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Abstract. Anonymous cryptographic primitives reduce the traces left by the users when interacting
over a digital platform. However, they also prevent a platform owner to hold users accountable in case
of malicious behaviour. Revocable anonymity offers a compromise by allowing only the manager (and
not the other users) of the digital platform to de-anonymize user’s activities when necessary. However,
such de-anonymization power can be abused too, as a misbehaving manager can de-anonymize all
the activities without user’s awareness. Previous work propose to mitigate this issue by distributing
the de-anonymization power across several entities. However, there is no comprehensive and formal
treatment where both accountability and non-frameability (i.e., the inability to falsely accuse a party
of misbehavior) for both the user and the manager are explicitly defined and provably achieved.
In this paper we formally define mutual accountability: a user can be held accountable for her otherwise
anonymous digital actions and a manager is held accountable for every de-anonymization attempt; plus,
no honest party can be framed – regardless of what malicious parties do.
Instead of distributing the de-anonymization power across entities, instead, we decouple the power of
de-anonymization from the power of monitoring de-anonymization attempts. This allows for greater
flexibility, particularly in the choice of the monitoring entities.
We show that our framework can be instantiated generically from threshold encryption schemes and
succinct non-interactive zero-knowledge. We also show that the highly-efficient threshold group signa-
ture scheme by Camenisch et al.(SCN’20) can be modified and extended to instantiate our framework.

1 Introduction

We target accountable anonymity: an authorized user of a digital platform can generate a value anonymously1,
but when deemed necessary, a value can be de-anonymized and linked to the identity of its creator. The right
balance between the two desirable properties is an important and difficult task to achieve and recently, there
are regulatory attempts on the matter. The Council of the European Union recently published a document
on the matter [1] that states: “Protecting the privacy and security of communications through encryption
and at the same time upholding the possibility for competent authorities in the area of security and criminal
justice to lawfully access relevant data for legitimate, clearly defined purposes [...] are extremely important.
”

However, accountability is naturally in tension with perfect anonymity because it is achieved via a master
trapdoor that enables a designated party to de-anonymize any message exchanged through the platform.
Anonymity then holds conditionally on how the designated party uses the trapdoor.

Shouldn’t the designated party be accountable for their de-anonymization activities? Shouldn’t users at
least be aware when de-anonymization activities take place?
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Accountability: What is Missing from Previous Work. Earlier works have recognized that the manager can
abuse a master trapdoor [2,3,4,5,6,7]. The countermeasures proposed in the literature rely on distributing the
role of the manager across n parties. That way, any de-anonymization can be performed only if a minimum
number of parties agree (e.g., [8,9]). Other solutions [6,7] instead introduce a new party whose task is to
allow the manager to de-anonymize the message. However, all existing definitions either lack generality or
formality of the security goals for manager accountability. Consequently, the definitions and constructions
can be applied only to specific scenarios. In particular,

– Weak Manager-Accountability Guarantees. Most work (e.g., [2,9]) splits the manager into n parties. This
approach lessens the manager’s ability to abuse de-anonymization since multiple parties must agree to
conduct the process. However, these works do not introduce any formal accountability guarantee against
the managers, and often omit discussion on how the n parties are selected so that the underlying trust
assumption can be satisfied.

– Lack of Comprehensive Definitions. Works such as [6,7] introduce a third entity (called “admitters” in [6])
that enables the manager to perform a de-anonymization. This introduces an added layer of protection
for the users, but the formal security definition provided leaves out any protection for the manager.
Specifically, it does not consider the non-frameability of the manager, making an implicit assumption on
the good behavior of the admitters and users.

– Lack of Generality. Even in the more general framework where two separate entities control the de-
anonymization power ([6]), the de-anonymization activity has a pre-defined granularity and is, therefore,
suitable only in specific applications. For instance, in [6] the admitters give the manager a message-
dependent trapdoor to de-anonymize all messages that have the same value (e.g., all messages that have
the same date). This is useful for the application proposed in [6], where one wishes to de-anonymize all
messages signed at a specific time with a single trapdoor, but not in general.

– Lack of Flexibility. In earlier work, the manager accountability property is achieved by using parties who
are also involved in the functioning of the platform (e.g., [8]), hence they might not be independent of
the platform. Furthermore, there is an underlying assumption that these parties are fixed for the entire
lifetime of the system. There is little discussion on how such parties are chosen and why they would be
trustworthy and active throughout the lifetime of the system.

1.1 Our Contribution

In this work, we provide a general framework, the mutual accountability layer, to capture accountability
guarantees for both the users and the managers. We believe that our definitions can enable the designing of
mutually accountable systems for a wider set of applications than the ones considered so far in literature.
We summarize our contributions and then elaborate on each in the following sections.

1. A Formal Definition for Mutual Accountability. We introduce the Mutual Accountability Layer
(MUTAL), a cryptographic primitive that captures the properties of anonymity for the users, account-
ability and non-frameability for both the users and the manager. Our new definitions sharpen the ones
provided in previous works, providing flexibility and verifiability properties. To guarantee accountability
to all parties, we introduce guardians, a set of (potentially malicious) monitoring parties that oversees
every de-anonymization process, but it does not learn anything about the de-anonymized users. Security
is guaranteed if the number of malicious guardians is below a threshold.

2. Instantiations. We provide a general template to construct a Mutual Accountability Layer that is based
on a two-layer encryption: one for the guardians and one for the manager. Only if both collaborate, the
identity of a user can be reconstructed. Besides our general construction, we show how to change the
group signature scheme of [9] so that it can be used to instantiate a MUTAL scheme. The second approach
is less general and uses bilinear maps.

3. Evolving Monitoring Parties. We consider a dynamic setting where the monitoring parties, that is,
the guardians, can change over time, and we discuss methods to change the guard. These are based on
results on proactive secret sharing [10] and its more recent implementations [11].
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1.2 Formal Definition for Mutual Accountability (MUTAL)

We start the formal treatment of Mutual Accountability Layer (MUTAL) where both the users and the
manager are accountable. This layer can be added to any content that members of a digital platform generate,
and thus is not tied to any specific application. In contrast to previous work, we do not distribute the
manager’s role among n parties. We model two separate entities with separate roles. The platform manager
is the entity exclusively entitled to de-anonymize users, while the set of guardians are solely entitled to give
permission to de-anonymize. The manager is unable to de-anonymize unless he generates a publicly verifiable
request of de-anonymization for the guardians, declaring what value he wants to de-anonymize2, and the
guardians agree to collaborate. Even though the guardians must agree, they do not learn the identity of the
misbehaving user. While the guardians could be composed of many parties, they are represented by a single
public key. As we explain later, this allows for generality and applicability of this framework to the arbitrary
designation of the guardians.

Threat Model and Security Guarantees. In our model, every party could act maliciously and collude.
Specifically, the users, the manager, and up to t guardians can be fully malicious and can collude (for
certain properties such as non-frameability, we even assume that all guardians are malicious). Within this
threat model, we target the following security properties. User anonymity: Even if a malicious manager
colludes with up to t malicious guardians, a message cannot be de-anonymized without a publicly verifiable
request made by the manager. Moreover, even if all guardians are corrupted and collude, they still cannot
de-anonymize any message when the manager is honest. User non-frameability: an honest user cannot
be falsely accused of being the creator of a value v that she did not generate. This should be true even if
all the parties are malicious and collude (except the party who enrolls the users, though this can be avoided
whenever the real identity can be proven cryptographically, we discuss this below). User accountability: a
manager can de-anonymize any value if enough guardians cooperate. Manager accountability: it should be
infeasible for a manager to de-anonymize a value v without leaving a publicly verifiable trace in the system.
This property is guaranteed if at most t guardians are malicious. Manager non-frameability: even if users
and guardians are malicious and collude, they should not be able to fabricate a de-anonymization request
for which the manager will be held accountable.

Flexibility. Decoupling the manager role from the monitoring role is crucial for allowing great flexibility
in the implementation of the system. First, in our definition, guardians are only involved in handling de-
anonymization requests and take no role in the functioning of the system. They are “platform independent”
and hence one could even use the same set of guardians for multiple platforms managed by distinct managers.
This is in contrast with previous proposals [12] where the parties performing the guardians’ activity were
also responsible for the functioning of the platform. Second, our definition identifies the set of guardians with
a single public key and makes no assumption on the actual identity of the guardians. Specifically, the set of
guardians can change over time – so long the same public key is maintained.

1.3 MUTAL: Instantiations

A General Instantiation of MUTAL We provide a general instantiation of MUTAL based on a threshold
public-key encryption scheme (TES)3 and a simulation-extractable non-interactive zero-knowledge proof
system. Assume that a set of n guardians has been chosen (we describe selection mechanisms in Sec. 1.4)
and assume that a threshold of them is honest (up to t could be arbitrarily malicious). First, the guardians
will engage in a (non-interactive) protocol to compute a public key for the threshold encryption scheme pkGUTE .
Next, assume that the manager of the digital platform has published her public key pkGM for a CPA-secure
encryption scheme. At high-level, a MUTAL is instantiated as follows. A user Ui becomes a member of the
platform by enrolling with the key issuer using her “real identity”, along with a new, freshly picked key vki
that the user will use to be identified as a member of the platform. Here the meaning of “real identity”

2 In some applications, the request should not be made public immediately.
3 A threshold public-key encryption scheme is an encryption scheme where the secret key is split among n parties,

and a cipher text can be decrypted only if at least t shares of the secret keys are used.
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depends on the application. For generality, we assume that there exists a procedure Valid(ID) that is applied
to the real identity provided by the user. Once the ID is validated, the key issuer provides a signature σi
on the pair (ID, vki). The tuple cert = (ID, vki, σi) is then communicated to the manager of the platform.
When the user generates a value v for the platform, she will send v along with an encryption of the identity
c1 = EncpkGM(certi) using the public key of the manager pkGM and a zero-knowledge proof of knowledge
of the secret associated to vki and valid signatures σi computed by the key issuer. The size of the proof is
independent of the number of authorized users enrolled in the digital service. To ensure mutual accountability,
the ciphertext c1 is wrapped inside another layer of encryption c2, where c2 was computed using the threshold
encryption scheme under the public key of the guardians.

Thus, the final message posted by the user is (m, c2, proof) where proof is a zero-knowledge proof
that everything was computed correctly. We instantiate the TES with ElGamal Threshold Encryption
Scheme [13,14], where the size of the public key is independent of the number of shares, n. Hence, the
extra layer c2 is succinct and independent of the number of guardians. If more than one set of guardians is
available, the user can select the set of guardians that she trusts the most4 and can add this to the tuple.
By looking at the tuple (m, c2, proof), the manager alone is unable to learn c1 (and thus decrypt the identity
vki), without having the guardians remove the layer of threshold decryption. This is true even if the manager
colludes with up to t guardians. To de-anonymize a message, the manager must provide a publicly verifiable
request for de-anonymization that at least t+1 guardians accept. We note that even if all guardians are fully
malicious and decrypt every single instance, they still cannot de-anonymize any user without the secret key
of the manager. While this approach is natural and is outlined in previous work, they did not provide formal
definitions or proofs for accountability and non-frameability. We are the first to provide formal guarantees.
The scheme is described in Sec. 5.

An Efficient Instantiation from Threshold Group Signature Camenisch et al. [9] provide a practical t-out-of-n
group signature scheme based on bilinear maps. Recall, in a group signature, a member of the group can
sign anonymously within the group, but a group manager can de-anonymize any signature. In the scheme
of Camenisch et al. [9], the manager is split into n parties, hence a signature can be de-anonymized if any
subset of t managers agrees. This scheme does not directly fit our setting, where we want only the manager to
de-anonymize and the guardians should only allow this action. To fit our setting, we change their t-out-of-n
scheme so that any subset of t guardians will only be able to remove one layer from the group signature.
The other layer can be removed solely by the manager, and no other party will learn the decryption. More
discussion is provided in Sec. 6.

1.4 Monitoring Committee: Selection and Evolution

The suitability of a selection procedure for guardians depends on the application. We outline some possibilities
below.

(a) Selection among the users (only trust in your peers). When no external party is trusted, the guardians
can be elected among the users enrolled in the platform using cryptographic sortition techniques. This can
be implemented using a Verifiable Random Function (VRF) [15]. When a user registers in the system, she
will choose a public key for a VRF. Then in each “epoch” e, each user checks if she is elected as a guardian
for the next epoch, by evaluating the VRF on input e, and check if the output is below a threshold ρ. This
technique is used in Algorand [16] to select the committees that run the underlying consensus protocol. In
our setting, we do not need a blockchain; we only need that the users of the digital platform have access to
the public VRF keys of all users.

(b) Selection of external parties through voting mechanisms or by platform designers. When external
parties that can be trusted exist, guardians could be selected through some voting mechanism among the
platform designers. For instance, guardians can be chosen among nonprofit organizations that monitor citi-
zen’s rights in the US (such as the ACLU), etc. We stress that in our proof, we do not need all the guardians
to be honest. We tolerate up to t completely malicious guardians.

4 For simplicity in this paper, we consider only one set of guardians.
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(c) Selection through a public permissionless blockchain. Any blockchain that satisfies chain quality5 can
be used to select a committee of n guardians with the guarantee that at most t parties are malicious (with
high probability), where the parameters n, t are tied to the chain quality parameter [17,18,11]. The idea is
the following: people who wish to be part of the guardians try to add a block to the blockchain containing a
transaction with a public key that they want to use if they are selected. When enough blocks containing such
transactions are stored on the blockchain, the public keys that appear in the first N blocks are automatically
selected to be part of the guardians.

On Guardians’ Incentives. The incentive for external parties to participate in MUTAL comes from the
application. For example, if guardians are chosen among nonprofit organizations, their incentive for following
the protocol follows from their social responsibility and reputation.

Evolving Committee. For more robustness of the system, the set of guardians changes periodically at
epochs. To change the guardians, we propose to use a proactive secret-sharing mechanism for re-sharing
the secret key sk among the new set of guardians using fresh shares which are independent than those of
the old guardians. Proactive secret sharing techniques allow a secret to be handed-off between two sets of
parties [10,19]. The procedure where we specifically use the dynamic proactive secret sharing (DPSS) scheme
of Goyal et al. [11], is described in Section 7.

In [11] the hand off works as follows: To hand off the shares of the secret, the old and new guardians first
perform an initial computation that allows them to hold two independent sharings of the same random value
r. The old committee can use the sharing of s and the sharing of r to reconstruct the value s− r and publish
it. Since r is random, the value s − r leaks no information. Next, each member of the new committee adds
s− r to their own share of r. As a result, each member holds shares of s− r+ r = s, the original secret. The
new set of shares is independent of the old set of shares. This completes the hand-off of the secret from the
old committee to the new committee. It is assumed that the old committee erases the old sharing after this
phase is complete. Else, an adversary could slowly eventually corrupt the old committee afterwards and learn
the secret. To end up with different sharings of r, each member Ci of the new committee picks a random
value ri and creates two different sharings of it. Then Ci shares one of the shares with the old committee
and the other with the new committee. Each party will then obtain a share for each ri, it will sum their
local shares and hold a sharing of r = r1 + . . .+ rn, which is guaranteed to be random if one party provided
a random ri. To ensure that no party misbehaves, a polynomial commitment scheme is used to guarantee
that all shares are well-formed. For details see Sec. 7.

2 Related Work

Several works [12,4,8] have explored the concept of accountable anonymity, but lack formal definitions of
accountability and thus provable guarantees and are suitable only to the communication layer. In such
works, trusted mixers maintain the communication channel and are responsible for anonymization and de-
anonymization.

More recently, Corrigan-Gibbs and Ford [20] targeted a closed group of people that self-manages the
communications of its members and guarantees anonymity and some form of accountability. This work is
specific for settings where the digital platform itself is decentralized, and it is not clear how one might extend
it to other settings (e.g., where there is a platform manager).

Von Ahn et al. [2] note the threat of abuse of the de-anonymization power and proposes an anonymous
and accountable system where the master secret key is not known by a single manager but is distributed
(using some threshold schemes [21,22]) to a set of parties. This idea reduces the threat of abuse since the de-
anonymization power is not concentrated in one entity. However, in [2], they provide only informal guarantees
and do not discuss traceability or transparency of the de-anonymization process. Indeed, a later work by
Danezis and Sassaman [23] highlights that it could be arbitrary which messages get to remain anonymous
and which ones will be censured. More importantly, it is unclear under what circumstances the parties are
provably accountable for their de-anonymization activities.

5 Chain quality αl means that in any sequence of l consecutive block at least α fraction of them are added by honest
parties.
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More recently, Camenisch et al. [9] proposed dynamic group signatures. These are anonymous signatures
that can be de-anonymized by a set of designated parties non-interactively (providing some form of public
traceability). This approach also lacks the generality provided by our framework. Also, this line of work
simply distributes the platform manager among several parties. We want manager accountability to be
independent of the platform manager and to be enforced by a crowd.

Frankle et al. [3] discuss accountability within the context of electronic surveillance of platforms such
as Facebook. Here the goal is to track secret law enforcement requests to digital platforms. This work is
tailored to this specific setting where all parties (i.e., Facebook, FBI, judges) are assumed to act in good
faith. In particular in this setting users have no anonymity to begin with, with respect to group manager
(i.e., Facebook).

Libert and Joye [6], building on Sakai et al. [7], presented a group signature scheme with message-
dependent opening. A dedicated committee, called the admitters, jointly decides if a message should be
de-anonymized. If so, they jointly generate a per-message trapdoor that allows the manager to de-anonymize
all instances that contain message m. As we mentioned earlier, there are significant differences with our
approach. First, in [6] there is no focus on the traceability guarantees of the de-anonymization procedure.
Thus, users can still be de-anonymized unknowingly. Second, the de-anonymization is message-dependent
instead of instance-dependent. Third, manager non-frameability is not considered, suggesting that admitters
and manager are the same authority, working towards the same goal, thus, admitters would not frame the
manager. Like MUTAL, the signature has two layers of encryption, which must be removed by different
entities. Message-dependent opening relies on identity-based encryption (IBE) scheme, specifically a fully
collusion-resistant partially structure-preserving IBE, which is a variant of Waters’ IBE scheme [24]. In
IBE systems, a trusted party owns a master public and private key and private keys are signatures on the
corresponding message [25]. A user asks for a private key from the key issuer, who can derive it from the
master private key. Usually, the signature is on the user’s identity [25], but here, the messages are the public
key.

To sign, a user generates a two-level signature on their ID and the message they wish to sign m. Later,
for de-anonymization, the guardians first remove the message layer and the authority removes the identity
layer. The guardians generate a token tm that depends on the message m. The fact that the admitters can
generate a message dependent token inherently relies on using IBE. Upon receiving tm, the authority can
remove the other layer of encryption and then use tm to decrypt the identity. The authority can then reuse
the token tm to de-anonymize any signatures on the message m. Deviating from our work, the presence of a
trusted key issuer is crucial to their system. [6] only achieve full traceability, while we have non-frameability.
In full traceability, the adversary is passive, meaning she only receives keys. Meanwhile, non-frameability
allows the adversary to make her own keys. This means it is important that the key issuer not be able to
learn the private group keys of each user. Libert and Joye just assume that the key issuance is done honestly
and that the private key is erased after all the members join. The adversary only gets secret keys off the
admitter/guardians and opener/authority.

3 Preliminaries

Notation. Let [n] denote the set {1, 2, . . . , n}. We use y ← F(x) to say y is the output of a randomized
algorithm F on input x and write y ← F(x; r) to explicitly refer to the randomness r used. We use y := F(x)
if F is a deterministic algorithm. PPT stands for probabilistic polynomial time. A function negl(n) is negligible
if for every positive polynomial p there is an N such that for all integers n > N it holds that negl(n) ≤ 1

p(n) .

We denote the security parameter by λ.
We use (z, (yi)Ui∈S) ← F〈Ui(xi)〉Ui∈S(w) to denote a protocol between parties in a set S. Here, each

party holds a secret input xi and receives secret output yi, z is the public output and w is the public
input. In the context of our security games, to denote the execution of protocol F where an adversary, with
auxiliary input u, takes part in the execution and adaptively corrupts parties we write:

(
z, stA, (yi)Ui∈H

)
←

F(A(u))〈Ui(xi)〉Ui∈H(w) where the parties in H are the honest parties, yi denotes the output of honest party
Ui, and stA denotes the output of the adversary A.
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Cryptographic Primitives. To instantiate our generic construction, we use standard cryptographic primitives
such as a one-way function f , a secure signature scheme S, and a public key encryption scheme E. Their
syntax and definitions can be found in any reference textbook (e.g., [26,27,28]). We also use non-interactive
zero knowledge arguments of knowledge (NIZK) that satisfy the stronger notions of simulation extractability
and succinctness (SNARK) [29, Def. 2.10]. Finally, we use a threshold encryption scheme TE which satisfies
the property of simulatable decryption.

For the threshold dynamic group signature (DGS) based construction in 6, following [9], we use Pointcheval-
Sanders signature scheme [30], various sigma protocols made non-interactive via the Fiat-Shamir trans-
form [31], and a signature of knowledge [32].

We present the less standard definitions for simulation extractable nizk and threshold encryption with
simulatable decryption in App. A.

4 Formal Definition of Mutual Accountability Layer

In this section, we present MUTAL: first, we identify the parties in the protocol, then introduce its syntax in
Definition 1, and finally describe the corresponding security properties.

– Users: The parties that generate messages. A user U can (1) join the platform with a valid identity
(JoinUserValid) and obtain a public key for the platform; (2) generate authorized message m in anony-
mously (MemberAuth).

– Key issuer: This party, denoted by KI, checks the identity of users and registers them (i.e., it helps
execute JoinUserValid).

– Manager: This party, denoted by GM, can request de-anonymization for a certain message (ReqDeanon).
If the request is granted, it learns the identity of the message creator (Deanon). The manager’s requests
are publicly verifiable.

– Guardians: The set of parties that grants access to a de-anonymization. These parties, denoted by
{C1, . . . ,Cn}, collectively protect the users against a potentially misbehaving group manager. They per-
form a one-time joint computation to compute a public key (KeyGenGu), and then monitor the de-
anonymization requests generated by GM. Once a request associated with m is validated, the guardians
perform a joint computation to generate a value that allows the group manager to trace the identity of
the user who created m (GrantDeanon). The output provided by the guardians is publicly verifiable.

Definition 1 (Mutual Accountability Layer Syntax). A Mutually Accountable Layer MUTAL consists
of the following PPT procedures:

1. pp← SetupParams(1λ). On input security parameter λ, it outputs the parameters pp for the scheme. We
assume pp implicitly contains the information about the message space M, key space, etc.

2. (pkKI , skKI , stKI) ← KeyGenIssuer(pp). On input the parameters pp outputs a key pair (pkKI , skKI) for
KI. It also initializes a state stKI used to maintain information of the members that join a group.

3. (pkGM, skGM, stGM) ← KeyGenManager(pp). On input the parameters pp, it outputs a key pair for the
group manager (skGM, pkGM) and an initialized state stGM used to manage the group.

4.
(
pkGU , (skGUl )Cl∈GU

)
← KeyGenGu 〈C`(·)〉Cl∈GU (pp). This is an interactive protocol between parties in a

set GU := C1, . . . ,Cn. These parties, called guardians, have as a common public input the parameters
pp. At the end of the protocol, each guardian receives as output a secret key skGUl . All parties receive
as output a public key pkGU . We denote with PK the set public keys of the authorities, i.e., PK ={
pkKI , pkGU , pkGM

}
.

5. (certi,(ski,st
KI ,stGM)) ← JoinUserValid

〈
Ui (IDi), KI(skKI , stKI),

GM(skGM, stGM)
〉

(pp,PK). An interactive protocol run between a user, KI, and GM. User participates
with a public identity IDi that can be validated according to a predicate Valid. KI and GM participate
with their secret keys and their states. At the end of the protocol, the user gets a secret member key ski
for a member identity IDi, the public output is a certificate certi that is added to key issuer and group
manager’s states.
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6. π ← MemberAuth(pp,PK,m, certi, ski). The user Ui executes MemberAuth to create an authorization for
a message m ∈ M. On input the parameters pp, public keys PK, the message m, the secret key ski, and
the associated certificate certi, it outputs a proof of membership π that proves his eligibility to produce m.

7. b← AuthVrfy(pp,PK,m, π). On input parameters pp, public keys PK, a message m, a proof of membership
π outputs a bit b indicating whether the message is authorized.

8. req ← ReqDeanon(pp,PK,m, π, skGM). On input the parameters pp, the public keys PK, a message m,
a proof of membership π, and the secret key of the group manager skGM produces a request req to de-
anonymize the member who posted m.

9. b← JudgeReq(pp,PK,m, π, req). On input the parameters pp, the public keys PK, a message m, a mem-
bership proof π and a request req, it outputs a bit b indicating whether GM produced the request.

10. ⊥/access ← GrantDeanon〈C`(skGU` )〉Cl∈GU (pp,PK,req,m,π). This is an interactive protocol between the
guardians GU . Guardian Cl has as secret input its secret key skGUl , and all parties have common input
the parameters pp, the public keys PK, a message m, a membership proof π, and a request req; the
result of the protocol is a common output, which is either a value access that will allow group managerto
de-anonymize the message or ⊥.

11. ⊥/(certID, proofID) ← Deanon(pp,PK,m, π, access, skGM). On input the parameters pp, the public keys
PK, a message m, a membership proof π, a string access, and the secret key of the group manager skGM

outputs certID and a publicly verifiable proof proofID that this was the certID accountable for m. Otherwise,
it outputs the special symbol ⊥.

12. b ← Judge(pp,PK,m, π, access, certID, proofID) On input the public parameters pp, the public keys PK,
and information about the authenticated message (m, π), the string access from the guardians and a pair
(certID, proofID) from the group manager; it outputs a bit denoting whether the user assigned with certID
is indeed accountable for the pair (m, π).

4.1 Threat Model and Security Properties

For each security property of MUTAL, we describe a security game where the power of the adversary is
modeled via oracles. The oracles and their behavior are described below.

– OHonJoin(IDi): When the adversary queries this oracle, an honest user is enrolled in the system. Formally,
the oracle executes JoinUser for a user with identity IDi, and outputs certi to the adversary; it maintains
a set Uh which is updated with (certi, tokeni).

– OMalJoin(IDi, vki): When queried, this oracle allows the adversary to create and control a malicious user
by interacting with the adversary in protocol JoinUser, participating as key issuer. It maintains a set of
malicious users containing certi.

– OGuKeyGen: This is a one-time oracle that, when queried, lets the adversary cooperate in the protocol
to generate the keys of the guardians. The guardians the adversary controls are denoted as GUcor and
the oracle plays on behalf of the remaining, denoted GUhon. Formally, this oracle consists of running(
pkGU , stA, (sk

GU
` )C`∈GUhon

)
← KeyGenGu(A(·)) 〈C`(·)〉Cl∈GU (pp).

– OGetGuKeys(i): When queried on input i, outputs the secret key of the i-th guardian, which is added to
GUcor.

– OMemberAuth(m, certi): Upon query, outputs membership proof π ← MemberAuth (pp,PK,m, certi, ski),
produced by honest user with (certi, ·) ∈ Uh for message m ∈ M. If the user is not honest, the oracle
returns ⊥. A set T is updated with (m, π, certi).

– OReq(m, π): The oracle returns req← ReqDeanon(pp,PK,m, π, skGM); a setQ is updated with (m, π, req).
– OGrant(m, π, req): When queried, a GrantDeanon protocol execution starts, i.e.,

GrantDeanon(A(·))
〈
C`(sk

GU
` )
〉

Cl∈GU
(pp,PK, req,m, π)

a set G is updated with (m, π, req, access).
– ODeanon(m, π, access): this oracle models the ability of an adversary to learn the identity of the creator

of a message. When queried, the oracle runs Deanon(pp,PK,m, π, access, skGM); a set D is updated with
each query with (m, π, access, ·) where · denotes the value returned by the oracle.
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Completeness. If all parties behave honestly (i) any user with a valid ID can join the system and
create membership authorizations that verify; (ii) the group manager will be able to create de-anonymization
requests that verify and, in collaboration with a majority of the guardians, will also manage to de-anonymize
any message; and (iii) the de-anonymization process will lead to the creator of the message and the group
manager will be capable to create a proof of identity that verifies. Completeness holds if the output of the
experiment of Fig. 1 is 1:

CompletenessΠ(1λ,m, ID)

– pp← SetupParams(1λ)
– (pkKI , skKI , stKI) ← KeyGenIssuer(pp), (pkGM, skGM, stGM) ← KeyGenManager(pp),(

pkGU , (skGUl )Cl∈GU
)
← KeyGenGu 〈C`(·)〉Cl∈GU

(pp). PK :=
{
pkKI , pkGM, pkGU

}
– (cert, (sk, stKI , stGM))← JoinUserValid

〈
U(ID),KI(skKI , stKI),GM(skGM, stGM)

〉
(pp,PK)

– π ← MemberAuth(pp,PK,m, cert, sk)
– req← ReqDeanon(pp,PK,m, π, skGM)
– access← GrantDeanon

〈
C`(sk

GU
` )
〉

Cl∈GU
(pp,PK, req,m, π)

– (certID, proofID)← Deanon(pp,PK,m, π, access, skGM)
– The output of the experiment is 1 iff AuthVrfy(pp,PK,m, π) = 1, JudgeReq(pp,PK,m, π, req) = 1,

Judge(pp,PK,m, π, access, certID, proofID) = 1, and cert = certID.

Fig. 1. CompletenessΠ(1λ,m, ID)

Definition 2 (Completeness). A MUTAL scheme Π satisfies completeness if, for any message m ∈ M
and identity ID,

Pr
[
CompletenessΠ(1λ,m, ID) = 1

]
= 1.

Unforgeability. It captures the property that anyone (even group manager and guardians) who is
not enrolled in the system (i.e., has not executed protocol JoinUser) cannot produce valid membership
authorizations. We capture this in a game where an adversary A controls group manager and guardians,
and has access to oracles OHonJoin(ID) and OMemberAuth, meaning it can create new users (but does not
control them), and see honestly generated membership authorizations of her choice. The adversary wins the
game if she can produce a pair (m, π) that verifies, without controlling any user and without querying m in
the OMemberAuth oracle. The game is presented in Fig. 2.

Exp-UnforgeΠ,A(1λ)

A has access to O = {OHonJoin,OMemberAuth}. A fully controls the group manager GM, and the guardians
GU .

– Initialization: (1) Parameters pp← SetupParams(1λ). (2) Sets for the oracles: Uh, T := ∅. (3) key issuer’s
keys: (pkKI , skKI , stKI)← KeyGenIssuer(pp).

– (pkGM, pkGU )← A(pp, pkKI); PK :=
{
pkGM, pkGU , pkKI

}
.

– (m, π)← AO(stA).
– The output of the experiment is 1 iff AuthVrfy(pp,PK,m, π) = 1, and (m, π, ·) /∈ T (the proof π was not

computed by the challenger).

Fig. 2. Exp-UnforgeΠ,A
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Definition 3 (Unforgeability). A MUTAL scheme Π satisfies unforgeability if for any PPT adversary A,
there is a negligible function µ such that

Pr
[
Exp-UnforgeΠ,A(1λ) = 1

]
≤ µ(λ).

User non-frameability demands that no one can falsely accuse a user Ui of being the creator of a
certain value. Even if all guardians, the manager, and some other users are malicious and colluding, user Ui
cannot be framed (if KI is honest). Formally, the adversary controls the group manager, the guardians, and
malicious users; she wins if she can provide a valid pair (m, π) that opens to the identity of an honest user.
This property is shown in Fig. 3.

Exp-UserNonFrameΠ,A (1λ)

A has access to O = {OHonJoin,OMemberAuth,OMalJoin}. A fully controls the group manager GM, and the
guardians GU .

– Initialization: (1) Parameters pp← SetupParams(1λ). (2) Sets for the oracles: Uh, T , := ∅. (3) key issuer’s
keys: (pkKI , skKI , stKI)← KeyGenIssuer(pp).

– (pkGM, pkGU )← A(pp, pkKI); PK :=
{
pkKI , pkGU , pkGM

}
.

– (m, π, certID, proofID)← AO(stA).
– The output of the experiment is 1 iff AuthVrfy(pp,PK,m, π) = 1, (m, π, ·) /∈ T (the proof π was not

computed by the challenger), Judge(pp,PK,m, π, access, certID, proofID) = 1, and (certID, ·) ∈ Uh.

Fig. 3. Exp-UserNonFrameΠ,A

Definition 4. ( User Non-frameability) A MUTAL scheme Π satisfies user non-frameability if for all PPT
adversaries A there exists a negligible function µ such that

Pr
[
Exp-UserNonFrameΠ,A(1λ) = 1

]
≤ µ(λ).

User accountability captures the fact that, when de-anonymized, a pair (m, π) must trace back to
some user. A’s goal is to create a pair (m, π) that is not correctly de-anonymized while having control
over malicious users and the guardians. It can also ask for honest users’ membership proofs, requests, and
de-anonymizations. The formal game for user accountability is in Fig. 4.

t-Exp-UserAccountabilityΠ,A(1λ)

A has access to O = {OHonJoin,OMemberAuth,OMalJoin,OReq,OGuKeyGen,OGetGuKeys,ODeanon}.
Namely, A can create malicious users, control t malicious guardians, and learn the keys of honest guardians.

– Initialization: (1) Parameters pp ← SetupParams(1λ); (2) Public Keys (pkKI , skKI , stKI) ←
KeyGenIssuer(pp); (pkGM, skGM, stGM)← KeyGenManager(pp); (3) Oracle Sets: Uh, ,Q,G,D := ∅.

– (m, π) ← AO(pp, pkGM, pkGU , pkKI).
– The output of the experiment is 1 iff
• AuthVrfy(pp,PK,m, π) = 1
• req← ReqDeanon(pp,PK,m, π, skGM)
• access← GrantDeanon(A(stA))

〈
C`(sk

GU
` )
〉

Cl∈GUhon
(pp,PK, req,m, π)

• z ← Deanon(pp,PK,m, π, access, skGM)
• ∀(certID, ·) ∈ Uh∪, z 6= (certID, ·)

Fig. 4. t-Exp-UserAccountabilityΠ,A
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Definition 5 (User Accountability). A MUTAL scheme Π has User Accountability if, for all PPT ad-
versaries A, there exists a negligible function µ, such that

Pr[t-Exp-UserAccountabilityΠ,A(1λ) = 1] ≤ µ(λ).

Manager Non-Frameability guarantees that no one can accuse GM of creating a de-anonymization
request, even if all guardians and users are malicious and collude. The adversary has full control of users
and guardians and can ask for requests/deanonymizations; her goal is to craft a de-anonymization request
that verifies. The formal game is in Fig. 5.

Exp-ManagerNonFrameΠ,A(1λ)

A has access to the oracle O = {OHonJoin,OMalJoin,OMemberAuth,OReq,ODeanon}
The experiment works as follows:

– Initialization: (1) Parameters pp ← SetupParams(1λ); (2) Public Keys (pkKI , skKI , stKI) ←
KeyGenIssuer(pp); (pkGM, skGM, stGM)← KeyGenManager(pp); (3) Oracle Sets: Uh, ,Q,G,D := ∅

– (pkGU ,m, π, req)← AO(pp, pkKI , pkGM)
– The output of the experiment is 1 iff JudgeReq(pp,PK,m, π, req) = 1 and (m, π, req) 6∈ Q

Fig. 5. Exp-ManagerNonFrameΠ,A(1λ)

Definition 6. ( Manager Non-Frameability) A MUTAL scheme Π has Manager Non-Frameability if, for all
PPT adversaries A, there exists a negligible function µ, such that

Pr[Exp-ManagerNonFrameΠ,A(1λ) = 1] ≤ µ(λ).

Anonymity guarantees that no one can extract information about the creator of a pair (m, π), unless
GM and the guardians collaborate. To capture this, we consider two cases: (1) GM and a minority of the
guardians are corrupted, (2) only the guardians are corrupted. In both, the anonymity property is captured
by an indistinguishability definition. The formal games are presented in Fig. 6,7

Remark 1. Anonymity also implicitly covers the property of manager accountability : manager cannot open
messages on its own, it must ask for permission and if it wants to blame a user for a message, needs to
present a proof.

Exp-UAnon&MalGMΠ,A(1λ)

A has to the oracles O = {OHonJoin,OMalJoin,OMemberAuth,OGuKeyGen,OGetGuKeys,OGrant}.

– Initialization: (1) Parameters pp ← SetupParams(1λ); (2) Public Keys (pkKI , skKI , stKI) ←
KeyGenIssuer(pp); (3) Oracle Sets: Uh, , T ,G := ∅

– (pkGM,m, cert0, cert1) ← AO(pp, pkKI)
– The challenger checks:
• If (cert0, ·) or (cert1, ·) /∈ Uh output ⊥.
• Else, let token0, token1 be the corresponding secret states. Compute b ← {0, 1}; π ←

MemberAuth(pp,PK,m, certb, skb).
– b′ ← AO(st, π)
– The output of the experiment is 1 iff (b = b′) ∧ (m, π, ·, ·) 6∈ G ∧ |GUcor| ≤ t

Fig. 6. Exp-UAnon&MalGMΠ,A(1λ)
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t-Exp-UAnon&MalGuardΠ,A(1λ)

A has access to the oracles O = {OHonJoin,OMemberAuth,OMalJoin,OReq,ODeanon}

– Initialization: (1) Parameters pp ← SetupParams(1λ); (2) Public Keys (pkKI , skKI , stKI) ←
KeyGenIssuer(pp); (pkGM, skGM, stGM)← KeyGenManager(pp). (4) Oracle Sets: Uh, , T ,Q,D := ∅

– (pkGU ,m, cert0, cert1)← AO(pp, pkKI , pkGM)
– The challenger checks:
• If (cert0, ·) or (cert1, ·) /∈ Uh output ⊥.
• Else, let token0, token1 be the corresponding secret keys.

Compute b← {0, 1}; π ← MemberAuth(pp,PK,m, certb, skb).
– b′ ← AO(st, π)
– The output of the experiment is 1 iff: (b = b′) ∧ (m, π, ·, ·) 6∈ D

Fig. 7. t-Exp-UAnon&MalGuardΠ,A(1λ)

Definition 7 (Anonymity). A MUTAL scheme has t-Anonymity if, for all PPT adversaries A1,A2, there
exists a negligible function µ such that both the following hold:

Pr
[
Exp-UAnon&MalGMΠ,A1

(1λ) = 1
]
≤ 1

2
+ µ(λ), Pr

[
t-Exp-UAnon&MalGuardΠ,A2

(1λ) = 1
]
≤ 1

2
+ µ(λ).

5 Instantiation of MUTAL

We describe an instantiation Π-MUTAL of MUTAL in three phases: generation of keys, creation and verifi-
cation of membership proofs, and de-anonymization, presented in Figures 8, 9 and 10 respectively.

The security primitives underlying our protocols are a one-way function f , a signature scheme S, a public
key encryption scheme E, a threshold public key encryption scheme TE with decryption simulatability, a suc-
cinct simulation-extractable non-interactive zero-knowledge argument (nizk), and a (simulation-extractable)
succinct nizk [29] (snark). Definitions and properties of such primitives can be found in Appendix A.

At a high-level, the scheme works as described in Sec. 1. First, the setup parameters are generated. Using
these public parameters, the key issuer, the group manager, and the guardians create their keys. KI creates
a signing key pair, GM creates a public key encryption key pair and signing key pair, and the guardians
execute the threshold encryption scheme to create their secret keys and a common public key.

To join the platform, a user needs to receive a certificate from KI. To do so, she samples a random value
sk from the domain of a one-way function f and sends vk ← f(sk) and her “real” identity ID to KI. Upon
verification of ID, KI sends a signature σ on the value (ID‖vk) to the user. The user’s certificate is the
tuple cert := (ID, vk, σ). KI keeps a list of the users as Members. Multiple lists can be initialized if multiple
applications use the same key issuer.

To anonymously post a message m, the user proves she is authorized by creating a membership proof
(c2, proof). The first item, c2, is a valid encryption under the public key of the guardians of message m and
a ciphertext c1, which itself is an encryption under the public key of GM of a certificate cert := (ID, vk, σ).
The second item, proof, must be a proof of well formation of the ciphertext. To prove c2 is well formed, the
user produces proof, which is a succinct non-interactive zero-knowledge proof of knowledge of the secret key
associated with the key vk contained in cert.

To de-anonymize a tuple (m, proof), GM signs (m, proof) and broadcasts the signature. The guardians
first assert that the request was made by the group manager, then publish the request6 and proceed to the
threshold decryption protocol. The output of such protocol is the decryption of c2 (i.e., the value c1) along

6 Application dependent conditions can be additionally included, e.g., rules on which messages should be de-
anonymized.
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with a proof that the decryption is valid. GM can then use his secret key to decrypt c1 and retrieve the
certificate cert associated with the pair (m, proof).

To achieve public verifiability of an opening, GM provides a nizk proof of knowledge that a specific user’s
certificate cert was the output of decrypting the ciphertext c1.

Zero-Knowledge Relation. The relation R for a statement (m, c2,PK) is described below:

R =


((m, c2,PK), (r2, c1, r1, certi, ski)) s.t. PK = ((vkKIS ), (pkGME , vkGMS ), (pkGUTE ))

∧certi = (vki, IDi, σi) ∧ S.VrfyvkKI
S

(IDi‖vki, σi) = 1

∧c1 = E.EncpkGM
E

(certi; r1) ∧ vki = f(ski) ∧ c2 = TE.EncpkGU
TE

(m‖c1; r2)

 .

We also use a nizk proof for the relation VD = {(pk,m, c), (sk) s.t. m = E.Decsk(c)}, for correct decryption.

SetupParams(1λ)

• ppE ← E.Setup(1λ), ppS ← S.Setup(1λ); ppTE ← TE.Setup(1λ)
• (crsR, τR)← snarkR.Setup(1λ)
• (crsVD, τVD)← NIZKVD.Setup(1λ)
• Output pp := (ppE, ppS, ppTE, crsR, crsVD)
KeyGenIssuer(pp)
• Parse pp as (ppE, ppS, ppTE, crsR, crsVD)
• (vkKIS , skKIS )← S.KeyGen(ppS).
• Initialize an empty list Members
• Output (vkKIS , skKIS ,Members)
KeyGenManager(pp)
• Parse pp as (ppE, ppS, ppTE, crsR, crsVD)
• (pkGME , skGME )← E.KeyGen(ppE);

(vkGMS , skGMS )← S.KeyGen(ppS)
• Initialize an empty list Members
• Set pkGM := (pkGME , vkGMS ); skGM := (skGME , skGMS ); stGM = Members
• Output (skGM, pkGM, stGM)
KeyGenGu 〈C`(·)〉Cl∈GU

(pp)
• Parse pp as (ppE, ppS, ppTE, crsR, crsVD)
• Parties execute(

pkTE,
(
sklTE

)
C`∈GU

)
← TE.KeyGen

〈
C`(·)

〉
C`∈GU

(ppTE)

• pkGU ← pkTE and skGUl ← sklTE

JoinUser(〈Ui(IDi),KI(skKI , stKI),GM(skGM, stGM)〉(pp,PK)
• Parse pp as (ppE, ppS, ppTE, crsR, crsVD) and PK as ((vkKIS ), (pkGME , vkGMS ), (pkGUTE ))
• Ui: Samples ski ← SK and sets vki := f(ski)
• Ui → KI: IDi, vki
• KI: if Valid(IDi) = 1 ∧ (IDi, ·, ·) /∈ Members : σi ← S.SignskKI

S
(IDi‖vki). Else: Output ⊥ and halt.

• KI → Ui: σi
• Ui: If S.VrfyvkKI

S
(IDi‖vki, σi) = 1: certi := (IDi, vki, σi). Else: Output ⊥ and halt.

• KI: Members := Members ∪ certi (Send to GM)
• Ui: Output (certi, ski)
• KI: Output certi

Fig. 8. Protocol Π-MUTAL: Parameter setup and Key Generation Protocols and Algorithms.
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MemberAuth(pp,PK,m, certi, ski)
• Parse pp as (ppE, ppS, ppTE, crsR, crsVD)
• Parse PK as ((vkKIS ), (pkGME , vkGMS ), (pkGUTE ))
• c1 ← E.EncpkGM

E
(certi; r1); c2 ← TE.EncpkGU

TE
(m||c1; r2)

• proof ← snarkR.Prove(crs, (m, c2,PK), (r2, c1, r1, certi, ski))
• Output π := (c2, proof)
AuthVrfy(pp,PK,m, π)

• Parse pp as (ppE, ppS, ppTE, crsR, crsVD)
• Parse PK as ((vkKIS ), (pkGME , vkGMS ), (pkGUTE ))
• Parse π = (c2, proof)
• Output b← snarkR.Vrfy(crs, (m, c2,PK), proof)

Fig. 9. Protocol Π-MUTAL: Anonymous Membership Proof Generation and Verification Algorithms

ReqDeanon(pp,PK,m, π, skGM)
• Parse pp as (ppE, ppS, ppTE, crsR, crsVD)
• Parse skGM as (skGME , skGMS )
• Output req← S.SignskGM

S
(m‖π)

JudgeReq(pp,PK,m, π, req)
• Parse pp as (ppE, ppS, ppTE, crsR, crsVD)
• Parse PK as ((vkKIS ), (pkGME , vkGMS ), (pkGUTE ))
• Output b← S.VrfyvkGM

S
(m‖π, req)

GrantDeanon
〈
C1(skGU1 ), . . . ,Cn(skGUn )

〉
(pp,PK, req,m, π)

Upon receiving request (req,m, π) each party Cl in GU proceeds as follow:
• Parse pp as (ppE, ppS, ppTE, crsR, crsVD)
• Parse PK as ((vkKIS ), (pkGME , vkGMS ), (pkGUTE ))
• If JudgeReq(pp,PK,m, π, req) = 0 ∨ AuthVrfy(pp,PK,m, π) = 0 it aborts.
• Run protocol (proofm,m‖c1) ← TE.ProveValidDec

〈
C`(sk

`
TE)
〉n
`=1

(c2) and output access := (proofm,m‖c1)

Deanon(pp,PK,m, π, access, skGM).
• Parse pp as (ppE, ppS, ppTE, crsR, crsVD)
• Parse PK as ((vkKIS ), (pkGME , vkGMS ), (pkGUTE ))
• Parse access as (proofm,m‖c1) If TE.ValidDec(m‖c1, c2, proofm) = 0 output ⊥
• Parse skGM = (skGME , skGMS )
• certID ← E.DecskGM

E
(c1)

• Parse certID = (ID, vk, σ)
• If S.VrfyvkKI

S
(ID‖vk, σ) = 0, output ⊥

• proofID ← NIZKVD.Prove (crsVD, (pk
GM
E , c1, certID),skGME )

• Output (certID, proofID)
Judge(pp,PK,m, π, access, certID, proofID)
• Parse pp as (ppE, ppS, ppTE, crsR, crsVD)
• Parse PK as ((vkKIS ), (pkGME , vkGMS ), (pkGUTE ))
• Parse access as (proofm,m‖c1)
• Parse certID = (ID, vk, σ)
• If TE.ValidDec(m||c1, c2, proofm) = 0 or

NIZKVD.Vrfy(crsVD, (pk
GM
E , c1, certID), proofID) = 0 output 0

• Output b← S.VrfyvkKI
S

(ID‖vk, σ)

Fig. 10. Protocol Π-MUTAL: De-anonymization Algorithms.
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5.1 Efficiency

We discuss the costs of Π-MUTAL when instantiated with concrete primitives. We use ElGamal for the IND-
CPA encryption scheme, Threshold ElGamal [33] with a verifiable secret sharing scheme for key generation
(e.g., [34]), the Chaum-Pedersen [35] protocol for verifiable decryption, succinct non-interactive argument of
Groth-Maller [29] for relation R, ECDSA digital signature [36] for the signature scheme, and SHA-256 [37]
for the one-way function on a domain defined by the security parameter. We also use SHA-256 to instantiate
the random oracle for the non-interactive version of the Chaum-Pedersen protocol.

The cost of user authentication is dominated by the cost of computing a SNARK proof. Generating the
SNARK proof depends on the complexity of the verification circuit for the underlying relation R.

The work of the guardians is dominated by setting up and executing threshold ElGamal. Threshold
ElGamal uses a verifiable secret sharing scheme, so each party must non-interactively send a constant number
of messages to every other party (thus in total O(n2) messages are sent). Each message is O(λ) – constant
in the size of the share. The cost of producing/processing these messages is dominated by O(n) group
operations per party. To decrypt a message, each guardian broadcasts their decryption share along with
a nizk proof that their decryption is consistent with their secret share (a Chaum-Pedersen proof). The
guardians must verify the zk proofs from the others and get at least t + 1 valid proofs. Each verification
requires a SHA-256 computation and a constant number of group operations. Now, given at least t + 1
decryption shares, the guardians can decrypt the message by doing O(t) group operations. Thus, verifying
the output of the guardians requires O(t) SHA-256 computations and O(t) group operations overall. Since
the de-anonymization activities are supposed to be sporadic and are done off-line, the communication and
computational cost incurred in this operation is not a bottleneck for deployment.

Finally, the complexity of the judge procedures only requires verification of the correctness of the two
layers of encryption. This boils down to the verification of t + 2 Chaum-Pedersen proofs and O(t) group
operations. for the inner, it just needs to verify one Chaum-Pedersen proof. In summary, the only online
operation done by the user when computing a membership proof is a snark computation. All guardians’
operations can be performed off-line, and hence are not a bottleneck for the system.

Communication Time complexity
complexity/size complexity

KI/GM generation - Oλ(1)
Join User Oλ(1) Oλ(1)
GU generation Oλ(n) per party Oλ(n) per party
Proof generation Oλ(1) Oλ(|C| log |C|)
Proof verification - Oλ(1)
Request Oλ(1) Oλ(1)
Grant Oλ(1) per party Oλ(t)
De-anonymization Oλ(1) Oλ(t)
Judge - Oλ(t)

Table 11. Costs for Π-MUTAL instantiation. λ denotes the security parameter, n the size of the guardians committee,
t the desired corruption threshold, and |C| the number of multiplication gates of the circuit for verifying R. We denote
with Oλ(·) asymptotic terms which hide a multiplicative, linear factor λ.

5.2 Security

In this sections we present the theorems that capture the security property of the construction and give some
intuition for the proofs. The full proofs can be found in App. B.
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Theorem 1. Given that the signature scheme S satisfies unforgeability, snarkR has zero-knowledge and
simulation-extractability and f is a one-way function, the Mutual Accountability Protocol Π-MUTAL satisfies
Unforgeability (Def. 3).

Intuition: A wins Exp-Unforge if she produces (m, π) such that AuthVrfy(pp,PK,m, π) = 1 and π is not
the output of a query on OMemberAuth, without knowing any user’s secret key. Because π = (c2, proof),
A can provide a valid proof of knowledge proof of the secret sk associated to a cert = (ID, vk, σ) without
executing any JoinUser procedure. Hence, A can (i) provide a proof that verifies but was not constructed
with a valid witness (thus violating Simulation Extractability), or (ii) invert one of the vk in the pool of all
honest certificates (thus violating one-wayness of f), or (iii) forge a signature σ on a public key vk that she
picked (violating unforgeability of the Signature Scheme).

Theorem 2. Given that the signature scheme S satisfies unforgeability, snarkR has zero-knowledge, NIZKVD
and snarkR both have simulation-extractability, TE is a sound Threshold Signature Scheme and f is a one-way
function, the Mutual Accountability Protocol Π-MUTAL satisfies User Non-Frameability (Def. 4).

Intuition: The only difference from Th. 1 is that A can create malicious users and thus the winning con-
dition changes from being able to compute a pair (m, π) that passes verification, to providing a tuple
(m, π, certID, proofID) that opens to the identity ID of an honest user. Thus, if A wins User Non-Frameability,
it either wins Unforgeability or is able to (i) produce a valid proof proofID for the relation VD without a
witness (thus, breaking simulation extractability of NIZKVD), or (ii) provide two different cert, certID that
are part of a valid witness for R and VD, respectively (breaking soundness of the Threshold Scheme).

Theorem 3. Construction Π-MUTAL satisfies User Accountability (Def. 5).

Intuition: A wins if she provides a pair (m, π) that, upon going through the de-anonymization process, does
not yield to a cert belonging to any user. Intuitively A could (i) forge a signature on the key of KI, or
(ii) create a proof of Membership without holding any valid certificate violating simulation extractability of
snarkR.

Theorem 4. Assuming a secure Signature Scheme S, the Protocol Π-MUTAL satisfies Manager Non-Frameability
(Def. 6).

Intuition: A wins if she can produce a valid req = SignskGMS
(m, π) that was not outputted by OReq. Since

req is a signature, A can be reduced to an adversary breaking the unforgeability of the Signature Scheme S.

Theorem 5. Assuming a secure Encryption scheme E, a secure Threshold Encryption Scheme TE and secure
NIZKR, NIZKVD, Protocol Π-MUTAL satisfies Anonymity (Def. 7).

Intuition: In both cases of anonymity A must distinguish between membership permissions generated by
different users. For both proofs, we replace real memberships by simulated ones. Then, we can extract a
witness and do a reduction to Indistinguishability of Encryption either in the plain, or the threshold setting.

6 Instantiation based on t-out-of-n Group Signatures (Camenisch et al. [9])

Camenisch et al. [9] build a dynamic group signature where committees control both enrollments in the group
and de-anonymization, thus distributing trust. Their scheme is based on the Pointcheval-Sanders signature
scheme, which features efficient zero-knowledge proofs of knowledge of a verifying message-signature pair,
and some sigma protocols to ensure honest behavior of the parties involved. Importantly, no generic nizk is
used which makes the construction very efficient.

In this section, we introduce an adapted version of the scheme in [9] that fits our framework. Below,
we first present the tools for the Camenisch et al. construction, then we give a high-level overview of the
construction and the modifications that are needed to adapt their scheme to the MUTAL framework, and
finally, we describe the modified protocol.
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6.1 Preliminaries for Camenisch et al.

Cryptographic Assumptions. The security of this instantiation relies on the modified q-strong Diffie-Hellman
assumption [30], the symmetric discrete logarithm assumption, and the symmetric external decisional Diffie-
Hellman assumption. We give the corresponding definitions for the former two and omit the latter which
essentially states that in a pairing group, the decisional Diffie-Hellman assumption holds in both G1 and G2.

Definition 8. Let G be a type-3 pairing group generator. The q-MSDH assumption [30] holds with respect

to G if for all PPT adversaries A, all λ ∈ N the probability that A
(
gk, ga, ha, hax, (gx

`

, hx
`

)q`=0

)
where

gk = (p,G1,G2,GT , e) ← G(1λ), g ← G1, h ← G2 and a, x ← Zp, outputs a tuple (w,P, ĝ1/x+w, ĝa/P (x))
with ĝ ∈ G∗1, P ∈ Zp[X] of degree at most q and w such that the polynomials X + w and P are co-prime is
negligible in λ.

Definition 9. Let G be a type-3 pairing group generator. The SDL assumption holds with respect to G if for all
PPT adversaries A, all λ ∈ N the probability that A (gk, g, h, gx, hx) outputs x when gk = (p,G1,G2,GT , e)←
G(1λ), g ← G1, h← G2 and x← Zp is negligible in λ.

Pointcheval Sanders Signatures. Pointcheval Sanders (PS) signature [30] is an efficient signature scheme in
the bilinear group setting. The structure of PS signatures makes it easy to create a zero-knowledge proof of
knowledge (ZKPoK) of a verifying message-signature pair. The ZKPoK does not reveal information about
the message or the signature. While this can be done for any signature scheme using generic zero-knowledge
proofs, the ZKPoK of the PS scheme relies on a sigma protocol, which is far more efficient. We next present
a high-level description of the PS construction and the ZKPoK.

The PS signature scheme is used to enroll users in the system. The user communicates with the key
issuer to enroll itself in the system. Briefly, the user chooses as a private a message m and sends it to the
key issuer, who signs it. To explain this more thoroughly, we need to introduce the notation and setting of
the PS signature scheme, which uses bilinear pairings. For reference, we describe the PS scheme in Figure
13 and the reader can cross-check our text description below with the figure.

The signature scheme is constructed in a bilinear group, described by G1,G2,GT and a bilinear map
e : G1 × G2 → GT . All groups have order p and g, h are the generators of G1,G2 respectively. The user
chooses as its private key a message m and sends it to the key issuer in G2. The key issuer signs m. Using the
vector (x, y0, y1) as the signing key, the key issuer samples a random value a and computes x+my0 + ay1.
The signature is thus the tuple (a, g, gx+my0+ay1), while the public key is (X,Y0, Y1) = (hx, hy0 , hy1).

To verify the signature (a, σ1 = g, σ2 = gx+my0+ay1) has been correctly computed, the user checks first
e(σ1, XY

m
0 Y a1 ) = e(g, h)x+y0m+y1a and then computes e(σ2, h) and compares the two values. It is easy to

see that the values are equal for valid signatures, which ensures completeness.

KeyGen(gk):

– Sample x, y0, y1 ← Zq and h← G2. Compute X := hx, Y0 := hy0 , Y1 := hy1 .
– Output (sk, pk) where sk := (x, y0, y1) and vk := (X,Y0, Y1).

Sign(gk, sk,m): Sample g ← G1 and a← Zp, and output σ := (a, σ1 := g, σ2 := g(x+my0+ay1))).

Vrfy(vk,m, σ): parse σ := (a, σ1, σ2) and output 1 iff e(σ1, XY
m
0 Y a1 )

?
= e(σ2, h).

Fig. 12. Pointcheval-Sanders signature scheme.
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ZKPoK of verifying PS message-signature. The user can prove without revealing its secret key that it has
been enrolled in the group. Using a sigma protocol, the user proves that it knows exponents m, a that satisfy
the verification equation e(g,XY m0 Y a1 ) = e(σ2, h), for given values h,X, Y0, Y1, g

′, σ2. This works, but σ1, σ2
still leak information about the group elements of the signature. To avoid such information leakage, the prover
first re-randomizes the signature by computing (σ′1, σ

′
2) = (σ1

z, σ2
z) for a fresh z ∈ Zq. The re-randomized

signature is valid and only replaces g with gz. Furthermore, by the DDH assumption in G1, the new values
are pseudorandom and thus reveal no information about σ1, σ2. The user publishes these values and uses the
mentioned sigma protocol to prove that it knows a verifying message-signature pair and is thus an authorized
member of the group. Finally, the sigma protocol can be made non-interactive via the Fiat-Shamir heuristic.
The user can then turn the ZKPoK of a verifying PS message-signature pair into a signature of knowledge
(SoK) of the pair. A SoK means that a user can issue a signature on behalf of any NP statement proving
that it knows the witness associated with a statement in the language and that it has signed message m.

NIZK Protocols used in threshold-DGS. Above, we described the joining procedure and the procedure through
which a user can prove it belongs to the group, and thus give validity to its messages. As we mentioned before,
an important feature of Camenisch et al. construction is that users can be de-anonymized but that the power
to perform such a procedure is distributed among many parties, using a Threshold Encryption Scheme.

At high-level, [9] uses a modified version of the Chaum-Pedersen protocol [35] to prove that pairs of
elements in G1 and GT have the same discrete logarithm. In other words, these look like standard proofs
of knowledge for El Gamal encryption/decryption, but operations are performed under a homomorphism
in the target group. For example, consider an El Gamal ciphertext (C1, C2) = (C1,MCz1 ) under public key
Z = hz in group G2. Let the element T = e(Σ,M) be a mapping f of the plaintext M in GT such that
f : M 7→ e(Σ,M). One can prove that T is the f -mapping of the decryption by proving knowledge of z such
that Z = hz and T ′ = e(Σ,C1)z where T ′ = e(Σ,C2) · T−1.

More specifically, we are interested in the following relations regarding El Gamal:

1. Proving correct computation of an encryption (C1, C2) of a message M when a homomorphism f(M) is
given, namely, for a given Σ, f(M) = e(Σ,M)

2. Proving correct computation of a homomorphism of a decryption f(M) of a ciphertext (C1, C2) namely,
for some given Σ, f(M) = e(Σ,M).

To go into further detail, we list all the Σ-protocols used. In the following list, NIZK(·) to denotes a
non-interactive zero-knowledge protocol for a language L(·).

– NIZKPS: LPS =
{
pk | ∃(m,σ) s.t. Vrfypk(gk,m, σ) = 1

}
– NIZKDDH: LDDH = {a, b, c, d ∈ G1 | ∃w s.t. b = aw ∧ d = cw}
– NIZKT: LT = {a, b ∈ G2, c, d ∈ GT | ∃w s.t. b = aw ∧ d = cw}
– NIZKenc: LEnc =

{
Σ ∈ G1, H, Z,C1, C2 ∈ G2, T ∈ GT | ∃r s.t. C1 = Hr ∧ e(Σ,C2) · T−1 = e(Σ,Z)r

}
– NIZKDec: LDec =

{
Σ ∈ G1, H, Z,C1, C2 ∈ G2, T ∈ GT | ∃z s.t. Z = Hz ∧ e(Σ,C2) · T−1 = e(Σ,C1)z

}
Note the last two proofs are simple instantiations of NIZKT, specifically,

– For NIZKEnc we can set a = H, b = C1, c = e(Σ,Z), d = e(Σ,C2)T−1 and use NIZKT.
– For NIZKDec we can set a = H, b = C1, c = e(Σ,C1), d = e(Σ,C2)T−1 and use NIZKT.

Now, one can prove knowledge of field elements m, a such that Tmm T
a
a = T where Tm = e(σ1, Y0), Ta =

e(σ1, Y1) and T = e(σ2, h)e(σ1, X)−1.

6.2 Overview of Camenisch et al. Construction

We next present a final overview of the construction due to Camenisch et al. [9], which we refer to as DGS. As
mentioned before, [9] focuses on solving the trust issue that arises in group signature constructions, namely,
the power of the party who enrolls users in a group and the one the entity that can de-anonymize users has.
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For both cases, [9] distribute these roles by using threshold cryptography techniques and solve both issues
simultaneously: their scheme has two different committees – one for each task – and a number of parties in
each can be corrupted without compromising the security of the scheme.

We briefly discuss how the schemes presented above are used in the algorithms for enrolling users in
the group, signing a message (which corresponds to generating a membership authorization in our general
setting), and de-anonymization.

To join the group, a user U generates its secret key sk and asks the key issuer7 to blindly signing it, and
the latter generates a PS signature (a, σ1, σ2) on sk that U sampled.

To generate a proof of membership, U creates a signature of knowledge (SoK) of a valid message/PS
signature pair under the key issuer’s verification key, as explained above. The SoK guarantees no information
is revealed about the message/PS signature and therefore about the user secret key. Furthermore, only group
members can create proofs of membership: this follows by the fact that signing a message involves issuing
a signature of knowledge on this message which in turn implies knowing a verifying PS message-signature
pair issued by the key issuer.

In the following, we explain how the de-anonymization procedure for a message m works, namely the
ability of a designated party to identify the signer of a specific message. Note that the designated party,
in this case, is a committee. The user secret-shares the value Y sk

0 with the committee, where Y0 = hy0 is
part of the PS signature public key as described in the previous section. The de-anonymization procedure

requires the committee, to recover Y
ski
0 for each user Ui in the system and perform the test of the verification

equation with m to see which specific user signed it. If the openers compute Y
ski
0 for every user (as required to

do de-anonymization), say to de-anonymize one specific malicious message, they can individually use these
values to de-anonymize every message. This is prevented by requiring that the committee never recovers

Y
ski
0 . They instead compute the values e(σ′1, Y

ski
0 ). Using these values, they can still do the check against a

signature (a, σ′1, σ
′
2). However, these values are useless for other messages since they are “tied” to the value

σ′1. Verifiable secret sharing techniques and sigma protocols are used to perform the above actions verifiably,
both from the side of the users as well as the openers.

On the efficiency of the construction. The SoK based on Pointcheval-Sander’s signature scheme uses a sigma
protocol as proof of knowledge and, because sigma protocols are efficient, the resulting membership proofs
in this construction are small and signing requires only lightweight computation from users. In contrast,
opening signatures is expensive: each opener needs to do work linear in the size of the group itself. However,
[9] assumes that de-anonymization is far rarer than signing, so this trade-off is acceptable. Furthermore, the
latter task can afford to be performed using stronger hardware, while for many real-world applications one
would want proving membership to be lightweight and efficient.

Modifications for MUTAL. The main goal of our MUTAL framework is to hold the manager accountable, and
thus it is crucial to separate the tasks of de-anonymizing and granting for de-anonymization. The construction
of Camenisch et al. can be easily modified to fit this framework by using a more sophisticated access structure
-namely, a policy for which a subset of parties can reconstruct a shared secret- for secret sharing the value
Y sk
0 for each user.

Specifically, we require that a shared secret can be reconstructed if at least t out of n parties in the
committee (guardians) and a special party (group manager) collaborate, and any other subset of parties
learns no information about it. This is achieved as follows: first, each user U samples, after sampling its
secret key sk, a uniform element sk1 and sets sk2 = sk− sk1, then gives sk2 to the group manager and it uses
a standard (t, n)-secret sharing scheme to share sk1 between the guardians (as done in [9]).

Now, upon a valid de-anonymization request, for each user Ui the guardians reconstruct the second part
of the secret key ski,2 by collectively computing e(σ′1, Y

ski,2) as in the Camenisch et al. case, and they send

these values as the “authorization” to the manager. Then the manager can compute on its own e(σ′1, Y
ski) by

7 While in [9] it is possible to distribute the role of the key issuer, this is out of the scope of our work, so we will
only assume a single key issuer. However, our modified construction can be adapted straightforwardly for such a
feature.
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using its share Y ski,1 and perform the final de-anonymization by checking for which value the PS signature
associated with the message verifies.

Intuitively, neither the guardians nor the manager alone can reconstruct e(σ′1, Y
sk
0 ) and so de-anonymization

only happens when an appropriate subset of guardians and the group managercollaborate as required by
MUTAL. Also, because group manager is the only party that reconstructs the above value, it is the only party
that learns the identity of an issuer of a message. Finally, to ensure manager accountability, the guardians
only grant de-anonymization to the group manager if the latter first signs a request; this request proves that
the group manager indeed intended to de-anonymize some specific message.

For efficiency, from the user’s perspective (enrolling, signing, and verifying openings) nothing changes
compared to the protocol by Camenisch et al. The situation is like de-anonymization with one change: while
in the original DGS, the openers could stop “brute-forcing” users when a signer is identified, in the modified
version the guardians never learn the signer and so they always need to brute force all the users.

The full description of the scheme is presented in Fig. 13,14,15,16,17.

Setup(1λ, t, n)

– gk := (q,G1,G2,GT , g, h, e)← G(1λ), pp := (gk, n, t)

KeyGenIssuer(pp): KI generates a key pair for PS signature scheme in G2.

– Sample x, y0, y1 ← Zq. Compute X := hx, Y0 := hy0 , Y1 := hy1 .
– Output (skKI , pkKI) where skKI = (x, y0, y1) and pkKI = (X,Y0, Y1).

KeyGenManager(pp) : GM generates an El-Gamal key pair on G2.

– Sample z ← Zq. Compute Z := hz.
– Output (skGM, pkGM) = (z, Z)

KeyGenGu 〈C`(·)〉C`∈GU
(pp): Each guardian C` generates an El-Gamal key pair on G2.

– Sample z` ← Zq. Compute Z` := hz` .
– Output (skC` , pkC`) = (z`, Z`)

Fig. 13. Parameter setup and Key Generation Protocols and Algorithms. We assume that all parties have as well a
signature key pair for authenticated communication, which we omit in the description of the protocol.

6.3 Security

Theorem 6. In the random oracle model, DGS-MUTAL achieves Unforgeability (Def. 3) under nU -MSDH
and the SDL assumption, where nU is an upper bound on the number of users.

Intuition: A wins Exp-Unforge if it can provide a pair (m, π) such that AuthVrfy(pp,PK,m, π) = 1 and π is
not the output of a query on OMemberAuth. Thus, A either (i) creates a certificate on its own, which means
it forges a PS signature, or (ii) manages to create a valid signature of knowledge, which means it can break
knowledge soundness of NIZKPS or learn sk of one honest user, which is encoded as a discrete logarithm.

Theorem 7. In the random oracle model, construction DGS-MUTAL achieves User Non-Frameability (Def. 4)
under the SDL assumption.

Intuition: If A wins Exp-UserNonFrame, managing to “blame” an honest user for a message/signature pair,
means that it either wins unforgeability or fakes the decryption of the share of the user, namely, the adversary
breaks soundness of NIZKDec.
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JoinUser〈Ui(ID),KI(skKIstKI),GM(skGM, stGM)〉(pp,PK)
KI: Sample and send a← Zp, ĝ ← G1.
Ui:

– Parse the key issuer’s key pkKI as (X,Y0, Y1)
– Sample secret key shares sk1, sk2 ← Z∗q . Set sk = sk1 + sk2.
– Set ĝsk1 := ĝsk1 ; gsk2 := gsk2 ; ĝsk2 := ĝsk2 .
– Compute πDDH,1 ← NIZKddh.Prove((g, gsk1 , ĝ, ĝsk1), sk1); πDDH,2 ← NIZKddh.Prove((g, gsk2 , ĝ, ĝsk2), sk2)

– Share Y
sk1
0 to the guardians in a verifiable manner as follows:

• Sample p1, . . . , pt ← Zq. Let P (X) = sk1 +
∑t
i=1 piX

i.
• For i ∈ {1, . . . , t} compute a commitment to the coefficients of P as Pi := ĝpi .

• For each C` ∈ GU , compute encrypted shares C` := (C`,1, C`,2) := (hr, Z
r`
` Y

P (`)
0 ), value T` =

e(ĝsk1 ·
∏t
i=1 P

`i

i , Y0), a and proof πenc,` ← NIZKenc.Prove((ĝ, h, Z`, C`,1, C`,2, T`), r)).

– Verifiably secret share the value Y
sk2
0 to the manager as follows:

• Compute encrypted share for the group manager C := (C1, C2) := (hr, ZrY
sk2
0 ) and value T =

e(ĝsk2 , Y0).
• Compute proof πenc ← NIZKenc.Prove(ĝ, H, Z,C1, C2, T ), r)).

– Output
(
ĝsk1 , gsk2 , ĝsk2 , πDDH,1, πDDH,2, {P`, C`, πenc,`}C`∈GU

C, πenc

)
.

KI:

– For i ∈ {1, . . . , t} compute T = e(ĝsk1 ·
∏t
i=1 P

`i

i , Y0). If NIZKenc.Vrfy((ĝ, H, Z,C1, C2, T ), πenc,`) = 0,
abort.

– If NIZKenc.Vrfy(ĝ, H, Z,C1, C2, T ), πenc)) = 0, abort.
– If NIZKddh.Vrfy((g, gsk1 , ĝ, ĝsk1), πddh,1) = 0 or NIZKddh.Vrfy((g, gsk2 , ĝ, ĝsk2), πddh,1) = 0, abort.
– Blindly sign sk by computing σ2 = ĝx+y1a(ĝsk1 ĝsk2)y0

– Send to all parties the user certificate cert :=
(

ID, a, ĝ, {C`}C`∈GU
, C
)

and σ2 to Ui.

Ui: Set σ1 := ĝ and σ =: (a, σ1, σ2) and output ski := (sk, σ).

a Product of P `
i

is just a polynomial evaluation of p(`) in the exponent

Fig. 14. Joining Procedure.

MemberAuth(pp,PK,m, ski =: (sk, σ))

– From PK parse pkKI as the PS signature scheme public key.
– Compute π ← SoKPS.Sign(pkKI ,m, (sk, σ)). Note that π = (σ′1, σ

′
2, πPS) where (σ′1, σ

′
2) is a re-

randomization of the signature given by KI and πPS a Sigma protocol proof and output π.

AuthVrfy(pp,PK,m, π) :

– From PK parse pkKI as the PS signature scheme public key and output 1 iff SoKPS.Vrfy(pkKI ,m, π) = 1.

Fig. 15. Anonymous Membership Proof Generation and Verification Algorithms. SoKL the is the signature of knowl-
edge derived from a Sigma protocol for a language L.
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ReqDeanon(pp,PK,m, π, skGM):

– Output req← S.SignskGM
S

(m‖π).

JudgeReq(pp,PK,m, π, req)

– Output b← S.VrfyvkGM
S

(m‖π, req)

Fig. 16. De-anonymization Request Algorithms.

GrantDeanon
〈
C1(skGU1 ), . . . ,Cn(skGUn )

〉
(pp,PK, req,m, π). Each C` ∈ GU proceeds as follows:

– If JudgeReq(pp,PK,m, π, req) = 0, abort.
– Parse π := (σ′1, σ

′
2, πPS).

– Let nU be the number of users at the time. For each i ∈ [nU ] in some fixed (e.g., lexicographic w.r.t. ID)
order
• Let certi :=

(
IDi, ai, ĝi, {Ci,` = (Ci,`,1, Ci,`,2)}C`∈GU

, Ci = (Ci,1, Ci,2)
)

.

• Compute Bi,` = e(σ′1, Ci,`,2C
−z`
i,`,1).

• Compute πi,` = NIZKDec.Prove((σ
′
1, h, Z`, Ci,`,1, Ci,`,2, Bi,`), z`) where (Ci,`,1, Ci,`,2) is the share of

Y
sk1
0 from user i to C`

– Output access` := {(Bi,`, πi,`)}nU
i=1.

Deanon(Ci,1, Ci,2), pp,PK,m, π, access, skGM).

– Parse π := (σ′1, σ
′
2, πPS) and access` := {(Bi,`, πi,`)}nU

i=1 for all `.
– For i ∈ [nU ]:

• Let certi :=
(

IDi, ai, ĝi, {Ci,` = (Ci,`,1, Ci,`,2)}C`∈GU
, Ci = (Ci,1, Ci,2)

)
.

• Let Bi,j1 , . . . , Bi,jt+1 be t+ 1 values such that

NIZKDec.Vrfy((σ′1, H, Zjk , Ci,jk,1, Ci,jk,2, Bi,jk ), πi,jk ) = 1.

and compute λ1, . . . , λt+1 the Lagrange coefficients corresponding to the points (jk, Bi,jk ) for 1 ≤
k ≤ t+ 1

• Compute Bi = e(σ′1, Ci,2C
−z
i,1 ) and πi = NIZKDec.Prove((σ

′
1, H, Z,Ci, Ci, Bi), z).

• If e(σ′2, h) = e(σ′1, XY
ai
1 )Bi

∏t+1
j=k B

λj

i,jk
,

∗ set proofID =
(
{Bi,jk , πi,jk}

t+1
k=1 , Bi, πi

)
∗ output (IDi, proofID).

• Else, continue to next i.
– If the check does not hold ∀i ∈ nU then output ⊥.

Judge(pp,PK,m, π, access, certID, proofID)

– Parse certi :=
(
IDi, ai, ĝi, {Ci,`}C∈GU , Ci

)
, π := (σ′1, σ

′
2, πPS), and proofID =

(
{Bi,jk , πi,jk}

t+1
k=1 , Bi, πi

)
.

– Output 1 iff
1. For all 1 ≤ k ≤ t+ 1, NIZKDec.Vrfy((σ′1, H, Zjk , Ci,jk,1, Ci,jk,2, Bi,jk ), πi,jk ) = 1.
2. NIZKDec.Vrfy((σ′1, H, Z,Ci,1, Ci,2, Bi), πi) = 1.

Fig. 17. De-anonymization Algorithms.
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Theorem 8. In the random oracle model, construction DGS-MUTAL achieves User Accountability (Def.5)
under the qH-MSDH, where qH is the number of queries to H made by the adversary.

Intuition: An adversary A wins if she provides a pair (m, π) that, upon going through the de-anonymization
process, does not open to an ID belonging to any user. This means A should be able to (i) forge PS message
signature pair on the key of KI, or (ii) create a proof of membership without holding any valid certificate,
forging a signature of knowledge, i.e., breaking knowledge soundness of NIZKPS.

Theorem 9. Construction DGS-MUTAL achieves Manager Non-Frameability (Def. 6).

Intuition: The proof goes exactly as the one for the general instantiation (Section 5) and thus we omit it.

Theorem 10. In the random oracle model, construction DGS-MUTAL achieves User Anonymity (Def. 7)
under the DDH assumption in G1 and G2.

Intuition: In each of the two cases of anonymity the adversary does not have enough shares to de-anonymize.
Further, the shares are encrypted, so it is infeasible for the adversary to use them under indistinguishability of
El Gamal in G2. The proof itself has a rerandomized signature σ′1, σ

′
2 and a proof for NIZKPS. NIZKPS satisfies

zero knowledge, and therefore reveals no information. Similarly, the re-randomized part is pseudorandom,
so neither does it reveal any information. More specifically, since σ1, σ2, σ

′
1 = σz1 , σ

′
2 = σz1 is a DDH tuple,

and no PPT distinguisher can distinguish a DDH tuple under the DDH assumption in G1.

7 Evolving Committees

The security properties introduced in this work require the participation of the committee of guardians.
However, in real life, a committee of parties may only be available short-term and may also become corrupted
over time. One solution is to allow guardians to change via the dynamic proactive secret sharing scheme
(DPSS) by Goyal et al. [11] to our setting. DPSS allows a set of n parties, who hold n shares of a secret, to
hand off the secret to another set of n parties. The n shares of the secret in our setting are those corresponding
to the secret key associated with pkGUTE . The public and secret keys of the guardians remain the same, but
the shares of the secret key are updated. Users always sign their messages with the same public key and the
changing of the committee does not affect them.

The DPSS protocol [11] consists of setup, hand-off, and reconstruction phases. In our instantiations
(Sections 5, 6) the three phases for DPSS are as follows: (1) In the setup, an initial committee produces
ElGamal distributed keys. We denote the shared secret s and the public encryption key gs; (2) in the hand-
off the old committee transfers the secret to the new committee, and we present this phase in Fig. ??; (3)
rather than reconstruction, in our setting, the new committee work together to grant de-anonymizations.
The current set of guardians removes the outer layer of decryption using the shared secret key s in a standard
execution of verifiable decryption of ElGamal.

The system tolerates adaptive corruptions as soon as the adversary is not able to corrupt t + 1 parties
in the lifetime of one committee. If this is the case, namely, the adversary is capable of corrupting at most
t parties from each committee, it learns nothing about the secret (secrecy), nor can prevent parties from
reconstructing the secret (robustness).

The hand-off. We denote by C
(i)
` member ` of committee i, where each member holds a secret of a value

s ∈ Zp. Concretely, the secret shares are created by Shamir secret sharing: the share s` of party ` is p(`),
where p(X) is a random polynomial of degree t s.t. p(0) = s. We denote [s]t the secret shares of s and [gs]t
the same values but in the exponent of a group generator g used for the ElGamal cryptosystem. Essentially,
including these values is the only modification we do in [11] to account for the case of threshold decryption.

Below, we shortly describe the hand-off phase of [11], i.e., the procedure through which committee i

and committee i+ 1 exchange and update their secret keys; parties of the old committee GU (i) hold a secret
sharing of [s]t which they want to “hand-off” to parties in GU (i+1). The procedure consists of two sub-phases:
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– In the preparation phase, the new committee prepares two independent degree-t sharings of a random
value, denoted by [r]t and [r̃]t respectively, such that r = r̃, The old committee holds [r]t and the new
committee [r̃]t.

– In the refresh phase, committee i computes the sharing [s− r]t = [s]t − [r]t and reconstructs the secret
s− r. Members of committee i+ 1 then calculate the secret sharing of [s̃]t = [r̃]t + (s− r), which is an
independent sharing of s, namely [s̃]t.

After the hand-off phase is completed, each member of the old committee C(i) erases the old shares [s]d to
avoid future corruptions. To ensure that the shares exchanged between parties are well-formed and to allow
honest parties to identify misbehaving ones (meaning they cannot create malformed shares), the protocol
relies on a polynomial commitment scheme. Finally, to achieve verifiable decryption the protocol makes use
of a nizk argument of knowledge. For simplicity, we omit the above descriptions in the presentation of the
protocol. Our protocol closely follows the one introduced in [11] and we present it in Fig. ??.

7.1 Evolving Committees in the instantiation of Section 6.

When instantiating our framework with the signature scheme by Camenisch et al., we have that each user
generates a secret key and distributes its shares with the guardians (and manager). Namely, the guardians
store not one but multiple secret shares, one for each user in the system. In this case, the protocol of Goyal
et al. can easily be adapted, as presented in [11]. Basically, parties in GU (i+1) create two independent secrets
(ri, r̃i) for each user and batch them and the shares ([ri]t, [r̃i]t) through a random linear combination that

is also used by the parties of GU (i) with {[si]t} to reconstruct {[si − ri]t}. As a result, the amortized cost of
communication per pair is O(n) elements.

Security Overview. The hand-off phase is particularly challenging since an adversary can corrupt t parties
in the old committee and t parties in the new committee. However, after the hand-off phase, guardians from
the old committee have the instruction to delete their shares, and thus, while corrupting t + 1 guardians
from any previous committee is enough for the adversary to recover the secret key, it can happen with only
a small probability.

For security in the semi-honest case, parties distribute consistent shares. An adversary controls t parties
of the old committee and t parties of the new committee. If the two coupled sharings are random, then an
adversary having t shares of each sees only the share s masked with a random value r as s − r, and thus
cannot learn anything about s.

In [11], the approach used is to have each member of the new committee create an individual ran-
dom coupled share [rj ]t, [r̃j ]t and then all parties collectively compute the coupled sharing ([r]t, [r̃]t) =
([
∑
rj ]t, [

∑
rj ]t). Since at least one party is honest, say party `, the value r` is uniformly distributed, and

thus, so is r. To achieve security in the malicious case, the authors in [11] use the polynomial commitment
scheme of Kate et. al. [38] to ensure that the values shared by each party are consistent, namely, that party
` receives the share p(`) for a committed polynomial p of degree t. They also take advantage of the linear-
homomorphic properties of [38] to improve efficiency and create efficient accuse-response protocols to identify
misbehaving parties. We refer the reader to [11, Sec. 4, 5] for the details.
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5. Benôıt Libert, Fabrice Mouhartem, and Khoa Nguyen. A lattice-based group signature scheme with message-
dependent opening. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS 16, volume
9696 of LNCS, pages 137–155, Guildford, UK, June 19–22, 2016. Springer, Heidelberg, Germany.
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A Cryptographic Primitives

A.1 Threshold Encryption Scheme

A (t, n)-Threshold Encryption Scheme TE consists on a tuple of algorithms and protocols (TE.Setup,TE.KeyGen,
TE.Enc,TE.ProveValidDec,TE.ValidDec) executed by n parties:

– ppTE ← TE.Setup(n, t, 1λ): On input the number of parties n, a threshold t, and the security parameter
1λ, it outputs parameters for the scheme ppTE.

– (pkTE, (sk
i
TE)ni=1) ← TE.KeyGen〈Ui(·)〉ni=1(ppTE): An n-party protocol with public input the parameters

ppTE and no secret input. The common output is pkTE and party i receives a secret output skiTE.
– c← TE.EncpkTE

(m). On input the public key pkTE and a message m, it outputs a ciphertext c.

– (proofm,m)← TE.ProveValidDec〈Ui(skiTE)〉ni=1(c): on input a ciphertext c, the n-party protocol produces
a decryption and a publicly verifiable proof that the decryption was done correctly

– b← TE.ValidDecpkTE
(m, c, proofm): On input a ciphertext c, a message m, and a proof proofm, it outputs

a bit b indicating whether m is the correct decryption of c.

We require a threshold encryption scheme to satisfy correctness, computational soundness, indistinguisha-
bility of encryptions, and decryption simulatability. We omit correctness which states that t+ 1 honest can
always decrypt.
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Soundness states that it should be infeasible to produce fake proofs of correct decryption.

SoundnessTE,A(1λ)

– ppTE ← TE.Setup(n, t, 1λ)
– (m, pkTE)← A(ppTE)
– c← TE.EncpkTE

(m)
– (m′, proofm)← A(stA)
– Output 1 iff TE.ValidDecpkTE

(m′, c, proofm′) = 1 and m 6= m′.

Fig. 18. SoundnessTE,A

Definition 10. [Computational Soundness] For all PPT A, all λ, n, t ∈ N, with t ≤ n,

Pr
[
SoundnessTE,A(1λ) = 1

]
≤ negl(λ).

Indistinguishability of encryptions captures that no adversary can distinguish ciphertexts even when he
is able to control up to t parties, selected adaptively during key generation and decryption.

(t, n)-IndTE,A(1λ)

– ppTE ← TE.Setup (n,t,1λ)
– A controls a set M of parties chosen adaptively.
– (pkTE, (sk

i
TE)ni=1)← TE.KeyGen(A)〈Ui(·)〉i6∈M (ppTE).

– (m0,m1)← A(ppTE, pkTE, st
A).

– cb ← TE.EncpkTE
(mb) for uniform b← {0, 1}.

– b′ ← A(cb, st
A).

– Output 1 iff |M | ≤ t and b = b′.

Fig. 19. (t, n)-IndTE,A

Definition 11. [(t, n)-Indistinguishability of Encryption] For all PPT adversaries A,

Pr
[
(t, n)-IndTE,A(1λ) = 1

]
≤ 1

2
+ negl(λ).

Finally, decryption simulatability means that given a message and its encryption, it is possible to simulate
the proof that the decryption was properly computed.

Definition 12 (t-Decryption Simulatability). A Threshold Encryption Scheme has t-Decryption Simu-
latability if there exists a PPT algorithm S, such that for all PPT A, messages m, randomnesses r, and sets
S1 ⊆ S2 ⊆ [n] with |S2| ≤ t, the following distributions are perfectly indistinguishable:

ppTE ← TE.Setup(n, t, 1λ);

(proofm,m)← TE.ProveValidDec
(
pkTE, stA,

(
skiTE

)
Ui∈[n]\S1

)
← TE.KeyGen(A(·))〈Ui(·)〉Ui∈[n]\S1

(ppTE)

(A(stA))〈Ui(skiTE)〉Ui∈[n]\S2
(c) c← TE.EncpkTE

(m; r)




ppTE ← TE.Setup(n, t, 1λ);

(proofsim,m)← TE.ProveValidDec
(
pkTE, stA,

(
skiTE

)
Ui∈[n]\S1

)
← TE.KeyGen(A(·))〈Ui(·)〉Ui∈[n]\S1

(ppTE)

(A(stA),S(m, r))(c) c← TE.EncpkTE
(m; r)


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A.2 Non-Interactive Zero-Knowledge Argument

Let R be an NP relation, with pairs (u,w) ∈ R where u is known as the statement and w is known as the
witness.

Definition 13 (Non-Interactive Zero-Knowledge). A Non-Interactive Zero-Knowledge Argument of
Knowledge NIZKR for R, is a tuple of algorithms (NIZKR.Setup, NIZKR.Prove, NIZKR.Vrfy, NIZKR.Sim)
such that:

– (crs, τ) ← NIZKR.Setup(λ): on input a security parameter λ, it outputs a common reference string crs
and a simulation trapdoor τ .

– proof ← NIZKR.Prove(crs, u,w): on input crs and a pair (u,w) ∈ R, it outputs a proof proof.

– b ← NIZKR.Vrfy(crs, u, proof): on input crs, a statement u and an argument proof, it returns a bit b
indicating acceptance (1) or rejection (0).

– proofsim ← NIZKR.Sim(τ, u) : on input the simulation trapdoor τ and a statement u, it returns a simulated
proof proofsim.

for which the following properties hold:

Definition 14 (Completeness). For all (u,w) ∈ R, if (σ, τ)← NIZKR.Setup(λ) and proof ← NIZKR.Prove(σ,u,w),
then NIZKR.Vrfy(σ,u,proof) = 1 with probability 1.

Definition 15 (Knowledge-Soundness). For all PPT adversaries A, there exists a PPT extractor XA
and a negligible function µ, such that,

Pr

 (crs, τ)← NIZKR.Setup(λ)
NIZKR.Vrfy(σ, u, proof) = 1 ∧ (u,w) /∈ R (u, proof)← A(crs; r),

w ← XA(crs; r)

 ≤ µ(λ)

Definition 16. (Zero-Knowledge.) For all adversaries A, there exists a negligible function µ, such that,

Pr
[
b′ = b (crs, τ)← NIZKR.Setup(λ) ∧ b← {0, 1} ∧ b′ ← AOb(crs)

]
≤ 1

2
+ µ(λ)

where

O0(u,w)←

{
⊥ (u,w) /∈ R
NIZKR.Prove(crs, u, w) otherwise

, O1(u,w)←

{
⊥ (u,w) /∈ R
NIZKR.Sim(τ, u) otherwise

.

Additionally, NIZKR can satisfy the following property:

Definition 17 (Simulation-extractability). For all PPT adversaries A, there exists a PPT extractor XA
and a negligible function µ, such that,

Pr

[
NIZKR.Vrfy(σ, u, proof) = 1 (crs, τ)← NIZKR.Setup(λ)
∧(u,w) /∈ R ∧ (u, proof) 6∈ Q (u, proof)← AO(crs; r), w ← XA(crs; r)

]
≤ µ(λ)

where O(·) is an oracle to NIZK.Sim (τ, ·) and Q is the set of all oracle query-answer pairs.

When a NIZK argument satisfies Simulation-extractability, we will call it a SNARK, as in [29], and denote
snarkR =

(
snarkR.Setup, snarkR.Prove, snarkR.Vrfy, snarkR.Sim

)
.
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B Security of the generic construction

B.1 Proof of Thm. 1

Proof. We prove unforgeability via hybrid arguments and a reduction to One Wayness.
HybA0 → HybA1 :. We denote the real unforgeability game (Def. 2), instantiated with Π-MUTAL as HybA0 .
Then HybA1 is the same as HybA0 but when simulating the OMemberAuth oracle, proof is replaced with
proofSim ← snarkR.Sim(τR, (m, c2,PK)).

Suppose A is such that Pr
[
HybA0 (1λ) = 1

]
− Pr

[
HybA1 (1λ) = 1

]
≥ p(λ), for a non-negligible function p.

Note that the only difference in the two games is how the snark’s proofs are constructed. Thus, distinguishing
between the two games, directly implies distinguishing honestly generated versus simulated proofs with non-
negligible probability, which contradicts the zero knowledge property of the snark.

HybA1 → HybA2 : HybA2 is the same as HybA1 but upon receiving forgery (m, π) from A, parse π as (c2, proof), in-
voke the snark extractor snarkR.X (crsR) and output a witness (r2, c1, r1, cert, sk). Abort if ((m, c2,PK, proof),
(r2, c1, r1, cert, sk)) /∈ R.

These games are indistinguishable conditioned on the extractor outputting a valid witness. Suppose this
is not the case and all PPT algorithms snarkR.XA fail, with non-negligible probability, to output w =
(r2, c1, r1, cert, sk) s.t. ((m, c2,PK), w) ∈ R.

We construct Bsnark, an adversary against simulation extractability ([29, Def. 2.10]) that behaves as
follows:

Reduction 1: B(crsR; r)

– Bsnark activates A on pp and vkS and proceeds as the challenger faithfully.
– When A outputs (m, c2,PK) and proof, Bsnark forwards it to its challenger.

Note that for every PPT algorithm snark.XB that can successfully produce a witness for a statement
outputted by Bsnark, it also produces a witness for the (same) statement outputted by A. Assuming there
is no such algorithm for the adversary A, Bsnark would win simulation extractability with non-negligible
probability.

HybA2 → HybA3 . HybA3 is the same as Hyb2, but the challenger additionally checks if (cert, ·) ∈ Uh.

The games are identically distributed conditioned on the checking (cert, ·) ∈ Uh not failing. Assume it
fails and consider BS, an adversary against the unforgeability of S that acts as follows:

Reduction 2:BS(vkS)

– A acts as HybA2 (1λ) challenger with vkKI := vkS. On OHonJoin queries, use the signing oracle.
– If any check fails output ⊥.
– Let (m∗, π∗) be A’s output and (r2, c1, r1, cert, sk) the extracted witness. Parse cert = (vki, IDi, σ) and

output (vki‖IDi, σ).

Conditioned on A winning, the extractor outputs a valid witness. Moreover, since we assume that
(cert, ·) 6∈ Uh, the final output of BS is a valid message-signature pair such that the signature was never
queried to the signing oracle, meaning it succeeds in forging a signature.

Hyb3 to One Wayness: Finally, let A be an adversary to HybA3 , and let q = poly(λ) the number of OHonJoin
queries.
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Reduction 3:BOWF(1λ, vk)

– Receive vk from her challenger and uniformly picks c← {1, . . . , q}.
– For all queries, BOWF answers as the challenger does, except that, in the i-th query of OHonJoin, it returns

the vk received.
– When A outputs (m∗, π∗), B parses π∗ = (c2, proof) and runs NIZK.XR(crsR).
– Let (r2, c1, r1, cert, sk) be the extracted witness. If cert corresponds to the c-th OHonJoin query, BOWF

outputs sk and ⊥ otherwise.

Assuming that A wins in HybA3 , cert corresponds to one of the q queries made to OHonJoin. Since
vk = vkc is sampled by the OWF challenger in the exact way as all the vki are sampled by BOWF, A
has no information about c. Thus, with probability 1

q , cert corresponds to the vk and f(sk) = vk and

Pr
[
HybA3 (1λ) = 1

]
≤ q · Pr

[
BOWF(1|x|, f(x)) ∈ f−1(f(x))

]
. Since q is polynomial in λ, the probability of

winning Hyb3 is negligible.
We conclude that for all PPT A, Pr

[
Exp-UnforgeΠ-MUTAL,A(1λ) = 1

]
≤ negl(λ). ut

B.2 Proof of Thm 2

Proof. HybA0 → HybA1 → HybA2 : In this case, HybA0 is the real Non-Frameability experiment (Fig. 3) instan-
tiated with Π-MUTAL, and Hyb1, Hyb2 perform the same changes as in the case of unforgeability.
HybA2 → HybA3 : HybA3 is the same as HybA2 but the challenger additionally checks if c′1 = c1, and output
1 if this condition holds. Then, the games are identical if the decryption of the outer layer c1 is equal to
the element c′1 outputted by the extractor. Conditioned on the extractor succeeding, we can construct an
adversary BTE against the Soundness of Threshold Encryption Scheme (Def. 10) as follows:

Reduction 4: BTE(ppTE)

– BTE initializes A as the challenger in HybA3 and uses the received parameters for the TE. It creates a
public key for the TE by interacting with A.

– Upon A’s forgery (m, π, access, certID, proofID), BTE parses access := (proofm,m‖c1) and outputs
(m‖c1, proofm)

Because we assume snarkR.X does not fail, we have c2 = TE.EncpkGUTE
(m‖c′1; r2). If m‖c1 6= m‖c′1, BTE

breaks soundness of TE (Def. 10), and thus we conclude that for all A, there exists a negligible function µ

such that
∣∣∣Pr
[
HybA2 (1λ) = 1

]
− Pr

[
HybA3 (1λ) = 1

]∣∣∣ ≤ µ(λ)

HybA3 → HybA4 . HybA4 . This is HybA3 with the additional check cert′ = certID; the final output is 1 if this
equality also holds. Note that HybA3 and HybA4 are identical conditioned on cert = cert′. If this is not the
case, we can construct an adversary BNIZK against simulation extractability that acts as follows:

Reduction 5: BNIZK(crsVD)

– BNIZK initializes A as the challenger in HybA4 .
– Upon A’s output (m, π, access, certID, proofID), BNIZK outputs ((pkGME , c1, certID), proofID).

Because (c′1, cert
′, r1) is part of a valid witness for R, c1 = c′1 = E.EncpkGME

(cert′; r1). If cert′ 6= certID, then

(pkGME , c1, certID) /∈ VD and there is no witness for this statement; thus, every extractor fails. We conclude
the games are indistinguishable.
Hyb4 to One Wayness: Finally, recall that, from the previous game, we have cert′ = certID and, from the real
game, the winning condition of A implies (certID, ·) ∈ Uh. Conditioned on this two facts, the reduction from
Hyb4 to One Wayness is the same as the reduction from Hyb3 to One Wayness in Theorem 1.

We conclude that, for all PPT A, Pr
[
Exp-UserNonFrameΠ-MUTAL,A(1λ) = 1

]
≤ µ(λ). ut
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B.3 Proof of Thm 3

Proof. HybA0 → HybA1 → HybA2 → HybA3 . HybA0 . is the real accountability game of Def. 4 instantiated with
Π-MUTAL; Hyb1,Hyb2,Hyb3 apply the same sequence of changes as in the proof of Thm. 2.
HybA3 → HybA4 . The latter is the same as HybA3 except it also checks: cert′ = cert and the output is 1 if and
only if this condition also holds. Note that here we simply rely on correctness of the encryption scheme: cert
is the decryption of c1 by construction and cert′ is a part of a valid witness for R so, with non-negligible
probability, it is a decryption of c1 and then cert = cert′.
Hyb4 to Unforgeability: Next, we show that an adversary A winning HybA4 , implies an adversary BS that
breaks the unforgeability of the signature scheme BS works as follows:

Reduction 1:BS(vkS)

– Initialize A by acting as HybA4 (1λ); set vkKI := vkS and use the signing oracle to simulate OHonJoin.
– A outputs a pair (m∗, π∗).
– Let (r2, c1, r1, cert

′, sk) be the extracted witness, parse cert′ = (vki, IDi, σ) and output (vki‖IDi, σ).

Assuming A wins HybA4 , the pair (vki‖IDi, σ) is a valid message-signature pair under the key vkS, as
we already have the extractor outputs a valid witness. Furthermore, we are guaranteed that the honestly
computed cert, does not belong to the set Uh∪ which implies that cert′ = cert /∈ Uh∪. Thus, (vki‖IDi, σ) was
not a query-answer pair to the signing oracle, so it constitutes a valid forgery. We conclude that, for all PPT
A, Pr

[
t-Exp-UserAccountabilityΠ-MUTAL,A(1λ) = 1

]
≤ negl(λ).

B.4 Proof of Thm. 4

Proof. Assume an adversary A against Manager Non-Frameability (Def. 6). We construct an adversary BS

against the Signature Scheme.

Reduction 1:BS(ppS, vkS)

– BS answers all oracles honestly, using its secret keys, except for OReq which it answers as follows: On
input (mi, πi), BS queries it’s signing oracle with mi‖πi and gets a signature σi. It gives reqi := σi to A
and updates the request set Q with (mi, πi, reqi).

– Upon receiving (pkGU ,m, π, req)← AO(pp, pkKI , pkGM) from A, outputs (m‖π, req) as its forgery.

AssumeA wins Manager Non-Frameability. Then: (i) JudgeReq(pp,PK,m, π, req) = 1 and (ii) (m, π, req) 6∈
Q. Noting that JudgeReq is signature verification, and that Q contains all the queries BS made to its Signing
Oracle, we conclude that BS succeeds in forging a signature, thus, for all PPTA, Pr

[
Exp-ManagerNonFrameΠ-MUTAL,A(1λ) = 1

]
≤

µ(λ). ut

B.5 Proof of Thm. 5

Proof. Case 1: Malicious group manager. For the first case, we apply the following sequence of hybrids.
HybA0 → HybA1 : HybA0 is the real Exp-UAnon&MalGM game from Fig. 6, instantiated with Π-MUTAL. HybA1
is the same except that when A sends its challenge (m, cert0, cert1), we compute the response π := (c2, proof)
by replacing proof with proofSim ← snarkR.Sim. By the Zero Knowledge property of the snark the proofs are
identically distributed and, thus, so are the two hybrid games.
HybA1 → HybA2 . HybA2 is the same as HybA1 , but when replying to OGrant(m, π, req), parse π = (c2, proof); if
(m, π, ·) /∈ T , run snarkR.X (crs). Let (r′2, c

′
1, r1, cert, sk) be the output and abort if ((m, c2,PK), (r′2, c

′
1, r1, cert, sk)) /∈

R.
We use a standard hybrid argument for proving both games are indistinguishable. Let Q be an upper

bound on the queries made by A on OGrant. For i ∈ {0, . . . , Q}, let HybA1,i be the same as HybA1 with the
following change: for the first i queries to OGrant, (i) let m, π be the query. Parse π = (c2, proof). If (m, π, ·) /∈
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T , run snarkR.X (crs). Let (r′2, c
′
1, r1, cert, sk) be the output; (ii) abort if for any witness outputted by

snarkR.X , R((m, c2,PK), (r′2, c
′
1, r1, cert, sk)) = 0. By construction, Pr

[
HybA1 (1λ) = 1

]
= Pr

[
HybA1,0(1λ) = 1

]
and Pr

[
HybA2 (1λ) = 1

]
= Pr

[
HybA1,Q(1λ) = 1

]
.

Hyb1,i−1,Hyb1,i−1 can differ only if in the i-th OGrant query, we attempt to extract a satisfying witness.
Conditioned on this step being successful, the games are identical. If this is not the case, we can break
simulation extractability as in the case of Th. 1

Thus, by simulation extractability of snarkR, HybA1,i−1 and HybA1,i are indistinguishable for all i ∈
{1, . . . , Q}. In particular, it is the case for HybA1,0 (HybA1 ) and HybA1,Q (HybA2 ).

HybA2 → HybA3 . HybA3 is the same as HybA2 with the following changes: (i) when A queries OMemberAuth on
(m, cert), we keep with the query kept in T the randomness r2 used to compute TE.EncpkGU (m‖c1; r2). (ii)
to answer to OGrant, use the decryption simulator S to output (proofm,m||c1)← TE.ProveValidDec(A(stA),
S(m‖c1, r2))(c2), where (m‖c1, r2) is either in the set T , or by the invocation of snarkR.XA.

Let Q be an upper bound on the queries made by A on OGrant. For i ∈ {0, . . . , Q}, let HybA2,i be the

same as HybA2 with the following change: for the first i queries to OGrant, (i) let m, π be the query. Parse
π = (c2, proof) and m‖c1, r2 be the corresponding decryption obtained by either computing π, or by querying
the extractor; (ii) use the decryption simulator S and output (proofm,m||c′1) ← TE.ProveValidDec(A(stA),
S(m‖c1, r2))(c2) by using (m‖c1, r2) that is either in the set T , or from the invocation of snarkR.XA. Observe

that Pr
[
HybA2 (1λ) = 1

]
= Pr

[
HybA2,0(1λ) = 1

]
and Pr

[
HybA3 (1λ) = 1

]
= Pr

[
HybA2,Q(1λ) = 1

]
.

Also, note that the only difference between HybA2,i−1 and HybA2,i is the way the proof proof is computes:

in HybA2,i−1, it is computed by executing TE.ProveValidDec with the honest users, who have as inputs the

corresponding secret keys, while in HybA2,i it is computed by executing TE.ProveValidDec with the simulator
S who only knows the decryption and the randomness used. Since these distributions are identical by
Decryption Simulatability, the games are indistinguishable. Because Q is polynomial in λ, this in particular
means that HybA2 (HybA2,0) and HybA3 (HybA2,Q) are indistinguishable.
Hyb3 to (t, n)-Indistinguishability. Finally, assuming A wins Hyb3, we create an adversary BTE that behaves
as follows:

Reduction 1:BTE

– BTE receives the parameters for the TE and activates A, participating with A to create keys for the TE.
For any requests to OGrant, BTE acts as the challenger in HybA3 .

– On A’s challenge (pkGM,m, cert0, cert1), BTE sets m0 = m‖EncpkGM
E

(cert0) and m1 = m‖EncpkGM
E

(cert1)

as its own challenge.
– Gets c = TE.EncpkTE

(mb) and gives π := (c, proof) to A, with proof computed as in Hyb3 and outputs the
same value A outputs.

We have that BTE wins the indistinguishability game iff A wins in HybA3 . So we conclude that, for all

PPT adversaries A,
∣∣∣Pr
[
HybA0 (1λ) = 1

]
− Pr

[
HybA3 (1λ) = 1

]∣∣∣ ≤ negl(λ), Pr
[
HybA3 (1λ) = 1

]
≤ 1

2 + negl(λ).

Case 2: Malicious guardians. In this case, the adversary fully controls the guardians. We proceed analo-
gously to the previous case by applying the following sequence of hybrids.
HybA0 → HybA1 → HybA2 . HybA0 is the real t-Exp-UAnon&MalGuard game from Fig. 7, instantiated with
Π-MUTAL; HybA1 and HybA2 produce the same changes as in anonymity against a Malicious group manager
so we refer the reader to the former case for the reductions.
HybA2 → HybA3 . HybA3 is the same as HybA2 but to answer to ODeanon on input (m, π, access), instead
of running cert ← E.DecskE

(c1), (1) use the value cert that is either saved in T if (m, π, cert) ∈ T , or
computed by snarkR.X , (2) run proof ← NIZKVD.Sim(τVD, (pkE, cert, c1)), (3) output (cert, proof). We can
argue exactly as in the corresponding games with the relation R of the malicious manager case that the
games are indistinguishable.
Hyb3 to Indistinguishability. Finally, we can create a reduction from Hyb3 to Indistinguishability of Encryp-
tion.
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Reduction 2:BE

– BE receives the parameters pp and a public key pkE for E. It creates the other parameters for the protocol.
– BE activates A and acts as the challenger for HybA3 .
– When A gives its challenge (pkGU ,m, cert0, cert1), then BE sets m0 = cert0 and m1 = cert1, as its own

challenge.
– It gets c = E.EncpkE

(mb) and computes c2 ← TE.EncpkGU (m‖c). It computes π as in Hyb3 (by using the
NIZK simulator). It sets π := (c2, proof) and gives π to A.

– BTE outputs the same value A outputs.

Then, BE wins the indistinguishability game iff A wins in HybA3 . We conclude that, for all PPT adversaries
A,

Pr
[
Exp-UAnon&MalGMΠ-MUTAL,A1

(1λ) = 1
]
≤ 1

2
+ negl(λ),

Pr
[
t-Exp-UAnon&MalGuardΠ-MUTAL,A2

(1λ) = 1
]
≤ 1

2
+ negl(λ).

ut

C Security of the DGS based construction

C.1 Proof of Thm. 6

Proof. To prove unforgeability we proceed by hybrids to modify the Exp-Unforge game.

Hyb0 → Hyb1 : Hyb0 is the Exp-Unforge game and Hyb1 is the same as Hyb0 with the following differences: (1)
we use simulated proofs for NIZKddh and NIZKEnc and (2) when the adversary queries OMemberAuth(m, certID)
we simulate the signature of knowledge. Both have outputs that are statistically close by the zero knowledge
property of the underling NIZKs.

Hyb1 → Hyb2 : Hyb2 is the same as Hyb1 except that, when the adversary outputs the forgery (m, π =
(σ′1, σ

′
2, πPS)), if (m, π) was not queried to OMemberAuth, we also run the extractor of NIZKPS to extract a

witness for σ′1, σ
′
2, and output ⊥ if the extraction fails. These games proceed identically unless the extraction

fails. This happens only with negligible probability by simulation extractability of NIZKPS.

Hyb2 → Hyb3 : Hyb3 is the same as Hyb2 except that if the extracted witness contains a message/signature
pair sk, π = (σ1, σ2, πPS) for which (·, sk) /∈ Uh the game outputs⊥ and aborts. Both games proceed identically
unless the extractor outputs some message/signature pair which does not correspond to an honest user’s
secret.

Assume for the sake of contradiction that the extractor outputs a message/signature pair that does not
correspond to an honest user’s secret with non-negligible probability. Then we show how to construct a a
reduction B that can break unforgeability of PS signature scheme.

B takes input parameters gk and a PS signature public key (X,Y0, Y1), it uses A and proceeds as in Hyb3
except that when A makes a query for adding a user with ID, it samples a secret sk and queries its signing
oracle to get the signature (a, σ1, σ2) and programsH to output (a, σ1)← H(ID). Finally, when the adversary
A outputs the forgery (m, π), B runs the extractor and gets a message/signature pair sk, (a, σ1, σ2) which it
outputs as its forgery. By assumption, the signing oracle never answered a query on sk, and by simulation
extractability of NIZKPS the extractor outputs a valid witness, namely, a verifying message/signature pair
w.r.t. (X,Y0, Y1), so B succeeds in making the forgery. Since the PS signature scheme is secure under q-MSDH
assumption, where q is the number of signing queries made and q corresponds to the number of honest users
requested by A, the PS forgery happens with negligible probability under nU -MSDH.

Finally, if the SDL assumption holds, no adversary A can win Hyb3 with non-negligible probability.
Assume otherwise and let A be such an adversary. We build an adversary B solving SDL with non-negligible
probability. B works as follows:
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Reduction 1:

– B takes as input gk, (g1, h1, g2, h2) = (g, h, gµ, hµ) and uses gk, g, h as the public parameters for the
scheme. Let x, y0, y1 be the PS signature signing key and X,Y0, Y1 the corresponding verification key
sampled in Hyb3.

– It samples i ∈ [nU ].
– It answers oracle queries of A as follows:
• OHonJoin. It onlyanswers honestly except for the query IDi. In that case, if such a query has not been

explicitly made, it first queries H(IDi) = (a, gr) and then samples sk1, sk2 ← Z∗p. It then implicitly
sets as the secret key of this user the value µ(sk1 + sk2) as follows: it sets ĝ = gr and

∗ gsk1 = g
sk1
2 = gµsk1 , gsk2 = g

sk2
2 = gµsk2 .

∗ ĝsk1 = g
rsk1
2 = grµsk1 = ĝµsk1 , ĝsk2 = g

rsk2
2 = grµsk2 = ĝµsk2 .

It then computes the secret shares for the guardians and group manager using the values h1, h2.
It first samples uniform coefficients p1, . . . , pt ∈ Zp, computes the commitments Pi = ĝpi = grpi2 ,
computes the shares

Y
p(`)
0 := h

y0sk1
2 hy0

∑
pi`

i

= hµy0sk1hy0
∑
pi`

i

= hy0(µsk1+
∑
pi`

i) = hy0p(`) for C` ∈ GU

Y
µsk2
0 := h

y0sk2
2 = hµy0sk2

It keeps in its state the values σ1 = ĝ = gr, σ2 = gr(x+y0µ(sk1+sk2)+y1a) to later answer OMemberAuth
queries. The latter can be computed given gµ = g2.

• OMemberAuth. It works honestly as in Hyb3. Specifically, for the signatures of knowledge issued for
user i, it samples α ← Zp, computes (σ′1, σ

′
2) = (σα1 , σ

α
2 ) and simulates a PoK for NIZKPS, that is a

PoK of (µ(sk1 + sk2), a) such that e(σ′1, Y0)me(σ′1, Y1)a = e(σ′2, h)e(σ′1, X)−1.

When A outputs a forgery m, π, the extractor outputs a witness which corresponds to one of the secret
keys of an honest user by assumption. With probability at least 1

nU
this corresponds to user i. If this is the

case, B gets a message signature pair (sk, ·) where sk = µ(sk1 + sk2) from which it can compute µ such that
g2 = gµ1 and h2 = hµ1 , thus solving the SDL challenge. ut

C.2 Proof of Thm. 7

Proof. We proceed a sequence of hybrids that modifies the Exp-UserNonFrame game.

Hyb0 → Hyb1 : Hyb0 is the Exp-UserNonFrame game and Hyb1 is the same as Hyb0 except that it: (1)
uses simulated proofs for NIZKddh and NIZKEnc and (2) simulates the proof of knowledge NIZKPS when
the adversary queries OMemberAuth(m, certID). Both games have outputs that are statistically close by the
knowledge soundness property of NIZKDec.

Hyb1 → Hyb2 : is the same as Hyb1 except that when the adversary outputs (m, π, certID, proofID), we also
run the extractor of NIZKPS to extract a witness for σ′1, σ

′
2, and output ⊥ if the extraction fails. Note that

Hyb1 and Hyb2 proceed identically by the zero-knowledge property of the underlying NIZKs.

Hyb2 → Hyb3 : Hyb3 is the same as Hyb2 except that we output ⊥ and abort if we run the extractor and
extract a witness that contains a value (·, sk) ∈ Uh. Hyb2 and Hyb3 proceed identically, or equivalently Hyb3
does not abort.

To see that Hyb3 does not abort, we show that we never extract a witness corresponding to an honest
user if this has not been queried to OMemberAuth. The proof is the same as the last case of the unforgeability
property.

Assume that there exists an adversary that, with non-negligible probability causes Hyb3 to abort condi-
tioned on the extractor not failing. We construct an adversary B against the SDL assumption. B works as
follows:
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Reduction 1:

– B takes as input gk, (g1, h1, g2, h2) = (g, h, gµ, hµ) and uses gk, g, h as the public parameters for the
scheme. Let x, y0, y1 be the PS signature signing key and X,Y0, Y1 the corresponding verification key
sampled in Hyb3.

– It samples i ∈ [nU ].
– It answers oracle queries of A as follows:
• OHonJoin only answers honestly except for the query IDi. For this query, it first queries H(IDi) =

(a, gr) if such a query has not been made yet, then it samples sk1, sk2 ← Z∗p. It then implicitly sets
as the secret key of this user the value µ(sk1 + sk2) as follows: it sets ĝ = gr and

1. gsk1 = g
sk1
2 = gµsk1 , gsk2 = g

sk2
2 = gµsk2 .

2. ĝsk1 = g
rsk1
2 = grµsk1 = ĝµsk1 , ĝsk2 = g

rsk2
2 = grµsk2 = ĝµsk2 .

It then computes the secret shares for the guardians, group manager using the values h1, h2. It first
samples uniform coefficients p1, . . . , pt ∈ Zp, computes the commitments Pi = ĝpi = grpi2 , computes
the shares

Y
p(`)
0 := h

y0sk1
2 hy0

∑
pi`

i

= hµy0sk1hy0
∑
pi`

i

= hy0(µsk1+
∑
pi`

i) = hy0p(`) for C` ∈ GU

Y
µsk2
0 := h

y0sk2
2 = hµy0sk2

It keeps in its state the values σ1 = ĝ = gr, σ2 = gr(x+y0µ(sk1+sk2)+y1a) to later answer OMemberAuth
queries. The latter can be computed given gµ = g2.

• OMalJoin. It works honestly as in Hyb3.
• OMemberAuth. It works honestly as in Hyb3. Specifically, for the signatures of knowledge issued for

user i, it samples α ← Zp, computes (σ′1, σ
′
2) = (σα1 , σ

α
2 ) and simulates a PoK for NIZKPS, that is a

PoK of µ(sk1 + sk2), a such that e(σ′1, Y0)me(σ′1, Y1)a = e(σ′2, h)e(σ′1, X)−1.

When A outputs a forgery (m, π), the extractor outputs a witness which corresponds to one of the secret
keys of an honest user by assumption. With probability at least 1

nU
this corresponds to user i. If this is the

case, B gets a message signature pair (sk, ·) where sk = µ(sk1 + sk2) from which it can compute µ such that
g2 = gµ1 and h2 = hµ1 , thus solving the SDL challenge.
Hyb3 → Hyb4 : Hyb4 is the same as Hyb3 except that when the adversary A outputs (m, π, certID, proofID)

where proofID =
(
{Bi,jk , πi,jk}

t+1
k=1 , Bi, πi

)
we also run the extractor of NIZKDec for the statement corre-

sponding to πi,jk , πi to extract witnesses zjk , z. Hyb4 outputs ⊥ if any extraction fails to extract a valid
witness. Hyb3 and Hyb4 are indistinguishable due to knowledge soundness of NIZKDec.

Finally, no adversary can win Hyb4 except with negligible probability. Let certi :=
(
IDi, {Ci,`}C∈GU , Ci

)
.

Since A wins, we have that certi corresponds to an honest user. Also, by the fact that extraction for NIZKDec

fails, the signature opens to this user. But this means that the extractor of Hyb3 extracted a witness for an
honest user, which happens only with negligible probability.

ut

C.3 Proof of Thm. 8

Proof. We show the property by a sequence of hybrids described next.
Hyb0 → Hyb1 : Hyb0 is the t-Exp-UserAccountability game and Hyb1 is the same as Hyb0 except that when
the adversary queries OMalJoin, we also run the extractor of NIZKddh to extract the secrets sk1, sk2 used by
A. We output ⊥ and abort if the extraction fails to output a valid witness. Hyb0 and Hyb1 have outputs
that are statistically close by the knowledge soundness property of NIZKddh.
Hyb1 → Hyb2 : Hyb2 is the same as Hyb1 except that in the case of OMalJoin we also use the extractor of
NIZKEnc and abort if the shares given by the adversary are inconsistent w.r.t the values sk1, sk2. Both have
outputs that are statistically close under the knowledge soundness of NIZKPS

Hyb2 → Hyb3 : Hyb3 is the same as Hyb2 except that when the adversary outputs (m, π), we also run the
extractor of NIZKPS to get the value sk used for the signature of knowledge. Their outputs are statistically
close under the knowledge soundness of NIZKEnc.
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We next claim that Hyb3 does not abort, that is, the extracted witness from the adversary during its
challenge is the correct key of either an honest or a malicious user. This follows by the unforgeability of PS
signature scheme. We can build a reduction B that works as in the case of Exp-Unforge. Indeed, the only
difference is the handling of OMalJoin. In this case, we use the value sk = sk1 + sk2 extracted from NIZKddh

and make a signing query to the PS signing oracle. If the adversary forces Hyb3 to abort, it must be the case
that we extract a valid message/signature pair that we did not queried in the signing oracle.

To conclude the proof, it is enough to note that since the adversary behaves honestly (which is verified
by the extracted witnesses in the previous hybrids) a valid (m, π) pair is always correctly de-anonymized.

ut

C.4 Proof of Thm. 10

Proof. We show the two properties property by a sequence of hybrids described next. We show the case for
t-Exp-UAnon&MalGuard and describe the changes needed for Exp-UAnon&MalGM.
Hyb0 → Hyb1 : Hyb0 is the t-Exp-UAnon&MalGuard game and Hyb1 is the same as Hyb0 with the following
changes: when an honest user is registered through OHonJoin, we compute honestly the guardians shares,
but we sample two random elements (C1, C2) ← G2

2 as the share given to the manager. We also sample
uniform T ← GT . We simulate a proof πEnc to convince the adversary about the correctness of the shares.
We answer the oracle queries of the adversary as follows:

– OMemberAuth(m, certi): We sample random σ′1, σ
′
2 ← G1 and simulate the proof of knowledge πPS. We

save the tuple (m, certi, σ
′
1, σ
′
2) for future reference.

– ODeanon(m, π = σ′1, σ
′
2, πP, access): if there is an no saved entry containing (m, certi∗ , σ

′
1, σ
′
2) act honestly.

Otherwise, parse certi∗ = (IDi∗ , {Ci∗,`}C`∈GU , Ci∗), and access = {(Bi,`, πi,`)}nU

i=1 and abort if there are

no t+ 1 indices with correct proofs for all parties. If such indices exist, let
{

(Bi,`j , πi,`j )
}nU ,t+1

i=1,j=1
be these

indices. For i 6= i∗ sample a random value Bi and for i∗, set Bi = e(σ′2, h)e(σ′1, XY
a∗i
1 )−1

∏
j=1t+1B

−λj

i,jk
.

Simulate the proofs of knowledge πDec.

For the challenge query, we sign the message as in OMemberAuth. Signing is independent of the choice
of b. First, in the second hybrid, whenever A queries ODeanon on a valid signature, it can never be a
signature that opens to an honest party not previously queried to OMemberAuth, otherwise A breaks user
non-frameability. This means that all signatures queried are opened as in Hyb0. Now, by ddh in group G2, the
(encrypted) manager shares reveal no information to the adversary. It is enough to note that the messaged
signed, sk = sk1 + sk2, is a uniform message and the adversary can only decrypt and recover sk1. Similarly,
by ddh in G1, and zero knowledge of NIZKPS the signatures issued during queries to OMemberAuth or the
challenge query are indistinguishable to honestly computed ones. Finally, because the challenge signature is
independent of b, no adversary can win the latter game with non-negligible advantage.

For the case of Exp-UAnon&MalGM, we act respectively but we simulate the shares issued to the guardians.
More concretely, we give random encryptions for the honest guardians and find values P1, . . . , Pt that convince
the adversary – this can be done by solving a linear system in the exponent as done in [9, Lemma 3]. To
de-anonymize a signature, for user i∗ we simply compute random values Bi,`j conditioned on e(σ′2, h) =

e(σ′1, XY
a∗i
1 )

∏t+1
j=1B

λj

i,jk
e(σ′1, Y

sk1
0 ) and simulate proofs of knowledge πDec. When the adversary de-anonymizes

this message, it will open to ID∗. Arguing as before, in this case the first part of the secret key sk = sk1+sk2 is
random since the adversary does not have enough shares to get this value and compare with the commitment
given. ut
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