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Abstract

We investigate the digital signature schemes in the indifferentiability framework. We show that the well-known
Lamport one-time signature scheme, and the tree-based signature scheme can be “lifted” to realize ideal one-time
signature, and ideal signature, respectively, without using computational assumptions. We for first time show that
the ideal signatures, ideal one-time signatures, and random oracles are equivalent in the framework of indifferen-
tiability.
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1 Introduction

The notion of indifferentiability was introduced by Maurer et al. [MRHO04], as a generalization of indistinguishability
tailored to settings where internal state is publicly available. The indifferentiability framework comes with a com-
position theorem, supporting modular security analysis for cryptographic constructions. It has been proven that the
indifferentiability framework is very useful in practice. To see this, let’s consider the provably secure cryptographic
schemes in the random oracle (RO) model [BR93]. Many practical cryptographic schemes have achieved provable
security in the RO model. However, due to length-extension attacks, many hash function constructions cannot be
modeled as a RO, even the underlying building blocks can be modeled as an ideal primitive such as an ideal compres-
sion function. In these attacks, the adversaries explore the weakness of the structure of the iterative hash functions.
We note that, even we can construct hash functions against known length-extension attacks, it remains unclear if
the resulting functions can defend against other unknown attacks.

Using the indifferentiability framework, Coron et al. [CDMP05] propose a composable approach to design hash
functions that “behave like” random oracles. More concretely, consider a hash function construction H h where h
is an (ideal) primitive. We now just need to show that the construction H® can be indifferentiable from a RO. After
that, several other variants were proposed and studied in [DP06, DP07]. In addition, a line of notable work applied
the framework to the ideal cipher, and showed that the Feistel construction is indifferentiable from an ideal cipher,
see [CHK™ 16, DKT16, DS16]. Authenticated encryption has also been rigorously investigated in [BF18].

Very recently, Zhandry and Zhang [ZZ20] have made efforts, for the first time, to design indifferentiable pubic key
cryptographic primitives. They demonstrated several interesting feasibility results. They define the idealized model
for public key encryption (PKE), i.e., ideal PKE, in the indifferentiability framework, and present a construction
which is indifferentiable from ideal PKE, in the random oracle model, by using computational assumptions. Note that,
computational assumptions indeed are necessary, facing the theoretical barrier of Impagliazzo and Rudich [IR89].

In the same paper [ZZ20], Zhandry and Zhang further study digital signatures. They define the idealized model
for digital signatures, i.e., ideal signatures, but with additional uniqueness property specified, and then consider the
constructions. Our first observation is that their definition for ideal signatures in [ZZ20] is not complete: verifications
for certain tuples of (public-key, message, signature) are not defined. As a consequence, a differentiator can exploit
this weakness to tell the difference between the real and the ideal worlds, and thus their corresponding proof of
security fails. (More elaborations can be found on next page, Section 1.2.1.)

This motivates us to study the (ordinary) digital signatures in the indifferentiability framework, from definitions
to constructions. We want to make it explicit that, our focus here is not the unique signatures as in [2Z20]. Instead, we
are seeking to understand (and hopefully then be able to provide an affirmative answer to) the following fundamental
question for ordinary digital signatures:

Is that possible to show the equivalence of the ideal signatures and the random oracle in the indifferentiability
framework?

Note that, different from PKE or unique signatures, it is known that, ordinary digital signatures is in Minicrypt [Rom90],
following the conventional property based definitions. We are interested in investigating whether the complexity
landscape of digital signatures remains the same or not in the indifferentiability framework.

1.1 Our results

We give an affirmative answer to the above question. More concretely, we have the following results.

Analyzing the definitions and constructions in [ZZ20]: We start with a security analysis of the signature by
Zhandry and Zhang [ZZ20], as presented in Section 3.1. More concretely, we point out that the definition of
ideal signature in [ZZ20] is incomplete, which allows a trivial attack; while this definition issue can be fixed,
we further illustrate that the signature design cannot be proven to achieve indifferentiability: a differentiator
breaks the indifferentiability with overwhelming advantage.

Defining ideal (one-time) signatures: We provide definitions for ideal signature and for ideal one-time signa-
ture, respectively, in the indifferentiability framework. In our definitions, only natural queries and responses



are enabled by the new ideal primitives. We remark that, this is the first effort for defining ideal (ordinary)
signatures and ideal one-time signatures in the indifferentiability framework.

Indifferentiable one-time signatures from random oracles: We provide a construction for indifferentiable one
time signature in the random oracle model (without using any additional assumption). More concretely, we
demonstrate that, a simple and natural variant of the well-known Lamport signatures can be proven indiffer-
entiable from the ideal one-time signature that we defined.

Indifferentiable signatures from indifferentiable one-time signatures: We provide a construction for indif-
ferentiable signature, using indifferentiable one time signature (without any additional assumption). Our con-
struction is based on the tree-based construction [Gol04], which uses two building blocks, a one time signature
scheme and pseudorandom function (PRF). While the building blocks can be replaced with suitable ideal prim-
itives, i.e., ideal one-time signatures and random oracles, the resulting scheme is a deterministic signature
scheme. We will explain in next subsection the difficulty of realizing ideal signatures by using determinis-
tic signature scheme. Fortunately, we develop a beautiful strategy, called “partially randomized signing”, to
resolve the difficulty.

Completing the picture. Finally, we provide the additional contribution of constructing indifferentiable random
oracle model from ideal signatures or ideal one-time signatures (without any additional computational assump-
tions). An immediate corollary of this additional result is that, ideal signatures, ideal one-time signatures, and
random oracles are equivalent in indifferentiability framework. This can be viewed as a composable analog of
the equivalence of signatures and one-way functions [Rom90].

1.2 Our techniques

To achieve the above listed results, we have to resolve multiple technical difficulties. In this subsection, we describe
our techniques.

1.2.1 Analyzing the definition and construction in [ZZ20].

In [ZZ20], Zhandry and Zhang provide a definition for ideal signatures; details can also be found in Section 3.1. in
their definition [ZZ20], first, consider signing-key space SK, verification-key space P/, message space M, and
signature space 3J; note that, key generation, signing, and verification, can be viewed as injections which can be de-
fined over spaces SKC, PIC, M, X, properly; let G,S, and V be the sets of injections for key generation, signing, and
the set of predicates for verification, respectively. Based on these spaces and injection sets, then a set T of function
tuples (Gen, Sign, Verify) is defined to capture the functionality of key generation, signing, and verification; that
is the following conditions must be satisfied

1. Gen € G, Sign € S and Verify € V;

2. VSK € SK, M € M, Verify(Gen(SK), M, Sign(SK, M)) = 1;

3. VSK e SK,M e M,V € X,if V # Sign(SK, M), then Verify(Gen(SK), M, Sign(SK, M)) = 0;

4. VSK € SK,M € M, V1, V5 € X, if Verify(Gen(SK), M, V1) = Verify(Gen(SK), M, V2) = 1, then V1 = V.

Now, a tuple (Gen, Sign, Verify), if uniformly sampled from the set T, is defined as an ideal digital signature.

Unfortunately, as we already mentioned at the very beginning of the paper, this definition is incomplete. Specifi-
cally, let (Gen, Sign, Verify) be an ideal digital signature, associated with SKC, PKC, M, 3. We define that a public
key PK € PK is honest, if there exists a secret key SK € SK such that Gen(SK) = PK; otherwise we say PK is
dishonest. We can immediately observe that, the verification algorithm Verify(PK, -, -) is not defined, when PK
is dishonest, and thus this definition is not complete. Note that, a differentiator can easily exploit this weakness in
the definition to distinguish the real world from the ideal world, and fails their security proof.

One would argue that this “incompleteness” in their definition, can be naturally fixed by revising condition 3
above into the following condition 3’:

3. VPK € PK,M € M,V € Z,if JSK € SK s.t. PK = Gen(SK)and V = Sign(SK, M), then Verify (PK, M, V) =

0.



Note that, in this updated version of definition, if PK is dishonest, then for any message M and signature value V,
we have that Verify (PK, M, V') = 0. We justify that this definition is natural, as in signature, we indeed wish that
only the honest public key, along with the corresponding message and signature, could pass the verification test.

However, the current construction in [ZZ20] cannot realize this definition. In the following, we illustrate a distin-
guishing attack that breaks their security proof for realizing ideal signature in [ZZ20]. Recalling their construction
IT = (II.Gen, I1.S16N, I1.VERIFY):

o II.GEN(SK) = P(Ilsm.GENegm (Hsk (SK)));
« II.S1I6N(SK, M) = E(IL.GEN(SK)|| M, Il .S16Nsm (Hsk (SK ), Hmsg (M)));
« ILVERIFY(PK, M, V) = g .VERIFYs (P (PK), Humseg (M), E(PK||M, V)),

where Hgk and Hyse are two random oracle models, P is a random permutation, £ is an ideal cipher model.
g = (Hsm.GENgm, Ism . SIGNgm , gm . VERIFY,y ) is a standard-model signature scheme satisfies: 1) uniqueness; 2)
pseudorandom public keys; 3) random-message-attack security. To describe our distinguishing attack, we first build
an alternative signature Ilsm-magic = (ILsm-magic- GENsm-magic, Ilsm-magic-SIGNsm-magic; Ilsm-magic- VERIFYsm-magic ) in the
standard model. Concretely, let PKsm/S/Ksm be the public/secret key space of Ilsm, and pky,_magic is @ magic public
key such that pkgy, magic & PKsm, then we define the public/secret key space ( PKsm-magic/SKsm-magic ) Of Ilsm-magic
as
PKsm—magic i=PKsm U {pksm_magic}; Slcsm-magic = SKsm.

Then we define Ilgm.magic as:
* Ism-magic-GENsm-magic (SK) = Ilsm.GENgm (SK);
. Hsm—magic~SIGNsm—magiC (SK, M) = Ilgy.S1GNgy, (SK, M);

sm-magic>

* Tlsm-magic- VERIFYsm magic (PK,M, V)=

ILsm-magic- VERIFYsm (PK, M, V) if PK # pk
1 if PK = pk

sm-magic*

Trivial to note that Iy, magic also satisfies uniqueness, pseudorandom public keys, and random-message attack secu-

rity, thus according to [2Z20], we have that the signature construction, ITmagic = (IImagic. GEN, IImagic.SIGN, IImagic. VERIFY),
that uses Ilsm.-magic as a building block is also indifferentiable from an ideal signature. Next, in Figure 1, we describe

a differentiator D to break the security of IImagic:

Differentiator in real world Dyea Differentiator in ideal world Digeal
M« M;V « X M« M; V « X

PK + ,P(pksmfmagic); PK + ,P(pksmfmagic);

return Hmagic. VERIFYsm-magic (PK, M, V). return Verify (PK, M, V).

Figure 1: Differentiator for Il agic.

Note that, in the real world, the differentiator always outputs 1, due to the definition of pkgy.magic- However
in the ideal world, if the simulator responds to the query with a honest public key (same as the proof in [ZZ20]),
then the differentiator would output 0 with overwhelming probability, as the message M and signature value V are
randomly sampled; and if the simulator responds to the query with a dishonest public key, then by definition, we
have that differentiator would always output 0.

1.2.2 Defining ideal (one-time) signatures.

We provide the first definitions for ideal signature and for ideal one-time signature in the indifferentability frame-
work. Previous formulation for ideal signature by Zhandry and Zhang [ZZ20] (also see Section 3.1.1), captures the
uniqueness property. However, our goal here is to capture the idealized version of ordinary signatures; note that to
achieve the additional property of uniqueness, we need to pay the price of computational assumptions.



We follow the presentation style of Ristenpart et al [RSS11]; in our formulation of the ideal signature (in Figure 5),
we define three sub-procedures, Gen.hon, Sign.hon, Verify.hon, together to form the “honest” interface, and the
“adversarial” interface is defined to be identical to the honest interface. In the ideal signature, the response values
for PK and for signature V are randomly sampled. Whenever a signature is generated, the involved signing-key
SK must be well-defined. In addition, through both honest and adversarial interfaces, the same signing-key SK is
allowed to be used for signing multiple distinct messages.

To define ideal one-time signature (in Figure 6), we introduce an idea of defining the honest and the adversarial
interfaces differently. While the adversarial is identical to the adversarial/honest interface of the ideal signature,
capturing the intuition that the same signing-key SK is allowed to be used for signing multiple distinct messages.
In contrast, in the honest interface of ideal one-time signature, the same SK for signing different messages, must be
disallowed. We achieve this through a careful bookkeeping strategy.

1.2.3 Constructing indifferentiable one-time signatures.

Our first construction is a one-time signature scheme which is indifferentiable from the ideal one-time signature.
The starting point of the construction is Lamport’s one-time signature scheme. In Lamport’s design’, a one-way
function f is used in the key generation algorithm; more concretely, the signing key sk consists of an n-by-2 matrix
of random strings denoted as, sk = (sk1,0, sk1,1), - -, (Skn,0, Skn,1), while the corresponding verification key pk
also consists of an n-by-2 matrix of strings, i.e., pk = (pk; o, pky 1), - - -, Pk, o, Pk, 1), Where pk; o = f(ski o) and
pk, 1 = f(sk;1) forall 1 < i < n. A collision resistant hash function H is used in the signing algorithm; to sign
a given message m, first the message is compressed into a n-bit string byby - - - b, < H(pk, m), where b; € {0,1};
the corresponding signature o consists of “half of the signing key”, i.e., & = sk1,||- - ||$kn,p,. Finally, in the
verification algorithm, upon receiving a message m and signature o = o1||- - -||oy, first compute b1by - - - b, +
H(pk, m); if it holds that, f(o;) = pk; ;,, foralli = 1,...,n, then the message-signature pair (m, o) is valid.

Construction ideas. One straightforward way to build an indifferentiable one-time signature is to apply the tech-
niques in [ZZ20], however, due to the dishonest public key attack (subsection 1.2.1), it seems unclear that such a
construction is indifferentiably-secure or not. On the other side, we observe that, the attack is mainly caused by the
dishonest public keys, and if we can “remove” those dishonest public keys in a subtle way, then the ideas in [ZZ20]
might be sufficient.

Eliminating dishonest public key. We observe that, if every public key value in the public key space is honest
with overwhelming probability, then the dishonest public keys are “removed”. Following this observation, we have
that, with high probability, for any public key PK, there exists at least one secret key SK such that 0Gen(SK) =
PK. Therefore, the secret key space SK would be larger than the public key space PK, and thus any function that
maps SK to PK Gen cannot be an injection. In this work, we update the definition by setting |SK| > |PK|, and
oGen(+) to a random function (rather than an injection comparing to the definition in [ZZ20]). Next, we show how
to combine this idea with the techniques in [ZZ20].
Recalling the indifferentiable digital signature schemes II = (II.GEn, I1.S16N, II.VERIFY) in [ZZ20]:

« I1.GEN(SK) = P(Ilsm.GENem (Hok (SK)));
« ILSIGN(SK, M) = E(IL.GEN(SK)|| M, Tgm .S16Ngm (Hsic (SK ), Hinsg (M)));
« ILVERIFY(PK, M, V) = Hgm.VERIFYsn (P (PK ), Hunsg (M), E(PK || M, V)),

Known that Lamport’s one-time signature is built on one way function and collision resistant hash function, to
get rid of the computational assumptions we first upgrade the Lamport’s scheme by replacing the one way function f
and collision resistant hash function / with two random oracle Honeway and Hposition, respectively. Now the above
pk; o = f(skio)and pk; ; = f(sk; 1) are upgraded into pk; o = Honeway (8ki,0) and pk; ; = Honeway (ski,1), and
the position by by - - - b, < H(pk, m) is upgraded into b1bs - - - by, <= Hposition (PK, Mm).

Please also see Goldreich’s [Gol04] and Katz-Lindell’s textbook [KL07] for a clear illustration.



Next, we give the high level intuition to eliminate the dishonest public key. Specifically, we set that |SK| = 8n,
|skip| = 2X, |pk;,| = X and for the random oracles Hx and Honeway, We set that Hy : {0, 1}8nr — {0,142
and Honeway : {0, 1}2* — {0, 1}*. Note that, both oracles shrinks the inputs and thus, in either real world or ideal
world, there is no dishonest public key with overwhelming probability.

Next, following the strategy of [ZZ20], we roughly explain the intuition why we also need P and £ in our
construction.

Why random permutation (P, P1)? As described above, in our design, PK = P(pk). Using random per-
mutation to eliminate the “matrix” structure of the pk in Lamport’s design, is essential for our construction. One
main intuition behind the ideal one-time signature is that, when a valid signature is generated, the signer must be
aware of a well-defined signing key. However, if we do not use random permutation to mask the pk, say now
PK = pk, it is possible to construct a signature which can pass the verification, without having the signing
key clearly defined! More concretely, the adversary/differentiator can develop the following correlation attack:
First, the differentiator based on a well-defined signing key SK, obtains sk = (sk1,0,sk1.1),...,{(skn,0, Skn,1)
and pk = (pky o, pk11),---,(Pk, 0, Pk, 1) Note that pk = PK = oGen(SK). Now the differentiator devel-
ops a pk’ which is correlated to pk, say PK' = pk’ = (pk7 o, pky 1), - .., (Pk, o, Pk, 1) where pkj  is randomly
sampled, without even being aware of the corresponding skj ,. The differentiator then chooses a message M so that

Hposition(PK', M) = 1by - - - b, ie, by = 1. The signature for such M iso = E(PK’HM, sk 1||ska,p, |- - - Hskn,b").

Note that, the signature o can pass the verification; however, the underlying signing key for such o is known, which
deviates from the definition of ideal one-time signature.

Why ideal cipher (£, £1)? The ideal cipher is also essential in our design. In Lamport’s original design, the
signature consists of half of the sk; denoted as (ski14,||--||Sknp,). In our construction, we first pad dummy
string 0 - - -0 to the signature to make the length of signature to be sufficiently long, then apply the ideal cipher
model to “encapsulate” the internal signature (sk1p,||sk2.p,|| - - - ||Skn b, )- If the ideal cipher is not used, say we let
o = (sk1p,||Sk2,b]] - - - ||Skn.b, ), then the differentiator can launch the following attack. First, the differentiator
samples SK and M, and obtains PK and o via the honest interfaces oGen and oSign, respectively. Concretely,
PK = oGen(SK) and 0 = oSign(SK, M) = (sk1,||sk2.b,|| - - ||Sknp, ). After that, the differentiator makes
queries P (PK) and Hposition(PK, M), and thus obtain the corresponding pk and by ...b,. Note that, in the
real world, it’s apparent that Honeway (skip,) = pk;;,, meanwhile, the simulator knows nothing of sk (it only

knows PK). Then, the differentiator would proceed the following test: it flips a coin b, and samples sk such that
Isk] = [sk1.,
pk, the differentiator:

, and make a query ’Honcway((;if) if b = 0 and Honeway (sk1,5,) if b = 1. After receiving the response

7
o if b =0, returns (pk # pkl,b1)2’

. if b = 1, returns (1/7% < Pk p,)-

Easy to note that in the real world, the differentiator returns 1 with high probability (assuming |pk p, | is sufficiently
long). However, in the ideal world, the simulator would fail with at least probability % In fact, although the simulator

knows the value pk; ;. , it has no knowledge of sk; ;, which means it cannot differ sky p, and sk and thus cannot

guess the coin b. As a result, the simulator would fail to respond to the query 'Honeway(sAk) or Honeway (5K1,b, )
with at least probability %

How the ideal cipher (£,E™) helps? Encapsulating with £, the signature then will be with form of

o = E(PK||M, sk1p,|Isk2ps|] - ||$knp,||0---0). We immediately note that given o, the differentiator has no
information of sk; p,, and thus it can not proceed the attack above. Moreover, after applying the ideal cipher, there
are only two ways for the differentiator to obtain the value sk;;,: 1) makes a query Hq(SK); 2) makes a query

7 /\
2(pk # pkqp,) = 1iff pk # pkq g, .



EY(PK||M, o). In the first case, the simulator would know both SK and sk; in the second one, the simulator would
randomly sample sk itself, and implicitly set Hg(SK) = sk. In other words, applying (£, &™) will enforce to
differentiator to give more power to the simulator so that it can complete the simulation properly.

1.2.4 Constructing indifferentiable signatures.

The starting point here is the tree-based signature scheme®, which lift one-time security to full security. Specifically,
the tree-based signature scheme (GEN, SIGN, VERIFY), uses a pseudorandom function F’.(-) and a one-time signature
scheme (0GEN, 0SIGN, OVERIFY) as building blocks. We consider a full binary tree of depth n in the construction;
and the basic idea in the tree-based construction is to use the verification- and signing-key (of a one-time signa-
ture scheme) to authenticate/sign two fresh instances (of the one-time signature scheme), and then use each of the
instances to authenticate/sign two fresh instances, and so on. In this way, a binary tree of fresh instances of the
one-time signature will be formed, in which each internal node authenticates its two children. The leaves of this tree
will be used to sign actual messages, and here each leaf is used at most once with high probability. Concretely, to sign
a message, the resulting signature consists of (1) a one-time signature to the message which is authenticated with
respect to the verification-key of a leaf, and (2) an authenticated path from the root to this leaf, i.e., a sequence of
one-time verification-keys of all nodes in the path, in which each such verification-key is authenticated with respect
to the verification-key of its parent. To get rid of the computational assumptions, we first upgrade the tree based
signature: the underlying one-time signature (0GEN,0SIGN,0VERIFY) will be replaced by ideal one-time signature
OSIG = (0oGen, 0Sign, oVerify); the PRF F,.(-) will be replaced by a random oracle H(r||-).

Same as the case in constructing indifferentiable one-time signatures, the trivial attempt is to apply the construc-
tion in [ZZ20] by setting Il to be the tree-based signature scheme, concretely, the construction of the indifferen-
tiable signature should be:

GeEN(SK) = oGen(“tree-based signing key”)
SIGN(SK, M) = E(PK||M, “tree-based signature”).

Unfortunately, there are at least two barriers: 1) the dishonest public key attack; 2) the tree based scheme is not a
unique signature and the construction in [ZZ20] only works when Il is unique signature. For the former one, if
we apply the same technique as above-eliminating dishonest public key, by setting SK to be sufficiently long, then
the barrier should be overcome. However the situation for the latter one is much involved, and in the following we
will elaborate it carefully.

Nonce-abuse attack. Although we upgrade the tree-based scheme to be information-theoretically secure and
eliminate the dishonest public key, the current construction fails to achieve indifferentiability. Intuitively, we note
that the tree-based scheme is deterministic if the adversary follows the algorithm and uses the nonce by querying
H(r||-) (we call such a nonce to be honest nonce, and others to be dishonest nonce); see footnote 3, meanwhile, the
verification phase would not detect whether the signature is generated by an honest nonce or a dishonest one. Thus,
in the tree-based scheme, once having the signing key, the adversary can output two distinct valid signatures for the
same message, by abusing different nonces.

Next, we illustrate a differentiator D that abuses the nonce as follows: first D samples SK, M and makes a query
sk« M (SK) (we denote sk to be the tree-based signing key for ease); then D computes two valid signature for M
by using (sk, R) and (sk, R"), denoted as v and v’ (with high probability v # v’). After that, the differentiator makes
two queries V <+ E(PK||M,v) and V' < E(PK||M,v") and outputs 1 if and only if 1) VErirY(PK, M, V) = 1;
2) VErirY(PK, M, V') = 1;3)V # V.

Trivial to note that, in the real world, D outputs 1 as long as v # v’. In fact, £ is an ideal cipher and for any
v # v’, it’s apparent that

E(PK||M,v) # E(PK||M,v").

However, in the ideal world, we observe that both v and v’ are valid signatures, thus according to the definition of
indifferentiability, V' and V' must both pass the verification procedure. But the simulator only knows exactly one

3More concretely, the starting point is Construction 6.4.16 in Goldreich’s textbook [Gol04], and the underlying one-time signature scheme is
deterministic.



value that passes the verification, which is SIGN(SK, M). Thus, the simulator cannot output two distinct V' # V'
that pass the verification, which refers to D will outputs 0 with high probability.

Partially randomized signing. To prevent this attack, we have to make the signing algorithm to be randomized,
thus the simulator can respond to V' + SiGN(SK, M, R) and V + S1N(SK, M, R’), using different randomness.
However, using randomized tree-based signature might be dangerous, as we are taking one-time signature as a basic
primitive, and the scheme would fail immediately if it calls the signing oracle 0Gen(SK, -) twice for two distinct
messages.

To resolve this obstacle, we propose a novel strategy, which we called “partially randomized signing”. In the high
level, we add an additional layer to the tree and now the tree has n 4 1 layers. We then treat the first n layers still to
be deterministic (same as above) and randomize the (n + 1)-th layer. More specifically, given (SK, M, R), the pair
(sk, pk) that’s assigned to the node (belonging to the first n layer) is only determined by SK, regardless of M and
R. And the pair (sk, pk) that’s assigned to the leaf (belonging to the n + 1 layer) is determined by SK, M and R.
Moreover, in the signing algorithm, the authenticated path should be also determined by both A and R.

Why does this strategy help? Let (M, R) # (M’, R')*, we need to prove that for any such pairs and any fixed
SK, the signing algorithm would only call the signing oracle SiGN(SK, -) once. We denote path and path’ to be
the authenticated paths for (M, R) and (M’, R'), respectively. Here, we denote COMPREFIX(path, path’) to be the
common prefix of path and path’, for instance, if path = 01010 and path’ = 01001, then CoMPREFIX(path, path’) =
010. It’s apparent that, for any (M, R) # (M', R’), if

ComPreFIX(path, path’) < n,

then the scheme would only call the signing oracle once, for fixed SK. Assuming n to be large enough, this event
holds with overwhleming probability.

However, adding randomness R into the signing algorithm would make the indifferentiability much hard, as we
have to mask it properly. Concretely, we denote seed = Hgeed (SK, M, R) where Hgeea is an additional random
oracle, and we treat seed as the masked nonce in the tree-based signature. Combing all together, we have our final
solution:

SiGN(SK, M, R) = E(PK|| M, “partially randomized signature”

seed).

1.2.5 Constructing random oracles from ideal signatures.

We now give the idea that how to construct an indifferentiable random oracle model by ideal signatures (ideal one-
time signatures), and thus complete the picture. Specifically, given an ideal signature (Gen, Sign, Verify), we
set

H(z) = Gen(z)°.

Immediately observe that the distribution of #(x) is identical to uniform and to turn this into an indifferentiability
proof, we show how to simulate (Gen, Sign, Verify), given a true random oracle model RO(+). This, in fact, is
quite straightforward. Concretely, for the query Gen(SK ), the simulator can just respond to it with RO(SK). For
the sign query Sign(SK, M, R), the simulator would just uniformly sample a string o from the signature space
3, respond to the query with ¢ and record the tuple (H(SK), SK, M, R,o) into its internal table T. And for
Verify(PK, M, o), the simulator would go over its internal table T and return 1 if and only if there exists a tuple
(PK,SK,M,R,0) € T. Easy to note that, as long as the signature space X is sufficiently large, this simulator
works properly.

Organization In the rest of our paper, Section 2 gives notations and definitions of the indifferentiability frame-
work, in Section 3 we first analyze the signature definition and construction in [ZZ20] and point out the issues,
and then present our new definitions for Ideal Signature and for Ideal one-time Signature. In Section 4, we build an
indifferentiable one-time signature from random oracle and present the proof; additional proof details can be found
in Appendix A. The construction of indifferentiable signature is given in Section 5.

4 M might be equal to M.
>The indifferentiable random oracle model from ideal one-time signature can be built in the same way, say H(z) = oGen(z).



2 Preliminaries

Notation. Throughout this paper, A € N denotes the security parameter. For a non-empty finite set X', we denote
a uniformly random sample = from & as x «— X. We overload this notation to extend to probabilistic algorithms, so
that y « A(x) means that y is assigned a value according to the distribution induced by algorithm .4 whose input
value is z. That is, algorithm A runs on input x and returns y as output. When the algorithm A is deterministic, we
write it as y < A(x).

When X and Y are strings, we write X||Y" to mean the string created by appending Y to X. When n > 0 is an
integer we write {0, 1}" for the set of all n-bit strings.

We say a function y(n) is negligible if 1 € o(n~“(1)), and is non-negligible otherwise. We let negl(n) denote an
arbitrary negligible function. If we say some p(n) is poly, we mean that there is some polynomial ¢ such that for all
sufficiently large n, p(n) < g(n). We say a function §(n) is noticeable if the inverse 1/6(n) is poly.

2.1 Indifferentiability framework

In this subsection, we describe the indifferentiablity framework by Maurer et al [MRHO04]. Our presentation here
follows that by Ristenpart et al [RSS11]. Note that, the original version indifferentiablity framework by Maurer et
al [MRHO04] is based on random systems [Mau02]; later Coron et al present an alternative version [CDMP05] using
interactive Turing machines. The formulation here we borrow from Ristenpart et al [RSS11] uses the game playing
technique [BRO06].

2.1.1 Game playing technique.

We use the game playing technique [BR06] as described in [RSS11]. Games consist of procedures which in turn
consist of a sequence of statements together with some input and zero or more outputs. Procedures can call other
procedures. If procedures P; and P» have inputs and outputs that are identical in number and type, we say that they
export the same interface. If a procedure P gets access to procedure F we denote this by adding it in superscript P7.
All variables used by procedures are assumed to be of local scope. After the execution of a procedure the variable
values are left as they were after the execution of the last statement. If procedures are called multiple times, this
allows them to keep track of their state.

A functionality F is a collection of two procedures F.hon and F.adv, with suggestive names “honest” and
“adversarial”. Adversaries access a functionality F via the interface(s) exported by F.adv, while all other procedures
access the functionality via the interface(s) F.hon.

Functionalities and games. Collections of procedures will sometimes implement particular abstract function-
alities, for example that of some idealized primitive (e.g. a random oracle). A functionality is a collection ' =
(F.hon, F.adv); the names of these interfaces, hon and adv are suggestive as we will see in a moment. When
games and adversaries are given access to a functionality a model of computation is defined. For example when the
functionality is that of a random oracle, we have the random-oracle model. Thus one can think of functionalities and
models somewhat interchangeably. As an example, functionality RO = (RO.hon, RO.adv), shown in Figure 2,
implements a random oracle (with hon and adv interfaces) and will give rise to the random-oracle model.

procedure RO .hon(x): procedure RO.adv(z):
If T[z] = L then T[z] « R; return RO.hon(x).
return T[z].

Figure 2: Procedures implementing the functionality of the random oracle model (ROM). The functionality is asso-
ciated with randomness space R = {0, 1}” where the number r € N is set as appropriate for a given context.

Similarly, functionality RP = (RP.hon, RP.adv), shown in Figure 3, implements a random permutation and
will give rise to the random-permutation model. Note that, two “adversarial” interfaces, P.adv and P™.adv for cap-



turing the permutation and the inverse, respectively, are defined so that the adversaries can access the functionality;
and two “honest” interfaces, P.hon and P'.hon are defined for all other procedures to access the functionality.

procedure RP.hon: procedure RP.adv:

INTERFACE P.hon(z): INTERFACE P.adv(x):

If T[z] = L then T[z] « R; return P.hon(x).

return T[z].

INTERFACE P hon (y): INTERFACE P hon (y):

If 3z so that T[z] = y return P! hon(y).
then T[z, y] + z;

return T[z, y].

Figure 3: Procedures implementing the functionality of the random permutation model (RPM). The functionality is
associated with randomness space R = {0, 1}" where the number r € N is set as appropriate for a given context.

For any two functionalities /7, F», we denote by (F1, F2) the functionality that exposes a procedure that allows
querying (Fi.hon, Fa.hon) and a procedure that gives access to (Fi.adv, Fa.adv).

A game G consists of a distinguished procedure called main (which takes no input) together with a set of pro-
cedures. A game can make use of functionality F and adversarial procedures A4 (together called “the adversary”).
Adversarial procedures have access to the adversarial interface of functional procedures and, as any other procedure,
can be called multiple times. We, however, restrict access to adversarial procedures to the game’s main procedure,
i.e., only it can call adversarial procedures and, in particular, adversarial procedures cannot call one another directly.

By G7+* we denote a game using functionality F and adversary A. If 7’ exports the same interface as F, and
adversary A’ exports the same interface as A, then Gr A" executes the same game G with functional procedure F’
and adversary A’. We denote by G7>* = 4 the event that game G produces output y, that is procedure main returns
value y. If game G uses any probabilistic procedure then G is a random variable and by Pr[G7** = 4] we denote
the probability (over the combined randomness space of the game) that it takes on value y. Sometimes we need to
make the random coins r explicit and write G7 () to denote that the game is run on random coins .

Games are random variables over the entire random coins of the game and the adversarial procedures. For
functionalities F and F’ and adversaries A and .A’, we can thus consider the distance between the two random
variables. Our security approach is that of concrete security, i.e., we say two games are e-close if for all values y it
holds that

Pr [g“ = y] < Pr [gf'*f" = y] + €.

2.1.2 Indifferentiability.

Fix two functionalities F; and F». A distinguisher D is an adversary that outputs a bit. A simulator is a procedure,
usually denoted S. Figure 4 defines two games Real and Ideal. Fix some value y (e.g., y = 1). The indifferentiability
advantage of D is defined as

AdvE (D) = Pr[Real”™” = y| — Pr[Ideal{>” = y].

We use a concrete security approach, i.e. not providing a strict definition of achieving indifferentiability. How-
ever, informally we will say that a functionality F; is indifferentiable from a functionality F5 if for any “reasonable”
adversary D there exists an “efficient” simulator S such that Adviﬁldjﬁ-i 5(D) is “small”. The meanings of “reasonable”,
“efficient”, and “small” will be clear from context.

2.1.3 Composition.

One goal of indifferentiability is to allow the security analysis of a cryptographic scheme when using one functional-
ity to imply security holds when using another. This is enabled by the following, which is a concrete security version
of the original composition theorem of Maurer, Renner, and Holenstein [MRH04].



main Real: procedure Func(m): procedure Prim(u):
b« pFune.Prim; return Fq.hon(m). return F.adv(u).
return b’.

main Ideal‘?: procedure Func(m): procedure Prim(u):
b DFunc,Pr\m; return ]:2_hon(m)‘ return S‘Fz'ad“(u)
return b’.

Figure 4: The games that define indifferentiability. Adversary D and functionalities F;, F> are unspecified. The
simulator S is a parameter of the game.

Theorem 2.1 Let Fi, F2 be two functionalities with compatible honest interfaces. Let A be an adversary with one
oracle. Let S be a simulator that exports the same interface as Fi.adv. Then there exist adversary B and distinguisher
D such that for all values y

Pr[G71A = y] < Pr[G72F = y] + AdVRUE (D).
Moreover

tg <tat+qa-ts a8 < qa-gs tp <tg+qg1-ta gp < qg,0t+qg.1-qa

wheret 4, tg, tp are the maximum running times of A, B, D; q 4, qB are the maximum number of queries made by A
and B in a single execution; and qg o, gg,1 are the maximum number of queries made by G to the honest interface and
to the adversarial procedure.

3 Ideal Signatures: Previous Efforts and New Definitions

3.1 Analyzing the ideal signature in [ZZ20]

In this section, we analyze the ideal signature, including definition and construction, in [ZZ20].

3.1.1 Ideal signatures by Zhandry and Zhang
First, let’s recall the definition of ideal signature from Zhandry and Zhang:
Definition 3.1 (Ideal Signature [ZZ20]) Let SK, PK, M, X be the sets such that:
1. |SK| > 2«00 M) | PKC| > 2¢(08 M) gnd | B | > 2+(los V),
2. |SK| < |PK

L [SK| x M| < |
We denote
1. G[SK — PK] as the set of all injection that map SK to PK;
2. S[SK x M — X] as the set of all injections that map SK x M to X;
3. V[PK x M x ¥ — {0, 1}] as the set of all functions that map PK x M x X to a bit.
We define T as the set of all function tuples (GEN, SIGN, VERIFY) such that:
e GEN € G, SIGN € S and VERIFY € V;

* VSK € SK, M € M, Veriry(GEN(SK ), M, SIGN(SK , M)) = 1;
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cVSK e SK,M e M,V € X,if V # SioN(SK, M), then VERIFY(GEN(SK ), M, SIoN(SK , M)) = 0;

cVSK € SK,M € M, V1, Va € X, if VEriry(GEN(SK ), M, V1) = VERIFY(GEN(SK), M, V) = 1, then
Vi= Vs

We say that a digital signature scheme I1 = I1.{ GEN, SIGN, VERIFY}, associated with signing key space SK, verification
key space PKC, message space M, and signature space 32, is an ideal digital signature, if 11 is sampled from T uniformly.

3.1.2 Security analysis

Unfortunately, as already mentioned in the Introduction, the above definition in [ZZ20] is not complete. Specifically,
let (Gen, Sign, Verify) be an ideal digital signature, associated with secret key space SK, public key space PKC,
and signature space 3. We define that a public key PK € PKC is honest, if there exists a secret key SK € SK such
that Gen(SK) = PK, otherwise we say PK is dishonest. We immediately observe that, the verification algorithm
Verify(PK,-,-) is not defined, where PK is dishonest, and thus we claim that this definition is not complete.

One would argue that this “incompleteness” can be trivially fixed by defining:

« VPK € PK,M € M,V € %,if ASK € SK such that PK = Gen(SK) and V = Sign(SK, M), then
Verify(Gen(SK), M ,SioN(SK, M)) = 0.

Note that, in this definition, if PK is dishonest, then for any message M and signature value V, we have that
Verify (PK, M, V) = 0. We justify that this definition is natural, as in signature, we indeed wish that only the
honest public key, along with the corresponding message and signature, could pass the verification test.

However, once completing the definition, the real problem comes. In the following, we illustrate a distinguishing
attack that breaks the construction in [ZZ20]. Recalling their construction IT = (II.Gen, I1.S16N, II.VERIFY):

« II.GEN(SK) = P (gm-GENgm (Hsk (SK)));
« II.S1I6N(SK, M) = E(I1.GEN(SK)|| M, IIsm .S16Nsm (Hek (SK ), Hmsg (M)));
« IL.VERIFY(PK, M, V) = g .VERIFYs (P (PK), Humseg (M), E(PK||M, V)),

where Hg and Hyyge are two random oracle models, P is a random permutation, £ is an ideal cipher model.
g = (Hsm.GENgm, sm . SIGNgm , g . VERIFY,y ) is a standard-model signature scheme satisfies: 1) uniqueness; 2)
pseudorandom public keys; 3) random-message-attack security. To describe our distinguishing attack, we first build
an alternative signature Ilsm-magic = (Ilsm-magic- GENsm-magic, Ilsm-magic-SIGNsm-magic; Ilsm-magic- VERIFYsm-magic ) in the
standard model. Concretely, let PKsm/S/Ksm be the public/secret key space of Ilsm, and pky,_magic is @ magic public
key such that pky, magic & PKsm, then we define the public/secret key space ( Psm-magic/SKsm-magic ) Of Tlsm-magic
as
PKsm—magic = PKem U {pksm_magic}; Slcsm-magic = SKsm.

Then we define Ilgm-magic as:
* 1_-[sm-magic~GENsm—magic (SK) = Ilsm.GENgm, (SK)a
¢ Ism-magic-SIGNsm-magic (SK, M) = Iy .S1GNgm (SK, M);

1_-[sm-ma ic~v sm PK7M7 if PK k m-magic’
. Hsm_magic-VERIFYsm-magic (PK, M, V) - {1 g ERIFY, ( V) 1 # PRy agic

if PK = pk

sm-magic*
Trivial to note that Iy magic also satisfies uniqueness, pseudorandom public keys, and random-message attack secu-
rity, thus according to [2Z20], we have that the signature construction, ITmagic = (IImagic. GEN, IImagic.SIGN, IImagic. VERIFY),
that uses Ilsm-magic as a building block is also indifferentiable from an ideal signature. The differentiator who can
distinguish the Il .gic from the ideal signature can be found in Figure 1 in the Introduction.

Note that, in the real world, the differentiator always outputs 1, due to the definition of pky,.magic- However
in the ideal world, if the simulator responds to the query with a honest public key (same as the proof in [ZZ20]),
then the differentiator would output 0 with overwhelming probability, as the message M and signature value V are
randomly sampled; and if the simulator responds to the query with a dishonest public key, then by definition, we
have that differentiator would always output 0.
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3.2 Our new definitions for ideal signatures and ideal one-time signatures

In this section, we define the functionality for ideal signature and for ideal one-time signature. We note that, the
definitions for ideal signature and for ideal one-time signature are the first (complete) formulations in the indif-
ferentability framework.

3.2.1 Our formulation of ideal signatures

As we argued in the previous subsection, the definition in [ZZ20] is not complete. In addition, in their the formulation
in [ZZ20], Zhandry and Zhang intend to capture the uniqueness property. Our goal here is to capture the idealized
version of ordinary signatures which can be randomized.

In Figure 5, we present the functionality SIG = (SIG.hon, SIG.adv), which implements an ideal signature
and will give rise to the ideal signature model. Our presentation follows the framework by Ristenpart et al [RSS11].
In particular, we follow the query-response style for defining the interfaces of the idealized primitives, and the un-
necessary structures can be clearly eliminated.

procedure SIG.hon procedure SIG.adv

INTERFACE Gen.hon(SK): INTERFACE Gen. adv(SK):

ET[SK] = L return Gen.hon(SK).
then PK « PK;T[SK] + PK;
return T[SK].
INTERFACE Sign.hon(PK, SK, M, R): INTERFACE Sign.adv(PK, SK, M, R):
IfT[SK] = PK and T[PK,SK,M,R] = L return Sign.hon(PK, SK, M, R).

then V « 3;T[PK,SK,M,R] + V;
return T[PK, SK, M, R].

INTERFACE Verify.hon(PK, M, V): INTERFACE Verify.adv(PK, M, V):

If 3SK, R so that return Verify.hon(PK, M, V).
T[SK] = PK and T[PK,SK, M,R] = V
then ¢ +— 1; T[PK, M, V] < ¢;
return T[PK, M, V].

Figure 5: Procedures implementing the functionality of the ideal signature model (ISM). The associated parameters
are verification key space PIC, signing key space SK, message space M, randomness space R, and signature space
3.

In the ideal signature in Figure 5, three “honest” interfaces, Gen.hon, Sign.hon, Verify.hon, are defined, for
capturing key generation, signing and verification, respectively. Here, “adversarial” interfaces are identical to the
honest ones. Several tables T[] have been used to trace the behaviors of the ideal signature. Notation “T|[z] < y”
means that, the value of the x-the record in the table is y; equivalently, for the query value z, the (potential) response
value is y. In the ideal signature in Figure 5, the response values for PK and for signature V are randomly sampled.
Whenever a signature is generated, the involved signing key SK must be well-defined, and be aware to the ideal
signature.

3.2.2 Our formulation for ideal one-time signatures

In Figure 6, we present the functionality OSIG = (OSIG.hon, OSIG.adv), which implements an ideal one-time
signature and will give rise to the ideal one-time signature model. Similar to the ideal signature formulation, three
“honest” interfaces, 0Gen.hon, oSign.hon, oVerify.hon, are defined for capturing key generation, one-time sign-
ing, and signature verification, respectively. However, now the “adversarial” interfaces are different from the “honest”
interfaces. Indeed, the “adversarial” interfaces of ideal one-time signature are identical to the adversarial/honest in-
terfaces of the ideal signature in Figure 5.

12



procedure OSIG.hon

INTERFACE 0Gen.hon (SK):

IfT[SK] =L
then PK « PK;T[SK] + PK;
return T[SK].

INTERFACE oSign.hon(PK, SK, M, R):

IfT[SK] = PK and T[PK, SK , *, *] =
then V « X; T[PK, SK, M,

procedure OSIG.adv

INTERFACE 0Gen. adv(SK):
return oGen.hon(SK).

INTERFACE 0Sign.adv(PK, SK, M, R):

IfT[SK] = PK and T[PK,SK, M, R] = L
then V « X;T[PK,SK, M, R] « V;

T[PK, SK, M, R, V] < 1; return T[PK, SK, M, R].
return T[PK, SK, M, R].

INTERFACE o Verify.hon(PK, M, V): INTERFACE o Verify.adv(PK, M, V):

If 3SK, R so that If 3SK, R so that
T[PK, SK,M,R, V] = 1 T[SK] = PK and T[SK, M, R] = V
then ¢ « 1;T[PK, M, V] « &; then ¢ « 1;T[PK, M, V] « ¢;
return T[PK, M, V. return T[PK, M, V.

Figure 6: Procedures implementing the functionality of the ideal one-time signature model. The associated parame-
ters are verification key space PIKC, signing key space SKC, message space M, randomness space R, and signature
space 3.

More concretely, through the “adversarial” interfaces of ideal one-time signature, the same signing key SK is
allowed to be used for signing multiple distinct messages. In contrast, this is not allowed through the honest interfaces
of ideal one-time signature. Now in Figure 6, the condition “T[SK| = PK and T[PK, SK, *, x| = L” enforces that,
when SK has never been used for signing any message, a new fresh signature V' will be sampled. Additional records
T[PK,SK,M, R, V] < 1 are included, to make sure of effective verification through the honest interfaces of ideal
one-time signature.

4 Ideal One-time Signature from Random Oracle

4.1 Construction

High-level ideas. Our goal here is to construct a scheme which is indifferentiable from the ideal one-time sig-
nature (as defined in Figure 6). The starting point of our construction is Lamport’s one-time signature scheme. In
Lamport’s designa one-way function f is used in the key generation algorithm; more concretely, the signing key sk
consists of an n-by-2 matrix of random strings denoted as, sk = (sk1,, sk1.1), ..., (skn,0, Skn,1), while the corre-
sponding verification key pk also consists of an n-by-2 matrix of strings, i.e., pk = (pky o, pk1 1), - -, (Pk,.0, PR 1),
where pk; o = f(skio) and pk,; = f(sk;1) forall 1 < i < n. A collision resistant hash function H is
used in the signing algorithm; to sign a given message m, first the message is compressed into a n-bit string
biby - -b, < H(pk,m), where b; € {0,1}; the corresponding signature o consists of “half of the signing key”,
ie, o = skip,||---||sknp,. Finally, In the verification algorithm, upon receiving a message m and signature
o = 01| - ||on, first compute b1 by - - - b, < H(pk, m); if it holds that, f(0;) = pk,,,, foralli = 1,...,n, then
the message-signature pair (m, o) is valid.

The trivial idea to build an indifferentiable digital signature is to apply the construction in [ZZ20], by setting the
standard model signature scheme to be Lamport’s signature. However, as show in Section 3.1, this idea is unknown
to be sufficient, due to the dishonest public key attack. To prevent this attack, we eliminate the dishonest public key
by defining oGen (the key generating algorithm of an ideal one-time signature) to be a random function and SK
to be large enough to make sure that every PK € PK is honest with high probability. We then prove that, after
combining this new technique, our construction is indifferentiable from an ideal one-time signature. Here, we first
specify some parameters:

« A0 > p > w(log \),
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¢ log |SKCo| = 8n,log |PK,| = 2nA, log | .| = 2nA.

Building blocks. Based on the above discussion, in our design we will use the following building blocks:
o Hae : {0,1}* — {0,1}4" is a random oracle.
« Honeway : {0,1}* — {0, 1} is a random oracle.
« Hposition : {0,1}* — {0,1}" is a random oracle.
« P:{0,1}?"* — {0,1}?" is an ideal permutation and P is its inverse.
o« £:{0, 1} o8 |PKol+log | Mol £ 1}108¥el 5 £ 1}198 1%l js an ideal cipher model, where {0, 1}108 [PXol+1og | Mo|

is its key space and £ is its inverse. That is, £ : {0, 1}108 [PXelHlog Mol 5 £( 1}log1Zel £ 1}108 %ol

4.1.1 Construction details.

Now we are ready to build the indifferentiable one-time signature, denoted as IT, = (Il,.0GEN, IT.0S1GN, IT.OVERIFY).

— II, = (II,.0GEN, II,.0S1GN, II,.OVERIFY) ~\

PKo « II,.0GEN(SK,):
On input, signing key SK o, compute the verification key PK, as follows:

1. sk « Hgs(SKo); parse sk into ((Sklyo, sk1,1),. .., (skn,o, skn,l));

2. fori € [1,n],
pki,() <~ HOneWay(Ski,0)§ pki,l <~ 7-[Orle\f\/ay(SkZ',l);

pk — (<pk1,07 pk1,1>7 IR <pkn,01 pkn,1>);
3. PK, + P(pk); return PKo.

Vo 4 I5.0816N(PK o, SK o, Mo):

On input, verification key PK, signing key SK o, message M,, compute the signature V,, as follows:
1. If PKo, = 0GEN(SK,)
then sk < Hg (SKo); parse sk into ((skl,o, sk1,1),- .., (skn,o0, skn71));
b1 -+ - bn  Hposition (PKo, Mo);
2. output the signature

Vo S(PKOHMO, sk p |- \|skn,bn).

¢ <+ Ily.0VERIFY(PK o, Mo, Vo):

On input, verification key PK o, message M, and signature Vo, operate as follows:
1. “unpack” the signature
(T, 1ok, 5. ) £ (PKo|IMo, Vo);

2. “unpack” the verification key
((PR1,0:PR1 1)+ s (PR 0y PR 1)) = PL(PKG);
38 /1;1 t i;’n — Hposition(PKoHMo);
4. output ¢ < 1 if and only if the following conditions hold:
« fork € [1,n],
HOneWay(Skiji) = pki,gi'

otherwise output ¢ < 0.
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4.2 Security statement

The construction in previous subsection is an ideal one-time signature. More concretely, we have the following
theorem.

Theorem 4.1 II, = (IL,.0GEN, I1.0SI1GN, I1.0VERIFY) is indifferentiable from the ideal one-time signature OSIG =

(0oGen, 0Sign, oVerify), in the model for, random oracles Hqx, Honeway> Hposition, random permutation (P, P™7),

and ideal cipher (€,E™). More precisely, there exists a simulator S such that for all g-query differentiator D, we have
2¢>

Advindft < s + =,
019 - 277, 2)\

Here, the simulator makes at most q2 queries to its oracles.

4.3 The simulator and high-level proof ideas

According to the definition of indifferentiability, we have that, in the real world, the differentiator has three honest
interfaces (I,.0GEN, IL,.0S1GN, II,.0VERIFY) and seven adversarial interfaces (Hsk, Honeways Hposition, P, P, &,
E™). Therefore, to complete the proof, we build an efficient simulator & in the ideal world, such that 1) S has access to
the ideal one-time signature via the adversarial interfaces; 2) S simulates those seven adversarial interfaces properly.
Concretely, in the ideal world, the differentiator D has three honest interfaces (0Gen, oSign, oVerify) and seven
adversarial interfaces (S Hek | SHoneway SHposition SP SP'Ss €S &' ), and we prove that for any differentiator D, the
view in the real world is close to the view in the ideal world. In the following, we illustrate the full description of
our simulator and then we give the high-level intuition of our proof strategy.

— Simulator S \

The simulator S has the external oracle access to the ideal one-time signature OSIG =(oGen, 0Sign, oVerify); the simulator S will
provide the following interfaces for the external differentiator D:

SHa (SKo):

if A(SKo, sk, pk, PKo) € Ty
then return sk; -
query the external OSIG with (0Gen, SK ), and obtain PK;

if 3(o, sk, pk, PKo) € Ty, st. PKo = PKo,
then return sk;
sk « {0,1}4"*; pk « {0,1}2"*;

parse sk into <<sk170, sk1,1),- -, (skn,0, skml));

sk’

parse pk into (<pk1,07 pk1,1>7 ceey <pkn,()7 pkn,1>>;
fori € [1,n]
THO[\eWay A THOueWay u {(Ski,()» pkiyo)} @] {(Skivlvpki,l)};
THsk A THsk u {(SKOa Sk» pk7 PKO)};
return sk.

SHoneway (sk):

if 3(5k, Pk) € Tooneway-

Athen return ZE;

PE {0, 11 Trtopeway — THoneway Y {(5F, PR)}:
return ﬁ

S*Hposition (PK,, M,):

if A(PKo, Mo, b1 -+ -bn) € Ty
then return by - - - by

if ( Vo, PKo, Mo, sk1 by 5.y 8kp b, 01 -bn) € Tgn,
then return by - - - by;

position’
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b1~~~bn«—{0,1}”;T’H — Ty U{(PK07M07b1“'bn)};

position position
return by - - - by,
SP (pk):
it 3(SK o, sk, pk, PKo) € T, ,

then return PK;
if 3(o, sk, pk, PK,) € Ty, ,
then return PK;

parse pk into (<pk1,07 pk1,1>7 ceey (pkmo, pkml));
fori € [1,n] //compute the corresponding secret key of pk
if a(skiy(),pk‘iyo) E THOncway’
then sk; o < skq,0;
else ;791',0 — {0, 1}2)‘; THOneWay <~ THOneWay @] {(87%,0, pki,O)};
ifa(skiyl,pk‘i’l) € THOncWay’
then sk; 1 < skq 1;
else 8761'11 < {0, 1}2>‘; THOneWay < THOneWay U {(S%i,hpki,l)};
sk — ((;kl,o,;km),---7<3€n,0787€n,1>);

SKo « SKo; PKo <— 0Gen(SKo); Ty, + Ty, U{(SKo, sk, pk, PKo)};
return PK,.
SP'(PK,):

if A(SK,, sk, pk, PK,) € Ty
then return pk;

if (o, sk, pk, PK,) € Ty
then return pk;

sk « {0, 1}47; pk « {0,1}%"};

parse sk into <<sk170, sk1,1),---,(skn,0, skn@));

sk’

sk’

parse pk into ((pk1,07pk1,1>7 200 (pkn,o,pkn,ﬁ);
fori € [1,n]
THoneway < THoneway U 1(8ki,0, PE; 0)} U {(sks,1, pk; 1)}
Ty ¢ Ty U {(¢, sk, pk, PK,)};
return pk.
‘S"‘:(PKOHMO7 Sk1,by .-y Sk b, )

if ( Vo, PKo|| Mo, sk1,by .-+, 8k1,,) € Tg,
then return Vj;

if 3(Vo, PKo|| Mo, sk1,by,--->5k1p
then return Vj;

b1 bn) € Tea,

n?

ctr < 0;

if pad #0---0,
then goto Case 1;

if I(SKo # SK') st. ((SKo,sk,pk, PK,) € Tﬂskmt) A ((SKg, sk',pk’, PK,) € Ty
then goto Case 1;

if 3(SKo, sk, pk, PKo) € Ty,
then goto Case 1;
else SKo < SKo; sk < sk;

if A(PKo, Mo, b} -+ b)) € T, osision
then b} - - - b « {0,1}"; Ty +« T

position Hposition
else by - - by b7 ---by;

skRoot)

U {(PKo, Mo,b% -+ -b%)}; b1+ - by = b% - - b%;

parse sk into <SA1€1,07 SAkl,l)v R <gfn,07 57%,1>>;
fori € [1,n]
if sk, 5 = skip;, //check the validity of each sk p,
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then ctr < ctr + 1;

ifctr <n
then goto Case 1;
else goto Case 2;

Case 1: Vo « Xo; Tg <= Tg U{(Vo, PKo, Mo, sk1by, - -, 5kn,p, )}; return Vo.

Case 2: query the external OSIG with (oSign, S/K\o7 Mo,), and obtain Vo;
Te < Tg U{(Vo, PKo, Mo, sk1,by ;- -, 5kn,p, ) }; return Vo.

SE (PK|| Mo, Vo):

lfa( V07 PKOHMO’ Skl,bl PRI Skn,bn) € TS;
then return (sk1 p,,. .., skp.p,, )-

if A( Vo, PKo|| Mo, Sk1byy---r8kn by b1 bn) € Tga,
then return (skq 4, ..., Skn b, )-

query the external OSIG with (oVerify, PK,|| Mo, Vs), and obtain a;
if $ = 0, //for the invalid signature, respond with random strings
then for ¢ € [1,n]
sk « {0,1}2%;
Te + Te U{ Vo, PKo||Mo, k1, ..., skn, pad};
return (8761, A gcn,;;z.z?l).

if I(PKo, Mo, b} ---b},) € Ty
then by, - - by, by - -by;
elsegl7 .. E’n «{0,1}™;

if 3(SKo, sk, pk, PKo) € Ty,
then sk + sk; 1/176 + pk;

if 3(o, sk, pk, PKo) € Ty,
then sk « sk; Z;I\c + pk;
else sk « {0, 1}4n>‘; pk « {0, 1}2n>\3

position’

parse sk into <<s7€170, sAk:l,l), ceey <5Akn,0, gA]gnJ));
parse pk into ((P/ﬂ,ov Pk1 1) Pk 0 pknJ});
fori € [1,n]
THoneWay A THOneWay U {(ski,0, pki,o)} U {(Ski,l,Pki,l)};
’H/";isk A THsk U {(O’ sk, pk, PKO)}Z

pad < 0---0; . - ~ ~
Tet + Ten U{(Vo, PKol| Mo, sk 5 1.5k, 5 b1+, Ba)}s
return (gclgl,...,;kng ))-
\ ’ o S

We immediately note that, if the differentiator D makes g queries via the adversarial interfaces, then our simulator
S makes at most g2 queries to the ideal one-time signature OSIG = (oGen, 0Sign, o Verify). Here, S only keeps
nine tables with size at most 2nq (T3, .., )» Which means that the constructed simulator S is efficient. In the
following, we present the intuitive ideas to show that why S works, and in Appendix A we give the detailed proof.
Note that, in the real world construction, the building blocks Hgk, Honeway, and Hposition, are random oracles, P is
an ideal permutation associated with its inverse P!, £ is an ideal cipher associated with its inverse £'. Hence, the
responses of a proper simulator must follow the following rules:

1. The responses of sk, SHoneway and SHresition gre statistically close to the uniform;
2. The responses of STtk | SHoneway and SHrosition are consistent;
3. The responses of (S”, SPJ) are statistically close to those of a random permutation;

4. There exists no (pk # pk’), such that P(pk) = P(pk');
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5. There exists no (PK, # PK.) such that P*(PK,) = P*(PK));
6. For fixed (PK || Ms,), the responses of (S€,SE") are statistically close to those of an ideal cipher;

o~ o~ ~1 ~1
7. There exists no ((skl,bl veeen Sknp, ) #F (Sky sy 5’%,%)) such that
-~ o~ -~/ -~/
SE(PKo||[Mo, sk1p,, - s sknp,) = S (PKo||[ Mo, sky yr - s 8k );

8. There exists no (V, # V) such that

S (PK || My, Vo) = 8 (PK || M, V)

[e]

9. 0Gen(SK,) = SMe-00m(SK ),
10. 0Sign(SKo, M,) = STo0SN (SK o M,);
11. oVerify (PKo, Mo, Vo) = ST Vs (PK M, V).

Next, we illustrate why and how & achieves these eleven rules.
Rule 1. We here show that the responses of S7sk | ST 0oneway  SHposition are well distributed.

The responses of S™=«. By definition, S responds to the query SK,, i.e., S"<(SK,), by either using the table Ty,
or returning a uniformly sampled sk. Concretely,

« If there is a tuple (SK,, sk, pk, PK,) € Ty, then S responds with sk;
« If there is a tuple (¢, sk, pk, PK,) € Ty, such that oGen(SK,) = PK, then S responds with sk;
« Else, S responds with a uniformly sampled sk.

It is trivial to note that, the response of the last case is well-distributed. Next, we analyze the first two cases. For the
first case, we note that the tuple (SK,, sk, pk, PK,) is inserted into T4_, in two ways, by S or by S¥: if the
tuple is inserted by S*=«, then the response is fine as sk is uniformly sampled, while if the tuple is inserted by S%,
then the response might not be uniformly distributed, as sk can be chosen by the adversary. Fortunately, we observe
that if the tuple (SK,, sk, pk, PK ) is inserted by S”, then SK, is uniformly sampled by S which is independent
of the differentiator’s view. Thus, the differentiator D would not make such a query except for negligible probability

(< ﬁ = 5skx ). For the second case, the tuple (¢, sk, pk, PK ) is inserted either by SP" or by S note that

here sk is uniformly sampled in S”" or in S¢", which means that the response is well-distributed. However, if the
differentiator D has (SK, # SK|) such that oGen(SK,) = oGen(SK) = PK,, then S*:(SK,) = S« (SK?),
which induces a collision. While, due to the definition of ideal one-time signature, this bad event would not occur

except for negligible probability (< % = 23—1 ).

The responses of S7toneway | By definition, S responds to the query S7toneway (gc) by either using the table T3, \a,

or returning a uniformly sampled z/)% Concretely,
« If there is a pair (§7c, ;;E) € THopeway» then S responds with k;
« Else, S responds with a uniformly sampled EE

It is trivial to observe that the response of the last one is well distributed. For the first one, the pair (sAk, EE) might
be inserted in four ways, by S*oneway, PSP or S€”. Note that if the pair is inserted by SHoreway S or §€7
then ﬁ is uniformly sampled, which means that the response is well distributed. However, if the pair is inserted by
S?, then the response would be controlled by the adversary and fail to be uniform. Same as above, we have that the
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differentiator would not make such a query except for negligible probability (< %) as sk is uniformly sampled by

S.

The response of S*vesition By definition, S responds to the query S*resition (PK . M,) by either using the tables
T4, osition» Let or returning a uniformly sampled n-bit string by - - - b,. It is trivial to note that in all the cases,
b1 - - - by, is uniformly sampled, which means that the response is well-distributed.

Rule 2. By definition, we immediately observe that the responses of S*vesition are always consistent.

Consistency of SM=<. Note that the only bad case that causes inconsistency for S7x(SK,) is that the table Ty, ,
records two tuples: (SK,, sk, pk, PK,) and (o, sk’, pk’, PK,). Concretely, SP" first inserts (0,sk’,pk’, PK,)
and then S¥ inserts (SK o, sk, pk, PK ). Observe that, SK, is uniformly sampled by S, which means that collision
on PK, would not happen except for negligible probability (< ‘Pq—liol = 55 ).

-~ 2
Consistency of SToneWay  Note that if there is no collision on sk (< (22'127;) ), then the consistency holds trivially.

Rule 3. For this rule, it suffices to show that for any pair (pk, PK,) such that S” (pk) = PK,, where either

pk or PK, is uniformly sampled. Here, for the query S” (pk), either pk is uniformly sampled by S (SP" inserts
(o, sk, pk, PK,) into Ty, ) or S responds to the query with oGen(SK,) (SK, « SK,), which means the response
is well distributed. Analogically, for the query S¥~ (PK,), either PK, is with form of 0Gen(SK,) (S inserts
(SK,, sk, pk, PK,)), referring to PK,, is uniformly distributed, or the response pk = SP" (PK,) is uniformly
sampled by S7".

Rule 4. Note that there are two bad cases that breaks this rule,
« 8P first inserts (0,sk’,pk’, PK,) and then S” inserts (SK,, sk, pk, PK,);
. S first inserts (SK , sk, pk, PK,) and then S¥ inserts (SK,, sk’, pk’, PK,).

The former one is trivially bounded by Rule 2 (consistency of Hgy), and the latter one would only occur if there is
a collision on PK, (% = 5% ). Specifically, for both of the queries (S” (pk)) and (S” (pk’)), S samples SK
and SK/ such that oGen(SK,) = 0Gen(SK') = PK,, and responds with PK .

Rule 5. Similar to Rule 4, there are also two bad cases that would break this rule,
« S or M=« first inserts (SK o, sk, pk, PK ) and then S”" inserts (o,sk’,pk, PK.)°;
. 8P first inserts (o, sk, pk, PK,) and then S”" inserts (o, sk, pk, PK");

Immediately observe that the former one will never occur unless there is a collision on pk (< 23%) . Concretely,
S uniformly samples the same pk and sets pk = SP" (PK,). Within the similar analysis, the latter one would not
happen except for a collision on pk (< 23%) Specifically, for both of the queries S”" (PK,) and S7" (PK!), S
samples the same pk and sets pk = S7 " (PK,) = 87" (PK)).

Rule 6. Similar to the analysis in Rule 3, it suffices to prove that for fixed (PK,|| M, ), any pair ((5k17b1 seer Sknbns), VO>
such that

SE(PKo|| Mo, sk, - - sknp,,) = Vo,
either (sk1p,,. .., Sknp,,)or V, are uniformly sampled. By the description of our simulator, note thatif (sk1p,, .. ., Skn.p, )
is not uniformly sampled (say, chosen by the differentiator), then Vj, is either with form of 0Sign(SK,, M, ) ( Case 2

in the green-box above on page 17) or just a random string ( Case 1 in the red-box above on page 17). Moreover, we
note that, if V, = oSign(SK,, M,), then V, is uniformly distributed, under the condition that no (SK, # SK.)
such that oGen(SK,) = oSign(SK,) = PK, (bounded by Rule 1). Thus, if V, is not uniformly distributed

(say, chosen by the differentiator), then oVerify (PK,||M,, V,) = 0 except for negligible probability (< llei T‘ ).

®Note, sk and sk’ might be either identical or distinct and we don’t care about it in this rule.
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We immediately observe that if oVerify(PK,||M,, V,) = 0, then S€" would responds with uniformly sampled
(Skl,bla ey Skn)b”,).

Rule 7. Similar to Rule 4, there are three bad events that might break the rule,

. S€ first inserts ( Vo, PK o, My, $k1byy -, Sknp,) into Te;
and then S inserts (Vo, PKo, Mo, sk 4, .- -, skj, ;) into T¢;

. S€ first inserts (Vo, PKo, My, k16,5 - - -, Sk b, , b1 -+ - by) into Te;
and then S€ inserts (V,, PK o, M,, Sk} pys oo sk, p ) into Te;

n,bn

. S¢ first inserts (V,, PK o, M,, Sk1pys .- Sknp, ) into Te;
and then S¢ inserts (V,, PK o, M,, Sk/17b1 Yoy sk’;?bn) into Te.

For the first event, if S€ inserts (Vo, PK o, My, Sk1,bys - - -, Sknp, ) into Tg, it means that oVerify (PK,, M,, V) =
0. As a result, S would return V, by case 1 (red box above), which means this bad event only occurs if there is

collision on uniformly sample string in 3,, which is bounded by %.

For the second event, note that if S inserts (Vo, PKo, My, $k1py5- - Sknp, b1 by) into Tga, it means that
oVerify(PK,, M,, V,) = 1. Under the condition that no (SK, # SK) such that 0Gen(SK,) = oSign(SK_.) =
PK, (bounded by Rule 1), we have that if (sk1,s,, ..., Skn,,) # (sk14,,- -, sky, ), then the response is returned
case 1 (red-box above). Thus, this bad event would not happen except for a collision (< %)

For the last event, under the condition of Rule 4 (there is only one pk for PK,), it’s trivial that this bad event
only occurs when there is collision on Honeway (ks 5,) and HOneWay(Sk;’bi ). Concretely, the bad event occurs only
if there exists ¢ € [1,n] such that 1) Honeway (ki p;,) = HOneWay(Sk;bi) = pkip,; 2) skip, # sk;bi, which is
bounded by L.

Rule 8. Similar to Rule 5, there are six bad cases that might break this rule,

. 8¢ first inserts (Vo, PKo, Mo, $k1b,, - - - Sknp,, ) into Tg;
and then S€ ' inserts (Ve PKqo, Mo, Sk1byy-- -5 Sknb,,,b1 - by)into Tgr;

nd?

. S¢ first inserts (V,, PK o, M,, Sk1 by, ..., 8knp, ) into Te;
and then 8¢ inserts (VS, PKqo, Mo, $k1py,-- -5 Sknp,, ) into Tg;

. S€ first inserts (Vo, PKo, My, $k1 by -+ Sk, , ) into Tg;
and then S¢ inserts (VS,PKo, Mo, $k1 by, - -5 Sknp,, ) into Tg;

. S€ first inserts (Vo, PKo, My, k1 pys -y Sk p, s, 01+, by) into Ten;
and then 8¢ inserts (VS,PKo, Mo, $k1py,-- - Sknp,, ) into Tg;

. S€ first inserts (Vo, PKo, My, $k1 by - - Sk, , ) into Tg;
and then 8¢ inserts (V2,PKo, Mo, sk1py, .-y Sknp,,,b1---by)into Tea;

n 7

. S firstinserts (Vo, PK o, My, sk1p,, .-, Sknp, s, b1 -+ by) into Te;
and then S¢ inserts (V2,PKo, Mo, sk1py, .-y Sknp,,,b1---by)into Tea;

n??

It is trivial to note that those bad events would never happen unless there is a collision on (sk1,,- .-, Sknp, ).
and moreover the tuple (skyp,, ..., Sknp, ) in the procedure SE s uniformly sampled, thus those bad events are
bounded by 23%.

Rule 9. This rule holds trivially by definition.

Rule 10. This rule holds as long as the differentiator cannot outputs (SK, # SK,) such that oGen(SK,) =
oGen(SK)).
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Rule 11. For this rule, it suffices to prove that for any V5,

oVerify(PK o, My, V,) = 1 <= SWeOVERY (PR N V,) =

Sub-rule: oVerify (PK 5, My, Vo) = 1 == SUe-oVeY(PK M, V,) = 1. Givena V, such that oVerify(PK ., M,, V,) =
1, S responds to the query S€” (V,) as follows:

o Strategy 1. If 3(V,, PKo|| Mo, $k1,by5- - - Sknp,,) € Te, then return (sk1,p,,- - -, Sknp,,)-
« Strategy 2. if 3( Vs, PKo|| Mo, sk1,py,- -5 Sknpyss 01 bn) € Tea, then return (sk1p,,. .., Sknp,, )-
« Strategy 3. Otherwise, following the rest strategy in our simulator.

For strategy 3, trivial to note that, under the condition oVerify(PK,, M,, V,) = 1, the response of S€ (V) =
(sk1,prs. .., 8knp:) is properly assigned such that

by - bl = SHeosivion (PK | M,);

pk = (<pk1,07pk1,1>7 T <pkn,07pkn,1>> = S” (PKo);

IHOneWay(SkLbf) = pkl}bf'

which straightforwardly referring to S'e-®VER™(PK | M, V,) = 1. Moreover, we note that the table T¢-+ only
records the tuple such that oVerify (PK,, Mo, Vo) = 1, thus the sub-rule also holds in strategy 2. And now, it’s rest
to prove the rule holds in strategy 1. In fact, there are three cases that the tuple ( Vo, PK,|| Mo, sk1.p,, .- ., Sknp,,) €
Te,

1. S¢€ inserts (V,, PK,||M,, Sk1,pys- -5 Sknp, ) into Tg where ctr < n;
2. 8¢ inserts (Vo, PKo||Mo, sk1py, -, Sknp,, ) into Te where ctr = n;
3. 8¢ inserts (Vo, PKo||Ms, sk1 b,y - - -5 Sknp, , ) into Te where oVerify (PK,, M,, V,) =0

In the first case, we have that V, « X, which means that oVerify(PK,, M,, V,) = 0 except for negligible

probability ( < qlSK |) For the second one, we have that ctr = n, referring to SUe-VER™(PK M, V,) = 1. For
the last one, we have that oVerify (PK,, M,, V,) = 0. Thus this sub-rule holds except for negligible probability.

Sub-rule: oVerify (PK o, M,, Vo) =1 <= Ste-oVerm(pK M, V) = 1. Givenan V, such that oVerify (PK,, Mo, Vo) =
1, S responds to the query S€” (V,) as follows:

« Strategy 1. If 3( Vo, PKo|| Mo, sk1,by5 - - -, Sknb, ) € Te, then return (sk1p,,-- ., Skn.b,, )-

« Strategy 2. if 3( Vs, PKo|| Mo, Sk1,bys- -5 Sknbyss 01 bpn) € Ten, then return (sk1p,, ..., Sknp, )-

« Strategy 3. Otherwise, following the rest strategy in our simulator.
Immediately observe that this sub-rule holds in strategy 2, as T¢- only records tuples such that oVerlfy(PK oy M07 Vo) =
1. For strategy 3, we note that if oVerify (PK,, My, V,) = 0, then the response of ¢ (V,) = (sk1 bl Skn,bjl)
is uniformly sampled, which means S™e-°VER¥Y(PK M, V,) = 0 except for negligible probability (< ,).

Next we show that this sub rule also holds for strategy 1. Concretely, there are three sub cases that the tuple
(Vo, PKo||Ms, sk1,bys- -, Sknp,,) € Te,

1. Sub-case 1. S inserts ( V,, PK,||M,, Sk1,bys- -5 Sknp,,) into Tg where ctr < n;
2. Sub-case 2. S¢ inserts (V,, PK || M,, Sk1,bys- -5 Sknp, ) into Tg where ctr = n;

3. Sub-case 3. S¢ inserts (Vo, PKo||Ms, sk1 by s-- -5 Sknp, , ) into Te where oVerify (PK,, M,, V,) =0

n?
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For the second sub case, V, + 0Sign(SK,, M,), which means oVerify (PK,, M,, V,) = 1. For the third sub case,
as (sk1,pr, ..., Sknpe,") is uniformly sampled, which means S™e-°VE™(PK , M,, V,) = 0 except for negligible
probability. Now we prove the first sub case, which includes several events:

1. #0---0;

2. 3SK, # SK. st. oGen(SK,) = 0Gen(SK') = PK;
3. B(SK,, sk, PK,) € Toy o0

4. B(PKo, Mo, b1+ br) € Trppoiiion

5.0 < ctr < n.

It’s trivial to note that, if # 0---0 or 0 < ctr < n, then SUe-OVERFY(PK | M, V,) = 0. The second event is trivially

bounded by Wq—;l Moreover, for the fourth event, the differentiator has no knowledge of or b; - - -, thus even it has
sk,
PI‘[SH"'OVERIFY(PKO,MO, Vo) — 1] < 2%

For the third event, the differentiator would note make a query S*s<reot (SK ), thus the only way to obtain valid
sk is the following:

« Step 1: D chooses M,
« Step 2: D makes queries V, + oSign(SK,, M’),
« Step 3. D makes queries (sk1 4/, -, sknp JET(VS).

Note that, D can obtain only half of sk, as 0Sign is one-time. In fact, for SK,, D can only one signing query via the

2
honest interface, thus unless by - - - b,, = b} - - - b;, (< &), there is at least one sk; 3, that is independent of D’s view.

Combing together, we have that this sub-rule holds except for negligible probability.

5 Ideal Signature from Ideal One-time Signature

5.1 Construction

High-level ideas. We here present the construction of our digital signature scheme which is indifferentiable from
the ideal signature (as defined in Figure 5). The details of our construction can be found on page 24, and next we
illustrate some key design ideas.

The starting point here is the tree-based signature scheme. Similar to the argument in our one-time signature
construction in previous section, to make the signature scheme indifferentiable from the ideal signature, we must
eliminate the unnecessary structures in the tree-based signature scheme, since the adversary could start structure-
abusing attacks. Our defending strategy is again to use ideal primitives including ideal one-time signature, random
oracle, and ideal cipher, to properly isolate the state (including inputs, outputs, and internal state) in the key gener-
ation, signing, and verification algorithms of the tree-based signature scheme.

The tree-based signature scheme (GEN, SIGN, VERIFY), uses one-time signature scheme (0GEN, 0SIGN, OVERIFY),
and pseudorandom function F.(-), as building blocks. We consider a full binary tree of depth n in the construc-
tion; and the basic idea in the tree-based construction is to use the verification- and signing-key (of a one-time
signature scheme) to authenticate/sign two fresh instances (of the one-time signature scheme), and then use each
of the instances to authenticate/sign two fresh instances, and so on. In this way, a binary tree of fresh instances
of the one-time signature will be formed, in which each internal node authenticates its two children. The leaves
of this tree will be used to sign actual messages, and here each leaf is used at most once. To sign a message,
the resulting signature consists of (1) a one-time signature to the message which is authenticated with respect to
the verification-key of a leaf, and (2) an authenticated path from the root to this leaf, i.e., a sequence of one-time
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verification-keys of all nodes in the path, in which each such verification-key is authenticated with respect to the
verification-key of its parent. Concretely, in the key-generation algorithm GEN, the algorithm randomly samples
sk and r, and computes pk < 0GEN(sk); The signing-key is (r, sk) and the verification-key is pk. In the sign-
ing algorithm SiGN, on input the signing-key (r, sk), verification-key pk, and a message m, the algorithm first
computes a path in the tree as by --- b, < F.(“path”, pk||m), where b; € {0,1}, for 1 < ¢ < n. Second, the
algorithm generates a signing-verification key-pair for each node of the path. That is, the algorithm computes
skp,..b,r + Fp(“node”,by---b;7) and pky, .., < OGEN(sky,.p,r), foralli = 0,...,n —1,and 7 = 0, 1.
Third, the algorithm signs the path from the root to the leaf, i.e., computes vy < 0SiGN(pk, sk, pky||pk,), and
computes v; < OSIGN(pky, ..; s Skby-b;5 DKy, .t 0l[PRe, ;1) for all 1 < j < n — 1. Fourth, the algorithm
sign the message to the leaf, i.e., computes v < OSIGN(pky, .. ,8kp,...b,,, m). The signature for message m is
o = v||(vo, pko, Pk )| |[{vn—1, Pky, .5, 05 PKp,...t,,_,1)- Finally, in the verification algorithm, on input, verifi-
cation key pk, message m and signature o = v|[(vo, pko, pkq)|| - - - |[(vn—1,Pky, .5, 0> Pk, .5, 1), the algorithm
computes the path by - - - b, < F,.(“path”, pk||m), where b; € {0,1}, for 1 < i < n. The message-signature pair is
valid if and only if the following conditions hold:

1) oVERIFY(pk, pkyl|pky, vo) = 1,
2) OVERIFY(pky, ..p, 10> PRoy b0l PRb, . py1> Uk) = 1, forall 1 < kn — 1, and
3) OVERIFY(pky, .4 ,m,v) = 1.

In order to upgrade the tree-based signature, the underlying one-time signature (0GEN,0SIGN,0VERIFY) will be
replaced by ideal one-time signature OSIG = (0Gen, 0Sign, oVerify). In addition, the PRF F.(-) will be replaced
by random oracles. Finally, as in the construction in previous section, the structures in the “interfaces” of the key
generation, signing, and verification algorithms of tree-based scheme, should be destroyed too. We use the ideal
cipher to wrap up the generated signatures of tree-based scheme. We remark that, we do not need the random
permutation to wrap up the generated verification key pk of tree-based scheme, since now pk is generated by the
key generation of the ideal one-time signature, and the structure of pk has already been eliminated. Next, we specify
some parameters:

« n > w(log)),log |SK,| = 8nA, log |PK| = 2nA;
. log |20‘ - 2(10g |PIC0‘ + log |'S’Co| + log ‘Mo );
« log|SK| = (2n + 5) log |SK,|, log |PK| = 2n + 5log |PK,

« log |X]| = (2n + 2)log |PK| + (n + 1) log |Z,] + 2(log |SK| + log |PK| + log | M]).
Building Blocks. Our scheme consists of several building blocks:

+ Anideal one time signature {oGen, 0Sign, oVerify }, associated with secret key space S/C,, verification key
space PK,, message space M, and signature space X,’.

o HskRoot : {0,1}* — SK, is a random oracle whose codomain matches the secret key space SKCo;

o Hgeed : {0,1}* — {0,1}™ is a random oracle.

« Hpath : {0,1}* — {0,1}" is a random oracle.

o HmsglLeat : 10,1} — M, is a random oracle whose codomain matches the message space M,;

o HskLoftNode : {0, 1}* — SK, is a random oracle whose codomain matches the secret key space SKo;
« HskRightNode : 10, 1}* — SK, is a random oracle whose codomain matches the secret key space SKCo;

o HskLoftLeat : 10,1} — SK, is a random oracle whose codomain matches the secret key space SKo;

7Our ideal one-time signature is deterministic, so it has no nonce space.
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+ HskRightLeat : 10,1} — SK, is a random oracle whose codomain matches the secret key space SKo;
o £:{0,1}los|PRIHog M 5 1o 11leg =] 10, 11198 1% 5 an ideal cipher model, where {0, 1}!°8 [PKI+log | M|
is its key space and £ is its inverse.
5.1.1 Construction.

Now we are ready to build the indifferentiable signature, denoted as II = (II.GEN, II.S16N, II.VERIFY), using the
tree-based structure. Formally,

— II = (II.Gen, I1.S1GN, I1.VERIFY) D

PK <« II.GEN(SK):
On input, signing key SK, compute the verification key PK, as follows:
1. sk <+ HskRoot (SK); pk < oGen(sk); PK < pk; output PK.

V «+ I1.SieN(PK,SK, M, R):
On input, verification key PK, signing key SK, message M, randomness R, compute the signature V, as follows:

1. sk <+ HskRoot (SK); pk < oGen(sk);
If PK = pk
then seed < Hseed (SK, M, R); m <= HmsgLeat (PK||M||seed);
by--- bnbn+l — Hpath(PKHMnseed)’
where b; € {0,1},for1 <i<n+1;

2. generate the signing-verification key-pair for each node of the path

path + 0;

sko < HskLeftNode (SK ||path); pky < oGen(sko);

sk1 HskRightNode(SKHpath); pk, < oGen(sk1);

fori € [1,n —1]
path < by - - - b;;
kb --b;0 < HskLeftNode (SK || path); pky,, .., 0 < 0Gen(skp,...b,0);
skpy...p;1 < HeRightNode (SK ||path); pky, ...p,1 + oGen(skp,...p;1);

3. generate the signing-verification key-pair for each leaf"

path < by -+ - bp;

Skb1~~~bn0 — HskLeftLeaf(SK‘|M||S€€d”path); pkbl-»-bno — oGen(skblmbno);

skpy b, 1 < HskRightLeat (SK || M || seed||path); pky, ...p,,1 < 0Gen(skp,...p,1);
4. sign the path

vo < oSign(pk, sk, pky||pky);

for j € [1,n]

vj < oSign(pky, ..b » Kby by > Pk, ..b;0l1PRby b, 1)

5. sign the leaf

v < oSign(pky, .4, 1+ SKby b, 15 M)

6. output the signature
V — &(PKIIM, ol|(vo, pko, k1) |-+ |{tn, Py, ..b,,00 Phiy ., 1) seed] [0 0)).

¢ « IL.VErIFY(PK, M, V):

On input, verification key PK, message M and signature V/, operate as follows:

1. “unpack” the signature

(311 Bo. PRos PRI+ 100, P, . 5, 00 PR3, .5, 1) lIseedllpad) + £ (PK||M, V);

2. M 4 HmsgLeaf(PKHMHS/eZi);
b1 cao bn+1 < ’Hpath(PKHMHSEEd);
3. output ¢ < 1 if and only if the following conditions hold:

« pad=0...0,
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. oVerify(PK, pkq||pk,,90) = 1,
« fork € [1,n],
oVerify(pky . 5, .5, Pks, . 5,0llPRG, 5,1, 0k) = 1.

. OVeI'ify(pk‘glmgngnJrl,'I/”/\L,/’LF) = il

otherwise output ¢ < 0.

“The secret keys at the bottom layer are randomized.
. S

5.2 Security statement

Theorem 5.1 II = (II.Gen, I1.Sign, II.Verify) is indifferentiable from the ideal signature (Gen, Sign, Verify),
inthe modelfor, random oracles HskRoot; 7'tpath; 7'Lseed: HskLeftLeaf: HskRightLeaf:HskLeftNode; 7'tskRightNode; HmsgLeaf:
ideal cipher (£,£7), and ideal one-time signature (0Gen, 0Sign, oVerify). More precisely, there exists a simulator
S such that for all q-query differentiator D, we have
Lo 2 2 2 2
diff 4q q
AdVIIPI7:S‘,rD S 27 + 2T

The simulator makes at most > queries to its oracles.

5.3 The simulator

We here describe the simulator and provide high-level proof ideas. According to the definition of indifferentiabil-
ity, we have that, in the real world, the differentiator D has three honest interfaces (II.Gen, I1.S16n, IT.VERIFY) and
eleven adversarial interfaces (HskRoot> Hpath’ Hseed’ HskLeftLeaf’ HskRightLeaf,HskLeftNodes 7'lskl:{ightNode: 7'[msgLeaf,
£,&71, 0Gen, 0Sign, oVerify). Therefore, to complete the proof, we build an efficient simulator & in the ideal world,
such that 1) S has access to the ideal signature (Gen, Sign, Verify) via the adversarial interfaces; 2) S simulates
those eleven adversarial interfaces properly. Concretely, in the ideal world, the differentiator D has three honest in-
terfaces (Gen, Sign, Verify) and eleven adversarial interfaces (S7tskRoot | SHpath SHsced GHukLetilear SHokRightLear
SHerrennode SHaxnigniNode SHmssrear GE SET GoGen goSign goVerify) and we prove that for any differentiator
D, the view of D in the real world is close to the view in the ideal world. In the following, we illustrate the descrip-
tion of our simulator and then we give the high-level intuition of our proof strategy.

— Simulator with oracle access to ideal signature (Gen, Sign, Verify) 3

The simulator with oracle access to ideal signature (Gen, Sign, Verify) , will provide the following interfaces:
SHskRoot (SK):

if 3(SK, sk, PK) € T3, 5, then return sk;

if 3(o, sk, PK) € Ty ... St PK = Gen(SK), then return sk;

PK + Gen(SK); sk « SKo; Ty «— Ty U {(SK,sk,PK)};return sk.

skRoot skRoot

SoGen (k).
if 3(SK, sk, PK) € T3, 1., then return PK;
if 3(o, sk, PK) € T3, ... then return PK;

SK « SK; PK <+ Gen(SK); Ty «— Ty U {(SK, sk, PK)};return PK.

skRoot skRoot

SMseed (SK, M, R):

if3(SK, M, R, V, seed) € T3, then return seed;

V < Sign(SK, M, R); PK < Gen(SK);

if (V, PK, M, v, (vo, pko, pk1), - {Vn, Pk, .ob, 00 PRy b, 1)s S€€A, 01, oo, brg1) € Tea,
then Ty o < Ty, g U {(SK, M,R,V, seed)}; return seed;

seed « {0,1}"; Ty —Tyq Y {(SK, M,R,V, seed)}; return seed.

seed

SHMpath (PK, M, seed):
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ifEI(PK, M, seed, by, ..., bn+1) S THpath’
then return by, ..., bn41;
lfa( V,PK,M,v, <U07pk07pk1>7 000 <U7b7pkbl-»-bn()vpkblmbnl)v seed, b, . .. 7bn+1) € Ten,
then return by, ..., by41;
b1, ybnt1 « {0, 13711 THpath — Tﬂpath U {(PK, M, seed, b1, ..., bn+1)}; return by, ..., bny1.

SHMskLeftNode (SK||path): //(here path = O or an i-bit string path = by - - - b;)

PK + Gen(SK);

if I(PK, SK', sk’, PK’, path) € T, rixode
SK’' « SK; sk’ « SKo; PK' + Gen(SK');
Ty — Ty U {(SK’, sk, PK")};
T e LesiNode U {(PK,SK', sk', PK’, path)};
return sk’.

, then return sk’;

skRoot skRoot

— T et etonode

SHskLettLeat (SK || M||seed||by - - - by ):

PK + Gen(SK);if A(PK, M, seed, SK', sk', PK',b1,...,bn) € Tx 1 ipener then return sk’
SK' « SK; sk’ « SKo; PK' — Gen(SK"); Ta_, pony — THormon U L(SK', sk, PK') };

Ty +— Ty U {(PK, M, seed, SK', sk', PK' by, ... ,bn)}; return sk’.

skLeftLeaf skLeftLeaf

SHskRightNode (SK||path): //(here path = O or an i-bit string path = by - - - b;)

PK + Gen(SK),

if 3(PK, SK', sk', PK', path) € Ty
then return sk’;

SK' « SK; sk’ « SKo; PK' + Gen(SK');

Ty  THonoo: Y {(SK’, sk’, PK")};

Ty — Ty PK,SK’,sk', PK', path)}; return sk’.

skRightNode’

skRoot

skRightNode skRightNode u {(

SHskRighthaf(SKHMHSeedeI cbp):

PK + Gen(SK);

if 3(PK, M, seed, SK’, sk’, PK',b1,...,bp) € Ty
SK' « SK; sk’ « SKo; PK’' + Gen(SK'); Ty
T’H < T'H

’.

akRightLeat’ then return sk’;
’ ’ N.
skRoot A THskRoot U {(SK ? Sk ’PK )}’

PK, M, seed, SK', sk', PK' by, .. by)};return sk’.

skRightLeaf skRightLeaf U {(

SHmssLeat (PK || M||seed):

if 3(PK, M, seed, m) € Ty
m « Mo; Ty

then return m;

msgLeaf’

 THpegLoar Y {(PK, M, seed, m)}; return m.

msgLeaf

8505180 sk «): //(here o can be a message i.e., oo = m, or two verification keys, i.e, o = pk||pky)

if 3(SK, sk, PK) € Taypo0s

then pk < PK; else SK « SK; PK < Gen(SK); pk + PK; Ty
if 3(pk, sk, o, v) € Tosigns

then return v;
v «= o; Tosign + Tosign U {(pk, sk, a, v)}; return v.

«— Ty U {(SK, sk, PK)};

skRoot skRoot

SoVerify (pk, o, v) //(here o can be a message i.e., o = m, or two verification keys, i.e, oo = pkg||pky)

lle(pky Skz «, 'U) S Tosignx
then return 1;
else, return 0.

SE(PK|M, v]|{vo, pho, ko) -~ 11 {tm, Phy..o5 01 R .5z 1)l seed[pad):

if 3(V, PK, M, v, (vo, pkgy, Pk1),-- -, (vn, pk"b’l‘mbﬁbovpkb;‘mb;ﬂﬂ seed, pad) € Tg, then return V.
if 3(V, PK, M, v, (vo, pkg, pk1), -, (Un, pkb?_,b;o,pkb;{“_bzﬁ, seed, pad, b1, ...,bny1) € Tga, thenreturn V.
ctry < 0;ctra < 0;
if pad #0,...,0,
then goto Case 1;
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if3(SK # SK') st. ((SK, sk, PK) € Tr 0, ) A ((SK', sk’ PK) € Ty, )
then goto Case 1;

if J(SK, sk, PK) € Ty
then goto Case 1;
else SK* + SK; sk™ < sk;

if B(PK, M, seed, b1, ... ,bnt1) € THpam’
then (bl, coog bn+1) S {0, 1}n+1; THpath — THpath U {(PK, M, seed, bl, coog bn+1)}, bT, coog b:LJrl «— bl, 0oog bn+1;
else by, ..., b} 1 < b1, .., bnyy;

if A(PK, M, seed, m) € Ty
then goto Case 1;
else m* < m;

SOV only checks the table Tosign
ifSoverify(pkbi«,,,b;;b;H ,m*,v) =1, then ctry « ctr1 + 1;

if SOVerify (PK pky||pky, vo) = 1, then ctry < ctry + 1;
fori =1ton,
if SOV (pkyx px, Dk pxolPkpy.px1, vi) = 1 then ctry = ctry + 1;
K3 K k2

skRoot’

msgLeaf’

/ /check the validity of every signature in the path
if 3(SK, M, R, seed) € Ty___, st Gen(SK) = PK,
then R* < R;ctra < ctra + 1;
fori =0ton —1,
if 3(PK, SK’, sk’,pkb?“bm, by,...,bf) €Ty then ctro < ctro + 1;
if 3(PK, SK’, sk’,pkb;{mb:l, bY, 3 b7) € To gy pignemoars then ctrz < ctra + 15
if I(PK,SK, M, seed, SK’, Sk/:pkbf---b;io’ b, b5) € T yp rirenrs then ctra < ctra + 15
if 3(PK,SK, M, seed, SK', Sk/,pkb’l‘---b;gl) by,...,b5) € ’]I‘HskRigMLeaf, then ctrg < ctro + 1;

skLeftLeaf’

//check the validity of every verification key in the path

ifctry <n+ 2,
then goto Case 1;
elseif ctri =n+ 2 Actro < 2n + 3,
then goto Case 2;
else goto Case 3;

Case1: V « X;
Te + Teg U {(V, PK, M, v, (v, pkq, pk1), .- ., <'un,pka,,,b;«LO,pka,,,b:ﬂ}, seed,pad)}; return V.

Case 2: R* « R; V « Sign(SK*, M, R*);
Te + Teg U {(V, PK, M, v, (v, pkqy, pk1),-- -, <vn,pkb?“b:o,pkb?‘,b:ﬂ), seed,pad)}; return V.

Case 3: V « Sign(SK*, M, R*);
Te + Te U {(V, PK, M, v, (v, pkq, pk1),-- -, (vn,pkb?“bzo,pkb?“b:ﬁ, seed,pad)}; return V.

SE(PK||M, V):
if 3(V, PK, M, v, (vo, pkg, pk1), -, (Un, Pkb?--b;,()vpkb;‘-‘-b;l)v seed, pad,bi,...,bny1) € Ten,
then return (v, (vo, kg, Pk1), - - -, (Un, pkbig“b;«lo,pkb?“b;fz1)7 seed, pad);
if3(V, PK, M, v, (vo, pkg, pk1);- - -, (Un’pkb{---b;o:pkbf---b;‘bl% seed, pad) € Tg,
then return (v, (vo, pkg, pk1), - - ., (Vn, pkb,{mb* O’Pkbfub* 1), seed, pad);

if Verify (PK, M, V') = 0, //respond with random strings for invalid signature
then v « Xg; v; « Xo foralli € {1,...,n}; Pk gy « PKo; pkgy « PKo;
seed « {0,1}"; pad « {0, 1}t; bi,...,bpg1 « {0, 1}"+1;
Te < Te U {(v, (vo, Pkg, Pk1), .- -, (vn, Pk, b, 05 PRby by 1) seed, pad) };
return (v, (vo, Pkg, PK1)s - - (Vn, PRy, ...b,, 05 PKb, .5, 1) S€ED, Pad).
If3(SK, M, R, seed) € Ty, st Sign(SK,M,R) =V,
then seed™ < seed;
else seed™ « {0,1}";
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If ( 3(SK, M, R, seed) € Ty AN(PK,M,seed,bi,...,bnt1) € T’;{path s.t. Sign(SK, M, R) = V) //compute the path in the tree

seed
then b7, ..., b5 1 < b1,.. '7bn+1;THpath — Tﬂpath U {(PK,M, seed”, b, .. '7b;+1)};
else by, ... bty « {0,1}" Ty o+ Tay 0 U{(PK, M, seed*, b5, ... ,b7 1)}

If (3(SK, M, R, seed) € Ty
then m* <— m; Ty

A (PK, M, seed, m) € THmschaf s.t. Sign(SK,M,R) =V ), / /compute the message in the leaf
— THmsgLeaf U {(PK, M, seed™, m*)};
— Ty U {(PK, M, seed*, m*)};

msgLeaf

seed

msgLeaf

else m* « Mo; THmsgLeaf

if 3(SK, sk, PK) € Ty
then sk* < sk;
else sk « SKo; Ty

skRoot’

«— Ty U{(o,sk,PK)};sk* <« sk;

skRoot skRoot

fori =0ton — 1,
if 3(PK, SK', sk’, PK',b%,...,b}) € P IP——
then skps..pr0 < sk'; Phpx..br0 PK’;
else SK’ « SK; sk « SKo; PK' + Gen(SK'); THomoor < T
Ty — THoprornens Y L(PK, SK', sk/, PK' b%,...,b7)};
Skbif_,,b:fo «— sk'; pkb;{mbaﬁo < PK'; //compute secret/public keys of the nodes in the path
if 3(PK, SK’, sk', PK',b},...,b}) € T'HskRightLeaf’
then skps..px1 <= sk’;pkb?nbn + PK’;
else SK’ « SK; sk «— SKo; PK' + Gen(SK');
Ty — T roor Y {(SK'7 sk’, PK')};
Ty — Ty U{(PK,SK’,sk',PK',b’{,..‘,b;‘)};
Skb’l‘mb’.“l — sk’; pkbi‘-ub?l <« PK'; //compute secret/public keys of the nodes in the path

U {(SK', sk', PK')};

skRoot
skLeftLeaf

skRoot

skRightLeaf skRightLeaf

if (3(PK, M, seed*, SK', sk', PK’,b%,...,b%) € To 1 orirear ).  then skpy...bx0 < sk’ Py pxo < PK';
else SK’ « SK; sk «— SKo; PK' + Gen(SK');
Ty — THoroos Y {(SK',sk',PK/)};
THorotitonr < LTH U {(PK, M, seed*, SK', sk’, PK' b3, . .., bfl)};
Skb’l‘-»-bzo — sk’; pkbi‘--»bjLO <« PK’; //compute secret/public keys of the leaves in the path
if 3(PK, M, seed™, SK', sk’, PK',b},...,b) € Ty
then skbi.“b;l «— sk’; pkb’{-»-b;l +— PK';
else SK’ « SK; sk «— SKo; PK' + Gen(SK');
— THskRoot U {(SK/, sk/, PK/)};
«— Ty PK,M,seed*,SK’,sk',PK’,b*l‘,...,b;)};
skb?“b:l +— sk’; pkbif_“b;ql < PK'; //compute secret/public keys of the leaves in the path

skRoot

skLeftLeaf

skRightLeaf’

THskRigmLeaf skRightLeaf U {(

/ /compute every signature in the path
ifH(Sk*vpkOHth UO) € ToSign)
then vj < vo;
else vy «— o5 v¢ + 105 Tosign + Tosign U { (sk*, pkol||pky, vo) };
fori=1ton,
if I(skpy...ox, Phps..prollPhps..pr1, vi) € Tosign,
then v «+ v;;
else v; « Xo; v < v;; Tosign < Tosign U {(Skb{'-bf,PkbfmbgoHpkb’{mb;l’ ’ui)};
ifH(Skbf"'b:1+1 ,m,v) € Tosigns
then v* + v;
else v « 3o; v* < v; Tosign + ToSign U {(skb;«,“b:#l ,m,v) }
pad* < 0,...,0;
Te- + Tea U{(V, PK, M,v*, (v, pkg, pky),-- -, (U’rtvpkb;‘-nb;Ovpkb’l‘<»<b;1>7 seed®, pad*, b3, ..., b5 1)}
return (v*, (vg, pko, PK1), - - -5 (U5, PRys b3 0, PRz ..px 1), seed™, pad™).

J

We immediately note that, if the differentiator D makes g queries via the adversarial interfaces, then our simulator

S makes at most ¢ queries to Gen, Sign, Verify. The simulator S only keeps nine tables with size at most 2ng

(THererinodes L Homighenodes L HakLeftLeat> L Haxrightrear)» Which means that the simulator § is efficient. In the following,
we present the intuitive ideas to argue that why S works. Note that, in the real-world game, HgkRoot> Hseeds Hpaths
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associated with its inverse £, and (oGen, 0Sign, oVerify) is an ideal one-time signature. Hence, the responses
of a proper simulator should follow the following rules:

1.

8.

9.

’Hle responses Ofthe simulated interfaces, SHskRoot s SHseed s SHpatkl s SHxxlsgLeaf s SHskLeftNude s SHskLeftLeaf s SHskRightNude s
and SMskrighiLeat are statistically close to the uniform;

. Tlrle responses Of SHskRoot , SHseed’ SHpath’ SHmsgLeaf , ‘S'/;'LskLeftNode7 ‘Sr}'tskLeftLeaf7

SHskRightNode , andSMsrishiLeat gre consistent;

. For fixed (PK || M), the responses of (S¢,S¢") are statistically close to those of an ideal cipher;

. There exists no (v, (vo, pkg, Pk1), - - - (Un, DKy, .., 0> PRy, ..0,,1), S€ed, pad) # (v,

(vh, pkg, EY), - . ., (V) pkg,l,,,bgo, pkgll,,,b“), seed', pad’) such that

S (PKIIM, oll{vo, ko, PRI+ (v, Dhs, .00 Phsy.., 1) |sced] pad )

= SE(PK|IM, || (th, Pty PRI+ {0 Dhi .ty 00 PRty 1) seed || pad)

. There exists no V # V' such that

SE(PK||M, V) =85 (PK||M,V").

. The responses of (S°Gen, §oSign GoVerify) are statistically close to an ideal one-time signature.

. Gen(SK) = S0 (SK).

Sign(SK, M, R) = S1SN(SK_ M, R).
Verify(PK, M, V) = STV (PR M V).

Next, we illustrate why and how S achieves these eleven rules.

Rule 1. We here show that the responses of S7skRoot | SHaced SHpatn  SHekLofiNode
SHskLeftLeaf7SHskRightNode’ and SHskRightLeat gre well distributed.

The response of S7iskkeot, By definition, S responds to S7tskkeot (SK'), by either using the table T

skRoot Or re-

turning a uniformly sampled sk. Concretely,

« Strategy 1. If there is a tuple (SK, sk, PK) € Ty

« Strategy 2. If there is a tuple (o, sk, PK) € Ty

then S responds with sk;

skRoot?

such that Gen(SK) = PK, then S responds with sk;

skRoot

« Strategy 3. S responds with a uniformly sampled sk.

It is trivial to note that, the response of the last case is well-distributed. Next, we analyze the first two cases. For the

first case, we note that the tuple (SK, sk, PK) is inserted into Ty

aemoos DY two procedures, SHekroot gpd SoSign, jf

the tuple is inserted by S*skRoot | then the response is fine as sk is uniformly sampled, while if the tuple is inserted by
S°5ign then the response might not be uniformly distributed, as sk can be chosen by the adversary. Fortunately, we
observe that if the tuple (SK, sk, PK) is inserted by S°Si8%, then SK is uniformly sampled by S and independent
of the differentiator’s view. Thus, the differentiator would not make such a query except for negligible probability
(< IS;!ICO\) For the second case, the tuple (o, sk, pk, PK,) is inserted by S¢ ", and sk is uniformly sampled in both
procedures, which means that the response is well-distributed. However, if the differentiator has (SK # SK') such
that Gen(SK) = Gen(SK') = PK, then S™sroot (SK ) = SHsiroot (K| ), which induces a collision. While, due

to the definition of ideal signature, this bad event would not occur except for negligible probability (< % ).
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The response of S7tsccd, By definition, S responds to the query S*se<d by either using the table Ty, Te+ or
returning a uniformly sampled seed. It is trivial to note that in all the cases, seed is uniformly sampled, which means
that the response is well-distributed.

Moreover, within the same analysis, it’s apparent that the responses of S*»=tt are well distributed.

The response of S7sktetNode By definition, S responds to the query S*skieiiNode by either using the table Ty, roxoue
or returning a uniformly sampled seed. However, if the differentiator has (SK # SK') such that Gen(SK) =
Gen(SK') = PK, then for any by, ..., b, 1, we have that

SHskLeftNode(SKHb17 .. '7bn+1) = SHskRooc(SK/th . -7bn+1)7

which breaks the rule immediately. In fact, this bad event would induce a collision on PK, and due to the definition

of the ideal signature, it never occurs except for negligible probability (< |73q7/2c ). Within the same analysis, the

responses of SHexvenrear  SHekrigniNode gpd SHskrighilear gre well-distributed.

Rule 2. Trivial to note that the responses of S7tseed| SHpatn  SHskLetiNode  SHekLeftLear

SHskrightNode gnd SHskRishtLeat gre consistent. And for SHskRoot | we observe that the the only bad case that causes
inconsistency for S7skreot (SK) is that the table Ty, .., records two tuples: (SK, sk, PK) and (¢, sk, PK ). Con-
cretely, S¢” first inserts (¢, sk, PK) and then S°%°" inserts (SK, sk’, PK ). Observe that, SK is uniformly sampled

by S, which means that collision on PK would not happen except for negligible probability (< % ).

Rule 3. Same as the analysis in Sec 3, it suffices to prove that, for any fixed (PK|| M), any pair
((U, (vo, pko, Pk1), -+ oy (Uny DRy, ., 00 PRy, .0, 1), S€ed, pad), Vo)8 such that S€(PK||M,v) = V either v or V

are uniformly distributed. There are two cases:
1. (V,PK,M,v) € T¢.
2. (V7PK,M7’U,b1,...,bn+1) € Tea

For the former case where the tuple is in Tg, we note that if the tuple is inserted by S¢, then there are three sub-
cases: 1) V is either random sample (red box); 2) V = Sign(SK, M, R*) where R* « R;3) V = Sign(SK, M, R*)
for some R* recorded in the table. Trivial to note that, in all of the sub cases, V' is uniformly distributed. And if the
tuple is inserted by S € then by definition, we have that v is uniformly sampled.

For the latter case, v of course is not uniformly distributed as pad = 0 - - - 0, while we have that, for each tuple
in Tga, Verify (PK||M, V) = 1, which refers to that V' = Sign(SK, M, R) where Gen(SK) = PK. Thus V is
well-distributed.

Rule 4. There are three bad events that might break the rule,

. 8¢ first inserts (V, PK, M, v) into T¢, then S€
inserts (V, PK, M, v',b} --- b}, ) into T¢;

. 8¢ first inserts (V,PK,M,v,by,...,byi1)into Tg, then S¢
inserts (V, PK, M,v’) into T¢;

. S¢ first inserts (V, PK, M, v) into Tg, and thenS¢
inserts (V, PK, M ,v') into T¢.

For the first event, note that if S¢ inserts (V,PK,M,v) into Tg, it means that Verify(PK, M, V) =0. Asa
result, S would return V only by case 1in red box (if V' is returned by yellow or green box, then Verify (PK, M, V) =
1), which means this bad event only occurs if there is collision on uniformly sample string in 3, which is bounded

2

by |qz—|.

8Below we will denote v as (v, (vo, pkg, Pk1),- -, (vn, Pkp, .6, 05 PRpy ..., 1) S€Ed,; Pad)
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For the second event, note that if S¢ inserts (V,PK,M,v,by,...,by11)into Te, it means that Verify (PK, M, V) =
1. Under the condition that no (SK # SK') such that Gen(SK) = Sign(SK') = PK (bounded by Rule 1), we
have that if (v) # (v’), then the response is returned by case 2 in yellow box (if V is returned by case 3 in green
box, then v = v’). And in case 2, the randomness R is uniformly sampled, hence this bad event would not happen

2
except for a collision (< |(7ZT\)'
For the last event, under the condition that of rule 6 (the responses of (S°Gen, SoSign goVerify) are statistically
close to an ideal one-time signature), this bad event is trivially bounded by a collision on the signature.

Rule 5. Similar to Rule 5, there are six bad cases that might break this rule,
. S¢ first inserts (V, PK, M, v) into T¢ and then S¢” inserts (V/,PK,M,v,by,...,byy1) into Te;
. S¢ first inserts (V, PK, M, v) into T¢ and then S€” inserts (V',PK,M,v) into Tg;
. S€" first inserts (V, PK, M,v) into T¢ and then 8¢ inserts (V’, PK, M, v) into Tg;
. S€" first inserts (V, PK, M, v,by, ..., by.1) into Tgs and then 8¢ inserts (V/, PK, M, v) into T¢;
. S€" first inserts (V, PK, M, v) into T¢ and then 8¢ inserts (V’/, PK, M, v,by,. .. byy1) into Ter;

. SE" first inserts (V, PK, M,v,by,... byy1) into Teo and then S inserts (V/, PK, M, v, by, ... bpi1)
into Tg-;

It is trivial to note that those bad events would never happen unless there is a collision on v, and moreover the tuple

v) in the procedure SE s uniformly sampled, thus those bad events are bounded by 2;1%

Rule 6. For this rule, we need to prove the following:
1. Rule 6.1: The responses of SoGen, SOSig“, SoVerify are consistent;
2. Rule 6.2: The responses of S°&°™ and S°Si8™ are close to uniform.

3. Rule 6.3: For any SK and M,

Soverify(SOGe“(SK), M,SOSign(SK, M) =1

4. Rule 6.4: For any PK, M, V,if #SK such that S°G°?(SK) = PK A V = S°S18n(SK M), then

SOVeriy(PK, M, V) =0

Next, we present our analysis one by one.
Rule 6.1. Trivial to note that the responses of S°518 and S°Verity are consistent. And for S°&°?, the only bad case
that break the rule is that: S€" first inserts (o, sk, PK) into Ts,,.., and then SHskreot inserts (SK’, sk, PK') into
TH . koo - Note that sk in the latter tuple is uniformly sampled, thus this bad event never occurs except for negligible
probability (< IS;)QCO\)

Rule 6.2. Trivial to note that the responses of S°S18" are uniformly sampled. And for S°G°®, there are three strate-
gies:

1. Strategy 1. If there is a tuple (SK, sk, PK) € Ty ..., then S responds with PK;
2. Strategy 2. If there is a tuple (o, sk, PK) € Ty, ...> then S responds with PK;

3. Strategy 3. S responds with PK « Gen(SK).
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Easy to observe that in both strategy 1 and strategy 3, the response are uniform. While in strategy 2, PK could
be chosen by the adversary, which means the response is not uniform. Fortunately, in such a stratety sk is uniform
sampled by S and the differentiator would not make such a query except for negligible probability (< ISLICOI)'

Rule 6.3 holds trivially if rule 6.2 holds, and rule 6.4 holds straightforwardly by the description of S.

Rule 7. This rule holds trivially by definition.
Rule 8. This rule holds as long as the differentiator cannot outputs (SK # SK') such that Gen(SK) = Gen(SK").
Rule 9. For this rule, it suffices to prove that for any V,

Verify (PK, M, V) =1 <= STV™"Y(PK M, V) = 1.
Sub-rule: oVerify (PK, M, V) = 1 = SV (PK M V) = 1. Givenan V such that Verify (PK, M, V) = 1,
S responds to the query S€ (V) as follows:
« Strategy 1. If 3(V, PK|| M, v) € T¢, then return (v).
« Strategy 2. if 3(V, PK||M,v,b1,...,byt1) € Tgn, then return (v).
« Strategy 3. Otherwise, following the rest strategy in our simulator.

For strategy 3, trivial to note that, under the condition Verify(PK, M, V) = 1, the response of S¢ (V) = (v)
is properly assigned such that S™-V*""™(PK M, V) = 1 (same as the Rule 11 on page 21 in Sec 4). Moreover, we
note that the table Tg1 only records the tuple such that Verify(PK, M, V) = 1, thus the sub-rule also holds in
strategy 2. And now;, it’s rest to prove the rule holds in strategy 1. In fact, there are three sub cases that the tuple
(V,PK||M,v) € Tg,

1. 8¢ inserts (V, PK||M,v) into Tg where ctr; < n +2;
2. 8¢ inserts (V, PK||M,v) into Tg where ctr = n + 2;
3. 8¢ inserts (V, PK||M,v) into Tg where Verify(PK, M, V) = 0.

In the first case, we have that V' «— 3, which means that Verify (PK, M, V) = 0 except for negligible probability
(< @). For the second one, we have that ctr = n + 2 (case 2 in the yellow box or case 3 in the green box),

referring to S!-VSRFY(PK M, V) = 1. For the last one, we have that Verify (PK, M, V) = 0. Thus this sub-rule
holds except for negligible probability.

Sub-rule: Verify (PK, M, V) = 1 <= SV (PK M, V) = 1. Given an V such that Verify (PK, M, V) = 1,
S responds to the query S€ (V) as follows:

« Strategy 1. If 3(V, PK|| M, v) € Tg, then return (v).
o Strategy 2. if 3(V, PK||M,v,b1,...,byq1) € Tgn, then return (v).
« Strategy 3. Otherwise, following the rest strategy in our simulator.

Immediately observe that this sub-rule holds in strategy 2, as T¢- only records tuples such that Verify (PK, M, V) =
1. For strategy 3, we note that if Verify (PK, M, V) = 0, then the response of S (V) = (v) is uniformly sampled,
which means SV (PK M, V') = 0 except for negligible probability (< 2—1t)

Next we show that this sub rule also holds for strategy 1. Concretely, there are three sub cases that the tuple
(V,PK||M,v) € Tg,

1. S8 inserts (V, PK||M,v) into T¢ in case 1 (red box);

2. 8¢ inserts (V, PK||M,v) into T¢ in case 2 (yellow box) or case 3 (green box);

32



3. 8¢ inserts (V, PK||M,v) into T¢ where Verify(PK, M, V) = 0.

For the second sub case, V' < Sign(SK, M, R) (either case 2 in the yellow box or case 3 in the green box), which
means Verify(PK, M, V) = 1. For the last one, as (v) is uniformly sampled, which means S™-V¥**"Y( PK' M, V) =
0 except for negligible probability. Thus this sub-rule holds except for negligible probability. Now it is rest to prove
the first sub case, which includes several events:

1. pad #0---0;
2. 3SK # SK' st. Gen(SK) = Gen(SK') = PK;
3. B(SK, sk, PK) € Toypones

4. E(PK, M, seed,bq,... ,bn+1) € THpath;
5. A(PK, M, seed, m) € Ty

msgLeaf

6. 0 <ctr; <n+ 2.

Trivial to note that, if pad # 0---0 or 0 < ctr; < n + 2, then STV (PK M, V) = 0. The second event
2
is trivially bounded by “g—,q. Moreover, for the fourth and fifth event, the differentiator has no knowledge of either
bi,...,bpt1 or m, thus it’s apparent that

Pr[S" VR (PR M, V) =1] < 2% + ‘; B

For the third event, note that the differentiator could choose SK itself, but sk is independent of the differentiator’s
view. Hence, D can not output a valid vy via the adversarial interface directly; the only way it can extract valid
vg is via honest interface. Specifically, D makes queries V; < Sign(SK, M;, R;) and v; < S (V;), and D can
extract valid v from v;. However, for any M;, we denote b - - - b}, ; « S*rats(PK | M;, seed;), and we note that
except for negligible probability (< 5% ), the most significant differ bit of (b1, ..., bny1, bi bl q) < n. Asaresult,
the differentiator, although it can extract a valid vy, it cannot outputs a sequence of valid signature (vg, ..., Vn+1),
which means that SVE"™(PK M, V) = 0.
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A Proof of Theorem 4.1

In this part, we complete the proof of Theorem 4.1, by illustrating a sequence of hybrid games, Q‘J;?’D, cee QS’D,

and proving that:
Pr[Real™” = 1] = Pr[gZ>" = 1],
| Pr(GE P = 1] = Pr[GL P = 1]| < negl(V),

Pr(g5>" = 1] = Pr[Ideald>'®?]

where F; and S; are the corresponding ideal functionality and simulator in each hybrid game, respectively.

The functionalities F; for ¢ = 0,1...8, are all the same, a “dummy functionality” which forward the queries
from the differentiator D to the simulator S;, and vice versa. The functionality Fy is the same as the ideal signature
OSIG. In the remaining, we carefully illustrate the description of the simulators S;, for each hybrid game, and then
prove that the statistical distance of each two adjacent games are close.

— Simulator S ~

The simulator So will provide internal copies of the random oracles, Hsx, HOneWay» Hposition, and random permutation (P, P™'), and
ideal cipher (€, £71), and internal copy of II, =I1,.{0GEN, 0SIGN, OVERIFY }; the simulator Sy has the external oracle access to Fo; the
simulator So will provide the following interfaces for the external differentiator D:

sk + Hgsk(SKo), return sk.

S(?)'ior)eWay (S’k)

R — HOneWay (;79)’ return ;7%

S;'[pusition (PKO, Mo):

by bp 7'[position(ljf(m Mo), return by - - - by,.
PK, < P(pk), return PK,.

ST (PK,):

pk < P(PK,), return pk.

‘S'(‘;:(PKOHMO7 8k1,by .-, 8k1p,,pad):

Vo < E(PKo, Mo, sk1by ;- -, 8knp, , pad), return V.

SE (PKo|| Mo, Vo):

(s,kl,bl pooag s/k’n,brﬁm) <~ g-l(PKOHM(N VO)’ return (8761’1,1 pooog S’kn’bn,@)-

It is straightforward that the view of D in either Real or QQD are identical, thus

Pr[Real™” = 1] = Pr[gZ°" =1].

Next, we will present the description of the other hybrids.

— Simulator S; x

The simulator S; will provide internal copies of the random oracles, Hgk, HoneWay» Hposition, and random permutation (P, P, and
ideal cipher (&, 5'1), and internal copy of IT, =II,.{0GEN, OSIGN, OVERIFY }; the simulator S; has the external oracle access to F7i; the
simulator S will provide the following interfaces for the external differentiator D:

STk (SK):
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if 3(SK,, sk, pk, PK,) € Ty
then return sk;

if 3(o, sk, pk, PK,) € Ty, st. PKo = I1,.0GEN(SK,)
then Ty, < Ty, U {(SKo, sk, pk, PKo)},
return sk;

sk + Hq(SKo), PKo < I1,.0GEN(SK);

parse sk into ( (sk1,0, sk1,1), ..., (skn,o0, skn,1>>,

fori € [1,n]

_ oHoneway ) _ oHoneway )
pkio=S5; (ski0), Pk; 1 =S (ski,1),
THOncWay A THOncWay U {(Ski,o, pki,o)} U {(Ski,l,Pki,l)};

pk « (<pk1,07 pkl,l)a cr <pkn,07 pkn,l>)>
T3, + Ty, U{(SKo, sk, pk, PKo)};
return sk.

sk’

SZ'lOneWay (876)

if 3(sk, pk)
then return pk;

Pk < Homneway (5F); T3 oneway ¢ THoneway U {(sk, pk)};

return ]/)E

€ THOneWay’

Sz'tpnsition (PKO, Mo):

if 3(PKo, Mo,b1 -+ -by) € Ty
then return by - - - by

if 3( Vo, PKo|| Mo, sk1,by 5.5 Skn,b,,01 - bn) € Tga,
then return by - - - by

by -bp Hposition(PKm Mo); Ty

return by - - - by,

position’

(—T'H

position position

ST (pk):

if A(SK,, sk, pk, PK,) € Ty
then return PKo;

if (o, sk, pk, PK,) € Ty
then return PK;

if (o, 0, pk, PKo) € Ty
then return PK;

PKo + P(pk), Ty, <+ T, U{(o, o, pk, PKo)},

return PKo,.

sk’
sk’

sk’

SP (PK.,):

if 3(SK,, sk, pk, PK,) € Ty
then return pk;

if 3(o, sk, pk, PKo) € Ty, ,
then return pk;

if 3(o, 0, pk, PKo) € Ty,
then return pk;

pk < P1(PKo); Ty, + Ty, U{(o,0,pk, PKo)};

return pk.

sk’

Slg(PKOHMO’ skl,bl 3oy Skl,bnzpad):

ifEl( Vo, PK0||M07 Skl,bl st Skl,bn,apad) € Tg,
then return Vj;

if 3(Vo, PKo|| Mo, sk1,by, - - - Sk1,b,,, pad, b1 -+ -bn) € Tg,
then return Vj;

ctr < 0;

if pad #0---0,
then goto Case 1;
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if 3(SKo # SKb) sit. ((SKo, sk, pk, PKo) € Tatyoy, ) A ((SKG, sk', k', PKo) € Tat i, )
then goto Case 1;
if A(SK o, sk, pk, PK,) € TH
then goto Case 1;
else SKo < SKo; sk < sk;
if A(PKo, Mo, by -+ b%) € Ty
then goto Case 1;
else by -+ - by < b7 --- b}
parse sk into ((sAkLQ7 S7€171>, ce <8Akn,o, 57€n,1>>;
fori € [1,n]
if sk, 5 = skip,,

position

//check the validity of each sk b,

then ctr < ctr + 1;
ifctr <n
then goto Case 1;
else goto Case 2;
Case1: Vo < E(PKo, Mo, sk1 by, -, 8knb, ,pad);
Te + Tg U{(Vo, PKo, Mo, k1 by, 5kn. b, ,pad)}; return V.
Case 2: Vo« HO.OSIGN(§K\07 Mo);
Te + Tg U{(Vo, PKo, Mo, k1 b5, 5kn. b, ,pad)}; return V.

SE(PKo|| Mo, Vo):
ifEI( Vo, P[(OHJWO7 Skl,bl Sy Skmbn,pad) € Te,

then return (sk1 p,, ..., skpp, , pad).
if 3( Vo, PKo|| Mo, sk1,by - - -5 8kn.b,, , pad, by -+ -bp) € Tgu,
then return (sk1 p,, ..., skpp, , pad).

if II.0VERIFY(PK o || Mo, Vo) = 0,
then (5k1. by, - - » knp, , pad) < EN(PKo, Mo, Vo),
Tg + Tg U {(Vo, PKo||Mo, 5k1 by, - - - k.t » pad)},
return (sAkLbl ey sAkn’bn,;aTi).

if 3(SKo, sk, pk, PKo) # (SK', sk',pk’, PK,) € Ty
then (k1 py ;- - » knp, , pad) « E1(PKo, Mo, Vo),
Te + Te U{(Vo, PKo||Mo, k1,4, -, kb, pad)},
return (s7€17;31 nooog gcn,bn,;t;i).

sk« o

if (PK o, Mo, bt -+ b%) € Tay
then by, - - - by < b} --- b
else/gh o /gn — Hposition(PK07 Mo); T’H

if 3(SK,, sk, pk, PK,) € Ty
then gl\c — skz;ﬁc <+ pk;

if 3(o, sk, pk, PKo) € Ty,
then sk « sk; pk « pk:

if sk =9, R .
then (sk1p,, .-, kn b, ,pad) < E(PKo, My, Vo),
Te + Te U {(Vo, PKol||Mo, $k1.by ;- .., Skn,p, , pad)}.
return (57“1,51 e Qﬂn,b",;a?i).

parse sk into <<S7€1,07 S7€1,1>7 ce <§7€n,07 57@71,1>>;

Pafsel/)?@into ((1321,0713’;1,1% 0009 <1/)En,01;%n,1>);

sk’

position’

Ty U {(PKo, Mo, b1, --bn)};

position position

sk’

pad < 0---0;
Ter < Tea U{( Vo, PKo|| Mo, Sk1,51 e sknj;n,pad, b1+ ,bn)};
return (5791 By ,gicng ,];a\d).
\ S

Comparing to Sy, the simulator Sy keeps several tables and has additional oracles (IT,.0GEN, I1,.0SIGN, II,.OVERIFY).
When S, responds to a query, it first checks the tables, if the proper response is recorded in one of the tables, then
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&1 responds to the query using the table, else S; responds to the query by calling oracles. In the following, we prove
that, for any query, the response of Sy and S is identical with high probability, which straightforwardly refers to
that

| Pr(G5>P = 1] — Pr[GZP = 1]| < negl(N).

In Game 0, S}*** (SK,) = Hq. (SK,), and in Game 1, S; responds to this query either using its table T4, or calling
He(+). It's trivial that Spt (SK,) = SI**(SK,) if S; responds to the query by calling H (SK,), and next we
analyze the case where S responds to query by using table Ty, , . Note that in Game 1, none of the sub-simulator
will insert tuple with form of (¢, sk, pk, PK,) into Ty_, , and only S#Sk might insert tuple (SK,, sk, pk, PK,)
into Ty, . Moreover, the tuple inserted by SZ{ °* is consistent with the responses of oracles. More concretely, if
(SK,, sk,pk, PK,) is inserted, then it’s apparent that

sk = Hu(SK,), pk = Honeway (sk), PK o = P(pk).

Thus, we have that SJ'* (SK,) = SI**(SK,). Applying the same analysis, we can straightforwardly argue that
8y 0N (sh) = 871N (sk), S (PE o, My) = 817" (PK o, M), S (pk) = ST (pk), and S7' (PK o) =
SP"(PK,). Next, we prove that this equivalence also holds in € and £. In Game 0, we have that

Sg(PKOHMm Skl,bm' T Skn,bmpad) = €<PKO||MO7 5k1,b1|| e ||5kn7bn pad),

and in Game 1, 7 responds to this query in the following cases: 1) using its table T¢; 2) using its table T¢-1; 3) calling
E(-,-); 4) returning I1,.0S16N(SK o, M,). Trivial to note that, the tuples recorded in tables are consistent with the ora-
cles, and thus it suffices to analyze the last case. By definition, we have that S¥ (PK,|| My, sk1p,, - - -, Sknp, , pad) =

HO.OSIGN(STK\O, M,) if and only if the following conditions hold:
1. pad =0---0;
2. there is a tuple (S/K\o, .;I::,El\c, PK,) € Ty
3. there is a tuple (PK,, Mo,/l;h .. 7671) € T, osivions
4. sk;p, = 57%,&, fori € [1,n].
Trivial to note that, if those four conditions hold, then we have that

IT,.0816N(SK o, Mo) = £(PK o|| Mo, sk, 5, 1| -+ ||sk,, 5 110+ 0)
= E(PK,|| M, sk1,b, [ - Hskn,anpad).

Thus we have that
S5 (PKo|| My, sk1 s - - - s $knp,, pad) = SE(PKo|| My, sk1 by, - - - s Sknp,, , pad).

And for £, we have that, in Game 0, S§ ' (PK,|| My, Vo) = E1(PK,||M,, V). While, in Game 1, S; responds
to this query in the following cases: 1) using its table Tg; using its table Tg-1; 3) calling £7(-,-); 4) returning
(sk, + , sk 0---0). Trivial to note that S§ (PK,|| Mo, Vo) = S (PK,||M,, Vs) if S responds to the

Ly %m0
query within the first three cases, and for the last one, we have that S¢ (PK,|| My, V,) = (sky3.s--s8k,5 ,0---0)
if and only if the following conditions hold:

1. Ty.oVeERIFY(PK || M, Vo) = 1;
2. there exist no (SK,, sk, pk, PK,) # (SK., sk’ pk’, PK,) € Ty_,;

sk’
3. there is a tuple (SK,, sk, pk, PK,) € Ty_,;

4. there is a tuple (PK,, Mo,gh sy by) €Ty

position ?
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o~

sk, = sk, 3 fori € [1,n].

Note that if V, = I1,.0S16N(SK, M,), then it’s straightforward that Sfrl(PKOHMO, Vo) = EYPK,||M,, Vo).
And thus the only bad event is: D outputs V, # 0S16GN(SK o, M,) such that II,.oVeEriFY(PK,||M,, Vo) = 1, and
we then prove that this bad event would never occur except for negligible probability.

With loss of generality, we assume that the adversary makes ¢; queries via the honest interfaces and g2 queries
via the adversarial interfaces, where g1 + ¢2 < ¢. Note that, V, ¢ Tg U Tg-, thus, we know that V,, never appears
in the queries via the adversarial interfaces. Therefore, V, either is randomly guessed or appears in the queries via
the honest interfaces. For the former case, trivial to note that the probability that IT,.oVERIFY(PK,||M,, V5) = 1
is bounded by 2% For the latter case, we assume that V, = OSIGN(§](\O, M,). If HO.OGEN(S/K\O) # PK,, then the

probability that I1,.0VERIFY(PK,||M,, Vo) = 1 is bounded by ix. If HO.OGEN(S/K\O) = PK,, then the probability
that I1,.0VERIFY( PK || M,, V,) = 1 is bounded by the event that outputs SK, # SK, such that I1,.0GEN(SK ,) =

I1,.0GEN(SK), which is 23—%) Combine together, we have that:

s g+ 2
— Qn)\ 2217)\ :

’Prg}-"’ =1]— Prgfl’

Next, we give the description of Ss.

— Simulator Sy 2

The simulator Sz will provide internal copies of the random oracles, Hgk, HoneWay» Hposition, and random permutation (P, P1), and
ideal cipher £, and internal copy of I, =II,.{ OGEN, 0SIGN, OVERIFY }; the simulator S» has the external oracle access to F2; the simulator
So will provide the following interfaces for the external differentiator D:

STk (SKo):

if 3(SK,, sk, pk, PK,) € Ty
then return sk;
if 3(o, sk, pk, PK,) € Ty, st. PKo = I1,.0GEN(SK )
then Ty, < Ty, U {(SKo,, sk, pk, PK,)},
return sk;
sk + Hgsk(SKo),PKo < I15.0GEN(SK,);
parse sk into ( (sk1,0, sk1,1),- .., (skn,o0, skn,1>>,
fori € [1,n]
_ oHoneway ) _ oHoneway )
Pk’i,o =S5, (Skl,O)vpki,l =5 (ski,1),
THOncWay A THOncWay U {(ski,0, pki,o)} U {(Ski,l,Pki,l)};
pk « (<pk1,07 pkl,l)a cr <pkn,07 pkn,l))’
Ty, + Ty, U{(SKo, sk, pk, PKo)};
return sk.

sk’

S;'lonewﬂy (576)

if 3(sk, pk) € Thionemay

then return pk
pk — HOneWay(Sk) THOneWay — THOneWay {(5%7 ?;E)}’
return pk.

S;'lposition (PKO, Mo)l

if I(PKo, Mo, b1 -+ -bn) € Ty
then return by - - - by

if 3( Vo, PKo|| Mo, 8k1,by 5.+ Skn b, ,01 - bn) € Tga,
then return by - - - by

bl coobp Hposition(PKm Mo)§ T'H

return by - - - by,

position’

position ¥ THposition U{(PKo, Mo, b1---bn)}s
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ST (pk):

if A(SKo, sk, pk, PKo) € Ty
then return PK;

if (o, sk, pk, PK,) € Ty
then return PKo;

if 3(o, 0, pk, PKo) € Ty, ,
then return PK,;

PKo < P(pk), Ty, + Ty, U{(o,¢,pk, PKo)},

return PKo,.

sk’

sk’

ST (PK,):

if 3(SKo, sk, pk, PK,) € Ty,
then return pk;
if 3(o, sk, pk, PK,) € Ty, ,
then return pk;
if 3(o, 0, pk, PKo) € Ty,
then return pk;
pk < P1(PK,); T, — Tx, U{(co, 0, pk, PKo)};
return pk.

SS(PKOHMCM Skl,bl 3oy Skl,bn:pa’d):

ifﬂ( Vo, PK0||M07 Skl,bl s Skl,bnapad) € Te,
then return Vo;
if 3( Vo, PKo|| Mo, sk1by - - -, 8k1p,,, pad, by ---bp) € Teu,
then return V5g;
ctr < 0;
if pad #0---0,
then goto Case 1;
if 3(SKo # SK') st. ((SKo,sk,pk, PKo) € TﬂskRoot) A ((SK;,, sk',pk’, PK,) € Ty
then goto Case 1;
if B(SKo, sk, pk, PKo) € Ty
then goto Case 1;
else §(\o — SKo; sk sk;
if A(PKo, Mo, b} -+ b%) € Ty
then goto Case 1;

else by - - - by b7 ---by;
parse sk into ((sAkl,o, S7§171>, ce <§7€n,0, s7€n1>>
for ¢ E[l,n]

ifSki,Ei = sk;p,;»

skRoot)

sk’

position

//check the validity of each Ski,bi

then ctr < ctr + 1;
ifctr < n
then goto Case 1;
else goto Case 2;

Case 1: Vo« E(PKo, Mo, sk1,bys---,5kn. b, ,pad);
Te = Tg U{(Vs, PKo, Mo, sk1,py 5 - -, Skn b, , pad)}; return V.

Case 2: Vo « HO.OSIGN(§(\O, Mo);
Te « Tg U{(Vo, PKo, Mo, $k1,by 5 - - Skn b, , pad)}; return V.

SE(PK || Mo, Vo):

if 3( Vo, PKo|| Mo, sk1,by 5 - - -5 Skn. b, , pad) € Tg, then return (sk1 p,, ..., skp.p,, , pad).
if 3(Vo, PKo||Mo, sk1,by -+ 8kn b, pad, by - - - bp) € Tga, then return (skq 4, , ..., skn b, , pad).

if I1o.0VERIFY( PK o || Mo, Vo) = 0, //for invalid signatures, S responds with random strings
then pad « {0, 1};

fori € [1,n]
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3761' &= {071}2)\§
Te  Tg U{ Vo, PKo||Mo, sk1, ..., skn, pad};
return (sk1, ..., skn, pad).

if 3(SKo, sk, pk, PK,) # (SK.,sk’,pk’, PKo) € Ty, , //for this bad event, So responds with random strings

sk
then @ « {0,1}¢;
fori € [1,n]
57‘72’ &= {0’1}2>\;
Te < Te U{ Vo, PKo||Mo, k1, . . ., kn, pad};
return (sAkzl, e sAkn,]Ta\d).
sk« o
if 3(PKo, Mo, b% - b%) € Ty
then by, -« by < b} - bY;
else/l;lu e /b\n <~ 'Hposition(PKo, Mo)Z Ty
if 3(SKo, sk, pk, PK,) € Ty,
then .;Tc <+ sk; EI\C <+ pk;
it 3(o, sk, pk, PKo) € Ty, ,
then sk « sk; pk « pk:
if sk =9, R .
then (sk1p, .-, 8kn b, ,pad) < E(PKo, My, Vo),
Te  Te U{(Vo, PKol|Mo, sk1,5, -, 5k 5., Pad)},
return (sk1p,, ..., skns,, , pad).
parse sk into ((szicl’g, s7c1,1>, RN (s?ﬂnyo, s/icn,1>>;

parse pk into ((PkLo’ Pk11)s- -5 (Pky 05 Pkn,1>);

position’

position ¥ THposition U{(PKo, Mo, b1, bn)}

pad < 0---0;
Tes + Tes U{(Vo, PKol|Mo, sk, 5., 5k, 5, pad, b1+, ba)};
return (sAlc1 By ,sAkng ,p/a\d).

Next, we give the description of Ss.

— Simulator S3

The simulator S3 will provide internal copies of the random oracles, Hsk, Honeway> Hposition, and random permutation P, and ideal
cipher £, and internal copy of II, =II,.{0GEN, OSIGN, OVERIFY }; the simulator S3 has the external oracle access to F3; the simulator S3
will provide the following interfaces for the external differentiator D:

STk (SKo):

if (SK,, sk, pk, PKo) € Ty
then return sk;
if 3(o, sk, pk, PK,) € Ty, st. PKo = I1,.0GEN(SK)
then Ty, < Ty, U{(SKo, sk, pk, PK,)},
return sk;
sk + Hgsk(SKo), PKo + I1,.0GEN(SK ),
parse sk into ( (sk1,0,k1,1), ..., (skn,0, skn71>>,
fori € [1,n]
_ HOneWay X _ HOneWay X
pkio = Sy (SkZ,O):pki,l =38, (ski,1)s
THoneway < THoneway U 1(ski,0, PE; 0)} U {(sks,1, pk; 1)}
pk < <<Pk1,07Pk1,1>7 cee <Pkn,07 Pkn,1>>»
THsk +— THsk U {(S‘KO7 sk, pk, PKO)};
return sk.

sk’

S;'LOneWay (876)
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if 3(sk, Pk) € T neway -

Athen return ];E;

Pk Honeway (55): Tooneway < THoneway U 1(5k, DE)};
return 1/7;

S;'[position (PKO, MO):

if A(PKo, Mo, b1 -+ -bn) € Ty
then return by - - - by;

if 3(Vo, PKo||Mo, sk1,bys---»5kn,b, 01 bn) € Te,
then return by - - - by;

by -bp Hposition(PKm Mo); T'H

return by - - - by,

position’

«— Ty U{(PKmMmbl"'bn)};

position position

ST (pk):

if 3(SK,, sk, pk, PK,) € Ty
then return PK;

if 3(o, sk, pk, PKo) € Ty, ,
then return PK;

if 3(o, 0, pk, PKo) € Ty,
then return PK;

PKo ¢+ P(pk), T, ¢ Tr,,, U{(c,0,pk, PKo)},

return PK,.

sk’

SP(PK,):

if 3(SKo, sk, pk, PKo) € Ty,
then return pk;
if (o, sk, pk, PK,) € Ty

sk
then return pk;

if 3(¢, 0, pk, PKo) € Ty,
then return pk;

sk « {0,1}47X,

parse sk into <<sk170, sk1,1),- -, (skn,0, skml));
fori € [1,n]
HOneWa; HoOnewa;
Pk < S OV (ski0), pky g ¢ Sy O"WY (ski 1),

THoneway < THoneway U 1(5ki,0, PE; 0)} U {(ski,1, pk; 1)}
pk <<pk1,07pk1,1>7 000§ <pkn,0, pkn71>);
THsk A THsk U {(Ov Skvpkv PKO)}Z
return pk.

Sé‘f(PKoHMo7 sk1,by .-, 8k1p,,pad):

ifﬂ( Vo, PKOHMO, 5k1,b1 Sy Sk)Lbn,pad) € Tg,
then return Vo;
lf;l( Vo, PKOHMO, Skl,bl ey skLbn,pad, bl te bn) € Tg»l,
then return Vo;
ctr < 0;
if pad #0---0,
then goto Case 1;
if I(SKo # SK') st. ((SKo,sk,pk, PK,) € Tﬂsmoot) A ((SKg, sk', pk', PK,o) € Ty
then goto Case 1;
if #(SK o, sk, pk, PK,) € Ty
then goto Case 1;
else §K\0 +— SKo; sk sk;
if A(PK o, Mo, by - br) €Ty
then goto Case 1;
else by - - by bt -+ bk;

skRoot)

sk’

position

42




parse sk into <3Ak:1707 5,76171>, R <5Akn,0, sAlan));
fori € [1,n]
if s/ki,’b\i = Ski,bi, //check the validity of each sk b,
then ctr < ctr + 1;
ifctr < n

then goto Case 1;
else goto Case 2;

Case1: Vo <+ E(PKo, Mo, sk1 ;... 8knb, ,pad);
Te < Tg U{(Vs, PKo, Mo, sk1,by 5 - -, Skn b, , pad)}; return V.

Case 2: Vo « HO.OSIGN(§}(\O, Mo);
Te + Tg U{(Vo, PKo, Mo, sk1,by 5 - -, Skn b, , pad)}; return V.

SE (PKo|| Mo, Vo):
if 3( Vo, PK0||M07 Skl,bl s Sk,‘mbn,pad) € Te,

then return (skq 4, , ..., Skn, b, , pad).
if 3(Vo, PKo|| Mo, k1 by - - -» Sk, » pad, by -+ bp) € Teur,
then return (skq 4, , ..., Skn, b, , pad).

if I1o.0VERIFY( PK o || Mo, Vo) = 0, //for invalid signatures, S5 responds with random strings
then pad « {0,1}%;
fori € [1,n]
8762' « {0, 1}2A;
Te <« Te U{ Vo, PKo||Mo, k1, . .., kn, pad};
return (376‘1, ey gcn,p/a\d).
if 3(SK,, sk, pk, PK,) # (SK., sk',pk’, PK,) € Ty
then pad « {0, 1};
fori € [1,n]
sk « {0,132
Te  Te U{ Vo, PKo|| Mo, sk1, . .., skn, pad};
return (s?cl, ey Qﬂn,@).
sk+o
if A(PKo, Mo, b% - -b%) € Ty
then by, - - - by < b} -+ bl
else b1, - - - by  Hposition(PKo, Mo); Ta
if 3(SK o, sk, pk, PKo) € T
then sk < sk; pk « pk:
it 3(o, sk, pk, PKo) € Try., ,
then .;E <« sk; 1/)l\<: <« pk;
if sk = o,
then sk « fi@, 1%

parse sk into ((sAkly(), 5761,1), R <5Akn70, sAkn,l>>;
fori € [1,n]
ﬁi,o — Sgi(mcway (;I\Ci,O)J/)Ei,l — S;Loncway(;km),
Thoneway © THoneway U {(5Fi,0,PEi 0)} U {(ski,1, PR; 1)}:
1/)’:’ — <<;E1,07I/7E1,1)7 cee <]/7En,07]/72n,1>);

Toy, < Tr, U{(o, sk, pk, PKo)};

<> //for this bad event, Sz responds with random strings

position®
position < LH position {(PKo, Mo, b1, bn)};

sk’

parse sk into <<57€1,0, 3761,1>, cey <§7€n,07 579n,l>>§
parse pk into (<Pk1,07 Pk1,1>7 ce <Pkn,07 Pk’n,1>>§

pad 0+ 0;Tga < Tga U{(Vo, PKo||Mo, sk, 5 .-, 5k, 5 ,pad,bi--- ,ba)};

return (skl,g1 R skmgn ,pad).

Next, we give the description of Sy.
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~— Simulator Sy

The simulator S4 will provide internal copies of the random oracles, Hgk, HoneWay> Hposition, and ideal cipher £, and internal copy
of I, =I1,.{0GEN, OSIGN, OVERIFY }; the simulator Sy has the external oracle access to F4; the simulator S4 will provide the following
in%srfaces for the external differentiator D:
8, (SK,):
if 3(SKo, sk, pk, PKo) € Ty,

then return sk;
if 3(o, sk, pk, PK,) € Ty, st. PKo = I1,.0GEN(SK,)

then Ty, < Ty, U {(SKo, sk, pk, PKo)},

return sk;
sk + Hgk(SKo), PKo  Il,.0GEN(SK ),
parse sk into <<sk170, sk1,1),- -, (skn,0, 5kn,1>)’
fori € [1,n]

_ cHoneway ) _ oHoOneway )

Pki,o = 34 (5k1,0)7pki,1 = 54 (Skz,l),

T2 oneway ¢ THomneway Y 1(8Ki,0, Pk o)} U {(sks,1, pk; 1)}
pl — ((Pk10,Pk1 1), (PR, Pl 1)),
Ty, + Ty, U{(SKo, sk, pk, PKo)};

return sk.

SZ'lOneWay (876)

lle(s/k7 ;E) S THOneWay’
then return ﬁ;

PE < Honeway (55); THoneway < THoneway U L(5%, PE)}:

return pk.

Szll)osition (PKO, Mo):

if 3(PKo, Mo,b1---bn) € Ty
then return by - - - by;

if 3( Vo, PKo|| Mo, 5k1,b1 P Sknybrubl b)) € Ten,
then return by - - - by;

by by — Hposition(PKm MO); Tx

return by - - - by,.

position’

« Ty U{(PKo, Mo,b1---bpn)};

position position

ST (pk):

if 3(SK,, sk, pk, PK,) € Ty
then return PK;

if 3(o, sk, pk, PK,) € Ty
then return PK;

if 3(o, 0, pk, PK,) € Ty
then return PK;

sk’
sk’

sk’

parse pk into ((pkl,o,Pk1,1>a <5 (P o pk”vl>)’
fori € [1,n] ,
if I(sks,0, Pk 0) # (sk5,0,Pki 0) € THopeway: //collision on pk; o
then return L ;
if 3(ski,0, Pks,0) € THoneway:
then sk;,0 + ski o,
else sAki,o T 1}2>\7T'H0neWay — THO“EW&Y U {(Qﬂ',mpki,o)}
if I(sks,1, ki 1) # (ki 1, Pki 1) € THopeway //collision onpk; 4

then return L;
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if 3(ski,1,Pk51) € THoneway
then ;i%l  ski 1,
else 8761',1 « {0,1}2*, THoneWay 5= THOneWay U {(67%,1, pki,l)})
sk« ((5191,0,3761,1)7 ey (Km0, s/icn,ﬁ)’ SKo « {0,1}¥"}, PKo « Tlo.0GeN(SK.),

THsk <~ T’HSk u {(SKO? ‘;’;71’]‘:7 PKO)},
return PK,.

SF (PK,):

if 3(SKo, sk, pk, PKo) € Ty,
then return pk;

if (o, sk, pk, PK,) € Ty
then return pk;

if (o, 0, pk, PKo) € Ty
then return pk;

sk « {0,1}47*;

parse sk into <<sk170, sk1,1), .., (skn,0, skn,1>>;

fori € [1,n]

HOneWa: HOnewa;

Py g Sy O"W (skio), Dk = Sy OV (ski),
THoneway < THoneway Y {(5%i,0,Pk; )} U{(ski,1, pk; 1)}

pk A (<pk1,07 pkl,l)a caog <pkn,07 pkn,l));

T3, + Ty, U{(o, sk, pk, PKo)};

return pk.

sk’

sk’

S (PKo|| Mo, sk1 by s - - -, 8k1p,, , Pad):

if 3(Vo, PKo|| Mo, sk1by - -, 5k1,,pad) € Tg,
then return Vo;
if 3( Vo, PKo|| Mo, sk1by - - -5 8k1p,,, pad, by -+ bp) € Teu,
then return V5q;
ctr < 0;
if pad #0---0,
then goto Case 1;
if 3(SKo # SK') st. ((SKo,sk,pk, PK,) € Ty
then goto Case 1;
if B(SKo, sk, pk, PKo) € Ty
then goto Case 1;
else SKo <+ SKo; sk < sk;
if A(PKo, Mo, b} -+ b%) € Ty
then goto Case 1;
else by - - by + b7 ---by;
parse sk into <<3Ak170, sAli), e (Q@nﬁo, 57%1))
fori € [1,n]
if Skugi = Ski,bi:

skRoot) A ((SI(‘,)7 Sk/7pk/7 PKO) € THskRoot)

sk’

position

//check the validity of each Ski,bi

then ctr < ctr + 1;
ifctr < n
then goto Case 1;
else goto Case 2;
Case1: Vo <+ E(PKo, Mo, sk1 ;... 5knb, ,pad);
Te < Tg U{(Vs, PKo, Mo, sk1,by 5 - -, Skn b, , pad)}; return V.
Case 2: Vo « HO.OSIGN(§}(\O, Mo);
Te = Tg U{(Vo, PKo, Mo, sk1,by 5 - - Skn b, , pad)}; return V.

45




SE (PKo|| Mo, Vo):
lfa( V07 PKOHMO’ Skl,bl 3oy Skn,bnzpad) € TS,

then return (sk1 p,, ..., skp.p,, , pad).
ifﬂ( Vo, PI(C.H]WO7 Skl,bl Sy Skn’bn,pad, by--- bn) (S Tg—l,
then return (sk1 3, , ..., skpp,, , pad).

if IIo.oVERIFY(PK || Mo, Vo) = 0, //for invalid signatures, Sy responds with random strings
then pad « {0, 1};
fori € [1,n]
57@ « {0,1}2*,
Te + Tg U {VmPKOHMO:S%l, . ~737€n717‘-74\d}§
return (ch, e ;icn, Z;z\d)
if I(SKo, sk, pk, PKo) # (SK', sk!, pk’, PK,) € Ty,
then pad « {0,1}*;
fori € [1,n)
sk « {0,1}2*;
Te + Te U{ Vo, PKo||Mo, k1, . .., skn, pad};
return (;76‘1, e gcn,@).
sk« o;
if I(PKo, Mo, b5 --- b)) € Ty
then by, - - - by < bl ---bi;
else b1, - - - by  Hposition(PKo, Mo); Ty
if I(SKo, sk, pk, PKo) € Ty
then ;l:: — sk:;I/JTc <+ pk;
if 3(o, sk, pk, PK,) € Ty,
then sk sk; [/176 <+~ pk;
ifﬁc =9,

e //for this bad event, S4 responds with random strings

position’

Ty U {(PKo, Mo, b1, -bn)};

position position

sk’

then sk « {0,1}47A;
parse sk into (6%1,0, 87?21}1), R <s7€n,0, s/?cnﬁ)
fori € [1,n]
:;Ei,o — SZ{O"eway (37‘37.',0)7 ;Ei,l — Sfoneway(s/iﬂ,l); THoneway < THoneway Y {(37%,07 1/721',0)} U {(3761',17 ;Em)}?

pk <<pk1’0,pk1,1), R <Pkn,07Pkn,1>);
THsk = THsk U {(07;,;75,\@7 PKO)};
parse sk into ((5]61,0,561,1% e (sAkn,o,sAknJ));parseBI\cinto (@ELO’I/JELH: o <1/’En,07lf1kn,1>);

17a?1<—0~~~0;']1‘571 — Tea U{(VO’PKOHMO:S/';ﬁZl’“w;}‘:n};nvﬁv/gl"' ’/l;”)};mtum(“;7“131"“’3%371’;“\‘1)'

.

Next we give the description of Ss.

~— Simulator S5

The simulator S5 will provide internal copies of the random oracles, Hgk, HoOneWay» Hposition, and internal copy of I, =IT,.{0GEN,
OSIGN, OVERIFY }; the simulator S5 has the external oracle access to Fs; the simulator S5 will provide the following interfaces for the
ex?tternal differentiator D:

Sk (SK,):

if 3(SK,, sk, pk, PK,) € Ty, , then return sk;

if 3(o, sk, pk, PKo) € Ty, st. PKo = I1,.0GEN(SK) then Ty, Ty, U {(SKo,, sk,pk, PK,)}; return sk;

sk < Hsx(SKo), PKo < I1,.0GEN(SK,); parse sk into ((skl,o, sk1,1),- -, (skn,o0, skn71>>;

fori € [1,n]

Honewa HOnewa,
pki,O = 35 W y(Ski,0)7pki,1 = 85 W y(Ski,l); T’HOneWay — T’HOneWay U {(Ski,(ﬁpki,o)} @] {(Ski’17pki’1)};

pk <~ <<Pk1,0’1’k1,1>7~~,<Pkn,o,Pkn,1>)!
T34, < Targy U{(SKo, sk, pk, PKo)};
return sk.
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Sg'ioncway (s7~c)

if 3(sk, PE) € T oy

then return 1/7;;
;E A HOneWay(;k); THOneWay A THOneWay U {(3767 ﬁ)}’
return ﬁ

S;'lposition (PKO, Mo)Z

if A(PKo, Mo, by -+ -bn) € Ty
then return by - - - by

if ( Vo, PKo||Mo, sk1 by 5.+ Skn,b,,01 - bn) € Tga,
then return by - - - by

by -bp Hposition(PKm Mo); Ty

return by - - - by,

P 0
S5 (pk):
if A(SK,, sk, pk, PK,) € Ty
then return PK;
if (o, sk, pk, PK,) € Ty
then return PK;
parse pk into ((Pkl,o’ pk1,1>, cee, <Pkn,07 pkn,l>)’
fori € [1,n],
if 3(ski,0, pk“)) # (Sk;707pkiqo) € THOneWay’ //collision on pk; o
then return 1 ;
if H(Ski’o,pkip) (S THOneWay’
then sk; o < skj,o,
else sk o « {0,1}2*, T oneway ¢ THonoway Y {(ski,0,Pk; )}
ifa(s'lfi,l,pki,l) # (Sk;,lvpki,l) E THOHCWay’ //collision on pk,; 4
then return L ;
ifa(s}ci’l’pkivl) € THO!\eWay’
then sk; 1 < sk; 1,
else ski 1 « {0,1}2*, THoneway < THoneway Y {(ski,1, pk; 1)},
sk ((gﬁ,o, sk1,1), ..., (skn,0, s7€n,1>), SKo « {0,1}3"*, PK o « I1,.0GEN(SK),
T’Hsk — THsk u {(SK07 g’;,pk, PKO)};
return PK,.
SP (PK.,):

if 3(SKo, sk, pk, PKo) € Ty, ,
then return pk;
if 3(o, sk, pk, PKo) € Ty, ,
then return pk;
sk « {0,1}47*;
parse sk into ((skLo, sk1,1),- -, (skn,0, skn,1>>;
fori € [1,n]
HOonewa: HoOnewa
Pk o Sy OV (ski), phi g < Sy OV (ski 1),
THOneWay A I]T’HOneWay U {(Ski107 pk’b,o)} U {(SkiJ?pki,l)};
pk <~ <<Pk1,071’k1,1>7 cee <Pkn,0, Pkn,1>)3

Tage < Trg UA{(0) sk, Pk, PKo)};
return pk.

position’

%T'H U{(PK07M0751"'bn)};

position position

sk’

sk’

SE(PKo||Mo, sk1p,, - -, sk1p,, pad):

if 3(Vo, PKo|| Mo, sk1,by,- -, 5k1p,,pad) € Tg,
then return Vo;

if 3(Vo, PKo|| Mo, sk1,b, - 8k1,p,,pad, b - bp) € Tga,
then return Vo;

ctr < 0;
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if pad #£0---0,
then goto Case 1;
if3(SKo # SKb) st. ((SKo, K, Dk, PKo) € Tatya, ) A ((SKG, k', R/, PKo) € Ty, )
then goto Case 1;
if 3(SKo, sk, pk, PKo) € Ty,
then goto Case 1;
else SKo <+ SKo; sk < sk;
if A(PKo, Mo, b} -+ b%) € Ty
then goto Case 1;
else by - - - by + b7 ---by;
parse sk into ((gcl,o, 8761,1>, saag <S7€n,0, 57%1>)
fori € [1,n]
if 3761 3. = sk b, //check the validity of each sk 1,
then ctr < ctr + 1;
ifctr <n
then goto Case 1;
else goto Case 2;

Case1: Vo « Xo; Tg < Tg U{(Vo, PKo, Mo, k1, -, 5kn,p, , pad)}; return V.

position

Case 2: V, « Ho.oSIGN(S/K\o, Mo);
Tg < Tg U{(Vo, PKo, Mo, sk1p, ;.- -, 5kn b, , pad)}; return V.

SE (PKo|| Mo, Vo):
if 3(Vo, PKo||Mo, sk1 b, 5 - - -, Skn s, , pad) € Tg,

then return (skq ., ..., skn, b, , pad).
ifﬂ( Vo, PKOHMO, Skl,bl pooag Skn’bn,pad, by--- bn) € Tea,
then return (sk1 g, , ..., skp.p,, , pad).

if I1.0VERIFY(PKo|| Mo, Vo) = 0, //for invalid signatures, S5 responds with random strings
thengTaTi « {0, l}t;
fori € [1,n]
sk « {0,132
Tg + Tg U{ Vo, PKol||Mo, sk1,. .., 5kn, pad};
return (sAkl, R Qﬁn,];z\d).
if 3(SKo, sk, pk, PK,) # (SK., sk’,pk’, PK,) € T44,,» //for this bad event, S5 responds with random strings
then pad « {0, 1};
fori € [1,n]
sk « {0,1}2%;
Tg + Te U{ Vo, PKo||Mo, k1, ..., skn, pad};
return (876‘1, e Q@n,m).
sk« o
if A(PKo, Mo, b} --- b)) € Ty
then by, - - - by < b} -+ b
else b1, - - - by  Hposition(PKo, Mo); Ta
if A(SKo, sk, pk, PK,) € Ty
then .;l:: <« sk; {)l\c < pk;
if 3(o, sk, pk, PKo) € Ty,
then sk sk; El\c <+ pk;
ifgl\c =9,
then sk « {0, 1}*7*; parse sk into <<S7€1,0, 5791,1), ceey <s7€n’0, ﬂan));

fori € [1,n]
;7;1-,0 P S;{OneWay (876

position’

= Ty U{(PKo, Mo, by, bn)}:

position position

sk’

- H ne a; -3 - - -~ -
0,0)s Pk 1 4 S5 0"V (ski 1) THoneway < THoneway U {(5K1,0, ki 0)} U {(ski1, ki 1)}

pk <<Pk1,07Pk1,1)7 S <Pkn,07l’kn,1>)§
Ta, + Ty, U {(0, 5k, Pk, PKo)};
parse ‘;I\c into <<57€1707 '376171>7 coogp <S7€n,07 576”71>>;Parse 676 into <<;E1,Ov ﬁl,l% ©00g <;7En,07 ;En,l>);

pad < 0---0; Tgs < Teat u{(vo,PKoHMo,s%lgl,...,s%ngn,;&z,ﬁl--- ,bn)}; return (sﬁclgl,...,&n 5ﬂ,;a\d).
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Next, we give the description of Sg.

— Simulator Sg

The simulator Sg will provide internal copies of the random oracles, Honeway> Hposition, and internal copy of I, =IL,.{0GEN, 0SIGN,

OVERIFY }; the simulator Sg has the external oracle access to Fg; the simulator Sg will provide the following interfaces for the external

di;f_flerentiator D:

Sk (SKo):

if A(SK,, sk, pk, PK,) € Ty
then return sk;

if (o, sk, pk, PK,) € Ty, st. PKo = I1,.0GEN(SK )
then T'Hsk — T'Hsk U {(SKO, sk, pk, PKQ)},
return sk;

sk « {0,1}*"*, PK, < I1,.0GEN(SK,),

sk’

parse sk into <<sk170, sk1,1), .., (skn,0, skn,1>>,
fori € [1,n]
_ oHoneway ) _ oHoneway )
pki,o = Ss (Skz,O)vpki,l = 86 (51’32,1)’
THoneway < THoneway Y {(5%i,0, Pk 0)} U{(ski,1, Pk; 1)}
pk A (<pk1,07 pkl,l)a ©00g <pkn,07 pkn,l>)>

Ty, + Ty, U{(SKo, sk, pk, PKo)};
return sk.

Sg‘()neWay (s7c)

if 3(sk, k) € Trionumyay -

then return ﬁ;
Pk < Homeway (5F); THoneway < THoneway Y {(sk, k) };
return ;;E

Sg'lposition (PKO, Mo)l

if I(PKo, Mo, b1 -+ -bn) € Ty
then return by - - - by

if 3( Vo, PKo|| Mo, 8k1 by 5.+ Skn,b,,01 - bn) € Tga,
then return by - - - by

by -bp Hposition(PKm Mo); Ty

return by - - - by,

position’

(—T'H U{(PKcuMcubl"’bn)};

position position

if 3(SKo, sk, pk, PK,) € Ty
then return PK;
if 3(o, sk, pk, PKo) € Ty
then return PK;
parse pk into ((Pkl,o’ Pk11)s- -5 (DK 05 Pkn,1>),
fori € [1,n],
if 3(sks,0, Pks 0) 7 (5K 0y Pki0) € THopeways //collision onpk; o
then return | ;
if 3(ski,0, Pks,0) € THoneway
then sk; o < skj,o,
clielghip < {0, 132, THoneWay — THQDEWay U {(ski,0, Pki,o)}
if 3(ska,1,pk;1) 7 (5K 1, Pki1) € THopeways //collision onpk; 4
then return L ;
if 3(sks,1, Pki 1) € THopeway
then sk; 1 < sk 1,
e G <= 0 1}2>\7T'HoneWay  THoneway U {(ski,1, k5 1)}

sk’

sk’
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sk ((57@1,0, k11), . (Skno, gan)), SKo « {0,138\, PKo + Tl.0GEN(SKo),

T, < Ta, U{(SKo, sk, pk, PKo)},
return PK,.

SP (PK,):

if A(SKo, sk, pk, PK,) € Ty
then return pk;
ifﬂ(o, sk, pk, PKO) €Ty
then return pk;
sk « {07 1}471,/\;
parse sk into ((skl,o, sk1,1),. ., (skn,0, Skn,1>);
fori € [1,n]
H ne a; H ne a;
pkiﬁ — 86 Onew y(sk‘i’(]),pki’l — 86 2 y(ski’l),
T oneway ¢ THoneway Y 1(8Ki,0, Pk o)} U {(sks,1, pk; 1)}
Pk (<Pk1,07pk1,1>7 200 <Pkn,oypkn,1>);
THsk A THsk U {(0» Skypk’ PKO)};
return pk.

sk’

sk’

SE(PKo|| Mo, sk by, - - -, Ski1,p,, , pad):

if 3( Vo, PKo|| Mo, sk1,by - -, Sk1,p,,,pad) € Tg,
then return V5g;
1f3( Vo, PKOHMO, Skl,bl ey skLbn,pad, b1 ce bn) € Tg—l,
then return Vo;
ctr < 0;
if pad #0---0,
then goto Case 1;
if I(SKo # SK') st. ((SKo,sk,pk, PK,) € Tﬂskmt) A ((SKg, sk', pk’, PK,) € Ty
then goto Case 1;
if #(SK o, sk, pk, PK,) € Ty
then goto Case 1;
else §(\o +— SKo; sk« sk;
if A(PK o, Mo, by - br) €Ty
then goto Case 1;

else by - - - by b7 ---by;
parse ;’?: into <<s7£1’0, 8/271,1>, RN <s7€n10, S7fn,1>>;
for ¢ E[l,n]

ifSki,'Ei = sk;p,;»

skRoot)

sk’

position

//check the validity of each Ski,bi

then ctr < ctr + 1;
ifctr < n
then goto Case 1;
else goto Case 2;

Case 1: Vo « 3o; Tg < Tg U{(Vo, PKo, Mo, $k1,bys- - - Skn b, , pad)}; return V.

Case 2: Vo, < Ho.oSIGN(S/K\O, Mo);
Te + Tg U{(Vo, PKo, Mo, k1 b5, 5kn. b, ,pad)}; return V.

SE (PKo|| Mo, Vo):
if 3( Vo, PKo|| Mo, $k1,by s - - -5 Skn b, , pad) € Tg,

then return (sk1 p,, ..., skpp, , pad).
if I( Vo, PKo|[Mo, sk1 by s+ Skn b, pad,bi -+ -bn) € Te,
then return (skq 4, , ..., Skn b, pad).

if Ilo.0VERIFY( PK o || Mo, Vo) = 0, //for invalid signatures, Ss responds with random strings

then;z.z?l « {0,1}¢;
fori € [1,n]
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sk « {0,1}2*;
Tg + Te U{ Vo, PKo||Mo, k1, ..., skn, pad};
return (576‘1, R gﬂn,m).
if 3(SK,, sk, pk, PK,) # (SK, sk’,pk’, PK,) € T3, //for this bad event, S5 responds with random strings
then pad « {0, 1};
fori € [1,n]
skq « {0,1}2%;
Te < Te U{ Vo, PKo||Mo, k1, . . ., kn, pad};
return (34:1, e sAkn,];z\d).
.;I\C — <
if A(PKo, Mo, b% - -b%) € Ty
then by, - - by < b} - bY;
else/l;la o /gn <~ Hposition(PKOa Mo)§ T’H
if 3(SKo, sk, pk, PK,) € Ty,
then sk sk; [/176 <+~ pk;
it 3(o, sk, pk, PKo) € Ty, ,
then sk  sk; pk  pk;

position?

position * THposision U {(PKo, Mo, b1, -bn)};

if sk =9,
then sk « {0,1}47*;
parse sk into (;76‘170, 3791,1), R <s7cn70, 6/‘767171>>;

fori € [1,n]
ﬁi,o A Sgioneway (57%,0):2/7;1',1 “— Sg{oneway(;ki,l))
THopeway — THoneway U {(5F5,0, PF; 0)} U {(ki,1, Pk 1)};
{)I\c A <<Z§E1,071/)E1,1>7 sy <I;En,07ﬁn,1>);
Ta,, < Tn,, U {(o, sk, pk, PKo)};

parse sk into <<§7€170, 3761,1>, Ce <§7€n,0, 57€n,1>>;

parse pk into (<pk1,07pk1,1>7 200g <pkn,o7pkn,1>);

pad < 0---0;
Tea + Tga U {( Vo, PKo|| Mo, Skl’gl RPN Skmgn,pad, by, bn)};
return (S7€1 By ,s/icng ,;a\d).

Next we give the description of S7.

~— Simulator S

The simulator S7 will provide internal copies of the random oracle Hp,sition, and internal copy of II, =IT,.{0OGEN, OSIGN, OVERIFY }; the
simulator S7 has the external oracle access to F7; the simulator S7 will provide the following interfaces for the external differentiator D:

STk (SKo):

if 3(SKo, sk, pk, PK,) € T3, , then return sk;
if 3(o, sk, pk, PK,) € Ty, st. PKo = I1,.0GEN(SK o) then Ty, + Ty, U {(SK,, sk, pk, PK,)}; return sk;

sk « {0, 1}4”)‘, PK, <+ I1,.0GEN(SK,); parse sk into ((skl,o, sk1,1), ..., (skn,o0, skml}),
fori € [1,n]
Phio = S5O (ski o), phig = S0 (ski 1) Tromeway — THomeway U (54,0, PE;.0)} U {(ski 1, ok 1)}:
pk (<Pk1,0717k1,1>= e <Pkn,07pkn,1>); Ty < Try U{(SKo, sk, pk, PKo)}:
return sk.

S;LtOncWay (sAk)

if 3(;767 QBE) S THOneWay’
then return ]/7;;

pk {0, I}A; THOneWay - THOneWay U {(s/ic,pk)};
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return ];E

S;Hposition (PKO, Mo):

ifH(PK07 M07 by - bn) c T'H
then return by - - - by;

if 3(Vo, PKo||Mo, sk1,by ;- - -5 Skn b, b1 bn) € Ten,
then return by - - - by

bl e bn <~ Hposition(PKOa Mo); T’H

return by - - - by,

position”

— Ty U{(PKo, Mo,b1--bn)};

position position

ST (pk):
if (SK,, sk, pk, PK,) € Ty
then return PK;
if 3(o, sk, pk, PKo) € T
then return PK;
parse ph into ((pky 0, Py 1), - (Phn 0, P, 1)),
fori € [1,n],
ifa(Ski,O’ pkiyo) # (Sk;’(ypki’o) E THOHCWay’ //collision on pk;
then return L ;
ifa(Ski,Ov pki,o) € THOueWay’
then Ski,o — Skiyo,
else sk o « {0,1}2*, THoneway < THoneway Y {(ski,0, Pk; 0)}
if 3(ski 1, pk; 1) # (ski 1, pk;1) € THoneways 7/ collision on pk; |
then return 1
if 3(ski 1, Pki,l) € THoncw-dy)
then &1,1 < ski 1,
else sk; 1 « {0,1}2*, T oneway ¢ THomneway Y (ki1 Pk; 1)}
sk + ((sklyo, sk1,1),- -, (skn,0, skml)), SKo « {0,1}8"* PK, ¢ Il,.0GEN(SK),
Ty, « Ta, U{(SKo, sk, pk, PKo)},
return PKo,.

sk’

sk’

SP (PK.,):

if 3(SK,, sk, pk, PK,) € Ty
then return pk;

if 3(o, sk, pk, PKo) € Ty, ,
then return pk;

sk « {0, 1}4”)‘;

parse sk into ((skl’o, sk1,1),. -, (skn,0, skn,1>>;

fori € [1,n]

HOneWa: HOneWa,

Pk < S7 onew Y (ski0), pk; 1 Sy OneWR (ki 1),
THoneway < THoneway U 1(8ki,0, PE; 0)} U {(sks,1, pk; 1)}

pk <~ <<Pk1,Oka1,1>7 cee <Pkn,0, P’%,l))i

T'Hsk <~ T’Hsk u {(07 Skvpkv PKO)}’

return pk.

sk’

3‘75‘(PK0||M07 Skl,bl s Skl,bnvpad):

if 3(Vo, PKo|| Mo, sk1,by,- -, 5k1p,,pad) € Tg,
then return Vo;

if I( Vo, PKol|Mo, ski1.p,, - ., sk
then return Vo;

ctr < 0;

if pad #0---0,
then goto Case 1;

if3(SKo # SKb) st. ((SKo, sk, Dk, PKo) € Tatynao, ) A ((SKG, sk', k', PKo) € Tat ., )

pad, by - - -bn) (S Tg-l,

n?
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then goto Case 1;
if (SK o, sk, pk, PKo) € Ty
then goto Case 1;
else SKo < SKo; sk < sk;
ifﬂ(PKcn Mo, bT ---by) € T'Hpositiun
then goto Case 1;
else by -+ by < b7 --- b}
parse sk into <<s7€170, 576171>, R <sAkn,0, sAlan));
fori € [1,n]
if ski@ = skip,;»

sk’

//check the validity of each sk b,

then ctr < ctr + 1;
ifctr <n
then goto Case 1;
else goto Case 2;
Case 1: Vo « Xo; Tg < Tg U{(Vo, PKo, Mo, sk1by 5. -, 5kn b, , pad)}; return V.
Case 2: Vo, « HO.OSIGN(S/K\O, Mo);
Te < Tg U{(Vo, PKo, Mo, sk1p, ;.- -, 5kn b, , pad)}; return V.

SE (PKo|| Mo, Vo):
if 3(Vo, PKo||Mo, sk1 b, 5 - - - kn.p,, » pad) € Tg,

then return (sk1 p,, ..., skp.p, , pad).
if 3(Vo, PKo|| Mo, k1 by - - -» Skt » pad, by - bp) € Teu,
then return (sk1 3, , ..., skp.p,, , pad).

if I1.0VERIFY(PKo|| Mo, Vo) = 0, //for invalid signatures, S5 responds with random strings
then pad « {0, 1};
fori € [1,n]
sk « {0,1}2%
Tg + Tg U{ Vo, PKol||Mo, sk1,. .., 5kn, pad};
return (s/icl, R Qﬂn,p/a\d).
if 3(SKo, sk, pk, PK,) # (SK., sk’,pk’, PK,) € T44,,» //for this bad event, S5 responds with random strings
then pad « {0,1}*;
fori € [1,n)
sk « {0,1}2%;
Te + Te U { Vo, PKo||Mo, sk1,..., skn, pad};
return (576‘1, e an,@).
g’:} — <
if 3(PKo, Mo, b7 - - b)) e Ty
then by, - - - bp < b} ---bi;
else by, +bn  Hposition (PKo, Mo): Tay, i < Tt
if 3(SK o, sk, pk, PK,) € Ty, , then sk « sk; pk « pk;
if 3(o, sk, pk, PKo) € Ty, , then sk < sk; pk < pk;
ifgl\c =9,
then sk « {0, 1}*7*; parse sk into <(§7€1,0, 5791,1), ceey <s7€n’0, ﬁcn’ﬁ);

fori € [1,n]
;7;1-,0 P S‘;HOneWay (876

position’

U {(PKo, Mo, b1, -bn)};

position

sk’

- H ne a; -3 - - -~ -
0,0)s Pk 1 87 O™ (ski 1) THoneway < THoneway U {(5Ki,0, PE; 0)} U {(ski1, ki 1)}

pk <<Pk1,07Pk1,1)7 S <Pkn,07l’kn,1>)§
Tr, < Ta,, U{(o, 5k, Pk, PKo)};

parse sk into <<3Ak:1707 5,76171>, ceey <sAkn,0, sAlan));

parse pk into (<pk1,07 Pk11)s- -5 Pk 05 Pkn,1>>§

pad < 0---0;
Ter + Tga U{( Vo, PKo|| Mo, Skl,/l;l RPN Skmgn,pad, b1 ,bn)};
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l return (Sk1£1 Seees Skn,gn ,pad).

Next, we give the description of Ss.

— Simulator Sg

The simulator Sg will provide internal copies of the internal copy of II, =I15.{0GEN, 0SIGN, OVERIFY }; the simulator Sg has the external
oracle access to Fg; the simulator Sg will provide the following interfaces for the external differentiator D:

Sgtek (SKo):
if 3(SKo, sk, pk, PK,) € Ty, , then return sk;
if 3(o, sk, pk, PK,) € Ty, st PKo = Il,.0GEN(SK,), then T3, < Ty, U {(SKo, sk, pk, PK,)}; return sk;
sk « {0,1}4"}, PK, < T1,.0GEN(SK); parse sk into ((sklyo, sk1,1)s- .., (skn,o, skn,1>),
fori € [1,n]
pkio = SS{O““W"‘y(ski,o)vpki,l = Sgtomway(Ski,lﬁ THoneway < THoneway Y 1(5Ki,0, Pk o)} U {(ski,1, pk; 1)}
P < ((Pk1,0: P11, s (Phin 0 P 1) )i Ty, < Tryy, U{(SKo, sk, pk, PKo)}; return sk.

S;'LOUCWay (s7~c)

if 3(576, ;;E) € THopneway then return ﬁ;

pk — {07 1}>\; T'Ho,mway — THoncway ) {(Skvpk)};
return pk.

S;'lpusition (13[(07 Mo)3

if A(PKo, Mo, b1 -+ -bn) € Ty
then return by - - - by;

if 3(Vo, PKo||Mo, sk1,by 5. -5 Sknp
then return by - - - by;

b bn {0,131 Tty o sivion < THposition U {(PKo, Mo, b1+ -bn)};

return by - - - by,

position’

b1---bn) € Tgn,

n?

S (pk):
if 3(SKo, sk, pk, PK,) € Ty,
then return PK;
if 3(¢, sk, pk, PKo) € Ty,
then return PK;
parse pk into (<pk1,07 Pk11)s- -5 Pk 05 pkml)),
fori € [1,n],
if 3(sk4,0, pki,()) #* (Sk;,(w Pk‘z‘,o) € THOneWay’ //collision on pk; o
then return 1
if 3(sk,0, pki,o) & THOnoWay’
then é;i%’() < skio,
else sk o « {0, 1}2>‘7 THOneWay — THOneWay U {(sks,0, pki’o)}
if 3(ska,1, Pk 1) 7 (ki 1, Pki 1) € THopeways //collision onpk; 1
then return L ;
if 3(sks,1, pki,l) € THOneWay’
then 57431'71 — Ski’l,
else ski 1« {0,132 Toyo oy THoneway U {(5Ki,1, PK; 1)},
sk ((skl,o, k11), . (5kno, skn,1>), SKo « {0,118\, PKo + Tlo.0GEN(SKo),
Try, < Try, U{(SKo, sk, Pk, PKo)},
return PK,.

SP (PK,):

54




if 3(SK,, sk, pk, PK,) € Ty
then return pk;

if 3(o, sk, pk, PKo) € Tr,,.,
then return pk;

sk « {0, 1}4")‘;

parse sk into ((sklyo, sk1,1), .-, (skn,0, skn’1>>;

fori € [1,n]

HOneWa; HOneWa:

pki,O — SS Onew y(Ski,O)zpki,l <~ 88 Onew y(ski,l),
THOneWay A I']I’HOneWay U {(Sk’i,()? pkl,())} u {(SkiJ?pki,l)};

pk (<Pk1,0»1’k1,1>7-~~,<Pkn,o,pkn71));

T’Hsk A THsk u {(Ov Sk,pk, PKO)};

return pk.

sk’

‘S'E'f(PKoHMO7 sk1,bys .-y 8kt b, , pad):

if ( Vo, PKo|| Mo, sk1by .-, 8k1,p,,,pad) € Tg,
then return Vo;

if ( Vo, PKo|| Mo, sk1 by, .-, k1
then return Vo;

ctr < 0;

if pad #0---0,
then goto Case 1;

if I(SKo # SK') sit. ((SKo,sk:,pk, PK,) € THskRm) A ((SKg, sk',pk’, PK,) € Mskﬁm)
then goto Case 1;

if B(SKo, sk, pk, PKo) € Ty
then goto Case 1;
else SKo < SKo; sk + sk;

if A(PKo, Mo, b% -+ - b%) € Ty
then goto Case 1;
else by - - by <= b7 ---b);

parse sk into ((skLo, §7€1’1>, ooy (skn,0, skn,1>>;

fori € [1,n]
if s/;cl 5. = Skib;, //check the validity of each sk,

then ctr < ctr + 1;
ifctr <mn
then goto Case 1;
else goto Case 2;
Case 1: Vo « Xo; Tg < Tg U{(Vo, PKo, Mo, sk1by, .- -, 5kn b, , pad)}; return V.

Case 2: Vo HO.OSIGN(S/}{\O, Mo);
Te < Tg U{(Vo, PKo, Mo, sk1p, ;.- -, 5kn b, , pad)}; return V.

pad, by - - -bn) c Tg-l,

n?

sk’

position

SE (PKo|| Mo, Vo):
lfa( VO’ PKOHMO’ Skl,bl geey Skn,bnzpad) € TS,

then return (skq 4, ..., skn, b, , pad).
ifﬂ( Vo, PKOHMO, Skl,bl pooag Skn’bn,pad, by--- bn) € Tea,
then return (sk1 3, , ..., skpp, , pad).

if I1o.0VERIFY(PKo|| Mo, Vo) = 0, //for invalid signatures, S5 responds with random strings
thengTaTi « {0, l}t;
fori € [1,n]
ki « {0,1}?*,
Tg + Tg U{ Vo, PKol||Mo, sk1,. .., 5kn, pad};
return (sAkl, R Qﬁn,;a\d).
if 3(SKo, sk, pk, PK,) # (SK., sk’,pk’, PK,) € Ty
then pad « {0, 1}*;
fori € [1,n]
sk « {0,1}2*;

b //for this bad event, S5 responds with random strings
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Te + Te U { Vo, PKo||Mo, sk1,..., skn, pad};
return (;76‘1, e gcn,@).
sk« o
if A(PKo, Mo, b5 --- b)) € Ty
then by, - - - bp < b} -+ bi;
elsea7 . En «{0,1}"; Ty
if I(SKo, sk, pk, PKo) € Ty
then gl:: — sk:;I/JTc <+ pk;
if 3(o, sk, pk, PK,) € Ty, ,
then sk < sk; pk « pk:
if sk =9,
then sk « {0,1}4"*;
parse sk into ((5761,0, s/icl,l), R <s7€n,0, S7€n,1>);
fori € [1,n]
Phio — Sg 0" (shi0), Py = Sg O™ (Fi,1)s Trtomeway  THomeway U{(54,0, PRi )} U {(shi,1, phs )}
I/)I\c — <<5E1,07§E1,1>7 LR <§En,07 ﬁn,ﬂ);
Ty, + Tw, U{(o, sk, pk, PKo)};
parse sk into <<§7€170, 5761,1), RN <§7€n,0, s/icml));parsez/;l\c into ((ﬁl,o,g/oﬁklyl), RN <§En,07 ;En71>>;

pad < 0---0; Tga « Teus u{(VO,PKOHMO,S%Igl,...,sﬁcngn,@,a.-. ,bn)};return(chgl,...,gfnzn,;a\d).

position’

«— Ty U{(PKo, Mo, b1, -bn)}:

position position

sk’

.

Next, we give the description of Sy.

— Sy with oracle access to (0Gen, 0Sign, oVerify)

The simulator Sg has the oracle access to (0Gen, 0Sign, oVerify); Sg will provide the following adversarial interfaces to the differen-
tiator:

SHk(SK,):
if 3(SKo, sk, pk, PK,) € Ty, , then return sk;
if 3(¢, sk, pk, PK,) € Ty, st. PKo = o0Gen(SK,), then Ty, < Ty, U{(SKo,sk,pk, PK,)}; return sk;

sk « {0, 1}4"A, PK, < 0Gen(SK,); parse sk into ((sklyo, sk1,1), ..., (skn,0, skn,1>),
fori € [1,n]

Phi g = Sg "W (ski0); pk; g = Sg OV (sky 1) THoneway & THomeway U 1(5K4,05 Pk o)} U {(ski,1, pk; 1)}
pk <~ <<Pk1,ovpk1,1>v s <Pkn,07 Pkn,1>)»

T’Hsk — T’HSk u {(SK07 ’Sk7pk7 PKO)};
return sk.

S;{OneWay (876)

if 3(5k, Pk) € Tooneway -

Athen return ZE;

P {0, 11 Trtgnewvay ¢ THoneway U {5k, PR));
return 1/0%

S;{position (PKO, Mo):

if A(PKo, Mo, b1 -+ -bn) € Ty
then return by - - - by;

ifEI( Vo, P[(OHJWO7 Skl,bl goaop Sk’"’bn,bl 900 bn) € Tg—l,
then return by - - - by

by by « {07 1}71; T'H

return by - - - by,

position?

— Ty U{(PKo, Mo,b1---bn)};

position position

S§ (pk):
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if 3(SK,, sk, pk, PK,) € Ty
then return PK;
if 3(¢, sk, pk, PKo) € Ty,
then return PK;
parse pk into (<pk1,07 pk171>, ceey (pkmo7 pkn,1>>’
fori € [1,n],
if 3(sk4,0, pki,()) #* (Sk;,(w Pk‘z‘,o) S THOHQW{W, //collision on pk; o
then return L ;
if a(skiyo,pk‘iyo) (S THODCWay’
then 8767;7() — Ski’o,
else ski,0 « {0,13**, Trgeway < THoneway U {(5Ki,0, ki 0)}
if 3(ski,1, pk; 1) # (Sk“;’lvpki,l) € THoneway: //collision on pk;
then return L ;
ifa(Ski’l’pki,l) € THOneWay’
then 87437;71 < ski1,
else ski,1 < {0, 13*, Ton0way < THoneway U {(5ki,1, PR 1)},
sk < ((S/;i‘ly(h ;79171), R <57€n,0, 57an>)) SKo « {0, 1}8">‘7 PKo <+ oGen(SKo),
Th, < Ta,, U{(SKo, sk, pk, PKo)},
return PKo,.

sk’

if 3(SKo, sk, pk, PKo) € Ty, ,
then return pk;
if 3(o, sk, pk, PKo) € Ty, ,
then return pk;
sk « {0,1}47*;
parse sk into ((skLo, sk1,1),- -, (skn,0, skn,1>>;
fori € [1,n]
HOnewa: HOnewa:
Pk < Sg onew ¥ (ski0), Pk; 1+ Sg OneWa (ki 1),
THOneWay A I]T’HOneWay U {(Ski107 pk’b,o)} U {(SkiJ?pki,l)};
pk < <<Pk1,07Pk1,1>7 cee <Pkn,0, Pkn,1>)3

Ty = Tag U{(0, sk, pk, PKo)};
return pk.

8§ (PKo||Mo, sk1p,, - -, sk1p,, pad):

if ( Vo, PKo|| Mo, sk1 by, .-, 8k1p
then return Vo;
ifﬂ( Vo, PKOHMO, Skl,bl Sy Sklybn,pad, by bn) € Tg—l,
then return Vo;
ctr < 0;
if pad #0---0,
then goto Case 1;
if 3(SKo # SKb) st. ((SKo, sk, Dk, PKo) € Tatynae, ) A ((SKG, sk', k', PKo) € Tat ., )
then goto Case 1;
if A(SK o, sk, pk, PK,) € T,
then goto Case 1;
else SKo < SKo; sk < sk;
if A(PKo, Mo, b} -+ - b%) € Ty
then goto Case 1;
else by -+ - by < b7 --- b}
parse sk into <<§7€170, 3761,1), AU <§7€n’0, s7cn71>>;
fori € [1,n]
if ski@ = skjp,;»

pad) € Tg,

n?

position
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/ /check the validity of each ski,bi

then ctr < ctr + 1;
ifctr <n
then goto Case 1;
else goto Case 2;

Case 1: Vo « 3o; Tg < Tg U{(Vo, PKo, Mo, $k1,by 5 - -, 5kn b, , pad)}; return V.

Case 2: Vo« oSign(gl-(\o, M) ;
Te < Tg U{( Vo, PKo, Mo, sk1,py 5 - -, Skn b, , pad)}; return V.

SE (PKo|| Mo, Vo):
if 3(Vo, PKol||Mo, k1.6, - - -, Sknp,, , pad) € Te,

then return (skq 4, ..., Skn, b, , pad).
if I(Vo, PKo|| Mo, sk1,by - - - Sknb,, , pad, by - - -bp) € Tg,
then return (skq 4, ..., Skn, b, pad).

if oVerify (PK,|| Mo, Vo) =0, //for invalid signatures, S5 responds with random strings
then pad « {0,1}%;
fori € [1,n]
5761' « {0, 1}2)‘;
Te < Te U{ Vo, PKo||Mo, k1, . .., skn, pad};
return (sAkl, e sAkn,p/a\d).
if 3(SKo, sk, pk, PK,) # (SK., sk',pk’, PK,) € Ty
then pad « {0, 1};
fori € [1,n]
s?ci « {0,1}2*,
Te + Tg U {VmPKOHMO:S%l, . ~737€n717(-l\d}§
return (acl, e gﬂn, p/a\d)
sk« o
if I(PKo, Mo, b% -+ - b%) € Tayg
then by, - - - bp < b} -+ b
elsegl7 .- En « {0,1}™; Ty
if 3(SKo, sk, pk, PKo) € T
then sk  sk; pk — pk;
it 3(o, sk, pk, PKo) € Tsy,, ,
then .;l:: — sk:;z/ﬂ\c <+ pk;
if sk =9
then sk « {0, 1}47*;
parse sk into ((&1707 sAkl,l), R <5Akn,o, 3767171));
fori € [1,n]
;Ei,() — Sgiomway (SA/ﬂ,O)vZ;Em — S;-tomway(;ki,l),
Thoneway © THoneway U {(5Fi,0,PE; 0)} U {(ski,1, PR; 1)}:
pk <<pk1,07pkl,1>1 coag <pkn,0, pkn,1>>;
Ty, < Ta, U{(o, sk, Dk, PKo)};

parse sk into <<SA’€1,07 sAk171), ce <§7€n,0, s/icn,1>>;

Pafseﬁcinm ((]321,075’;1,1% RPN <;En,011/)En,l>);

<> //for this bad event, S5 responds with random strings

position’

+— Ty U{(PKo, Mo,b1,--bn)}:

position position

sk’

pad < 0---0;
Ter < Tea U{( Vo, PKo|| Mo, Skl,El RN sknj;n,pad, b1+ ,bn)};
return (;761 By s/I\cn & ,;E(;l).
.
It’s trivial that Pr[gg-:’D =1]= Pr[IdealgSIG’D], and thus we complete the entire proof.
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B Ideal Objects

Random Oracle Model (ROM). Random oracle model is an idealized model proposed by Bellare and Rogaway [BR93].
ROM formalizes a model (a theoretical black box) which responds to any unique query with a truly random string,
and if the query is repeated, the response would be consistent. More concretely, a random oracle model has a publicly
accessible hash function H : {0,1}* — {0, 1}" such that:

1. for any z, every bit of H(x) is truly random;

2. for any z # y, H(z) and H(y) are independent.

Ideal Cipher Model (ICM). The ideal cipher model is another idealized model which is firstly proposed by Shan-
non [Sha49] and then formalized by Black [Bla06]. This model also responds to any unique query with a truly random
string. While, instead of having a publicly accessible random function, ideal cipher model has a publicly accessible
ideal cipher E : {0,1}* x {0,1}™ — {0,1}". Specifically, E is an ideal cipher along with a k-bit key and n-bit
input/output such that:

1. for any pair (k, x), every bit of E(k, x) is truly random;
2. for any fix key k, F(k, ) is a random permutation;
3. for any k1 # ko and (x,y), E(k1,x) and E(ks,y) are independent.

Moreover, any adversary interacting with an ideal cipher model would be given access to both the cipher and its
inverse.
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