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3 Cape Privacy

Abstract. Secure multiparty generation of an RSA biprime is a challenging task, which
increasingly receives attention, due to the numerous privacy-preserving applications that
require it. In this work, we construct a new protocol for the RSA biprime generation task,
secure against a malicious adversary, who can corrupt any subset of protocol participants.
Our protocol is designed with generic multiparty computation (MPC), making it both
platform-independent and allowing for weaker security models to be assumed (e.g., honest
majority), should the application scenario require it. By carefully “postponing” the check
of possible inconsistencies in the shares provided by malicious adversaries, we achieve
noteworthy efficiency improvements. Concretely, we are able to produce additive sharings
of the prime candidates, from multiplicative sharings via a semi-honest multiplication,
without degrading the overall (active) security of our protocol. This is the core of our
sieving technique, increasing the probability of our protocol sampling a biprime. Similarly,
we perform the first biprimality test, requiring several repetitions, without checking input
share consistency, and perform the more costly consistency check only in case of success
of the Jacobi symbol based biprimality test. Moreover, we propose a protocol to convert
an additive sharing over a ring, into an additive sharing over the integers. Besides being
a necessary sub-protocol for the RSA biprime generation, this conversion protocol is of
independent interest. The cost analysis of our protocol demonstrated that our approach
improves the current state-of-the-art (Chen et al.—Crypto 2020), in terms of communi-
cation efficiency. Concretely, for the two-party case with malicious security, and primes
of 2048 bits, our protocol improves communication by a factor of ∼37.

1 Introduction

An RSA modulus, also known as a biprime, and usually denoted by the variable N, refers to a
number which is the product of two prime numbers, usually denoted by p and q; thus, N=p·q.
The RSA modulus is a crucial component of the first public key encryption scheme, the RSA
scheme [RSA78], as well as many other public key encryption schemes that followed it. The security
of the RSA cryptosystem is based on the hardness of factoring, and as such N is part of the public
key of the RSA scheme [RSA78], while its factors p and q determine the secret key. Specifically,
the security of the cryptosystem is determined by the bit-length of the biprime, and therefore
efficient methods to generate (large) biprimes have been of interest since RSA was devised.

Initially, the generation of the parameters of a public key cryptosystem (including the biprime
generation) was assigned to a trusted third party. However, there are applications were no single
party can be entrusted with such a task, which gave rise to the study of distributed biprime



generation. The problem of secure distributed RSA modulus generation is being studied since
1997, when the seminal work of Boneh and Franklin [BF97] appeared. After the initial interest in
the problem, in the years around the work of Boneh and Franklin, with literature attempting to
improve the efficiency, or security aspects of the original work, the subject ceased being studied
for about a decade. Then, again, during the last decade the interest on secure distributed RSA
modulus generation is increasing. This is due to the sheer number of recent applications, requiring
distributed RSA modulus generation.

Traditionally, the study of distributed RSA modulus generation has found numerous appli-
cations in threshold cryptography [Des94,Rab98,Des98,GRR98,DF90]. Nowadays, blockchain
applications requiring permissionless consensus, also need to deploy the techniques of threshold
cryptography, which explains the recently revived interest in RSA modulus generation. A concrete
example of applications for the RSA modulus generation in the context of decentralized systems
and consensus protocols is that of Verifiable Delay Functions (VDFs) [BBBF18,Wes19,Pie19].
Threshold cryptography requiring the distributed generation of an RSA modulus is now expanding
beyond academia, as companies and foundations (e.g., Unbound, the VDF Alliance, the Ethereum
Foundation, Ligero) are providing services based on top of these technologies to the public.

1.1 Related Work

The study of secure multiparty RSA modulus generation was initiated by Boneh and Franklin [BF97].
Boneh and Franklin [BF97] devised a biprimality test to perform the distributed RSA modulus
generation, instead of individually testing the primality of the two prime factors of N. Given
that N is the public output of their protocol, this granted them an efficiency advantage, since
their expensive multiparty computations can be computed modulo the public N this way. On the
other hand, the biprimality testing approach, requires that two prime numbers are simultaneously
sampled, which leads to an increased number of iteratively invoking the subroutines of the protocol,
since efficient primality testing is probabilistic in nature. Trial division, applied individually on
each of the prime candidates, somewhat relaxes the abovementioned performance penalty. The
blueprint of Boneh and Franklin [BF97], which is also adopted by most of the follow-up protocols
in the literature, consists of three main steps: (1) pick prime candidates (via trial division); (2)
securely multiply candidates; (3) biprimality testing (followed by the RSA key generation step,
whenever key generation is actually needed).

The Boneh-Franklin protocol was implemented, together with some newly introduced opti-
mizations by Malkin et al. [MWB99]. Malkin et al. [MWB99] first deploy a (simpler) Fermat
test to check biprimality, which with low probability introduces false positives. If this simpler
test passes, then they deploy the Boneh-Franklin biprimality test, to eliminate any potential false
positives. The most important optimization proposed by Malkin et al. [MWB99] is a distributed
sieving technique, which results in a 10× improvement in running time for the generation of
a 1024-bit biprime. The distributed sieving ensures that the candidate primes p and q are not
divisible by the first small primes, up to a predetermined bound. This is done by each party
randomly selecting multiplicative shares, which are coprime to the predeterimined bound (and
therefore their product is also coprime to the bound), and then transforming these to additive
shares to proceed with the rest of the protocol.

Frankel et al. [FMY98] were the first to propose a distributed RSA key generation in the
malicious security, honest majority setting. One of the main tools, devised and used for the RSA
key generation by Frankel et al. [FMY98], is an unconditionally secure multiplication protocol over



the integers. To generate the RSA modulus Frankel et al. [FMY98] deploy a maliciously secure
version of the Boneh-Franklin biprimality test, and then show how to produce the actual RSA
keys: a more efficient version for small keys, and a less efficient one for larger keys. Although their
tailored protocol is more efficient than a solution merely deploying a passive to active security
compiler, it still remains inefficient.

Limited to the two-party case, Poupard and Stern [PS98] propose a maliciously secure protocol
for the RSA modulus generation, based on OT. Although their protocol is less efficient than the
Boneh-Franklin one, it is secure in a more stringent security model, and it can serve two parties
(instead of three that are required by the Boneh-Franklin protocol), in application scenarios where
this is needed. However, the protocol suffers from a leakage of information in the presence of
a malicious party, who can learn up to

∑
p∈P log(p)/p bits of the prime factor p, with P being

the set of tested primes. Another OT-based, two-party protocol for the RSA key generation
(and the RSA modulus generation) was proposed by Gilboa [Gil99]. Unlike Poupard and Stern’s
solution, Gilboa’s protocol offers only semi-honest security, but it is more efficient. The well-known
OT-based multiplication protocol of Gilboa, which by now is a classic, and adaptations thereof
are frequently used in the construction of secure multiparty computation protocols, is also the
basis of the RSA key generation protocol that they devised.

Algesheimer et al. [ACS02] perfom a distributed primality test, unlike the protocol of Boneh
and Franklin [BF97] that was based on biprimality testing. Specifically, they show how to perform a
distributed version of the Miller-Rabin primality test, and do proceed with the multiparty computa-
tions modulo a secret prime, that the previous work avoided. To achieve this, they deploy three types
of secret sharing schemes, and show how to convert shares from one to another. Moreover, their con-
structions allow the generation of an RSA modulus, whose prime factors are actually safe primes.
Both the work of Algesheimer et al. [ACS02] and the work of Boneh and Franklin [BF97] are proven
secure in the semi-honest, honest majority security model, and require minimally three parties.

Damg̊ard and Mikkelsen [DM10] were the first to efficiently achieve malicious security for the
task of distributed RSA modulus generation, though in the honest majority setting. In fact, the
first to adjust the protocol of Boneh and Franklin to the active security model were Frankel et
al. [FMY98], but malicious security was achieved at the cost of protocol efficiency. The work of
Damg̊ard and Mikkelsen [DM10] can be seen as a hybrid of two of its predecessors [BF97,ACS02],
trying to combine the most efficient aspects of both of these approaches. Concretely, by using
replicated secret sharing they can do both multiplications, and the modular reductions suggested
by Algesheimer et al. [ACS02], which require the protocol to work over the integers (instead of
a field), without having to convert between different secret sharing schemes. The downside of the
Damg̊ard and Mikkelsen’s [DM10] protocol is that it does not scale well in the number of parties,
and it is not straightforward to extend to more than three parties.

Hazay et al. [HMRT12,HMR+19] deploy partially homomorphic encryption to complete the
two first steps of the Boneh and Franklin blueprint, and proceed to step 3 with biprimality testing.
They achieve the first general n-party protocol (i.e., for any n≥2) in the active security model, and
the dishonest majority setting. Active security in this setting is achieved by deploying tailored zero-
knowledge proofs. Hazay et al. [HMRT12,HMR+19] build upon Gilboa’s technique [Gil99] achieving
two-party actively secure RSA modulus generation à la Boneh and Franklin, but they are the first
to adapt also the trial division step of the protocol, achieving therefore a significant efficiency boost.
For the multiplication step that follows to compute the candidate biprime, Hazay et al. [HMRT12,
HMR+19] carefully use a combination of the Paillier and ElGamal encryption schemes.



In the two party setting, Frederiksen et al. [FLOP18] propose an OT-based, maliciously secure
protocol for the distributed RSA modulus generation, which is more efficient than previous work.
The efficiency improvement is due to one single compact zero-knowledge argument of correct
behavior at the end of the protocol, instead of the numerous (one per message) tailored zero-
knowledge proofs required in the protocol of Hazay et al. [HMRT12,HMR+19]. The maliciously
secure protocol of Frederiksen et al. [FLOP18] is provably secure, and concretely efficient, as
shown by the authors with an implementation. However, it suffers from some information leakage
at the trial division step. This leakage is formalized in the functionality, and taken into account
in the security proof, and it is argued to be justified both in theory and in practice, as leakage
of a few bits of the prime factors should not be able to break the RSA assumption, and therefore
also not the security of the protocol. Nevertheless, in the malicious case, this leakage may lead
to selective failure attacks, which also impacts the efficiency of the protocol.

Recently, Chen et al. [CCD+20] successfully ovecame the limitations of the proposal of Frederik-
sen et al. [FLOP18]. Benefiting from the efficiency advantages that a CRT number representation
allows, Chen et al. [CCD+20] devise a maliciously secure n-party protocol, tolerating n−1 (active)
corruptions, while avoiding both the deployment of expensive cryptographic primitives, and the
information leakage incurred by the protocol of Frederiksen et al. [FLOP18]. Leveraging the CRT
representation, Chen et al. [CCD+20] not only gain efficiency from the linearity of the smaller
in bit-size computations that can be performed locally, but they also constructively sample their
primes such that they are not divisible by the small primes used for the CRT representation. This
way they significantly increase the probability of hitting a prime, and therefore also increase the
overall protocol efficiency. Their distributed RSA modulus generation protocol follows the general
Boneh and Franklin paradigm.

A large scale implementation of the distributed RSA modulus generation, and improvement of
the previous work of Chen et al. [CCD+20], named Diogenes [CHI+20], is the most recent result
in the area. From a scalability point of view, Diogenes [CHI+20] is the first MPC implementation
for a non-trivial task that scales to thousands of parties. To achieve efficiency and scalability, Dio-
genes [CHI+20] deploys the so-called coordinator model, which is a setting consisting of a powerful,
honest-but-curious coordinator, and thousands of relatively lightweight computation parties. The
RSA modulus generation protocol proposed in Diogenes [CHI+20] is secure against n−1 (out of
the n) malicious parties. Building upon the work of Chen et al. [CCD+20], Diogenes [CHI+20] also
deploys the CRT representation, and constructive sampling techniques. To avoid the communi-
cation cost that pairwise messages incur, and to exploit the potential of packing and SIMD to the
fullest, Diogenes [CHI+20] is based on a Ring LWE additively homomorphic encryption scheme
(AHE), where the semi-honest coordinator is tasked to perform all the homomorphic additions
necessary, as well as relay messages. Malicious security for such a large scale application, is achieved
by a composition of zero-knowledge techniques, the certification of which is aggregated and verified
only once, at the end of the protocol, and only for the successful protocol iteration. In Table 1
the main functionality and security features of our work and the related works are summarized.

∗The protocol can be non-trivially extended to support more than 3 parties, but efficiency does not scale.
∗∗Diogenes works in the semi-honest coordinator model, and active security is only guaranteed for

the non-coordinating parties.



Protocol Security
Dishonest

#Parties Test No Leakage
Majority

[BF97] Passive × n≥3 biprimality X
[FMY98] Active × n≥3 biprimality X
[PS98] Active X n=2 biprimality ×
[Gil99] Passive X n=2 biprimality X

[ACS02] Passive × n≥3 primality X
[DM10] Active × n=3∗ primality X

[HMRT12]
Active X n≥2 biprimality X

[HMR+19]

[FLOP18] Active X n=2 biprimality ×
[CCD+20] Active X n≥2 biprimality X
[CHI+20] Active∗∗ X n≥2 biprimality X

Ours Active X n≥2 biprimality X
Table 1. Comparison of the related work.

1.2 Our Contribution

In this work we show how to securely generate an RSA biprime in the standard multiparty setting,
where all parties contribute equally to the computation. We assume a static active adversary
who can corrupt up to n−1 (out of the total n) parties, but remark that our proposal works
with generic MPC, allowing the deployment of different security models, based on the needs
of the application at hand. This makes our protocol MPC-platform-independent, as it can be
realized with any MPC technology that is based on linear secret sharing techniques. For example,
Shamir’s secret sharing [Sha79] can be deployed, if our goal is to produce the RSA moduli in
the honest majority setting; or (a variant of) the replicated secret sharing scheme of Araki et
al. [AFL+16,FLNW17], should high throughput be the main goal of the MPC implementation.

Following the paradigm of recent work [CCD+20], we design a constructive distributed sampling
sub-protocol that increases the probability of our overall protocol generating a biprime. Crucially,
we achieve this constructive sampling having the parties first sample multiplicative sharings of a
certain form, and then transforming them into additive sharings, by computing their product in a
semi-honest fashion. This does not degrade the security of the RSA generation protocol, because
subsequently we reveal the public biprime N (i.e., the product of the sampled candidate primes
p and q). An adversary who succeeds in introducing an additive error in the sharings of p or q
that is consistent with the error in their product N , should effectively factor N , which is hard by
the original assumption for an RSA biprime. This semi-honest multiplication presents itself as a
major bulk of the protocol’s cost, so the savings from performing it semi-honestly are substantial.

Another important technique we deploy is to run the biprimality test in terms of checking the
Jacobi symbol (which identifies most of the biprimes successfully) without checking the consistency
of the input shares in the test. Note that the Jacobi test has to be repeated once for each candidate
and σ times for a candidate that passes the first iteration of the test, for σ a statistical security
parameter. This means that any cost savings in this part of the protocol impact significantly the
overall efficiency. The more computationally and communication intensive consistency checks are
only performed on the candidate for which all repetitions of the Jacobi test have succeeded.



To perform the consistency check that follows the Jacobi symbol test, our protocol requires
to convert a bounded additive sharing from its CRT representation to a single additive sharing
over the integers. This is to match the computations performed in the exponent over the integers
for the completion of the Jacobi test. We design a protocol that performs the aforementioned
conversion, and we remark that in addition to being necessary for our RSA modulus generation,
this protocol is of independent interest. For example, one of the PRF constructions in Grassi
et al. [GRR+16], requires the MPC preprocessing field to be compatible with an elliptic curve
group G. Our exponentiation protocol, with public output and secret exponent, would make
their preprocessing field compatible with the latest SHE techniques [KPR18,BCS19], since those
require special primes, which might be incompatible with elliptic curve groups. Our work might
also improve the preprocessing efficiency in other works, which need to compute gx in public,
where x is secret shared [ST19,HKRW20,DOK+20], but we leave this for future investigation.

Lastly, we analyze our protocol, and set concrete parameters to compute the communication
cost it incurs. We also show how the communication cost of our protocol scales in the number of
parties, and for different parameter sets. With conservative estimations, and a statistical security
parameter set to σ=80, our protocol outperforms the current state-of-the-art [CCD+20] in all but
one settings: the semi-honest security with 16 parties setting. For malicious security, and primes
of 2048 bits, our protocol improves the previous work by over 30 times, both in the two-party,
and in the 16-party case.

To summarize, our main contributions are as follows:

1. Our RSA modulus generation protocol works for generic MPC, being able to leverage any
MPC technology based on linear secret sharing.

2. We constructively sample candidate primes, transforming multiplicative sharings to additive
sharings, by computing their product in a semi-honest fashion, which is checked for maliciously
inserted additive errors later in the protocol, resulting in the protocol’s cost reduction.

3. The first biprimality check, implemented by means of checking the Jacobi symbol, is costly
and repeated σ times in our protocol. We show how to postpone the even costlier consistency
check on the shares contributed to the Jacobi test, in order to again gain efficiency.

4. We design a protocol to convert an additive sharing over a ring to an additive sharing over
the integers, which is of independent interest.

5. We demonstrate that our protocol improves the communication cost over the current state-
of-the-art [CCD+20].

1.3 Technical Overview

Our main protocol, ΠRSAGen, works in five distinct phases: (1) the sampling phase, aiming at
generating two prime numbers p and q, secret shared among the protocol participants; (2) the
combine phase, computing the product N of the previously sampled candidate primes, which
is securely computed and then revealed to all parties; (3) the Jacobi test, checking whether the
computed N is a biprime; (4) the consistency check, ensuring input consistency in the presence
of malicious adversaries, should the Jacobi test indicate a candidate biprime; and (5) the GCD
test, which checks again whether N is a biprime, to ensure that the protocol did not accept a
false positive that the Jacobi test may not catch.

Our Sampling phase first deploys a technique similar to the one introduced by Malkin et
al. [MWB99], which they term distributed sieving. Distributed sieving entails each party sampling



a multiplicative share for each of the two primes p and q, then performing a (semi-honest)
multiplication on these shares, and then re-share them to transform them into additive shares.
With the distributed sieving we increase the probability of sampling primes p and q. Similarly to
recent related work [CCD+20,CHI+20], we leverage the Chinese Remainder Theorem (CRT) to
further increase the efficiency of our protocol. To this end, we show how to extend the standard
actively secure MPC functionality to work on separate MPC engines: one for each of the CRT
components we consider. We call this functionality FMPC-CRT.

In the Combine phase of ΠRSAGen, based on the aforementioned FMPC-CRT functionality, we
perform an actively secure multiplication between the two sampled primes, we reveal the result to
all parties, and check whether the product falls within the predetermined bounds, and whether it is
coprime to a valueMsample, which is the product of `(λ) primes. Should both of these checks pass, the
combine phase is completed and we proceed to the Jacobi test on the generated candidate biprime.

The Jacobi test aims at establishing whether the product N is a biprime. Although this
test introduces no false negatives, it has a probability of 1/2 of introducing a false positive
(i.e., accepting a non-biprime). To increase the probability of N being a biprime to 2−σ (before
proceeding to the ultimate GCD test) we repeat the Jacobi test σ times. The core of the Jacobi
test lies in a secure exponentiation protocol, with public output, where the computations in the
exponent are performed over the integers. We deploy the exponentiation protocol proposed by
Grassi et al. [GRR+16] to compute the desired Jacobi symbol. If the Jacobi symbol is ±1, we
proceed to the next phase, which is the Consistency Check.

The consistency check ensures that the protocol will abort, in the presence of active adversaries
who have input inconsistent shares of the candidate primes. To achieve this, we carefully mask the
exponent of the Jacobi test, with bounded randomness (for which we have devised a specialized
protocol, ΠRand2k) so that all computations are performed over the integers without wrap around.
Then, the masked value itself needs to be an additive sharing over the integers. To this end, we
have devised a protocol to convert an additive sharing over a ring, into an additive sharing over
the integers, named ΠConvInt. By ensuring that indeed no computation wrapped around, we check
an equivalent relationship for the exponentiation performed for the Jacobi symbol computation,
which serves as a proof of input consistency of the shares contributed by each party to the Jacobi
test. This ensures security against malicious adversaries.

The last phase of our protocol aims at eliminating any false positives that are not filtered out
by the Jacobi test. Concretely, in the GCD phase we wish to verify that gcd(N,(p+q+1))=1. This
phase requires again the generation of bounded randomness, for which we deploy the same protocol
we devised for the Jacobi test, as well as a careful selection of the bounds, and number of necessary
CRT components, ensuring that no wrap around happens during the secure computations. Note
that according to the original work of Boneh and Franklin [BF97], the latter test introduces a
false negative, in the particular case of N=p·q, with p,q primes, and q=1 mod p.

2 Preliminaries

2.1 Chinese Remainder Theorem - CRT

Following the blueprint of the two most recent works in distributed RSA modulus genera-
tion [CCD+20,CHI+20], we deploy in our work the Chinese Remainder Theorem to increase the
efficiency of our protocol. We recall here the Chinese Remainder Theorem [KL20].



Algorithm CRTrec((xp1 ,...,xp`),(p1,...,p`))

1. Compute N=
∏`
i=1pi.

2. For all i∈{1,...,`} compute Ni=N/pi and find Mi satisfying Ni ·Mi=1 mod pi.
3. Compute x=

∑`
i=1xpiNiMi mod N.

Fig. 1. CRT Reconstruction Algorithm.

Theorem 1. LetN=pq where p and q are relatively prime. Then ZN'Zp×Zq and Z∗N'Z∗p×Z∗q.
Moreover, let f be the function mapping elements x ∈ {0, ... ,N − 1} to pairs (xp, xq) with
xp ∈ {0,...,p−1} and xq ∈ {0,...,q−1} defined by f(x) = ([x mod p],[x mod q]). Then f is an
isomorphism from ZN to Zp×Zq, as well as an isomorphism from Z∗N to Z∗p×Z∗q.

The CRT generalizes to any vector of pairwise relatively primes p1,p2,...,p`, whose product
is N=

∏`
i=1pi. Then the function f mapping elements x∈{0,...,N−1} to tuples (xp1,...,xp`) with

xpj ∈{0,...,pj−1}, is an isomorphism from ZN to Zp1×···×Zp` and from Z∗N to Z∗p1×···×Z
∗
p`

.
We refer to the tuples (xp1,...,xp`) as the CRT representation of x.

To convert an element from its CRT representation to its representation modN , we deploy
the so-called CRT Reconstruction algorithm, which is presented in Fig. 1.

2.2 Notation

We define Msample=3·5····pb to be the product of the first b primes (excluding 2). This is the space
from which we sample the first multiplicative sharings of the candidate primes p and q in our
protocol. Further, we define M`=p1·p2···p` to be the product of ` distinct primes of size 128 bits
each. To achieve efficient arithmetic over M` we use ` distinct MPC engines, each of which operates
over pi. At different stages of our protocols we work either with these distinct MPC engines, or
we perform the CRT reconstruction of the variables we work with over an MPC engine M`.

To compress and simplify notation throughout this paper, we denote by (x,`) the CRT repre-
sentation of x mod M`, that is all ` CRT components (x mod p1,...,x mod p`). The local operation
of CRT reconstruction of x mod M` from its CRT representation is denoted as CRTrec(x,`).

We use square brackets to denote additively secret shared values, e.g., the shared version of
x is denoted by [x]. We use double square brackets for the authenticated secret shared values, e.g.,
the authenticated shared version of x is denoted by JxK. When the sharings are over the CRT
representation with ` CRT components, we denote the sharings as [x,`], and Jx,`K, respectively,
and assume ` MPC engines operating in parallel, one for each CRT component.

3 Protocol Ingredients

Our main protocol for the biprime generation depends on several functionalities. In this section we
present all functionalities that are necessary for the realization of the final FRSAGen functionality,
and elaborate on the non-standard ones. We begin the description of the ingredients that comprise
our final protocol with a roadmap explaining the dependencies between the functionalities required
to realize FRSAGen.



3.1 Roadmap

In Fig. 2 we demonstrate the functionality dependencies for the RSA modulus generation. We
denote functionalities with circles, and protocols with rectangles. On the dependency vectors ‘H’
stands for hybrid (as in which hybrid model do we assume for the protocol), and ‘R’ stands for
realizing, and leads to the functionality that the origin protocol realizes. In this section we show
how to reach the root of the depicted tree, namely the ΠRSAGen protocol, which in turn realizes
the FRSAGen functionality.

The first functionality that our protocol makes use of, is the FABBWithErrors. This is used
in the sampling phase of ΠRSAGen, where we resort to a semi-honest multiplication protocol to
compute the additive shares of the two primes contributed by each party, from their multiplicative
shares. This is realized by the ΠABBWithErrors protocol, which in turn is constructed in the
FABBWithErrors−Prep-hybrid model (realized by ΠABBWithErrors−Prep). The reader can think of this
functionality as the standard MPC arithmetic black-box, secure against passive adversaries. The
preprocessing phase of the arithmetic black-box produces unauthenticated input tuples, and
multiplication triples. We elaborate on the workings of ΠABBWithErrors in Section 3.2.

Then, the rest of the sampling phase, as well as the combining phase of ΠRSAGen uses the
FMPC-CRT functionality, realized by the ΠMPC-CRT protocol, which is in turn designed in the
standard FMPC-hybrid model. For completeness, we present the FMPC functionality in Fig. 13,
Appendix A. In Section 3.3 we show how to generalize the standard actively secure MPC
functionality to support parallel MPC engines operating over sharings of the CRT representation
of the inputs, designing therefore the FMPC-CRT functionality.

The Jacobi test phase of ΠRSAGen makes use of the standard broadcast, and randomness
sampling functionalities, which are presented for completeness in Appendix A, Fig. 14, and
Fig. 15, respectively. The consistency check that follows the Jacobi test of ΠRSAGen requires
two additional functionalities. To support these two additional functionalities, we augment the
FMPC-CRT functionality with two additional commands, and integrate them into the ΠAdvMPC−CRT
protocol, realizing the corresponding FAdvMPC−CRT functionality. This is presented in Section 3.4.
Concretely, the first command implements a functionality that generates bounded randomness to
accommodate computations that would otherwise wrap around in the original CRT representation.
This construction is presented in Section 3.4 and the protocol that realizes uses the additional
FmaBits command of the FMPC-CRT functionality. The latter functionality facilitates the generation
of multiply authenticated random bits [RST+19]. Furthermore the consistency check that follows
the Jacobi test requires certain computations to be performed over the integers. To realize this
second command we need to convert a sharing from its CRT representation to an additive sharing
of the CRT reconstructed value over the integers. We explain how to achieve this in Section 3.4.

3.2 Unauthenticated Arithmetic Black Box Functionality

FABBWithErrors (Fig. 3) is the functionality implementing an unauthenticated arithmetic black box
MPC. Our ΠRSAGen protocol makes use of this functionality to perform a multiplication, in a
more efficient manner than the actively-secure version. This does not cause the overall security
of our protocol to depreciate, because the range in which the parties’ inputs lie are implicitly
checked when opening the product of the two sampled candidate primes, and the remaining
primitives used in ΠRSAGen are actively secure.
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Fig. 2. Functionality dependencies for RSA modulus generation.

For completeness, we detail the protocol realizing the unauthenticated ABB functionality,
ΠABBWithErrors, in Appendix B, Fig. 17. The ΠABBWithErrors protocol implements the online phase
of the unauthenticated arithmetic black box, and it works in the FABBWithErrors−Prep-hybrid model.
This functionality, realized by ΠABBWithErrors−Prep, is used to generate the necessary preprocessing
material for the online phase. Concretely, the required preprocessing material is (unauthenticated)
input tuples and multiplication triples. The protocol for the preprocessing for tuples is listed in
ΠInputTuple (Fig. 18), while the protocol for the preprocessing of triples is listed in ΠTripleGeneration

(Fig. 19), in Appendix B. Note that the ΠTripleGeneration protocol makes use of the standard FRand

functionality, which is presented for completeness in Fig. 16, Appendix A.

For simplicity and clarity of presentation we describe here (and in Appendices B and A) the
protocols implementing the standard unauthenticated arithmetic black box functionality. We
also invoke the corresponding functionality in our protocol in the usual manner. However, we
recommend this functionality to be implemented over a CRT representation of the sharings and
inputs, meaning that we would need multiple MPC engines operating in parallel for each CRT
component. We detail how to achieve the standard actively secure MPC functionality over CRT
components in Section 3.3. The FABBWithErrors functionality can be also implemented over CRT
components in the same manner. We have assumed the aforemenioned implementation of the
FABBWithErrors functionality for the efficiency analysis of our protocol.



Functionality FABBWithErrors

Initialize: Parties call FABBWithErrors−Prep to receive preprocessing tuples and triples.
Input: Receive a value x from some party and store x.
Mult([x],[y]): Await for ∆ from the adversary. Compute z=(x·y)+∆ and store [z].
Share([x]): For each corrupt party i∈A receive xi from the adversary. Sample uniformly honest
parties’ shares xjj/∈A such that

∑n
i=1xi=x. Send xi to Pi.

Fig. 3. Arithmetic Black Box Functionality with Errors.

Functionality FMPC−CRT

Let [x,`] denote the identifiers for the ` components of the CRT representation a value x stored in
the functionality. Let A⊂{1,...,n} denote the index set of the corrupted parties.
Init: Receive p1,...,p` primes from all parties, store them and compute M`=Π

`
i=1pi.

Input: Receive a tuple (x,`′)∈ZM`′ with `′≤` from some party and store ([x,`′]).
Add([x,`′],[y,`′]): Retrieve (x,`′) and (y,`′) from memory, compute z=x+y mod M`′ , and store
([z,`′]).
Mult([x,`′],[y,`′]): Retrieve (x,`′) and (y,`′) from memory, compute z=x·y mod M`′ , and store ([z,`′]).
Open([x,`′]): Retrieve (x,`′) from memory and send the value x to all parties.
OpenTo([x,`′],j): Retrieve (x,`′) from memory and send the CRT represented values (x,`′) to party
Pj.

Fig. 4. MPC over CRT Functionality.

3.3 MPC on CRT Components

In this subsection, we describe the functionality and the associated protocol to perform secure mul-
tiparty computation over a big composite modulus, by relying on the Chinese Remainder Theorem.
The functionalityFMPC−CRT (Fig. 4) essentially implements the standard MPC functionality, but on
sharings in their CRT representation. To accommodate computations on this type of sharings, we de-
ploy ` MPC engines, for ` the maximum possible number of CRT components in the representation,
as shown in ΠMPC−CRT (Fig. 5). Each of these MPC engines operates over one of the prime moduli
of the CRT representation, and each of these ` prime moduli is 128-bits long. All ` MPC engines
operate in parallel, in a much smaller space than the big composite modulus over which the final
reconstruction is performed. This has a profound impact on the efficiency of our ΠRSAGen protocol.

3.4 Advanced MPC CRT

The functionality FMPC−CRT (Fig. 4) is similar to the classic MPC functionality, but over a
direct product of finite fields. We also define FAdvMPC−CRT, which is the functionality FMPC−CRT
augmented with three additional commands. The first one is the Rand2k command, which
samples a random secret shared value r<2k in its CRT representation over `′ moduli, used in
our ΠRSAGen protocol to ensure no overflows during computation. The second one is the ConvInt
command, which allows the parties to convert a CRT sharing to an integer sharing of the same
value. The third one is the LevelUp command, which extends the CRT representation of the



ΠMPC−CRT

Init(`): To initialize ` MPC engines, parties call FMPC.Init(Fmi) ∀ ` primes [m1,m2,...,m`].
Input(x,`′): To provide an input x∈ZM`′ (where `′≤`) any party calls FMPC.Input(x mod mi) for i∈
[1,`′] to get Jx mod mi,iK as ((x mod mi)

(1),...,(x mod mi)
(n)), where each (x mod mi)

(j) represents
the i’th CRT share that each player j obtains. The output is Jx,`′K=(Jx mod m1,1K,...,Jx mod m`′ ,`

′K).
Add(Jz,`′K, Jx,`′K, Jy,`′K): To add two shared values Jx,`′K, Jy,`′K parties call
FMPC.Add(Jz mod mi,iK, Jx mod mi,iK, Jy mod mi,iK) for all i ∈ [1, `′] engines and set
Jz,`′K←(Jz mod m1,1K,...,Jz mod m`′ ,`

′K).
Mult(Jz,`′K, Jx,`′K, Jy,`′K): To multiply two shared values Jx,`′K, Jy,`′K parties call
FMPC.Mult(Jz mod mi,iK, Jx mod mi,iK, Jy mod mi,iK) for i ∈ [1, `′] and set Jz,`′K ←
(Jz mod m1,1K,...,Jz mod m`′ ,`

′K.
Open(Jx,`′K): To open a shared value Jx,`′K all parties call FMPC.Open(Jx mod mi,iK) and receive
(x mod mi,i) for i∈ [1,`′]. They set (x,`′)←(x mod m1,...,x mod m`′).
OpenTo(Jx,`′K,j): To open a shared value Jx,`′K party Pj calls FMPC.OpenTo(Jx mod mi,iK,j) and
receives (x mod mi,i) for i∈ [1,`′]. Party j sets (x,`′)←(x mod m1,...,x mod m`′).

Fig. 5. Protocol for arithmetic MPC over CRT moduli.

Functionality FAdvMPC−CRT

This functionality reproduces all the commands of FMPC−CRT and extends it with:

Rand2k(`′,k): Sample r
$←Z2k and store ([r,`′]), for `′≤`.

ConvInt([x,`′]): Retrieve (x,`′) from memory, sample random shares x
(i)
Int ∈Z for each party Pi s.t.∑n

i=1x
(i)
Int =x, and send them to the corresponding parties. (Note: the sum is taken in Z).

LevelUp([p,`],`′): Receive p`+1,...,p`′ from all parties, store them and compute M`′ =
∏`′

i=1pi. Store
([p,`′]).

Fig. 6. Advanced MPC over CRT Functionality.

sharings of the candidate primes p and q to the CRT representation of the same sharings, but
with additional CRT components. This augmented functionality FAdvMPC−CRT is described in
Fig. 6. We subsequently detail how the three additional commands are realized.

Bounded Randomness in Shared CRT Representation. The Rand2k command allows us
to sample a random CRT sharing, the reconstruction of which falls within a predetermined range.
This is necessary in our main protocol to accommodate computations that would otherwise
overflow over the intial (smaller) CRT representation. The protocol implementing the Rand2k
command is listed in ΠRand2k (Fig. 8), and it uses an additional command of the FMPC−CRT
functionality, namely the FmaBits command. The FmaBits command itself, presented in Fig. 7, is
a slightly different version of the one presented by Rotaru et al. [RST+19]. In our case, we modify
the command so that it outputs the integer sharing of the bit, which was discarded in the original
paper. We need this integer sharing later, in the ΠConvInt protocol.



Functionality FmaBits

1. For i=1,...,m the functionality calls FMPC.GenBit() so as to store a bit bi.
2. The bits bi are retrieved from FMPC and are enterred into the FMPC-CRT functionality.
3. The functionality samples a sharing of bi in Zp and send its share b

(j)
i to every party Pj.

It also publicly outputs ki=b
∑
b
(j)
i
p
c.

4. The functionality waits for a message Abort or Ok from the adversary. If the message is Ok then
it continues.

Fig. 7. The ideal command for generating random bits.

ΠRand2k

Rand2k: On input (`′,k), to generate a random CRT sharing Jr,`′K with r < 2k, parties do the
following:

1. All parties call FmaBits to generate k random bits {Jbi,`′K}i∈[k] shared across all MPC engines,
and receive ki which gives an integer sharing of bi w.r.t. the first CRT component of Jbi,`′K.

2. All parties compute Jr,`′K=
∑
i∈[k]2

i ·Jbi,`′K.
3. Output Jr,`′K and the integer sharing [rInt].

Fig. 8. Protocol for generating a random CRT sharing Jr,`′K, which CRT reconstructs to a bounded
random value r<2k, and the corresponding integer sharing [rInt].

Converting a CRT Sharing to an Integer Sharing. Our main protocol requires a command
which converts a CRT sharing to an integer sharing of the same underlying secret. This is
necessary during the Jacobi test of ΠRSAGen, because we need to ensure that all computations
in the exponent are performed over the integers, and hence the shares in the exponent are also
reconstructed over the integers; otherwise, the correctness of the protocol is not guaranteed due
to potential wrap around. To ensure that indeed the computations are done over the integers,
we realize the ConvInt command with the protocol ΠConvInt, listed in Fig. 9. This protocol allows
the parties to obtain an unauthenticated integer sharing of the CRT sharings they already hold,
without leaking any information about the underlying secret value.

To see the correctness of the protocol ΠConvInt observe the following:

1. For input values upper bounded by 2B, the parties, invoking the protocol ΠRand2k, sample
shares of a random value upper bounded by 2B+σ. The additional σ bits of the random value
ensure that, upon additive masking, the randomness statistically hides the input. The parties
here receive two types of additive shares of the same random value: one CRT share, and
the corresponding share over the integers.

2. In Step 2, the parties additively mask their input share, using the CRT share of the random
value, open the result, and locally perform the CRT reconstruction of the masked value t.

3. In Step 3, the parties “unmask” their local value t, by subtracting the integer share of the
randomness they possess from the local value t. Correctness follows because both the CRT
sharing of the randomness, and the integer sharing thereof reconstruct to the same value, and
no wrap around can happen, due to the bound on the product of the CRT components, which



ΠConvInt

Let B∈N be an upper bound for the bit-length of the input; i.e. for any input x, we assume x<2B.
We select `Jac, such that M`Jac =

∏`Jac
i=1mi is the minimal moduli product bigger than 2B+σ+1

ConvInt: On input Jx,`JacK, to convert the CRT sharing Jx,`JacK to an integer sharing [xInt] that
reconstructs to the same underlying secret, parties do the following:

1. Parties call Rand2k with input (`Jac,B+σ) to get a CRT sharing Jr,`JacK and an integer
sharing [rInt] of a random value r, with r<2B+σ.

2. Parties call (t,`Jac)=FMPC-CRT.Open(Jx,`JacK+Jr,`JacK) and do the local CRT reconstruction
t=CRTrec(t,`Jac).

3. To obtain an integer sharing of x parties locally compute x
(i)
Int =t−r(i).

4. Parties store x
(i)
Int as their integer share of x.

Fig. 9. Protocol for converting a bounded CRT sharing to an integer sharing.

is sufficiently large to accommodate the bounded input, the statistical security parameter,
and the addition that is necessary to perform the masking.

The execution of the protocol ΠConvInt does not leak any information about the secret. Indeed,

the only opened value in the protocol is Jx,`JacK+Jr,`JacK with r
$← [2B+σ] and x<2B. Therefore,

by Theorem 2, we have that the distance between the distribution of this opened value and the
uniform distribution is upper bounded by 2−σ.

This protocol only produces an unauthenticated integer sharing, but the consistency of the
shares is checked later in the ΠRSAGen protocol. During the broadcast at step 5 of the Consistency
Check, a malicious adversary can broadcast any arbitrary value, but if the value of the shared
secret would be altered by the adversary’s broadcast, then the equality check which follows will
fail with probability 1/2.

Theorem 2 ( [ST06, Appendix A]). Let M and K be positive integers, where M≤K. Let
the random variable X take values from {0,...,M−1} and let the random variables U be uniform
on {0,...,K−1}. Then ∆(U,X+U)≤(M−1)/K is an upper bound for the distance between the
two distributions.

Extending the CRT Representation. The LevelUp command extends the CRT representation
of [p,`] and [q,`], allowing us to compute overM`′>M` for these two values. In ourΠRSAGen protocol,
we use LevelUp command whenever a new operation on p and q could overflow the current CRT
modulus. This happens twice: first during the consistency check, and then in the GCD test. We
note that we execute this command only on [p,`] and [q,`], which we know to be bounded by 2λ+σ.
We use this property in the ΠLevelUp protocol (Fig. 10), which implements the LevelUp command.

The protocol ensures that the new Jp,`′K is a sharing of the same value as Jp,`K. Indeed, by
sampling small enough values r and s at random, we can use r as a MAC key and s as a mask
while avoiding any overflow. As in all MAC checks, a cheating adversary would have to guess
r to successfully cheat. In addition, we make sure to only open p·r+s which is statistically close
to uniform randomness because s is chosen uniformly random in [0,2λ+3·σ] whereas p·r<2λ+2·σ.



ΠLevelUp

For the execution of this protocol, we assume that the parties have access to an integer sharing of
the values they wish to extend, and that this value is smaller than M`

22σ
.

LevelUp: On input (Jp,`K,`′), with `′>`, and p<2λ+σ parties do the following:
1. Each party Pj retrieves its integer sharings p(j) of Jp,`K.
2. Each party Pj calls FMPC.Input(p

(j) mod mi) for i∈{`+1,...,`′}.
3. All parties call FMPC−CRT.Add to obtain Jp,`′K=

∑n
j=1Jp

(j),`′K.
4. All parties call FmaBits to generate λ+4σ random bits {Jbi,`′K} accross all `′ MPC engines.
5. Parties first consider those bits in the first `MPC engines and compute Jr,`K=

∑σ
i=1Jbi,`K·2

i−1

and Js,`K=
∑λ+3σ
i=1 Jbi+σ,`K·2i−1

6. Parties then consider those bits in all `′ MPC engines and compute Jr′,`′K=
∑σ
i=1Jbi,`

′K·2i−1

and Js′,`′K=
∑λ+3σ
i=1 Jbi+σ,`′K·2i−1. Note that because those values are of a fixed size, smaller

than Ml, we are certain that r=r′ and s=s′.
7. All parties call FMPC−CRT with the Mult and Add command to compute

Jy,`K=Jp,`K·Jr,`K+Js,`K and then call FMPC−CRT.Open(Jy,`K)
8. All parties call FMPC−CRT with the Mult and Add command to compute

Jy′,`′K=Jp,`′K·Jr′,`′K+Js′,`′K and then call FMPC−CRT.Open(Jy′,`K), abort if y′ 6=y

Fig. 10. Protocol for extending the CRT representation of Jp,`K and Jq,`K.

4 Distributed Generation of an RSA Biprime

Our ideal functionality FRSAGen, listed in Fig. 11, consists of 5 steps: Sample, Combine, Jacobi,
Consistency Check, and GCD Test. The first step, samples two candidate primes p and q of
approximately 1024 bits each which are both coprime with Msample, which significantly increases
our chances of selecting a prime. The second step computes the product of the previously sampled
candidate primes, and checks that it lies in the expected range (respecting the aforementioned
bit-length), and that it is not coprime with Msample. The third step follows the blueprint of
Boneh and Franklin [BF97], checking biprimality in a way similar to Miller-Rabin primality
testing, and returing Abort, if the product computed is not a biprime. The fourth step serves
as a constistency check, confirming that all parties have input consistent shares in the so-called
Jacobi step above. The last step is the GCD test, which catches some false positives that can
potentially be introduced by the Jacobi test.

We now concretely detail the protocol ΠRSAGen (Fig. 12), realizing the FRSAGen functionality.
Each party Pj samples a multiplicative share p̂(j), such that gcd(Msample, p̂

(j)) = 1. The
goal of the Sampling phase is to convert the multiplicative sharing p̂ = p̂(1) · ... · p̂(n) over
the integers, into an additive sharing p′ = p′(1) + ... + p′(n) over Z/(MsampleZ), such that
p′= p̂ mod Msample =p′(1)+...+p′(n) = p̂(1) ·...·p̂(n) mod Msample. So, each party Pj engages in a
(semi-honest) multiplication with their secret share p̂(j). In the end, all parties hold an additive

sharing of the product p̂(j) = p̂
(j)
1 + ...+ p̂

(j)
n mod Msample. After the multiplication is done over

Z/(MsampleZ), parties set their local share as p(j) =p′(j)+r(j) ·Msample and use this in the CRT
Input procedure, over `c CRT components, and thus `c MPC engines.

Once two candidate primes p and q have been sampled in a secret shared fashion as described
above, the Combine phase begins. First, the parties sum the contributions of each party into the ad-



Functionality FRSAGen

For λ the bit-length of each of the candidate primes p and q we aim to sample, and σ a statistical
security parameter, let `1 be the number of primes, the product of which (Msample) serves as the space
over which we sample the candidate primes p and q, such that

∏`1
i=1mi=Msample>2λ+σ. In addition,

let `c be the number of primes, the product of which (M`c) serves as the space over which we compute
without overflow the product of the candidate primes p and q, such that

∏`c
i=1mi=M`c>22·(λ+σ).

1. On receiving Sample from all parties, First query S for the values mp = p mod Msample

and mq = q mod Msample together with the shares p(j),q(j) of corrupt parties Pj ∈ C. Then,
uniformly sample p(j),q(j) and send them to honest parties Pj ∈ H with the condition that∑
jp

(j) mod Msample=mp and
∑
jq

(j) mod Msample=mq.
2. On receiving Combine from all parties, send Ni=(p·q) mod mi for all i∈ [`c] to all parties. If

gcd(N,Msample) 6= 1 send AbortGCD to all parties; if N 6∈ [22λ,22·(λ+σ)] send AbortOutOfRange to all
parties.

3. On receiving Jacobi(γ) from all parties, First, compute y=γ(N−p−q+1)/4 mod N and send y to S.
Then, receive y′ from S and send y′ to all parties. Finally, if y′ 6=±1 then send Abort to all parties.

4. On receiving Consistency Check from all parties, if y′ received during the Jacobi command was
not equal to y, then send Abort to all parties.

5. On receiving GCD Test from all parties, compute b=gcd(N,(p+q−1)). If b=1, send (b,Biprime)
to all parties, otherwise send (b,Non Biprime).

Fig. 11. RSA Modulus Generation Functionality

ditive sharing, over `cCRT components. Then, the candidate biprime is computed, using an actively
secure multiplication over the CRT representation of the sharings of p and q. Lastly, the parties
open the resulting candidate biprimeN , and each party Pj locally performs the CRT reconstruction
and obtains the biprime N in the standard form. Each party checks that the biprime respects the
bounds in which it should lie, and that it is not coprime to the upper bound of the sampling range.

The parties then begin the biprimality testing with the Jacobi test, which needs to be repeated
128 times. The core of the Jacobi test we design offers passive security; to achieve active security,
should the Jacobi test pass, we proceed with the Consistency Check phase. This step ensures that
parties cannot go undetected, if they use inconsistent sharings in the Jacobi test. To realize this,
first we need to increase our computing space to avoid potential overflows. We do that by means
of the LevelUp command, which allows us to receive the same sharings in a CRT representation
with additional CRT components (to accommodate the computations). Concretely, we extend
from `c components of the combine step, to `Jac components, which suffice for the correctness of
the consistency check of the Jacobi. Then, using the Rand2k command, we receive bounded shared
randomness in the CRT form with `Jac components. Using this randomness, we multiplicatively
mask (guaranteed without overflow) the exponent of the Jacobi test, where the parties’ shares have
been contributed. This latter product is then converted from a CRT sharing with `Jac components
to an integer sharing by calling the ConvInt command. The integer sharing is used to exponentiate
the public value γ used in the Jacobi test, and it is then broadcasted. The randomness used in the
masking operation is revealed, so that the parties can perform the final exponentiation of the Jacobi
value computed to the power of the randomness in the clear. From the broadcasted values, the par-



ties can also reconstruct again the masked version of the Jacobi test exponentiation. If the two latter
values do not match, then some parties have input inconsistent shares, and the protocol aborts.

The last phase of our protocol is the GCD test, aiming at detecting (and discarding) any false
positive biprimes that passed the Jacobi test. The GCD test is performed between the public
biprime N , and the secret Jp+q−1K, and if their GCD equals 1, the test passes. Let Qgcd>V ·N ,

where V =23λ+4σ. The goal is to output the product a·(p+q−1)+v·N mod Qgcd, where a
$← [N ],

and then perform the gcd computation between N and a·(p+q−1)+v·N on public values. In
our case v needs to statistically mask the product between a, which has 2(λ+σ) bits length,
and p+q−1, which has λ+σ bits length. Hence, log2v=3(λ+σ)+σ. Next, M`gcd is computed,
so that v·N fits Qgcd, which makes M`gcd to be 5λ+6σ bits long.

On a step by step basis, for the GCD test we use again the LevelUp command to extend the num-
ber of CRT components in our sharings of p and q. For the masking, similarly to the Jacobi test, we
sample bounded randomness in CRT form with `gcd components, using again the Rand2k command.
Before we open and reconstruct the final value ẑ, the gcd of which needs to be checked against
the public biprime N , we also perform an additive masking with a bounded random value v. This
ensures that no information about the sum of p and q, involved in the multiplicatively masking, can
be factored out upon opening. Upon opening and reconstuction of the masked value, the final GCD
test is performed, and if the open value is not coprime to N the protocol outputs abort and restarts.

Theorem 3. The execution of the protocol ΠRSAGen UC-securely realizes the functionality
FRSAGen, in the (FABBWithErrors, FMPC, FAgreeRandom, FBroadcast)-hybrid model with statistical
security against a static, active adversary that corrupts up to n−1 parties.



ΠRSAGen

Sampling phase. All the steps below are done in parallel for p and q.

1. Each party Pj samples a multiplicative share p̂(j), such that gcd(Msample,p̂
(j))=1.

2. Each party Pj calls FABBWithErrors.Input(p̂
(j)).

3. The parties call FABBWithErrors.Mult(p′′,p̂(1),...,p̂(n)).
4. Parties call FABBWithErrors.Share(p

′), such that Pj receives the residues of p′′(j) for all primes in
Msample.

5. Parties reconstruct p′(j)=CRTRec([p′(j),3·δj,0],[Msample,4]) where δj,0 is the Kronecker delta.
6. Each party Pj samples r(j), and computes p(j)=p′(j)+r(j) ·4·Msample, such that p(j)∈ [2λ,2λ+σ],

for σ a statistical security parameter.
7. Each party Pj calls FMPC-CRT.Input(p

(j),`c).

Combine

1. Parties call FMPC-CRT.Sum(Jp,`cK, Jp(1),`cK, ... , Jp(n),`cK) and
FMPC-CRT.Sum(Jq,`cK,Jq(1),`cK,...,Jq(n),`cK).

2. Parties call FMPC-CRT.Mult(JN,`cK,Jp,`cK,Jq,`cK).
3. Parties call FMPC-CRT.Open(JN,`cK).
4. Each party locally reconstructs N = CRTrec(N, `c), checks that N ∈ [22λ, 22(λ+σ)], and
GCD(Msample,N)=1, abort if false.

Jacobi test This is executed σ times (Grassi et al. fashion but carefully so that adding shares in
the exponents is done over the integers).

1. Parties call FAgreeRandom to sample a public γ∈ZN . Repeat until Jacobi symbol ( γ
N

)=1.

2. Using their integer shares of p and q, P1 computes y(1) = γ(N−p
(1)−q(1)+1)/4 mod N and

calls FBroadcast(y
(1)), and each party Pj,j 6= 1 computes y(j) = γ(−p

(j)−q(j))/4 mod N and calls
FBroadcast(y

(j)).
3. All parties compute y=

∏n
j=1y

(j).
4. If y 6=±1 Abort.

Consistency Check

1. Parties call FAdvMPC−CRT.LevelUp with input (`Jac,Jp,`cK) and (`Jac,Jq,`cK), receive Jp,`JacK and
Jq,`JacK

2. Parties call FAdvMPC−CRT.Rand2k with input (`Jac,σ) to get a CRT sharing Jx,`JacK of a random
value x, bounded by 2σ.

3. All parties call FMPC-CRT.Mult(Jt,`JacK,Jx,`JacK,J((N−p−q+1)/4),`JacK), where the multiplication
result is actually bounded by M`c and CRT shared in M`Jac .

4. Parties call FAdvMPC−CRT.ConvInt(Jt,`JacK) to obtain an additive sharing of t over the integers,
denoted as [t]Int.

5. Each party calls FBroadcast(γ
t
(j)
Int ).

6. All parties call FMPC-CRT.Open(Jx,`JacK), and compute x=CRTrec(x,`Jac).

7. All parties locally check that
∏n
j=1γ

t
(j)
Int =yx. Abort if equality fails.

GCD test

1. Parties call FAdvMPC−CRT.LevelUp with input (`gcd,Jp,`cK) and (`gcd,Jq,`cK), receive Jp,`gcdK and
Jq,`gcdK

2. Parties call FAdvMPC−CRT.Rand2k with input (`gcd,2λ+2σ) to get a CRT sharing Ja,`gcdK of a
random value a, bounded by 22λ+2σ.

3. All parties call FMPC-CRT.Mult(Jz,`gcdK,Ja,`gcdK,J(p+q−1),`gcdK). Note that this is fine because
open N=p·q in MPC in the first steps of candidate generation to enforce input consistency.

4. Parties call FAdvMPC−CRT.Rand2k with input (`gcd,3λ+4σ) to get a CRT sharing Jv,`gcdK of a
random value v, bounded by 23λ+4σ.

5. All parties call FMPC-CRT.Add(Jẑ,`gcdK,Jz,`gcdK,Jv·N,`gcdK).
6. All parties call FMPC-CRT.Open(Jẑ,`gcdK), and compute ẑ=CRTrec(ẑ,`gcd).
7. Locally check whether gcd(N,ẑ)=1. Otherwise parties output Abort and restart the protocol.

Fig. 12. RSA modulus generation protocol based on distributed sieving



Proof Sketch. Let A be a static malicious adversary, who interacts with the parties running
ΠRSAGen and can corrupt up to n−1 parties. We construct a simulator S, simulating the ideal
functionality FRSAGen, such that no environment Z can distinguish whether it is interacting with
A and the ΠRSAGen, or with A and FRSAGen. Let C denote the set of (up to n−1) corrupted
parties and let H denote the set of honest parties. The simulator S proceeds as follows:

Sample: The simulator performs all the steps below in parallel for p and q.

1. For each honest Pj∈H, S samples p̂(j) such that gcd(Msample,p̂
(j))=1.

2. For each honest Pj∈H, S calls FABBWithErrors.Input(p̂
(j)). For each corrupt Pj∈C, S receives

FABBWithErrors.Input(p̂
(j)) from A.

3. When all parties call FABBWithErrors.Mult, S waits for ∆p from A. After receiving ∆p, S
computes p′=∆p+

∏n
j=1p̂

(j).

4. When all parties call FABBWithErrors.Share(p
′), S receives from A the shares p′(j) for each

corrupt Pj∈C. It then samples and stores the remaining shares p′(j) for honest Pj∈H such
that p′=

∑n
j=1p

′(j).

5. For each honest Pj ∈H, S samples an appropriate r(j) such that p(j) =p′(j)+r(j) ·Msample

lies in the range [2λ,2λ+σ].
6. When each party calls FMPC-CRT.Input(p

(j),`c) in Step 7, S receives from A the inputs (p(j),`c)
for each corrupt Pj ∈C. With these, S can reconstruct p(j) for each corrupt Pj and then
compute mp=

∑
jp

(j) modMsample using also its simulated shares. It then sends Sample to

FRSAGen on behalf of the corrupt parties and, when prompted, submits mp and the p(j) that
it reconstructed. To continue simulating the protocol, S inputs its own simulated p(j) into
FMPC-CRT on behalf of the honest parties Pj∈H.

By computing the residue of p and q modulo Msample as influenced by A in Step 6 of the protocol,
S ensures that the distribution of N mod Msample produced by FRSAGen is identical to the one
in the protocol. At this stage of the protocol, there is no transcript for S to simulate as the
parties have only executed calls to other functionalities. We also note that the simulated shares
p(j) are statistically close to the random shares sampled by FRSAGen, as measured by Lemma 1,
and identically distributed to the honest shares in a real execution.

Combine:

1. When all parties call FMPC-CRT.Sum(Jp,`cK, Jp(1),`cK, ... , Jp(n),`cK) and
FMPC-CRT.Sum(Jq,`cK, Jq(1),`cK, ... , Jq(n),`cK) in Step 1, S internally executes the corre-
sponding MPC sums.

2. When all parties call FMPC-CRT.Mult(JN,`cK,Jp,`cK,Jq,`cK) in Step 2, S internally executes the
corresponding MPC multiplications.

3. When all parties call FMPC-CRT.Open(JN,`cK) in Step 3, S sends Combine to FRSAGen on
behalf of the corrupt parties. Once the honest parties also send Combine to the functionality,
S receives Ni for all i∈ [`c]. To simulate the FMPC-CRT.Open instruction, S then sends the
Ni values it received to each corrupt party. S also updates its internal simulations of the
FMPC-CRT instances so that they hold the correct values for N .

4. If S receives AbortGCD or AbortOutOfRange from FRSAGen, it makes the simulated honest parties
also output the corresponding Abort in the protocol.

As the shares input by A are passed on FRSAGen for the generation of N, and as the shares
simulated by S are statistically close to those sampled at random by FRSAGen, the distribution



of N output by FRSAGen is statistically close to the one produced by S, which is itself identically
distributed to those of a real execution.

Jacobi:

1. When parties call FAgreeRandom, S simulates the sampling of the public γ.
2. The simulator then queries FRSAGen.Jacobi(γ) and receives y.
3. To simulate the broadcast calls, S samples rj at random to compute y(j) = γrj for the

honest parties Pj ∈ H and then modifies one of these shares y(i) for Pi ∈ H such that
y(i) = y ·(

∏
j 6=iy

(j))−1. Here, to compute y(j) for the corrupt parties Pj ∈C, the simulator

uses the shares p(j),q(j) that A input to FABBWithErrors during sampling. Then S uses these
simulated honest y(j)’s as the broadcast values of the honest parties.

4. When the corrupt parties call FBroadcast(y
(j)), S computes the new value of y′=

∏
jy

(j) and
sends it to FRSAGen.

5. If S receives Abort from FRSAGen, it makes the simulated honest parties output Abort.

Since the simulated p(j) and q(j) values that S holds for Pj∈H are statistically close to uniform, the
distribution of the broadcast y(j) values are statistically close to the protocol and consistent with the
correct Jacobi test result first output by FRSAGen. IfA cheats by using inconsistent values during its
broadcast, then S correctly updates the result of the Jacobi test by passing the new y′ to FRSAGen.

Consistency Check:

1. When all parties call FAdvMPC−CRT.Rand2k, S samples a random x < 2σ and receives the
shares (x(j),`Jac) for each corrupt Pj ∈ C from A. It then samples the remaining shares
(x(j),`Jac) for honest Pj∈H, such that x=CRTrec(x,`1)=

∑n
j=1(x

(j),`Jac).
2. When all parties call FMPC-CRT.Mult(Jt,`JacK,Jx,`JacK,J((N−p−q+1)/4),`JacK), S internally

executes the MPC multiplication.

3. When all parties call FAdvMPC−CRT.ConvInt(Jt,`JacK), S samples t
(j)
Int for each party Pj such

that t=
∑n
j=1t

(j)
Int , and sends them.

4. To simulate the broadcast calls, S modifies one of the honest shares γt
(i)
Int for Pi ∈H such

that γt
(i)
Int =yx·(

∏
j 6=iγ

t
(j)
Int )−1, where y is the value given to S by FRSAGen during the Jacobi

command and where S uses its internal values of x and p(j),q(j) to compute t
(j)
Int of the

corrupt parties. S then broadcasts γt
(j)
Int on behalf of the honest parties.

5. When all parties call FMPC-CRT.Open(Jx,`JacK), S simulates the opening and sends
Consistency Check to FRSAGen on behalf of the corrupt parties.

6. To reply to FRSAGen about the abort, S checks whether
∏
jγ
t
(j)
Int =yx using the values that

were broadcast. If the equality fails, S sends Abort to A on behalf of the honest parties.

The values used by S in Step 2 are identically distributed to those in the protocol, so the distribution

of the modified share γt
(i)
Int in Step 4 is statistically close, as measured by Lemma 1. As x is sampled

at random identically, and the influence of A in the integer conversion of t is preserved, then the
distribution of the broadcast of Step 4 is statistically close to the distribution of a real transcript.

Finally, the probability of abort when A behaves honestly remains the same, since Step
4 modifies the honest shares to be consistent with the y output. When A acts maliciously in

the broadcast of γt
(j)
Int , we claim that it has a negligible chance of making the equality hold, if

it had already cheated in the Jacobi test. If it successfully makes the equality hold, this creates



a difference between real and ideal world as FRSAGen would abort, since it received a modified
y′ from S but S would not abort. As we assume that A successfully cheated in the Jacobi test,
we can assume that Ñ=(N−p−q+1)/4 6=0 modφ(N) and that the adversary introduced an

error ∆j such that y′=γÑ+∆j =±1 modN . When the adversary cheats in the broadcast of the
consistency check, the simulator computes γtInt+∆t, where ∆t 6=0 represents the error introduced
by A. Thus, for the equality to hold, A needs to commit to ∆t during the broadcast, such that

γxÑ+∆t =yx=γxÑ modN . Since the distribution of xÑ is uniform with a min-entropy of 2−σ,
because of the sampling of x, A has probability at most 2−σ+1 of finding the correct ∆t. We
finally note that ∆t cannot simply be the right value in the group of exponents with higher
probability than this, because Rosser and Schoenfeld [RS62] showed that

φ(N)>
N

eγloglogN
,

where γ is the Euler–Mascheroni constant. This gives us that log2(φ(N))>σ, when log2(N)>2048
and σ∼80.

GCD Test:

1. When all parties call FAdvMPC−CRT.Rand2k in Step 2, S samples a random a<22λ+2σ and re-
ceives the shares (a(j),`gcd) for each corrupt Pj∈C fromA. It then samples the remaining shares
(a(j),`gcd) for honest Pj∈H, such that a=CRTrec(a,`c)=

∑n
j=1(a

(j),`gcd), and stores them.
2. When all parties call FMPC-CRT.Mult(Jz,`gcdK,Ja,`gcdK,J(p+q−1),`gcdK), S internally executes

the MPC multiplication.
3. When all parties call FAdvMPC−CRT.Rand2k in Step 4, S samples a random v<23λ+4σ and re-

ceives the shares (v(j),`gcd) for each corrupt Pj∈C fromA. It then samples the remaining shares
(v(j),`gcd) for honest Pj∈H, such that v=CRTrec(v,`c)=

∑n
j=1(v

(j),`gcd), and stores them.
4. Before opening, S queries FRSAGen.GCD Test and receives b=gcd(N,p+q−1). It then com-

putes b′=gcd(N,a) and samples a new z̃ subject to the condition that gcd(N,z̃)=max{b,b′}.
It finally replaces ẑ by the new value ẑ= z̃+v·N .

5. When all parties call FMPC-CRT.Open(Jẑ,`gcdK), S simulates the opening using the modified
ẑ and outputs Abort if FRSAGen output Non Biprime.

If gcd(N,p+q−1)) = b then b | z+v ·N and b | z=a(p+q−1). Now, gcd(N,ẑ) in the protocol
can differ from b=gcd(N,p+q−1), if gcd(N,a)=b′>b; thus, by sampling a random z̃ such that
gcd(N,z̃) = max{b,b′}, the simulator remains consistent with both b and the probability that
gcd(N,a)=b′>b occurs, since a is sampled identically. By adding a sufficiently random v to z
any information about p+q−1 other than b is masked, therefore the distribution of the modified
ẑ output by the simulator is both statistically close to the distribution of ẑ in the protocol, and
consistent with the (N,p,q) values generated by FRSAGen. ut

Lemma 1. In Step 5 of the Sampling Phase of ΠRSAGen, the distribution of each p(j) value is
within statistical distance (1−ε)εMsample/S of uniform over [2λ,2λ+σ), where S=2λ+σ−2λ is the
size of the range and ε=S/Msample−bS/Msamplec∈ [0,1) is the decimal remainder in the division
of the range size by Msample.

Proof. We can write S=Msample(bS/Msamplec+ε) with 0≤ε<1. When dividing the range of size
S into blocks of size Msample, the last block will not be complete (if Msample does not divide S).



When reducing the elements of [2λ,2λ+σ) modulo Msample, some residue classes will therefore
be present one more time than others: those classes which have representatives in the included
portion of the last block. Let X1 denote the subset of x∈ [2λ,2λ+σ), whose residue class is more
present, and let X2 = [2λ,2λ+σ)\X1 be those elements, whose residue class does not have a
representative in the included portion.

Let x ∈ [2λ,2λ+σ), by Euclidean division, x can be uniquely written as x = aMsample + b
with a∈N and b∈ [0,Msample). As p(j) is computed as p(j) =p′(j)+r(j) ·Msample in Step 5 of the
sampling phase, this implies:

Pr
[
p(j)=x

]
=Pr

[
p′(j)=b∧r(j)=a

]
=

{
1

Msample
· 1
bS/Msamplec+1 x∈X1,

1
Msample

· 1
bS/Msamplec x∈X2,

as p′(j) is uniform in [0,Msample), because of FABBWithErrors.Share(p
′) and r(j) is uniform subject to

the condition that p(j)∈ [2λ,2λ+σ). Let P denote the above probability distribution. To compute
the statistical distance between P and uniform, we compute the size of both X1 and X2, which is

|X1|=εMsample ·
(⌊

S

Msample

⌋
+1

)
and |X2|=(1−ε)Msample ·

⌊
S

Msample

⌋
.

This yields the following distance calculation:

∆(P,U)=
1

2

∑
x∈[2λ,2λ+σ)

|Pr[P=x]−Pr[U=x]|

=
1

2

(
|X1|·

∣∣∣∣Pr[P=x |x∈X1]−
1

S

∣∣∣∣+|X2|·
∣∣∣∣Pr[P=x |x∈X2]−

1

S

∣∣∣∣)

=
1

2

∣∣∣∣∣∣ε−
εMsample

(⌊
S

Msample

⌋
+1
)

S

∣∣∣∣∣∣+
∣∣∣∣∣∣(1−ε)−

(1−ε)Msample

⌊
S

Msample

⌋
S

∣∣∣∣∣∣


=
1

2

(∣∣∣∣εMsample(ε−1)

S

∣∣∣∣+∣∣∣∣(1−ε)εMsample

S

∣∣∣∣)
=

(1−ε)εMsample

S
.

ut

5 Parameters and Efficiency Analysis

We generate biprimes of various bit-lengths, and hence security levels; namely λ={1024,1536,2048}
as in the work of Chen et al. [CCD+20]. In the cases where a statistical security parameter σ
needs to be considered, such as in the Sampling Phase, Jacobi test, masking and underlying
MPC engines, we make sure to set σ=80 to have a fair comparison with the analysis of Chen
et al. [CCD+20], since they also used σ=80, when measuring their concrete costs.

Given that our protocol requires several types of MPC engines, e.g., the ABBWithErrors, or
the MPC-CRT, we use the MP-SPDZ framework [Kel20] to get concrete communication costs
for different adversary structures. In the case of dishonest majority, we instantiate ABBWithErrors



using the semi-honest version of the MASCOT protocol [KOS16], whereas for the malicious case,
which we need for building the MPC-CRT, we use LowGear [KPR18], with TopGear [BCS19]
as the underlying ZK proof. For the 16 parties case, we use the HighGear protocol with the
TopGear ZK-proof, which is also implemented in MP-SPDZ. The reason for choosing HighGear
over LowGear is that for HighGear communication scales better in the number of parties.

We also give concrete costs for RSA-Sieve in the semi-honest, dishonest majority model. The
only difference with the malicious case is that MPC-CRT can be instantiated with a cheaper
protocol and no zero-knowledge proofs. For this variant, we use the classical SPDZ triple
generation with no ZK proofs [DKL+13,BDST20], for which we get concrete costs by running
the hemi protocol in MP-SPDZ [Kel20]. The results are given in Table 2 for the two party case,
while in Table 3 we have results for the 16 party case, where we also compare them with the the
protocol of Chen et al. [CCD+20]. As shown in Table 2, for two parties, our protocol is a factor of
3.3-3.9 more communication-efficient than the state-of-the-art [CCD+20] in the semi-honest case,
and by a factor of 32-37 in the malicious case (ranging for different bit-lengths of the birprimes
generated). For the 16 party case, the protocol of Chen et al. [CCD+20] outperforms ours by
a factor of approximately 2 in the semi-honest case. We left the corresponding cell in Table 3
empty, to avoid confusion, as the rest of the improvement factors refer to our work outperfoming
that of Chen et al. Then again, for the malicious case and for 16 parties, our protocol improves
the communication cost over the state-of-the-art [CCD+20] by approximately 14-30 times.

In the following, we give an example of how we compute the cost using λ=1024, in the dishonest
majority case with malicious security. The number of primes used in the distributed sieving is fixed
to 130, as in the work of Chen et al. [CCD+20], to achieve the same number of Sample iterations.
Note that the product of the first 130 primes is 1019 bits long. Frankel et al. [FMY98] select r(j)

in the sampling phase at random from [0,2n/Msample] where n was the desired bit-length of p.
For λ being the bit-length of the candidate primes, we need to take their product in a space

of double the size to avoid wrap around. Hence, M`c, the product of primes in which the biprimes
live, needs to be of length at least 2λ+2σ bits, which results in `c =18 (i.e., we need 18 CRT
components of 128 bits each). Similarly, we compute `Jac=21 and `gcd=46.

1. Sampling phase. The cost per semi-honest multiplication per party with ABBWithErrors
is (n−1)(128·k+k2), where n is the number of parties and k is the field size [KOS16]. Since
the cost is quadratic in the field size, our ABBWithErrors will work over all the small primes
composing Msample.
This brings the communication cost per triple at 17.027 kilobits with a total communication
including the Beaver openings. The Input calls to ABBWithErrors in Step 2 amount to
0.264kbits. This makes steps 2 and 3 having a cost of 17.291 kbits.
The remaining cost here comes from the Input calls to FMPC-CRT. This is instantiated using
LowGear with TopGear as ZK proof, where the input tuple cost is 1.35 kbits for a 128-bit
prime. This makes Step 7 in the Sampling phase amount to 48.67 kbits. One iteration of
this phase has a total cost of 65.97 kbits.

2. Combine. The cost per multiplication triple using FMPC-CRT amounts to 12.862 kbits per
party. This brings the cost of one execution of Step 2 to 231 kbits. The opening (Step 3)
takes another 2.176 bits. One iteration of this phase has a total cost of 233 kbits.

3. Jacobi test. The cost of this phase is simply log2(N)·n, which is 2n·λ or about 4 kbits.
4. Consistency check. This phase begins with a call to LevelUp from `c to `Jac. The LevelUp

protocol is ran twice, once for each candidate p and q. Concretely, per run, LevelUp requires



`Jac−`C=3 inputs per party, `Jac multiplications and `Jac openings on the CRT components.
The more expensive part of LevelUp generates λ+ 4 ·σ = 1344 maBits which amount to
22 Mbits, roughly the cost of one iteration of LevelUp. The entire cost of Step 1 in the
consistency check is 44,551 kbits.
Next, parties call Rand2k, which roughly costs σ random bit generations, concretely 2095
kbits. The multiplication cost is simply `Jac ·12.862=270.1 kbits. The call to ConvInt requires
a call to Rand2k and one opening, which amounts to 43,222 kbits. Finally, the parties need to
broadcast an element in ZN and then open an element in all the `Jac CRT components, which
requires communicating 4.8 kbits. One iteration of this phase has a total cost of 90,143 kbits.

5. GCD test. Here again we start with a call to LevelUp, which costs 56,558 kbits, and then a
call to Rand2k for a cost of 45,477 kbits. Next is a multiplication on `gcd CRT components for
a total cost of 591.7 kbits. Second to last, we do a final call to Rand2k with larger parameters,
so the cost this time is 89,307 kbits. Finally, we open ẑ for 5.9 kbits. This phase thus requires
a total of 191,940 kbits.

We present the detailed per-phase cost for 2 and 16 parties, and for λ={1024,1536,2048}
in Table 4 for the malicious case, and in Table 5 for the semi-honest case.
Reducing the number of Input calls in generating bounded randomness. In the maBit
protocol designed in [RST+19], each random bit JbK produced in the main MPC engine producing
randomness is later fed into the other MPC engines by every party calling Input command on
a different sharing of b. By plugging their method directly into our Rand2k protocol, in order
to generate nB shared bits with n parties shared across ` engines will require nB ·n Input calls
to each of the ` 128 bit prime MPC engines.

We can reduce the number of input calls by a factor of ∼128−(σ+log2m), where m is the
batch size for generating maBits. The key insight is for parties to batch their bit shares instead
of inputting them one by one. For example, if they want to batch 16 bit inputs at once, they

can call FMPC.Input(
∑15
k=02kb

(j)
k mod mi), where b

(j)
k would be party Pj’s share of the kth bit

in the maBit protocol. We need to take into account now that the random linear combination at
the end is done over slightly larger secrets (16 bits instead of a single one), so we need to increase
the random coefficients by 16 bits in order for the security reduction to go through easily. The
proof of this small optimization is relatively straightforward, since one can use this as an oracle
to solve the MSSP problem described in [RST+19] by simply scaling the random coefficients.
To fit everything in a 128-bit prime MPC engine, we pack 16 inputs together, while maintaining
a maBit batch of 215 bits produced at once.
The honest majority case with active security. Since our protocol works with any actively
secure protocol, where the secret reconstruction is linear, we can instantiate it with the most
efficient protocols for MPC for large field arithmetic [CGH+18]. The cost analysis of such an
instantiation can be seen in Table 6.
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Scheme [CCD+20] Ours [CCD+20] Ours [CCD+20] Ours Improvement
Factor
Range

κ 1024 1024 1536 1536 2048 2048

semi-honest
(MB)

139 42.67 416 118.06 910 245.43 3.3-3.9×

malicious
(GB)

20.81 0.65 43.42 1.20 74.52 2.02 32.5-37.4×

Table 2. Communication per party (two parties). For [CCD+20] the cost of the semi-honest protocol is
based on the use of the OT extension of Keller et al. [KOS16]. We consider this to be a fair comparison,
as the sampling protocol is the major bottleneck and can be implemented using SilentOT. In our case the
underlying MPC engine for sampling also used the same OT extension.
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Factor
Range
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2.09 4.38 6.24 12.24 13.65 25.34

malicious
(GB)

1020 70.41 4734 156.37 8100 287.16 14.8-30.9×
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protocol is based on the use of the OT extension of Keller et al. [KOS16].
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κ 1024 1536 2048
n 2 16 2 16 2 16

per-phase cost for one instance (Megabits)

Sieving 0.36 51.2 0.5 73.5 0.68 95.7
BP test 0.004 0.03 0.006 0.04 0.008 0.06
Check 45.63 4296 67.63 8071 92.4 13029

expected cost to sample a biprime (GBytes)

E[Iterations] 3607 3607 7251 7251 11832 11832
E[Total] 0.64 68.8 1.18 153.2 1.99 281.91

Table 4. Communication per party: malicious case. The GCD test is included in E[Total], as that is an
one-time cost. Check step happens σ times.

κ 1024 1536 2048
n 2 16 2 16 2 16

per-phase cost for one instance (kilobits)

Sieving 82.97 9391 118.10 13175 152.44 16784
BP test 4.096 32 6.144 49.152 8.192 65.536

expected cost to sample a biprime (megabytes)

E[Iterations] 3607 3607 7251 7251 11832 11832
E[Total] 41.68 4346 116.55 12173 243.3 25230

Table 5. Communication per party: semi-honest case.

κ 1024 1536 2048

megabytes 105.26 222.99 401.452

Table 6. Communication per party: malicious honest majority case (3 parties).
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Functionality FMPC

Let [x] denote the identifier for a value x stored in the functionality. Let A⊂{1,...,n} denote the
index set of the corrupted parties.
Input: Receive a value x∈Fp from some party and store x.
Mult([x],[y]): Compute z=x·y and store [z].
Share([x]): For each i∈A receive xi∈Fp from the adversary. Sample uniform honest parties’ shares
xjj/∈A s.t.

∑n
i=1xi=x. Send xi to Pi.

Random: Sample r
$←Fp and store [r].

Sum([x1],...,[xk]): Compute x=x1+···+xk and store [x].

GenBit(): Sample b
$←{0,1} and store [b].

Open([x]): Send the value x to all parties.
OpenTo([x],j): Send the value x to party Pj.

Fig. 13. Arithmetic MPC Functionality.

Functionality FBroadcast

1. Receive a value x from party Pj.
2. Send x to all parties Pi,i 6=j.

Fig. 14. Broadcast Functionality.
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A Standard functionalities

We include standard functionalities for MPC for reference.
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Functionality FAgreeRandom

1. Receive a value xi from all parties Pi.
2. Compute x=

∑
xi.

3. Send x to all parties Pi.

Fig. 15. Functionality to agree on a Common Public Value.

Functionality FRand

Init: On input (Init,sid,F) from all parties await for incoming messages.

Random: On input (Random,sid) from all parties sample r
$←U(F) and send it to S. Wait for S

reply: if message is OK then send r to all parties. If the message is Abort and send Abort to
all parties and halt.

Fig. 16. Rand Functionality.

ΠABBWithErrors

Initialize: The parties create the necessary preprocessing material for the online phase, receiving
a number of multiplication triples ([a],[b],[c]), and mask values (ri,[ri]).

Input: To share an input xi, party Pi takes an available mask value (ri,[ri]) and does the following:
1. Broadcast ε←xi−ri.
2. The parties compute [xi]← [ri]+ε.

Multiply: On input ([x],[y]) the parties do the following:
1. Take one multiplication triple ([a],[b],[c]), compute [ε]← [x]−[a],[ρ]← [y]−[b], and open these

shares to get ε,ρ, respectively.
2. Set [z]← [c]+ε·[b]+ρ·[a]+ε·ρ.

Share: On input [x], each party Pi retrieves its own share x(i) of x from its local memory.

Fig. 17. Protocol for passively secure MPC adjusted for passive security from MASCOT [KOS16].

B Unauthenticated Arithmetic Black Box Protocols

We include standard protocols for MPC for reference.



ΠInputTuple

Input: On Input (Input,Pj) from all parties do the following:

1. Pj samples r
$←F

2. All parties output [r] and Pj outputs r.

Fig. 18. Protocol for passively secure Input Tuples as presented in MASCOT [KOS16].

ΠTripleGeneration

Multiply:

1. Each party samples a(i)
$←F,b(i) $←F.

2. Every ordered pair of parties Pi,Pj does the following:

(a) Both parties call Fk,kROT, where Pi inputs (a
(i)
1 ,...,a

(i)
k )=g−1(a(i))∈Fk2.

(b) Pj receives q
(j,i)
0,h ,q

(j,i)
1,h ∈F, and Pi receives s

(i,j)
h =q

(j)

a
(i)
h
,h

, for h=1,...,k.

(c) Pj sends d
(j,i)
h =q

(j,i)
0,h −q

(j,i)
1,h +b(j),h∈ [k].

(d) Pi sets t
(i,j)
h =s

(i,j)
h +a(i) ·d(j,i)h =q

(j,i)
0,h +a

(i)
h ·b

(j), for h=1,...k. Set q
(j,i)
h =q

(j,i)
0,h .

(e) Pi sets c
(i)
i,j=〈g,t〉∈F, for t the above k-element vector.

(f) Pj sets c
(j)
i,j =−〈g,q〉∈F, for q the above k-element vector.

(g) Now we have: c
(i)
i,j+c

(j)
i,j =a(i) ·b(j)∈F

3. Each party Pi computes: c(i)=a(i) ·b(j)+
∑
j 6=i(c

(i)
i,j+c

(i)
j,i)

Combine:
1. Sample r,r̂

$←FRand(F).
2. Each party Pi sets:

(a) a(i)=〈a(i),r〉,c(i)=〈c(i),r〉, and
(b) â(i)=〈a(i),r̂〉,̂c(i)=〈c(i),r̂〉

Output: ([a],[b],[c]) as a valid triple.

Fig. 19. Protocol for Triple Generation adjusted for passive security from MASCOT [KOS16].
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