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Abstract. We consider the problem of finding low-weight multiples of
polynomials over binary fields, which arises in stream cipher cryptanal-
ysis or in finite field arithmetic. We first devise memory-efficient algo-
rithms based on the recent advances in techniques for solving the knap-
sack problem. Then, we tune our algorithms using the celebrated Parallel
Collision Search (PCS) method to decrease the time cost at the expense
of a slight increase in space. Both our memory-efficient and time-memory
trade-off algorithms improve substantially the state-of-the-art. The gain
is for instance remarkable for large weights; a situation which occurs
when the available keystream is small, e.g. the Bluetooth keystream.

Keywords: Low-weight polynomial multiple · Stream cipher cryptanal-
ysis · Knapsack · Collision-finding algorithm · Time/memory trade-off.

1 Introduction

We consider the following problem:

Definition 1 (The Low-Weight Polynomial Multiple (LWPM) prob-
lem). Given a binary polynomial P ∈ F2[X] of degree d and a bound n, find a
multiple of P with degree less than n and with the least possible weight ω, where
the weight of a multiple is the number of its nonzero coefficients.

The LWPM arises in stream cipher cryptanalysis, and in efficient finite field
arithmetic.

Fast correlation attacks [23,19] against LFSR-based (Linear Feedback Shift
Register) stream ciphers first precompute a low-weight multiple of the con-
stituent LFSR connection polynomial. In fact, low-weight polynomial multiples
are required to keep the bias, of the linear approximation in a correlation at-
tack, as high as possible so as to reduce the cost of key-recovery or distinguishing
attacks.

Low-weight polynomial multiples find also application in finite field arith-
metic. Actually, von zur Gathen and Nöker[13] found that F2d = F2[x]/(g),
where g is a low-weight irreducible polynomial of degree d, is the most efficient
representation of finite fields. However, such polynomials do not always exist.



Brent and Zimmerman [3] proposed an interesting solution: take an irreducible
polynomial f ∈ F2[X] of degree d but possibly large weight, a multiple g of f
with small weight, and work in the ring F2[X]/(g) most of the time, going back
to the field F2d only when necessary.

1.1 Related work

There have been several approaches for computing low-weight multiples of poly-
nomials. Most methods first estimate the minimal possible weight ω of multiples,
of the given polynomial P , with degree at most n and with nonzero constant
term, then look for multiples of weight at most ω. To estimate the minimal
weight, one solves for ωe the following inequality(

n

ωe − 1

)
≥ 2d (1)

where d is the degree of P ; the minimal weight ω is the smallest solution. In
fact, if multiples are uniformly distributed, then one expects the inequality to
hold. It is worth noting that the number of such multiples can be approximated
by NM = 2−d

(
n
ω−1
)
.

Given a polynomial P ∈ F2[X] of degree d and a bound n, we summarize
below the strategies used to find a multiple of P of degree at most n and with
the least possible weight ω. We describe the time or space complexity using the
Big-O notation, which denotes the worst case complexity of the algorithms. Also,
we use the approximation

(
n
ω

)
≈ O(nω).

Standard techniques The standard Time/Memory Trade-Off (TMTO) method

runs in O(nd
ω−1

2 e) and uses O(nb
ω−1

2 c) of memory. Chose et al. [7] cut

down the memory utilization to O(nb
ω−1

4 c) using a match-and-sort approach.
Canteaut and Trabbia [6] introduced a memory-efficient method for solv-
ing the LWPM problem that runs in O(nω−1) and requires only linear
memory. When the degree of the multiple gets very large and there are
many low-weight multiples, but it is sufficient to find only one, Wagner’s
generalized birthday paradox [25] becomes more efficient. For instance, if
n ≥ 2d/(1+log2(ω−1)), then this method finds a weight-ω multiple of P of
degree at most n in O((ω − 1)n) and uses O(n) memory.

Discrete-log-based techniques They were introduced in [21], then improved
and generalized in [8,22]. They work with discrete logarithms in the multi-
plicative group of F2d instead of the direct representation of the polynomials.

[8] use a time/memory trade-off to solve the problem in time O(nd
ω−2

2 e) and

memory O(nb
ω−2

2 c). [22] provide a memory-efficient algorithm that runs in

approximately O( 2d

n ). The methods assume however a constant cost of the
discrete logarithm computations, using precomputed tables that do not re-
quire excessive storage. This is not the case if 2d−1 is not smooth. Also, the
methods assume some conditions on the input polynomial: primitive in case
of [8] or product of powers of irreducible polynomials with coprime orders in
case of [22].
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Syndrome decoding This technique reduces LWPM to finding a low-weight
codeword in a linear code; a popular problem for which there exist known
algorithms to solve it, e.g. the so-called information-set decoding algorithms
[24,5,2,17,15,18]. These algorithms introduce many parameters to optimize
the running time and the memory consumption according to the problem
instance, however, we can approximate the running time by O(Poly(n) ·
(nd )ω), and the memory complexity by O(dω).

Lattice-based techniques This technique, introduced in [10], reduces the LWPM
problem to finding short vectors in an n-dimensional lattice. The method
uses the LLL reduction [14] to solve the problem in time O(n6) and space
O(n · d). Unfortunately, this technique gives inaccurate results, i.e. fails to
find a multiple with the least possible weight, as soon as the bound n exceeds
few hundreds.

1.2 Our Approach

We view the LWPM problem as a special instance of the following subset sum
problem:

Definition 2 (Group Subset Sum Problem). Let (G,+) be an abelian group.
Given a0, a1, . . . , an ∈ G together with ω, 0 < ω ≤ n

2 such that there exists some
solution z = (z1, . . . , zn) ∈ {0, 1}n satisfying

n∑
i=1

ziai = a0 with weight(z) = ω

The goal is to recover z (or some other weight-ω solution z).

This definition generalizes that in [11] as it does not impose the group order to be
of bitsize n. It captures then the LWPM problem as follows. Let P be a degree-d
polynomial in F2[X]. Consider further the group (Fd2,+) of d-dimensional vectors
over F2, where the group law is the bitwise addition over F2. A weight-ω multiple
1 +

∑n
i=1 ziX

i of P , with nonzero constant term and degree at most n satisfies:

n∑
i=1

ziai = a0 with ai = Xi mod P, 0 ≤ i ≤ n

Note that the condition on the weight (ω ≤ n
2 ) is not restrictive. Actually, the

searched weight ω is obviously smaller than the weight of P , which is often
smaller than d

2 , and thus smaller than n
2 . Also, for convenience purposes, we

consider throughout the document the relative weight ωn = ω/n.
The (group) subset sum problem is one of the most popular and ubiquitous

problems in cryptography. It has undergone an extensive analysis with a focus
on polynomial-memory algorithms to solve it. In fact, it is known that random-
access memory is usually more expensive than time. Most algorithms for solving
the subset sum problem [1,11] try to find as many representations as possible of
the solution; in fact, the more representations there exist the faster the solution
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can be found. For example, the folklore algorithm, described in [12], represents
the solution z = x || y as a concatenation of two n

2 -dimensional vectors x and
y with weight(x) = weight(y) = ω

2 . In the same spirit, [1] split the solution z
into two n-dimensional vectors x and y , with weight(x) = weight(y) = ω

2 , that
add up to z. Recently, [11] further increase the number of representations by
splitting z into a sum over Z, of two integers of smaller weight, and exploiting
the carry propagation.

Contributions We view the solution z to LWPM as a collision (x, y) of some
random function f mapping from a set T to itself (in order to use known cycle-
finding algorithms to compute collisions). The set T is determined by how z
splits into (x, y). Also, T ought to allow for many ”representations” (x, y) of the
solution z, so as to reduce the number of function calls needed before finding a
collision. More precisely, we make the following contributions.
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between the memory-
efficient techniques
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First, we present two memory-efficient algorithms
for LWPM that improve the state-of-the-art in
polynomial-memory algorithms for LWPM. The idea
behind the algorithms consists in splitting the solu-
tion z into two n-dimensional vectors x and y that
add up to z over F2. The weight of both x and y is
some function of ω to be determined.
More precisely, Algorithm 1 assumes and puts in place
a Bernoulli distribution on the representation of z,
then determines the optimal weight φ(ω) to be used
for x and y. As a result, we significantly improve the
running time offered by the state-of-the-art methods,
i.e. the standard and the discrete-log methods (see
Figure 1; the x-axis represents the relative weight
ωn = ω/n, and the y-axis represents the relative ex-
ponent log(T )/n of the time cost T ).
Since Algorithm 1 uses a pseudo-random number gen-
erator to establish the desired Bernoulli distribution,
it incurs a slight overhead in the computations. There-
fore, we reinforce our contribution with Algorithm 2 which gets rid of the
Bernoulli distribution; the result still substantively outperforms the state-of-
the-art (see Figure 1).
We show the practicality of our technique with an implementation of the algo-
rithms that confirm our theoretical estimates.

Second, we tune our algorithms via the Parallel Collision Search (PCS) tech-
nique [20] to decrease the running time at the expense of memory. Again, we
achieve a nice time/memory trade-off compared to the state-of-the-art (see Fig-
ure 2; the x-axis represents the relative weight ωn = ω/n, whereas the y-axis
represents the relative exponent log(T )/n (resp. log(M)/n) of the time (resp.
memory) cost T (resp. M)).

The rest of the paper is organized as follows. Section 2 recalls the neces-
sary background and establishes the notation that will be used throughout the
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Fig. 2. Time/Memory costs of the state-of-the-art and our trade-off algo-
rithms

document. Sections 3 & 4 respectively describe, analyze, and experimentally val-
idate our algorithms. Section 5 compares the performance of our algorithms with
the state-of-the-art. Finally, the time/memory trade-off tuning of the proposed
algorithms is given in Section 6.

2 Theoretical Background

2.1 Notations and Conventions

Let a, b ∈ N with a < b. We conveniently write [a, b] := {a, a + 1 . . . , b}. For a
vector z = (z1, . . . , zn) ∈ {0, 1}n, we denote by weight(z) := |{i ∈ [1, n] : zi = 1}|.
ZN denotes the ring of integers modulo N . F2 denotes the field of two elements
where the additive identity and the multiplicative identity are denoted 0 and
1, as usual. F2[X] refers to the ring of polynomials with coefficients in F2. R+

denotes the set of positive real numbers.
Let P ∈ F2[X]. deg(P ) and weight(P ) refer to the degree and weight of P

respectively; the weight of a polynomial in F2[X] corresponds to the number of
its non-zero coefficients. In the text, we identify polynomials in F2[X] with their
coefficient vectors. For instance, the sum of two polynomials in F2[X] is the sum
over F2 of their coefficient vectors termwise.
Suppose deg(P ) = d. F2[X]/P denotes the ring of polynomials modulo P ; addi-
tion and multiplication are performed modulo P . Finally, (Fd2,+) refers to the
group of d-dimensional vectors over F2, where the group law + is the bitwise
addition and the identity is referred to as 0Fd

2
.

The Big-O, Θ, and Θ̃ notations. The Big-O notation represents the up-
per bound of the running time of an algorithm; it gives then the worst case
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complexity of an algorithm.

O(g) =
{
f : ∃ c, x0 ∈ R+ : 0 ≤ f(x) ≤ cg(x) ∀x ≥ x0

}
The Θ notation represents the upper and the lower bound of the running time
of an algorithm. It is useful when studying the average case complexity of algo-
rithms.

Θ(g) =
{
f : ∃ c1, c2, x0 ∈ R+ : 0 ≤ c1g(x) ≤ f(x) ≤ c2g(x) ∀x ≥ x0

}
The Θ̃ notation suppresses the polynomial factors in the input. For example
Θ̃(2n) suppresses the polynomial factors in n.

Binomial coefficient. The binomial coefficient
(
n
k

)
refers to the number of

distinct choices of k elements within a set of n elements. We have:
(
n
k

)
= n!

k!·(n−k)! .

Often, we need to obtain asymptotic approximations for binomials of the form(
n
α n

)
or
(

n
bα nc

)
for values α ∈]0, 1[. This is easily achieved using Stirling’s for-

mula: n! = (1 + o(1))
√

2πn
(
n
e

)n
. Thus

(
n
αn

)
≈ 1√

2π nα(1−α)
· 2nH(α), where H is

the binary entropy function defined as H(x) := −x log2(x)− (1− x) log2(1− x);
log2 is the logarithm in base 2. We can then write(

n

αn

)
= Θ

(
n−1/22nH(α)

)
or

(
n

αn

)
= Θ̃

(
2nH(α)

)

Probability laws. For a finite set E, e ∈R E refers to drawing uniformly
at random an element e from E. The PMF of a random variable denotes its
probability mass function.

Let X be a random variable, p ∈ [0, 1], and n ∈ N. X ∼ Bernoulli(p) signifies
that X takes the value 1 with probability p and the value 0 with probability
1− p.
X := (X1, . . . , Xn) ∼ Bernoulli(p, n) means that the Xi are independent and
identically distributed with Xi ∼ Bernoulli(p), for i ∈ [1, n]. X ∼ Binomial(p, n)
means that X follows the Binomial distribution with PMF: Pr[X = k] =(
n
k

)
pk(1 − p)n−k , k ∈ [0, n]. Finally, if X ∼ Bernoulli(p, n), then the random

variable Y corresponding to the number of successes of X follows the binomial
distribution, i.e. Y := weight(X) ∼ Binomial(p, n).

2.2 Random Functions

Birthday paradox. Let E be a finite set of n elements. If elements are sampled
uniformly at random from E, then the expected number of samples to be taken
before some element is sampled twice is less than

√
πn/2 = Θ(

√
n). The element

that is sampled twice is called a collision . See [12] for the details.
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Expected number of collisions. Let f : E → F be a random function. We are
interested in the expected number of collisions of f , i.e. the number of distinct
pairs {x, y} with f(x) = f(y). For instance, if k elements have the same value,
this counts as

(
k
2

)
collisions.

Fact 1 Let f : E → F be a random function, with |E| = n and |F | = m. The

expected number of f collisions is Θ
(
n2

2m

)
.

Proof. For each pair {x, y} (x 6= y), we define the following indicator random
variable:

I{x,y} =

{
1 if f(x) = f(y)
0 otherwise

Let C denote the number of collisions of f . The expectation E(C) is given by:

E(C) =
∑

{x,y}∈E×E,x6=y

E(I{x,y}) =
1

m

∑
{x,y}∈E×E,x6=y

1 =
1

m

(
n

2

)
= Θ

(
n2

2m

)

ut

Collision-finding algorithms Let f : E → F , with F ⊆ E, be a random
function. According to the birthday paradox, a collision of f can be found in
roughly Θ(

√
|F |) evaluations. Common search algorithms, e.g. Brent’s cycle-

finding algorithm [4], achieve this by computing a chain of invocations of f from
a random starting point s until a collision occurs. In the text, the notation
(x, y) ←− Rho(f, s) refers to the collision (x, y) returned by f from starting
point s, using a cycle-finding algorithm.

In [20], van Oorschot and Wiener extend this idea to search collisions between
two functions f1 and f2 (both have the same domain E and range F , with F ⊆
E). The construction defines a new function f that alternates between f1 and f2
depending on the input. The new function f is a random function, thus any cycle-
finding algorithm applies and finds a collision for the new function in Θ(

√
|F |)

and polynomial memory. The found collision is a collision between f1 and f2 with
probability 1

2 . Therefore the running time will roughly double if collisions are
random. This is achieved by randomizing the output of the algorithm. In fact,
Brent’s cycle-finding algorithm is likely to produce always the same collision. To
remediate this problem, [1,11] consider a family of permutations (Pk)k∈N in E
addressed by k: they apply the collision-finding algorithm to g : E → E with
g(x) = Pk(f(x)), where Pk is a random permutation from the considered family.
I.e., a new permutation is used with each invocation of the collision-finding
algorithm, which ensures that the produced collisions are uniformly distributed.
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3 First Algorithm

Let P be a degree-d polynomial over F2 with nonzero constant term, and n > d
be an integer. Our goal is to compute a multiple of P with the least possible
weight, and with nonzero constant term and degree at most n. We proceed as
follows.

We first determine the minimal weight using Inequality 1. Let ω be the found
weight, and 1+z = 1+

∑n
i=1 ziX

i be a weight-ω solution to the LWPM problem.
We decompose z to z = x+ y, with x, y ∈ (Fn2 ,+) and weight(x) = weight(y) =
φ = n ∗ φn, where φ is a weight to be determined as a function of ω. Then, we
compute x and y as a collision to a random function f , using any collision-finding
algorithm, e.g. [4].

To compute φ, we assume and put in place a Bernoulli distribution on x and y.
That is, we ensure the coordinates (of x and y) are independent and equal to 1
with the constant probability φn = φ/n.

This section is organized as follows. Subsection 3.1 defines the building blocks
that will be used in the algorithm, namely the weight φ, the random function f
and a further function that puts in place the Bernoulli distribution. Subsection
3.2 describes our first algorithm for solving LWPM. Finally Subsections 3.3 and
3.4 are dedicated respectively to the analysis and experimental validation of the
presented algorithm.

3.1 Building blocks

Computation of φ. Assume a Bernoulli distribution on x and y. I.e. the
coordinates of both x and y are considered independent trials with the constant
probability of success Pr(xi = 1) = Pr(yi = 1) = φn = φ

n for i ∈ [1, n].

Therefore z = x + y follows also a Bernoulli law with PMF Pr(zi = 1) =
2φn(1 − φn), for i ∈ [1, n]. Moreover, weight(z) ∼ Binomial(2φn(1 − φn), n).
Since weight(z) = ω − 1, thus ω − 1 = 2nφn(1 − φn), which is equivalent to
φn = 1

2 (1 ±
√

1− 2ωn), where ωn := ω−1
n . Note that we assumed ω ≤ n

2 , thus
ωn ≤ 1

2 .

Random function f . Let φ and φn be the quantities computed in the previous
paragraph. Define the set T :

T = {x ∈ {0, 1}n : weight(x) = φ = n ∗ φn} (2)

Let further ai = Xi mod P for i ∈ [0, n]. Consider the functions f0, f1:

f0, f1 : T −→ Fd2

f0(x) =

n∑
i=1

xiai and f1(x) = a0 +

n∑
i=1

xiai
(3)
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Define further the function f :

f : T −→ Fd2

x 7−→
{
f0(x) if h(x) = 0
f1(x) if h(x) = 1

(4)

where h : {0, 1}n → {0, 1} is a random bit function. In other terms, f alternates
between applications of f0 and f1 depending on the input. It is clear that a
collision (x, y) of the function f will lead to a multiple of P with expected weight
less than ω. In fact, a collision of type fi(x) = fi(y), i = 0, 1 gives a multiple
with expected weight ω − 1, and a collision of type fi(x) = f1−i(y), i = 0, 1
gives a multiple with expected weight ω.

Finally, since we will use a cycle-finding algorithm to search collisions of f , we
need the function range and domain to be the same. To achieve this, we consider
an injective map τ : Fd2 −→ T (provided 2d ≤ |T |). Therefore, all collisions (x, y)
of f satisfy

f(x) = f(y) ⇐⇒ τ ◦ f(x) = τ ◦ f(y)

In this way, any cycle-finding technique can be applied to τ ◦ f to search for
collisions of f .
In the rest of the text, we conveniently identify τ ◦ f with f ; that is we assume
that f outputs elements in T , provided that 2d ≤ |T |, but we keep in mind that
|f(T )| = 2d.

Bernoulli distribution on the input of f . Recall that function f inputs
vectors of T that follow a Bernoulli distribution with parameters φn and n. That
is, coordinates of the input vectors are independent and identically distributed
with the constant probability φn of being equal to one. With this assumption, a
collision of f leads to a multiple of P with expected weight less than ω.
We achieve such a distribution by using a random function σ

σ : {0, 1}n −→ {0, 1}n

x 7−→ σ(x) : σ(x) ∼ Bernoulli(φn, n)

More precisely, σ uses the input elements as a seed to produce n-bit vectors that
satisfy the Bernoulli distribution. Therefore, the input elements are only used
to “remember” the state of the function, so that when it is called with the same
value, it produces the same output.
Note that σ outputs elements with weight φ with non-negligible probability:

Pr[σ(x) ∈ T , x ∈R {0, 1}n] =

(
n

φ

)
φφn(1− φn)n−φ =

(
n

nφn

)
2−nH(φn)

≈ 1√
2πnφn(1− φn)

On other note, σ induces a uniform distribution on T . In fact, let y ∈ T be a
given element in T , and x a random input element to σ

9



Pr[σ(x) = y | σ(x) ∈ T ] =
Pr[σ(x) = y, σ(x) ∈ T ]

Pr[σ(x) ∈ T ]
=

φφn(1− φn)n−φ(
n
φ

)
φφn(1− φn)n−φ

=
1

|T |

Therefore, we conveniently assume in the rest of this section that σ has range
T on which it induces a uniform probability distribution.

3.2 The algorithm

Consider the following map:

g : {0, 1}n −→ T (⊂ {0, 1}n)

x 7−→ f ◦ σ(x)

g is well defined as we assumed that σ has range T . Moreover, g is a random func-
tion from {0, 1}n to {0, 1}n, and thus we can apply any cycle-finding algorithm
to search collisions for g. Note that σ will introduce some unnecessary collisions
as we are only interested in collisions of f . We explain later how we compute
this fraction of “useful” collisions among the total number of g collisions.

Now therefore, in consideration of the foregoing, a cycle-finding algorithm
for g picks a random starting point s ∈R {0, 1}n, then computes a chain of
invocations of g, i.e. g(s), g2(s) := g ◦ g(s), . . . until finding a repetition. If such
a repetition leads to a valid collision (x, y), i.e. g(x) = g(y) and x 6= y, return it
otherwise start again with a new starting point. Termination of the algorithm is
guaranteed if the execution paths from different starting points are independent.
In other words, a random collision should be returned for each new starting point.

To randomize collisions, we introduce our last ingredient, a family of permu-
tations Pk addressed by integer k:

Pk : {0, 1}n −→ {0, 1}n

The new function subject to collision search is

g[k] = g ◦ Pk : T −→ T

Note that the restriction of Pk to T is still a permutation from T to Pk(T )(⊂
{0, 1}n).

g[k] is a random function, with domain and range T , which satisfies the ran-
domness requirement on the computed collisions. In fact, for each new starting
point s, a freshly random element Pk(s) is obtained thanks to Pk (the permuta-
tion Pk is picked new with each new starting point), which is then used as a seed
to σ to produce a random n-bit vector in T (with non-negligible probability) that
satisfies the Bernoulli distribution. Therefore, execution paths, in cycle-searching
algorithms for g[k], from different starting points are independent.
Also, (x, y) is a collision for g[k] if and only if (Pk(x), Pk(y)) is a collision for g.
We can then apply any cycle-finding algorithm to g[k] to search collisions for g.

We can now describe Algorithm 1 for solving the LWPM problem.
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Algorithm 1 for LWPM

Input A polynomial P with degree d, and a bound n
Output A multiple M of P such that deg(M) ≤ n and with the least possible

weight.

Compute the expected minimal weight ω by solving Inequality 1
ωn ←− (ω − 1)/n ; µ←− ω − 1
repeat

µn ←− µ/n; µ←− µ+ 1
φn ←− 1

2
(1±

√
1− 2 ∗ µn) ; φ←− n ∗ φn

until
(
n
φ

)
≥ 2d . to ensure that f has range f(T ) ⊆ T

repeat
choose a random permutation Pk
choose a random starting point s ∈R T
(x, y)←− Rho(g[k], s)
(p, q)←− (σ ◦ Pk(x), σ ◦ Pk(y))

M ←−
{
X ∗ (p+ q) if fi(p) = fi(q), i = 0, 1
1 +X ∗ (p+ q) if fi(p) = f1−i(q), i = 0, 1

until M ≡ 0 mod P and weight(M) ∈ [1, ω]
return M

Remark 1. Algorithm 1 finds weight-ω multiples provided they exist. When In-
equality 1 predicts a weight that does not exist, the algorithm runs indefinitely.
As a safety valve, one can allow a margin in the breaking condition, and accept
multiples with weights within that margin.

Remark 2. The µn’s considered in the first loop are all less than 1
2 . In fact, they

satisfy µn = 2φn(1 − φn), and the function x 7−→ 2x(1 − x) is upper bounded
by 1

2 for x ∈ [0, 1].

Remark 3. Both the values 1
2 (1 +

√
1− 2µn) and 1

2 (1 −
√

1− 2µn) for φn give
the same expected time in terms of function calls, however, the latter value finds
the solution faster as it is easier to manipulate sparse vectors.

3.3 Complexity analysis

Theorem 1. Algorithm 1 runs in time Θ(2Ct) with

Ct =
d

2
+ n(−H(wn) +H1(ωn)) +

3

2
log2(2πnωn(1− ωn))

where H1(ωn) = −ωn log2(2ωn(1− ωn))− (1− ωn) log2(1− 2ωn(1− ωn)).

We first note that ω − 1 = φ. In fact, ω is the smallest integer such that the
inequality

(
n
ω−1
)
≥ 2d holds. On other note, φ is the smallest integer such that(

n
φ

)
≥ 2d, thus φ = ω − 1 and φn = ωn.

Moreover, g and thus g[k] induces the uniform distribution on g[k](T ). In fact,
σ induces the uniform distribution on T , and f alternates with probability 1

2

11



between applications of the deterministic functions f0 and f1. Thus, the birthday
paradox applies and a collision of g[k] costs on average 2d/2. Actually, g[k] has
domain T and range g[k](T ) ⊆ T , with |g[k](T )| = 2d. Also, the expected number

of g[k] collisions is Θ( |T |
2

2d+1 ) according to Fact 1.

Proof. The algorithm searches collisions (x, y) for g[k] that correspond to f col-
lisions, and that satisfy a weight condition. We call such collisions “useful col-
lisions”. Let (x, y) ∈R T 2 with (p, q) = (σ ◦ Pk(x), σ ◦ Pk(y)). (x, y) is a useful
collision for g[k] if the following hold:

Event E1: “p, q ∈ T ” (so that the function g and thus g[k] is well-defined)

Event E2: “weight(p+ q) = n ∗ ωn”

Event E3: “X ∗ (p+ q) or 1 +X ∗ (p+ q) is a multiple of P”

Therefore the number of useful collisions is given by |T |2 ∗ Pr[E1 ∧ E2 ∧ E3].

According to the previous study of σ, we have Pr[E1] ≈ 1
2πnφn(1−φn)

.

Moreover, p ∼ Bernoulli(φn, n) and q ∼ Bernoulli(φn, n). Therefore
p+q ∼ Bernoulli(2φn(1−φn), n), and weight(p+q) ∼ Binomial(2φn(1−φn), n).
Thus:

Pr[E2 | E1] ≈ Pr[E2] =

(
n

n ∗ ωn

)
(2φn(1− φn))n∗ωn(1− 2φn(1− φn))n−n∗ωn

=

(
n

ω − 1

)
(2φn(1− φn))n∗ωn(1− 2φn(1− φn))n−n∗ωn

Finally, the probability that a random weight-ω polynomial with nonzero
constant term and degree at most n equals a weight-ω multiple of P with nonzero

constant term and degree at most n is
(
n
ω−1
)−1NM , where NM is the number of

such multiples which equals
(
n
ω−1
)
2−d.

Similarly, the probability that a random weight-(ω − 1) polynomial with zero
constant term and degree at most n equals a weight-(ω − 1) multiple of P with

zero constant term and degree at most n is
(
n
ω−1
)−1N ′M , where N ′M is the

number of such multiples which equals
(
n
ω−1
)
2−d. Thus Pr[E3 | E2, E1] = 2−d+1.

Since φn = ωn (φ = ω − 1), we conclude that the number of useful collisions
is given by

Nuseful−collisions = |T |2 ∗ Pr[E1 ∧ E2 ∧ E3]

≈ |T |22−d+1

(
n

ω − 1

)
(2φn(1− φn))nωn(1− 2φn(1− φn))n−nωn 1

2πnφn(1− φn)

= |T |32−d+1(2ωn(1− ωn))nωn(1− 2ωn(1− ωn))n−nωn 1

2πnωn(1− ωn)

And the probability of a useful collision is:

12



Pr[useful− coll] =
Nuseful−collisions

Ng[k]−collisions

≈ Θ
(

2−2|T |(2ωn(1− ωn))nωn(1− 2ωn(1− ωn))n−nωn 1

2πnωn(1− ωn)

)
= Θ

(
2nH(ωn)(2ωn(1− ωn))nωn(1− 2ωn(1− ωn))n−nωn 1

(2πnωn(1− ωn))3/2

)
Finally, the running time (in terms of function calls) of the algorithm is the

product of Pr[useful− coll]−1 and the cost of a g[k]-collision, i.e. 2d/2. Thus, on
average, the running time exponent is approximately:

Ct =
d

2
+ n(−H(wn) +H1(ωn)) +

3

2
log2(2πnωn(1− ωn)

where H1(ωn) = −ωn log2(2ωn(1− ωn))− (1− ωn) log2(1− 2ωn(1− ωn)).
ut

3.4 Experimental results
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Fig. 3. Averaged func-
tion calls T for Algo-
rithm 1 run on Poly-
nomial P

We run Algorithm 1 on the following polynomial P
for n ∈ [30, 1100]. The results are depicted in Figure
3.

P = X19+X11+X10+X8+X7+X5+X4+X3+X2+X1+1

Further experiments are deferred to Appendix A.
We used the the Θ̃ notation for the estimated

time, which explains the differences between the es-
timates and the experiments; the polynomial factor
(2πnωn(1− ωn))

3
2 is ignored in the estimated time.

4 Second Algorithm

Algorithm 1 in Section 3 incurs an overhead in the
computations due to function σ. Actually, with each
invocation of the function f , we make a call to σ which
uses a pseudo-random number generator to establish
the Bernoulli distribution on the input.

We remediate this problem in this section. There-
fore, we decompose the solution z of LWPM into a
pair (x, y), where x, y are n-bit vectors that do not
enjoy any specific properties except having the same weight φ to be determined.
We then look for such pairs by searching collisions of f .

Consider the set T defined in Statement 2, and let x, y ∈R T . We proceed as
follows. We first determine the PMF of the random variable Y = weight(x+ y)
and compute φ as a function of ω. Then, we describe, analyze and experimentally
validate our second algorithm in the subsequent subsections.
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4.1 Computation of φ

Probability law of Y = weight(x+ y) We first note the following facts.

Fact 2 Pr[Y = 2k + 1] = 0, ∀k ∈ N.

Proof. Pr[Y = 2k + 1] denotes the probability that x and y disagree on exactly
2k + 1 positions. Let x̄ and ȳ be the (2k + 1)-bit strings extracted from x and
y respectively, and composed of the bits where x and y disagree. Let further
x\x̄ and y\ȳ be the remaining strings of x and y after extraction of x̄ and ȳ
respectively. We have x̄i = 1 − ȳi, for i ∈ [1, n]. That is, there are 2k + 1 ones
distributed between the bits of x̄ and ȳ.
Since weight(x) = weight(y) = φ. Then, we will have 2φ−2k−1 ones distributed
equally between the bits of x\x̄ and y\ȳ since x\x̄ = y\ȳ. This is impossible as
2φ−2k−1 is odd. We conclude that x and y cannot disagree on an odd number
of positions. ut

Fact 3 Pr[Y = k] = 0, for k /∈ [0,min(2φ, n)].

Proof. There is a total of 2φ ones in both x and y. Therefore, x and y can
disagree on at most 2φ positions. That is Pr[Y > 2φ] = 0. On other note, it is
obvious that Pr[Y > n] = Pr[Y < 0] = 0. ut

Let now, k ≤ min(φ, n/2) be an integer. Pr[Y = 2k] is given by the number
of strings x and y that disagree on 2k positions, divided by the size of the
probability space. The number of such strings is given by the product of:

–
(
n
2k

)
: the number of ways to choose the positions where x and y disagree.

–
(
2k
k

)
: the number of ways to distribute k ones in those 2k positions. In fact,

let x̄ and ȳ be the (2k)-bit strings extracted from x and y respectively, and
composed of the bits where x and y disagree. Then, x̄ and ȳ have the same
weight, namely k, as x and y have the same weight φ, and agree on the
remaining n − 2k positions. Thus, the 2k ones must be equally distributed
among x̄ and ȳ.

–
(
n−2k
φ−k

)
: the number of ways to choose (n−2k)-bit strings with weight (φ−k).

I.e. the number of sub-strings where x and y agree.

The size of the probability space is given by |T |2 =
(
n
φ

)2
. Thus

Pr[Y = 2k, k ≤ min(φ, n/2)] =

(
n

2k

)(
2k

k

)(
n− 2k

φ− k

)/(
n

φ

)2

=

(
φ

k

)(
n− φ
k

)/(
n

φ

)
We conclude that:

Pr[weight(x+ y) = 2k] =

{(φ
k

)(
n−φ
k

)/(
n
φ

)
if 0 ≤ k ≤ min(φ, n/2)

0 otherwise
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Computation of φ Note that the PMF of Y = weight(x+ y) is reminiscent of
the hypergeometric distribution G given by PMF:

Pr[G = k] =

{(t
k

)(
n−t
φ−k
)/(

n
φ

)
if 0 ≤ t, φ ≤ n and 0 ≤ k ≤ min(φ, t)

0 otherwise

and expectation E(G) = t·φ
n . Actually, for t = φ, we get

Pr[G = k] =

{(φ
k

)(
n−φ
φ−k
)/(

n
φ

)
if 0 ≤ φ ≤ n and 0 ≤ k ≤ φ

0 otherwise

Therefore Pr[weight(x+y) = 2k] = Pr[G = φ−k]. We derive the expectation
of Y = weight(x+ y) as follows.

E(Y ) =

2φ∑
k=0,k=2p

kPr[Y = k] =

φ∑
k=0

2kPr[Y = 2k]

=

φ∑
k=0

2kPr[G = φ− k] = 2

φ∑
k=0

(φ− k) Pr[G = k]

= 2φ− 2E(G) = 2φ(1− φ/n)

Therefore, if we conserve our previous notations: φ = n∗φn, and ω−1 = ωn∗n,
and solve for φn the equation ωn ∗ n = 2φ(1 − φ/n). We get φn = 1

2 (1 ±√
1− 2ωn) (ωn ≤ 1

2 ). Note that we get the same value we found for φ in Section
3, when we assumed a Bernoulli distribution on x and y, and consequently a
binomial distribution on weight(x + y) (x + y ∼ Bernoulli(2φn(1 − φn), n) and
thus weight(x+ y) ∼ Binomial(2φn(1−φn), n)). This is not surprising; we know
that for increasing n, the hypergeometric law converges to the binomial law.

4.2 The algorithm

Let (P, d, n) be a LWPM instance. We compute the minimal weight ω as usual
by solving Inequality 1, then we compute φn as 1

2 (1±
√

1− 2(ω − 1)/n) and φ
as nφn.

To compute a weight-ω multiple of P with degree less than n, we similarly search
for collisions (p, q) of the function f defined earlier, where p and q are n-bit
vectors with weight φ. There is a small particularity of this algorithm depending
on the parity of ω. In fact, collisions of f are of two types:

Type 1 collisions that correspond to fi(p) = f1−i(q), i = 0, 1. These colli-
sions produce multiples of type 1 + X(p + q), with weight 1 + 2k, 1 ≤ k ≤
min(φ, n/2).

Type 2 collisions that correspond to fi(x) = fi(y), i = 0, 1. These collisions
produce multiples of type X(p+ q), with weight 2k, 1 ≤ k ≤ min(φ, n/2)

15



Therefore, if ω = 1 + 2k, we set µ =: ω − 1 and φ = nφn, with φn = 1
2 (1 ±√

1− 2µ/n). As in Algorithm 1, we ensure that f outputs values in T (using
the injective map τ : Fd2 −→ T ) by satisfying the condition |T | ≥ 2d, where
|T | =

(
n
φ

)
: we keep increasing µ until the inequality holds. Similarly, if ω = 2k,

then we initially set µ := ω and keep increasing it until
(
n
φ

)
≥ 2d, where φ = nφn

and φn = 1
2 (1 ±

√
1− 2µ/n). We note again that both 1

2 (1 +
√

1− 2µ/n) and
1
2 (1−

√
1− 2µ/n) lead to the same expected function calls, however, the latter

value finds the solution faster as it is easier to manipulate sparse vectors.

Finally, to randomize collisions, it is enough to use any family of permutations
Pk : T −→ T . The collision-finding algorithm is then applied to f [k] := Pk ◦ f .

We are now ready to give the pseudo-code description of our second algorithm
for LWPM in Algorithm 2.

Algorithm 2 for LWPM

Input A polynomial P with degree d, and a bound n
Output A multiple M of P such that deg(M) ≤ n and with the least possible

weight.

Compute the expected minimal weight ω by solving Inequality 1
if ω%2 = 1 then

ωn ←− (ω − 1)/n ; µ←− ω − 1
else

ωn ←− ω/n ; µ←− ω
end if
repeat

µn ←− µ/n ; µ←− µ+ 1
φn ←− 1

2
(1±

√
1− 2 ∗ µn) ; φ←− n ∗ φn

until
(
n
φ

)
≥ 2d . to ensure that f has range f(T ) ⊆ T

repeat
choose a random permutation Pk : T −→ T
choose a random starting point s ∈R T
(p, q)←− Rho(f [k], s)

M ←−
{
X ∗ (p+ q) if fi(p) = fi(q), i = 0, 1
1 +X ∗ (p+ q) if fi(p) = f1−i(q), i = 0, 1

until M ≡ 0 mod P and weight(M) ∈ [1, ω]
return M

First, we note that Remarks 1 & 2 & 3 for Algorithm 1 apply also here.
Moreover, for even ω, Algorithm 2 finds multiples of the form X ∗ (p+ q), where
p+ q is a polynomial with degree at most n− 1. That is, the algorithm finds a
weight-ω multiple with nonzero constant term and degree at most n − 1 (since
P has nonzero constant term) provided it exists. One could change, in this case,
the definition of T and f and manipulate (n + 1)-bit vectors instead of n-bit
vectors in order to find multiples of degree at most n, but we opted for the above
description to keep the algorithm simple.
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4.3 Complexity analysis

Let p, q ∈R T and j, ω ∈ [1, n]. Define the following events:

Event W : ”weight(p+ q) = ω”
Event Pj: ”(p+ q)1...j = 0 . . . 0︸ ︷︷ ︸

j-1

1”, where (x)1...j denotes the length-j prefix of

vector x.

Actually, when ω is even, then Algorithm 2 computes the solution as a Type
2 collision (p, q), i.e. produces multiples of the form X(p+ q). As we are inter-
ested in multiples with nonzero constant term, we need to measure the proba-
bility of the event W ∧ Pj . Thus the necessity of the following fact.

Fact 4 Let ω be an even weight in [1, n]. Then

Pr[W ∧ Pj ] =
ω

n− j + 1
Pr[W ]

j−2∏
l=0

(
1− ω

n− l

)
Moreover, for small ω and i, with j ≤ i ≤ n:

i∑
j=1

Pr[W ∧ Pj ] ≥ iPr[W ]
ω

n− i+ 1

(
n

n− i+ 1

)ω
Proof. Let Pj denote the event ”(p + q)1...j = 0 . . . 0”. We prove by induction

that Pr[W ∧ Pj ] = Pr[W ]

j−1∏
l=0

(
1− ω

n− l

)
.

For j = 1:

Pr[W ∧ (p+ q)1 = 0] = Pr[p1 = q1 = 0] Pr[W | p1 = q1 = 0] + Pr[p1 = q1 = 1] Pr[W | p1 = q1 = 1]

=

((
n−1
φ

)(
n
φ

) )2

Pr[W | p1 = q1 = 0] +

((
n−1
φ−1

)(
n
φ

) )2

Pr[W | p1 = q1 = 1]

= (1− φn)2 Pr[weight(p′ + q′) = ω] + φn
2 Pr[weight(p” + q”) = ω]

Where, p′, q′ are random (n− 1)-bit vectors with weight(p′) = weight(p′) = φ,
and p”, q” are random (n − 1)-bit vectors with weight(p”) = weight(p”) = φ −
1. Using the PMF of weight(p + q), we compute Pr[weight(p′ + q′) = ω] and
Pr[weight(p” + q”) = ω], and find that the expression of Pr[W ∧ (p + q)1 = 0]
simplifies to Pr[W ]

(
1− ω

n

)
.

Let now j ≥ 1, and suppose the result holds true until j. We have

Pr[W ∧ Pj+1] = Pr[W ∧ Pj ∧ (p+ q)j+1 = 0]

The event ”W ∧ Pj” is equivalent to the event W ′ : weight(p′ + q′) = ω”, where
p′, q′ are (n − j)-bit vectors such that weight(p′) = weight(q′) = φj with φj
taking values in the interval [φ− j, φ]. Therefore:
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Pr[W ∧ Pj+1] = Pr[W ′ ∧ (p′ + q′)1 = 0]

=

(
1− ω

n− j

)
Pr[W ′] =

(
1− ω

n− j

)
Pr[W ∧ Pj ]

= Pr[W ]

j∏
l=0

(
1− ω

n− l

)

Since Pr[W∧Pj ] = Pr[W∧Pj−1]−Pr[W∧Pj ], then Pr[W∧Pj ] = ω
n−j+1 Pr[W ]

∏j−2
l=0

(
1− ω

n−l

)
.

On the other hand, for small ω and i such that j ≤ i ≤ n, we have

log2

 i∑
j=1

Pr[W ∧ Pj ]

 = log2

 i∑
j=1

ω

n− j + 1
Pr[W ]

j−2∏
l=0

(
1− ω

n− l

)
≥ log2

(
iPr[W ]

ω

n− i+ 1

i−2∏
l=0

(
1− ω

n− l

))

= log2

(
iPr[W ]

ω

n− i+ 1

)
+

i−2∑
l=0

log2

(
1− ω

n− l

)

≈ log2

(
iPr[W ]

ω

n− i+ 1

)
+

i−2∑
l=0

ω

n− l

≈ log2

(
iPr[W ]

ω

n− i+ 1

)
+ ω (log2(n)− log2(n− i+ 1))

The last equation is due to the approximation of the harmonic series
∑n
k=1

1
k ≈

ln(n).

Finally:
∑i
j=1 Pr[W ∧ Pj ] ≥ iPr[W ] ω

n−i+1

(
n

n−i+1

)ω
.

Theorem 2. Algorithm 2 runs in time Θ̃(2Ct) where Ct = d
2+n (−H2(ωn) +H(ωn)),

with H2(ωn) = ωn + (1− ωn)H
(

ωn

2(1−ωn)

)
.

Proof. The algorithm searches for two types of f -collisions: Type 1 collisions
when ω is odd, and Type 2 collisions when ω is even. We detail below the cost
of each collision.

Type 1 collisions. A Type 1 collision (p, q) satisfies for an odd ω (i) weight(p+
q) = ω − 1 and (ii) 1 +X ∗ (p+ q) is a weight-ω multiple of P .

Define the following events for a pair (p, q) ∈R T 2: W : ”weight(p+ q) = ω − 1”
and M : ”f | 1 +X ∗ (p+ q)”.
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According to the probability law of weight(p+ q), we have

Pr[W ] =

(
φ

(ω − 1)/2

)(
n− φ

(ω − 1)/2

)/(
n

φ

)
=

(
ω − 1

(ω − 1)/2

)(
n− ω + 1

(ω − 1)/2

)/(
n

ω − 1

)
≈ 2n(ωn+(1−ωn)H( ωn

2(1−ωn) )−H(ωn)) 4(1− ωn)√
2πnωn(2− 3ωn)

In fact φ = ω− 1 (and thus φn = ωn) since φ and ω− 1 are the smallest integers
that satisfy the inequality

(
n
x

)
≥ 2d.

Further, and as argued previously, the probability that a random weight-ω
polynomial with nonzero constant term and degree at most n equals a weight-ω

multiple of P with nonzero constant term and degree at most n is
(
n
ω−1
)−1NM ,

where NM is the number of such multiples which equals
(
n
ω−1
)
2−d.

Therefore, for a pair (p, q) ∈R T 2 and an odd ω

Pr[(p, q) is a Type 1 collision] = Pr[W ∧M ] = Pr[W ] Pr[M |W ] = 2−d Pr[W ]

This implies that we have heuristically NType1−collisions = |T |22−d Pr[W ] many
Type 1 collisions. The probability pType1−collisions of finding such collisions is
given by the ratio of NType1−collisions and the total number of f collisions, esti-
mated by |T |22−d−1,

pType1−collisions =
|T |22−d Pr[W ]

|T |22−d−1

≈ Θ

(
2n(ωn+(1−ωn)H( ωn

2(1−ωn) )−H(ωn)) 8(1− ωn)√
2πnωn(2− 3ωn)

)
Each collision costs Θ(2d/2), therefore, the expected number of function calls
before the algorithm terminates is Θ(2CtPoly1(n)):

Ct =
d

2
+ n

(
−ωn − (1− ωn)H

(
ωn

2(1− ωn)

)
+H(ωn)

)
and

Poly1(n) =

√
2πnωn(2− 3ωn)

8(1− ωn)

Type 2 collisions. When ω is even, the algorithm produces a Type 2 collision
(p, q), characterized by: (i)weight(p + q) = ω, (ii) (p + q)1...j = 0 . . . 01, where
1 ≤ j ≤ i and i is the largest integer such that there exists a weight-ω multiple of
P with nonzero constant term and degree n− i, and (iii) X(p+ q) is a weight-ω
multiple of P of degree at most n− 1.
For a pair (p, q) ∈R T 2, consider the events W and Pj defined earlier in this
subsection, in addition to the event M : ”f | X ∗ (p+ q)”. Therefore

Pr[(p, q) is a Type 2 collision] =

i∑
j=1

Pr[W ∧ Pj ∧M ] =

i∑
j=1

Pr[W ∧ Pj ] Pr[M |W,Pj ]
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Again, the probability that a random weight-ω polynomial with nonzero constant
term and degree n − i equals a weight-ω multiple of P with nonzero constant

term and degree n − i is
(
n−i
ω−1
)−1N ′M , where N ′M is the number of such mul-

tiples which equals
(
n−i
ω−1
)
2−d. Therefore Pr[M | W,Pj ] = 2−d for j ∈ [1, i].

Furthermore, according to Fact 4, we have:

Pr[(p, q) is a Type 2 collision] = 2−d
i∑

j=1

Pr[W ∧ Pj ]

≥ 2−diPr[W ]
ω

n− i+ 1

(
n

n− i+ 1

)ω
With

Pr[W ] =

(
φ

ω/2

)(
n− φ
ω/2

)/(
n

φ

)
=

(
ω − 1

ω/2

)(
n− ω + 1

ω/2

)/(
n

ω − 1

)
Using

(
n−1
k

)
= n−k

n

(
n
k

)
and

(
n
k−1
)

=
(
n
k

)
k

n−k+1 , we get:

Pr[W ] ≈ (n− ω + 1)2

ω(2n− 3ω + 2)
· 2n(ωn+(1−ωn)H( ωn

2(1−ωn) )−H(ωn)) · 4(1− ωn)√
2πnωn(2− 3ωn)

By proceeding in the same way as for Type 1 collisions, we show that Algorithm
2 produces Type 2 collisions in Θ(2CtPoly2(n)):

Ct =
d

2
+ n (−H2(ωn) +H(ωn)) with H2(ωn) = ωn + (1−ωn)H

(
ωn

2(1− ωn)

)
and

Poly2(n) =
(2n− 3ω + 2)

(n− ω + 1)2
·
√

2πnωn(2− 3ωn)

8(1− ωn)

n− i+ 1

i

(
n− i+ 1

n

)ω
Note that

(
n−i+1
n

)ω ≤ 1, thus Poly2(n) is indeed polynomial in n. ut

4.4 Experimental results

We consider the same test polynomial in Subsection 3.4 for the same range of
values n ∈ [30, 1100]; the results are depicted in Figure 4. Note that we used the
Θ̃ notation for the estimated time, which explains the slight differences between
the estimates and the experiments. Further experiments are given in Appendix
A.
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5 Comparison with the State-of-the-art

In this section, we compare the performance of our algorithms with existing
memory-efficient methods for LWPM (discrete-log [22] and Canteaut-Trabbia
[6]). These lasts run in Θ̃(2d) and Θ̃(2nH(ωn)) respectively. Actually, we discard
the lattice method as it becomes inaccurate with increasing n (few hundreds).

Method DL [22] [6] Algorithm 1 Algorithm 2

log2(Θ̃(T )) d nH(ωn) d
2

+ n(−H(wn) +H1(ωn)) d
2

+ n (−H2(ωn) +H(ωn))

Table 1. Comparison between the memory-efficient techniques and our algorithms
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Figure 5 depicts the performance of our algorithms in comparison with the
state-of-the-art methods. Note that our algorithms apply to any polynomial, and
do not use any precomputed tables of discrete logarithms, unlike some existing
memory-efficient methods (discrete-log-based ones).

Cryptanalytic application I: the Bluetooth summation generator poly-
nomial The Bluetooth polynomial is the product of the four constituent LFSRs
feedback polynomials; PBT = P1 · P2 · P3 · P4 where:

P1(x) = x25 + x20 + x12 + x8 + 1;P2(x) = x31 + x24 + x16 + x12 + 1;

P3(x) = x33 + x28 + x24 + x4 + 1;P4(x) = x39 + x36 + x28 + x4 + 1;

PBT has degree 128 and weight 49. At degree n = 668, the expected minimal
weight is 22. Note that the maximum keystream length for the Bluetooth com-
biner is 2745. That is, the maximum value for n is 2745. We note in Table 2 the
performances of the different polynomial memory algorithms on this instance
(d = 128, n = 668, ω = 22).

Method DL [22] Canteaut-Trabbia[6] Algorithm 1 Algorithm 2

log2(Θ̃(T )) 128 135 73 101

Table 2. Time costs of the memory-efficient techniques and our algorithms on the
Bluetooth polynomial

Cryptanalytic application II [8] We consider the test polynomial used in [8]

P53 = X53 +X47 +X45 +X44 +X42 +X40 +X39 +X38 +X36 +X33 +X32

+X31 +X30 +X28 +X27 +X26 +X25 +X21 +X20 +X17 +X16 +X15

+X13 +X11 +X10 +X7 +X6 +X3 +X2 +X1 + 1.

The authors in [8] found multiples of weight ω = 5 at degree n = 213 (the
expected minimal weight is actually ω = 6). We note in Table 3 the performances
of the different polynomial memory algorithms on this instance.

At degree n ≥ 220, the authors found multiples with weight ω = 4. However,
at this degree, the condition n ≥ 2d/(1+log2(ω−1)) is satisfied; thus, the generalized
birthday method [25] outperforms with a time and a memory cost linear in n.
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Method Discrete Log [22] Canteaut-Trabbia[6] Algorithm 1 Algorithm 2

log2(Θ̃(T )) 53 60 29 53

Table 3. Time costs of the memory-efficient techniques and our algorithms on the [8]
instance

6 Time-Memory Trade-off Variants

Our previously described algorithms allow fortunately for a time/memory trade-
off, thanks to van Oorschot-Wiener’s Parallel Collision Search (PCS) technique
[20]. This technique has been extensively used in cryptanalysis since its intro-
duction; it allows to efficiently find multiple collisions, of a random function, at
a low amortized cost per collision. More precisely, let C be the time complexity
to find a collision with polynomial memory, then PCS finds Θ̃(2m) collisions in
time Θ̃(2

m
2 C) using Θ̃(2m) memory.

In the following, we apply PCS to Algorithms 1 & 2 in order to decrease their
time complexity at the expense of memory.

Algorithm 1 Trade-off. According to the analysis in Section 3, Algorithm 1
requires to find Θ̃(2n(−H(wn)+H1(ωn))) collisions. In fact, this value corresponds
to the number of examined collisions before coming across a so-called useful colli-
sion, i.e. a collision that leads to a solution to the LWPM problem. Each collision
comes at the cost of Θ̃(2

d
2 ). Therefore, using Mtmto-1 = Θ̃(2n(−H(wn)+H1(ωn)))

memory, the time complexity of the trade-off variant of Algorithm 1 reduces to

Ttmto-1 = Θ̃(2
n(−H(ωn)+H1(ωn))

2 · 2 d
2 ).

Algorithm 2 Trade-off. Algorithm 2 requires to find Θ̃(2n(H(ωn)−H2(ωn))) col-

lisions, each at the cost of Θ̃(2
d
2 ). Therefore, usingMtmto-2 = Θ̃(2n(H(ωn)−H2(ωn)))

memory, the time complexity of the trade-off variant of Algorithm 2 reduces to

Ttmto-2 = Θ̃(2
n(H(ωn)−H2(ωn))

2 · 2 d
2 ).

We depict in Table 4 and Figure 6 the time/memory costs of the trade-off
variants of Algorithms 1 & 2 and of the state-of-the-art. We omit the generalized
birthday method [25] which is linear in time and memory (O(n)) if the condition
n ≥ d/(1 + log2(ω − 1)) is satisfied.

Our trade-off variants outperform obviously the state-of-the-art in memory,
however, they loose the lead in the running time as the weights get smaller. Note
however that when the weights get very small, then the generalized birthday
method [25] imposes itself as we will see below in Cryptanalytic application II.
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DL [8] SD [15,18] TMTO [7] Algo1 Algo2
log2(T )

n
H(ω−2

2n
) ωn(log2 n− log2 d) H(ω−1

2n
) 1

2
( d
n
−H(ωn) +H1(ωn)) 1

2
( d
n

+H(ωn)−H2(ωn))
log2(M)

n
H(ω−2

2n
) ωn log2 d H(ω−1

4n
) −H(ωn) +H1(ωn) H(ωn)−H2(ωn)

Table 4. Comparison between the time/memory trade-off techniques and our algo-
rithms
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Fig. 6. Time/Memory costs of the state-of-the-art and our trade-off algo-
rithms

Cryptanalytic application I: The Bluetooth Polynomial We note in Ta-
ble 5 the performances of the time/memory trade-off methods on the Bluetooth
instance considered in Section 5. We discard the generalized birthday method as
the condition n ≥ d/(1 + log2(ω − 1)) is not satisfied.

DL [8] SD [15,18] TMTO [7] Algo1 Algo2

log2(T ) 75 52 78 68 82

log2(M) 75 154 44 9 36

Table 5. Time/memory costs of the trade-off techniques on the Bluetooth polynomial

Cryptanalytic application II [8] We consider the instance polynomial P53

defined earlier in Section 5. We provide in Table 6 the performances of the
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time/memory trade-off methods on this polynomial at degree n = 213 and weight
ω = 6.

It is worth noting that that if go up to degree n = 220, we can get a 4-weight
multiple using Wagner’s generalized birthday, in time and memory linear in 220.
This is of course only possible when the available keystream allows it (since n is
upper bounded by the available keystream length).

DL [8] SD [15,18] TMTO [7] Algo1 Algo2

log2(T ) 27 44 33 28 38

log2(M) 27 34 18 13 23

Table 6. Time/memory costs of the trade-off techniques on the [8] instance
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Fig. 7. Averaged function calls T for Algorithms 1 & 2 run on Polynomial:
P17 = P = X17 +X15 +X14 +X13 +X11 +X10 +X9 +X8 +X6 +X5 +X4 +X2 + 1
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Fig. 8. Averaged function calls T for Algorithms 1 & 2 run on Polynomial:
P24 = X24+X21+X19+X18+X17+X16+X15+X14+X13+X10+X9+X5+X4+X1+1
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