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Abstract. We propose a new framework for trapdoor sampling over
lattices. Our framework can be instantiated in a number of ways. In a
departure from classical samplers, it allows for example to sample from
uniform, affine, “product affine” and exponential distributions. Another
salient point of our framework is that the output distributions of our
samplers are perfectly indistinguishable from ideal ones, in contrast with
classical samplers that are statistically indistinguishable. One caveat of
our framework is that all our current instantiations entail a rather large
standard deviation.
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1 Introduction

Sampling over a lattice – usually using a trapdoor – is a fundamental build-
ing block in lattice-based cryptography. Since its inception [19,17], it has seen a
myriad of applications such as full-domain hash signature schemes [17], identity-
based encryption or IBE [17], hierarchical IBE [11,1,2], attribute-based encryp-
tion [8], standard model signatures and so on.

Given its importance, surprisingly few sampling methods have been proposed.
The most prominent is arguably the Klein/GPV sampler [19,17], a randomized
variant of Babai’s nearest plane algorithm. Analogously, Peikert’s sampler [25]
randomizes Babai’s round-off algorithm. Both samplers can sample over any lat-
tice, provided a (preferably) short basis. The Micciancio-Peikert framework [23]
and its variations operate at a slightly different level by constructing pseudoran-
dom lattices along with trapdoors that allow to sample efficiently.

These proposals share two notable common points. First, they all sample from
discrete Gaussian distributions. Gaussians come with their share of challenges
in terms of implementation, precision analysis and side-channel analysis, and
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have often been replaced with simpler distributions whenever possible [4,14,7].
To the best of our knowledge, the only attempt [22] to rely on other distributions
than discrete Gaussians was restricted to the Micciancio-Peikert framework. A
second common point is that they do not sample perfectly from a discretized
ideal distribution, but statistically close to it. A blueprint for performing exact
lattice sampling is proposed at the end of [9]; it is rather involved as it entails
infinite sums of transcendental functions. To the best of our knowledge, neither
[22] nor [9] have been implemented.

The motivation of this work is to propose alternative trapdoor samplers that
lift the two aforementioned limitations: (a) being restricted to Gaussian distri-
butions, (b) achieving only statistical correctness instead of the stronger notion
of perfect correctness. In itself, lifting these limitations is conceptually interest-
ing, and may further our theoretic comprehension of lattice sampling. From a
practical perspective, a new approach with different strengths and weaknesses
provides more avenues for optimization.

1.1 Our Contribution

We propose a new framework for lattice (trapdoor) sampling. At a high level, it
requires two components. First, we require an L-regular algorithm; intuitively,
a regular algorithm maps the ambient space to a lattice L in a way that defines
a L-regular tiling of the space. This notion provides a natural abstraction of
Babai’s nearest plane and round-off algorithms, as well as any exact closest
vector problem (or CVP) solver.

The second component is a T -squaremonic function; the term squaremonic
is a portmanteau of square and harmonic. This notion is a variation of harmonic
functions over lattice tiles instead of balls. The key property of squaremonic
functions is that rounding them over a lattice is equivalent (by translation) to
discretizing them over the same lattice. The interplay between regular algorithms
and squaremonic functions gives us a class of lattice samplers, corresponding to
various instances of our framework. Our framework and its instantiations have
two interesting properties.

• Non-Gaussian distributions. We can sample from uniform, affine, “prod-
uct affine” and exponential distributions, discretized over a subset of a lattice
– typically, its intersection with a Lp ball. This contrasts with classical lat-
tice sampling algorithms, which are restricted to Gaussian distributions –
with the exception of [22] in the setting of [23].

• Exact sampling. The output distribution of our algorithms are exact dis-
crete distributions over a lattice, perfectly independent of the basis used. In
comparison, existing lattice (trapdoor) samplers [17,25,23], entail a trade-
off between the standard deviation of the (Gaussian) distribution and the
correctness of the sampler (i.e. the divergence of its output from an ideal
distribution), see [17,16,26]. In our case, there is a trade-off between the
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standard deviation of the distribution and the running time of the sam-
pler. While the practical impact of this exactness is unclear, we believe it is
conceptually interesting.

At a technical level, our approach is simple; one possible instantiation is to
sample x ← f from a continuous distribution f , compute B

⌊
B−1x

⌉
and apply

a simple rejection sampling step. We note that works by Regev [28] and Gentry,
Peikert and Vaikuntanathan [17] considered doing exactly this. However, both
works took f to be a continuous Gaussian; achieving statistical closeness then
required an exponential standard deviation, and this approach was deemed non-
viable by [17]. What allows us to unlock this situation is to rely on different
distributions; the ones we choose are naturally more amenable to this approach.

One current drawback in our approach is that it entails standard deviations
that are higher than the state of the art. Compared to the “classical” samplers
of [17,25], the Euclidean norm can be larger by a factor O(n1.5). We there-
fore consider reducing this standard deviation as a relevant and important open
question.

We are not aware of any straightforward way to apply our approach with
Gaussians or, conversely, to adapt the [17] sampler to the distributions we have
chosen. Again, we see future results in either direction (either positive or nega-
tive) as interesting open questions.

Finally, we note that our main motivation for this work was the constructive
side of lattice sampling (e.g. trapdoor sampling), and this is reflected in this
document. However, Gaussian sampling over lattices has also been studied in
the context of theoretical cryptanalysis and computational complexity theory
[19,?,?,?].

1.2 Related Works

A few lattice sampling frameworks have been proposed; foundational algorithmic
works are [19,17,25], which first proposed trapdoor samplers. The Micciancio-
Peikert framework [23] and its follow-up works [?] directly construct lattices that
can easily be sampled from using [17,25]. Note that unlike our work, these works
only considered statistically correct sampling and Gaussian distributions. This
is also true for their follow-up works, with the exception of the ones discussed
below.

Sampling from non-Gaussian distributions in the Micciancio-Peikert frame-
work was considered by [22], and sampling exactly via analytical techniques was
studied by [9]. We note that [28,17] considered a similar idea to ours. Unfortu-
nately, both works consider instantiating it with Gaussians, leading to statistical
correctness and exponential standard deviation.

1.3 Acknowledgements

Thomas Prest is supported by the Innovate UK Research Grant 104423 (PQ
Cybersecurity).
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2 Preliminaries

2.1 Lattices

Linear Algebra. We use the column convention for vectors, which are written
in bold lower case letters v. Matrices are written in bold upper case letters M.
The notation M = (b1 . . . ,bn) means that the i-th column of the matrix M is
bi. The identity matrix of rank n is written In and the set of n × n invertible
matrices with coefficients in a ring R is written GLn(R).

Given a matrix B ∈ Rn×n , its Gram-Schmidt orthogonalization (GSO) is

the unique decomposition B = B̃ ·U such that U ∈ Rn×n is upper-triangular
with ones on the diagonal and the colmuns of B̃ are pairwise orthogonal. For
n ∈ N, r ∈ R+ and p ∈ {1, 2,∞}, we define the centered `p hyperball of radius r

as Bnp (r) = {x ∈ Rn | ‖x‖p ≤ r}. We introduce s1(B) = maxx∈Rn\0n
‖Bx‖
‖x‖ to be

the operator norm of a matrix B as an endomorphism of (Rn, ‖ · ‖2), also known
as spectral norm. The value of s1(B) is also the largest eigenvalue of BtB. The
fundamental parallelepiped associated to B ∈ Rm×n is P(B) = B · [−1/2, 1/2]n.

Lattices. A lattice is a discrete subgroup of Rm. Given a set B = (b1, . . . ,bn) ∈
Rm×n of linearly independent vectors in Rm, we note L(B) the lattice generated
by B, that is

L(B) = {
n∑
i=1

cibi, c ∈ Zm}.

In such a case, we say that B is a basis of L(B). In this document, we
only consider full-rank lattices; for lattices of the form L = L(B), it implies
that B is a square invertible matrix. While our arguments readily extend to the
general case, this choice makes their exposition simpler. Given a lattice L, we
note Vol(L) its volume, that is the absolute value of the determinant of any basis
B of L: Vol(L) = |det B|. One can check that all the bases of L have the same
determinant (in absolute value), and this definition is therefore consistent. We
call a trapdoor of a lattice L any set τ that characterizes the lattice, and write
L(τ) the lattice characterized by the trapdoor τ . When the trapdoor is a basis
B, the notation L(B) is consistent. Finally, the Voronoi cell of a lattice can be
defined as follows :

V(L) = {z ∈ Rn | ∀x ∈ L, ‖z‖2 ≤ ‖x− z‖2}.

Informally, the Voronoi cell of a lattice is the set of vectors that are closer to the
origin than to any other lattice point (see [12] for further information).

Lattice Tilings. A family {Ti}i∈I of sets in Rn is a tiling or a tessellation of
Rn and the sets are called tiles if the union of sets covers Rn and the set interiors
are mutually disjoint. We focus our study on lattice tilings, which are tilings of
the form T + L = {T + x}x∈L for some lattice L. For such tilings, T is called a
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prototile of the tiling. We note that if T is a prototile of L, then Vol(T ) = Vol(L).
A tiling is called convex if all the tiles are compact convex bodies. The prototile
of a convex lattice tiling is called a parallelohedron.1 Figure 1 displays a few
example of convex lattice tilings, for a fixed lattice but different parallelohedra.

(a) T = P(B) (b) T = P(B̃) (c) T = V(L)

Fig. 1: A few examples of convex lattice tilings L(B) + T , for different values

of the prototile T : the fundamental parallelelepiped associated to B, B̃ or the
Voronoi cell of L.

In this document, we almost exclusively work with the tile T = P(B), so we
introduce the notation Mp(B) = sup{‖x‖p | x ∈ P(B)}, which is also half the
operator norm of B as a linear operator from (Rn, ‖ · ‖∞) to (Rn, ‖ · ‖p). For
a ∈ R, we also note −→a = (a, . . . , a).

L-regular algorithms. The first of the two ingredients in our framework is
the notion of (L-)regular algorithms.

Definition 1 (Regular algorithm). Let T be a set of trapdoors. Let A : T×
Rn → Rn be a deterministic algorithm taking as an input a trapdoor τ of a lattice
L, a target vector t, and outputting a lattice point v.2

We say that A is L-regular if for all τ ∈ T such that L = L(τ), A(τ,0) = 0
and if the set of points y such that the following equality holds:

∀x ∈ Rn,A(τ,x + y) = A(τ,x) + y, (1)

is exactly the lattice L. If A is L-regular for any lattice L ∈ GLn(R)/GLn(Z),
i.e for any couple (τ,L(τ)), (1) holds for exactly y ∈ L(τ), we simply say that
A is regular.

1 It has been conjectured by Voronoi [31] that every parallelohedron T ⊂ Rn is affine
equivalent to the Voronoi cell of some lattice L′ ⊂ Rn.

2 From a practical viewpoint, one can think of the trapdoor as a short basis. The
trapdoor can contain more information, such as the Gram-Schmidt orthogonalization
(or GSO) of the basis, or any precomputation on the lattice.
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If A is L-regular, then x 7→ A(τ,x) − x is L-periodic and admits 0 as a fixed
point. Any L-regular algorithm induces a L-tiling. Indeed, for v ∈ L, let:

Tv = {x ∈ Rn|A(τ,x) = v}.

One can easily show that {Tv}v∈L is a L-tiling. Finally, it is easy to show that
the image of x 7→ A(τ,x) is exactly the lattice L(τ).

Examples of L-regular algorithms include Babai’s algorithms [5]. The round-
off algorithm (Algorithm 1) induces the lattice tiling illustrated in Figure 1a.
The nearest plane algorithm (Algorithm 2) induces the lattice tiling illustrated
in Figure 1b. Any exact CVP solver (i.e. any algorithm that outputs a closest
lattice point to the target) is also a valid example of L-regular algorithm, and
its induced tiling is the Voronoi diagram of L, illustrated in Figure 1c.

Algorithm 1: Babai round-off algorithm

Require: A basis B ∈ Rn×n of L, a target x ∈ Rn
Ensure: v ∈ L ∩ {x + P(B)}
1: t← B−1 · x
2: for i = 1, . . . , n do
3: zi = btie
4: end for
5: return v = B · z

Algorithm 2: Babai nearest plane algorithm

Require: A basis B ∈ Rn×n of L, its GSO B = B̃ ·U, a target x ∈ Rn
Ensure: v ∈ L ∩ {x + P(B̃)}
1: t← B−1 · x
2: for i = n, . . . , 1 do

3: zi ←
⌊
ti +

∑
j>i(tj − zj)Uij

⌉
4: end for
5: return v = B · z

2.2 Distributions

Let D be a distribution of density f over Rn. With L a lattice of Rn, we define
the discretization of D over L, and we write DL the distribution of density

fL : x ∈ L 7−→ f(x)

f(L)
,

where f(L) =
∑
y∈L f(y). Let X be a real random variable, we write respectively

E(X) and V(X) respectively the expected value and the variance of X. Both
notations extend to vectors by coordinate-wise application. For a subset Ω ⊂ Rn,
we write its indicator function 1Ω .

Let f be the density of a probability distribution D over R that we want to
sample from. We define the Inverse Cumulative Density Function (after ICDFD)
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as the reciprocal of the cumulative density function

ICDFD =

x 7−→ x∫
−∞

f(t) d t

−1 .

Proposition 1. If the random variable U has a uniform distribution on [0, 1],
then the distribution of ICDFD(U) is D.

If evaluating the ICDF of a given distribution D is possible, one can use
Proposition 1 to sample from D.

2.3 Squaremonic Functions

In this subsection, we introduce the second ingredient of our framework: a class
of functions that behave nicely when discretized over a lattice.

Definition 2 (Squaremonicity). Let T be a prototile of a L-regular tiling.
We say that a function f : Ω ⊂ Rn 7−→ R is T -squaremonic if

∀x ∈ Rn such that T + x ⊂ Ω, 1

Vol(T )

∫
T +x

f = f(x). (2)

We will refer to (2) as the squaremonic equation or the squaremonic property,
and T is called a squaremonic tile of f . In addition, we say that a distribution
is squaremonic if its density is squaremonic.

Notice that due to the linearity of the integral, for a given prototile T , the
set of T -squaremonic functions is a linear space. We stress that these square-
monic functions are not only a theoretical object. Indeed, constant functions,
linear functions (hence affine functions), affine product functions and exponen-
tial functions admit squaremonic tiles. More details are given in Section 4.

The name square-harmonic or squaremonic is a portmanteau of square and
harmonic. This name stems from a similarity between these squaremonic func-
tions and harmonic functions. Harmonic functions on an open subset Ω ⊂ Rn
are the solutions of the equation ∆f = 0, where ∆ =

∑
∂2i is the Laplacian

operator. Harmonicity is equivalent to the Mean Value Property, that is

∀x ∈ Ω, ∀r > 0 such that Bn2 (x, r) ⊂ Ω, 1

Vol(Bn2 (x, r))

∫
Bn2 (x,r)

f = f(x). (3)

Informally, the mean value of a harmonic function over a Euclidean ball of center
x and radius r is the value of f in the center x. The property (2) verified by
squaremonic functions is similar to (3): the mean value of f over a fundamental
domain of a lattice is the value of f in a fixed point of the fundamental domain.
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The scalability of the radius of the ball for harmonic functions makes a substan-
tial difference with the mean value property for squaremonic functions. Indeed,
the tile over which the mean value is calculated cannot, in general, be stretched
out, which seems to provide less rich properties. Nonetheless, this resemblance
between harmonic and squaremonic functions extends to the maximum princi-
ple, that is, the maximum of a harmonic function over the topologic closure of
an open set Ω is the maximum over its boundary ∂Ω. A similar yet weaker prop-
erty holds for squaremonic functions : the maximum of a squaremonic function
over the topologic closure of an open set Ω is the maximum over its thickened
boundary {x ∈ Ω | T + x ⊂ Ω}. To our knowledge, a few other properties of
harmonic functions can be translated similarly into a squaremonic equivalent.
Harmonic analysis is a vastly studied subject, the interested reader can refer to
[24,21,30,3]. A crucial setup for squaremonicity in dimension n is the prototile
Hn = [0, 1]

n
of the lattice Zn.

3 Our Framework

In this section we introduce the sampler framework, prove its correctness and
give an analysis on how to set the parameters from a theoretical point of view.

3.1 Framework Description

As mentioned in the previous sections, the main idea of the sampler is to dis-
cretize a continuous distribution over a chosen lattice L. The sampler needs to
be provided with two algorithms : SampleD to sample from the continuous dis-
tribution D, and an L-regular CVP algorithm A to discretize the distribution
over the lattice. The conditions for the sampler to be correct and its running
time are specified in Theorem 1.

Algorithm 3: Squaremonic Sampler

Require: A trapdoor τ of a lattice L, a target c
Ensure: x sampled from DL of support Ωc ⊂ Rn
1: while True do
2: y← SampleD {SampleD samples from D}
3: x = A(τ, c + y)
4: if x− c ∈ Ω then
5: Return x
6: end if
7: end while

Theorem 1. Let τ be a trapdoor of a lattice L and A : T × Rn −→ Rn be a
deterministic algorithm with τ ∈ T. Let D be a distribution of density f over
some subset Ω′ ⊂ Rn. Let Ω ⊂ Ω′ be a measurable set, and c ∈ Rn. Suppose
that:
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1. D is sampleable in polynomial time.
2. A is an L-regular algorithm inducing a tiling of prototile T = T0.
3. The density f is T -squaremonic.
4. The set Ω is such that Ω ⊂ {x | x + T ⊂ Ω′} ⊂ Ω′. We moreover require

that testing that some vector x is in Ω can be done efficiently.

Then the output x of Algorithm 3 is distributed as follows:

x ∼ {(c +D)1Ωc}L, (4)

Where Ωc = Ω + c. In addition, the expected number of iterations of the while
loop is D((L − c) ∩Ω + T )−1.

Proof. We prove separately correctness and the number of iterations.

Correctness. First, we note that the output x of Algorithm 3 is necessarily in
L∩Ωc. On one hand, it follows from the L-regularity of A that P[x = v] = 0 for
any v /∈ L. On the other hand, x is rejected at step 4 if and only if x− c /∈ Ω.

Now, we study the probability that v ∈ L∩Ωc is output. The random variable
y follows the distribution D, hence c + y follows the distribution c +D. At the
end of step 3:

P[x = v] = Py←D[c + y ∈ Tv] (5)

=

∫
Tv

f(t− c) d t (6)

=

∫
(v−c)+T

f(t) d t (7)

= Vol(T ) · f(v − c) (8)

(5) follows from the fact that v is output if and only if c + v is in Tv. Since
Ω + T ⊆ Ω′ and v ∈ Ωc, it implies that Tv ⊆ Ω′c and (6) is therefore valid.
(7) is a simple change of variable (translation by c). Finally, and most crucially,
(8) follows from the T -squaremonicity of f . Therefore the distribution of x is
proportional to f(v − c), and its support is exactly L ∩Ωc. The result follows.

Number of iterations. The support of the output of Algorithm 3 is exactly L∩Ωc.
Combining this fact with (6), the probability that Algorithm 3 terminates at a
given iteration is:

P :=
∑

v∈L∩Ωc

∫
Tv

f(t− c) d t =
∑

v∈(L−c)∩Ω

∫
Tv

f(t) d t = D((L − c) ∩Ω + T )

(9)

and the expected number of iterations is 1/P . ut
Figure 2 provides a visual illustration of our framework. A continuous distri-

bution is sampled (Figure 2a) and discretized (Figure 2b) via a regular algorithm
(here, the round-off algorithm). Finally, a rejection step (Figure 2c) discards all
points outside Ωc since these might leak information about the basis used.
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c

(a) D

c

(b) D{L∩Ω′c}

c

(c) D{L∩Ωc}

Fig. 2: Visual illustration of Algorithm 3. A continuous distribution is sam-
pled (2a), then discretized (2b), and finally rejection sampling is applied (2c).

Security. The security of our framework is given by the independance between
the trapdoor used in the regular algorithm and the output distribution. The
security of our framework is therefore immediate from Theorem 1. Indeed, the
output distribution of the proposed sampler is perfectly indistinguishable from
the ideal distribution {c+D}L∩Ωc . There is therefore no leakage of information as
long asΩ is independent from the trapdoor. In the instantiations we propose, this
is indeed the case. This differs from classical samplers, which are only statistically
indistinguishable from ideal distributions.

Using our sampler in a specific cryptographic scheme may mandate additional
context-specific requirements. For example, using it in a signature scheme à
la [17] requires the distribution to satisfy something analog to their leftover
hash lemma [17, Lemma 5.1], but this will be verified easily for the (currently)
large distributions that our framework samples from.

3.2 Rejection Rate and Parameter Analysis

The acceptance rate P is the weight of the discretization DL over Ω + c, which
by squaremonicity of f is given by P = D(L∩ (Ω + c) + T ). While the concrete
value of P seems hard to calculate, we have two strategies to give an estimate.
The first strategy is to lower bound the probability P by considering the set

Ω′′ = ∪
A⊂Ω′
A−T⊂Ω

A.

Indeed, it follows from the definition that y ∈ Ω′′ implies x ∈ Ω + c, hence the
sample is accepted, therefore we have P ≥ P ′′ := D(Ω′′). Using this conserva-
tive bound in our implementation to choose the parameters of the distribution
underestimates the actual empirical acceptance rate by a constant factor. The
second strategy is to use the so-called Gaussian heuristic, that is a prediction of
the number of lattice points in a measurable convex body of Rn.
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Heuristic 1 (Gaussian Heuristic). Let L be a full rank lattice of Rn. For a
convex body K ⊂ Rn, we have

|L ∩K| ' Vol(K)

Vol(L)
.

Under Heuristic 1, we have |L ∩ Ω| = Vol(Ω)/Vol(L). With, for example, f
constant (corresponding to the uniform distribution) over Ω′, we have P =
Vol(Ω)/Vol(L) · Vol(L)/Vol(Ω′) = Vol(Ω)/Vol(Ω′). According to our own ex-
periments, this estimate is very accurate for constant distributions. For other
distributions, we extrapolate the previous formula to

P = D(Ω).

While this estimate is unlikely to be accurate3, it matches with our experiments
on uniform and affine distributions for reasonable (constant) acceptance rates.
We note that for exponential distributions, Heuristic 2 still underestimates the
acceptance rate for random bases4.

Heuristic 2. With notations from Theorem 1, the probability P = D((L− c) ∩
Ω + T ) is D(Ω).

We note that as we narrow the support Ωc of the final distribution, the
acceptance rate of our algorithm will become increasingly lower. In practice,
lowering the standard deviations given in Table 1 even by a constant factor can
result in an huge blow-up in the running time.

4 Instantiations of our Framework

In this section, we instantiate the framework described in Section 3 with vari-
ous examples of distributions and the RoundOff algorithm. The first subsection
presents properties of squaremonic functions. We give a partial study of their
properties and examples.

Instantiating our framework implies setting four components: a continuous
support Ω′, a probability distribution D over Ω′, an L-regular algorithm of
prototile T and a set Ω5 such that the support of the sampled distribution
is L ∩ Ω. We only consider the RoundOff algorithm for explicit examples and
explain how to extend the results to both the NearestPlane algorithm, and the
ExactCVP when it is possible.

3 The difference with uniform is that in general the integrals of f over Ω\(L∩Ω+ T )
and (L ∩Ω + T ) ∩ (Ω′\Ω) do not compensate each other.

4 The empirical rejection rates can be replicated using our toy implementation avail-
able in the supplementary material

5 Remind that testing that a vector is in the set Ω has to be easy. In the examples
we develop, such a test reduces to computing an `p norm for p in {1, 2,∞}, and an
inequality.
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Table 1: Standard deviation achieved in constant acceptance rate for the regular
algorithm/distribution couple by Algorithm 3.

`∞ Uniform `2 Uniform Affine Affine product Exponential

RoundOff n1.5s1(B) ns1(B) n1.5s1(B) n1.5s1(B) n1.5s1(B)

NearestPlane n1.5s1(B̃) ns1(B̃) n1.5s1(B̃) n1.5s1(B̃) n1.5s1(B̃)

ExactCVP n1.5ρ∞(L) n1.5ρ2(L) n1.5ρ1(L) 7 7

Table 1 sums up the standard deviation (up to a constant factor that we
omit) of the distribution that can be sampled with our framework for a constant
acceptance rate (independent of the dimension n). A 7 mark means that the
distribution is in general not squaremonic over the tile of the regular algorithm.

4.1 Mean Value Property over Regular Tilings

In this section, we provide two interpretations of squaremonicity which may be
more intuitive than the arguably abstract Definition 2. We also explain how
in many cases, we can reduce the study of a T -squaremonic function (for an
arbitrary tile T ), to studying a Hn-squaremonic function (for the hypercube
Hn = [0, 1]n), then to studying n [0, 1]-squaremonic functions. This simplifies
many subsequent proofs and arguments.

Intuitive interpretations. There are at least two geometric interpretations
of the notion of squaremonic distributions. The first one is as follows. Consider
a distribution D and a L-regular tiling L + T of the space, of prototile T . We
define D1 as the discretization of D over L. In addition, we define D2 as a T -
rounding of D over L; more precisely, given a point v ∈ L, we set D2(v) as the
integral of the density function of D over the compact set v + T . Saying that D
is T -squaremonic implies that D1 and D2 are the same distribution. Note that
when D is a continuous Gaussian, D1 and D2 are what is commonly called a
discrete Gaussian and rounded Gaussian, respectively. For Gaussians, D1 and
D2 are in general not equal.

For an interpretation more oriented towards mathematical analysis, consider
a continuous function f : R −→ R. For all x ∈ R, via the intermediate value
theorem, there exists a number 0 < a < 1 such that

x+1∫
x

f(t) d t = f(x+ a).
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If f is monotonic, then a(x) is unique; we then abusively note a : x 7→ a(x) the
continuous function mapping x to a(x). Here, saying that f is squaremonic with
respect to the tile T = [0, 1) is equivalent to saying that a is constant.

Separable squaremonic functions. In this paragraph, we split the set of
squaremonic functions in two: those that satisfy a GLn(R) stability condition,
and those that have separated variables (both sets are not disjoint). This sim-
plifies proofs and makes arguments clearer.

We assume for this discussion that the regular algorithm we use is RoundOff ◦
tBa with tBa the translation by Ba, so T = P(M) −Ma for some matrix M
and some vector a ∈ Hn. Let C be a set of functions such that ∀f ∈ C, ∀M ∈
GLn(R), f ◦M ∈ C. All the examples we develop in this paper (namely constant,
affine, affine product and exponential) share this GLn(R) stability property. Let
f be a function from such a set C. The study of the squaremonic equation of f
relatively to P(M) − Ba reduces via a substitution to the study of f ◦M−1’s
squaremonicity over a translation of Hn, the canonical tile. This fact suggests
that for such classes of functions, we study the squaremonicity in the canonical
setup first, and extend the result to any basis of any lattice.

Let us consider a lattice L = L(B), together with the translated RoundOff
tile P(B)−Ba. As argued in the previous paragraph, we first study the square-
monicity of some function f over the canonical tile Hn. In this paragraph, we
study squaremonic functions with separated variables, that is squaremonic func-
tions f such that f(x) =

∏n
i=1 fi(xi) (which correspond to all our instantiations,

except affine and `2 uniform). Then, the squaremonicity of f relatively to Hn−a
is equivalent to ∀ 1 ≤ i ≤ n, fi is squaremonic relatively to H1 − ai. This fact
comes from the factorization of the squaremonic integral into 1-dimensional in-
tegrals. Assume, all fi’s are squaremonic relatively to H1 − ai, then

∫
Hn−a+x

f(t) d t =

∫
Hn−a+x

n∏
i=1

fi(ti) d ti

=
n∏
i=1

∫
[−ai,1−ai]+xi

f(ti) d ti

=

n∏
i=1

fi(xi)

= f(x),

and f is squaremonic relatively to the canonical tile (with an offset parameter
a for the unit hypercube), and vice-versa. Constant (over a hypercube), affine
product (functions of the type x 7−→

∏
i(aixi + bi), for some vectors a,b ∈ Rn)

and exponential distributions all share this property that their variables are
separated, therefore their n-dimensional squaremonicity reduces to n times 1-
dimensional squaremonicity. Moreover, sampling from a separated variables den-
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sity can be done coordinate-wise in parallel (as each coordinate is independent
from the others), which is algorithmic-wise convenient.

4.2 Uniform Distributions with the RoundOff Algorithm

Let Ω be a compact subset of Rn. We define the (continuous) uniform distri-
bution over Ω as the distribution of density proportional to 1Ω , and write it
U(Ω). We will consider two different shapes for Ω : the `2 balls, to optimize the
shortness of the output and the `∞ balls to optimize the speed and simplicity of
the sampler. Because constant functions are squaremonic for any prototile, any
regular algorithm would work.

Uniform distribution over a hypercube. The first example of uniform dis-
tribution over a lattice we give is the uniform distribution over a hypercube. The
reason for this choice is that over a hypercube, the coordinates of the random
vector are independent, which makes the continuous sampling very easy.

Proposition 2 (`∞ Uniform with RoundOff instantiation). Let B be a
basis of a lattice L and c ∈ Rn. The instantiation of Algorithm 3 with

1. Ω′ = [−nM∞(B), nM∞(B)]n

2. Ω = [−(n− 1)M∞(B), (n− 1)M∞(B)]n

3. D = U(Ω′)
4. A = RoundOff(B, ·)

satisfies the requirements of Theorem 1 and its acceptance rate is heuristically
and asymptotically P −→ 1/e. In other words, the uniform distribution over the
hypercube of radius (n−1)M∞(B) and center c is sampleable in polynomial time
using Algorithm 3.

Proof. Correctness. We check the requirements of Theorem 1. For Item 1, sam-
pling from D is done easily by sampling uniformly over [0, 1]n and applying an
affine transformation. For Item 2, the RoundOff algorithm is indeed L-regular
of prototile P(B). For Item 3, the density 1Ω′ is trivially P(B)-squaremonic.
Finally, for Item 4, by triangle inequality, if y = x + t ∈ Ω + P(B), ‖y‖∞ ≤
(n− 1)M∞(B) +M∞(B), so Ω + P(B) ⊂ Ω′, and the instantiation is correct.

Expected running time and radius. Under Heuristic 1, the probability of a sample
to be accepted is given by

P ' Vol(Ω)

VolΩ′
=

(
(n− 1)M∞(B)

nM∞(B)

)n
=

(
1− 1

n

)n
.

ut

Proposition 3. Let X be a random variable following the discrete uniform dis-
tribution U([−R,R]n)L. Then, the expected `2 norm of X is bounded by

‖X‖2 ≤
n2

2
s1(B).
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Proof. With notations from Proposition 2 and using inequalities between `2 and
`∞ norms, we have

‖X‖2 ≤
√
n‖X‖∞ ≤ n1.5M∞/2 ≤

n2

2
s1(B)

This completes the proof. ut

Uniform distribution over an `2 hyperball. In this paragraph we give a
second example of uniform distribution, this time over a `2 ball of dimension
n. Although sampling uniformly random from this set seems more complicated
than a hypercube, the `2 norm of the output random variable with parameter
associated to a constant acceptance rate is in average

√
n lower in the hyperball

than in the hypercube (Propositions 3 and 5). As in the previous example, we
chose the usual RoundOff algorithm, but any regular CVP algorithm would work.

Proposition 4 (`2 Uniform with RoundOff instantiation). The instantia-
tion of Algorithm 3 with

1. Ω′ = Bn2 (nM2(B))
2. Ω = Bn2 ((n− 1)M2(B))
3. D = U(Ω′)
4. A = RoundOff(B, ·)

satisfies the requirements of Theorem 1 and its rejection rate is heuristically and
asymptotically P −→ 1/e. In other words, for any center c ∈ Rn, the distribution
UL,c(nM2(B)) is sampleable in polynomial time.

Proof. Correctness. We check the requirements of Theorem 1. For Item 1, there
are several polynomial-time algorithms that sample from the continuous uniform
distribution over `2 balls, for example an ICDF-like algorithm using the identity
U([0, 1])1/n · U(Sn−1) ∼ U(Bn2 (1)) (sampling from the unit sphere Sn−1 can be
done using results from [13,29], or normalizing spherical Gaussian distributions),
using the algorithm from [6], etc. For Item 2, the RoundOff is L regular for
any basis and has prototile T = P(B). For Item 3, the distribution D has
density 1Ω′ which is trivially squaremonic over P(B). Finally, for Item 4, with
M2(B) = max{‖x‖ | x ∈ P(B)}, we have Ω′ ⊂ Ω + T via the triangular
inequality of ‖.‖2.

Expected running time and radius. Under Heuristic 1, the probability of a sample
to be accepted is given by

P ' Vol(Ω)

Vol(Ω′)
.

The volume of a n-hyperball is homogeneous to the n-th power of its radius.
Otherly said, P ' ((n− 1)M2(B)/(nM2(B)))n, which completes the proof. ut
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Proposition 5. Let L be a lattice of basis B. Let X be the output of the instan-
tiation of Proposition 4 (X follows U((n− 1)M2(B))L). Then we have

‖X‖2 ≤
n1.5

2
s1(B).

Proof. We have X ∈ Bn2 ((n− 1)M2), therefore ‖X‖2 ≤ (n− 1)M2. Moreover, we

have M2 ≤
√
n
2 s1(B), which completes the proof. ut

In both uniform examples above, using the NearestPlane (respectively an ExactCVP)
instead of the RoundOff is also valid and yields similar results, substituting P(B)

by P(B̃) (respectively the Voronoi cell of the lattice), and Mp(B) by Mp(B̃) (re-
spectively ρp(L), the covering radius of the lattice, relatively to the `p norm).

4.3 Affine Distributions with the RoundOff Algorithm

Let R > 0 and Bn1+(R) = Bn1 (R)∩Rn+. We define the affine distributionAn(R,R′)
of parameters R and R′ ≥ R over Bn1+(R) as the distribution of density x 7−→
(R′ − ‖x‖1) 1Bn1+(R). We define numbers mi

1(B) = max{|xi| | x ∈ P(B)}, and

the point m1(B) which coordinates are the mi
1(B)’s.

Proposition 6 (Affine distribution with RoundOff instantiation). Let B
be a basis of a lattice L and c ∈ Rn. The instantiation of Algorithm 3 with

1. Ω′ = Bn1+(R′)−m1(B), with R′ = (n+ 1)(M1(B) + ‖m1(B)‖1)

2. Ω = Bn1+(R), with R = n(M1(B) + ‖m1(B)‖1)

3. D = An(R′, R′)−m1(B)

4. A = RoundOff(B, ·)

is correct and its acceptance rate is heuristically and asymptotically P −→ 1/e.
In other words, the distribution A(R,R′)L,c is sampleable in polynomial time.

Proof. Correctness. We check the requirements of Theorem 1. For Item 1, Algo-
rithm 4 is an example of such polynomial time continuous sampler, which cor-
rectness is stated by Lemma 1. For Item 2, the RoundOff algorithm is L-regular,
with prototile P(B). For Item 3, we want to prove that f : x 7−→ R − ‖x‖1 is
squaremonic for P(B). Notice that f is affine, that is f = R+u, with R constant

and u : Rn −→ R linear. With H−n = {x ∈ Hn− ~1/2 / x1 ≤ 0} and H+
n = −H−n ,
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we have the following :

∫
P(B)+x

f(y) d y =

∫
P(B)+x

(R+ u(y)) d y (10)

=

∫
P(B)

(R+ u(z) + u(x)) d z (11)

= Vol(P(B))f(x) +

∫
P(B)

u(z) d z (12)

= detLf(x) + detL

∫
H−n

u+

∫
H+
n

u

 (13)

= detLf(x) (14)

where (11) comes from the substitution y = z+x, (12) comes from the linearity of
the integral, (13) comes from the substitution Bw = z and splitting the integral
over Hn into the positive and negative part, and (14) comes from the fact that as
u is linear, it is odd and the two integrals cancel each other. Finally, for Item 4,
by the triangular inequality, if x = y + t ∈ Ω + P(B), then x + m1(B) ∈ Rn+
and ‖x‖1 ≤ nM1(B) +M1(B), so Ω + T ⊂ Ω′.

Expected running time and radius According to Heuristic 2, the acceptance rate
P is given by

P =

∫
Ω

f.

Let R be the radius of Ω. First, f is proportional to x 7−→ R + M1(B) +
‖m1(B)‖1−‖x + m1(B)‖1. The graph of the latter function describes the n+ 1
dimensional `1 ball over the all-positive quadrant Rn+ of Rn, so the normalization
factor is 1/2n times the volume of the `1 ball of dimension n + 1 and radius
R+M1(B) + ‖m1(B)‖1. In the end,

f(x) =
(n+ 1)!

(R+M1(B) + ‖m1(B)‖1)
n+1 · (R+M1(B) + ‖m1(B)‖1 − ‖x‖1).
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Now, we calculate the acceptance rate, writing M1 instead of M1(B) and m1

instead of m1(B) to save space.

P =

∫
Bn1+(R)

f(t) d t (15)

=
(n+ 1)!

(R+M1 + ‖m1‖1)
n+1

∫
Bn1+(R)

(R+M1 + ‖m1‖1 − ‖x + m1‖1) d x (16)

=
(n+ 1)!

(R+M1 + ‖m1‖1)
n+1 ·

∫
Bn1+(R)

(R+M1 − ‖x‖1) d x (17)

=
(n+ 1)!

(R+M1 + ‖m1‖1)
n+1

(
Vol(Bn+1

1+ (R)) +M1 Vol(Bn1+(R))
)

(18)

=

(
1− M1 + ‖m1‖1

R+M1 + ‖m1‖1

)n+1

+
(n+ 1)M1

R

(
1− M1 + ‖m1‖1

R+M1 + ‖m1‖1

)n+1

(19)

=

(
1− M1 + ‖m1‖1

R+M1 + ‖m1‖1

)n+1(
1 +

(n+ 1)M1

R

)
, (20)

where (15) is the estimate Section 3.2, (17) follows from the fact that ‖x−m1‖1 =
‖x‖1 + ‖m1‖1, (18) follows from the linearity of the integral and from the fact
that the graph of x 7−→ R− ‖x‖1 over Bn1+(R) describes the set Bn+1

1+ (R) ∩Rn+,

and (19) follows from the fact that Vol(Bn1+(r)) = rn

(n+1)! . Finally, one can check

that if the radius of Ω verifies R = n(M1 +‖m1‖1), then P converges to 1/e. ut

Lemma 1. There is a polynomial time algorithm, that on input a dimension n
and a radius R′ outputs a sample from An(R′, R′).

Proof. Algorithm 4 is such an algorithm, its proof of correctness is deferred to
Appendix A. ut

Algorithm 4: Continuous affine sampler

Require: Dimension n, radius R′

Ensure: A sample from An(R′, R′)
1: x = ~0
2: u←$ Hn {Here, ←$ means sampled uniformly at random}
3: for i = n, . . . , 1 do

4: xi =

(
R′ −

n∑
j=i+1

xj

)(
1− (1− ui)1/(i+1)

)
5: end for
6: return x
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Proposition 7. Let n ∈ N. Let X be a random variable following the distribu-
tion An(R,R′), R = n (M1(B) + ‖m1(B)‖1). Then, we have

E(‖X‖2) ≤ 2n2s1(B).

Proof. Let Y be a random variable following A(R′, R′). We have E(‖X‖2) ≤
E(‖Y ‖2), and we use Jensen’s inequality :

E(‖X‖2) ≤
√
E(‖Y ‖22).

One can check that the variance of Y1 is asymptotically equal to
(
R′

n

)2
.

E(‖Y ‖22) = nE(Y 2
1 )

∼ n(M1 + ‖m1‖1)2

Now, notice that M1(B) ≤ ‖m1‖1. Moreover,

‖m1(B)‖1 =

n∑
i=1

max{|xi| / x ∈ T }

≥
n∑
i=1

max{|xi| / x ∈ T }

≥ nM1(B)

≥ n1.5s1(B),

and this completes the proof. ut

Proposition 7 bounds the expected `2 norm of a random variable following the
continuous affine distribution. While the instantiation of Algorithm 3 would
sample from the discretization of the latter distribution, we expect the discrete
distribution to have similar moments as the continuous one. This similarity can
be quantified using Riemann-sum-like arguments. Using the NearestPlane (re-
spectively an ExactCVP) instead of the RoundOff is also valid (as long as the
prototile of the algorithm is symmetrical, which is the case for the NearestPlane
and the ExactCVP) and yields similar results, substituting P(B) by P(B̃) (re-
spectively the Voronoi cell of the lattice).

4.4 Exponential Distributions with the RoundOff Algorithm

The previous distributions were squaremonic relatively to the tile P(B), we give
here an example of distributions for which the offset vector is non-zero, i.e T =

P(B)+B( ~1/2−a) for some a ∈ Hn. Let λ ∈ Rn≥0. The exponential distribution of
parameter λ is the distribution of density x 7−→

∏
i λi exp(−〈λ,x〉), defined over

Ω = Rn≥0, written E(λ). Notice that via the additive-to-multiplicative morphism
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(a) A continuous distribution D over
[0, 4]2 of density ∝ e−x−y

(b) Black dots are centers of mass of D re-
stricted to [i, i+1]× [j, j+1] for 0 ≤ i, j ≤ 3

Fig. 3: Illustrating squaremonicity

property of the exponential, the variables of this distribution are separated. In
this Subsection, we write li1(B) = |min{xi / x ∈ T }|. Note that if T is centered,
this definition of li1(B) coincides with the definition from the previous Subsection,
but rigorously not in general.

Proposition 8. Let B be a basis of a lattice L, λ ∈ Rn+ and t ∈ Rn. We define

a function a : Rn −→ Rn as the coordinate-wise map µ 7−→ 1
µ log

(
µ

1−exp(−µ)

)
.

The instantiation of Theorem 1 with

1. Ω′ =
∏
i[−li1(B),∞]

2. Ω = Rn+
3. D = E(λ)− l1(B)

4. A : x 7−→ RoundOff(B,x−B( ~1/2− a), with a = a(tBλ).

fulfills the requirements of Theorem 1.

Proof. We check that Algorithm 5 fulfills the requirements of Theorem 1. For
Item 1, exponential distributions can be sampled via ICDF or more specific
techniques – see (27) and the associated discussion. Moreover, the density of
E(λ) is separated, so the sampling can be done coordinate-wise in parallele. For
Item 2, the algorithm A we use is the RoundOff algorithm precomposed by a

translation of a vector B( ~1/2− a). This algorithm is obviously regular, and has

prototile T = P(B) + B( ~1/2 − a). For Item 3, the proof of the squaremonicity
of exponential functions over T is given in Proposition 9. Finally, for Item 4, it
follows from the definition of l1(B) that Ω + T ⊂ Ω′. ut

Squaremonicity of the exponential distributions. The purpose of this
paragraph is to prove that exponential distributions fulfill the first requirement
of Theorem 1. The result is stated in Proposition 9.
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Proposition 9. We follow notations from Proposition 8. Let L be a lattice, with

a basis B. Let a = a(tBλ) and T = P(B) + B( ~1/2− a) be the tile associated to
A. Then,

fλ :

n∏
i=1

[
−li1(B),∞

]
3 x 7−→ exp(−〈λ,x〉)

is T -squaremonic.

Algorithm 5: exp sampler

Require: B = (b1, . . . ,bn) an n× n basis of L, target t, parameter λ ∈ Rn>0

Ensure: x sampled from the distribution E(λ)L,t
1: a← a(tBλ) {Notation from Lemma 3}
2: y← E(λ)− l1(B) {Using a sampler from Section 4.4}
3: x← RoundOff(y + t + B(

−→
1
2
− a))

4: if x ∈ Rn+ then
5: return x
6: else
7: goto Step 1
8: end if

To prove this Proposition, we will need the following lemmata.

Lemma 2. We define ∀x ∈ Rn, fλ(x) = exp(−〈λ,x〉). Let F = {fλ | λ ∈ Rn}.
Then,

∀fλ ∈ F , ∀M ∈ GLn(R), fλ ◦M = ftMλ ∈ F .

Proof. With the notations from Lemma 2, fλ ◦ M(x) = exp(−〈Mx,λ〉) =
exp(−〈x, tMλ〉) = ftMλ(x). ut

Lemma 3. Let a be a function defined for all λ ∈ R\{0} as a(λ) = 1
λ log

(
λ

1−exp(−λ)

)
and a(0) = 1/2 so the function is continuous. Then

∀x ∈ R,
x+1∫
x

exp(−λt) d t = exp(−λ(x+ a)).

Proof. With the notations from Lemma 3,

x+1∫
x

exp(−λt) d t =
1

λ
(exp(−λx)− exp(−λ(x+ 1)))

= exp(−λx)
1

λ
(1− exp(−λ)).
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On the other hand,

exp(−λ(x+ a)) = exp(−λ(x+
1

λ
log

(
λ

1− exp(−λ)

)
))

= exp(−λx)
1− exp(−λ)

λ
,

this completes the proof. ut

Lemma 4. We extend the function a defined in Lemma 3 coordinate-wise to

Rn, that is a(λ) =
(

1
λi

log
(

λi
1−exp(−λi)

))
1≤i≤n

. Then,

∫
Hn+x

fλ(t) d t = fλ(x + a(λ)).

Proof. We use Lemma 3 and the separation of the variables of fλ.

∫
Hn+x

fλ(t) d t =

∫
Hn+x

n∏
i=1

fi(ti) d ti

=

n∏
i=1

xi+1∫
xi

fi(ti) d ti

=

n∏
i=1

fi(xi + a(λi))

= fλ(x + a(λ)).

ut

We have now enough tools to prove Proposition 9.

Proof. [Proof of Proposition 9] We first prove that

1

|det B|

∫
BHn+x

exp(−〈λ, t〉) d t = exp(−〈λ,x + Ba(tBλ)〉).

Lemma 2 suggests mapping the problem to the canonical tile (Section 4.1) by
substituting Bu = t in the integral. We use this substitution in (21), then
Lemma 2 in (22) and finally Lemma 3 in (23).
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∫
BHn+x

fλ(t) d t = |det B|
∫

Hn+B−1x

fλ(Bu) d u (21)

= |det B|
∫

Hn+B−1x

ftBλ(u) d u (22)

= |det B| exp(−〈tBλ,B−1x + a〉) (23)

= |det B| exp(−〈λ,x + Ba〉)
= |det B|fλ(x + Ba) (24)

Finally, we translate the variable in the squaremonic equation (25) for fλ and
T and use (24):

1

|det B|

∫
T +x

fλ =
1

|det B|

∫
B(Hn− ~1/2)+B( ~1/2−a)+x

fλ (25)

= fλ(x + Ba−Ba) = fλ(x), (26)

Equation (26) meaning that fλ is T -squaremonic. ut

Sampling from the continuous exponential distribution. The density
of E(λ) has separated variables, so coordinates of a random variable following
E(λ) are independent and can therefore be sampled independently. Sampling
from E(λ), for λ ∈ Rn reduces to sample n times from E(λi), for 1 ≤ i ≤ n,
which can be done in parallele.

There are several ways to sample from the one dimensional continuous ex-
ponential distributions. First, one can use the ICDF method (similarly as the
affine distribution in the previous subsection). We have

ICDFE(λ)(u) =
−1

λ
log(1− u) (27)

which yields an exponential sampler via Proposition 1.
There are several different methods that are very efficient and fast, such as

the Forsythe-Von Neumann method (see [10]), methods described in [20] and
more.

Acceptance rate and parameter sizes for exponential distributions.
In this paragraph, we study the acceptance rate of Algorithm 5, following the
estimate from Heuristic 2.

Proposition 10. Under Heuristic 2, the acceptance probability is given by

P(accept) = exp(−〈λ, l1(B)〉).

Therefore, if one choses λ =
−→
λ , with λ ' n1.5s1(B), the acceptance rate

converges to some non-zero constant.
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Proof. According to Heuristic 2, the acceptance rate is given by

P(accept) =

∫
Rn+

exp(−〈λ,x〉) d x∫
∏n
i=1[−li1(B),∞)

exp(−〈λ,x〉) d x

We calculate the numerator and the denomiator separately :∫
Rn+

exp(−〈λ,x〉) d x =

n∏
i=1

λ−1i

∫
n∏
i=1

[−li1(B),∞)

exp(−〈λi,x〉) d x =

n∏
i=1

λ−1i exp(λil
i
1(B))

Finally, we can conclude that,

P(accept) = exp(−〈λ, li1(B)〉).

If one takes λ =
−→
λ , then the acceptance rate is exp(−λ‖l1‖1). ut

Output size for the exponential lattice sampler. In this paragraph, we
discuss the expected `2 norm of the output of Algorithm 5. Let X follow E(λ)L,c,
with ‖Bλ‖∞ = 1

n and c = (1/λi)i, so as to minimize the second moment of the
random variable (one can check that when all the members of the equality exist,
in general

E(Z) = argmin
c∈R

{E((Z − c)2)}).

Proposition 11. With same notations as above, we have

E(‖X‖2) ≤ n2s1(B).

Proof. Via Jensen’s inequality, we have E(‖X‖2) ≤
√

E(
∑
iX

2
i ). Then, E(

∑
X2
i ) =

nE(X2
1 ) = nV(X1) = n(nM∞(B))2. Finally, we have

E(‖X‖2) ≤ n1.5M∞(B) ≤ n2s1(B).

ut
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Further remarks. First, the NearestPlane algorithm can replace the RoundOff
algorithm. The results above would be the same, except B would be replaced
by B̃. It seems unlikely that exponential functions are squaremonic relatively to
the Voronoi cell, hence an ExactCVP would not work here.

One can check that for any a ∈ [0, 1]n, there exists a constant cλ,a such that

1

Vol(L)

∫
Hn+x

exp(−〈λ, t〉) d t = cλ,a exp(−〈λ,x + a〉).

The vector a we chose for the instantiation is the one such that cλ,a = 1, as we
have in general

cλ,a = exp(−〈λ,a〉)
∏ 1− exp(−λi)

λi
.

We translate the vector x by a, and we get

1

Vol(L)

∫
Hn+x−a

exp(−〈λ, t〉) d t = cλ,a exp(−〈λ,x〉). (28)

The equation (28) means that with prototile Hn − a, the exponential functions
are in general not squaremonic (except when cλ,a = 1), but the average of the
function over the protitile is proportional to the value of the function in the
center of the prototile. This property is weaker than squaremonicity, although
the proof of Theorem 1 remains true (as it deals with normalized densities) with
this weakened condition on the density. The consequence of this discussion is
that the instantiation from Proposition 8 inducing Algorithm 5 is still correct
for any translation of the prototile P(B). We leave for future work to use this
fact to improve the quality of the sampler.

5 Open Problems

Better Efficiency. The main drawback of our framework is that our instan-
tiations suffer large standard deviations. The O(n1.5) overhead factor roughly
comes from two different problems. The first one is that we measure the size of
the output of our algorithms with the `2 norm, but the distributions sometimes
have shapes more amenable to the `1 or `∞ norm. We usually lose a

√
n factor

due to the norm inequalities, but measuring the `∞ norm of the output, for
example, can be relevant in cryptography.6

The second reason is that, informally, when the support of the distribution
is an `p ball, the radius of the ball increases as the standard deviation increases,
but its volume increases as its radius to the power n. The acceptance rates of
the distributions defined over `p balls of radius r have the following form:(

1− Mp(B)

r +Mp(B)

)n
6 For example, although it does not use trapdoor sampling, the signature scheme

Dilithium [15] relies for its security on the MSIS problem with the `∞ norm.



26

and we lose a factor O(n) by setting r = nMp(B).
While this seems to prevent the framework from being practically efficient,

there are several ways to improve its performance. First, it seems that by being
more permissive on the rejection sampling step in our sampler framework, one
can find a precision/size trade-off, trading perfect indistinguishability for statis-
tical indistinguishability. As mentioned in the introduction, the idea of using a
regular algorithm to round a continuous distribution was, to our knowledge, only
attempted on Gaussian distributions, yielding a very large standard deviation
to compensate the lack of squaremonicity of the Gaussian density function. We
leave for future work to study the behaviour of the standard deviation when
the density function is only “ε-T -squaremonic”. In addition, our proofs use in-
equalities on the quality of the basis in a worse-case scenario. In a cryptographic
context, it is likely that we will obtain outputs with shorter norms.

More Instantiations. There are likely more squaremonic functions than the
ones we exhibited. Harmonic functions are at the core of a vastly studied domain
in mathematics, and we believe that squaremonic functions may enjoy similarly
rich properties. We tried – unsuccessfully – to find a partial differential equa-
tion equivalent to the squaremonic mean value property, which eventually may
lead to finding more squaremonic functions. The more squaremonic functions
we find, the more sampleable distributions we have, with potentially improved
instantiations.

Precision of Floating-Point Arithmetic. We make an extensive use of con-
tinuous distributions in this work. This raises the question of the necessary
precision for floating-point arithmetic operations. Solving this question will be
key to efficiently and securely instantiating our algorithms.

Secure Implementation. Finally, our algorithms may require to sample from
non-uniform distributions. This sampling should be performed in a manner that
does not leak side-channel information (e.g. timing). While von Neumann’s tech-
nique [10] has inspired several elegant algorithms based on nondeterministic finite
automata to sample discrete Gaussians [?] and can readily be used to sample
from continuous exponential distributions, several attacks [?,?] has shown that
doing this naively can make implementations vulnerable to side-channel attacks.
In addition, a secure implementation would need to ensure that the acceptance
probability does not depend of the private key, in order to prevent timing attacks
in the line of [?].
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6. Franck Barthe, Olivier Guédon, Shahar Mendelson, Assaf Naor, et al. A probabilis-
tic approach to the geometry of the pn-ball. The Annals of Probability, 33(2):480–
513, 2005.
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A Appendix

Proof. [Proof of Lemma 1] Let X be a random variable following An(R,R). The
variable X has a density, which is given by f : x 7−→ 1

Vol(Bn+1
1 (R))

(R−‖x‖1). We

write A = 1
Vol(Bn+1

1 )
, and calculate the density g of Xn.

g(xn) = A

∫
Rn−1

f(t1, . . . , tn−1, xn) d t1 . . . d tn−1

= A

∫
Rn−1

(
R− xn −

n−1∑
i=1

ti

)
d t1 . . . d tn−1.

= A
1

2

∫
Rn−2

[
−

(
R− xn −

n−2∑
i=1

ti

)
2

]R−xn−∑n−1
i=2 ti

t1=0

d t2 . . . tn−1

= A
1

2

∫
Rn−2

(
R− xn −

n−2∑
i=2

ti

)2

d t2 . . . tn−1

...

=
A

n!
(R− xn)

n

Finally, the density of Xn is

g(xn) =
(n+ 1)

Rn+1
(R− xn)n.

Now, we compute the cumulative density function :

G(xn) =

xn∫
0

g(tn) d tn

=
1

Rn+1

[
−(R− tn)n+1

]R−xn
0

=
1

Rn+1

(
Rn+1−

(
R− xn

)
n+1
)
.

Finally,

G(xn) = 1− (1− xn
R

)n+1.

The function ICDFxn is the reciprocal of G, and the result follows from
Proposition 1. ut
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