
An Algebraic Framework for Universal and Updatable SNARKs

Carla Ràfols?,1,2 and Arantxa Zapico??,1

1 Universitat Pompeu Fabra
2 Cybercat

carla.rafols@upf.edu, arantxa.zapico@upf.edu

Abstract. We introduce Checkable Subspace Sampling Arguments, a new information theoretic inter-
active proof system in which the prover shows that a vector has been sampled in a subspace according
to the verifier’s coins. We show that this primitive provides a unifying view that explains the technical
core of most of the constructions of universal and updatable pairing-based (zk)SNARKs. This charac-
terization is extended to a fully algebraic framework for designing such SNARKs in a modular way. We
propose new constructions of CSS arguments that lead to SNARKs with different performance trade-
offs. Our most efficient construction, Basilisk, seems to have the smallest proof size in the literature,
although it pays a price in terms of structure reference string for the number of multiplicative gates
whose fan-out exceeds a certain bound.

1 Introduction

Zero-Knowledge proofs [GMR89], and in particular, non-interactive ones [BFM88] have played a central role
in both the theory and practice of cryptography. A long line of research [Kil92, Mic00, Gro10, GGPR13,
Gro16] has led to efficient pairing-based zero-knowledge Succinct Non-interactive ARguments of Knowledge
or SNARKs. These arguments are succinct, in fact, they allow to prove that circuits of arbitrary size are
satisfied with a constant-size proof. They are also extremely efficient concretely (3 group elements in the
best construction for arithmetic circuits [Gro16]).

Despite this impressive performance, some aspects of these constructions of SNARKs are still unsatisfac-
tory. Probably the most problematic and not fully solved issue is their reliance on long trusted, structured,
and circuit dependent parameters (a circuit dependent SRS, for structured reference string).

Albeit the significant research effort in finding alternatives to bypass the need of a trusted third party by
constructing transparent arguments, i.e in the uniform random string model (URS) [BBB+18, BCC+16,
BBHR18, AHIV17, BBHR19, COS20, XZZ+19, WTs+18], pairing-based SNARKs such as [Gro16] still
seem the most practical alternative in many settings due to their very fast verification, which is a must
in many blockchain applications. On the other hand, multiparty solutions for the problem are not fully
scalable [BGG19, BGM17].

As an alternative to a trusted SRS, Groth et al. [GKM+18] define the updatable model, in which the SRS
can be updated by any party, non-interactively, and in a verifiable way, resulting in a properly generated
structured reference string where the simulation trapdoor is unknown to all parties if at least one is honest.
Further, they propose a construction where the SRS is universal and can be used for arbitrary circuits up
to a maximum given size.

Arithmetic Circuit Satisfiability can be reduced to a set of quadratic and affine constraints over a finite
field. The quadratic ones are universal and can be easily proven in the pairing-based setting with a Hadamard
product argument, the basic core of most zkSNARKS constructions starting from [GGPR13]. On the other

? This paper is part of a project that has received funding from the European Unions Horizon 2020 research and
innovation programme under grant agreement No 856879.

?? The project that gave rise to these results received the support of a fellowship from la Caixa Foundation
(ID100010434). The fellowship code is LCF/BQ/DI18/11660052. This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement
No.71367.

hand, affine constraints are circuit-dependent, and it is a challenging task to efficiently prove them with a
universal SRS [MBKM19, CHM+20, GWC19, CFF+20, DRZ20, Set20, Gab19, SZ20].

In Groth et al. [GKM+18] they are proven via a very expensive subspace argument that requires a SRS
quadratic in the circuit size and a preprocessing step that is cubic. Sonic [MBKM19], the first efficient,
universal, and updatable SNARK, gives two different ways to prove the affine constraints, a fully succinct
one (not so efficient) and another one in the amortized setting (very efficient). Follow-up work (most notably,
Marlin [CHM+20], Plonk [GWC19], Lunar [CFF+20]) has significantly improved the efficiency in the fully
succinct mode.

There is an important trend in cryptography, that advocates for constructing protocols in a modular
way. One reason for doing so is the fact that, by breaking complicated protocols into simpler steps, they
become easier to analyze. Ishai [Ish20] mentions comparability as another fundamental motive. Specially in
the area of zero-knowledge, given the surge of interest in practical constructions, it is hard not to lose sight
of what each proposal achieves. As Ishai puts it: “one reason such comparisons are difficult is the multitude
of application scenarios, implementation details, efficiency desiderata, cryptographic assumptions, and trust
models”.

Starting from Sonic, all the aforementioned works on universal and updatable zkSNARKs follow this
trend. More concretely, they first build an information-theoretic proof system, that is then compiled into a
full argument under some computational assumptions in bilinear groups. The main ingredient of the compiler
is a polynomial commitment [KZG10, BFS20, KPV19]. However, the information theoretic component is
still very complex and comparison among these works remains difficult, for precisely the same reasons stated
by Ishai. In particular, it is hard to extract the new ideas in each of them in the complex description
of the arguments, that use sophisticated tricks for improving efficiency, as well as advanced properties of
multiplicative subgroups of a finite field or bivariate Lagrange interpolation. Further, it is striking that
all fully succinct arguments are for restricted types of constraints (sums of permutations in Sonic, sparse
matrices in Marlin, and Lunar3) or pay a price for additive gates (Plonk). A modular, unified view of these
important works seems essential for a clearer understanding of the techniques. In turn, this should allow
for a better comparison, more flexibility in combining the different methods, and give insights on current
limitations.

Our Contributions. We propose an algebraic framework that takes a step further in achieving modu-
lar constructions of universal and updatable SNARKs. We identify the technical core of previous work as
instances of a Checkable Subspace Sampling (CSS) Argument. In this information-theoretic proof system,
two parties, prover and verifier, on input a field F and a matrix M ∈ FQ×m, agree on a polynomial D(X)
encoding a vector d in the row space of M. The interesting part is that, even though the coefficients of the
linear combination that define d are sampled with the verifier’s coins, the latter does not need to perform
a linear (in Q, the number of rows) number of operations to verify that D(X) is correct. Instead, this must
be demonstrated by the prover.

With this algebraic formulation, it is immediate to see that a CSS argument can be used as a building
block for an argument of membership in linear spaces. Basically, given a matrix M, we can prove that some
vector y is orthogonal to the row vectors of M by sampling after y is declared, a sufficiently random vector
d in the row space of M and checking an inner product relation, namely, whether d · y = 0. The purpose of
a CSS argument is to guarantee that the sampling process can be checked by the verifier in sublinear time
without sacrificing soundness.

Naturally, for building succinct proofs, instead of y,d, the argument uses polynomial encodings Y (X) and
D(X) (which are group elements after the compilation step). To compute the inner product of this encoded
vectors, we introduce a new argument in Section 3, which is specific to the case where the polynomials are
encoded in the Lagrange polynomial basis but can be easily generalized to the monomial basis. The argument
is a straightforward application of the univariate sumcheck of Aurora [BCR+19]. However, we contribute a

3 The number of non-zero entries of the matrices that encode linear constraints cannot exceed the size of some
multiplicative group of the field of definition.

2

generalized sumcheck (that works not only for multiplicative subgroups of finite fields), with a completely
new proof that relates it with polynomial evaluation at some fixed point v.

These building blocks can be put together as an argument for the language of Rank1 constraint systems.
For efficiency, we stick to R1CS-lite, a variant recently proposed by Lunar, which is slightly simpler but
still NP-complete. Our final construction can be instantiated with any possible choice of CSS scheme, so in
particular, it can essentially recover the construction of Marlin and Lunar by isolating the CSS argument
implicit in these works, or the amortized construction of Sonic. We hope that this serves to better identify the
challenge behind building updatable and universal SNARKs, and allow for new steps in improving efficiency,
as well as more easily combining the techniques.

In summary, we reduce R1CS constraint systems to three algebraic relations: an inner product, a
Hadamard product, and a CSS argument. We think this algebraic formulation is very clear, and also makes
it easier to relate advances in universal and updatable SNARKS with other works that have used a similar
language, for example, the arguments for inner product of [BCC+16], of membership in linear spaces [JR13],
or for linear algebra relations [Gro09].

Finally, we give several constructions of CSS arguments. In Section 5, we start from the representation of
a matrix W as bivariate polynomial introduced in [CHM+20] to construct an alternative CSS argument for
sparse matrices. Our contribution is to introduce a new linearization step that allows us to build it modularly
from an argument for what we refer to as simple matrices, i.e., those with at most one non-zero element
per column. Compared to [CHM+20, CFF+20], at a minimal increase in communication cost, our argument
significantly reduces the size of the derived SRS. We generalize these arguments to sums of simple and sparse
matrices, without increasing the communication complexity. In Section 7, we show the helped Sonic mode
works as a CSS argument in the amortized setting. In Section 6, we introduce a CSS argument that works
for arbitrary matrices and, even though it requires quadratic indexer work and linear verifier memory, can
be combined with other schemes to increase efficiency or expressivity, as we show in Section 4.4.

In the appendix, we introduce a generalized universal relation that captures the one considered in
Plonk [GWC19] and we study the performance trade-offs resulting from the different possible choices of
CSS argument of Section 5. In particular. we observe that the argument for simple matrices and sums of
simple matrices is useful on its own, and not only to achieve modularity. We study the efficiency of our
zkSNARK when: a) the CSS argument is our argument for sparse matrices of Section 5.3, b) when the Plonk
constraint system is used and the matrix of constraints is a permutation, which is a special case of a simple
matrix, and c) when the circuit has bounded fan-out, which results in a matrix of constraints that is a sum
of simple matrices. To the best of our knowledge, the latter construction is the most efficient in proof size
updatable and universal zkSNARK. Following the trend to give SNARKs the name of fabulous creatures,
and given the importance of linear algebra and the Lagrange basis in our work, we call it BASILISK.

The efficiency of the zkSNARKs built from the different CSS arguments detailed can be found in Table 1.
The details of the constructions are given in the Appendix.

1.1 Related Work

Bivariate Polynomial Evaluation Arguments. As mentioned before, the complexity of building updat-
able and universal zkSNARKs protocols is mainly caused by proving affine constraints. A natural way to
encode them is through a bivariate public polynomial P (X,Y); in order to avoid having a quadratic SRS,
this polynomial can only be given to the verifier evaluated or partially evaluated in the field. The common
approach is to let the verifier chose arbitrary field elements x, y and having the prover evaluate and send
σ = P (y, x). The challenge is to prove that the evaluation has been performed correctly. In Sonic [MBKM19],
this last step is called a signature of correct computation [PST13] and can be performed by the prover or
by the verifier with some help from an untrusted third party. The drawback of the first construction is
that, while still linear, prover’s work is considerably costly; also, linear constraints are assumed to be sparse
and the protocol works exclusively for a very particular polynomial P (X,Y). The second construction is
interesting only in some restricted settings where the same verifier checks a linear amount of proofs for one
circuit. Marlin [CHM+20] bases its construction on the univariate sum-check protocol of Aurora [BCR+19]
and presents a novel way to navigate from the naive quadratic representation P (X,Y) to a linear one. This

3

approach results in succinct prover and verifier work, but restricts their protocol to the case where the num-
ber of non-zero entries of matrix W is bounded by the size of some multiplicative subgroup of the field of
definition. Lunar [CFF+20] uses the same representation as Marlin but improves on it, among other tweaks
by introducing a new language (R1CS-lite) that can also encode arithmetic circuit satisfiability, but has a
lighter representation than other constraint systems. Plonk [GWC19] does not use bivariate polynomials or
require sparse matrices but the SRS size depends on the number of both multiplicative and additive gates.
As we do, Plonk, Marlin and Lunar use the Lagrange interpolation basis to commit to vectors, while Clay-
more [SZ20] presents a modular construction for zkSNARKs based on similar algebraic building blocks but
in the monomial basis: inner product, Hadamard product and matrix-vector product arguments. Notably, it
also uses implicitly a CSS argument.

Work |srsu| |srsW| |π| KeyGen Derive Prove Verifier

Sonic
[MBKM19]

G1 4M - 20 4M 36m 273m
7PG2 4M 3 - 4M - -

F - - 16 - O(K logK) O(K logK) O(l + logK)

Marlin
[CHM+20]

G1 3K̂ 12 13 3K̂ 12K 14m+ 8K
2PG2 2 2 - - - -

F - - 8 - O(K logK) O(K logK) O(l + logK)

Plonk
[GWC19]

G1 3N 8 7 3N 8n 11n
2PG2 1 1 - - - -

F - - 7 - O(n logn) O(n logn) O(l + logn)

LunarLite2x4

[CFF+20]

G1 K̂ 16 11 K̂ 16K 8m+ 4K
2PG2 1 1 - 1 - -

F - - 3 - O(K logK) O(K logK) O(l + logK)

This
work
Sec. 5.3

G1 K̂ 4 10 K̂ 6K 6m+ 4K
2PG2 1 1 - - - -

F - - 3 - O(K logK) O(K logK) O(l + logK)

This
work
Fig. 11

G1 N 11 8 N 11n 8n
2PG2 1 1 - - - -

F - - 4 - O(n logn) O(n logn) O(l + logn)

Basilisk
App. F

G1 M 3V + 1 6 M (3v + 1)m 6m
2PG2 1 1 - - - -

F - - 2 - O(m logm) O(m logm) O(l + logm)
Table 1. Comparison with state of the art universal and updatable zkSNARKs. m: number of multiplicative gates, n: number of total
gates, v : bounded fan-out, K: non-zero elements of the matrix that describe the circuit (|F + G| in our case). N, K̂, V,M : maximum
supported values for n,K,m, v. N∗ = M + A. The numbers for our work take into account the trick to eliminate non-trivial degree
checks in App.E.

Information Theoretic Proof Systems. All these previous works follow the two step process described in
the introduction and build their succinct argument by compiling an information theoretically secure one. Mar-
lin introduces Algebraic Holographic proofs, that are variation of interactive oracle proofs (IOPs) [BCS16].

3 Among all schemes with different trade-offs presented in Lunar, we highlight this one as it is the most directly
comparable to our scheme.

4

Holographic refers to the fact that the verifier never receives the input explicitly (otherwise, succinctness
would be impossible), but rather its encoding as an oracle computed by an indexer or encoder. The term
algebraic refers to the fact that oracles are low degree polynomials, and malicious provers are also bound to
output low degree polynomials. This notion is similar to the one of Idealised Low Degree protocols of Plonk.
Lunar refines this model by introducing Polynomial Holographic IOPs, which generalize these works mostly
by allowing for a fine grained analysis of the zero-knowledge property, including degree checks, and letting
prover and verifier send field elements.

Polynomial Commitments. Polynomial commitments allow to commit to a polynomial p(X) ∈ F[X],
and open it at any point x ∈ F. As it is common, we will use a polynomial commitment based on the one by
Kate et al. [KZG10]. Sonic gave a proof of extractability of the latter in the Algebraic Group Model [FKL18],
and Marlin completed the proof to make the commitments usable as a standalone primitive, and also have
an alternative construction under knowledge assumptions. Both Marlin and Plonk considered versions of
polynomial commitments where queries in the same point can be batched together. For this work, we use
the same definitions and construction as these works. The formal definition is given in Section 2.4.

Untrusted Setup. The original constructions of pairing-based zkSNARKs crucially depend for soundness
on a trusted setup, although, as was shown in [ABLZ17, Fuc18], the zero-knowledge property is still easy
to achieve when the setup is subverted. Groth et al. introduced the updatable SRS model in [GKM+18]
to address the issue of trust in SRS generation. There are several alternatives to achieve transparent setup
and constant-size proofs, but all of them have either linear verifier [BCC+16, BBB+18, BCR+19, AHIV17],
or work only for very structured types of computation [BBHR18, WTs+18]. An exception is the work of
Setty [Set20]. Concretely, the approach is less efficient in terms of proof size and verification complexity
compared to recent constructions of updatable and universal pairing-based SNARKs.

2 Preliminaries

A bilinear group gk is a tuple gk = (q,G1,G2,GT , e,P1,P2) where G1,G2 and GT are groups of prime
order q, the elements P1,P2 are generators of G1,G2 respectively, e : G1 × G2 → GT is an efficiently
computable, non-degenerate bilinear map, and there is an efficiently computable isomorphism between G1

and G2. Elements in Gγ , are denoted implicitly as [a]γ = aPγ , where γ ∈ {1, 2, T} and PT = e(P1,P2). With
this notation, e([a]1, [b]2) = [ab]T .

For n ∈ N, [n] is the set of integers {1, . . . , n}. Vectors and matrices are denoted in boldface. Given two
vectors a, b, their Hadamard product is denoted as a ◦ b, and their inner product as a · b. The subspace of
polynomials of degree at most d in F[X] is denoted as F≤d[X]. Given a matrix M, |M| refers to the number
of its non-zero entries.

2.1 Constraint Systems

Formally, we will construct an argument for the universal relation R′R1CS-lite, an equivalent of the relation
RR1CS-lite introduced in Lunar [CFF+20]. The latter is a simpler version of Rank 1 Constraint Systems, it is
still NP complete and encodes circuit satisfiability in a natural way:

Definition 1. (R1CS) Let F be a finite field and m, l, s ∈ N. We define the universal relation R1CS as:

RR1CS =

 (R, x,w) :=
(
(F, s,m, l,F,G,O),x,w

)
:

F,G,O ∈ Fm×m,x ∈ Fl−1,w ∈ Fm−l, s = max{|F|, |G|, |O|},
and for c := (1,x,w), (Fc) ◦ (Gc) = Oc

5

Definition 2. (R1CS-lite) Let F be a finite field and m, l, s ∈ N. We define the universal relation R1CS-lite
as:

RR1CS-lite =

 (R, x,w) :=
(
(F, s,m, l,F,G),x,w

)
:

F,G ∈ Fm×m,x ∈ Fl−1,w ∈ Fm−l, s = max{|F|, |G|},
and for c := (1,x,w), (Fc) ◦ (Gc) = c

 .

As an equivalent formulation of this relation, we use the following:

R′R1CS-lite =

(R, x,w) :=

(
(F, s,m, l,F,G),x, (a′, b′)

)
: F,G ∈ Fm×m,x ∈ Fl−1,

a′, b′ ∈ Fm−l, s = max{|F|, |G|}, and for a := (1,x,a′), b := (1, b′)(
I 0 −F
0 I −G

) a
b

a ◦ b

 = 0

 .

To see they are equivalent, observe that, if in R′R1CS-lite we define the vector c = a◦b, the linear equation
reads as a = Fc and b = Gc. A formal proof is a direct consequence of the proof that arithmetic circuit
satisfiability reduces to R1CS-lite found in Lunar([CFF+20]).

In Appendix A we introduceRW-R1CS, a generalization of these relations that can also express the relation
considered in Plonk.

2.2 zkSNARKs

Let R be a family of universal relations. Given a relation R ∈ R and an instance x we call w a witness for x
if (x,w) ∈ R, L(R) = {x| ∃w : (x,w) ∈ R} is the language of all the x that have a witness w in the relation R,
while L(R)is the language of all the pairs (x,R) such that x ∈ L(R).

Definition 3. A Universal Succinct Non-Interactive Argument of Knowledge is a tuple of PPT algorithms
(KeyGen,KeyGenD,Prove,Verify,Simulate) such that:

– (srsu, τ)← KeyGen(R): On input a family of relations R, KeyGen outputs a universal structured common
reference string srsu and a trapdoor τ ;

– srsR ← KeyGenD(srsu,R): On input R ∈ R, this algorithm outputs a relation dependent SRS that includes
srsu;

– π ← Prove(R, srsR, (x,w)): On input the relation, srsR and a pair (x,w) ∈ R, it outputs a proof π;
– 1/0 ← Verify(srsR, x, π): Verify takes as input srsR, the instance x and the proof and produces a bit

expressing acceptance (1), or rejection (0);
– πsim ← Simulate(R, τ, x): The simulator has the relation R, the trapdoor τ and the instance x as inputs

and it generates a simulated proof πsim,

and that satisfies completeness, succinctness and ε-knowledge soundness as defined below.

Definition 4. Completeness holds if an honest prover will always convince an honest verifier. Formally,
∀ R ∈ R, (x,w) ∈ R,

Pr

[
(srsu, τ)← KeyGen(R)

Verify(srsR, x, π) = 1 srsR ← KeyGenD(srsu,R)
π ← Prove(R, srsR, (x,w))

]
= 1.

Definition 5. Succinctness holds if the size of the proof π is poly(λ + log |w|) and Verify runs in time
poly(λ+ |x|+ log |w|).

Definition 6. ε-knowledge soundness captures the fact that a cheating prover cannot, except with probability
at most ε, create a proof π accepted by the verification algorithm unless it has a witness w such that (x,w) ∈ R.
Formally, for all PPT adversaries A, there exists a PPT extractor E such that:

Pr

(srsu, τ)← KeyGen(R)
R← A(srsu)

(x,w) /∈ R ∧ Verify(srsR, x, π) = 1 srsR ← KeyGenD(srsu,R)
(x, π)← A(R, srsR)
w← E(srsR, x, π)

 ≤ ε.

6

Definition 7. (KeyGen,KeyGenD,Prove,Verify,Simulate) is zero-knowledge (a zkSNARK) if for all R ∈ R,
instances x and PPT adversaries A.

Pr

[
(srsu, τ)← KeyGen(R)

A(R, srsR, π) = 1 srsR ← KeyGenD(srsu,R)
π ← Prove(R, srsR, (x,w))

]
≈

Pr

[
(srsu, τ)← KeyGen(R)

A(R, srsR, πsim) = 1 srsR ← KeyGenD(srsu,R)
πsim ← Simulate(R, τ, x)

]
.

Updatability. We will say a universal zkSNARK is updatable if srsu is updatable as defined in [GMMM18].
We remark their result states that this is the case if srsu consists solely of monomials.

2.3 Polynomial Holographic Proofs

In this paper, we use the notion of Polynomial Holographic Interactive Oracle Proofs (PHP), recently in-
troduced by Campanelli et al. [CFF+20]. It is a refinement and quite similar to other notions used in the
literature to construct SNARKs in a modular way, such as Algebraic Holographic Proofs (AHP) [CHM+20]
or idealized polynomial protocols [GWC19].

A proof system for a relation R is holographic if the verifier does not read the full description of the
relation, but rather has access to an encoding of the statement produced by some holographic relation
encoder, also called indexer, that outputs oracle polynomials. In all these models, the prover is restricted to
send oracle polynomials or field elements, except that, for additional flexibility, the PHP model of [CFF+20]
also lets the prover send arbitrary messages. In PHPs, the queries of the verifier are algebraic checks over
the polynomials sent by the verifier, as opposed to being limited to polynomial evaluations as in AHPs.

The following definitions are taken almost verbatim from [CFF+20].

Definition 8. A family of polynomial time computable relations R is field dependent if each relation R ∈ R,
specifies a unique finite field. More precisely, for any pair (x,w) ∈ R, x specifies the same finite field FR

(simply denoted as F if there is no ambiguity).

Definition 9 (Polynomial Holographic IOPs (PHP)). A Polynomial Holographic IOP for a family of
field-dependent relations R is a tuple PHP = (rnd, n,m, d, ne, I,P,V), where rnd, n,m, d, ne : {0, 1}∗ → N are
polynomial-time computable functions, and I,P,V are three algorithms that work as follows:

– Offline phase: The encoder or indexer I(R) is executed on a relation description R, and it returns n(0)

polynomials {p0,j}n(0)j=1 ∈ F[X] encoding the relation R and where F is the field specified by R.

– Online phase: The prover P(R, x,w) and the verifier VI(R)(x) are executed for rnd(|R|) rounds, the
prover has a tuple (R, x,w) ∈ R, and the verifier has an instance x and oracle access to the polynomials
encoding R. In the i-th round, V sends a message ρi ∈ F to the prover, and P replies with m(i) messages

{πi,j ∈ F}m(i)
j=1 , and n(i) oracle polynomials {pi,j ∈ F[X]}n(i)j=1, such that deg(pi,j) < d(|R|, i, j).

– Decision phase: After the rnd(|R|)-th round, the verifier outputs two sets of algebraic checks of the
following type:
• Degree checks: to check a bound on the degree of the polynomials sent by the prover. More in detail,

let np =
∑rnd(|R|)
k=1 n(k) and let (p1, . . . , pnp) be the polynomials sent by P. The verifier specifies a

vector of integers d ∈ Nnp , which satisfies the following condition

∀k ∈ [np] : deg(pk) ≤ dk.

• Polynomial checks: to verify that certain polynomial identities hold between the oracle polynomials

and the messages sent by the prover. Let n∗ =
∑rnd(|R|)
k=0 n(k) and m∗ =

∑rnd(|R|)
k=0 m(k), and denote by

(p1, . . . , pn∗) and (π1, . . . , πn∗) all the oracle polynomials (including the n(0) ones frrom the encoder)

7

and all the messages sent by the prover. The verifier can specify a list of ne tuples, each of the
form (G, v1, . . . , vn∗), where G ∈ F[X,X1, . . . , Xn∗ , Y1, . . . , Ym∗] and every vk ∈ F[X]. Then a tuple
(G, v1, . . . , vn∗) is satisfied if and only if F (X) ≡ 0 where

F (X) := G
(
X, {pk(vk(X))}k=1,...,n∗ , {πk}k=1,...,m∗

)
.

The verifier accepts if and only if all the checks are satisfied.

Definition 10. A PHP is complete if for any triple (R, x,w) ∈ R, the checks returned by VI(R) after inter-
acting with the honest prover P(R, x,w), are satisfied with probability 1.

Definition 11. A PHP is ε-sound if for every relation-instance tuple (R, x) /∈ L(R) and polynomial time
prover P∗ we have

Pr
[
〈P∗,VI(R)(x)〉 = 1

]
≤ ε.

Definition 12. A PHP is ε-knowledge sound if there exists a polynomial time knowledge extractor E such
that for any prover P∗, relation R, instance x and auxiliary input z we have

Pr
[
(R, x,w) ∈ R : w← EP

∗
(R, x, z)

]
≥ Pr

[
〈P∗(R, x, z),VI(R)(x)〉 = 1

]
− ε,

where E has oracle access to P∗, it can query the next message function of P∗ (and also rewind it) and obtain
all the messages and polynomials returned by it.

Definition 13. A PHP is ε-zero-knowledge if there exists a PPT simulator S such that for every triple
(R, x,w) ∈ R, and every algorithm V∗, the following random variables are within ε-statistical distance:

View (P(R, x,w),V∗) ≈c View
(
SV
∗
(R, x)

)
,

where View (P(R, x,w),V∗) consists of V∗’s randomness, P’s messages (which do not include the oracles)
and V∗’s list of checks, while View

(
SV
∗
(R, x)

)
consists of V∗’s randomness followed by S’s output, obtained after

having straightline access to V∗, and V∗’s list of checks.

We assume that in every PHP scheme there is an implicit maximum degree for all the polynomials used
in the scheme. Thus, we include only degree checks that differ from this maximum. In all our PHPs, the
verifier is public coin.

The following definition captures de fact that zero-knowledge should hold even when the verifier has
access to a bounded amount of evaluations of the polynomials that contain information about the witness.
Let Q be a list of queries; we say that Q is (b,C)-bounded for b ∈ Nnp and C a PT algorithm, if for every
i ∈ [np], |{(i, z) : (i, z) ∈ Q}| ≤ bi, and for all (i, z) ∈ Q, C(i, z) = 1.

Definition 14. A PHP is (b,C)-zero-knowledge if for every triple (R, x,w) ∈ R, and every (b,C)-bounded
list Q, the follow random variables are within ε statistical distance:(

View
(
P(F,R, x,w),V

)
, (pi(z))(i,z)∈Q

)
≈ε S (F,R, x,V(F, x),Q) ,

where the pi(X) are the polynomials returned by the prover.

Definition 15. A PHP is honest-verifier zero-knowledge with query bound b if there exists a PT algorithm
C such that PHP is (b,C)-zero-knowledge and for all i ∈ N, Pr[C(i, z) = 0] is negligible, where z is uniformly
sampled over F.

8

2.4 Polynomial Commitments

Definition 16 (Polynomial Commitment Scheme). A Polynomial Commitment Scheme is a tuple of
algorithms

(
PC.KeyGen, PC.Commit, PC.Open, PC.Verify

)
such that:

– srsPC ← PC.KeyGen
(
ppPC, d

)
: On input the system parameters and a degree bound d, it outputs a struc-

tured reference string.
– c ← PC.Commit

(
srsPC,p(X),d

)
: On input the srs and a vector of t polynomials pi(X) of degree up to

di, it outputs a vector c where ci is a commitment to pi(X).
– (s, πPC)← PC.Open

(
srsPC,p(X),d,Q, γ

)
: On input the srs, the vector of polynomials, the degree bounds,

a query set Q where each query is a tuple (i, z) ∈ [t]× F, and a opening challenge γ, it outputs a vector
of evaluations s and an evaluation proof πPC.

– 1/0← PC.Verify
(
srsPC, c,d,Q, γ, s, πPC

)
: On input the srs, the vector of commitments, the degree bounds,

the query set, the opening challenge, a vector of evaluations s = (si,z)(i,z)∈Q, and the proof of correct
evaluation, it outputs a bit indicating acceptance or rejection.

A polynomial commitment scheme should satisfy the following properties:

Completeness: It captures the fact that an honest prover will always convince an honest verifier. Formally,
for any vector of polynomials p(X) such that deg(pi) ≤ di and set of queries Q the following probability is 1:

Pr

 srsPC ← PC.KeyGen
(
ppPC, d

)
deg(pi) ≤ di ⇒ c← PC.Commit

(
srsPC,p(X),d

)
PC.Verify

(
srsPC, c,d,Q, γ, s, πPC

)
= 1 s(i,z) = pi(z), (i, z) ∈ Q

(s, πPC)← PC.Open
(
srsPC,p(X),d,Q, γ

)

Soundness: Captures the fact that a cheating prover should not be able to convince the verifier of a false
opening. Formally, for all PPT adversaries A:

Pr

[∃ (i, z) ∈ Q s.t. pi(z) 6= s(i,z), or srsPC ← PC.KeyGen
(
ppPC, d

)
∃i ∈ [t] s.t. deg(pi) > di, and c← A

(
srsPC,p(X),d

)
PC.Verify

(
srsPC, c,d,Q, γ, s, πPC

)
= 1 (s, πPC)← A

(
srsPC,p(X),d,Q, γ

)
]
≈ 0

Extractability: Captures the fact that whenever the prover provides a valid opening, it knows a valid pair
(pi(X), pi(z)) ∈ F[X]× F, where deg(pi) ≤ di. Formally, for all PPT adversaries A there exists an efficient
extractor E such that:

Pr

PC.Verify

(
srsPC, c,d,Q, γ, s, πPC

)
= 1 srsPC ← PC.KeyGen

(
ppPC, d

)
∧ c← A

(
srsPC

)
∃ (i, z) ∈ Q s.t. pi(z) 6= s(i,z), or p(X)← E

(
srsPC, c,d

)
∃i ∈ [t] s.t. deg(pi) > di (Q, γ)← A

(
srsPC, c,d

)
(s, πPC)← A

(
srsPC,p(X),d,Q, γ

)

 ≈ 0

2.5 Cryptographic Assumptions

Once we compile the PHP through a polynomial commitment into a zkSNARK, the latter will achieve its
security properties in the Algebraic Group Model of Fuchsbauer et al. ([FKL18]). In this model adversaries
are restricted to be algebraic, namely, when an adversary A gets some group elements as input and outputs
another group element, it can provide some algebraic representation of the latter in terms of the former.

Definition 17 (Algebraic Adversary). Let G be a cyclic group of order p. We say that a PPT adversary
A is algebraic if there exists an efficient extractor EA that, given the inputs ([x1], . . . , [xm]) of A, outputs a
representation z = (z1, . . . , zm)> ∈ Fm, where F is the finite field of p elements, for every group element [y]
in the output of A such that:

AdvalgG,A(λ) =

 [y]← A([x1], . . . , [xm]), z← EA([y], [x1], . . . , [xm]),

and [y] 6=
m∑
j=1

zj [xj]

 = negl(λ).

9

The security of our final argument for R1CS-lite (after compilation) is proven in the algebraic group
model under the following assumption:

Definition 18 (q-dlog Asymmetric Assumption). The q(λ)-discrete logarithm assumption holds for
gk ← G(1λ) if for all PPT algorithm A

Advq−dloggk,A (λ) = Pr [x← A(gk, [x]1,2, . . . , [x
q]1,2)] = negl(λ).

3 Generalized Univariate Sumcheck

In this section, we revisit the sumcheck of Aurora [BCR+19]. As presented there, this argument allows to
prove that the sum of the evaluations of a polynomial in some multiplicative subgroup5 H of a finite field F
sum to some value σ. We generalize the argument to arbitrary sets H ⊂ F, solving an open problem posed
there. Additionally, we give a simpler proof of the same result by connecting the sumcheck to polynomial
evaluation and other basic properties of polynomials.

Given some finite field F, let H be an arbitrary set of cardinal m, with some predefined canonical order,
and hi the ith element in this order. The ith Lagrange basis polynomial associated to H is denoted by λi(X).
The vector λ(X) is defined as λ(X)> = (λ1(X), . . . , λm(X)). The vanishing polynomial of H will be denoted
by t(X). When H is a multiplicative subgroup, the following properties are known to hold:

t(X) = Xm − 1, λi(X) =
hi
m

(Xm − 1)

(X − hi)
, λi(0) =

1

m
,

for any i = 1, . . . ,m. This representation makes their computation particularly efficient: both t(X) and
λi(X) can be evaluated in O(logm) field operations.

We prove a generalized sumcheck theorem below, and derive the sumcheck of Aurora as a corollary for
the special case where H is a multiplicative subgroup. The intuition is simple: let P1(X) be a polynomial of
arbitrary degree in F[X], and P2(X) =

∑m
i=1 λi(X)P1(hi). Note that P1(X), P2(X) are congruent modulo

t(X), and the degree of P2(X) is at most m− 1. Then, when P2(X) is evaluated at an arbitrary point v ∈ F,
v /∈ H, P2(v) =

∑m
i=1 λi(v)P1(hi). Thus, P2(v) is “almost” (except for the constants λi(v)) the sum of the

evaluations of P1(hi). Multiplying by a normalizing polynomial, we get rid of the constants and obtain a
polynomial that evaluated at v is the sum of any set of evaluations of interest. The sum will be zero if this
product polynomial has a root at v.

Theorem 1 (Generalized Sumcheck). Let H be an arbitrary subset of some finite field F and t(X) the
vanishing polynomial at H. For any P (X) ∈ F[X], S ⊂ H, and any v ∈ F, v /∈ H,

∑
s∈S P (s) = σ if and only

if there exist polynomials H(X) ∈ F[X], R(X) ∈ F≤m−2[X] such that

P (X)NS,v(X)− σ = (X − v)R(X) + t(X)H(X),

where NS,v(X) =
∑
s∈S λs(v)−1λs(X) and λs(X) is the Lagrange polynomial associated to s and the set H.

Proof. Observe that P (X) =
∑

h∈H P (h)λh(X) mod t(X). Therefore,

P (X)NS,v(X)− σ =
(∑

h∈H
P (h)λh(X)

)(∑
s∈S

λs(v)−1λs(X)
)
− σ

=
(∑
s∈S

P (s)λs(v)−1λs(X)
)
− σ mod t(X).

Let Q(X) =
(∑

s∈S P (s)λs(v)−1λs(X)
)
− σ. Note that Q(v) =

∑
s∈S P (s) − σ. Thus,

∑
s∈S P (s) = σ if

and only if Q(X) is divisible by X − v. The claim follows from this observation together with the fact that
Q(X) is the unique polynomial of degree m− 1 that is congruent with P (X)NS,v(X)− σ. ut
5 In fact, the presentation is more general as they also consider additive cosets, but we stick to the multiplicative

case which is the one that has been used in other constructions of zkSNARKs.

10

Lemma 1. If S = H is a multiplicative subgroup of F, NH,0(X) = m.

Proof. Recall that, as H is a multiplicative subgroup, λi(0) = 1/m for all i = 1, . . . ,m. Therefore, NH,0(X) =∑m
i=1 λi(0)−1λi(X) = m

∑m
i=1 λi(X) = m. ut

As a corollary of Lemma 1 and the Generalized Sumcheck, we recover the univariate sumcheck: if H
is a multiplicative subgroup,

∑
h∈H P (h) = σ if and only if there exist polynomials R(X), H(X) with

deg(R(X)) ≤ m− 2 such that P (X)m− σ = XR(X) + t(X)H(X).

3.1 Application to Linear Algebra Arguments

Several works [BCR+19, CHM+20, CFF+20] have observed that R1CS languages can be reduced to proving
a Hadamard product relation and a linear relation, where the latter consists on showing that two vectors
x,y are such that y = Mx, or equivalently, that the inner product of (y,x) with all the rows of (I,−M) is
zero. When matrices and vectors are encoded as polynomials for succinctness, for constructing a PHP it is
necessary to express these linear algebra operations as polynomial identities.

For the Hadamard product relation, the basic observation is that, for any polynomials A(X), B(X), C(X),
the equation

A(X)B(X)− C(X) = H(X)t(X), (1)

holds for some H(X) if and only if (A(h1), . . . , A(hm)) ◦ (B(h1), . . . , B(hm)) − (C(h1), . . . , C(hm)) = 0. In
particular, if A(X) = a>λ(X), B(X) = b>λ(X) encode vectors a, b, then C(X) mod t(X) encodes a ◦ b.
This Hadamard product argument is one of the main ideas behind the zkSNARK of Gentry et al. [GGPR13]
and follow-up work.

For linear relations, the following Theorem explicitly derives a polynomial identity that encodes the
inner product relation from the univariate sumcheck. This connection in a different formulation is implicit
in previous works [BCR+19, CHM+20, CFF+20].

Theorem 2 (Inner Product Polynomial Relation). For some k ∈ N, let y = (y1, . . . ,yk), yi = (yij),
d = (d1, . . . ,dk) be two vectors in Fkm, yi,di ∈ Fm, and H a multiplicative subgroup of F of order m. Then,
y ·d = σ if and only if there exist H(X), R(X) ∈ F[X], R(X) of degree at most m−2 such that the following
relation holds:

Y (X) ·D(X)− σ

m
= XR(X) + t(X)H(X), (2)

where Y (X) = (Y1(X), . . . , Yk(X)) is a vector of polynomials of arbitrary degree such that Yi(hj) = yij for
all i = 1, . . . , k, j = 1, . . . ,m, and D(X) = (D1(X), . . . , Dk(X)) is such that Di(X) = d>i λ(X).

Proof. Since Yi(hj) = yij , for all i, j, Yi(X) = y>i λ(X) mod t(X). Therefore, Yi(X)Di(X) = (y>i λ(X))(d>i λ(X))
mod t(X), and by the aforementioned properties of the Lagrange basis, this is also congruent modulo t(X)
to (yi ◦ di)>λ(X). Therefore,

Y (X) ·D(X) =

k∑
i=1

Yi(X)Di(X) =

k∑
i=1

(yi ◦ di)>λ(X) =

(
k∑
i=1

(yi ◦ di)>
)
λ(X) mod t(X).

By Theorem 1,
((∑k

i=1(yi◦di)>
)
λ(X)

)
NH,0(X)−σ is divisible by X if and only if the sum of the coordinates

of
∑k
i=1(yi ◦ di) is σ. The implication is also true after dividing by NH,0(X) = m. The jth coordinate of∑k

i=1(yi ◦ di) is
∑k
i=1 yijdij , thus the sum of all coordinates is

∑m
j=1

∑k
i=1 yijdij = y · d, which concludes

the proof. ut

In the rest of the paper H will always be a multiplicative subgroup, both for simplicity (as NH,0 = m),
and efficiency (due to the properties that Lagrange and vanishing polynomials associated to multiplicative
subgroups have). However, Theorem 2 can be easily generalized to arbitrary sets H (just multiplying the left
side of Eq. (2) by NH,0(X)).

11

4 Checkable Subspace Sampling: Definition and Implications

In a Checkable Subspace Sampling (CSS) argument prover and verifier interactively agree on a polynomial
D(X) representing a vector d in the row space of a matrix M. The fiber of the protocol is that D(X) is
calculated as a linear combination of encodings of the rows of M with some coefficients determined by the
verifier, but the verifier does not need to calculate D(X) itself (this would require the verifier to do linear
work in the number of rows of M). Instead, the prover can calculate this polynomial and then convince the
verifier that it has been correctly computed.

Below we give the syntactical definition of Checkable Subspace Sampling. Essentially, a CSS scheme is
similar to a PHP for a relation RM, except that the statement (cns, D(X)) is decided interactively, and the
verifier has only oracle access to the polynomial D(X). A CSS scheme can be used as a building block in a
PHP, and the result is also a PHP.

Definition 19 (Checkable Subspace Sampling, CSS). A checkable subspace sampling argument over a
field F defines some Q,m ∈ N, a set of admissible matrices M, a vector of polynomials β(X) ∈ (F[X])m, a
coinspace C, a sampling function Smp : C → FQ, and a relation:

RCSS,F =

{ (
M, cns, D(X)

)
: M ∈M ⊂ FQ×m, D(X) ∈ F[X], cns ∈ C,
s = Smp(cns), and D(X) = s>Mβ(X)

}
.

For any M ∈M, it also defines:

RM =
{(

cns, D(X)
)

:
(
M, cns, D(X)

)
∈ RCSS,F

}
.

It consists of three algorithms:

– ICSS is the indexer: in an offline phase, on input (F,M) returns a setWCSS of n(0) polynomials {p0,j(X)}n(0)j=1 ∈
F[X]. This algorithm is run once for each M.

– Prover and Verifier proceed as in a PHP, namely, the verifier sends field elements to the prover and has
oracle access to the polynomials outputted by both the indexer and the prover; this phase is run in two
different stages:

• Sampling: PCSS and VCSS engage in an interactive protocol. In some round, the verifier sends cns← C,
and the prover replies with D(X) = s>Mβ(X), for s = Smp(cns).

• ProveSampling: PCSS and VCSS engage in another interactive protocol to prove that (cns, D(X)) ∈ RM.

– When the proving phase is concluded, the verifier outputs a bit indicating acceptance or rejection.

The vector β(X) = (β1(X), . . . , βm(X)) defines an encoding of vectors as polynomials: vector v is mapped
to the polynomial v>β(X) =

∑m
i=1 viβi(X). When using a CSS for constructing an argument of membership

in linear spaces as in the next section, we choose a characterization of inner product that is compatible with
Lagrange polynomials. Thus, in this work, βi(X) is defined as λi(X), the ith Lagrange polynomial associated
to some multiplicative subgroup H of F. Still, it also makes sense to consider also CSS arguments for other
polynomial encodings, e.g. the monomial basis or Laurent polynomials. In fact, the CSS argument in the
amortized setting described in Section 7 is an abstraction of the helped mode of Sonic, that was presented
for the encoding with Laurent polynomials.

We require a CSS argument to satisfy the following security definitions:

Perfect Completeness. If both prover and verifier are honest the output of the protocol is 1:

Pr
[
〈PCSS(F,M, cns),VWCSS

CSS (F)〉 = 1
]

= 1.

where the probability is taken over the random coins of prover and verifier.

12

Soundness. A checkable subspace sampling argument (ICSS,PCSS,VCSS) is ε-sound if for all M and any
polynomial time prover P∗CSS:

Pr

[
D∗(X) 6= s>Mβ(X) (cns, D∗(X))← Sampling〈P∗CSS(F,M, cns),VWCSS(F)〉;

s = Smp(cns); 〈P∗CSS(F,M, cns),VWCSS

CSS (F)〉 = 1

]
≤ ε.

The soundness of the CSS argument will ensure that the vector is sampled as specified by the coins of
the verifier so the prover cannot influence its distribution. For a CSS argument to be useful, we additionally
need that distribution induced by the sampling function is sufficiently “good”. This is a geometric property
that can be captured in the Elusive Kernel property defined below.

Definition 20. A CSS argument is ε-elusive kernel6 if

max
t∈FQ,t 6=0

Pr
[
s · t = 0 s = Smp(cns); cns← C

]
≤ ε.

In practice, for most schemes, s is a vector of monomials or Lagrange basis polynomials evaluated at
some point x = cns, and this property is an immediate application of Schwartz-Zippel lemma, so we will not
explicitly prove it for most of our CSS arguments. An exception is the argument of Section 6.

It is useful in some contexts to generalize the definition of CSS arguments to block matrices, that is, to
extend the relation to tuples

(
M, cns,D(X)

)
, where M = (M1, . . . ,Mk) and D(X) = (D1(X), . . . , Dk(X))

and Di(X) = s>Miβ(X), and Mi ∈ FQ×m. This generalization is not necessary if correct sampling is proven
for each block individually, but to save on proof size the proofs might be aggregated in some cases. This
generalization is useful to formalize this technique.

4.1 Linear Arguments from Checkable Subspace Sampling

In this section we build a PHP for the universal relation of membership in linear subspaces:

RLA =
{

(F,W,y) : W ∈ FQ×km,y ∈ Fkm s.t. Wy = 0
}
,

using a CSS scheme as building block. That is, given a vector y, the argument allows to prove membership
in the linear space W⊥ = {y ∈ Fkm : Wy = 0}. Although relation RLA is polynomial-time decidable, it is
not trivial to construct a polynomial holographic proof for it, as the verifier has only an encoding of W and
y.

A standard way to prove that some vector y is in W⊥ is to let the verifier sample a sufficiently random
vector d in the row space of matrix W, and prove y ·d = 0. Naturally, the vector y must be declared before
d is chosen. We follow this strategy to construct a PHP for RLA, except that the vector d is sampled by the
prover itself on input the coins of the verifier through a CSS argument.

As we have seen in Section 2.1, it is natural in our application to proving R1CS to consider matrices in
blocks. Thus, in this section we prove membership in W⊥ where the matrix is written in k blocks of columns,
that is, W = (W1, . . . ,Wk). The vectors y,d ∈ Fkm are also written in blocks as y> = (y>1 , . . . ,y

>
k) and

d> = (d>1 , . . . ,d
>
k).

Each block of W, as well as the vectors y,d can be naturally encoded, respectively, as a vector of
polynomials or a single polynomial multiplying on the right by λ(X). However, we allow for additional
flexibility in the encoding of y: our argument is parameterized by a set of valid witnesses WY and a function
EY : WY → (F[X])k that determines how y is encoded as a polynomial. Thanks to this generalization we
can use the argument as a black-box in our R1CS-lite construction. There, valid witnesses are of the form
(a, b,a ◦ b) and, for efficiency, its encoding will be (A(X) = a>λ(X), B(X) = b>λ(X), A(X)B(X)), which
means that the last element does not need to be sent.

The argument goes as follows. The prover sends a vector of polynomials Y (X) encoding y. The CSS
argument is used to delegate to the prover the sampling of d>i , i = 1, . . . , k in the row space of Wi. Then,

6 The name is inspired by the property of t-elusiveness of [MRV16].

13

the prover sends D(X) together with a proof that y · d = 0. For this inner product argument to work, we
resort to Theorem 2 that guarantees that, if EY is an encoding such that if EY (y) = Y (X), then Yi(hj) = yij ,
the inner product relation holds if and only if the verification equation is satisfied for some Ht(X), Rt(X).

Because of the soundness property of the CSS argument, the prover cannot influence the distribution of
d, which is sampled according to the verifier’s coins. Therefore, if Y (X) passes the test of the verifier, y is
orthogonal to d. By the Elusive Kernel property of the CSS argument, d will be sufficiently random. As it
is sampled after y is declared, this will imply that y is in W⊥.

Offline Phase: ILA(F,W): For i = 1, . . . , k, run the indexer ICSS on input (F,Wi) to obtain the set

WCSSi and output WLA =
⋃k
i=1WCSSi.

Online Phase: PLA: On input a witness y ∈WY ⊂ (Fm)k, output Y (X) = EY (y).

PLA and VLA run in parallel k instances of the CSS argument, with inputs (F,Wi) and F, respectively,
and where the verifier is given oracle access to WCSSi. The output is a set {(cns, Di(X))}ki=1, where cns
are the same for all k instances. Define D(X) = (D1(X), . . . , Dk(X)).

PLA: Outputs Rt(X) ∈ F≤m−2[X], Ht(X) such that

Y (X) ·D(X) = XRt(X) + t(X)Ht(X). (3)

Decision Phase: Accept if and only if (1) deg(Rt) ≤ m− 2, (2) ViCSS accepts (cns, Di(X)), and (3) the
following equation holds:

Y (X) ·D(X) = XRt(X) + t(X)Ht(X).

Fig. 1. Argument for proving membership in W⊥, parameterized by the polynomial encoding EY : WY → F[X]k,
and the set WY ⊂ Fkm.

Theorem 3. When instantiated using a CSS scheme with perfect completeness, and when the encoding
EY : WY → F[X]k satisfies that, if EY (y) = Y (X), then Yi(hj) = yij, the PHP of Fig. 1 has perfect
completeness.

Proof. By definition, D(X) = (s>W1λ(X), . . . , s>Wkλ(X)), for s = Samp(cns). Note that this is because
the k instances of the CSS scheme are run in parallel and the same coins are used to sample each of the
di. Thus, D(X) is the polynomial encoding of d = (s>W1, . . . , s

>Wk) = s>W. Therefore, if y is in W⊥,
d · y = s>Wy = 0. By the characterization of inner product, as explained in Section 3, this implies that
polynomials Ht(X), Rt(X) satisfying the verification equation exist. ut

Theorem 4. Let CSS be ε-sound and ε′-Elusive Kernel, and EY : WY → F[X]k an encoding such that if
EY (y) = Y (X), Yi(hj) = yij. Then, for any polynomial time adversary A against the soundness of PHP of
Fig. 1:

Adv(A) ≤ ε′ + kε.

Further, the PHP satisfies 0-knowledge soundness.

Proof. Let Y ∗(X) = (Y ∗1 (X), . . . , Y ∗k (X)) be the output of a cheating P∗LA and y∗ = (y∗1, . . . ,y
∗
k) the vector

such that Y ∗i (hj) = y∗ij . As a direct consequence of Theorem 2, Y ∗(X) ·D(X) = XRt(X) + t(X)Ht(X) only

if y∗ · d = 0, where d is the unique vector d such that D(X) = (d>1 λ(X), . . . ,d>k λ(X)).
On the other hand, the soundness of the CSS scheme guarantees that, for each i, the result of sampling

Di(X) corresponds to the sample coins sent by the verifier, except with probability ε. Thus, the chances
that the prover can influence the distribution of D(X) so that so that y∗ · d = 0 are at most kε. Excluding
this possibility, a cheating prover can try to craft y∗ in the best possible way to maximize the chance that

14

y∗ ·d = 0. Since d> = s>W, and in a successful attack y∗ /∈W⊥, we can see that this possibility is bounded
by the probability:

max
y∗ /∈W⊥

Pr

 cns← C;
d · y∗ = 0 s = Smp(cns);

d = s>W

 = max
y∗ /∈W⊥

Pr

[
cns← C;

s>Wy∗ = 0 s = Smp(cns)

]

Since s>Wy∗ = s · (Wy∗), and Wy∗ 6= 0, this can be bounded by ε′, by the elusive kernel property of
the CSS scheme.

For knowledge soundness, define the extractor E as the algorithm that runs the prover and, by evaluating
Yi(X) in {hj}mj=1 for all i ∈ [k], recovers y. If the verifier accepts with probability greater than ε′ + kε, then
y is such that Wy = 0 with the same probability. ut

Extension to other polynomial encodings. As mentioned, the construction is specific to the polynomial encod-
ing defined by interpolation. However, the only place where this plays a role is in the check of equation (3).
Now, if the polynomial encoding β(X)> associated to the CSS argument for W was set to be for instance
the monomial basis, i.e. β(X)> = (1, X, . . . ,Xm−1), the argument can be easily modified to still work. It
suffices to choose the “reverse” polynomial encoding for y, that is define Y (X) = (y>1 β̃(X), . . . ,y>k β̃(X)),

where β̃(X)> = (Xm−1, . . . , X, 1), and require the prover to find Rt(X), Ht(X), with Rt(X) of degree at
most m− 2 such that:

Y (X) ·D(X) = Rt(X) +XmHt(X). (4)

Indeed, observe that this check guarantees that Y (X) ·D(X) does not have any term of degree exactly m−1,

and the term of degree m− 1 is exactly
∑k
i=1 yi · di = y · d.

4.2 R1CS-lite from Linear Arguments

In this section we give a PHP for R1CS-lite by combining our linear argument with other well known
techniques. In this section, W is the block matrix defined in Section 2.1. A similar construction for the
generalized relation RW-R1CS can be found in Appendix B.

Offline Phase: Ilite
(
W,F

)
runs ILA(W,F) to obtain a list of polynomials WLA and outputs Wlite =

WLA.

Online Phase: Plite(F,W,x, (a′, b′)) defines a = (1,x,a′), b = (1l, b
′), and computes

A′(X) =

 m∑
j=l+1

ajλj(X)

/tl(X), B′(X) =

 m∑
j=1

bjλj(X)

− 1

/tl(X),

for tl(X) =
∏`
i=1(X − hi). It outputs

(
A′(X), B′(X)

)
.

Vlite and Plite instantiate VWLA

LA (F) and PLA(F,W, (a, b,a ◦ b)). Let Y (X) = (A(X), B(X), A(X)B(X)) be
the polynomials outputted by PLA in the first round.

Decision Phase: Define Cl(X) = λ1(X) +
∑l−1
j=1 xjλj+1(X) and accept if and only if (1) A(X) =

A′(X)tl(X) + Cl(X), (2) B(X) = B′(X)tl(X) + 1, and (3) VLA accepts.

Fig. 2. PHP for R′R1CS-lite from PHP for RLA. The PHP for RLA should be instantiated for WY = {(a, b,a ◦ b) :
a, b ∈ Fm}, E(a, b,a ◦ b) = (a>λ(X), b>λ(X), (a>λ(X))(b>λ(X))).

15

Theorem 5. When instantiated with a complete, sound and knowledge sound linear argument, the PHP of
Fig. 2 satisfies completeness, soundness and knowledge-soundness.

Proof. Completeness follows directly from the definition of A′(X), B′(X), A(X), B(X) and completeness
of the linear argument. Soundness and knowledge soundness hold if the linear argument is sound as well,
because Vlite accepts if VLA accepts, meaning W(̇a, b,a ◦ b)> = 0 and R′R1CS-lite holds, and for extraction it
suffices to use the extractor of the linear argument. ut

4.3 Adding Zero Knowledge

To achieve zero-knowledge, it is common to several works on pairing-based zkSNARKS [CFF+20, CHM+20,
GGPR13] to randomize the polynomial commitment to the witness with a polynomial that is a multiple of
the vanishing polynomial. That is, the commitment to a vector a is A(X) =

∑
aiλi(X) + t(X)h(X), where

t(X), λi(X) are defined as usual, and the coefficients of h(X) are the randomness. In [GGPR13], h(X) can
be constant, since the commitment A(X) in the final argument is evaluated at a single point. In other works
where the commitment needs to support queries at several point values, h(X) needs to be of higher degree.
In Marlin, it is suggested to choose the degree according to the number of oracle queries to maximimize
efficiency, and in Lunar this idea is developed into a fine-grained analysis and a vector with query bounds is
specified for the compiler. Additionally, for this technique, the prover needs to send a masking polynomial
to randomize the polynomial R(X) of the inner product check. The reason is that this polynomial leaks
information about (A(X), B(X), A(X)B(X)) ·D(X) mod t(X).

In this section, we show how to add zero-knowledge to the PHP for R1CS-lite of Section 4.2 without
sending additional polynomials. The approach is natural and a similar technique has also been used in [SZ20].
Let (bA, bB , bRt

, bHt
) be the tuple of bounds on the number of polynomial evaluations seen by the verifier

after compiling for the polynomials A(X), B(X), Rt(X), Ht(X). To commit to a vector y ∈ Fm, we sample
some randomness r ∈ Fn, where n is a function of (bA, bB , bRt , bHt) to be specified (a small constant when
compiling). The cardinal of H is denoted by m̃ in this section. A commitment is defined in the usual way for
the vector (y, r), i.e.

∑m
i=1 yiλi(X) +

∑m+n
i=m+1 riλi(X), and, naturally, we require m + n ≤ m̃. Our idea is

to consider related randomness for A(X), B(X) so that the additional randomness sums to 0 and does not
interfere with the inner product argument. The novel approach is to enforce this relation of the randomness
by adding one additional constraint to W. The marginal cost of this for the prover is minimal. Starting from
the PHP of Fig. 2 we introduce the changes described in Fig. 3.

Offline Phase: For m̃ = m+ n, the matrix of constraints is:

W̃ =

 Im 0m×n 0m×m 0m×n −F 0m×n
0m×m 0m×n Im 0m×n −G 0m×n

0>m 1>n 0>m 1>n 0>m 0>n

Online Phase: Plite samples ra ← Fn, rb ← Fn conditioned on

∑n
i=1 ra,i + rb,i = 0 and uses ã :=

(1,x,a′, ra), b̃ := (1l, b
′, rb), to construct Ã(X) and B̃(X), Ã′(X) and B̃′(X) as before.

Fig. 3. Modification of the PHP for R′R1CS-lite to achieve zero-knowledge. The omitted parts are identical.

Theorem 6. With the modification described in Fig. 3 the PHP of Fig. 2 is perfectly complete, sound,
knowledge-sound, perfect zero-knowledge and (bA, bB , bRt

, bHt
)-bounded honest-verifier zero-knowledge if n ≥(

bA + bB + bRt + bHt + 1
)
/2, and n ≥ max(bA, bB).

Proof. The only difference with the previous argument is the fact that the matrix of constraints has changed,
which is now W̃. For completeness, observe that the additional constraint makes sure that

∑n
i=1 ra,i+ rb,i =

16

0, and an honest prover chooses the randomness such that this holds. On the other hand, the sumcheck
theorem together with this equation guarantee that the randomness does not affect the divisibility at 0 of
(Ã(X), B̃(X), Ã(X)B̃(X)) ·D(X) mod t(X).

For soundness, note that W̃
(
ã>, b̃>, (ã ◦ b̃)>

)
, is equivalent to 1) a = F(a ◦ b), 2) b = G(a ◦ b), and 3)∑n

i=1 ra,i + rb,i = 0, for a := (1,x,a′) b := (1l, b
′). This is because the first two blocks of constraints have

0s in the columns corresponding to ra, rb, and the other way around for the last constraint. Therefore, by
the soundness of the linear argument

∑n
i=1 ra,i + rb,i = 0, and the randomness does not affect divisibility at

0 of (A(X), B(X), A(X)B(X))> ·D(X) mod t(X), so the same reasoning used for the argument of Fig. 2
applies.

Perfect zero-knowledge of the PHP is immediate, as all the messages in the CSS procedure contain only
public information and the rest of the information exchanged are oracle polynomials.

We now prove honest-verifier bounded zero-knowledge. The simulator is similar to [CFF+20](Th. 4.7),
but generalized to the distribution of D(X) induced by the underlying CSS scheme. The simulator gets
access to the random tape of the honest verifier and receives x and the coins of the CSS scheme, as well as
a list of its checks. It creates honestly all the polynomials of the CSS argument, since these are independent
of the witness.

For an oracle query at point γ, the simulator samples uniform random values A′γ , B
′
γ , Rγ,t in F and

declares them, respectively, as A′(γ), B′(γ), Rt(γ). It then defines the rest of the values to be consistent
with them. More precisely, let D(X)> = s>Wλ(X) = (Da(X), Db(X), Dab(X)) be the output of the CSS
argument, which the simulator can compute with the CSS coins. Then, the simulator sets:

Aγ = A′γtl(γ) +

l∑
i=1

xiλi(γ), Bγ = B′γtl(γ) + 1,

pγ = Da(γ)Aγ +Db(γ)Bγ +Dab(γ)AγBγ Htγ = (pγ − γRt,γ)/t(γ),

where Qγ for Q ∈ {A′, B′, Rt, Ht} is declared as Q(γ). The simulator keeps a table of the computed values
to answer consistently the oracle queries.

We now argue that the queries have the same distribution as the evaluations of the prover’s polynomials
if all the queries γ are in F \H. Since the verifier is honest, and |H| is assumed to be a negligible fraction of
the field elements, we can always assume this is the case. In this case, the polynomial encoding of ra, rb acts
as a masking polynomial for A′(X), B′(X), Rt(X), Ht(X) and taking into account that

∑n
i=1 ra,i + rb,i = 0

to have the same distribution it is sufficient that 2n− 1 ≥ bA + bB + bRt
+ bHt

, and n ≥ max(bA + bB), as
stated in the theorem. Therefore, bounded zero-knowledge is proven. ut

4.4 Combining CSS schemes

Since a CSS scheme outputs a linear combination of the rows of a matrix M, different instances of a CSS
scheme can be easily combined with linear operations. More precisely, given a matrix M that can be written as(

M1

M2

)
, we can use a different CSS arguments for each Mi

7 Since all current constructions of CSS arguments

have limitations in terms of the types of matrices they apply to, this opens the door to decomposing the
matrix of constraints into blocks that admit different efficient CSS arguments. For instance, matrices with a
few very dense constraints (i.e. with very few rows with a lot of non-zero entries) and otherwise sparse could
be split to use the scheme for sparse matrices of Section 3 for one part, and the trivial approach (where
one polynomial for each row is computed by the indexer, and the verifier can sample the polynomial D(X)
computing the linear combination itself) for the rest. Alternatively, the extended Vandermonde approach
of Section 6 could also be used for the very dense rows. That is, one reason to divide the matrix M into
blocks is to have a broader class of admissible matrices. Another reason is efficiency, since if a block that is
either 0 or the identity matrix, the verifier can open the polynomial D(X) itself, saving on the number of

7 The naive approach would run both CSS arguments in parallel, but savings are possible by batching the proofs.

17

polynomials that need to be sent. More specifically, for our final construction, we will often split a matrix

into two blocks of m rows, M =

(
M1

M2

)
, use the same CSS argument for each matrix with the same coins,

and combine them to save on communication. More precisely, if s = Smp(cns), and D1(X) = s>M1λ(X)
and D2(X) = s>M2λ(X) are the polynomials associated to M1,M2, we will modify the CSS argument so
that it sends D1(X) + zD2(X) for some challenge z chosen by the verifier, instead of D1(X) and D2(X)
individually. Note that D1(X) + zD2(X) = (s>, zs>)Mλ(X), that is, this corresponds to a CSS argument
where the sampling coefficients depend on z also.

We note that this cannot be done generically. The success of this technique depends on the underlying
CSS argument and the type of admissible matrices. Intuitively, this modification corresponds to implicitly
constructing a CSS argument for the matrix M1 +zM2, so it is necessary that: a) the polynomials computed
by the indexer of the CSS argument for M1,M2 can be combined, upon receiving the challenge z, to the CSS
indexer polynomials of M1 + zM2, and b) that M1 + zM2 is an admissible matrix for this CSS argument.
For instance, if M1,M2 has K non-zero entries each, and the admissible matrices of a CSS instance must
have at most K non-zero entries, then M1 + zM2 is not generally an admissible matrix. We will be using
this optimization for our final PHP for sparse matrices, and we will see there that these conditions are met
in this case.

5 Checkable Subspace Sampling Arguments for Sparse Matrices

Given the results of the previous sections, for our R1CS-lite argument it is sufficient to design a CSS scheme
for matrices M ∈ Fm×m and then use it on all the blocks of W. In this section, we give several novel CSS
arguments for different types of square sparse matrices.

We consider two disjoint sets of roots of unity, H,K of degree m and K, respectively. For H we use the
notation defined in Section 3. The elements of K are assumed to have some canonical order, and we use k`
for the `th element in K, µ`(X) for the `th Lagrangian interpolation polynomial associated to K, and u(X)
for the vanishing polynomial.

Matrices M ∈ Fm×m can be naturally encoded as a bivariate polynomial as P (X,Y) = α(Y)>Mβ(X),
for some α(Y) ∈ F[Y]m,β(X) ∈ F[X]m. Let m>i be the ith row of M, and Pi(X) = m>i β(X). Then,

P (X,x) = α(x)>Mβ(X) =

m∑
i=1

αi(x)Pi(X).

That is, the polynomial P (X,x) is a linear combination of the polynomials associated to the rows of M via
the encoding defined by β(X), with coefficients αi(x). This suggests to define a CSS scheme where, in the
sampling phase, the verifier sends the challenge x and the prover replies with D(X) = P (X,x), and, in the
proving phase, the prover convinces the verifier that D(X) is correctly sampled from coins x. This approach
appears, implicitly or explicitly, in Sonic and most follow-up work we are aware of.

In Sonic, α(Y),β(X) are vectors of Laurent polynomials. In Marlin, Lunar and in this work, we set
α(Y) = λ(Y), and β(X) = λ(X). The choice of β(X) is to make the encoding compatible with the inner
product defined by the sumcheck, and the choice of α(Y) is necessary for the techniques used in the proving
phase of the CSS schemes that will be detailed in this Section.

For the proving phase, the common strategy is to follow the general template introduced in Sonic: the
verifier samples a challenge y ∈ F, checks that D(y) is equal to a value σ sent by the prover, and that
σ = P (y, x) (through what is called a signature of correct computation, as in [PST13]). This proves that
D(X) = P (X,x). The last one is the challenging step, and is in fact, the main technical novelty of each of
the mentioned previous works. In all of them, this is achieved by restricting the sets of matrices M to have a
special structure: in Sonic they need to be sums of permutation matrices, and in Marlin, as later also Lunar,
arbitrary matrices with at most K non-zero entries.

This section is organized as follows. We start by giving an overview of our new techniques in Section 5.1.
In Section 5.2, we explain a basic CSS scheme, that works only for simple matrices, i.e., matrices with at

18

most one non-zero element per column. In Section 5.3, we see how to compose these checks to achieve a
CSS argument for arbitrary sparse matrices M with at most K non-zero elements, where K is the size of
a multiplicative subgroup K ⊂ F. In Section 5.4, we give an extension of the basic construction to matrices
with at most V non-zero elements per column, for some small bound V . This technique is used in Section 5.5
to generalize the second argument to matrices that can be written as a sum of V matrices of sparsity K,
resulting on a scheme for matrices with sparsity V K that uses the same multiplicative subgroup and does
not increase the communication complexity with respect to the one for matrices with sparsity K. Finally, in
Section 5.6 we observe that our results also apply to low tensor rank matrices.

5.1 Overview of New Techniques

Our main result of this section is a CSS scheme for any matrix M = (mi,j) ∈ Fm×m of at most K non-zero
entries. Assuming the non-zero entries are ordered, this matrix can be represented, as proposed in Marlin,
by three functions v : K → F, r : K → [m], c : K → [m] such that P (X,Y) =

∑K
`=1 v(k`)λr(k`)(Y)λc(k`)(X),

where the `th non-zero entry is v(k`) = mr(k`),c(k`). If the matrix has less than K non-zero entries v(k`) = 0,
for ` = |M|+ 1, . . . ,K, and r(k`), c(k`) are defined arbitrarily. We borrow this representation but design our
own CSS scheme by following a “linearization strategy”.

To see that P (y, x) is correctly evaluated, we observe that it can be written as:

P (y, x) =
(
λr(k1)(x), . . . , λr(kK)(x)

)
·
(
v(k1)λc(k1)(y), . . . , v(kK)λc(kK)(y)

)
.

We define low degree extensions of each of these vectors respectively as:

ex(X) =

K∑
`=1

λr(k`)(x)µ`(X), ey(X) =

K∑
`=1

v(k`)λc(k`)(y)µ`(X).

If the prover can convince the verifier that ex(X), ey(X) are correctly computed, then it can show that
P (y, x) = σ by using the inner product argument of Section 3 to prove that the sum of ex(X)ey(X) mod t(X)
at K is σ.

Observe that ex(X) = λ(x)>Mxµ(X) and ey(X) = λ(y)>Myµ(X), for some matrices Mx,My with at
most one non-zero element per column. To prove they are correctly computed it suffices to design a CSS
argument for these simple matrices. This can be done in a much simpler way than in Marlin (and as in Lunar,
that uses a similar technique), who prove directly that a low degree extension of ex(X)ey(X) is correctly
computed (intuitively, theirs is a quadratic check that requires the indexer to publish more information, as
verifiers can only do linear operations in the polynomials output by it). Still, our technique is similar to

theirs: given an arbitrary polynomial ex(X) =
∑K
`=1 v(k`)λf(k`)(x)µ`(X), for some function f : K→ [m], we

can “complete” the Lagrange λf(k`)(x) with the missing term (x − hf(k`)) to get the vanishing polynomial
t(x). The key insight is that the low degree extension of these “completing terms” is x − v1(X), where

v1(X) =
∑K
`=1 hf(k`)µ`(X) can be computed by the indexer.

The encoding for sparse matrices requires K to be at least |M|, and generating a field with this large
multiplicative subgroup can be a problem. We consider a generalization to matrices M of a special form with
sparsity KV , for any V ∈ N. The interesting point is that communication complexity does not grow with V ,
and only the number of indexer polynomials grows (as 2V + 2). This generalization is constructed from the
argument for sums of basic matrices presented in Section 5.4.

We stress the importance of the linearization step: it not only allows for a simple explanation of underlying
techniques for the proving phase, but also for generalizations such as the ones in Sections 5.4, 5.5 and 5.6. The
argument for basic matrices is also the key to our most efficient construction, as discussed in Appendix C.

5.2 CSS Argument for Simple Matrices

Our basic building block is a CSS argument for matrices M = (mij) ∈ Fm×K with at most one non-zero value
in each column, in particular, |M| ≤ K. We define two functions associated to M, v : K → F, f : K → [m].

19

Given an element k` ∈ K, v(k`) = mf(k`),` 6= 0, i.e., function v outputs the only non zero value of column `
and f the corresponding row; if such a value does not exist set v(k`) = 0 and f(k`) arbitrarily. We define the
polynomial P (X,Y) such that D(X) = P (X,x) as P (X,Y) = λ(Y)>Mµ(X). Observe that, by definition

of v and f, P (X,Y) =
∑K
`=1 v(k`)λf(k`)(Y)µ`(X).

Offline Phase: ICSS
(
F,M

)
outputs WCSS = {v1(X), v2(X)}, where

v1(X) =

K∑
`=1

hf(k`)µ`(X), v2(X) = m−1
K∑
`=1

v(k`)hf(k`)µ`(X).

Online Phase: Sampling: VCSS outputs x← F and PCSS sends D(X) = P (X,x). ProveSampling: PCSS finds
and outputs Hu(X) such that

D(X)
(
x− v1(X)

)
= t(x)v2(X) +Hu(X)u(X)

Decision Phase: Accept if and only if (1) degD(X) ≤ K − 1, and (2) D(X)
(
x − v1(X)

)
= t(x)v2(X) +

Hu(X)u(X).

Fig. 4. A simple CSS scheme for matrices with at most one non-zero element per column.

Theorem 7. The argument of Fig. 4 satisfies completeness and perfect soundness.

Proof. When evaluated in any k` ∈ K, the right side of the verification equation is t(x)v2(k`) = t(x)v(k`)hf(k`)m
−1.

Completeness follows from the fact that the left side is:

D(k`)(x− v1(k`)) =
(
v(k`)λf(k`)(x)

)(
x− hf(k`)

)
= t(x)v(k`)m

−1hf(k`).

For soundness, note that the degree of D(X) is at most K − 1 and that the left side of the verification is
D(k`)(x − v1(k`)), so D(k`) = t(x)v(k`)m

−1hf(k`)(x − hf(k`))
−1 = v(k`)λf(k`), for all k` ∈ K. Thus, D(X) =∑K

`=1 v(k`)λf(k`)µ`(X). ut

5.3 CSS argument for Sparse Matrices

In this section, we present a CSS argument for matrices M that are sparse but without any restriction on the
non-zero entries per column. We assume a set of roots of unity K such that |M| ≤ K and define P (X,Y) =∑K
`=1 v(k`)λr(k`)(Y)λc(k`)(X). As explained in the overview, P (y, x) can be written as the inner product of

two vectors that depend only on x and y, and the low degree extensions of these vectors, ex(X), ey(X), are
nothing but the encodings of new matrices Mx and My in Fm×K that have at most one non-zero element
per column, so the basic CSS of Section 5.2 can be used to prove correctness.

Theorem 8. The argument of Fig. 5 satisfies completeness and (2K + 1)/|F|-soundness.

Proof. Completeness follows immediately and thus we only prove soundness. Although it does so in a batched
form, the prover is showing that the following equations are satisfied,

ex(X)(x− vr(X)) = t(x)m−1vr(X) +Hu,x(X)u(X)

ey(X)(y − v1,c(X)) = t(y)v2,c(X) +Hu,y(X)u(X)

Kex(X)ey(X)− σ = XRu(X) + u(X)Hu,x,y(X),

Now, since all the left terms of the equations are defined before the verifier sends z, by the Schwartz-Zippel
lemma, with all but probability 3/|F|, the verifier accepts if and only suchHu,x(X), Hu,y(X), Hu,x,y(X), Ru(X)
exist.

20

Assuming they do, the rest of the proof is a consequence of (1) soundness of the protocol in Fig. 4, which
implies that ex(X), ey(X) correspond to the correct polynomials modulo u(X), and (2) Lemma 2 (see below)
shows that if the last equation is satisfied, and ex(X), ey(X) coincide with the honest polynomials modulo
u(X), then σ = P (y, x). Because the prover sends D(X)sma before receiving y and D(y) = σ, from the
Schwartz-Zippel lemma we have that, except with negligible probability, P (X,x) = D(X) and the argument
is sound. ut

Lemma 2. Given ex(X), ey(X) such that ex(X) =
∑K
`=1 λr(k`)(x)µ`(X) and ey(X) =

∑K
`=1 v(k`)λc(k`)(y)µ`(X),

P (y, x) =
∑K
`=1 v(k`)λc(k`)(y)λr(k`)(x) = σ if and only if there exist polynomials Ru(X) ∈ F≤m−2[X], Hu,x,y(X)

such that:
ex(X)ey(X)− σ/K = XRu(X) +Hu,x,y(X)u(X).

Proof. Note that ex(X)ey(X) =
K∑̀
=1

v(k`)λc(k`)(y)λr(k`)(x)µ`(X) mod u(X). By the univariate sumcheck

(Lemma 1), ex(X)ey(X)− σ/K is divisible by X if and only if P (y, x) = σ, which concludes the proof. ut

Offline Phase: ICSS outputs WCSS =
(
vr(X), v1,c(X), v2,c(X)

)
, where:

vr(X) =

K∑
`=1

hr(k`)µ`(X),

v1,c(X) =

K∑
`=1

hc(k`)µ`(X), v2,c(X) = m−1
K∑
`=1

v(k`)hc(k`)µ`(X).

Online Phase: Sampling: VCSS sends x ← F, and P outputs D(X) = P (X,x), for P (X,Y) =
K∑̀
=1

v(k`)λr(k`)(Y)λc(k`)(X).

ProveSampling: VCSS sends y ← F and PCSS outputs σ = D(y) and ex(X), ey(X), where ex(X) =∑K
`=1 λr(k`)(x)µ`(X), ey(X) =

∑K
`=1 v(k`)λc(k`)(y)µ`(X), VCSS sends z ← F and PCSS computes Hu,x(X), Hu,y(X),

Ru(X), Hu,x,y(X) such that:

ex(X)(x− vr(X)) = m−1t(x)vr(X) +Hu,x(X)u(X)

ey(X)(y − v1,c(X)) = t(y)v2,c(X) +Hu,y(X)u(X)

Kex(X)ey(X)− σ = XRu(X) + u(X)Hu,x,y(X),

It also defines Hu(X) = Hu,x,y(X) + zHu,x(X) + z2Hu,y(X), and outputs
(
Ru(X), Hu(X)

)
.

Decision Phase: Accept if and only if (1) deg(Ru) ≤ K − 2, (2) D(y) = σ, and (3) for ix(X) = (x − vr(X)),
iy(X) = (y − v1,c(X))

(ex(X) + z2iy(X))(ey(X) + zix(X))− z3ix(X)iy(X)

− z2t(y)v2,c(X)− σ/K − zt(x)m−1vr(X) = XRu(X) +Hu(X)u(X).

Fig. 5. CSS argument for M, with K such that |M| ≤ |K|.

5.4 CSS Argument for Sums of Basic Matrices

In this section, we use M for a matrix in Fm×K that can be written as
∑V
i=1 Mi, with each Mi having at

most one non-zero element in each column. We define two functions associated to each Mi, vi : K → F,
fi : K → [m] as in Section 5.2. This type of matrices will be used to design a generalization of the CSS

21

argument for sums of sparse matrices in Section 5.5. Also, in Appendix C we use this argument in the
context where M is a matrix in FK×m. In that case, the role of the multiplicative subgroups K,H should be
inversed.

Define P (X,Y) = λ(Y)>Mµ(X), andD(X) = P (X,x). Observe that P (X,Y) =
∑V
i=1

∑K
`=1 vi(k`)λfi(k`)(Y)µ`(X).

Let S` = {fi(k`) : i ∈ [V]}, and Sc` = [K] − S`. The intuition is that, since there are at most V non zero
vi(k`) for each `, we can factor as:

P (k`, x) =

V∑
i=1

vi(k`)λfi(k`)(x) =
∏
s∈Sc

`

(x− hs)R`(x),

where R`(X) is a polynomial of degree V . So, to “complete” P (k`, x) to be a multiple of t(x), we need to
multiply it by

∏
s∈S`

(x−hs), and the result will be t(x)R`(x). The trick is that Î`(Y) =
∏
s∈S`

(Y −hs), and
R`(X) are polynomials of degrees V , V −1, respectively. Thus, if the indexer publishes the coefficients of these
polynomials in the monomial basis, they can be reconstructed by the verifier with coefficients 1, x, . . . , xV .

Offline Phase: ICSS
(
F,M

)
: Define the polynomials R̂`(Y), Î`(Y), and its coefficients R̂`j , Î`j :

R̂`(Y) =
1

m

V∑
i=1

vi(k`)hfi(k`)
∏

s∈S`−{fi(k`)}

(Y − hs) =

V−1∑
j=0

R̂`jY
j ,

Î`(Y) =
∏
s∈S`

(Y − hs) =

V∑
j=0

Î`jY
j .

Define

vR̂j (X) =

K∑
`=1

R̂`jµ`(X), vÎj (X) =

K∑
`=1

Î`jµ`(X).

Output WCSS =
{
{vÎj (X)}Vj=0, {vR̂j (X)}V−1

j=0

}
.

Online Phase: Sampling: VCSS outputs x← F and PCSS computes D(X) = P (X,x).

ProveSampling: PCSS finds and outputs Hu(X) such that, if R̂x(X) =
∑V−1
j=0 xjvR̂j (X), and Îx(X) =∑V

j=0 x
jvÎj (X),

D(X)Îx(X) = t(x)R̂x(X) +Hu(X)u(X).

Decision Phase: Accept if and only if (1) deg(D) ≤ K − 1, and (2) D(X)Îx(X) = t(x)R̂x(X) +Hu(X)u(X).

Fig. 6. A CSS scheme for matrices with at most V non-zero elements per column.

Theorem 9. The argument of Fig. 6 satisfies completeness and perfect soundness.

Proof. When evaluated in any k` ∈ K, the right side of the verification equation is:

t(x)R̂x(x) =
t(x)

m

V∑
i=1

vi(k`)hfi(k`)
∏

s∈S`−{fi(k`)}

(x− hs)

=

V∑
i=1

vi(k`)
hfi(k`)
m

t(x)

x− hfi(k`)

∏
s∈S`

(x− hs) =
∏
s∈S`

(x− hs)
V∑
i=1

vi(k`)λfi(k`)(x).

The left side of the equation is D(k`)Îx(k`) =
(∑V

i=1 vi(k`)λfi(k`)(x)
)(∏

s∈S`
(x−hs)

)
, so completeness is

immediate. For soundness, if the verifier accepts D(X), then D(k`)Îx(k`) = t(x)R̂x(k`) and Îx(k`) = Î`(x),

22

therefore:

D(k`) = Î`(x)−1t(x)R̂`(x) =
(∏
s∈Sc

`

(x− hs)
)
R̂x(x) =

V∑
i=1

vi(k`)λfi(k`)(x).

We conclude that D(X) = P (X,x) mod u(X). Since both have degree at most K − 1, soundness is proven.
ut

5.5 CSS Argument for Sums of Sparse Matrices

The argument for general sparse matrices of last section can be easily generalized without increasing the
communication complexity to any matrix M̃ such that M̃ =

∑V
i=1 M̃i, where there exists one function

r : K → [m], and, for each i, two functions ci : K → [m], and vi : K → F, such that: λ(X)>M̃iλ(Y) =

P̃i(X,Y) =
∑K
`=1 vi(k`)λr(k`)(Y)λci(k`)(X),

Choosing the row and the column function smartly, this can cover many sparse matrices with KV non-
zero entries, considerably increasing the expressiveness of the CSS argument. For this generalization, we
observe that if P̃ (X,Y) =

∑V
i=1 P̃i(X,Y), then

P̃ (y, x) =
(
λr(k1)(x), . . . , λr(kK)(x)

)
·
V∑
i=1

(
vi(k1)λci(k1)(y), . . . , vi(kK)λci(kK)(y)

)
.

We can define ex(X) as Section 5.3, and ey(X) =
∑V
i=1

∑K
`=1 vi(k`)λci(k`)(y)µ`(X). Thus, ey(X) = λ(Y)>Myµ(X),

where My is a matrix with at most V non-zero entries in each column. The CSS is constructed as in the
one for sparse matrices of Section 5.3, except that to prove that ey(X) is correctly sampled, we use the
CSS for sums of basic matrices of Section 5.4. Note that this change does not represent an increase in the
communication complexity with respect to Section 5.3, only in the SRS size.

5.6 Extension to Low Tensor Rank Matrices

Similar techniques to the ones in Section 5.1 can be used to construct a CSS scheme for matrices that are
not sparse but for which a representation of low tensor rank is known. A matrix M ∈ Fm×m has tensor rank
r if there exist vectors αi,βi ∈ Fm, i ∈ [r] such that M =

∑r
i=1αiβ

>
i . The main observation is that, in this

case, P (y, x) = λ(x)>Mλ(y) =
∑
i(λ(x)>αi) · (β>i λ(y)). For each i, we can compute low degree extensions

of (λ(x)>αi) and (λ(y)β>i) as before (but taking K = H), and prove correctness with the basic CSS scheme
of Section 5.2. Then, we can use the sumcheck theorem to see that σx,i = λ(x)>αi, and σy,i = β>i λ(y), and
check P (y, x) =

∑r
i=1 σx,iσy,i. Naturally, the communication complexity depends on the tensor rank.

There is no reason to expect that in practice the tensor rank will be low and, further, in general it is hard
to compute. But we think it is of theoretical value to note that sparsity is not always the key for building
efficient CSS schemes.

6 A Simple CSS: Extended Vandermonde Sampling

The constructions discussed in the previous section impose (once the finite field is fixed) some conditions of
the type of admissible matrices considered by the CSS scheme. For many practical use cases, this does not
seem to be a limitation. However, regardless of the types of constraints that appear in applications so far,
we think it is interesting to explore ways of constructing CSS arguments for more general matrices both for
future applications and for theoretical understanding.

The most trivial CSS scheme for a matrix M ∈ FQ×m works as follows: indexer sends Q oracle poly-
nomials, one for each row, as Pi(X) =

∑m
j=1mijλj(X). The verifier samples x ← F, and both prover and

verifier compute the same polynomial D(X) =
∑Q
i=1 x

i−1Pi(X), the verifier only accepts if the prover sends
the same D(X) it computed itself. This “Vandermonde Sampling” of polynomials associated with the row

23

space of M requires WCSS size and prover work to be linear in Q. When using this argument as part of a
zkSNARK, the verifier will be linear in the circuit size, which is completely impractical in most scenarios.

Below, we introduce a simple extension of the “Vandermonde sampling” technique, but trading memory
for verifier work. This is impractical if M is the matrix that encodes the circuit’s affine constraints, as Q ≈ m.
However, since this CSS scheme works for any arbitrary M, it is interesting to combine it as explained in
Section 4.4 with other approaches: for example, this CSS argument can be used to encode a few very dense
constraints, and the approach in Section 5.3 can be used for the rest.

The argument depends on two parameters J, `: J = |J | is the number of exponentiations that the verifier
does, and ` defines the size of the SRS. As we will prove, the argument is Elusive Kernel with probability

ε =

(
Q

Q+ `

)J
. Fixing the soundness error to some λ, one can derive a trade-off between the size of J, `.

Taking ` as some constant multiple of Q, for having low verifier work, indexer work would be O(Qm+Q2)
and verifier memory O(Q). Again, this only makes sense when Q represents some small set of constraints.

Offline Phase: ICSS(F,M, J, `) : For all i ∈ [Q], defines the polynomials Pi(X) =
m∑
j=1

mijλj(X). For

i ∈ [`], it defines PQ+i(X) =
Q∑
j=1

ij−1Pj(X). It outputs WCSS = {P1(X), . . . , PQ+`(X)}.

Online Phase: VCSS samples x ← F and a set of J indices J ⊂ [Q + `]. PCSS computes and outputs
D(X) =

∑
ij∈J

xj−1Pij (X).

Fig. 7. CSS argument with verifier sampling

The prover does not need to send the polynomial D(X) as it is computed by the verifier, and in the
decision phase the verifier will always accept, so we omit it.

Theorem 10. The argument of Fig. 7 is perfectly complete, perfectly sound and ε-Elusive Kernel, for ε =

J

|F|
+

(
Q

Q+ `

)J
.

Proof. The verifier samples D(X) on its own and thus completeness and soundness follow immediately. On
the other hand, the probability that y∗ is not orthogonal to M but it is orthogonal to

∑
ij∈J x

j−1Pij (X)

can be upper bounded by standard techniques by J
|F| +

(
Q
Q+`

)J
. Indeed, there are two options, a) either it

is orthogonal to all the vectors encoded in {Pij (X)}ij∈J , or b) it is not. The probability of b) is at most J
|F|

by Schwartz-Zippel. For a), note that if y∗ is not orthogonal to M, it can satisfy at most Q− 1 constraints
out of Q + `. Since the set J is chosen independently of y∗, the probability that the set J coincides with
constraints mij such that y ·mij = 0 is at most:(

Q−1
J

)(
Q+`
J

) ≤ (Q

Q+ `

)J
.

ut

7 Amortized CSS argument

In this section we present a CSS argument that works only in the amortized setting as considered in Sonic
[MBKM19]. The construction is basically the protocol in the named work, but for a bivariate polynomial in
the Lagrange basis rather than the basis of monomials.

24

In the amortized setting, the same verifier aims to check the output of different provers PCSS in Sampling.
The cost of the verification is linear in m and thus the scheme is only recommended when the number of
proofs is linear in m as well. The construction is not holographic due to the fact that the verifier needs to
read the matrix M that describes the relation and thus the indexer is trivial.

Still, in the ProveSampling algorithm, the verifier has oracle access to a set D = {D1(X), . . . , Dt(X)} of
polynomials where each Ds(X) is the output of a different execution of Sampling with verifier’s challenge
xs. Following the original definition, the verifier also has oracle access to the polynomials outputted by PCSS

(instantiated by what in Sonic is called a helper) in ProveSampling.

Online Phase: VCSS samples xs ← F. PCSS defines P (X,Y) =
m∑
i=1

λi(Y)Pi(X), for Pi(X) =

m∑
j=1

mijλj(X). It outputs Ds(X) = P (X,xs).

Online Helped Phase: VCSS chooses u1 ← F. PCSS outputs D̃(X) = P (u1, X).

Decision Phase: Chooses u2 ← F, and calculate P (u1, u2). Accept if and only if D̃(u2) = P (u1, u2)
and, for every {xs}ts=1, D̃(xs) = Ds(u1).

Fig. 8. Amortized CSS scheme from [MBKM19].

References

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A subversion-resistant SNARK.
In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS,
pages 3–33, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany. 5

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104, Dallas, TX, USA, October 31 –
November 2, 2017. ACM Press. 1, 5

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bul-
letproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and
Privacy, pages 315–334, San Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press. 1, 5

BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046, 2018. https:

//eprint.iacr.org/2018/046. 1, 5
BBHR19. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge with no

trusted setup. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 701–732, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany. 1

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357, Vienna,
Austria, May 8–12, 2016. Springer, Heidelberg, Germany. 1, 3, 5

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128, Darmstadt, Germany, May 19–23,
2019. Springer, Heidelberg, Germany. 2, 3, 5, 10, 11

BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60, Beijing, China,
October 31 – November 3, 2016. Springer, Heidelberg, Germany. 4

25

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In 20th ACM STOC, pages 103–112, Chicago, IL, USA, May 2–4, 1988. ACM
Press. 1

BFS20. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706,
Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany. 2

BG12. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a shuffle. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280,
Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany. 29, 33

BGG19. Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for constructing the public
parameters of the pinocchio zk-SNARK. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark,
Andrea Bracciali, Federico Pintore, and Massimiliano Sala, editors, FC 2018 Workshops, volume 10958
of LNCS, pages 64–77, Nieuwpoort, Curaçao, March 2, 2019. Springer, Heidelberg, Germany. 1

BGM17. Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-SNARK parameters
in the random beacon model. Cryptology ePrint Archive, Report 2017/1050, 2017. http://eprint.

iacr.org/2017/1050. 1

CFF+20. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and Hadrián Rodŕıguez. Lunar: a toolbox
for more efficient universal and updatable zkSNARKs and commit-and-prove extensions. Cryptology
ePrint Archive, Report 2020/1069, 2020. https://eprint.iacr.org/2020/1069. 2, 3, 4, 5, 6, 7, 11, 16,
17, 31, 34

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P. Ward.
Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768, Zagreb, Croatia, May 10–14,
2020. Springer, Heidelberg, Germany. 2, 3, 4, 7, 11, 16

COS20. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive
proofs from holography. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 769–793, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany. 1

DRZ20. Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis. Updateable inner product argument with log-
arithmic verifier and applications. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis
Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 527–557, Edinburgh, UK, May 4–7, 2020.
Springer, Heidelberg, Germany. 2

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 33–62, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany. 5, 9

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 315–347, Rio de Janeiro, Brazil, March 25–29, 2018.
Springer, Heidelberg, Germany. 5

Gab19. Ariel Gabizon. AuroraLight: Improved prover efficiency and SRS size in a sonic-like system. Cryptology
ePrint Archive, Report 2019/601, 2019. https://eprint.iacr.org/2019/601. 2

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 626–645, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.
1, 11, 16

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and universal
common reference strings with applications to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728, Santa Barbara, CA, USA,
August 19–23, 2018. Springer, Heidelberg, Germany. 1, 2, 5

GMMM18. Sanjam Garg, Mohammad Mahmoody, Daniel Masny, and Izaak Meckler. On the round complexity of
OT extension. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume
10993 of LNCS, pages 545–574, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg,
Germany. 7

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proofs. In
SIAM Journal on Computing, pages 186–208, 1989. 1

Gro09. Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 192–208, Santa Barbara, CA, USA, August 16–20, 2009.
Springer, Heidelberg, Germany. 3

26

http://eprint.iacr.org/2017/1050
http://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2020/1069
https://eprint.iacr.org/2019/601

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340, Singapore, December 5–9, 2010. Springer,
Heidelberg, Germany. 1

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326, Vienna, Austria,
May 8–12, 2016. Springer, Heidelberg, Germany. 1

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019. https://eprint.iacr.org/2019/953. 2, 3, 4, 7, 28, 35

Ish20. Yuval Ishai. Zero-knowledge proofs from information theoretic proof systems. In Zkproofs Blog,
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/, 2020. 2

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20, Bengalore,
India, December 1–5, 2013. Springer, Heidelberg, Germany. 3

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th ACM
STOC, pages 723–732, Victoria, BC, Canada, May 4–6, 1992. ACM Press. 1

KPV19. Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transparent SNARKs from list
polynomial commitment IOPs. Cryptology ePrint Archive, Report 2019/1400, 2019. https://eprint.

iacr.org/2019/1400. 2

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and
their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194,
Singapore, December 5–9, 2010. Springer, Heidelberg, Germany. 2, 5

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge SNARKs
from linear-size universal and updatable structured reference strings. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press,
November 11–15, 2019. 2, 3, 4, 25

Mic00. Silvio Micali. The knowledge complexity of interactive proofs. In SIAM Journal on Computing 30 (4),
pages 1253–1298, 2000. 1

MRV16. Paz Morillo, Carla Ràfols, and Jorge Luis Villar. The kernel matrix Diffie-Hellman assumption. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
729–758, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany. 13

PST13. Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct computation. In
Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 222–242, Tokyo, Japan, March 3–6, 2013.
Springer, Heidelberg, Germany. 3, 18

Set20. Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages
704–737, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany. 2, 5

SZ20. Alan Szepieniec and Yuncong Zhang. Polynomial iops for linear algebra relations. Cryptology ePrint
Archive, Report 2020/1022, 2020. https://eprint.iacr.org/2020/1022. 2, 4, 16

WTs+18. Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-efficient zk-
SNARKs without trusted setup. In 2018 IEEE Symposium on Security and Privacy, pages 926–943, San
Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press. 1, 5

XZZ+19. Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song. Libra:
Succinct zero-knowledge proofs with optimal prover computation. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 733–764, Santa Barbara,
CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany. 1

A A Generalized Constraint System

In this section we present a constraint system that, inspired by Plonk, generalizes R1CS and R1CS-lite as
introduced in Section 2.1. We can extend our algebraic framework to this relation to build modularly a
(zk)SNARK from an argument for linear relations.

Consider the following universal relation, that depends on a set M of admissible matrices:

27

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2020/1022

RW-R1CS =

(R, x,w) :=

(
(F,m, l, lb,W, qM , qL, qR, qC),x, (a′, b′)

)
: W ∈M ⊂ FQ×3m,

qγ ∈ Fm for γ ∈ {L,R,M,C},x ∈ Fl−1,a′ ∈ Fm−l, b′ ∈ Fm−lb and for a := (1,x,a′), b = (1lb , b
′)

W

 a
b

qM ◦ a ◦ b+ qL ◦ a+ qR ◦ b+ qC

 = 0

 .

The relation is called RW-R1CS for weighted-R1CS. Indeed, with this arithmetization, the vector c of
outputs is implicitly set to be a weighted combination of a, b,a ◦ b and the constant 1.

Below, we show how RW-R1CS captures some existing universal relations, for different types of admissible
matrices. In Appendix B, we present a PHP for RW-R1CS that is a straightforward generalization of the one in
Section 4.2 and also builds on an argument for linear relations. Such an argument can be built generically from
a CSS Argument (as explained in Section 4.1), as long as the argument has compatible admissible matrices.
In Appendix C, we give details on different choices of CSS schemes. Finally, in Appendix D, we expand
on the compilation step and the efficiency of the resulting possible zkSNARKs. Finally, in Appendix F, we
present our most efficient construction, Basilisk, rolled-out.

R1CS-lite. Note that for the case where l = lb, qM = 1, qL = qR = qC = 0, and W =

(
I 0 −F
0 I −G

)
for matrices F,G in Fm×m containing the coefficients for the linear constraints of the circuit, the relation
described above corresponds to R1CS-lite. The set of admissible matrices will depend on the CSS to be used,
for instance, it should be the set of matrices W of the form given above and such that F,G have at most K
non-zero entries when the scheme of Section 5.3 is applied. We give one instantiation of a CSS scheme for
such matrices in Fig. 10.

Plonk’s Constraint System. To see that the constraint system presented in Plonk [GWC19] is a particular
case of RW-R1CS, we first note that the former can be written the following form:

RPlonk =

(R, x,w) :=

(
(F,m, l,P, qL, qR, qO, qM , qC),x, (a′, b, c)) : P ∈ F3m×3m a permutation matrix,
qγ ∈ Fm for γ ∈ {L,R,O,M,C},x ∈ Fl−1,a′ ∈ Fm−l,a = (1,x,a′),

(1) P

ab
c

 =

ab
c

 , and (2) qL ◦ a+ qR ◦ b+ qO ◦ c+ qM ◦ a ◦ b+ qC = 0

 .

The first equation is a “copy constraint” approach that takes care of consistency among wires. The second
equation represents the different types of gates. When writing Circuit Satisfiability as satisfiability of this
constraint system, m represents the number of additive and multiplicative gates.

This relation is a rewriting of the one considered in Plonk. Indeed, the only difference is that we require a
to have the public input in the first positions, instead of forcing this in Eq.(2). Still, this is only a reformulation
and does not modify the constraint system itself.

Now, we show that RW-R1CS can encode RPlonk
8 when the set of admissible matrices includes P − I ,

where P is a permutation and I the identity matrix, and when we restrict ourselves to relations R such that
qO = −1. Indeed, it suffices to define W = P− I, and observe that if Eq.(2) in RPlonk is satisfied, this means
that

qL ◦ a+ qR ◦ b+ qM ◦ a ◦ b+ qC = c.

The restriction that qO = −1 limits the expressiveness of the constraint system, but still captures all the
constraint types described in Plonk, as we argue next.

8 We warn the reader familiar with Plonk that, to be consistent with the notation used in our paper, we have changed
the notation of Plonk. We use (a, b, c) for the witness, when in Plonk it indicates the wires that each position of
the witness should be assigned to.

28

First, observe that given some encoding of a relation R as in RPlonk with vectors q′L, q
′
R, q

′
O, q

′
M , q

′
C , such

that (q′O)i 6= 0 for all i, we can rewrite the constraints for some vectors qL, qR, qO, qM , qC such that qO = −1
by a normalization process. On the other hand, (q′O)i = 0 in Plonk only for the case where i corresponds to
public inputs or to a boolean constraint. As explained above, we enforce public input constraints separately
by including them in a; also, boolean constraints can be easily written enforcing (qO)i = −1: instead of
requiring aj = bj , and aj − ajbj = 0 for some bj such that σ(aj) = bj as suggested in Plonk, they can be
written as aj = bj = cj , ajbj − cj = 0.

As mentioned before, we present a PHP for RW-R1CS that builds generically on an argument for linear
relations. When the latter is an adaptation of the permutation argument of Bayer and Groth [BG12], one
essentially recovers Plonk.

Alternatively, we propose to construct the argument for linear relations from one CSS arguments for
matrices of the form W = P−I in Fig. 11. The approach is less efficient in terms of proof size than PLONK,
but we think the additional flexibility of the CSS argument is a plus. We argue that combining this approach
with the bounded fan-out approach presented next, the SRS size does not need to depend on the total
number of gates (additive plus multiplicative), as it will be discussed.

Bounded fan-out. Circuits with fan-out bounded by some constant V can naturally be encoded as an

instance of RW-R1CS for the set M of matrices W =

(
I 0 −F
0 I −G

)
with F,G ∈ Fm×m such that there are at

most V non-zero elements per column in each. As we shall see in Fig. 12, there exists a very efficient proof
system for this relation, since the structure of the matrices allows to use basic CSS arguments that cannot
be used in the general case.

For circuits with bounded fan-out, we can set l = lb, qM = 1, qL = qR = qC = 0. This choice also
gives very short specific SRS, since these vectors do not need to be computed by the indexer. We present
the rolled out zkSNARK for such matrices in Appendix F.

However, we note that a more flexible choice of these values can be helpful to encode general circuits.
Indeed, any circuit can be transformed to a circuit with bounded fan-out by artificially augmenting the
vector c and adding constraints of the form ci = cj that ensure consistency. To express satisfiability of
this system as an instance of RW-R1CS, the additional constraints ci = cj can rewritten as an equation
involving left (or right) wires, i.e. ai = cj , that is encoded in the matrix W, and a gate, i.e. ai = ci (setting
(qM)i = (qR)i = (qC)i = 0, (qL)i = 1). If the fan-out of a certain gate is κ, this requires extending (a, b, c)
by approximately 3κ/V dummy variables, and include qM and qL in the SRS (the rest are trivial). The
construction of Appendix F can be easily modified for that case and we omit further details.

B A zkSNARK for RW-R1CS

Below, we present a PHP for RW-R1CS that uses as building block a linear argument as in Section 4.1.
Note that the only difference with the PHP of Fig. 2 is the set WY and the encoding EY that is one of the
parameters of the linear argument. Given the similarity with Section 2.3, we omit the proof of Theorem 11
and refer the reader to that section.

29

Offline Phase: IW-R1CS

(
F,m, l, lb,W, qM , qL, qR, qC

)
parses W as

(
Wa,Wb,Wc

)
and runs the indexer ILA

on input (F,Wa,Wb,Wc) to obtain the set WLA =WLAa ∪WLAb ∪WLAc.

For γ ∈ {L,R,M,C}, the indexer computes polynomials qγ(X) = q>γ λ(X).

Outputs WW-R1CS =WLA ∪ {qL(X), qR(X), qM (X), qC(X)}
Online Phase:

– PW-R1CS Computes and outputs

A′(X) =

 m∑
j=l+1

ajλj(X)

/tl(X), B′(X) =

((
m∑
j=1

bjλj(X)

)
− 1

)/
tlb(X),

where tl(X) =
∏l
j=1(X − hj), tlb(X) =

∏lb
j=1(X − hj).

– PW-R1CS and VW-R1CS instantiate PLA(F,W, (a, b, qM ◦ a ◦ b + qL ◦ a + qR ◦ b + qC)) and VWLA
LA (F). Let

Y (X) = (A(X), B(X), qM (X)A(X)B(X)+qL(X)A(X)+qR(X)B(X)+qC(X)) be the polynomials PLA outputs
in the first round.

Decision Phase: Defines Cl(X) = λ1(X)+
∑l−1
j=1 xjλj+1(X) and accepts if and only if (1) A(X) = A′(X)tl(X)+

Cl(X), (2) B(X) = B′(X)tlb(X) + 1, and (3) VLA accepts.

Fig. 9. PHP for the universal relation RW-R1CS. The set of admissible matrices must coincide with the set of
admissible matrices of the linear argument, which in fact depends on the admissible matrices of the CSS argument.
The PHP for RLA should be instantiated for WY = {(a, b, qM ◦ a ◦ b + qL ◦ a + qR ◦ b + qC) : a, b ∈ Fm},
E(a, b, qM ◦a◦b+qL ◦a+qR ◦b+qC) = (a>λ(X), b>λ(X), (q>Mλ(X))(a>λ(X))(b>λ(X))+(q>Lλ(X))(a>λ(X))+
(q>Rλ(X))(b>λ(X)) + (q>Cλ(X)).

Theorem 11. When instantiated with a complete, sound and knowledge soundness linear argument, the
PHP of Fig. 9 satisfies completeness, knowledge and knowledge-soundness.

Adding Zero Knowledge To add zero-knowledge to the PHP of Fig. 9 we can proceed as explained
in Section 4.3. For i = m + 1, . . . , m̃, let (qM)i = 1, (qL)i = (qR)i = (qC)i = 0, so ci = aibi for these
indexes, just as before. Choosing ra, rb subject to

∑
ra,i + rb,i = 0 and modifying the matrix of constraints

as explained there, we obtain a PHP with zero-knowledge.

C Instantiations of CSS Arguments

In this section we present several instantiations of CSS arguments for different sets of admissible matrices.
Using them as a starting point, we can construct linear arguments that can be used as a building block in
the PHP of Fig. 9 for different specific families of weighted R1CS relations. The final goal is to study the
efficiency trade-offs that result from the different approaches. We start by describing the general approach
and some general techniques that allow for better efficiency. We then describe the particular cases separately,
presenting a full description of each scheme.

A fundamental observation is that matrix W can be seen as a matrix with three blocks
(
Wa,Wb,Wc

)
and

sampling in each of these blocks must be done separately, as the prover needs to receive (Da(X), Db(X), Dc(X))
to do the inner product with (A(X), B(X), C(X)), where C(X) = qM (X)A(X)B(X) + qL(X)A(X) +
qR(X)B(X) + qC(X). Naively, the polynomials Da(X), Db(X), and Dc(X) are obtained by running one
CSS scheme for each matrix Wa,Wb, and Wc, but more careful approaches can save elements in commu-
nication complexity.

Before we flesh out the different options of CSS arguments for W we note some general principles to
improve efficiency and possible trade-offs:

30

a) Each of the column blocks Wa,Wb,Wc is a matrix of Q rows, where Q = 2m or Q = 3m. One possibility
is to use one of the CSS arguments described in Sections 5.2,5.3,5.4,5.5 directly for each one of these
matrices of Q rows (assuming they belong to the set of admisible matrices). Another possibility is to
cut each Wa,Wb,Wc into blocks of m rows. For instance, this is the approach explained before for

R1CS-lite, where Wc =

(
F
G

)
and, assuming |F| + |G| ≤ K, we implicitly use the CSS argument of

Section 5.3 for the matrix F + zG ∈ Fm×m, where z is an element chosen by the verifier. Technically,
this is in fact a CSS argument for the matrix Wc where the sampling coefficients depends also on z.

b) When a block of size m×m is trivial, that is, either 0 or I, the corresponding D(X) is either zero or can be
opened by the verifier. Indeed, when the block is 0 so is the resulting polynomial, and when it is I ∈ Fm×m,
we define P (X,Y) = λ(Y)>Iλ(X)> = λ(Y)>λ(X), and the value P (y, x) =

(
t(x)y − xt(y)

)
/(x− y) can

be calculated by the verifier with O(logm) field operations (a proof of this can be found, for example,
in Lemma 3 of Lunar [CFF+20]). Thus, when Wa,Wb consist of trivial blocks of size m × m, as in
R1CS-lite, it makes sense to use the approach described in a) and cut these matrices in blocks of m
rows. The verifier can then open Da(X), Db(X) itself (as they are linear combination of the polynomials
corresponding to trivial blocks), so there is no need to use a CSS argument to prove correct sampling.

c) The proofs that Da(X), Db(X), Dc(X) are correctly sampled (in case neither of the matrices has a simple
form and none of these polynomials can be sampled by the verifier) can be aggregated.

Sparse Matrix Approach: This is the approach followed by Marlin and Lunar, and also explored in
Section 5. The main idea in this line of work is to prove correct sampling in the row space of some matrix
M with no particular structure except for being sparse. The number of non-zero entries is at most K, which
is the size of some multiplicative group K of F. This approach was introduced in Marlin, and is pursued in
Lunar and also in Section 5.3 of this work. It can be generalized to sums of sparse matrices without increasing
the communication complexity, as explained in Section 5.5.

Below, we give the full details of the CSS argument for R1CS-lite tweaking the techniques introduced in
Section 5.3, for the case where a matrix in FQ×m is split into blocks of m rows. Given that the encoding
of Wa and Wb can be opened and checked by the verifier, we only need to run a CSS argument for Wc.
We assume two multiplicative subgroups, H with size at least m and K with size K ≥ |F|+ |G|, and define
K1,K2 such that |F| ≤ K1, |G| ≤ K2 and K = K1 + K2. Technically, we construct a CSS argument for
the matrix Wc where the coefficients depend on x, z. As mentioned before, this corresponds to implicitly
applying the results in Section 5.3 to a matrix Ŵc = W1

c + zW2
c that depends on the verifier’s challenge z.

Let v : K → F be the function that maps an element k` ∈ K to the value of the `th non-zero element of
matrix F, if ` ≤ K1, and to the value of the (`−K1)th element of G if ` > K1. Define also c, r : K→ [m] as
the functions that output its row and column position in the corresponding matrix, we define P1(X,Y) =∑K1

`=1 v(k`)λr(k`)(Y)λc(k`)(X) the sparse encoding of F and P2(X,Y) =
∑K2

`=K1+1 v(k`)λr(k`)(Y)λc(k`)(X) the
sparse encoding of G. Our argument implicitly constructs the sparse encoding of F + zG as P (X,Y) =
P1(X,Y) + zP2(X,Y). As explained in Section 5.1, P (y, x) can be written as the inner product of two
vectors that depend only on x and y, and the low degree extensions of these vectors, ex(X), ey(X), are
nothing but the encodings of new matrices Mx and My in Fm×K that have at most one non-zero element
per column, so the basic CSS argument of Section 5.2 can be used to prove correctness. We present this
scheme in Fig. 10.

31

Offline Phase: ICSS outputs WCSS =
(
vr(X), v1,c(X), v12,c(X), v22,c(X)

)
, where:

vr(X) =

K∑
`

hr(k`)µ`(X) v1,c(X) =

K∑
`=1

hc(k`)µ`(X).

v12,c(X) = m−1
K1∑
`=1

v(k`)hc(k`)µ`(X), v22,c(X) = m−1
K∑

`=K1+1

v(k`)hc(k`)µ`(X).

Online Phase: Sampling: VCSS sends x, z1 ← F, and P outputs D(X) = P (X,x), for P (X,Y) =
K1∑̀
=1

v(k`)λr(k`)(Y)λc(k`)(X) + z1
K∑

`=K1+1

v(k`)λr(k`)(Y)λc(k`)(X).

ProveSampling: VCSS sends y ← F and PCSS outputs σ = D(y) and ex(X), ey(X), where ex(X) =∑K
`=1 λr(k`)(x)µ`(X), ey(X) =

∑K1
`=1 v(k`)λc(k`)(y)µ`(X) + z1

∑K
`=K1+1 v(k`)λc(k`)(y)µ`(X),

VCSS sends z2 ← F and PCSS computes Hu,x(X), Hu,y(X), Ru(X), Hu,x,y(X) such that:

ex(X)(x− vr(X)) = m−1t(x)vr(X) +Hu,x(X)u(X)

ey(X)(y − v1,c(X)) = t(y)(v12,c(X) + z1v
1
2,c(X)) +Hu,y(X)u(X)

Kex(X)ey(X)− σ = XRu(X) + u(X)Hu,x,y(X),

It also defines Hu(X) = Hu,x,y(X) + z2Hu,x(X) + z22Hu,y(X), and outputs
(
Ru(X), Hu(X)

)
.

Decision Phase: Accept if and only if (1) deg(Ru) ≤ K − 2, (2) D(y) = σ, and (3) for ix(X) = (x − vr(X)),
iy(X) = (y − v1,c(X))

(ex(X) + z22iy(X))(ey(X) + z2ix(X))− z32ix(X)iy(X)

− z22t(y)(v12,c(X) + z1v
2
2,c(X))− σ/K − z2t(x)m−1vr(X) = XRu(X) +Hu(X)u(X).

Fig. 10. CSS Argument for Wc =

(
F
G

)
, a matrix with at most K non-zero entries.

Permutation Matrix Approach: As explained before, in order to instantiate RW-R1CS following Plonk,
we consider matrices of the form W = P−I, where P is a matrix of permutations in F3n×3n. For simplifying
notation, we define the mapping ι : {1, 2, 3} → {a, b, c} as ι(1) = a, ι(2) = b and ι(3) = c.

There are several possible ways of proving correct sampling in the rows of P − I. For instance, we
could consider P as a matrix of three column blocks Pa,Pb and Pc, and define the polynomial encoding of
each block as µ(Y)>Pγλ(X), where µ(X)> = (µ1(X), . . . , µ3m(X)) are Lagrange interpolation polynomials
associated a multiplicative subgroup of size at least 3m. However, the simplest and most efficient one, splits
this matrix into 9 blocks m×m. Since all the blocks of m rows of I ∈ F3m×3m are either 0 or I, the verifier
can open the polynomial associated to I ∈ F3m×3m on its own, and a CSS argument is necessary only to
sample in the rows of P.

For this approach, parse P as (Pa,Pb,Pc) and, for i = 1, 2, 3, each Pι(i) as three matrices Fm×m
corresponding to blocks of m rows and denoted as P1

ι(i),P
2
ι(i), and P3

ι(i). For i = 1, 2, 3, define the func-

tion ri : H → [3m] that, given an element h` ∈ H outputs the row corresponding to the only non-zero
element in column ` of matrix Pι(i). For k = 1, 2, 3, the polynomial encoding of Pk

ι(i) is P kι(i)(X,Y) =

λ(Y)>Pk
ι(i)λ(X) =

∑
`:(k−1)m+1≤ri(h`)≤km λri(h`)−(k−1)m(Y)λ`(X). The polynomial Dι(i)(X) is Pι(i)(X,x) =

P 1
ι(i)(X,x) + zP 2

ι(i)(X,x) + z2P 3
ι(i)(X,x). The two key elements for efficiency are: 1) the observation that

each column block Pι(i) is a simple matrix, since it has at most one non-zero element per columnn, and 2)
the fact that the proofs for each of these blocks can be batched together.

32

Offline Phase: ICSS
(
F,M

)
: For i = 1, 2, 3, k = 1, 2, 3 define Vi,k = {` ∈ [m] : (k− 1)m+ 1 ≤ ri(h`) ≤ km}, and

vi,k(X) =
∑
`∈Vi,k

hri(h`)−(i−1)mλ`(X).

Output WCSS =
{
{vi,k(X)}3i,k=1

}
.

Online Phase: Sampling: VCSS outputs x, z ← F and PCSS computes and outputs Dι(i)(X) = Pι(i)(X,x) for
i = 1, 2, 3.

ProveSampling: VCSS outputs δ. For i = 1, 2, 3, vi(X) =
∑3
k=1 v

i,k(X) and viz(X) =
∑3
k=1 z

k−1vi,k(X), the
prover PCSS finds and outputs Ht(X) such that

Da(X)(x− v1(X)) + δDb(X)(x− v2(X)) + δ2Dc(X)(x− v3(X)) =

t(x)(v1z(X) + δv2z(X) + δ2v3z(X)) +Ht(X)t(X).

Decision Phase: Accept if and only if (1) deg(Dι(i)) ≤ m− 1, for i = 1, 2, 3 and (2)

Da(X)(x− v1(X)) + δDb(X)(x− v2(X)) + δ2Dc(X)(x− v3(X)) = t(x)(v1z(X) + δv2z(X) + δ2v3z(X)) +Ht(X)t(X).

Fig. 11. CSS Argument for P ∈ F3m×3m.

Bounded Fan-out: Finally, we consider the case of circuits with bounded fan-out, that is, the case where

the circuit can be represented with a matrix W =

(
I 0 −F
0 I −G

)
that is a sum of at most V simple matrices,

i.e. it has at most V non-zero elements per column.
As before, and since the other blocks of m rows are the identity matrix or the zero matrix, it suffices

to use a CSS argument to sample in the image of Wc = −
(

F
G

)
. For that, we first write the matrix

Wc =
∑V
i=1

(
Fi
Gi

)
, where each

(
Fi
Gi

)
is a simple matrix. Once more, we will implicitly construct the

scheme for Ŵ = F + zG, that can be written as
∑V
i=1 Fi + zGi, with each Fi + zGi having at most one

non-zero element in each column. We define two functions associated to each Wc,i =

(
Fi
Gi

)
. The function

ri : H → [2m] that, given an element h` ∈ H outputs the row corresponding to the only non-zero element
in column ` of matrix Wc,i and the function vi : H → F that outputs the value of this non-zero entry. The
details of the scheme are given in Fig. 12 and for simplicity in the notation, we define the sets V1

` = {i ∈
[V] : 1 ≤ ri(h`) ≤ m}, V2

` = {i ∈ [V] : m+ 1 ≤ ri(h`) ≤ 2m}, S` =
{
{ri(h`) : i ∈ V1

` } ∪ {ri(h`)−m : i ∈ V2
` }
}

and V̂1
i = {` ∈ [m] : 1 ≤ ri(h`) ≤ m}, V̂2

i = {` ∈ [m] : m+ 1 ≤ ri(h`) ≤ 2m}.

Mixing the Bounded Fan-out and the Permutation Approach. Bayer and Groth [BG12] introduce
techniques to prove that a vector is a permutation of another one. This approach is useful for many appli-
cations, but for the ones discussed in this section it has the drawback that it is not easy to extend it to
sums of permutations without increasing the communication complexity. This is exactly the issue in the fully
succinct mode of Sonic, where complexity grows with the number of permutation matrices into which the
constraint matrix can be decomposed.

To counter this issue, Plonk proposes to define the permutation P ∈ F3m×3m. As mentioned before, the
idea is to create a vector of copy constraints. With this approach, the fan-out can be unlimited. Values that
are repeated are encoded as a cycle of the permutation and the price to pay is that additive gates are no
longer for free.

It is worth investigating if these ideas can be mixed. Namely, since in our case we can increase the fan-out
to V without paying in terms of proof size, one could follow the copy constraint approach only for the wires

33

exceeding the fan-out bound. The result would be that additive gates involving only output wires that are
input of less than V multiplication gates would be for free.

Offline Phase: ICSS
(
F,M

)
: Define the polynomials R̂1

` (Y), R̂2
` (Y), Î`(Y), and its coefficients R̂1

`j , R̂
2
`j , Î`j :

R̂1
` (Y) =

1

m

∑
i∈V1

`

vi(h`)hri(h`)
∏

s∈S`−{ri(h`)}

(Y − hs) =

V−1∑
j=0

R̂1
`jY

j ,

R̂2
` (Y) =

1

m

∑
i∈V2

`

vi(h`)hri(h`)−m
∏

s∈S`−{ri(h`)−m}

(Y − hs) =

V−1∑
j=0

R̂2
`jY

j ,

Î`(Y) =
∏
s∈S`

(Y − hs) =

V∑
j=0

Î`jY
j .

Define

vR̂,1j (X) =

m∑
`=1

R̂1
`jλ`(X), vR̂,2j (X) =

m∑
`=1

R̂2
`jλ`(X).

vÎj (X) =

m∑
`=1

Î`jλ`(X).

Output WCSS =
{
{vÎj (X)}Vj=0, {vR̂,1j (X), vR̂,2j (X)}V−1

j=0

}
.

Online Phase: Sampling: VCSS outputs x, z ← F and PCSS computes D(X) = P (X,x), for P (X,Y) =

V∑
i=1

 ∑
`∈V̂1

i

vi(h`)λri(h`)(Y)λ`(X)

+ z

 ∑
`∈V̂2

i

vi(h`)λri(h`)−m(Y)λ`(X)

.

ProveSampling: PCSS finds and outputsHt(X) such that, if R̂x(X) =
∑V−1
j=0 xj

(
vR̂,1j (X)+zvR̂,2j (X)

)
, and Îx(X) =∑V

j=0 x
jvÎj (X),

D(X)Îx(X) = t(x)R̂x(X) +Ht(X)t(X).

Decision Phase: Accept if and only if (1) deg(D) ≤ m− 1, and (2) D(X)Îx(X) = t(x)R̂x(X) +Ht(X)t(X).

Fig. 12. CSS Argument for Wc =

(
−F
−G

)
, where F,G have at most V non-zero elements per column. Bounded

fan-out circuits can be naturally encoded in this way.

D zkSNARKs from CSS arguments

Even though there are several differences in the CSS schemes presented along this work, all our constructions
are compiled in a similar manner, following the compiler in [CFF+20].

The universal SRS of the zkSNARK will be srsu =
(
{[τ i]1}ρi=1, [τ]2

)
, where ρ is the maximum degree

among all polynomials inWCSS or sent by the prover. srsW consists of the evaluation in τ of the polynomials
that ILA outputs, thus, |srsW| = |WCSS| + 4, due to polynomials qL(X), qr(X), qM (X) and qc(X). Still, in
all schemes but the one of Fig. 11 these polynomials are zero and then the size of srsW is the size of WCSS.

Prover and Verifier instantiate PW-R1CS and VW-R1CS for the PHP of Fig. 9 that achieves zero-knowledge
through the changes presented in Fig. 3, as presented below.

All oracle polynomials sent by PW-R1CS are translated into polynomials evaluated (in the source group) at
τ . For degree checks with deg(p) < dg, dg < ρ, the prover sends a single extra polynomial and field element
(see Section 2.4), while checks for dg = ρ are for free.

34

For each polynomial equation, prover sends extra field elements corresponding to evaluations (or openings)
of some of the polynomials involved on it (maximum one per quadratic term, due to the procedure stated
in [GWC19] attributed to M. Maller). There are several ways to do this compilation check, but to optimize
efficiency the choices are quite standard (for instance, only A′(X) or B′(X), should be opened).

All the openings at one point, as well as the degrees of the opened polynomials, can be proven with
one group element and verified with two pairings, which sets proof size (in terms of group elements) as the
amount of oracles sent by PW-R1CS plus one element for degree check of Rt(X) in the linear argument and
one for each polynomial equation. The number of field elements sent by the prover changes depending on
the amount of terms included in the final polynomial equation as explained above, but always include one
element for each polynomial commitment opening.

Prover’s work includes running PW-R1CS as well as the computation of the polynomial commitment
opening procedures. Verifier work is also VW-R1CS plus the (batched) verification procedure of the polynomial
commitments. The vector of queries is (bA, bB , bRt , bHt) = (1, 0, 1, 0).

On the other hand, we write the matrix W that expresses the constraints as:

W =

 Im 0m×n 0m×m 0m×n −F 0m×n
0m×m 0m×n Im 0m×n −G 0m×n

0>m 1>n 0>m 1>n 0>m×m 0>m×n

 =

I′ 0 F′

0 I′ G′

w w 0

 ,

where I′,F′,G′ are of size m× (m+ n), w is a row vector of length m+ n.

Our PHP is built generically for any CSS argument, but concrete efficiency depends on the specifics of
it and also how the blocks of rows of W are combined. The last constraint will always be treated separately
(to exploit the symmetry of the other blocks), and because of its simple form, the verifier can compute the
correspondingD(X) = (

∑m+n
i=m+1 λi(x),

∑m+n
i=m+1 λi(x), 0) itself, and combine it with the rest (see Section 4.4).

For the sparse matrix construction of Fig. 5, we assume that K ≥ 2m, which sets ρ = K − 1. This
eliminates the degree checks for ex(X), ey(X), Ru(X). Assuming K ≥ |F| + |G|, the indexer is run for a
matrix F + ZG, where Z is a variable and thus outputs one polynomial vr(X), one polynomial v1,c(X)
but two polynomials vF2,c(X), vG2,c(X) that will let the verifier construct v2,c(X) = vF2,c(X) + zvG2,c(X) after
choosing z, as shown in Fig.10. This set the size of the universal srs to K − 1 and the size of srsW to 4.
Prover sends 11 polynomials, 8 of degree up to m− 1 and the rest (ex(X), ey(X), Ru(X), Hu(X)) of degree
K − 1. Verifier performs two pairings and the field operations to compute Da(y), Db(y), tl(y), u(y), and t(y).

The zkSNARK that uses the CSS argument of Fig. 11 has a universal SRS of size n+ 5, for n the total
number of gates of the circuit, i.e., multiplicative and additive gates as well, while the relation dependent
has 11 group elements. The proof has 9 group elements (this time the prover has to send Da(X) and Db(X))
and 5 field elements (as it also sends its evaluations on challenge y). Prover work depends only on these
polynomials and consists of 9m group operations. Similar to other constructions, verifier work includes 2
pairings and O(l + logm) field operations.

Finally, the zkSNARK that builds on the CSS scheme of Fig. 12 (Basilisk) is given in Fig. 13: the
universal SRS has size m+ 6, for m the number of multiplicative gates of the circuit, and the one describing
the relation includes 3V + 1 group elements. The proof includes 7 group and 3 field elements. Prover work
is dominated by the generation of these polynomials, and consists of 7m group operations. Verifier performs
O(l + logm) operations to compute

∑l
i=1 xiλi(y) from the public input x and challenge y and to evaluate

t(x), t(y), tl(y), Da, Db from its challenges x and y. It also does two pairings to check the final equation. As
explained in Appendix B, to generalize the construction to arbitrary circuits we can add dummy variables
(the exact number depends on the number of gates that exceed the fan-out bound). The SRS will grow
accordingly, and the derived SRS needs to include two additional polynomials.

If the extended Vandermonde technique of (Fig. 7) is used for some set of Q rows, we set ρ = 2m − 1.
srsW outputs Q + ` vectors of three polynomials. Prover only sends commitments to A′(X) and B′(X)
and the polynomials Rt(X), Ht(X) of the linear argument (Fig.1). Verifier checks degree of Rt(X) and one
polynomial equation of three terms, two of which include polynomials it can evaluate itself (X and t(X)).

35

E Eliminating Non-Trivial Degree Checks

As explained in Apendix D, checking that a polynomial is of degree at most m − 1 is for free, as the srs
includes only powers of τ up to this bound. On the other hand, checks for smaller degrees require the prover
to send two extra elements, one in the field and one in the group. In all our constructions such degree check
is required for the linear argument, since Theorem 2 states that the degree of polynomial R(X) has to be at
most m− 2. Also, in the CSS of Fig. 5, it must be the case that deg(Ru) ≤ m− 2.

Below, we present a simple corollary of Theorem 2 to augment the degree of R(X) by 1. This trick allows
to save the aforementioned elements in the proof.

Corollary 1. Let k,m,y,d,F,H be as in Theorem 2 and let u ∈ F∗, u /∈ H. Then, y · d = σ if and only if
there exist H(X), R(X) ∈ F[X], R(X) of degree at most m− 1, such that the following relation holds:

Y (X) ·D(X)(X − u)− σ

m
(X − u) = XR(X) + t(X)H(X)(X − u), (5)

where Y (X) = (Y1(X), . . . , Yk(X)) is a vector of polynomials of arbitrary degree such that Yi(hj) = yij for
all i = 1, . . . , k, j = 1, . . . ,m, and D(X) = (D1(X), . . . , Dk(X)) is such that Di(X) = d>i λ(X).

Proof. By Theorem 2, y · d = σ if and only if there exists some R′(X) of degree at most m − 2 such that

Y (X) ·D(X)− σ

m
= XR′(X) + t(X)H(X).

If y ·d = σ then such R′(X) exists and the polynomial R(X) = (X −u)R′(X) is of degree at most m− 1
and satisfies Eq. (5).

We now prove the reciprocal. Suppose some R(X) of degree at most m−1 exists such that Eq. (5) holds.
Since all the sum terms in the equation, except for XR(X) are divisible by X − u, and u 6= 0, then (X − u)
divides R(X). Define R′(X) = R(X)/(X − u). Dividing Eq. (5) by X − u, it follows that R′(X) satisfies
Eq. (2) and is of degree at most m− 2, so by Theorem 2 it follows that y · d = σ. ut

F Rolled-out zkSNARK for Circuits with Bounded Fan-Out

Below we present the final zkSNARK protocol for proving some relation R ∈ RW-R1CS that represents a

circuit with bounded fan-out is satisfied, i.e., sets W =

(
I 0 −F
0 I −G

)
, where Wc =

(
−F
−G

)
has at most V non-

zero elements per column. Our choice is due to the fact that this CSS scheme is the most efficient among all
the presented ones. Also, circuits can be transformed into this form by adding additional dummy constraints.
We present the scheme for the case where l = lb, qM = 1, qL = qR = qC = 0 but it is straightforward to
modify the argument for other values. In blue we highlight the modifications to the PHP of Fig. 9 in order to
make it zero knowledge. The functions {vi, ri}Vi=1, P (X,Y), and the sets {S`, V1

` ,V2
` }m`=1 are defined as above.

If ι(1) = a, ι(2) = b, ι(3) = c, and for i = 1, 2, k = 1, 2, let (P ′)kι(i)(X,Y) = λ(Y)>(W1
ι(i) + z1W

2
ι(i))λ(X),

and (D′)kι(i)(X) = (P ′)kι(i)(X,x). Note that we eliminate the non-trivial degree check as in App. E.

36

KeyGen(R) : Sample τ ← F and output τ, srsu =
(
{[τ i]1}m−1

i=0 , {[τ
i]1}m+5

i=m , [τ]2
)
. Choose an arbitrary u ∈ F∗, u /∈ H.

KeyGenD(srsu,W
′,w′): Parse W′ =

(
W′

a,W
′
b,W

′
c

)
and W′

c as W′
c =

(
F 0m×6

G 0m×6

)
, F,G ∈ Fm×m. For i ∈ [V], k =

1, 2 define R̂k` (Y), and its coefficients R̂k`j as:

R̂k` (Y) =
1

m

∑
i∈Vk

`

vi(h`)hri(h`)−(k−1)m

∏
s∈S`−{ri(h`)−(k−1)m}

(Y − hs) =

V−1∑
j=0

R̂k`jY
j ,

Also, let Î`(Y) and Î`j be such that Î`(Y) =
∏
s∈S`

(Y − hs) =
∑V
j=0 Î`jY

j .

Finally, for j = 0, . . . , V − 1 define vR̂,1j (X) =
∑m
`=1 R̂

1
`jλ`(X), vR̂,2j (X) =

∑m
`=1 R̂

2
`jλ`(X), and, for j = 0, . . . , V

vÎj (X) =
∑m
`=1 Î`jλ`(X). Compute [vÎj]1 = [vÎj (τ)]1, [v

R̂,1
j]1 = [vR̂,1j (τ)]1, [v

R̂,2
j]1 = [vR̂,2j (τ)]1.

Output srsW =
(
srsu,

{
[vÎj]1

}V
j=0

,
{

[vR̂,1j]1, [v
R̂,2
j]1

}V−1

j=0

)
.

Prove(W, srsW, (x, (a′, b′))) : Sample ra ← F4, rb ← F2 and define a = (x,a′, ra,1), b = (1, b′,1, rb). Then com-

pute A(X) =
m+6∑
j=1

ajλj(X), B(X) =
m+6∑
j=1

bjλj(X), B′(X) =
(
B(X)− 1

)
/
(
tl(X)

4∏
i=1

(X − hm+i)
)
, and

A′(X) :=

 m+6∑
j=l+1

ajλj(X)

− tl(X)

 / (tl(X)(X − hm+5)(X − hm+6)) .

Output π1 =
(
[A′]1 = [A′(τ)]1, [B

′]1 = [B′(τ)]1
)
.

Verify(srsW,x, π1) : Send x, z1, z2 ← F.

Prove(W, srsW, (x, (a′, b′)), x, z1, z2) : For i = 1, 2, 3, let D′ι(i)(X) = (D′)1ι(i)(X) + z1(D′)2ι(i)(X). Let Da(X) =

D′a(X)+z21
∑m+6
j=m+1 λj(X), Db(X) = D′b(X)+z21

∑m+6
j=m+1 λj(X) and Dc(X) = D′c(X).

Find R(X), H1(X), H2(X) such that:

A(X)Da(X)(X − u) +B(X)Db(X)(X − u)−Dc(X)A(X)B(X)(X − u) = XR(X) + t(X)H1(X)(X − u)

and, if R̂x(X) =
∑V−1
j=0 xj

(
vR̂,1j (X) + z1v

R̂,2
j (X)

)
and Îx(X) =

∑V
j=0 x

jvÎj (X),

Dc(X)Îx(X) = t(x)R̂x(X) +H2(X)t(X).

Output π2 =
(
[Dc]1 = [Dc(τ)]1, [H]1 = [H1(τ)]1 + z2[H2(τ)]1, [R]1 = [R(τ)]1.

Verify(srsW,x, π1, π2) : Send y, γ ← F.

Prove(W, srsW, (x, (a′, b′)), x, z1, z2, y, γ) : Define σ = Dc(y) and, for

E(X) = A(y)Da(y)(y − u) +B(X)Db(y)(y − u) + σ
(
−A(y)B(X)(y − u) + z2Îx(X)

)
− yR(X)

− z2t(x)R̂x(X)− t(y)H(X)(y − u),

p(X) = (A(X), Dc(X), E(X)), and d = (m−1,m−1,m−1), calculate ([w]1, (a, σ, 0))← PC.Open (srsu,p(X),d, y, γ)
and output π3 = ([w]1, (a, σ)).

Verify(srsW,x, π1, π2, π3): Define s = a+ γσ and Da = Db =
(
t(x)y−xt(y)

)
/(x− y)−

∑m+6
j=m+1 λj(x)λj(y). Compute

[A]1 =
(
[A′]1(y − hm+5)(y − hm+6) + 1

)
tl(y) +

∑l
i=1 xi[λi(τ)]1, [B]1 =

(
[B′]1tl(y)

∏4
i=1(y − hm+i) + 1

)
,

[R̂x]1 =
∑V−1
j=0 xj

(
[vR̂,1j]1 + z1[vR̂,2j]1

)
, [Îx]1 =

∑V
j=0 x

j [vÎj]1, and

[p]1 = [A]1 + γ[Dc]1 + γ2(aDa + z1Db[B]1 + σ
(
− a[B]1(y − u) + z2[Îx]1

)
− y[R]1 − z2t(x)[R̂x]1 − t(y)[H]1(y − u)

)
Output 1 if and only if

e
(
[p]1 − [s]1, [1]2

)
= e
(
[w]1, [τ − y]2

)
.

Fig. 13. zkSNARK for circuits with bounded fan-out. Elements in blue are added to achieve zero-knowledge.

37

	An Algebraic Framework for Universal and Updatable SNARKs

