clients.

1.1 Related work

Bitstamp’s Proof of Reserves [1] was one of the first attempts to provide evidence
of a custodial wallet’s total assets through an interactive protocol with a third
party auditor. The process was to prove account-key ownership by signing over
a provided random message; briefly, the ability to sign over a challenge string
implies control and ownership of the account(s).

Provisions [23] presented a protocol based on zero-knowledge (ZK) proofs
to prove assets, as part of a more general scheme to prove solvency. Its focus
was to hide which accounts are owned by the audited entity. Briefly, the or-
ganization would form an anonymity set by adding random accounts from the
public blockchain to those it already controls, and then prove (in ZK) that it
knows a set of private keys that add up to or exceed some amount. Unfortu-
nately, Provisions’ custom ZK protocol cannot work with hashed public keys
(which account for the majority of today’s on-chain addresses), or with privacy-
preserving cryptocurrencies (such as ZCash [31]) and its protocol’s efficiency is
linear to the size of anonymity set; thus, it cannot practically apply to most of
today’s blockchains. However, it is still considered the most sophisticated PoA
solution to this day3.

MProve [25] implemented a PoA algorithm tailored to Monero [41]. Since ring
signature obfuscation does not allow for directly applying the Provisions PoA,
its approach was to prove that the key images of the addresses controlled by the
organization have not previously appeared on the blockchain. As PoA protocols
are susceptible to collusion, MProve provides a proof of non-collusion as well by
leveraging the one-time nature of key images. Unfortunately, this exposes the
sender’s identity when these key images are spent, potentially enabling tracing
of transactions which breaks Monero’s advertised privacy guarantees.

Wang et al. [42] proposed a scheme for a buyer proving assets to a vendor
before finalizing a deal, using the transaction’s details as a “challenge”, which

3 One could use a generic ZK system; however proving costs might be prohibitive in
practice for Diem’s ZK-unfriendly Pure-Ed25519-with-SHA512 signatures (including
multi-sig); even with the latest recursive ZK proof schemes [26].



Proof of Assets in the Diem Blockchain 3

however is limited to a “buyer-vendor” use-case without any privacy character-
istics. More importantly, it does not preserve the prover’s privacy against the
verifier (or regulator) as strongly as Provisions.

Blockstream’s proof of reserves [38] consists of signing an “invalid” Bitcoin
transaction for each owned Unspent Transaction Output (UTXO). This trans-
action cannot be published to the blockchain, however still degrades the organi-
zation’s privacy against the auditor. A similar approach is followed by Kraken
cryptocurrency exchange [3]. The main advantage of this method is that hard-
ware security module (HSM) or cold wallet implementations do not need an extra
logic for signing PoA payloads and thus, it is directly backwards compatible with
existing custodial wallets.

Ethereum [7] proposed a different payload format when signing a message
other than a valid transaction4. The purpose of this distinction is to ensure
that one should not accidentally sign a transaction masqueraded as a message
nonce. In our PoA case, this prevents an auditor from maliciously picking a
hash of a transaction as an audit-nonce, which if signed, it could be submitted
on chain without the user knowing. Also Iconomi’s proof of reserves [6] proved
key ownership to Deloitte (auditor) through either signed nonces or predefined
transactions from the proving addresses.

Finally, a recent work [22] provided definitions and systematization for several
payment systems, including those offering PoA functionalities, and compared
them in terms of their properties and efficiency.

2 Diem Architecture

2.1 Keys and Accounts

Diem [12] is an account-based blockchain payment system, currently maintained
by a permissioned set of Validators which participate in its BFT-based consen-
sus protocol [14]. Although there are no built-in privacy preserving protocols
for its account states and transactions, due to its permissioned nature, all pub-
lic queries (including blockchain correctness verifications) are proxied through
full nodes, which have the same view of the blockchain as Validators, but with-
out participating in consensus. Compared to traditional cryptocurrencies, Diem
provides the following features:

– Authentication keys, known as auth keys, are hashed versions of account
public keys, however they can be rotated independently as a proactive or
reactive measure to defend against possible key loss. This means that unlike
Ethereum, a key rotation does not imply change of address.

– Diem natively supports single Pure Ed25519 [32] or threshold multi-sig (k-
out-of-n up to n = 32) auth keys.

– There exists the concept of withdraw capability, where the permission to
spend can be delegated to a different account. This implies that the spending
key does not necessarily reside in the state of each address.

4 Ethereum’s message signing uses a flag prefix, to ensure an invalid transaction:
sign(keccak256“\x19Ethereum Signed Message:\n” + len(message) + message)).



4 Panagiotis Chatzigiannis and Konstantinos Chalkias

– It also supports the key-rotation capability where one can give permission to
other accounts to update their auth keys. This is useful for wallets where one
can still refer to another cold address to gain access back to their account in
case of accidental hot auth key key loss.

– Account roles define the account owner’s authority in the system. A unique
characteristic of Diem is its hierarchical role-based access control [10]. Unlike
Bitcoin and Ethereum, especially for VASPs, there exist a KYC-ed parent
and child accounts as shown in Fig 1.

2.2 Hierarchical model

For the purposes of this work, we focus on Diem roles most commonly related to
PoA: ParentVASP and ChildVASPs. A ParentVASP represents the primary account
of a regulated custodial wallet, while multiple ChildVASPs can be created by
ParentVASP accounts5. In Diem, a PoA will be requested from the ParentVASP ,
and these proofs should include all of their children’s assets as well. Although not
privacy-preserving, due to the well-defined linkability of the accounts belonging
to the same entity, hiding owned addresses is not possible for KYC-ed VASPs.
In Section 4.1 we provide details about the PoA related Diem data structures.

Fig. 1. Address structure in different blockchains.

As an account-based system, Diem associates each account A with a value
vj at each block j. We denote by AP and AC accounts with ParentVASP and
ChildVASP roles, respectively. An AP can be linked to n accounts AC

1 , A
C
2 , ...A

C
n .

There is a relation F which maps each child to its parent account, i.e. F (ACi) =
AP . Note however that no inverse relation exists in Diem, i.e. the parent’s state
does not include a relation F−1(AP ) = [AC1 , AC2 , ..., ACn ]. This was probably
a design decision to not allow parent account states growing indefinitely when
more children are added, because for a large n that map would require significant
storage space.

However, the data structure for AP does include the cardinality n, a very
important property to later ensure no child is missing in the proofs. Note that
although a ParentVASP can create ChildVASPs, this does not necessarily mean

5 Note that in Diem a ChildVASP is not allowed to have any other children itself.



Proof of Assets in the Diem Blockchain 5

that it controls the keys of its children, and ChildVASPs can transact indepen-
dently. Of course, nobody prevents wallets from reusing the same key in multiple
accounts or apply a BIP32 deterministic key derivation [33]. That said, the hi-
erarchy is mainly enforced for KYC-ed account linking and splitting the risk
of a key compromise attack; it also allows for different key and asset manage-
ment policies, such as cold, warm and hot wallets or transaction sharding and
parallelization6.

2.3 Diem Proof of Assets

Generally, a PoA in Diem implies showing that a ParentVASP account is in
possession of assets of some specific currency(ies) value. However, there is a
subtle distinction on how to actually show this. One could merely use existing
blockchain data structures, and sum the values of a ParentVASP and all of its
ChildVASP accounts, based on account ownership. While straightforward, this
proof does not provide key possession guarantees at the time of the auditing
taking place. For instance, account holders might have lost access to their keys,
which would make them unable to spend their assets. Therefore, we distinguish
between the following two PoA types for a query on account AP for a block j:

Soft PoA: This proof is non-interactive, and a user (a third party auditor or
even a light client) can obtain it at any time and for any block j via a series of
blockchain requests to potentially untrusted nodes. Its simple goal is to provably
present the total balance for all accounts belonging to the audited entity. No
proof-of-knowledge of the spending key is required (and thus the name soft),
however the parent account is linked with the KYC-ed entity; no other entity
can claim this address’s balance, and thus some applications might tolerate soft
proofs. We highlight that this is only possible in Diem due to its hierarchical
identity-address binding which makes collusion more difficult and traceable; a
WalletA cannot just temporarily borrow its private key to a WalletB (an on-
chain transaction should happen posing the risk of being censored). Such a proof
is constructed by showing the following:

1. Given a genesis or any known checkpoint state with Merkle root rG, prove
that the Merkle root rj is valid (see Section 4.1 for details on these data
structures). In practice, the auditor will pick the block j for which the PoA
is needed. Note that in Diem, this can be shown using a series of epoch
change proofs to get the validator-set at block j.

2. For rj , provide Merkle inclusion proofs for both parent AP and its children
AC

1 , .., A
C
n account states.

3. All related account state balances (i.e. AP , AC
1 , .., A

C
n ) sum up to a value V .

In PoSolv, this V is typically compared against proofs of liabilities [21].
4. F (AC

i ) = AP ,∀i ∈ (1, ..n), where n is the cardinality in account state AP .
This ensures that no child is accidentally or purposely omitted from the list.

6 While typical account-based systems require a sequential id to prevent replay attacks,
Diem’s hierarchical model enables parallelization at the entity level, due to each child
maintaining its own sequential id.



6 Panagiotis Chatzigiannis and Konstantinos Chalkias

Hard PoA: A hard PoA is requiring a key-ownership proof on top of soft proofs,
usually via signing. To prevent replay attacks, the protocol should require each
account to sign over some random challenge. Note that it is acceptable to sign
with the auth key (or a delegated key via withdraw capabilities), valid at a
requested block in the past or the most recent one. We refer to these two types
as dated -hard PoA and live-hard PoA, respectively (further discussed in section
4).

3 Implementation considerations

3.1 What message to sign?

As previously discussed, hard PoA simulates a proof of key-possession by signing
over a challenge r to prevent replays. This can either be a “special” hard PoA
transaction, included as metadata, or even run off-chain. Options for r include
any combination of the following:

– a random string interactively provided by the auditor.
– the hash of the block (or state snapshot) at height (j − 1). Note that Diem

has the concept of transaction version, which is a monotonically increasing
integer for all of the on-chain transactions. The latter means that one can
even take a snapshot at the middle of the block, but typically, when we refer
to height we imply the version number of the last transaction in a block.

– the latest Bitcoin block or from other robust proof-of-work blockchains (thus,
use an external reference for randomness). However that would require run-
ning a mini light client as a smart contract or trust an Oracle service that
could verify correctness of the external seed input.

– the output of a distributed randomness generation protocol (such as Rand-
Hound [39]), which can even be run by Diem Validators at each block.

– other publicly verifiable sources of randomness which embed timestamp in-
formation [29], such as the closing stock prices in the stock market, weather
conditions in major cities etc, ideally with the use of verifiable delay func-
tions (VDFs) [16].

However, some of the above randomness sources are susceptible to collusion
attacks. For instance, the auditor and the ParentVASP might collude on the
provided randomness in advance, or consensus Validators might agree to form
a predictable block in Diem (this might be tolerated by the BFT assumption).
Therefore we prefer a combination of external verifiable randomness and the
RoundHound protocol ran from Validators which can offer better transparency
guarantees. In short, we need a verifiable random and fresh challenge to ensure
that the prover could not have predicted and pre-signed it long ago.

While hard PoA could also be automated to be executed at some pre-
determined times, the above randomness or challenges need to be unpredictable
to prevent misbehavior. Note however that unpredictability is weaker than being
“bias-proof”, a property required by other use-cases (e.g. lottery protocols). For



Proof of Assets in the Diem Blockchain 7

instance, in a lottery protocol an attacker’s goal could be to increase the prob-
ability of outputting a string that ends in 0. However in the case of hard PoA,
biasing the result in this way would have no benefit for the attacker as we’re
only interested on signing over a fresh unpredictable challenge. More informa-
tion on what data to-be-signed offers the above freshness and unpredictability
properties is provided in section 4.3.

3.2 Various PoA considerations

Account state pruning: Many blockchain systems (including Diem) conserve
space by pruning old account states, but still keeping the state’s hash to preserve
the system’s security. Therefore, if the latest blockchain height is m and a PoA
is requested for some height j < m, the full account state containing a balance
vj might not be available on-chain. In this case, the account’s state would have
to be recovered by a full-node who maintains the full history. Validating the
provided pruned state is easy; we just check if the state’s hash-output equals the
blockchain-maintained hash value for this account.

Cold wallets and valet keys: Hard PoA might be cumbersome when air-
gapped wallets are involved, as performing such an operation would require
bringing keys out of cold storage. The process sometimes requires expensive
ceremonies, i.e. when the key resides in HSM modules or physical vaults, or when
it is split between several parties. A possible approach to improve usability could
be a) embedding PoA operations in HSM or b) using valet keys as defined in [5].

Incentives: When proving solvency, malicious auditees might collude to tem-
porarily prove assets greater than some value that represents their off-chain
liabilities. On the other hand, other auditees might try to hide assets on purpose
(e.g for tax evasion purposes). This would be a problem in any system other
than Diem, where the auditee could simply claim loss or non-knowledge of some
key, and complex blockchain analysis techniques (e.g. clustering) would have to
be deployed to prevent such behavior. However Diem’s hierarchical, KYC-ed
account model mitigates this.

Locked assets: In our model we do not consider locked on-chain assets, i.e.,
for future atomic swaps or side-chain smart contracts (locked assets are not
supported by Diem yet). In fact, proving solvency by taking locked assets into
account is an open research challenge in every blockchain, as discussed in the
recent ZKProof 2020 workshop [21].

4 Diem-specific implementation considerations

4.1 Primitives and soft PoA implementation in Diem

Sparse Merkle Trees: Recall a Merkle tree [35] is a binary tree constructed
by a collision-resistant hash function h, providing logarithmic proofs with log-
arithmic complexity. Sparse Merkle trees share the same philisophy, however



8 Panagiotis Chatzigiannis and Konstantinos Chalkias

tree-leaves do not contain the accumulated elements themselves but serve to
form an “index” of the element along with its path to the root. This enables
them to provide proofs of non-membership, where non-accumulated elements
can simply end to a placeholder value to maintain tree balance. However as
these class of Merkle trees are intractably large, we can also represent them by
omitting sub-trees that only contain placeholder values. Diem uses a variant of
Sparse Merkle trees (Jellyfish Merkle trees [27]) which enables shorter Merkle
proof sizes while still providing collision resistance.

In Diem, transactions are accumulated in a Merkle tree, which in turn con-
tains roots of sparse Merkle trees that represent the state of all accounts as the
transaction gets executed [11, 12]. The top Merkle tree root defines the block
hash and is signed by the Validators participating in the consensus (at least
66.7% of them should sign) as transactions are processed and account states are
modified accordingly. We describe specific data structure format in Diem below.

Diem Data Structures [8, 9]: In Diem, account states are represented as an
AccountStateBlob which includes, among others, the address, balance for each
currency and account role (i.e., ParentVASP or ChildVASP). These account states
are stored in a sparse Merkle tree called TransactionInfo. In turn, this sparse
Merkle tree’s root hash state root hash represents all of the accounts’ global
state at the end of a specific transaction.

In turn, the most recent TransactionInfo root in an blockchain version,
along with the epoch number corresponding to the current Validator set and a
timestamp, are encapsulated in a BlockInfo data structure. This data structure
along with a hash value of the consensus Quorum Certificate is encapsulated in
a LedgerInfo Merkle Tree. Note that a version’s most recent Transaction (e.g.
transaction T4 in Figure 2), effectively defines the global state of all accounts
for that version.

Finally, LedgerInfo along with consensus signatures by the current Validator
set is encapsulated in a LedgerInfoWithSignatures data structure, making it
acceptable by anyone trusting Diem’s BFT assumptions.

Proofs: A core object for implementing Diem soft PoA is the AccountStateProof
data structure. This contains a sparse Merkle tree proof (SparseMerkleProof)
for a TransactionInfo object, which in turn is verified by a TransactionIn-

foWithProof proof for the Merkle tree. A second crucial element is EpochChange-
Proof, which includes the list of signatures involved in Validator set updates.
Through these built-in proof functionalities in Diem, we implemented a proof-
of-concept for executing soft PoA [40].

4.2 Random challenge consistency

It is recommended, especially when BIP32 [33] is applied or the same key is
used between accounts, that r should be the same across all signed messages to
minimize proof size. However, as keys in Diem are rotated regularly (discussed



Proof of Assets in the Diem Blockchain 9

Fig. 2. Diem data structure overview.

in Section 2.1), there are two options for signing a hard PoA for time7 t: a)
use authentication key that was valid at a past instance t, and b) use the most
recent authentication key (which will be linked to the key at t using a chain of
rotations). While both PoA types are acceptable for proving asset control at t,
the latter version is stronger as it also shows key control for a more recent time
t+∆. A reason for picking a slightly older t might be to reduce the probability of
wallet collusion; if one doesn’t know for which t they will be audited, temporarily
borrowing private keys from other wallets is riskier. It is highlighted though that
wallet providers might have deleted old account keys, and thus a t closer to the
current time/block should be preferred, unless there is a reason not to, e.g. for
proving assets exactly at the end of a calendar year.

In any case, we refer to the above two hard PoA types as dated -hard PoA
and live-hard PoA respectively. We mention that especially for cold wallets, it
is advised the auditee signs and rotates the keys simultaneously to ensure some
additional (although not complete [19]) post-quantum security, due to publishing
hashed keys.

4.3 Signed block hashes as randomness

In the previous section we discussed that block hashes can be used as a random-
ness source to sign a hard PoA message, preferably in combination with other
randomness sources. Specifically in Diem, to prevent an attacker from manipu-
lating this source, we would pick the root of the LedgerInfo tree that includes
2f + 1 Validator signatures(thus a LedgerInfoWithSignatures object), where
f denotes the upper bound of Byzantine Validators. Therefore to manipulate
this information, an attacker would need to also subvert more than f Validators

7 We assume t is in the past. While it could be possible to make a PoA request for some
time in the future in advance, this enables several collusion attack vectors which we
do not discuss in this paper.



10 Panagiotis Chatzigiannis and Konstantinos Chalkias

which in turn would break the assumption of Byzantine Fault Tolerance. Note
that a dishonest leader could in theory selectively pick any 2f + 1 signature
combination when all Validators sign, but fortunately this does not give any
advantage as we are interested in a fresh and unpredictable, but not necessarily
unbiased, challenge.

4.4 Accurate timestamping

Diem’s blocks use monotonically increasing timestamps. This implies that (unlike
other blockchains) one could use a time reference t instead of a block-height
j. However, using well-defined block-heights is advisable for PoA purposes. In
addition, all PoA elements should be consistent for a specific block, with the
proof showing the total assets for a snapshot of the same blockchain height (or
timestamp) across all ParentVASP and ChildVASPs. If a variation in height was
allowed, malicious provers could move assets among their accounts in neighboring
blocks and falsely claim assets greater that those actually owned.

Also, as mentioned before, Diem uses “versions” rather than “blocks-heights”,
with each transaction resulting in a unique, incremental version. Therefore, as
each block has subsequently a range of versions, the account states in the latest
version in a block need to be retrieved [27]. This can be implemented through ap-
propriate GetVersionByTimestamp() and GetStateByVersion() functionalities,
which would return the blockchain version for some specific timestamp and the
blockchain state for some version respectively. Note that as shown in Figure 2,
the latest transaction in an epoch should be considered (transaction T4 in the
Figure) for all account state proofs, and prove that the immediate next trans-
action belongs to the next epoch. This ensures that account proofs are provided
after all transactions in the block have been considered.

4.5 Compression

Signature compression: Signatures and public keys account for the largest
part of a PoA payload. Actually, there exist three types of signatures:

1. Validator signatures over the block data.
2. account signatures for every transaction in a block.
3. key-possession-proof signatures for each auditee key (potentially delegated).

In PoA we are interested in the first and third signature types. Compression
can be achieved though various techniques, but some of them require a Diem
protocol update and thus, they cannot be applied directly. Examples include
having the Validators running interactive multi-sig protocols, such as Musig2 [37]
and FROST [34], or supporting BLS signatures [17], which allows for aggregation
to a single signature (although we still need the public keys). Solutions not
requiring a protocol update include the SNARKs [30], STARKs [26] or the recent
non-interactive EdDSA half-aggregation [20]. However, for auditee signatures



Proof of Assets in the Diem Blockchain 11

Fig. 3. Epoch skipping optimization.

over a challenge, the prover, who controls all of the keys, can simulate a Musig2
in-the-head or apply the Schnorr batching technique of [28].

Epoch proof compression: At the moment, Diem’s epoch-change proofs are
sent in raw format, without tackling duplication between epochs. We present an
easy to implement partial compression method without advanced ZK protocols.

Normally, to verify epoch changes, where at least one Validator rotates its
key, we have to verify all intermediate epochs from the last known checkpoint.
However we can skip epoch verifications if less than 1/3 Validators have been
updated, and only require to “jump” to an epoch where a sufficient number
of Validators have changed (concept shown in Fig 3). Note however that this
optimization is incompatible with long range attack prevention [13]; still, this
might be tolerable in some threat models. We can further optimize epoch proofs
by only considering the required 2f + 1 signatures (omit the rest) along with
their key rotation operations, even when all Validators have signed.

4.6 Multiple currencies

Note that Diem supports several currencies, and asset proofs might be required
across all of them. Our recommendation is that PoA should run per currency
(but again for the same height). Converting all currencies to a single one using
the current exchange rate is not advised for PoSolv purposes [21], as there are
examples of extreme volatility (i.e., the case of Swiss franc cap removal on Jan
15, 2015 [18]).

4.7 PoA transaction type

In general, as an alternative to a carefully signed message that is distinguishable
from a regular transaction by design [2], transferring some amount (or even
a zero amount) to a (designated) address would also work for PoA purposes,
especially if one wants on-chain PoA recording. In Diem, a hard PoA could



12 Panagiotis Chatzigiannis and Konstantinos Chalkias

also be executed through a special transaction type, with the sole purpose of
signing a message, however such “NO-OP” transactions are not yet implemented.
Fortunately, Diem allows sending funds to self, which is one way to implement
hard PoA. Another option would be to send some amount to a pre-determined
“sink” account. Such approach has the advantage of consolidating all associated
PoA events and making them easier to track.

4.8 Withdraw capability

As discussed in Section 2.1, Diem has the unique functionality of granting the ca-
pability of spending to other accounts and smart contracts [15]. This delegation
mechanism introduces additional complexity when proving assets. Because of
withdraw capabilities, the PoA message signing should happen on-chain, which
would make sure the smart-contract logic that involve withdrawal capabilities
would execute. Otherwise, off-chain verifiers would need a copy of the current
blockchain’s state and be able to simulate running a transaction in this copy,
which would make the whole process expensive or cumbersome. Another issue
is related to potentially incompatible implementations of custom withdraw ca-
pability logic (smart-contract), because currently there is no enforcement of re-
quiring additional metadata (which in our case is required to attach the random
challenge).

5 Conclusion

We presented several considerations for implementing proof of assets in the Diem
blockchain. By taking advantage of Diem’s native hierarchical account structure,
two major policies of asset proofs have been analyzed: soft PoA, which can be
executed at any time without interaction with account holders, and hard PoA
which provide extra assurance that account holders are in control of their keys.
However the latter requires a more carefully planned, coordinated interaction.

All of our proofs rely on widely-used cryptographic primitives with standard
assumptions (i.e. signatures and Merkle proofs). We discuss several edge-cases
that should be taken into account when designing PoA protocols in a hiearar-
chical, KYC-ed, account-based blockchain system (e.g. timestamping and con-
sistency), and propose practical solutions, including options for fresh and unpre-
dictable proof of key-possession challenges. Finally, we propose easy to imple-
ment optimizations (e.g. signature and epoch change proof compression), while
still remaining compatible to the underlying Diem blockchain.

Acknowledgements

We thank Philip Hayes, David Wolinsky, Alden Hu and Valeria Nikolaenko for
their implementation contributions, Riyaz Faizullabhoy for custody related hints,
Dmitry Korneev and Adeniyi Abiodun for their input on needed regulation and
compliance, and finally Sam Blackshear and Tim Zakian for enabling the re-
quired Move-language api regarding parent-children Diem account linking.



Proof of Assets in the Diem Blockchain 13

References

1. Bitstamp proof of reserves, https://www.bitstamp.net/s/documents/Bitstamp_
proof_of_reserves_statement.pdf

2. Ethereum wiki (archive.org), https://web.archive.org/web/20190613115908if_
/https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign

3. Kraken proof of reserves, https://www.kraken.com/en-us/

proof-of-reserves-audit

4. Okex suspends withdrawals, says key holder not available due to cooperation with
investigation, https://www.coindesk.com/okex-suspends-withdrawals

5. Provisions: Privacy-preserving proofs of solvency for bitcoin exchanges. Real World
Crypto 2016, https://rwc.iacr.org/2016/Slides/Provisions%20talk%20RWC.

pdf

6. Proof of solvency technical overview (2018), https://medium.com/iconominet/

proof-of-solvency-technical-overview-d1d0e8a8a0b8

7. Ethereum wiki (2019), https://web.archive.org/web/20190613115908if_

/https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign

8. Diem authenticated data structure specification (2021), https://github.

com/diem/diem/blob/main/specifications/common/authenticated_data_

structures.md

9. Diem data structures specification (2021), https://github.com/diem/diem/blob/
main/specifications/common/data_structures.md

10. Diem roles and permissions (2021), https://dip.diem.com/dip-2/
11. Diem storage module (2021), https://github.com/diem/diem/tree/master/

storage

12. Amsden, Z., Arora, R., Bano, S., Baudet, M., Blackshear, S., Bothra, A., Cabr-
era, G., Catalini, C., Chalkias, K., Cheng, E., Ching, A., Chursin, A., Danezis,
G., Giacomo, G.D., Dill, D.L., Ding, H., Doudchenko, N., Gao, V., Gao, Z.,
Garillot, F., Gorven, M., Hayes, P., Hou, J.M., Hu, Y., Hurley, K., Lewi, K.,
Li, C., Li, Z., Malkhi, D., Margulis, S., Maurer, B., Mohassel, P., de Naurois,
L., Nikolaenko, V., Nowacki, T., Orlov, O., Perelman, D., Pott, A., Proctor,
B., Qadeer, S., Rain, Russi, D., Schwab, B., Sezer, S., Sonnino, A., Venter, H.,
Wei, L., Wernerfelt, N., Williams, B., Wu, Q., Yan, X., Zakian, T., Zhou, R.:
The libra blockchain (2020), https://diem-developers-components.netlify.

app/papers/the-diem-blockchain/2020-05-26.pdf

13. Azouvi, S., Danezis, G., Nikolaenko, V.: Winkle: Foiling long-range attacks in
proof-of-stake systems. In: Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies. pp. 189–201 (2020)

14. Baudet, M., Ching, A., Chursin, A., Danezis, G., Garillot, F., Li, Z., Malkhi,
D., Naor, O., Perelman, D., Sonnino, A.: State machine replication in the libra
blockchain. The Libra Assn., Tech. Rep (2019)

15. Blackshear, S., Wilsion, B., Zakian, T.: Diem improvement proposal 11 (2021),
https://dip.diem.com/dip-11/

16. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Annual
international cryptology conference. pp. 757–788. Springer (2018)

17. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (Dec 2001)

18. Breedon, F., Chen, L., Ranaldo, A., Vause, N.: Judgement day: Algorithmic trading
around the swiss franc cap removal (2018)

https://www.bitstamp.net/s/documents/Bitstamp_proof_of_reserves_statement.pdf
https://www.bitstamp.net/s/documents/Bitstamp_proof_of_reserves_statement.pdf
https://web.archive.org/web/20190613115908if_/https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
https://web.archive.org/web/20190613115908if_/https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
https://www.kraken.com/en-us/proof-of-reserves-audit
https://www.kraken.com/en-us/proof-of-reserves-audit
https://www.coindesk.com/okex-suspends-withdrawals
https://rwc.iacr.org/2016/Slides/Provisions%20talk%20RWC.pdf
https://rwc.iacr.org/2016/Slides/Provisions%20talk%20RWC.pdf
https://medium.com/iconominet/proof-of-solvency-technical-overview-d1d0e8a8a0b8
https://medium.com/iconominet/proof-of-solvency-technical-overview-d1d0e8a8a0b8
https://web.archive.org/web/20190613115908if_/https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
https://web.archive.org/web/20190613115908if_/https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
https://github.com/diem/diem/blob/main/specifications/common/authenticated_data_structures.md
https://github.com/diem/diem/blob/main/specifications/common/authenticated_data_structures.md
https://github.com/diem/diem/blob/main/specifications/common/authenticated_data_structures.md
https://github.com/diem/diem/blob/main/specifications/common/data_structures.md
https://github.com/diem/diem/blob/main/specifications/common/data_structures.md
https://dip.diem.com/dip-2/
https://github.com/diem/diem/tree/master/storage
https://github.com/diem/diem/tree/master/storage
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://dip.diem.com/dip-11/


14 Panagiotis Chatzigiannis and Konstantinos Chalkias

19. Chalkias, K., Brown, J., Hearn, M., Lillehagen, T., Nitto, I., Schroeter, T.:
Blockchained post-quantum signatures. In: 2018 IEEE Blockchain. pp. 1196–1203.
IEEE (2018)

20. Chalkias, K., Garillot, F., Kondi, Y., Nikolaenko, V.: Non-interactive half-
aggregation of eddsa and variants of schnorr signatures. CT-RSA (2021)

21. Chalkias, K., Lewi, K., Mohassel, P., Nikolaenko, V.: Distributed auditing proofs of
liabilities. Cryptology ePrint Archive, Report 2020/468 (2020), https://eprint.
iacr.org/2020/468

22. Chatzigiannis, P., Baldimtsi, F., Chalkias, K.: Sok: Auditability and accountabil-
ity in distributed payment systems. Cryptology ePrint Archive, Report 2021/239
(2021), https://eprint.iacr.org/2021/239

23. Dagher, G.G., Bünz, B., Bonneau, J., Clark, J., Boneh, D.: Provisions:
Privacy-preserving proofs of solvency for bitcoin exchanges. In: Ray, I., Li,
N., Kruegel, C. (eds.) ACM CCS 2015. pp. 720–731. ACM Press (Oct 2015).
https://doi.org/10.1145/2810103.2813674

24. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: Kuty-
lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713, pp. 313–326.
Springer, Heidelberg (Sep 2014)

25. Dutta, A., Vijayakumaran, S.: Mprove: A proof of reserves protocol for mon-
ero exchanges. In: 2019 IEEE European Symposium on Security and Privacy
Workshops, EuroS&P Workshops 2019, Stockholm, Sweden, June 17-19, 2019.
pp. 330–339. IEEE (2019). https://doi.org/10.1109/EuroSPW.2019.00043, https:
//doi.org/10.1109/EuroSPW.2019.00043

26. Gabizon, A., Gurkan, K., Jovanovic, P., Konstantopoulos, G., Oines, A., Olszewski,
M., Straka, M., Tromer, E.: Plumo: Towards scalable interoperable blockchains
using ultra light validation systems. ZKProof (2020)

27. Gao, Z., Hu, Y., Wu, Q.: Jellyfish merkle tree (2021), https://developers.diem.
com/papers/jellyfish-merkle-tree/2021-01-14.pdf

28. Gennaro, R., Leigh, D., Sundaram, R., Yerazunis, W.: Batching schnorr identi-
fication scheme with applications to privacy-preserving authorization and low-
bandwidth communication devices. In: International Conference on the Theory
and Application of Cryptology and Information Security. pp. 276–292. Springer
(2004)

29. Gjermundrød, H., Chalkias, K., Dionysiou, I.: Going beyond the coinbase trans-
action fee: Alternative reward schemes for miners in blockchain systems. In: Pro-
ceedings of the 20th Pan-Hellenic Conference on Informatics. pp. 1–4 (2016)

30. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-49896-5 11

31. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification.
GitHub: San Francisco, CA, USA (2016)

32. Josefsson, S., Liusvaara, I.: RFC 8032: Edwards-Curve Digital Signature Algorithm
(EdDSA) (Jan 2017). https://doi.org/10.17487/RFC8032

33. Khovratovich, D., Law, J.: Bip32-ed25519: Hierarchical deterministic keys over a
non-linear keyspace. In: 2017 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). pp. 27–31. IEEE (2017)

34. Komlo, C., Goldberg, I.: Frost: Flexible round-optimized schnorr threshold signa-
tures. Cryptology ePrint Archive, Report 2020/852 (2020), https://eprint.iacr.
org/2020/852

https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2021/239
https://doi.org/10.1145/2810103.2813674
https://doi.org/10.1109/EuroSPW.2019.00043
https://doi.org/10.1109/EuroSPW.2019.00043
https://doi.org/10.1109/EuroSPW.2019.00043
https://developers.diem.com/papers/jellyfish-merkle-tree/2021-01-14.pdf
https://developers.diem.com/papers/jellyfish-merkle-tree/2021-01-14.pdf
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.17487/RFC8032
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2020/852


Proof of Assets in the Diem Blockchain 15

35. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Pomerance, C. (ed.) CRYPTO’87. LNCS, vol. 293, pp. 369–378. Springer, Heidel-
berg (Aug 1988)

36. Moore, T., Christin, N.: Beware the middleman: Empirical analysis of Bitcoin-
exchange risk. In: Sadeghi, A.R. (ed.) FC 2013. LNCS, vol. 7859, pp. 25–33.
Springer, Heidelberg (Apr 2013)

37. Nick, J., Ruffing, T., Seurin, Y.: Musig2: Simple two-round schnorr multi-
signatures. Cryptology ePrint Archive, Report 2020/1261 (2020), https://

eprint.iacr.org/2020/1261

38. Roose, S.: Standardizing bitcoin proof of reserves, https://blockstream.com/

2019/02/04/en-standardizing-bitcoin-proof-of-reserves/

39. Syta, E., Jovanovic, P., Kokoris-Kogias, E., Gailly, N., Gasser, L., Khoffi, I., Fis-
cher, M.J., Ford, B.: Scalable bias-resistant distributed randomness. In: 2017 IEEE
Symposium on Security and Privacy. pp. 444–460. IEEE Computer Society Press
(May 2017). https://doi.org/10.1109/SP.2017.45

40. – blinded –: Diem proof of assets (2020), https://www.dropbox.com/s/

wdjq47l7dds98wf/proofassets.rs

41. Van Saberhagen, N.: Cryptonote v 2.0 (2013), https://cryptonote.org/

whitepaper.pdf

42. Wang, H., He, D., Ji, Y.: Designated-verifier proof of assets for bitcoin exchange
using elliptic curve cryptography. Future Gener. Comput. Syst. 107, 854–862
(2020). https://doi.org/10.1016/j.future.2017.06.028, https://doi.org/10.1016/
j.future.2017.06.028

https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1261
https://blockstream.com/2019/02/04/en-standardizing-bitcoin-proof-of-reserves/
https://blockstream.com/2019/02/04/en-standardizing-bitcoin-proof-of-reserves/
https://doi.org/10.1109/SP.2017.45
https://www.dropbox.com/s/wdjq47l7dds98wf/proofassets.rs
https://www.dropbox.com/s/wdjq47l7dds98wf/proofassets.rs
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://doi.org/10.1016/j.future.2017.06.028
https://doi.org/10.1016/j.future.2017.06.028
https://doi.org/10.1016/j.future.2017.06.028

	Proof of Assets in the Diem Blockchain

