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Abstract. In a set membership proof, the public information consists
of a set of elements and a commitment. The prover then produces a
zero-knowledge proof showing that the commitment is indeed to some
element from the set. This primitive is closely related to concepts like ring
signatures and “one-out-of-many” proofs that underlie many anonymity
and privacy protocols. The main result of this work is a new succinct
lattice-based set membership proof whose size is logarithmic in the size
of the set.
We also give a transformation of our set membership proof to a ring
signature scheme. The ring signature size is also logarithmic in the size
of the public key set and has size 16 KB for a set of 25 elements, and
22 KB for a set of size 225. At an approximately 128-bit security level,
these outputs are between 1.5X and 7X smaller than the current state of
the art succinct ring signatures of Beullens et al. (Asiacrypt 2020) and
Esgin et al. (CCS 2019).
We then show that our ring signature, combined with a few other tech-
niques and optimizations, can be turned into a fairly efficient Monero-like
confidential transaction system based on the MatRiCT framework of Es-
gin et al. (CCS 2019). With our new techniques, we are able to reduce
the transaction proof size by factors of about 4X - 10X over the afore-
mentioned work. For example, a transaction with two inputs and two
outputs, where each input is hidden among 215 other accounts, requires
approximately 30KB in our protocol.

1 Introduction

Privacy-based transaction systems are steadily gaining in popularity to the point
that central banks of the US and the EU are exploring an eventual shift to digital
currency. Transaction systems can be equipped with various degrees of privacy,
possibilities for auditability, and permission types for joining the transaction
network. The common element at the heart of most of these schemes is a zero-
knowledge proof which can be adapted to endow the scheme with the desired
features. The most efficient zero-knowledge proofs which allow for proving a rich
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set of statements are generally based on the hardness of the discrete logarithm
problem over elliptic curves. This poses a problem for the eventual use of digital
currency because the timeline for widescale deployment of these transaction
systems could very well coincide with the advent of a quantum computer that is
able to break them. It is therefore important to begin considering schemes which
are based on assumptions that are believed to be resistant to quantum attacks.

The currently most efficient, in terms of size and speed, quantum-safe basic
primitives are based on the hardness of lattice problems with algebraic structure.
Lattice-based constructions are therefore natural candidates for more advanced
cryptographic tools like zero-knowledge proofs. Over the last few years, there
has indeed been rapid progress in the field of lattice-based zero knowledge (e.g.
[4, 11, 17, 32, 8, 16, 18, 1, 15, 25]). There now exist fairly practical protocols
for proving knowledge of pre-images of lattice-based 1-way functions, arithmetic
sums and products of committed values, as well as various primitives such as ring
signatures and group signatures. In virtually all of these cases, the lattice-based
solutions result in the most efficient (potentially) quantum-safe option.

As far as a relatively complete quantum-safe transaction system, the recent
work of Esgin et al. [18], also based on the hardness of lattice problems, appears
to be the most efficient solution. Their work adapts the RingCT protocol [29],
which serves as the foundation of the digital currency Monero, and provides
formal definitions upon which they construct their MatRiCT protocol. While
certainly not as efficient as discrete logarithm based schemes, this work showed
that a lattice-based confidential transaction system is something that may even-
tually be a very reasonable solution.

Our Results and Related Work. At the core of many privacy-based protocols
(including the one from [18]) is a set membership proof in which the prover
shows, in zero-knowledge, that a commitment is to a value from a public set.
This concept is very closely related to “one-out-of-many” proofs [20] and ring
signatures [31]. The main result of this work is a new set membership proof which
is logarithmic in the size of the set and leads to a ring signature scheme with
outputs noticeably smaller than the currently shortest schemes from [18, 6].3 We
point out that “one-out-of many” proofs [20], in which the prover shows that one
of the commitments in a set is a commitment to 0, are actually equivalent to the
ring signatures that we construct. This is because lattice-based public keys can
be thought of as commitments to 0. We then show how to use our ring signature
scheme / “one-out-of-many” proof, together with a few other optimizations of
prior work, to create a more efficient confidential transaction system based upon
the MatRiCT definitions.

We now give a brief overview of where the efficiency advantage comes from.
The shorter proofs in our scheme are partly a result of the fact that the modulus

3 One can also obtain ring signatures which are linear (rather than logarithmic) in the
size of the public key set by plugging in a lattice-based signature scheme based on a
trapdoor function, such as [30], into the generic framework of [31]. Even though for
small set sizes (around a dozen), this may be smaller than our solution, it quickly
becomes much larger (see Table 2).
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in our underlying polynomial ring stays the same for all practical set sizes. On the
other hand, if the size of the set is n = 32m, then the exponent of the modulus
in the ring used in [18] increases linearly in m. The reason for this difference
is that [18] use “Ajtai-type” commitments which compress the input, but only
allow for commitments of “short” messages. In our construction, however, we use
BDLOP commitments [5] which allow commitments to arbitrary-size elements,
at the expense of a slightly larger commitment size. But because the number of
commitments we need is logarithmic in the size of the set, this does not pose a
problem with the commitment size becoming too big.

An additional advantage of BDLOP commitments that we extensively use
is that if one plans ahead by choosing a long-enough randomness vector in the
beginning of the protocol, then one can adjoin a new commitment at any time
and the size of the commitment only increases by the size of the committed
message. In particular, the increase in size does not depend on the security
parameter, which is what one would need if creating a new commitment. We
use this property when combining our new techniques along with the framework
for proving various relations committed to in BDLOP commitments from [1,
15, 25]. Thus our constructions essentially have just one BDLOP commitment
for the entire protocol. We further reduce the transaction size by employing an
amortization technique so that the proof contains just two elements whose size
depends on the security parameter.

In the rest of the introduction, we give rather detailed high-level descriptions
of our constructions. The reason for this level of detail is that the protocols in
the body of the paper use optimizations that combine the new ideas together
with prior work in a non-black box manner, which tends to somewhat obfuscate
the high level picture. In the introduction, we instead give slightly less efficient
constructions that try to highlight the separate parts making up the complete
protocols. We would then hope that with the high-level intuition in hand, the
interested reader can better follow the complete protocols in the body.

1.1 The Polynomial Ring and BDLOP Commitments

Throughout this paper, we will be working over the polynomial ring Rq =

Zq[X]/(X128 + 1) where q is set such that X128 + 1 =
32∏
i=1

(X4 − ri) and X4 − ri
are irreducible modulo q (c.f. [28] for how to set q to obtain such a factorization).
We will be exclusively using BDLOP commitments [5], where a commitment to
a polynomial vector ~m ∈ Rkq is of the form

[
B0

B1

]
~r +

[
~0
~m

]
=

[
~t0
~t1

]
, (1)
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where Bi are uniform4 public random matrices and ~r is a random low-norm
vector which serves as the commitment randomness. To open the commitment
without revealing it, one would ideally want to give a zero-knowledge proof of a
low-norm ~r satisfying B0~r = ~t0. Unfortunately, there is no particularly efficient
zero-knowledge proof for this statement, and so a relaxed opening is defined
which consists of a vector ~v and a polynomial c satisfying B0~v = ~t0 such that
‖c‖ and ‖c~v‖ are small (but ~v is not necessarily small itself). The committed
message is then implicitly

~m = ~t1 −B1~v. (2)

An efficient zero-knowledge proof for the above opening was given in [5].
That work also showed how to prove linear (over Rq) relations of ~m without
increasing the proof size. For this, it’s in fact enough to just be able to prove
that the commitment is to ~0. The reason is that a commitment of ~m can be
easily converted to a commitment of ~m+ ~m′ by adding ~m′ to ~t1. Similarly, for
any matrix L over Rq, one can convert a commitment of ~m to one of L ~m by

multiplying the bottom part by L to obtain

[
B0

LB1

]
· ~r +

[
~0
L ~m

]
=

[
~t0
L~t1

]
. Thus

proving that the message ~m in (1) satisfies L ~m = ~u, involves proving that the

commitment

[
~t0

L~t1 − ~u

]
with public key

[
B0

LB1

]
is a commitment to ~0.

Later works (e.g. [1, 15, 25]) showed how to prove more complicated relations
between the committed messages in BDLOP commitments. These include prov-
ing multiplicative relations among the polynomials comprising ~m and proving
linear relations over Zq (rather than Rq) of the integer coefficients comprising
~m. An important feature of these aforementioned proofs is that the proof size
does not grow with the number of relations that one needs to prove about one
commitment. So the cost, in terms of proof size, of proving multiple relations
about one commitment is the cost of proving the most expensive one.

1.2 The New Set Membership Proof

In this work we extend the toolbox of what can be proved about ~m in BDLOP
commitments by showing how to do set membership proofs. Given a collection
of polynomial vectors ~pi, and a commitment to one on them, we would like to
prove that the committed ~w is indeed one of the ~pi.

More specifically, the public information consists of P = [~p1 | . . . | ~pn],
where n = lm = 32m, and a commitment ω. The prover gives a zero knowledge
proof that a commitment ω opens to (~v1, . . . , ~vm, ~w) where

P · (~v1 ⊗ . . .⊗ ~vm) = ~w (3)

∀i, ~vi ∈ {0, 1}l and ‖~vi‖1 = 1. (4)

4 For efficiency, a large portion ofBi can be the identity matrix (c.f. [5]), but we ignore
the form of the public randomness in this paper, as it does not affect any output
sizes.
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Notice that by definition of the ~vi, their tensor product will be a vector of
length n consisting of all zeros and one 1 (this decomposition observation was
originally used in [20]). If each vector ~vi will be committed as a polynomialmi in
the BDLOP commitment,5 then (4) can already be proved using the aforemen-
tioned techniques from [1, 15]. Our main result in this work is an efficient proof
of (3) whose size is linear in m, and thus logarithmic in the number of elements
in P . We also prove a more generic k-dimensional version of this problem. In
this version, there are k public lists

P (1) =
[
~p
(1)
1 | . . . | ~p (1)

n

]
, . . . ,P (k) =

[
~p
(k)
1 | . . . | ~p (k)

n

]
and ~w is a sum of k elements, one taken from each set. The prover gives a zero
knowledge proof that the commitment ω opens to

(~v
(1)
1 , . . . , ~v (1)

m , . . . , ~v
(k)
1 , . . . , ~v (k)

m , ~w)

where

k∑
j=1

P (j) · (~v (j)
1 ⊗ . . .⊗ ~v (j)

m ) = ~w (5)

∀i, j, ~v (j)
i ∈ {0, 1}l and ‖~v (j)

i ‖1 = 1 (6)

This proof is of size O(mk), so there is no amortization happening. But being
able to prove the above will allow us to amortize away many of the other parts
of the anonymous transaction protocol.

1.3 Set Membership Proof Sketch

We now give a sketch of how to prove (3) and (4). Let us first define the set
Mq = Zq + ZqX + ZqX2 + ZqX3. Because of the way we defined Rq, the NTT
and inverse NTT functions are bijective functions NTT (w) : Rq → M32

q and

NTT−1 (~w) :M32
q → Rq where

NTT (w) = (w mod X4 − r1, . . . ,w mod X4 − r32).

These functions extend to polynomial vectors in the natural way by being applied
to each polynomial separately.

We will also need to overload the inner product operator. For a polyno-
mial w such that NTT (w) = ~w = (w1, . . . , w32) ∈ M32

q , define the func-

tion g(w) =
32∑
i=1

wi. In other words, it’s just the sum of the NTT coefficients

as polynomials in Mq. For two vectors ~w, ~w′ ∈ M32
q , we define 〈~w, ~w′〉 =

5 Actually the inverse NTT of the vector ~vi, which is an element of Rq, will be com-
mitted – see Section 1.3.
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g(NTT−1 (w)NTT−1 (w′)). It resembles an inner product because we can equiv-
alently write it as

〈~w, ~w′〉 =

32∑
i=1

wiw
′
i mod (X4 − ri).

The multiplication is performed modulo different polynomials, amd so this func-
tion is not an inner product. But it is commutative and satisfies 〈~w+ ~w′, ~w′′〉 =
〈~w, ~w′′〉 + 〈~w′, ~w′′〉. Similarly, for ~w = (~w1, . . . , ~wk), ~w′ = (~w′1, . . . , ~w

′
k), where

each ~wi, ~w
′
i ∈M32

q , one defines 〈~w, ~w′〉 =
k∑
i=1

〈~wi, ~w′i〉.

For convenience, we will now rewrite the set membership problem to be over
Mq. In particular, the public information consists of vectors P = [~p1 | . . . | ~pn]
where each ~pi ∈ M32k

q , for some arbitrary k. And we also have a commitment

to a vector ~w ∈ M32k
q such that ~w = ~pi for some i. Notice that the ~pi and ~w

are the NTT of the ~pi, ~w from (3). To commit to the vector ~w, we define the
polynomial vector ~w = NTT−1 (~w) ∈ Rkq and then use the BDLOP commitment
from (1) to commit to ~w. Later rows of this BDLOP commitment will also
include commitments to the vectors ~v1, . . . , ~vm ∈ M32

q (defined as in (4)). We

will define the polynomials vj = NTT−1 (~vj) and commit to them in the BDLOP
commitment. Note that we can already prove (4) using the techniques from [1, 15]
by proving that ~v · (~1−~v) = ~0 and that the NTT coefficients of each polynomial
in ~v sum to 1.

We now describe how to prove (3) – in other words, that P ·(~v1⊗. . .⊗~vm)−~w =
~0. We will prove this by showing that for a random challenge ~γ ∈ M32k

q , the
“inner product” 〈P · (~v1 ⊗ . . . ⊗ ~vm) − ~w,~γ〉 = 0. Because Zq[X]/(X4 − ri) are
fields and of size q4, it’s not hard to see that if the left term in the inner product
is not ~0, then the probability of the inner product being 0 is exactly q−4. Because
we will be working with a q ≈ 232, this probability is approximately 2−128, so
no repetitions are required.

We now get to the main technical part of the protocol. Let’s break up P into

32 parts as P = [ P1 | . . . , | P32 ] and define P ′ :=

 γ
TP1

...
γTP32

 ∈M32×32m−1

q .

Then using the property that ~vi are vectors over Mq with just constant
coefficients,6 with some algebraic manipulation (see (18)), it can be shown that

〈P (~v1 ⊗ . . .⊗ ~vm)− ~w,~γ〉 = 〈~v1, P ′(~v2 ⊗ . . .⊗ ~vm)〉 − 〈~w,~γ〉. (7)

To prove that the left-hand side is 0, it is therefore equivalent to prove that
the right-hand side is 0. The crucial part is that the right-hand side contains

6 Intuitively, if the coefficients of ~vi were polynomials of degree > 0, then the term
〈~v1, P ′(~v2⊗ . . .⊗~vm)〉 in (7) would make very little algebraic sense because there is a
multiplication on one side of P ′ which involves reduction modulo X4 − rj , and then
there would be a multiplication on the other side which would get reduced modulo
different X4−rj′ . But since vectors ~vi only have constant terms, the “inner product”
with ~vi does not involve any modular reduction.
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an expression which selects one element from a set P ′ – but this set is 32 times
smaller than P . If we define ~x = P ′(~v2⊗ . . .⊗~vm) and send a commitment to ~x,
then proving the original set membership involves proving a new set membership
proof in which the set is 32 times smaller, as well as the equation 〈~v1, ~x〉 = 〈~w,~γ〉.
If this latter equation can be proved with a constant number of commitments (in
our case, it will essentially be one), then continuing the proof recursively would
mean that the whole proof requires approximately 2m commitments for sets P
containing n = 32m elements.

Both ~w and ~γ are vectors inM32k
q , so let us write them as ~w = (~w1, . . . , ~wk)

and ~γ = (~γ1, . . . , ~γk) where ~wi, ~γi ∈M32
q . Then

〈~v1, ~x〉 = 〈~w,~γ〉 ⇔ g(v1x) = g

(
k∑
i=1

wiγi

)
,

where the bold letters correspond to the inverse NTTs and the function g is the
sum of the NTT’s of the polynomial. Because we have BDLOP commitments

to x and wi, we can compute a commitment to y = v1x −
k∑
i=1

wiγi, and then

we just have to prove that the sum of the NTT coefficients of this polynomial is
0. For this, we employ a lemma used in [15], which states that for the ring Rq

as defined in this section and a polynomial y ∈ Rq =
127∑
i=0

yiX
i, we have g(y) =

32(y0 + y1X + y2X
2 + y3X

3). In other words, the sum of the NTT coefficients is
0 if and only if the first four coefficients of the polynomial representation are 0.
To prove this in zero knowledge, we can first commit to a masking polynomial
z whose first 4 coefficients are 0 and the rest uniform in Zq, and then output
y + z and prove that this is indeed the right sum. The verifier can then check
that the first four coefficients are 0. We don’t need to multiply y by a challenge
because in our case, it already contains a challenge ~γ. In the body of the paper,
we present an efficient way to do this proof which does not require committing
to y and so we just need an extra commitment to ~x ∈ M32

q at each level of the
recursion.

1.4 From Set Membership to Ring Signatures

A ring signature scheme allows a signer to sign in a way that hides the public
key that he is using. More specifically, the signer creates a set comprised of his
public key and other public keys for which he may not know the secret key.
He then creates a signature with the property that the verifier can check that
the message was signed by an entity who knows the secret key to one of the
public keys in the list. We now sketch how one can convert a “Schnorr-like”
lattice-based signature scheme into a ring signature by using a set membership
proof.

The basic signature scheme underlying the ring signature follows the usual
“Fiat-Shamir with Aborts” approach for constructing lattice-based digital sig-
natures (e.g. [23, 24, 14]). In particular, the secret key is a low-norm vector ~s,
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while the public key consists of a random matrix A and a vector ~t = A~s. The
signature is then a “relaxed” zero-knowledge proof of knowledge (made non-
interactive using the Fiat-Shamir transform) of a vector ~s′ and a polynomial c′,
both with small norms, satisfying c′~t = A~s′.

The ring signature public information consists of the matrix A and vectors
~t1, . . . , ~tn. A signer who knows an ~si satisfying A~si = ~ti will want to give a
zero-knowledge proof knowledge of ~s′, c′, and i ∈ [0, n) satisfying c′~ti = A~s′.
An interactive version of this proof is presented in Figure 1 and it is then made
non-interactive using the Fiat-Shamir transform and inserting the message to be
signed into the random oracle which is used to produce the challenge.

Private information: ~v1, . . . , ~vm ∈ {0, 1}l as in (4), and ~s with a small norm
Public information: A, T = [ ~t1 | . . . | ~tn], where n = lm s.t. T · (~v1 ⊗ . . .⊗ ~vm) = A~s

Prover Verifier

~y ← D
~w := A~y
ω := Com(~v1, . . . , ~vm,− ~w)

ω -
c← C

c�
~z := c~s+ ~y, and rejection sample

Define P =
[
c~t1 | . . . | c~tn

]
ω := ω + (0, . . . , 0,A~z)
(i.e. ω = Com(~v1, . . . , ~vm,A~z − ~w))

π = ZKPoK for (3) and (4) ~z, π -
1. check that ‖~z‖ is small
2. verify π

Fig. 1. A lattice-based ring signature using the set membership proof. Com is a BDLOP
commitment, while D is a distribution that outputs polynomial vectors with small
coefficients. As in Section 1.3, a BDLOP commitment to ~vi is a commitment to the
polynomial NTT−1 (~vi) ∈ Rq.

To see that this proof is complete (assuming that all the norm-checks pass),
notice that A~z − c~ti = A~y = ~w. And this is exactly what π proves. The
zero-knowledge property follows from the fact that π is a zero-knowledge proof
and that ~z is independent of ~s and c due to the employed rejection sampling.
To see that the protocol is a proof of knowledge, note that verifying π implies
that A~z − c~ti = ~w. Because the ~vi and ~w in the commitment are fixed, if we
rewind the prover with a different challenge c′, we will obtain A~z′ − c′~ti = ~w.
Eliminating ~w by subtracting the two equations results in the statement that
we would like to extract.
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Ring Size 23 25 26 210 212 215 221 225

Falafl [6] 30 32 35 39

Esgin et al. [18] 19 31 59 148

Raptor [22] / [31]+[30] 10 81 5161

This Work 16 18 19 22

Fig. 2. Sizes, in KB, of the different lattice-based ring signature schemes with approx-
imately 128 bits of security. The sizes for [6, 18, 22] are taken from [6, Table 1].

1.5 Bimodal Gaussians (almost) for Free

The goal of the rejection sampling in the signing algorithm is to remove the
dependence of the secret key ~s from the output ~z. If the distribution D in
Figure 1 is a zero-centered discrete Gaussian, then the distribution of ~z = c~s+ ~y
before rejection sampling is performed is a discrete Gaussian centered at c~s. In
order for the rejection probability to not be too large (e.g. < 1 − 1/e), one
needs the standard deviation of the ~z after the rejection sampling to be around
12 · ‖c~s‖ [24]. In [13], it was shown that if one can get the distribution of ~z
before rejection sampling to follow a bimodal Gaussian distribution with the two
centers being ±c~s, then one only needs the standard deviation of the ~z after
rejection sampling to be ‖c~s‖/

√
2 for the same repetition rate. Such a reduction

has a direct consequence on reducing the output length and increasing the SIS-
hardness of the underlying problem.

The way to create a bimodal gaussian with the two centers being ±c~s is
for the prover to choose a y ← D and also a b ← {−1, 1} and then create
~z = b~c~s + ~y. It is crucial for security that b remains hidden and so the verifier
is not allowed to know b or use it during verification. This could be an issue in
regular signature schemes because the verifier would need to directly check that

A~z = c~t+ ~w. (8)

Since A~z = A(bc~s+ ~y), we would need A~s = −A~s to always hold. In our case,
this does not hold, but it will not pose a problem because the verifier does not
directly verify (8) because, for privacy, the prover cannot send ~w in the clear
anyway. Instead, the verifier gets Com( ~w) and a ZK proof that this commitment
opens to a ~w satisfying (8). Since the prover already sends a commitment to
~w along with the ones for ~vi (and eventually all the “garbage terms” required
in π), he can just increase the commitment size by one (128-degree) polynomial
and also commit to b. Then the proof π would need to be modified to prove that

[bc~t1 | . . . | bc~tn] · (~v1 ⊗ . . .⊗ ~vm) = ~w −A~z.

Notice that because b ∈ {−1, 1} and all the ~vi consist of all 0’s and one 1, this
can be rewritten as

[c~t1 | . . . | c~tn] · (b~v1 ⊗ ~v2 ⊗ . . .⊗ ~vm) = ~w −A~z,
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and so the only thing that changes is that instead of committing to ~v1, the
prover commits to b~v1. He then just has to show that the coefficients of b~v1 are
in {0, b} rather than {0, 1} – but this proof is exactly the same if we already
have a commitment to b (which we proved to be in {−1, 1}).

1.6 Application to Confidential Transactions

We now show how to construct a confidential transaction system in the model
of [18]. The setup is the following: at any given moment, the state (which is
managed by the blockchain, and is outside the scope of this work) consists of a
set of accounts act = (pk, cn), each of which contains a public key and a coin.
The state also contains a set of serial numbers which implicitly correspond to
the accounts that were already spent (to prevent double-spending). The secret
account key associated to each account is ask = (sk, ck, amt), which consists of
the secret key corresponding to pk and the commitment key ck, which is the
randomness used to create the BDLOP commitment cn to the amount amt in
the account. As in [18], we will assume that amt takes values between 0 and
264−1. Since we are working over rings with 32 NTT slots, we will represent the
values in base 4. The basic operation has the sender choosing M input accounts
for which he knows the secret keys associated to pk (1), . . . , pk (M), and then
creating S new output accounts with given public keys for which he does not
need to know the associated secret keys. There are three correctness constraints.
The first is that the spender knows the associated secret keys for the M input
accounts. The second is that the sum of the values of the input coins (i.e. the
sum of the amt) equals to the sum of the values of the output coins. And the
third is that none of the M input accounts were used as inputs in any previous
transaction.

In addition to correctness, there are also secrecy and anonymity require-
ments. The secrecy requirement states that nothing about the amounts amt is
known except that the sum of the input and output coins is equal. The spender’s
anonymity is defined by hiding the spenders account among N other accounts.
In particular, rather than stating which M accounts the spender is using, he will
instead choose M sets of N accounts each, and then choose one account from
each set in a way that hides which of the N accounts has been chosen. How the
spender chooses the N − 1 other accounts is a policy issue that is outside the
scope of this work.

The public information for the system consists of a polynomial matrix B
which forms the “top part” of the BDLOP commitment. The polynomial vectors
~bc (which will be used to commit to amt) and ~bs (which will be used to “commit”
to zero, with the commitment being the serial number) form the “bottom part”
of the commitments. In particular, sk is a low-norm vector ~s where[

B
~bs

]
~s =

[
pk
sn

]
. (9)
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And ck is another low-norm vector ~r such that[
B
~bc

]
~r +

[
0

amt

]
= cn. (10)

Correctness. Let’s ignore anonymity for a moment, and just briefly discuss how
the correctness of the protocol could be handled. If the spender wants to spend
accounts act (1), . . . , act (M), then he outputs the values sn (j), ~s (j), ~r (j), amt (j)

for the input accounts, and the verifier can check that (9) and (10) are satisfied.
Furthermore, the verifier checks that none of the sn (j) are in the set of used
serial numbers, and adds these sn (j) to the set. Note that because the value of
~s (j) is uniquely determined by B and pk (unless SIS is easy), the value of sn is
uniquely tied to pk; and so it is not possible to spend a coin more than once.
The spender then creates valid output tokens with the values of pk that he is
given and creates the output coins with by picking small vectors ~r and using
them to create BDLOP commitments to amt as in (10). He then outputs these ~r
and amt so that everyone can check that the sum of the input amounts is equal
to the sum of the output amounts.

Anonymity and Secrecy. We now sketch how anonymity and secrecy is achieved
in our confidential transactions protocol. The spender chooses the M accounts
act (j) = (pk (j), cn (j)) that he wants to spend. He puts each of the right hand
sides of (10) (i.e. the coin commitments) from these accounts into M lists T (j),
one coin per list. The rest of the lists are filled with N coins from accounts
among which the spender wants to hide his. He then creates S output accounts
act (j) = (pk (j), cn (j)) using the given public keys. He does not need to hide these
accounts and so he just creates S lists of size 1 for the output coins. He then
wants to create one BDLOP commitment that includes all the coin values (i.e.
the amt) from the input and output tokens. This protocol is described in Figure
6. Once the spender has one BDLOP commitment, he can prove that the sum
of the input and output tokens matches, which can be done using techniques
similar to those in [18, 25].

The prover also needs to show that he knows ~s that satisfy (9) for the input
accounts. He does this by creating M lists U (j) that are derived from T (j). If the

spender’s coin is in position i in the list T (j), then he puts

[
pk

(j)
i

sn (j)

]
into position

i. He then fills the list with the public keys from the accounts corresponding
to the coins in T (j). For the serial numbers, he attaches the same one (i.e. the
one corresponding to his public key) to all the public keys. In particular, if the
spender wants to hide the jth account that he will be using in position i among
N − 1 other accounts act1, . . . , acti−1, acti+1, . . . , actN , then the lists T (j) and
U (j) are

T (j) =
[
cn

(j)
1 , . . . , cn

(j)
N

]
U (j) =

[[
pk

(j)
1

sn (j)

]
, · · · ,

[
pk

(j)
i−1

sn (j)

]
,

[
pk

(j)
i

sn (j)

]
,

[
pk

(j)
i+1

sn (j)

]
, . . . ,

[
pk

(j)
N

sn (j)

]]
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ring size N
(M,S) 25 210 215 220 225

(1, 2) This Work 22 KB 24 KB 25 KB 27 KB 28 KB
(1, 2) Esgin et al. [18] 100 KB 160 KB 250 KB 375 KB 520 KB

(2, 2) This Work 24 KB 27 KB 30 KB 33 KB 36 KB
(2, 2) Esgin et al. [18] 110 KB 190 KB 300 KB 440 KB 660 KB

Fig. 3. Transaction proof sizes depending on ring size (anonymity set size) N , number
M of input accounts, and number S of output accounts. The sizes for [18] are taken
from [18, Figure 1].

M 25 50 75 100

size (This Work N = 1024) 100 KB 180 KB 262 KB 345 KB

size (Esgin et al. [18] N = 100) 370 KB 610 KB 900 KB 1170 KB

Fig. 4. Transaction proof sizes with M input accounts and S = 2 output accounts.
The anonymity set N is 100 in [18] and 322 = 1024 in our work. The sizes for [18] are
taken from [18, Figure 2].

For the lists U (j), the spender simply wants to prove that he knows the
secret keys ~s (j) for the elements in the same position as those in T (j). Since the
positions are already committed to, the proof of knowledge of the ~s (j) does not
require any extra BDLOP commitments and the proof of knowledge of the ~s (j)

can be amortized into the output vector ~z in Figure 6. The verifier will need to
check that the serial numbers sn (j) have never been used (i.e. don’t appear in

the “used” pile) and that the lists T (j),m (j) are valid (i.e. the positions pk
(j)
i in

list T (j) and cn
(j)
i in list U (j) correspond to some account act =

(
pk

(j)
i , cn

(j)
i

)
).

The verifier also has to verify the proof from Figure 6 and the addition proof
confirming that the amounts in the input and output accounts match.

The protocol in Figure 6, which is at the center of the confidential transaction
protocol, creates a new BDLOP commitment and proves that it is committing
to the same values as the M input and S output accounts. It additionally proves
that the spender knows the secret keys of the M input accounts. This involves
using the protocol for the k-dimensional version of the set membership problem
as well as an amortization technique which will allow us to only send one “masked
value” for all the randomness used in the M+S accounts.

Aggregating BDLOP Commitments. Before describing the protocol in Figure 6,
we ignore the part where each of the M input accounts are hidden among N
others, and give a simpler protocol in Figure 5 that takes k BDLOP commitments
with distinct randomnesses, and creates one BDLOP commitment to the same
messages. The improvement in this protocol over the trivial one is in the fact
that only one output ~z is enough to prove knowledge that all k commitments
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are valid. The norm of this vector ~z is larger by a factor of k (or
√
k in the

asymptote), so its representation grows only logarithmically in k.
The protocol in Figure 5 takes as input k BDLOP commitments under ran-

domness ~si and produces one BDLOP commitment ω under randomness ~r. The
commitment includes all the mi and one additional “garbage polynomial” w̃.
When the prover computes and outputs ~z, he proves that all the k commitments
under ~si are valid. The rest of the steps are needed to show that the commitment
under ~r is to the same mi. We discuss this in more detail below.

The proof that the k commitments are valid follows from the ideas in [4]
where one does rewinding by keeping most of the challenge fixed. As long as the
new challenge still has κ bits of entropy conditioned on the prior challenge, the
soundness error will still be ≈ 2−κ. Without loss of generality, suppose that we
would like to prove that the new commitment is a commitment to m1 (in the
row that contains g1). Let ( ~w, ω, c1, c2 . . . , ck, ~z, π) be the transcript of one run
and ( ~w, ω, c′1, c2 . . . , ck, ~z

′, π′) be the view of the second run when we rewind
while keeping all the challenges, except for c1 fixed.

Rewinding on the second verification equation, we obtain (c1−c′1)~t1 = A(~z−

~z′). By (2), this implies that the message mi committed to by

[
~t1
u1

]
satisfies

(c1 − c′1)m1 = (c− c′)u1 − ~b · (~z − ~z′). (11)

Notice that repeating this for all i, we can prove that all the commitments

[
~ti
ui

]
are valid. The intuition for proving that ω is a commitment to the same messages
is to prove that the messages in the commitment of ω (call them m̄i and w̄)
satisfy the linear equation∑

i

cim̄i =
∑
i

ciui + w̄ − ~b · ~z. (12)

Rewinding in the same way as above, we would obtain

(c1 − c′1)m̄1 = (c1 − c′1)u1 − ~b · (~z − ~z′).

Substituting ~b · (~z− ~z′) from (11), we get (c1−c′1)m̄1 = (c1−c′1)m1. And since
c1 − c′1 is invertible, we have m1 = m̄1 as desired.

We now observe that we exactly prove (12). The proof π proves that ω is a
valid commitment and therefore there is a unique ~v (and a short polynomial d s.t.
d~v has small norm) satisfying gi−~ai·~v = m̄i and gw−~aw ·~v = w̄. Because we also
prove that

∑
ciui is a valid commitment, it implies that 〈~a∗, ~v〉+

∑
civi = g∗.

If we expand out the definitions of ~a∗ and g∗, and then plug it in, along with
the expressions for (ci − c′i)gi and (ci − c′i)gw, into the previous equation, we
will exactly end up with (12).

We now sketch the zero-knowledge proof. By assumption, π can be simu-
lated and ~z is independent of ~si and ci by rejection sampling. The BDLOP
commitment ω is indistinguishable from uniform by the LWE assumption, and
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Private information: For 1 ≤ i ≤ k, polynomials mi, low-norm vectors ~si

Public information: Uniformly random B, ~b,A, ~aw, ~ai,

[
~ti
ui

]
=

[
B
~b

]
~si +

[
~0
mi

]

Prover Verifier

(~y, ~r)← Dy ×Dr
~w := B~y; w̃ := ~b · ~y
A
~a1

. . .
~ak
~aw

 ~r +


~0
m1

. . .
mk

w̃

 =


~f
g1
. . .
gk
g̃w

 = ω ~w, ω -

c1, . . . , ck ← C
c1, . . . , ck�

~z := ~y +
∑
ci~si, and rejection sample

~a∗ :=
k∑
i=1

ci~ai − ~aw

g∗ :=
k∑
i=1

cigi − ~gw + ~b · ~z

π = ZKPoK that

[
~f
g∗

]
under public key[

A
~a∗

]
is a commitment to

k∑
i=1

ciui

~z, π -
1. check that ‖~z‖ is small

2. check that
k∑
i=1

ci~ti = B~z − ~w

3. Compute ~a∗, g∗ and verify π

Fig. 5. A protocol which takes commitments

[
~ti
ui

]
=

[
B
~b

]
~si +

[
~0
mi

]
to mi under dis-

tinct randomnesses ~si, and outputs one BDLOP commitment ω to all themi (and some
auxiliary garage term(s)) under one common randomness ~r. Along with outputting the

commitment, the protocol also proves that

[
~ti
ui

]
are valid commitments and that the

new commitment is to the same mi.
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Private information: For 1 ≤ j ≤ k, V (j) = (~v
(j)
1 , . . . , ~v

(j)
m ) ∈ {0, 1}l×m s.t.

‖~v (j)
i ‖1 = 1, ~s (j) with a small norm, and message polynomials m (j)

Public information: B, ~b, T (j) =

[[
~t
(j)
1

u
(j)
1

]
| . . . |

[
~t
(j)
n

u
(j)
n

]]
, where n = lm, s.t

T (j) · (~v (j)
1 ⊗ . . .⊗ ~v (j)

m ) =

[
B
~b

]
~s (j) +

[
~0

m (j)

]

Prover Verifier

~y ← D
~w := B~y

w̃ := ~b · ~y
ω = Com(m (1), . . . ,m (k), V (1), . . . , V (k), w̃,− ~w)

ω -
c (1), . . . , c (k) ← C

c (1), . . . , c (k)

�
~z := ~y +

∑
c (j)~s (j), and rejection sample

Define P (i) = c (i)T (i)

Define g∗ :=
k∑
j=1

c (j)g (j) − g̃ (w) + ~b · ~z

π = ZKPoK that

[
B~z − ~w
g∗

]
is a

commitment to
k∑
j=1

P (j) · (~v (j)
1 ⊗ · · · ⊗ ~v (j)

m ) ~z, π -

1. check that ‖~z‖ is small
2. verify π

Fig. 6. Given T (j) ·(~v (j)
1 ⊗. . .⊗~v

(j)
m ) =

[
B
~b

]
~s (j)+

[
~0

m (j)

]
, the prover creates a BDLOP

commitment to all the k m (j) and proves its correctness. The new commitment Com
uses public matrices (e.g. A, etc. as in Figure 5) which we do not explicitly state in
this sketch. The terms comprising g∗ are parts of ω, and are described in detail in the
protocol in Figure 5 (except with subscripts instead of superscripts).

~w is unique once ~z and ci are chosen. Something worth noting is that while
~w = B~y can be sent in the clear, the value w̃ = ~b · ~y needs to be sent as part
of a commitment because revealing it in the clear would end up revealing some
function of the mi.

Aggregation and Set Membership. Converting the protocol from Figure 5 into
the one in Figure 6 uses very similar intuition as when converting a signature
scheme into a ring signature scheme in Figure 1.

We will now proceed to briefly explain the transition from the protocol in
Figure 5 to the one in Figure 6. First, the second verifier check in Figure 5 cannot
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be done in the clear – that is the verifier cannot know ~w. If he knows ~w, then
he can compute the weighted sum of the committed values

∑
ci~ti, which would

leak information about which commitments were chosen. The prover therefore
must commit to ~w. So the commitment ω in Figure 6 creates commitments to
m (j), w̃ exactly like to mi, w̃ in Figure 5, and also commits to ~w and to V (j),
which are needed for the set membership proof.

The prover then sets up the ~a∗ and g∗ exactly as in Figure 5. Therefore

g∗ is a commitment to the bottom part of
k∑
j=1

c (j)T (j) · (~v (j)
1 ⊗ · · · ⊗ ~v (j)

m ).

From the second verification equation in Figure 5, we know that the top part
of the preceding is B~z − ~w, and we can create a commitment to this value
by adding B~z to the commitment of − ~w that we already have. We therefore

have a commitment to
k∑
j=1

c (j)T (j) · (~v (j)
1 ⊗ · · · ⊗ ~v (j)

m ) and creating the proof

π is therefore equivalent to creating a proof for (5) and (6). Showing that this
protocol is sound is done the same way as the one in Figure 5 because ~z and π
in Figure 6 satisfy the three verification parts in Figure 5.

2 Preliminaries

2.1 Notation

Let N ∈ N be a security parameter and q be an odd prime. We write x ← S
when x ∈ S is sampled uniformly at random from the finite set S and similarly
x ← D when x is sampled according to the distribution D. For a < b and
n ∈ N, we define [a, b] := {a, a + 1 . . . , b} and [n] := [1, n]. Given two functions
f, g : N→ [0, 1], we write f(µ) ≈ g(µ) if |f(µ)− g(µ)| < µ−ω(1). A function f is
negligible if f ≈ 0. We write negl(n) to denote an unspecified negligible function
in n.

For a power of two d, denoteR andRq respectively to be the rings Z[X]/(Xd+
1) and Zq[X]/(Xd + 1). Bold lower-case letters denote elements in R or Rq and
bold lower-case letters with arrows represent column vectors with coefficients in
R or Rq. We also write bold upper-case letters for matrices in R or Rq. By
default, for a polynomial denoted as a bold letter, we write its i-th coefficient
as its corresponding regular font letter subscript i, e.g. f0 ∈ Zq is a constant
coefficient of f ∈ Rq.

2.2 Cyclotomic Rings

Suppose q splits into l prime ideals of degree d/l in R. This means Xd + 1 ≡
ϕ1 . . .ϕl (mod q) with irreducible polynomials ϕj of degree d/l modulo q. We
assume that Zq contains a primitive 2l-th root of unity ζ ∈ Zq but no elements
whose order is a higher power of two, i.e. q − 1 ≡ 2l (mod 4l). Therefore, we
have

Xd + 1 ≡
∏
j∈Zl

(
X

d
l − ζ2j+1

)
(mod q). (13)
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Let Mq := {p ∈ Zq[X] : deg(p) < d/l} be the Zq-module of polynomials of
degree less than d/l. We define the Number Theoretic Transform (NTT) of a
polynomial p ∈ Rq as follows:

NTT (p) :=

 p̂0...
p̂l−1

 ∈Ml
q where NTT (p)j = p̂j = p mod (X

d
l − ζ2j+1).

Furthermore, we expand the definition of NTT to vectors of polynomials ~p ∈ Rkq ,
where the NTT operation is applied to each coefficient of ~p, resulting in a vector
in Mkl

q .

We also define the inverse NTT operation. Namely, for a vector ~v ∈ Ml
q,

NTT−1 (~v) is the polynomial p ∈ Rq such that NTT (p) = ~v.

Let ~v = (v0, . . . , vl−1), ~w = (w0, . . . , wl−1) ∈ Ml
q. Then, we define the

component-wise product ~v ◦ ~w to be the vector ~u = (u0, . . . , ul−1) ∈ Ml
q such

that

uj = vjwj mod (X
d
l − ζ2j+1)

for j ∈ Zl. By definition, we have the following property of the inverse NTT
operation:

NTT−1 (~v) · NTT−1 (~w) = NTT−1 (~v ◦ ~w) .

Similarly, we define the inner product :

〈~v, ~w〉 =

l−1∑
j=0

(
vjwj mod (X

d
l − ζ2j+1)

)
.

We remark that this operation is not an inner product in the strictly mathemat-
ical sense (e.g. it is not linear). However, it has a few properties which are char-
acteristic for an inner product. For instance, given arbitrary vectors ~x, ~y, ~z ∈Ml

q

and scalar c ∈ Zq we have: 〈~x, ~y〉 = 〈~y, ~x〉 (symmetry), 〈~x+ ~y, ~z〉 = 〈~x, ~z〉+ 〈~y, ~z〉
(distributive law) and 〈c~x, ~y〉 = c〈~x, ~z〉. We also highlight that the definition of
〈·, ·〉 depends on the factors of Xd + 1 modulo q.

We generalise the newly introduced operations to work for vectors ~v =
(~v1, . . . , ~vk) and ~w = (~w1, . . . , ~wk) ∈ Mkl

q of length being a multiple of l in

the usual way. In particular 〈~v, ~w〉 =
∑k
i=1〈~vi, ~wi〉.

Eventually, for a matrix A ∈Mn×kl
q with rows ~a1, . . . ,~an ∈Mkl

q and a vector

~v ∈Mkl
q , we define the matrix-vector operation:

A~v =

〈~a1, ~v〉...
〈~an, ~v〉

 ∈Mn
q .

In proving linear relations, we will need the following simple lemma.
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Lemma 2.1. Let n, k ∈ N. Then, for any A ∈ Mnl×kl
q , ~v ∈ Mnl

q and ~s ∈ Zklq
we have

〈A~s,~v〉 = 〈~s,AT~v〉.

Proof. We prove the statement for k = n = 1. The proof can then be easily
using the definition of an inner product. Let ~ai be the (i + 1)-th row of A and
ai,j ∈ Mq be its (j + 1)-th coefficient. Similarly, we define si and vi to be the
(i+ 1)-th coefficient of ~s and ~v respectively. Then, by definition we have:

〈A~s,~v〉 =

l−1∑
i=0

〈~ai, ~s〉vi mod (X
d
l − ζ2i+1)

=

l−1∑
i=0

 l−1∑
j=0

ai,jsj mod (X
d
l − ζ2j+1)

 vi mod (X
d
l − ζ2i+1)

=

l−1∑
i=0

l−1∑
j=0

ai,jsjvi mod (X
d
l − ζ2i+1)

=

l−1∑
j=0

sj

(
l−1∑
i=0

ai,jvi mod (X
d
l − ζ2i+1)

)
= 〈~s,AT~v〉.

(14)

Here, the crucial step was the observation that for ~s ∈ Zlq and any i, j ∈ Zl we
have:

ai,jsj mod (X
d
l − ζ2j+1) = ai,jsj ,

i.e. there is no reduction modulo the polynomial when multiplying by a scalar.
ut

Last but not least, we recall the following lemma from [15].

Lemma 2.2. Let p = p0 + p1X + . . .+ pd−1X
d−1 ∈ Rq. Then,

1

l

l∑
i=0

NTT (p)i =

d/l−1∑
i=0

piX
i.

For our constructions in this work, the practical hardness of either of the
problems against known attacks is not affected by the parameter m. Therefore,
we sometimes simply write M-SISκ,B or M-LWEλ,χ. The parameters κ and λ
denote the module ranks for M-SIS and M-LWE, respectively. Also, when χ is a
uniform distribution for the set [−µ, µ], we simply denote M-LWEλ,µ.

2.3 Probability Distributions

In this paper we sample the coefficients of the random polynomials in the com-
mitment scheme using the distribution χ on {−1, 0, 1} where ±1 both have
probability 5/16 and 0 has probability 6/16 identically as in [8, 1, 15].
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Discrete Gaussian distribution. We now define the discrete Gaussian distribution
used for the rejection sampling.

Definition 2.3. The discrete Gaussian distribution on R` centered around ~v ∈
R` with standard deviation s > 0 is given by

D`d
v,s(~z) =

e−‖~z−~v‖
2/2s2∑

~z′∈R` e
−‖~z′‖2/2s2 .

When it is centered around ~0 ∈ R` we write D`d
s = D`d

~0,s

2.4 BDLOP Commitment Scheme

We recall the BDLOP commitment scheme from [5] used recently in [1, 10, 15,
26]. Suppose that we want to commit to a message vector ~m = (m1, . . . ,mn) ∈
Rnq for n ≥ 1 and that module ranks of κ and λ are required for M-SIS and
M-LWE security, respectively. Then, in the key generation, a matrix B0 ←
Rκ×(κ+λ+n)q and vectors ~b1, . . . ,~bn ← Rκ+λ+nq are generated and output as

public parameters. Note that one could choose to generate B0,~b1, . . . ,~bn in
a more structured way as in [5] since it saves some computation. However, for
readability, we write the commitment matrices in the “Knapsack” form as above.
In our case, the hiding property of the commitment scheme is established via the
duality between the Knapsack and M-LWE problems. We refer to [18, Appendix
C] for a more detailed discussion.

To commit to the message ~m, we first sample ~r ← χd·(κ+λ+n). Now, there
are two parts of the commitment scheme: the binding part and the message
encoding part. In particular, we compute

~t0 = B0~r mod q,

ti = 〈~bi, ~r〉+mi mod q,

for i ∈ [n], where ~t0 forms the binding part and each ti encodes a message
polynomial mi. In this paper, when we write that we compute a BDLOP com-
mitment to a vector ~m = (~m1, . . . , ~mn) ∈Mnl

q , we mean that we commit to the

vector of polynomials ~m = (NTT−1 (~m1) , . . . ,NTT−1 (~mn)) ∈ Rnq as above.
Next, we define the notion of a weak opening of the commitment [1].

Definition 2.4. A weak opening for the commitment ~t = ~t0 ‖ t1 ‖ · · · ‖ tn
consists of a polynomial c̄ ∈ Rq, a randomness vector ~r∗ over Rq and messages
m∗1, . . . ,m

∗
n ∈ Rq such that

‖c̄‖1 ≤ 2d and c̄ is invertible over Rq
‖c̄~r∗‖2 ≤ 2β,

B0~r
∗ = ~t0,

〈~bi, ~r∗〉+m∗i = ti for i ∈ [n].
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Attema et al. [1] show that the commitment scheme is still binding with respect
to weak openings if M-SISκ,8dβ is hard.

3 Efficient Lattice-Based Set Membership Proof

In this section we construct an efficient logarithmic-size ring signature protocol
using recent results [1, 15, 25, 26] as the building blocks. Security analysis of
the interactive protocol is described in Appendix B. Then, in Appendix C we
instantiate our protocol as a ring signature using the Fiat-Shamir transform.
Eventually, Appendix D focuses on how to amortize the ring signature generation
using similar techniques as in [4].

3.1 Overview

In order to showcase our main techniques, let us consider the following set mem-
bership problem. Namely, suppose we would like to prove knowledge of a secret
element ~wi ∈ Mkl

q , for some k ∈ N, such that ~w ∈ S, where S is a public set

S = {~p1, . . . , ~pn} ⊆ Mkl
q of size n = lm which is a power of l.

We now use the observation from [17, 20, 7] that ~w ∈ S if and only if there
exists a binary vector ~v ∈ {0, 1}n with exactly one 1 such that P~v = ~w where
P ∈ Mkl×n

q is the matrix with i-th column being ~pi. One could then directly
prove knowledge of ~w and ~v which satisfy conditions above using e.g. the protocol
from [15, 25]. However, the proof size grows significantly when n gets bigger. In
order to overcome this limitation, [20, 7] observe that vector ~v can be uniquely
decomposed into smaller vectors ~v1, . . . , ~vm ∈ {0, 1}l which have exactly one 1
each and

~v = ~v1 ⊗ ~v2 ⊗ · · · ⊗ ~vm. (15)

In the end, we want to commit to ~w and smaller vectors ~v1, . . . , ~vm and prove

P (~v1 ⊗ · · · ⊗ ~vm) = ~w (16)

along with
~vi ◦ (~vi −~1) = ~0 and 〈~1, ~vi〉 = 1 for i ∈ [m] (17)

where for an integer a ∈ Zq, ~a := (a, . . . , a) ∈ Zlq. We highlight that Equation
16 is over the Zq-module Mq (see Section 2.2).

We now present a new recursive approach to prove (16) and (17) efficiently.
For readability, we first introduce the following notation:

~uj := ~vj ⊗ · · · ⊗ ~vm for j ∈ [m],

P1 := P and ~x1 = (~x1,1, . . . , ~x1,k) := ~w.

We start by sending the BDLOP commitments (as described in Sections 1.1
and 2.4) to ~v1, . . . , ~vm, ~w1, . . . , ~wk to the verifier:

~t0 = B0~r mod q,

ti = 〈~bi, ~r〉+ NTT−1 (~vi) mod q for i ∈ [m]

tm+i = 〈~bm+i, ~r〉+ NTT−1 (~xi) mod q for i ∈ [k].
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Then, a verifier V sends a challenge ~γ1 = (~γ1,1, . . . , ~γ1,k)←Mkl
q . Clearly, if (16)

holds then we have
〈P1(~v1 ⊗ ~u2)− ~x1, ~γ1〉 = 0.

Otherwise, the probability that the inner product above is equal to zero is exactly
q−d/l which is negligible.

Now, by Lemma 2.1 and using the fact that each ~vi ∈ Zlq, we have:

〈P1(~v1 ⊗ ~u2)− ~x1, ~γ1〉 = 〈~v1 ⊗ ~u2, PT1 ~γ1〉 − 〈~x1, ~γ1〉

=

l∑
i=1

v1,i〈~u2, PT1,i~γ1〉 − 〈~x1, ~γ1〉

=

l∑
i=1

v1,iγ
T
1 P1,i~u2 − 〈~x1, ~γ1〉

= ~vT1 P2~u2 − 〈~x1, ~γ1〉 = 〈~v1, P2~u2〉 − 〈~x1, ~γ1〉

(18)

where we denote
P1 =

(
P1,1 P1,2 · · · P1,l

)
∈Ml×lm

q

and the matrix P2 is defined as

P2 :=

γ
T
1 P1,1

...
γT1 P1,l

 ∈Ml×lm−1

q . (19)

Let us define the following vectors:

~x2 := P2~u2 ∈Ml
q and ~y1 := ~v1 ◦ ~x2 −

k∑
i=1

~x1,i ◦ ~γ1,i. (20)

First, we prove that ~x2 is constructed correctly. Note that by definition of ~u2 we
have

~x2 = P2(~v2 ⊗ · · · ⊗ ~vm)

which is of the form (16) but with one less tensor. Hence, in order to prove this
equation, we recursively follow the argument above. Then, assuming one can
prove (20) for ~x2, by Lemma 2.2 we know that 〈P1(~v1 ⊗ · · · ⊗ ~vm)− ~x1, ~γ1〉 = 0
if and only if y1 := NTT−1 (~y1) has the first d/l coefficients equal to zero. We
present how to prove this property for y1 below.

Let us fix j = 2. Suppose that j < m. Then, in order to show that ~x2 from
(20) is well-formed, we apply the exact strategy as before. Namely, we send a
commitment to ~xj :

tm+k+j−1 = 〈~bm+k+j−1, ~r〉+ NTT−1 (~xj) .

Then, given a challenge ~γj ←Ml
q, we deduce as in Equation 18 that

〈Pj(~vj ⊗ ~uj+1)− ~xj , ~γ〉 = 〈~vj , Pj+1~uj+1〉 − 〈~xj , ~γj〉
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where
Pj =

(
Pj,1 Pj,2 · · · Pj,l

)
∈Ml×lm−j+1

q

and the matrix Pj+1 is defined as

Pj+1 :=

γ
T
j Pj,1

...
γTj Pj,l

 ∈Ml×lm−j
q . (21)

Next, we define vectors ~xj+1, ~yj ∈Ml
q:

~xj+1 := Pj+1~uj+1 and ~yj := ~vj ◦ ~xj+1 − ~xj ◦ ~γj . (22)

Now, in order to prove well-formedness of ~xj+1 we simply run the argument
from this paragraph for j := j + 1. Assuming that ~xj+1 is constructed correctly,
we also need to prove that the coefficients of ~yj sum up to 0, i.e. the first d/l
coefficients of yj = NTT−1 (~yj) are all zeroes. Below we describe how it can be
done for all the yj ’s simultaneously.

Eventually, for j = m we want to prove that ~xm = Pm~um = Pm~vm which is
a simple linear proof from [15]. We also want to show 〈~1, ~vi〉 = 1 for i ∈ [m]. All
these relations can be combined into one linear equation:

0 0 · · · 0 Pm
B 0 · · · 0 0
0 B · · · 0 0
...

...
...

...
...

0 0 · · · B 0


~v1...
~vm

 =


~xm
~e1
...
~e1

 (23)

where

B =


1 · · · 1
0 · · · 0
...

...
...

0 · · · 0

 ∈ Zl×lq and ~e1 =


1
0
...
0

 ∈ Zlq.

Let us denote Pm ∈ M(m+1)l×ml
q to be the matrix on the left-hand side of

Equation 23.
We proceed to proving (23). First, we get a challenge vector

~γm = (~γm,1, . . . , ~γm,m+1)←M(m+1)l
q

from V and deduce that:

〈
P̃m

~v1...
~vm

−

~xm
~e1
...
~e1

 , ~γm

〉
=

〈~v1...
~vm

 , P̃Tm~γm

〉
− 〈~xm, ~γm,1〉 −

m∑
i=1

〈~e1, ~γm,i+1〉.
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Let ~xm+1 = (~xm+1,1, . . . , ~xm+1,m) := P̃Tm~γm ∈Mml
q and

~ym :=

(
m∑
i=1

~vi ◦ ~xm+1,i

)
− ~xm ◦ ~γm,1 − ~e1 ◦

m∑
i=1

~γm,i. (24)

Note that in this case ~xm+1 is public (as opposed to ~x1, . . . , ~xm). Then, as before
we get that ym = ym,0 + ym,1X + . . .+ ym,d−1X

d−1 = NTT−1 (~ym) satisfies:

ym,0 + . . .+ ym,d/l−1X
d/l−1 =

1

l

〈
P̃m

~v1...
~vm

−

~xm
~e1
...
~e1

 , ~γm

〉
.

Therefore, we need to argue that ym has the first d/l polynomial coefficients
equal to 0.

Finally, what have left to prove is that (i) polynomials y1, . . . ,ym have the
first d/l coefficients equal to zero and (ii) vectors ~vi are binary. We first focus
on (i) and adapt the strategy shown in [15]. At the beginning, we will commit
to a uniformly random polynomial g which has the first d/l coefficients equal to
zero:

tk+2m = 〈~bk+2m, ~r〉+ g.

Then, we will reveal the polynomial

h = g + y1 + . . .+ ym. (25)

Hence, the verifier manually checks the the first d/l coefficients of h are indeed
zeroes. On the other hand, to prove (25) we follow the approach for proving
multiplicative relations from [1].

Let ~y ← D(κ+λ+k+2m) be the masking vector. That is, given a challenge
polynomial c ← C from a challenge distribution C (defined in Section 3.2),
the prover will output a masked opening ~z of the randomness ~r defined as:
~z = ~y + c~r. Then, define polynomials fη as:

fη =


〈~bη, ~y〉 − cvη if η ∈ [m]

〈~bm+i, ~y〉 − cx1,i for η = m+ i; i ∈ [k]

〈~bm+k+j , ~y〉 − cxj+1 for η = m+ k + j; j ∈ [m− 1]

〈~bk+2m, ~y〉 − cg if η = k + 2m

where xj = NTT−1 (~xj) and similarly for vi and γj . Note that fη = 〈~bη, ~z〉−c~tη
for all η and thus can be calculated by the verifier.

First, let us focus on y1. By definition we have (see (20)):

F1 := f1fm+k+1 + c

k∑
i=1

γ1,ifm+i = ω1 +ψ1c+ y1c
2
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where polynomials ω1,ψ1 are defined as follows

ω1 := 〈~b1, ~y〉〈~bm+k+1, ~y〉

ψ1 :=

k∑
i=1

γ1,i〈~bm+i, ~y〉 − 〈~b1, ~y〉x2 − 〈~bm+k+1, ~y〉v1

Now, by Definition of yj (see (22)), for fixed j ∈ [2,m− 1] we have:

Fj := fjfm+k+j + cγjfm+k+j−1 = ωj +ψjc+ yjc
2

where
ωj := 〈~bj , ~y〉〈~bm+k+j , ~y〉

ψj := γj〈~bm+k+j−1, ~y〉 − 〈~bj , ~y〉xj+1 − 〈~bm+k+j , ~y〉vj .
(26)

In case of j = m, we transform Equation 24 into:

Fm := c

(
−

m∑
i=1

xm+1,ifi + γm,1fk+2m−1 − e1
m∑
i=1

γm,i

)
= ψmc+ ymc

2

where

ψm := −
m∑
i=1

xm+1,i〈~bi., ~y〉+ γm,1〈~bk+2m−1, ~y〉 − e1
m∑
i=1

γm,i. (27)

Clearly, all Fj can be computed by the verifier. Therefore, if we denote

ωsm :=

m−1∑
i=1

ωi and ψsm :=

m∑
i=1

ψi − 〈~bk+2m, ~y〉 (28)

then we obtain:

m∑
j=1

Fj − cfk+2m − c2h = ωsm +ψsmc+ (y1 + . . .+ ym + g − h)c2.

Hence, we want to prove that the coefficient corresponding to the quadratic term
of
∑m
j=1 Fj − cfk+2m − c2h vanishes.

Recall that we still need to prove (ii), i.e. all ~vi’s are binary. We first get
challenges α0, . . . ,αm ← Rq from the verifier. Then, we observe that

m∑
i=1

αi(f
2
i + cfi) = ωbin +ψbinc+

(
m∑
i=1

αivi(vi − 1)

)
c2

where

ωbin :=

m∑
i=1

αi〈~bi, ~y〉2 and ψbin :=

m∑
i=1

αi〈~bi, ~y〉(1− 2vi). (29)
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Therefore, we combine (i) and (ii) by proving that the quadratic term in

α0

 m∑
j=1

Fj − cfk+2m − c2h

+

m∑
i=1

αi(f
2
i + cfi) (30)

is equal to zero. In order to do so, we commit to the garbage polynomial

tk+2m+1 = 〈~bk+2m+1, ~r〉+ψbin +α0ψsm

and additionally send ω := 〈~bk+2m+1, ~y〉 + ωbin + α0ωsm. Then, the verifier

computes fk+2m+1 = 〈~bk+2m+1, ~z〉 − ctk+2m+1 and checks whether:

α0

 m∑
j=1

Fj − cfk+2m − c2h

+

m∑
i=1

αi(f
2
i + cfi) + fk+2m+1

?
= ω.

3.2 Main Protocol

We present our main lattice-based one-out-of-many proof using the techniques
from Section 3.1 and show how it can be turned into an efficient, logarithmic-
sized ring signature.

Similarly as in the previous works [17, 18], the secret key of a user is a
vector ~s← [−µ, µ]`d of short polynomials over Rq and the corresponding public

key ~pk ∈ Rkq is defined as ~pk := A~s for a public matrix A ∈ Rk×`q . Suppose

there are n = lm users in the ring 7 and for ι ∈ [n], let ~pkι be the public key
corresponding to the ι-th user. Then, during the signing process, user ι wants to
prove knowledge of a short vector ~s such that

A~s ∈ { ~pk1, . . . , ~pkn}

without revealing any information about its index ι.
We present the main protocol in Fig. 7 with verification equations in Fig.

9. User ι ∈ [n], which acts as a prover P, starts by decomposing the index
vector ~v = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}n, where the ι-th coefficient is equal
to 1, into m smaller vectors of length l as in (15). Note that each ~vi ∈ Zlq
satisfies (17). At the same time, P samples a masking ~y′ ← D`d

s′ and computes
~w′ = (w′1, . . . ,w

′
k) = A~y′ ∈ Rkq . Furthermore, for the linear proof P generates

a random g ∈ Rq such that g0 = . . . = gd/l−1 = 0. Now, the prover sends

7 If there are less than lm users then we simply add the zero vectors as public keys
so that the ring has exactly lm elements. Then the proof that the prover knows a
short preimage to one of the columns implies that they must know a preimage to one
of the actual public keys because knowing a preimage for one of the zero columns
would constitute a SIS solution.
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Prover P Verifier V

Inputs:

B0 ∈ Rκ×(λ+κ+k+2m+1)
q ,~b1, . . . ,~bk+2m+1 ∈ Rλ+κ+k+2m+1

q B0,~b1, . . . ,~bk+2m+1

~v = ~v1 ⊗ · · · ⊗ ~vm where ∀j 6= ι, vj = 0 and vι = 1 A, { ~pk1, . . . ,
~pkn}

A ∈ Rk×`q , ~s ∈ [−µ, µ]`d such that A~s = ~pkι

~r ← χ(λ+κ+k+2m+1)d

g ← {p ∈ Rq : p0 = . . . = pd/l−1 = 0}

~y ← D(λ+κ+k+2m+1)d
s , ~y′ ← D`

s′

~w = B0~y, ~w
′ = A~y′

~w′i = NTT
(
w′i
)

for i ∈ [k]

ti = 〈~bi, ~r〉+ NTT−1 (~vi) for i ∈ [m]

tm+i = 〈~bm+i, ~r〉+w′i for i ∈ [k]

~t = (~t0, t1, . . . , tm+k)

tk+2m = 〈~bk+2m, ~r〉+ g

~t, tk+2m, ~w-

c′� c′ ← C

~z′ = ~y′ + c′~s

If Rej0(~z′, c′~s, s′) = 1, abort ~z′ -

Define P1 ∈Mkl×n
q as in (31)

~x1 = NTT
(
~w′ −A~z′

)
For j = 1, 2, . . . ,m− 1 :

(Pj+1, ~xj+1, ~yj)← SMj(Pj , (~vj , . . . , ~vm), ~xj)

~γm� ~γm ←M(m+1)l
q

Define P̃m as the matrix in Equation 23

(~xm+1,1, . . . , ~xm+1,m) = P̃Tm~γm

~ym :=

(
m∑
i=1

~vi ◦ ~xm+1,i

)
− ~xm ◦ ~γm,1 − ~e1 ◦

m∑
i=1

~γm,i

yi = NTT−1 (~yi) for i ∈ [m]

h = g + y1 + . . .+ ym h -
α0, . . . ,αm� α0, . . . ,αm ←Rq

Compute ψsm,ωsm,ψbin,ωbin as in (28) and (29)

tk+2m+1 = 〈~bk+2m+1, ~r〉+α0ψsm +ψbin

ω = 〈~bk+2m+1, ~y〉+α0ωsm + ωbin
tk+2m+1,ω-

c� c← C

~z = ~y + c~r

If Rej1(~z, c~r, s) = 1, abort ~z -

Ver(~t0, ti,h,ω, c, c
′

, ~z, ~z′, ~γj , ~αj)

Fig. 7. Interactive protocol for our ring signature construction. Verifications equations
Ver and the sub-protocol SMj(Pj , (~vj , . . . , ~vm), ~xj) are defined in Fig. 9 and 8 respec-
tively. The rejection sampling algorithms Reji are defined in Fig. 10.
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Prover P Verifier V

Inputs:

~vj , . . . , ~vm ∈ {0, 1}l, ~x Pj

Pj =
(
Pj,1 Pj,2 · · · Pj,l

)
If j = 1 : ~γ1 ←Mkl

q

~γj� Else: ~γj ←Ml
q

Pj+1 =

γ
T
j Pj,1

...
γTj Pj,l

 ∈Ml×lm−j
q

If j = 1 :

~x2 := P2(~v2 ⊗ · · · ⊗ ~vm)

~y1 := ~v1 ◦ ~x2 −
k∑
i=1

~x1,i ◦ ~γ1,i

Else:

~xj+1 := Pj+1(~vj+1 ⊗ · · · ⊗ ~vm)

~yj := ~vj ◦ ~xj+1 − ~xj ◦ ~γj
tm+k+j = 〈~bm+k+j , ~r〉+ NTT−1 (~xj+1)

tm+k+j -

Return (Pj+1, ~xj+1, ~yj)

Fig. 8. The sub-protocol SMj(Pj , (~vj , . . . , ~vm), ~xj) used in Fig. 7.

the BDLOP commitments to ~vi as well as to ~w′ and g. Namely, it generates a
randomness vector ~r ← χ(λ+κ+2m+1)d and sends:

~t0 = B0~r mod q,

ti = 〈~bi, ~r〉+ NTT−1 (~vi) for i ∈ [m]

tm+i = 〈~bm+i, ~r〉+w′i for i ∈ [k].

tk+2m = 〈~bk+2m, ~r〉+ g

Additionally, P computes ~w = B0~y for ~y sampled from D
(κ+k+2m+1)d
s . Then,

P sends

(~t0, t1, . . . , tm+k, tk+2m, ~w)

to the verifier.
The verifier V outputs a challenge polynomial c′ ← C. Next, P computes

~z′ = ~y′ + c′~s and applies the rejection sampling algorithm. If it does not abort,
P returns ~z′.

Let P ∈Mkl×n
q be the matrix defined as

P =
(
NTT

(
−c′ · ~pk1

)
· · · NTT

(
−c′ · ~pkn

))
, (31)
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Ver(~t0, t1, . . . , tk+2m+1,h,ω, c, c
′, ~z, ~z′, ~γ1, . . . , ~γm,α0, . . . ,αm)

01 ‖~z′‖2
?
< β′ = s′

√
2`d

02 ‖~z‖2
?
< β = s

√
2(λ+ κ+ k + 2m+ 1)d

03 B0~z
?
= ~w + c~t0

04 (tm+1, . . . , tm+k) = (tm+1, . . . , tm+k)−A~z′ ∈ Rkq
05 ∀j ∈ [k + 2m+ 1],fj = 〈~bj , ~z〉 − ctj
06 ∀i ∈ [m+ 1],γm,i := NTT−1 (~γ1,i) ; ∀j ∈ [1, k],γ1,j := NTT−1 (~γ1,j)
07 ∀j ∈ [2,m− 1],γj = NTT−1 (~γj)

08 (xm+1,1, . . . ,xm+1,m) := NTT−1
(
P̃Tm~γm

)
where P̃m is the matrix in (23)

09 e1 := NTT−1 ((1, 0, . . . , 0))
10 F1 := f1fm+k+1 + c

∑k
i=1 γ1,ifm+i

11 ∀j ∈ [2,m− 1],Fj := fjfm+k+j + cγjfm+k+j−1

12 Fm := c
(
−
∑m
i=1 xm+1,ifi + γm,1fk+2m−1 − e1

∑m
i=1 γm,i

)
13 α0

(∑m
j=1 Fj − cfk+2m − c2h

)
+
∑m
i=1αi(f

2
i + cfi) + fk+2m+1

?
= ω

14 For i = 0, . . . , d/l − 1 :

15 hi
?
= 0

Fig. 9. Verification equations for the protocol in Fig. 7.

i.e. the i-th column of P is equal to NTT
(
−c′ · ~pki

)
∈ Mkl

q . Clearly, it can be

computed by the verifier. Also, define

~w = NTT (w′ −A~z′) ∈Mkl
q .

Then, user ι wants to prove that P (~v1 ⊗ · · · ⊗ ~vm) = ~w. Obviously, the verifier
can manually construct a commitment to ~w by subtracting (tm+1, . . . , tm+k) by
A~z′. One observes that this is the equation of type (16) and it is where we apply
the strategy described in Section 3.1. Namely, for j = 1, 2, 3, . . . ,m− 1, we run
a two-round sub-protocol SMj(Pj , (~vj , . . . , ~vm), ~xj) defined in Fig. 8 which does
the following. The verifier V starts by sending a challenge vector ~γj . Then, P
computes the matrix Pj+1 and vectors ~xj+1, ~yj ∈Ml

q as defined in the previous
section. Eventually, it outputs the commitment to ~xj+1:

tm+k+j = 〈~bm+k+j , ~r〉+ NTT−1 (~xj+1) .

In the end, the sub-protocol returns

(Pj+1, ~xj+1, ~yj)← SMj(Pj , (~vj , . . . , ~vm), ~xj).

After executing the SM sub-protocol m − 1 times, the verifier sends ~γm ←
M(m+1)l

q . Then, in order to prove Equation 23, P first computes ~ym as in Equa-
tion 24 and outputs the polynomial h = g+y1+. . .+ym, where yi = NTT−1 (~yi)
for i ∈ [m].

Next, V sends uniform polynomials α0, . . . ,αm ← Rq. Then, P returns a
commitment

tk+2m+1 = 〈~bk+2m+1, ~y〉+ψ
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to the garbage polynomial ψ = ψbin + α0ψsm along with ω := 〈~bk+2m+1, ~y〉 +
ωbin +α0ωsm (where their components are defined in (28) and (29)).

Finally, the verifier picks a challenge c ← C and outputs c. Here, the co-
efficients of a challenge c ← C are independently identically distributed with
P (0) = 1/2 and Pr(1) = Pr(−1) = 1/4 8 Then, prover P computes ~z = ~y + c~r
and applies rejection sampling. If it does not abort, P returns ~z.
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A Additional Background

A.1 More on the Challenge Space

Let C := {−1, 0, 1}d ⊂ Rq be the challenge set of ternary polynomials with coef-
ficients −1, 0, 1. We define the following probability distribution C : C → [0, 1].
The coefficients of a challenge c ← C are independently identically distributed
with P (0) = 1/2 and Pr(1) = Pr(−1) = 1/4.

Consider the coefficients of the polynomial c mod (Xd/l − ζ2j+1) for c← C.
Then, all coefficients follow the same distribution over Zq. Let us write Y for
the random variable over Zq that follows this distribution. Attema et al. [1] give
an upper bound on the maximum probability of Y .

Lemma A.1. Let the random variable Y over Zq be defined as above. Then for
all x ∈ Zq,

Pr(Y = x) ≤ 1

q
+

2l

q

l−1∑
j=0

l−1∏
i=0

∣∣∣∣12 +
1

2
cos
(
2π(2j + 1)yζi/q

)∣∣∣∣ . (32)

In particular, [1, 15] computed that for q ≈ 232, the maximum probability for
each coefficient of c mod Xd/l − ζ2j+1 is around 2−31.4. In general, we will call
this probability p.

An immediate consequence of Lemma A.1 is that polynomial c ← C is in-
vertible in Rq with overwhelming probability as long as parameters q, d, l are
selected so that q−d/l is negligible.
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A.2 Module-SIS and Module-LWE Problems

Security of the [5] commitment scheme used in our protocols relies on the
well-known computational lattice problems, namely Module-LWE (M-LWE) and
Module-SIS (M-SIS) [21]. Both problems are defined over Rq.

Definition A.2 (M-SISκ,m,B). Given A ← Rκ×mq , the Module-SIS problem

with parameters κ,m > 0 and 0 < B < q asks to find ~z ∈ Rmq such that A~z = ~0
over Rq and 0 < ‖~z‖ ≤ B. An algorithm A is said to have advantage ε in solving
M-SISκ,m,B if

Pr
[
0 < ‖~z‖ ≤ B ∧ A~z = ~0

∣∣∣A← Rκ×mq ; ~z ← A(A)
]
≥ ε.

Definition A.3 (M-LWEm,λ,χ). The Module-LWE problem with parameters
m,λ > 0 and an error distribution χ over R asks the adversary A to distinguish
between the following two cases: 1) (A,A~s+ ~e) for A← Rm×λq , a secret vector

~s ← χλ and error vector ~e ← χm, and 2) (A,~b) ← Rm×λq × Rmq . Then, A is
said to have advantage ε in solving M-LWEm,λ,χ if∣∣Pr

[
b = 1

∣∣A← Rm×λq ; ~s← χλ; ~e← χm; b← A(A,A~s+ ~e)
]

(33)

− Pr
[
b = 1

∣∣∣A← Rm×λq ; ~b← Rmq ; b← A(A,~b)
]∣∣∣ ≥ ε.

We also recall the (simplified) Extended-MLWE problem [26].

Definition A.4 (Extended M-LWEm,λ,s). The Extended Module-LWE prob-
lem with parameters m,λ > 0 and the standard deviation s asks the adversary
A to distinguish between the following two cases:

1. (B,B~r, c, ~z, sign (〈~z, c~r〉)) for B ← Rm×(m+λ)
q , a secret vector ~r ← χm+λ

and ~z ← D
(m+λ)d
s , c← C

2. (B, ~u, c, ~z, sign (〈~z, c~r〉)) for B ← Rm×(m+λ)
q , ~u← Rmq and ~z ← D

(m+λ)d
s , c←

C.

where sign(a) = 1 if a ≥ 0 and 0 otherwise. Then, A is said to have advantage
ε in solving Extended M-LWEm,λ,s if∣∣∣Pr

[
b = 1

∣∣∣B ← Rm×(m+λ)
q ; ~r ← χm+λ; ~z ← D

(m+λ)d
s ; c← C; b← A(B,B~r, ~z, c, s)

]
− Pr

[
b = 1

∣∣∣B ← Rm×λq ; ~u← Rmq ; ~z ← D
(m+λ)d
s ; c← C ; b← A(B, ~u, ~z, c, s)

]∣∣∣ ≥ ε.
where s = sign (〈~z, c~r〉), and probability distributions χ and C are defined in
Sections 2.3 and A.1 respectively.

A.3 Rejection Sampling

In lattice-based zero-knowledge proofs, the prover will want to output a vector
~z whose distribution should be independent of a secret randomness vector ~r, so
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that ~z cannot be used to gain any information on the prover’s secret. During
the protocol, the prover computes ~z = ~y + c~r where ~r is the randomness used
to commit to the prover’s secret, c ← C is a challenge polynomial, and ~y is
a “masking” vector. In order to remove the dependency of ~z on ~r, one applies
rejection sampling [24].

Lemma A.5 (Rejection Sampling). Let V ⊆ R` be a set of polynomials with
norm at most T and ρ : V → [0, 1] be a probability distribution. Now, sample
~v ← ρ and ~y ← D`d

s , set ~z = ~y+ ~v, and run b← Rej0(~z, ~v, s) as defined in Fig.
10. Then, the probability that b = 0 is at least (1−2−100)/M and the distribution
of (~v, ~z), conditioned on b = 0, is within statistical distance of 2−100/M of the
product distribution ρ×D`d

s .

Rej0(~z,~v, s)
01 u← [0, 1)

02 If u > 1
M
· exp

(
−2〈~z,~v〉+‖~v‖2

2s2

)
03 return 1
04 Else
05 return 0

Rej1(~z,~v, s)
01 If 〈~z,~v〉 < 0
02 return 1
03 u← [0, 1)

04 If u > 1
M
· exp

(
−2〈~z,~v〉+‖~v‖2

2s2

)
05 return 1
06 Else
07 return 0

Fig. 10. Two rejection sampling algorithms: the one used generally in previous works
[24] (left) and the one proposed recently in [26] (right).

We recall how parameters s and M in Lemma A.5 are selected. Concretely, the
repetition rate M is chosen to be an upper-bound on:

D`d
s (~z)

D`d
~v,s(~z)

= exp

(
−2〈~z, ~v〉+ ‖~v‖2

2s2

)
≤ exp

(
24s‖~v‖+ ‖~v‖2

2s2

)
= M9. (34)

For the inequality we used the tail bound which says that with probability at
least 1 − 2100 we have |〈~z, ~v〉| < 12s‖~v‖ for ~z ← D`d

s [3, 24]. Hence, by setting
s = 11‖~v‖ we obtain M ≈ 3.

Recently, Lyubashevsky et al. [26] proposed a modified rejection sampling
algorithm (see Rej1(~z,~v, s) in Fig. 10) where it forces ~z to satisfy 〈~z, ~v〉 ≥ 0, oth-
erwise it aborts. With this additional assumption, we can set M in the following
way:

exp

(
−2〈~z, ~v〉+ ‖~v‖2

2s2

)
≤ exp

(
‖~v‖2

2s2

)
= M. (35)

Hence, for M ≈ 3 one would select s = 0.675 · ‖~v‖. Note that the probability
for ~z ← D`d

σ that 〈~z, ~v〉 ≥ 0 is at least 1/2. Hence, the expected number of

9 Here, the inner product is over Z, i.e. 〈~z, ~v〉 = 〈~z,~v〉 where vectors ~z,~v are polynomial
coefficients of ~z and ~v respectively.
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rejections would be at most 2M = 6. On the other hand, if one aims for M = 6
repetitions using (34), then s = 6.74 · ‖~v‖. Thus, [26] manages to reduce the
standard deviation by around a factor of 10.

Lemma A.6 ([26]). Let V ⊆ R` be a set of polynomials with norm at most
T and ρ : V → [0, 1] be a probability distribution. Now, sample ~v ← ρ and
~y ← D`d

s , set ~z = ~y + ~v, and run b ← Rej1(~z, ~v, s) as defined in Fig. 10.
Then, the probability that b = 0 is at least 1/(2M) and the distribution of (~v, ~z),
conditioned on b = 0, is identical to the distribution F where F is defined as
follows: sample (~v, ~z)← ρ×Dld

s and if 〈~v, ~z〉 ≥ 0, output b = 0 with probability
1/M and b = 1 otherwise.

Finally, we highlight that this procedure reveals the sign of 〈~z, ~v〉. This is
still fine when working with “one-time commitments” [26] since we only leak one
bit of information. However, secure signature schemes cannot be produced using
this method because each generation of a signature reveals some information
about the secret key.

By using this technique, zero-knowledge property of the protocol relies on
the (simplified) Extended-MLWE problem [26] where the adversary is given the
additional one bit of information about the secret. We describe this problem in
Section A.2.

B Security Analysis of the One-out-of-Many Proof

We summarise the security properties of the interactive protocol described in
Fig. 7 with the following theorem.

Theorem B.1. The protocol in Fig. 7 is complete, computational honest ver-
ifier zero-knowledge under the Extended-MLWE assumption and computational
special sound under the Module-SIS assumption. More precisely, let p be the
maximum probability over Zq of the coefficients of c mod Xd/l − ζ2j+1 as in
Lemma A.1.

Then, for completeness, the honest prover convinces the honest verifier with
probability ε ≈ 1/(2M2).

For honest-verifier zero-knowledge, there exists a simulator S, that, without
access to secret information, outputs a simulation of a non-aborting transcript
of the protocol between P and V. Then for every algorithm A that has advantage
ε in distinguishing the simulated transcript from an actual transcript, there is
an algorithm A′ with the same running time that has advantage ε− 2−100/M in
distinguishing Extended-MLWEκ+k+2m+1,λ,s.

For soundness, there is an extractor E with the following properties. When
given rewindable black-box access to a prover P∗ that convinces V with probability
ε ≥ 32pd/l over the random tape ξ ∈ {0, 1}x, challenges c, c′ ← C, (~γ1, . . . , ~γm)←
M(k+2m−1)l

q , ~α ← Rm+1
q , E either outputs an index ι∗ ∈ [n], short polynomial

c∗ ∈ Rq and a short vector ~s∗ ∈ R`q such that ‖c∗‖∞ ≤ 2, ‖~s∗‖ ≤ 2β′ and

A~s∗ = c∗ ~pkι∗ , or a M-SISκ,8dβ solution for B0 in expected time poly(N)/ε.

We prove the statement in the subsections below.
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B.1 Correctness

It follows directly from Lemmas A.5 and A.6 that an honest prover does not
abort with probability at least 1/(2M2) − 2−100/M ≈ 1/(2M2). Furthermore,
the distribution of ~z′ has statistical distance at most 2−100 from D`d

s′ and by the

standard tail-bound inequality [3][Lemma 1.5(i)] we have ‖~z′‖ ≤ β′ = s′
√

2`d
with probability 1− 2− log(e/2)`d/4 10. We argue similarly that ~z satisfies ‖~z‖ ≤
β = s

√
2(k + κ+ λ+ k + 2m+ 1)d with an overwhelming probability.

Finally, Lines 13 and 15 follow directly from the discussion in Section 3.1.

B.2 Honest-Verifier Zero-Knowledge

For zero-knowledge we construct an argument similar to [26] and define the
hybrid simulator Sh which outputs a transcript as follows. First, Sh has the
index ι ∈ [n] and ~s ∈ [−µ, µ]`d such that A~s = ~pkι. Next, it generates the
challenges c, c′, ~γi, ~αi as in Fig. 7. Then, it samples ~z′ ← D`d

s′ and continues with

probability 1/M . Thus, Sh computes ~w′ = Az − c′ ~pkι.
Now, the simulator can generate the randomness ~r ← χ(κ+λ+k+2m+1)d and

compute the BDLOP commitments ~t0, t1, . . . , tk+2m as the prover P in Fig. 7.

Furthermore, it generates ~z ← D
(κ+λ+k+2m+1)d
s and if 〈~z, c~r〉 ≥ 0 over Zq then

it continues with probability 1/M . Now, it can also calculate the commitment
tk+2m+1 by computing ψsm,ψbin as in (28) and (29) but substituting any inner

product 〈~bi, ~y〉 with 〈~bi, ~z〉 − c〈~bi, ~r〉.
Finally, Sh generates a uniformly random polynomial h with the first d/l

coefficient equal to zero. Then, variables ω and ~w are uniquely determined from
the verification equations. By Lemmas A.5 and A.6, distribution of the con-
structed transcript is within statistical distance approximately 2−100/M of the
distribution of the honest transcript.

Now, we define the actual simulator S. It first samples challenges c, c′~γi,αi
identically as in Fig. 7. Then, it generates ~t← Rκ+k+2m+1

q and a uniformly ran-

dom polynomial h such that h0 = . . . = hd/l−1 = 0. Next, S samples ~z′ ← D`d
s′

and continues with probability 1/M . Similarly, it samples ~z ← D
(κ+λ+k+2m+1)d
s ,

generates a new randomness vector ~r∗ ← χ(κ+λ+k+2m+1)d and checks whether
〈~z, c~r∗〉 ≥ 0 over Zq. If so, it outputs the transcript with probability 1/M .

Suppose that an algorithmA has advantage at least ε−2−100 in distinguishing
the simulated transcript from Sh and from S. We construct an adversary A′
which distinguishes Extended-MLWEκ+k+2m+1,λ,s with the same probability.
At the beginning, A′ is given a challenge tuple (B, ~u, c, ~z, s) where we denote

B =


B0

~b1
...

~bk+2m+1

 and ~u =


~u0

u1

...
uk+2m+1

 .

10 We choose parameters ` and d in Fig. 11 so that the probability is overwhelming.
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First, A′ runs A which outputs the correct statement(
(A, ~pk1, . . . ,

~pkn), (~s, ι)
)

such that A~s = ~pkι and ‖~s‖∞ ≤ 1. Then, A′ generates challenges c′, ~γi,αj
as before and samples z′ ← D`d

s′ and continues with probability 1/M . Then, it

computes ~w′ = A~z′ − c′ ~pkι. Now, A′ calculates ~xi, ~yi, g as in Fig. 7. Lastly, it

computes ψ = ψsm + ψbin as in (28) and (29) but substituting each 〈~bi, ~y〉 by

〈~bi, ~z〉 − cui. Then, A creates a message vector

~m =
(
~0,v1, . . . , ~vm, ~w

′,x2, . . . ,xm, g,ψ
)
∈ Rκ+k+2m+1

q

where vi = NTT−1 (~vi) and similarly for xi. Next, A′ computes the commitment
~t = ~u + ~m as well as ω,w, ~w from the verification equations. Then, if s = 0
then A′ aborts. Otherwise, it outputs the constructed transcript T to A with
probability 1/M . Eventually, when A sends a bit b, A′ also returns b.

One observes that if ~u = B~r for some ~r then T is a perfectly simulated
transcript from Sh. However, when ~u ← Rκ+k+2m+1

q then ~t is also uniformly
random. Hence, T is a perfectly simulated transcript from S.

B.3 Knowledge Soundness

We first recall the following heavy-rows lemma which can be easily generalised
from [9].

Lemma B.2. Let K ∈ N, H ∈ {0, 1}n×m, for some n,m > 1, be a matrix such
that a fraction ε of the inputs are 1. We say that a row is “heavy” if it contains
a fraction at least ε/K of ones. Then, more than (1 − 1/K) of ones in H are
located in heavy rows.

We set K = 4. Note that by assumption, the success probability of the prover
P∗ is at least ε > 2K2pd/l.

In order to use the heavy-rows lemma, we slightly modify the protocol in Fig.
7 so that, instead of generating c← C, the verifier sends two uniformly random
binary polynomials c0, c1 ← {0, 1}d and both parties set the actual challenge
c = c0−c1. Clearly, the distribution of c is the same as for c← C. Similarly, we
modify for c′ ← C and pick uniformly random binary polynomials c′0 and c′1.

Let us define the matrix H0 as follows. The rows of H0 are indexed by all
possible random tapes ξ ∈ {0, 1}x and columns of H0 are indexed by all possible

values for (c′0, c
′
1, ~γ1, . . . , ~γm, ~α, c0, c1) ∈ {0, 1}d×{0, 1}d×M(k+2m−1)l

q ×Rm+1
q ×

{0, 1}d × {0, 1}d. Then we set

H0[ξ][(c′0, c
′
1, ~γ1, . . . , ~γm, ~α, c0, c1)] = 1

if P∗ convinces the verifier for given random tape and challenges and 0 otherwise.
It is easy to see that H0 contains ε fraction of ones, where ε is the success
probability.
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Moreover, for ξ ∈ {0, 1}x, we define additional matrix Hξ as follows. Namely,
the rows ofHξ are indexed by all possible random challenges (c′0, c

′
1, ~γ1, . . . , ~γm, ~α) ∈

{0, 1}d × {0, 1}d ×M(k+2m−1)l
q × Rm+1

q and columns of H0 are indexed by all

possible values for (c0, c1) ∈ {0, 1}d × {0, 1}d. Then, we set

Hξ[(c
′
0, c
′
1, ~γ1, . . . , ~γm, ~α)][(c0, c1)] := H0[ξ][(c′0, c

′
1, ~γ1, . . . , ~γm, ~α, c0, c1)].

Extractor E runs the following algorithm E ′ O(N) times:

1. Run P∗ on random tape ξ ← {0, 1}x, challenges (c′0, c
′
1, ~γ1, . . . , ~γm, ~α, c0, c1)

until it succeeds. This takes expected 1/ε time.

2. Run P∗ on the random tape ξ and fresh challenges (c∗0, c
∗
1, ~γ
‡
1, . . . , ~γ

‡
m, ~α‡, c‡0, c

‡
1)

until it succeeds and c∗0 − c∗1 6= c′0 − c′1. If after N/ε attempts P∗ has not
returned a correct transcript, abort.

3. Run P∗ on the random tape ξ and challenges (c′0, c
′
1, ~γ1, . . . , ~γm, ~α, c̃0, c̃1)

where c̃0, c̃1 ← {0, 1}d are freshly sampled. If (c0 − c1) − (c̃0 − c̃1) is not
invertible over Rq then restart. If after N/ε attempts P∗ has not returned a
valid response ~z, abort.

4. Run P∗ on the random tape ξ and challenges (c∗0, c
∗
1, ~γ
‡
1, . . . , ~γ

‡
m, ~α

‡, c̃‡0, c̃
‡
1)

where c̃†0, c̃
‡
1 ← {0, 1}d are freshly sampled. If (c‡0 − c

‡
1) − (c̃‡0 − c̃

‡
1) is not

invertible over Rq then restart. If after N/ε attempts P∗ has not returned a
valid response ~z, abort.

Clearly, the algorithm runs in expected time poly(N)/ε.
We analyse the abort probability of E ′. Let abort be the event that E ′ aborts

and aborti be the event that it aborts in Step i. Also, denote heavy0 to be the
event that ξ is a heavy row of H0. Then, by Lemma B.2:

Pr[abort] ≤ Pr[abort|heavy0] + Pr[¬heavy0] < Pr[abort|heavy0] +
1

K
.

and by the union bound: Pr[abort|heavy0] ≤
∑4
i=2 Pr[aborti|heavy0].

First, we focus on bounding Pr[abort2|heavy0]. Assuming that the row ξ is

heavy, with probability at least ε/K−2−128 > ε/(2K) the challenges (c∗0, c
∗
1, ~γ
‡
1,

. . . , ~γ‡m, ~α‡, c‡0, c
‡
1) give a successful transcript and c‡0 − c

‡
1 6= c′0 − c′1. Hence,

the probability that all N/ε trials fail can be bounded by:

Pr[abort2|heavy0] < (1− ε/(2K))λ/ε < exp(−2KN).

Next, we concentrate on bounding Pr[abort3|heavy0]. First, note that heavy0
implies that at least ε∗ := ε/K of all inputs of the matrix Hξ are ones. Let us
define the event heavy1 where (c′0, c

′
1, ~γ1, . . . , ~γm, ~α) (used in Step 1) is a heavy

row in Hξ, i.e. it contains a fraction at least ε∗/K of ones. Then, again by Lemma
B.2 we get:

Pr[abort3|heavy0] < Pr[abort3|heavy0 ∧ heavy1] + 1/K.

Now, if the row is heavy then for a new random sample (c̃0, c̃1) the prover
P∗ has probability at least ε∗/K − pd/l > ε∗/(2K) of obtaining a valid response
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(recall that we need (c0− c1)− (c̃0− c̃1) to be invertible). Thus, the probability
that all N/ε trials fail can be bounded by:

Pr[abort3|heavy0 ∧ heavy1] < (1− ε∗/(2K))N/ε < exp(−2K2N)

We can analogously upper-bound Pr[abort4|heavy0] and get:

Pr[abort] ≤ 3

K
+ exp(−2KN) + 2 exp(−2K2N) <

3

4
+ 2−N.

Hence, by running E ′ O(N) times, E manages to get the following four accepting
transcripts:

T0,0 =
(
~t0, t1, . . . , tm+k, ~w, tm+k+1, . . . , tk+2m−1, tk+2m, tk+2m+1, c

′, ~z′, ~γi,h,αi,ω, c, ~z
)

T0,1 =
(
~t0, t1, . . . , tm+k, ~w, tm+k+1, . . . , tk+2m−1, tk+2m, tk+2m+1, c

′, ~z′, ~γi,h,αi,ω, c̃, ~̃z
)

T1,0 =
(
~t0, t1, . . . , tm+k, ~w, t

‡
m+k+1, . . . , t

‡
k+2m−1, tk+2m, t

‡
k+2m+1, c

∗, ~̃z′, ~γ‡i ,h
‡,α‡i ,ω

‡, c‡, ~z‡
)

T1,1 =
(
~t0, t1, . . . , tm+k, ~w, t

‡
m+k+1, . . . , t

‡
k+2m−1, tk+2m, t

‡
k+2m+1, c

∗, ~̃z′, ~γ‡i ,h
‡,α‡i ,ω

‡, c̃‡, ~̃z‡
)

where c− c̃, c‡ − c̃‡ are invertible over Rq and c 6= c‡.
Let us consider transcripts T0,0 and T0,1. From the verification equations we

obtain:
B0(~z − ~̃z) = (c− c̃)~t0 = c̄~t0 (36)

where c̄ = c − c̃. Define ~r∗ = c̄−1(~z − ~̃z) and ~y∗ = ~z − c~r∗. Then, B0~r
∗ = ~t0

and B0~y
∗ = B~z − c~t0 = ~w.

Consider an arbitrary accepting transcript with different last challenge c†

and final response ~z†. Let us define c̄† = c− c† and ~y† := ~z† − c†~r∗. We claim
that ~y† = ~y∗. Indeed, from the verification equations we have:

B0(~z − ~z†) = c̄†~t0.

Combining this with (36) we obtain:

B0

(
c̄†(~z − ~̃z)− c̄(~z − ~z†)

)
= ~0.

Hence, unless we find a M-SIS solution for B0, we have

c̄†(~z − ~̃z) = c̄(~z − ~z†)

which implies that ~y∗ − ~y† = (~z − ~z†)− c̄†~r∗ = ~0.
Now, we extract the messages m∗1, . . . ,m

∗
k+2m+1 ∈ Rq:

m∗i := ti − 〈~bi, ~r∗〉 (37)

and conclude that we obtained the weak opening (c̄, ~r∗,m∗1, . . . ,m
∗
k+2m+1) of

the commitment (~t0, t1, . . . , tk+2m+1). In particular, we have ‖c̄~r∗‖ ≤ 2β.
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Let us consider Lines 10-13 of the verification equations in Fig. 9. Note that
we can write

fj = 〈~bj , ~z〉 − ctj = 〈~bj , ~y∗〉 − cm∗j for j ∈ [k + 2m+ 1].

Denote vi = m∗i for i ∈ [m], x1,i = w′i = m∗m+i for i ∈ [k] as well as xj+1 =
m∗k+m+j for j ∈ [m− 1]. Then, by evaluating the equations in Lines 10-13 with
fj above, we can compute polynomials ω∗j ,ψ

∗
j ,y
∗
j defined as:

Fj = ω∗j +ψ∗j c+ y∗j c
2 for j ∈ [m− 1],

Fm = ψ∗mc+ y∗mc
2.

Thus, the equation in Line 13 can be written equivalently as a quadratic equation
in c of degree two:

f(c) = µ2c
2 + µ1c+ µ0

where the coefficients of f are independent of c and

µ2 :=

m∑
i=1

αivi(vi − 1) +α0(y∗1 + . . .+ y∗m + g − h). (38)

We also highlight that vi,y
∗
i , g and h are independent of the challenge polyno-

mials α0, . . . ,αm ← Rq.
First, suppose that for some i ∈ [m] we have vi(vi−1) 6= 0. This implies that

µ2 = 0 with probability q−d/l. Hence, assume that µ2 6= 0. Consequently, there
exists a j ∈ Zl such that µ2 6= 0 (mod Xd/l−ζ2j+1). Note that there are at most
two distinct a1,a2 ∈ Mq such that f(a1) = f(a2) = 0 modulo Xd/l − ζ2j+1.
Hence, by the union bound, the probability that c = ab (mod Xd/l− ζ2j+1) for
some b ∈ {0, 1} is at most 2pd/l. Therefore, the success probability of the prover
can be bounded by 2pd/l + q−d/l which is by our assumption less than ε. Hence,
we must have vi(vi−1) = 0, i.e. vectors ~vi = NTT (vi) are binary. Similarly, we
define ~xi = NTT (~xi) for i ∈ [m− 1].

Let ~xm+1 = (~xm+1,1, . . . , ~xm+1,m) := P̃Tm~γm ∈ Mml
q where P̃m is the matrix

in (23) Then, from discussion in Section 3.1 and Line 12 of Fig. 9 we know that
the first d/l coefficients of y∗m satisfy:

ym,0 + . . .+ ym,d/l−1X
d/l−1 =

1

l

〈
P̃m

~v1...
~vm

−

~xm
~e1
...
~e1

 , ~γm

〉
.

Note that we can use Lemma 2.1 since we already proved ~v1, . . . , ~vm ∈ Zlq.
Suppose that

P̃m

~v1...
~vm

 6=

~xm
~e1
...
~e1

 .
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Firstly, using an identical argument as above, if h 6= g+y∗1+. . .+y∗m then µ2 = 0
with probability q−d/l. Hence, assume that µ 6= 0. Then, with probability at
most 2pd/l we have f(c) = 0 for c← C. Otherwise, assume

h = g + y∗1 + . . .+ y∗m.

Then, ym,0+ . . .+ym,d/l−1X
d/l−1 is a uniformly random polynomial inMq since

~γm ← M(m+1)l
q . Since g,y∗1 , . . . ,y

∗
m−1 are independent of ~γm and the first d/l

coefficients of h are all zeroes, the probability that

ym,0 + . . .+ ym,d/l−1X
d/l−1 = −(g + y∗1 + . . .+ y∗m−1) mod Xd/l

is q−d/l. Since the success probability ε of a prover is more than 2pd/l+q−d/l, we
obtain Equation 23 which says that each ~vi contains only one 1 and P̂m~vm = ~xm.

Now, we conduct an inductive argument and assume that for some j ∈ [m−1]
we have

P̂j+1(~vj+1 ⊗ . . .⊗ ~vm) = ~xj+1.

This automatically implies that the first d/l coefficients of y∗j+1, . . . ,y
∗
m are all

zeroes. Since ~vj ∈ Zlq, we deduce from our argument in Section 3.1 that the first
d/l coefficients of yj satisfy:

yj,0 + . . .+ yj,d/l−1X
d/l−1 =

1

l
〈P̂j(~vj ⊗ . . .⊗ ~vm)− ~xj , ~γj〉.

Suppose P̂j(~vj ⊗ . . .⊗ ~vm) 6= ~xj . This implies that yj,0 + . . .+ yj,d/l−1X
d/l−1 is

a uniformly random polynomial inMq. Arguing similarly as above, we get that
the success probability when h 6= g + y∗1 + . . . + y∗m is at most q−d/l + 2pd/l.
Otherwise, since polynomials g,y∗1 , . . . ,y

∗
j−1 are independent of ~γj , we get that:

yj+1,0 + . . .+ yj+1,d/l−1X
d/l−1 = −(g + y∗1 + . . .+ y∗j−1) mod Xd/l

with negligible probability q−d/l. Since ε > q−d/l + 2pd/l, we must have P̂j(~vj ⊗
. . .⊗ ~vm) = ~xj . In particular, for j = 1 we get

P̂1(~v1 ⊗ · · · ⊗ ~vm) = ~x1.

In summary, we obtain a binary vector ~v = ~v1⊗ · · · ⊗~vm with one 1 in some
ι-th position and:

A~z′ = ~w′ + c′ ~pkι

where ~w′ = ~x1 +A~z′.
Now, extractor E applies the exact approach as above for transcripts T1,0

and T1,1. Concretely, E manages to obtain a weak opening (c̄‡, ~r‡,m‡i ) for ~t‡ =

(~t0, . . . , tk+m, t
‡
k+m+1, . . . , t

‡
k+2m−1, tk+2m, t

‡
k+2m+1). Let ~v‡i = NTT

(
m‡i

)
and

w∗j = m‡m+j for i ∈ [m], j ∈ [k]. Denote ~v‡ = ~v‡1 ⊗ · · · ⊗ ~v‡m and ~w∗ =
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(w∗1 , . . . ,w
∗
k). Then, ~v‡ is a binary vector with exactly one 1 in the ι∗-th po-

sition, for some ι∗ ∈ [n] and

A~̃z′ = ~w∗ + c∗ ~pkι∗ .

We claim that m∗i = m†i for all i ∈ [k+m] unless we find a M-SIS solution. This
would imply that ~w′ = ~w∗, ~v = ~v‡ and ι = ι∗. Suppose that for some i ∈ [k+m]

we have m∗i 6= m†i . This implies that ~r∗ 6= ~r‡ and thus:

~B0(c̄‡c̄~r − c̄c̄‡~r) = ~0.

Since c̄, c̄‡ are invertible, we obtain a non-trivial M-SIS solution with the Eu-
clidean norm at most 8dβ.

Finally, we conclude that E finds ~z′, ~̃z′ ∈ R`dq with Euclidean norm at most
β′, polynomials c′, c̃ ∈ C and an index ι ∈ [n] such that:

A(~z′ − ~̃z′) = (c′ − c∗) ~pkι.

C Ring Signature Construction

In this section we apply the multi-round Fiat-Shamir transformation on the
protocol in Fig. 7 to obtain an efficient lattice-based ring signature. Finally, we
include small optimisations which slightly reduce the signature sizes.

C.1 Definitions

We start by recalling the standard definition of a ring signature. Namely, it con-
sists of four algorithms (RS.Setup,RS.KeyGen,RS.Sign,RS.Ver) which are defined
below:

– pp ← RS.Setup(1N): on input a security parameter N, it generates public
paremeters pp used by the scheme.

– (pk, sk)← RS.KeyGen(pp): on input pp it outputs the public/secret key pair.
– σ ← RS.Sign(pp, sk,m, L): on input pp, secret key sk, message m and a ring
L = {pk1, . . . , pkn}, it outputs a signature σ.

– b ← RS.Ver(pp, σ,m, L): on input pp, signature σ, message m and a ring L,
it deterministically outputs a bit b.

We consider the following properties of ring signatures.

Definition C.1 (Correctness). A ring signature RS = (RS.Setup,RS.KeyGen,
RS.Sign,RS.Ver) provides statistical correctness if for every pp← RS.Setup, every
pair (pk, sk) ← RS.KeyGen, every ring R, such that pk ∈ L and |L| = poly(N),
and every message m we have:

Pr [RS.Ver(pp,RS.Sign(pp, sk,m, R),m, L) = 1] = 1− negl(N).
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Definition C.2 (Anonymity). A ring signature RS = (RS.Setup,RS.KeyGen,
RS.Sign,RS.Ver) is anonymous if for any PPT adversary A:

Pr

[
pp← RS.Setup(1N); (m, i0, i1, L)← ARS.KeyGen(pp)

b← {0, 1};σ ← RS.Sign(pp, skib ,m, L)
: b′ ← A(σ)

]
=

1

2
+negl(N)

where L = {pk1, . . . , pkn}, each (pki, ski) is generated from RS.KeyGen(pp) and
i0, i1 ∈ [n].

Definition C.3 (Unforgeability). A ring signature RS = (RS.Setup,RS.KeyGen,
RS.Sign,RS.Ver) is unforgeable (w.r.t. insider collusion) if for all PPT adver-
saries A:

Pr

[
pp← RS.Setup(1N);

(σ,m, L)← APKGen,Sign,Corrupt(pp)
: RS.Ver(pp, σ,m, L) = 1

]
= negl(N)

where

– PKGen: on the i-th query picks a randomness ρi, runs (pki, ski) = RS.KeyGen(pp; ρi)
and outputs pki,

– Sign(i,m, L) : returns σ ← RS.Sign(pp, ski,m, L) provided (pki, ski) has been
generated by PKGen,

– Corrupt(i) : returns the randomness ρi provided (pki, ski) has been generated
by PKGen,

– A outputs (σ,m, L) so that Sign(·,m, L) has not been queried and L con-
tains only public keys pki generated by PKGen where Corrupt(i) has not been
queried.

C.2 Multi-round Fiat-Shamir Transformation

We construct a ring signature for (at most) n = lm users from an interactive
protocol in Fig. 7 by applying the multi-round Fiat-Shamir transform (see [12,
Definition 11]). In order to do so, we need four random oracles H1, Hk, Hm+1,
where each Hi : {0, 1}∗ → Mil

q , and G : {0, 1}∗ → C where G follows the
distribution C (see Section A.1).

We define the ring signature RS = (RS.Setup,RS.KeyGen, RS.Sign,RS.Ver) as
follows:

– RS.Setup(1N): given a security parameter, it first generates appropriate pa-
rameters q, l, d, k, `, κ, λ so that the corresponding M-LWE and M-SIS prob-

lems are hard (e.g. Fig. 11). Then, it samplesA← Rk×`q ,B0 ← Rκ×(κ+λ+k+2m+1)
q

and vectors ~b1, . . . ,~bk+2m+1 ← Rκ+λ+k+2m+1
q . It outputs

pp = (q, l, d, k, `, κ, λ,A,B0,~b1, . . . ,~bk+2m+1).

– RS.KeyGen(pp): it samples ~s← [−µ, µ]`d and outputs (~s,A~s).
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– RS.Sign(pp, ~s,m, L): if A~s 6∈ L then it aborts. Otherwise, it identifies the

index ι ∈ [n] such that A~s = ~pkι where L = { ~pk1, . . . , ~pkn}. Then, it con-
ducts the prover’s algorithm in the protocol in Fig. 7 and obtains challenges
by computing the following:

c′ = G(1, ~t0, t1, . . . , tm+k, tk+2m, ~w,m),

~φ1 = Hk(2, c′, ~z′),

~φj+1 = H1

(
j + 2, ~φj , tm+k+j

)
for j ∈ [m− 2],

~φm = Hm+1

(
m+ 1, ~φm−1, tk+2m−1

)
,

(α0, . . . ,αm) = NTT−1
(
Hm+1

(
m+ 2, ~φm,h

))
c = G(m+ 3,α0, . . . ,αm, tk+2m+1,ω).

(39)

Also, if any rejection step fails, the algorithm starts the non-interactive pro-
tocol from Fig. 7 again.
Finally, it outputs the signature:

σ =
(
~t0, t1, . . . , tk+2m+1,h, c, c

′, ~z′, ~z
)
.

– RS.Ver(pp, σ,m, L): it checks the verification equations from Fig. 9 as follows.
Firstly, it makes sure that vectors ~z, ~z′ are small as in Lines 01-02. Then,
Line 03 is equivalent to checking:

c′
?
= G(1, ~t0, t1, . . . , tm+k, tk+2m,B0~z − c~t0,m).

Next, it checks that the first d/l coefficients of h are all equal to zero. Finally,

we observe that challenges ~φi and αj can be deterministically computed from
σ as in Equation 39. Hence, the algorithm computes ω as in Line 11 and
checks whether:

c
?
= G(m+ 3,α0, . . . ,αm, tk+2m+1,ω).

If all the equations hold, it outputs 1 and 0 otherwise.

C.3 Security Analysis

Theorem C.4. A ring signature RS defined above provides statistical correct-
ness and is anonymous under the Extended-MLWEκ+k+2m+1,λ,s assumption.
Moreover, it is unforgeable in the random oracle model if M-LWE`,µ, Extended-
MLWEκ+k+2m+1,λ,s, M-SISκ,8dβ and M-SIS

k,2
√
β′2+d

are hard.

Proof. Correctness and anonymity follow directly from Theorem B.1. Hence, we
focus on the unforgeability property.

We apply the standard proof strategy used in [17, 20]. Namely, consider a
polynomial time adversary A that makes at most Qk, Qs and Qh queries to
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PKGen, Sign and to the random oracles respectively and wins the unforgeability
game with non-negligible probability ε.

Given public parameters, we first pick a random j ∈ [Qk] and then, in the
t-th query to PKGen, we set pkj := ~p for some random ~p ← Rkq . Our goal is to
run A using this key for user j and hoping to use exact rewinding as in Section
B.3 to obtain forgeries with a ring L which contains j. The extractor will then
find small vector ~s∗ and a small polynomial c̄ such that A~s∗ = c̄pki for some
i ∈ L (or a MSIS solution). Then, with probability 1/Qk we get i = j and thus,
we obtain a short solution to the MSIS problem:(

A ~pkι

)( ~s∗
−c̄

)
= ~0

where ‖(~s∗,−c̄)‖ ≤ 2
√
β′2 + d. We now provide more details on the attack using

the hybrid argument.

Hybrid 1. Consider the game where the adversary is given to oracles PKGen and
Corrupt as in the real-life experiment, but for signing queries Sign(i,m, L) we ad-
ditionally program the random oracle queries. Namely, when running RS.Sign(ski,m, L)

we choose c, c′, ~φi,αi as the verifier in Fig. 7 and program

c′ := G(1, ~t0, t1, . . . , tm+k, tk+2m, ~w,m),

~φ1 := Hk(2, c′, ~z′),

~φj+1 := H1

(
j + 2, ~φj , tm+k+j

)
for j ∈ [m− 2],

~φm := Hm+1

(
m+ 1, ~φm−1, tk+2m−1

)
,

NTT ((α0, . . . ,αm)) := Hm+1

(
m+ 2, ~φm,h

)
c := G(m+ 3,α0, . . . ,αm, tk+2m+1,ω).

If G,H1, Hk, Hm+1 were already queried on the given input, we abort.
Now we analyse the probability of an adversary which tries to distinguish

between the real-life experiment and Hybrid 1.

Lemma C.5. The statistical distance between the views in the unforgeability
game and Hybrid 1 is at most

ε− ((m+ 3)Qs(Qs +Qh)−O(1)) 2−N.

Proof. We apply the proof technique from [24, Lemma 5.3] and bound the prob-
ability of collision when programming the random oracles. Let us concentrate
on a single round of the modified signing oracle.

First, we show that each time the signing oracle is called, the probability of
generating ~y ← Dd(κ+λ+k+2m+1)d, such that ~w := B0~y was a part of any previ-
ous queries to G is at most (Qs +Qh)2−κd. With an overwhelming probability,
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the matrix B0 can be written in the Hermite Normal Form as B0 =
[
B̄0||I

]
(see

[18, Appendix C]). Hence, by [24, Lemma 4.4] we have that for fixed t ∈ Rκq :

Pr[B0~y = ~t] ≤ Pr[~y1 = ~t− B̄0~y0] ≤ max
t′∈Rκq

Pr[~y1 = ~t′ : ~y1 ← Dκd
s ] ≤ 2−κd.

Now, assuming that c′ ← C was chosen at random and programmed success-
fully, the probability that (2, c′, ~z′) was queried to Hk is at most (Qs +Qh)/2N

11. Otherwise ~φ1 ← Mkl
q is successfully programmed. Similarly, we argue then

with challenges ~φ2, . . . , ~φm, (α0, . . . ,αm) and c. Finally, we conclude that the
probability of abort in one signing query is at most (m+ 3)(Qs +Qh)/2−N.

Since there are Qs queries to the signing oracle, one can distinguish between
the real-life experiment and Hybrid 1 with probability at most (m+ 3)Qs(Qs +
Qh)/2−N. ut

Hybrid 2. It is the same experiment as in Hybrid 1 but the challenger addition-
ally picks a uniformly random index j ∈ [Qk] and when the adversary outputs a
forgery (σ,m, L), it also checks whether pkj ∈ L. If not, the adversary loses the
game.

Clearly, since j ← [Qk], we have the following simple observation.

Lemma C.6. If there exists an adversary A which wins the Hybrid 1 game with
probability ε, then it also wins the Hybrid 2 game with probability ε/Qk.

Hybrid 3. It is the same experiment as in Hybrid 2 but if an adversary calls
Corrupt on input j, then it automatically loses the game.

Lemma C.7. If there exists an adversary A which wins the Hybrid 2 game with
probability ε, then it also wins the Hybrid 3 game with probability ε.

Proof. This automatically follows from an observation that if A outputs a valid
forgery (σ,m, L) in Hybrid 2 and pkj ∈ L then it could not have called Corrupt
on input j. ut

Hybrid 4. It is the same experiment as in Hybrid 3 but now when Sign(j, ·, ·)
is called, we output the simulated transcripts as in Section B.2.

Lemma C.8. If there exists a PPT adversary A which can distinguish Hybrid
3 from Hybrid 4 with probability ε, then there exists a PPT adversary A′ which
solves Extended-MLWEκ+k+2m+1,λ,s with probability at least (ε−O(2N))/Qs.

Proof. It is a direct implication of the honest-verifier zero-knowledge property
in Theorem B.1 and the fact that A makes at most Qs queries to the signing
oracle. ut
11 Indeed, note that there are at most Qs +Qh queries to Hk of the form (2, ·, ·).
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Hybrid 5. It is the same experiment as in Hybrid 4 but now, when PKGen is
called on the j-th query, we sample ~s ← [−µ, µ]`d, ~p ← Rkq and set (skjpkj) =
(~s, ~p) instead.

Lemma C.9. If there exists a PPT adversary A which distinguishes between
Hybrid 4 and Hybrid 5 with probability ε, then there is a PPT adversary A′
which wins the M-LWE`,µ game with probability at least ε.

Proof. Given a distinguisher A, we can clearly simulate both hybrids when given
the M-LWE challenge (A, ~t), i.e. either ~t = A~s (Hybrid 4) or ~t ← Rκq (Hybrid
5). ut

Finally, we focus on Hybrid 5 and run the same strategy as the extractor
E for knowledge soundness in Theorem B.1. Namely, we construct the non-
interactive version of E ′ (see Section B.3). The first step would be to run the
adversary A until A tries to create a forged ring signature with uncorrupted
users in the ring L and where the signature does not come from the signing
oracle (Step 1 of E ′). Then, we obtain a successful forged ring signature σ =(
~t0, t1, . . . , tk+2m+1,h, c, c

′, ~z′, ~z
)

on message m in a ring L. Next, we rewind the

adversary to the point when it queriesG on input (1, ~t0, t1, . . . , tm+k, tk+2m,B0~z−
c~t0,m) (where it obtained a challenge c′) and we return a fresh polynomial c∗.
Obviously, if the tuple was not queried, then the success probability of A is at
most 1/2N. If c∗ = c′ or A does not produce a valid forgery then we restart the
procedure. If it fails after N/ε trials then abort (Step 2 of E ′). In such a way, we
follow the further steps of E ′.

In the end, as done by E , we run E ′ O(N) times to either obtain a M-SISκ,8dβ
solution or get ~s∗ ∈ R`q and c̄ ∈ Rq such that ‖~s∗‖ ≤ 2β′, ‖c̄‖∞ ≤ 2 and

A~s∗ = c̄ ~pkι for some ι. With probability at most 1/Qk, ~pkι = ~p and thus
(~s∗,−c̄) is a M-SIS

k,2
√
β′2+d

solution. Moreover, since A is a PPT adversary

which wins with non-negligible probability ε, the extractor E runs in expected
poly(N) time.

ut

C.4 Various Optimisations

Firstly, we can directly apply the Dilithium compression techniques [14] in our
BDLOP commitment scheme as described in [26]. That is, we drop low-order
bits of the top part ~t0 and reduce the length of the randomness vector ~r by κ.
We refer to [26, Appendix B] for more details.

On the other hand, it seems non-trivial to use similar techniques to compress
the actual signature part, e.g. ~pki or ~z′, due to the structure of our set mem-
bership proof in Section 3.1. However, we observe that the Bimodal Gaussian
technique [13] can be applied on ~z′ to further reduce the proof size.

Concretely, the prover starts the protocol as in Fig. 7 with the following two
changes. Firstly, it sends a commitment to a vector ~b = (b, b, . . . , b) ∈Ml

q:

tk+2m+2 = 〈~bk+2m+2, ~r〉+ b = 〈~bk+2m+2, ~r〉+ NTT−1
(
~b
)
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where b← {−1, 1}. Secondly, P decomposes the index vector ~v = ~v1 ⊗ · · · ⊗ ~vm
and it sets ~v1 := b~v1 = ~b ◦ ~v1. Then, it commits to ~v1, . . . , ~vm as before.

Given a challenge c′ ← C, P computes

~z′ := ~y′ + bc′~s

and applies the bimodal rejection sampling similarly as in [13]. Then, we want
to prove that for P defined in (31):

P (~v1 ⊗ · · · ⊗ ~vm) = ~w

where ~w = NTT ( ~w′ −A~z′). This can be proven by applying the techniques in

Section 3.1. What is new to show is the following: (i) we need to prove ~b has
coefficients in {−1, 1} and they are all the same, (ii) ~v1 has coefficients in {0, b}
and it has exactly one b.

Note that proving (i) is equivalent to showing that (~b+~1) ◦ (~b−~1) = ~0 and 1 −1 0 · · · 0
0 1 −1 · · · 0
−1 0 0 · · · 1

~b = ~0.

Next, (ii) can be done by proving ~v1 ◦ (~v1 − ~b) = ~0 and 〈1, ~v〉 = 〈~e1,~b〉. We
recall that we defined ~e1 = (1, 0, . . . , 0). In summary, all the new changes can be
described as additional linear and multiplicative relations which can be simply
combined with (23) and (30) respectively.

With this technique, we significantly reduce the standard deviations s′ at the
cost of committing to one more vector ~b ∈Ml

q. Concretely, for a repetition rate
M we would set s′ which satisfies M = exp(T ′2/2s′2) where T ′ is the upper-
bound on ‖c′~s‖ (see [13] for more details).

C.5 Parameter Selection

Similarly as in [17, 18, 6], we apply the Fiat-Shamir transformation [19] on the
interactive protocol in Fig. 7 to obtain a ring signature. We believe the construc-
tion as well as the proofs are folklore, thus we provide a concrete instantiation
of a ring signature in Appendix C. Nevertheless, we summarise our parameter
selection in Fig. 11.

First, we set (q, d, l) = (≈ 232, 128, 32) so that q−d/l ≈ pd/l ≈ 2−128. Next,
we aim for the repetition rate of our protocol to be 3. Hence, we set M such that
2M2 = 3 12, i.e. M =

√
3/2. To compute the bounds T ′ and T on ‖c′~s‖ and

‖c~r‖ respectively, we apply the exact method as in [26, Appendix C]. Namely,
we use the observation that

‖c′~s‖2 ≤ d

∥∥∥∥∥∑̀
i=1

σ−1(si)si

∥∥∥∥∥
1

12 Recall that in Fig. 7 we run two rejection algorithms.
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n m µ k ` κ λ proof size

25 1 5 4 13 10 10 15.96 KB

210 2 5 4 13 10 10 17.27 KB

215 3 5 4 13 10 10 18.73 KB

220 4 5 4 13 10 10 20.15 KB

225 5 5 4 13 10 10 21.53 KB

Fig. 11. Ring signature sizes for n = lm users. For all parameter sets, we choose
(q, d, l) = (≈ 232, 128, 32).

where ~s = (s1, . . . , s`) and σ−1 is the Galois automorphism σ−1 : X 7−→ X−1.
Then, we heuristically choose T ′ so that the expression on the right-hand side
is less than T ′2 with probability at least 99%. Similarly we compute T .

Next, we set standard deviations s and s′ such that:

M = exp

(
T 2

2s2

)
= exp

(
T ′2

2s′2

)
.

Recall that we use Bimodal Gaussian sampling for ~z′.

In order to compute appropriate parameters for the length ` and height k of
the public matrix A ∈ Rk×`q we use the analysis from Dilithium [14]. Namely,
the extractor in Theorem B.1 can find an index ι ∈ [n], short polynomial c∗

and a vector ~s∗ ∈ R`q such that ‖c∗‖∞ ≤ 2 and ‖~s∗‖ ≤ 2β′ and A~s∗ = c∗ ~pkι.

If we assume that for uniformly A ← Rk×`q and ~s ← [−µ, µ]`d, ~pkι = A~s
is indistinguishable from a random vector (MLWE assumption), the extractor
ends up with a M-SIS solution:(

A ~pkι

)( ~s∗

−c∗
)

= ~0

where ‖(~s∗,−c∗)‖ ≤ 2
√
β′2 + d (see Theorem C.4). Recall that in Fig. 9 we

defined β′ = s′
√

2`d. Hence, we adjust the parameters k, ` so that (i) M-LWE`,µ
is hard and (ii) finding a M-SIS solution with Euclidean norm 2

√
β′2 + d is hard.

Next, we assume that the Extended-MLWE is almost as hard as M-LWE. Then,
to set κ and λ we make sure that Extended-MLWEκ+k+2m+2,λ,s and M-SISκ,8dβ
are hard where β = s

√
2(λ+ κ+ k + 2m+ 2)d. We measure the hardness with

the root Hermite factor δ and aim for δ ≈ 1.0042, similarly as it was done in
previous works [8, 18, 1, 15].

We now turn to computing the signature size. As “full-sized” elements of
Rq we have ~t0, t1, . . . , tk+2m+2 and h (it is missing d/l coefficients but this has
negligible impact on the sizes). Therefore, we have in total κ + k + 2m + 2 full
elements of Rq which give us

(κ+ k + 2m+ 2)d log q bits.
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What we have left are vectors of short polynomials ~z and ~z′. Since they come
from a Gaussian distribution with standard deviation s and s′ respectively, with
high probability we can upper-bound their coefficients by 6s and 6s′ [24]. Thus,
they require at most:

`d log(12s′) + (κ+ λ+ k + 2m+ 2)d log(12s) bits.

However, by encoding ~z, ~z′ using a Huffman code as in [8], we obtain slightly
smaller proof size. Finally, the challenges c, c′ cost at most 4 · d = 512 bits.

In our signature size computation we additionally compress the commitment
size by not sending low-order bits of ~t0 and reducing the length of the randomness
vector ~r identically as in [26, Appendix B] and apply the Bimodal Gaussian
technique described above.

D Amortizing Ring Signatures

Set membership sum proof. In order to construct amortized ring signatures,
we consider proving the following type of equations. Namely, suppose we have
multiple index vectors ~v1, . . . , ~vr ∈ {0, 1}n, where each ~vj corresponds to an
index ιj for j ∈ [r], and we want to prove knowledge of ~v1, . . . , ~vr along with a
vector ~w ∈Mkl

q such that
r∑
i=1

P i1~vi = ~w.

for some public matrices P 1
1 , . . . , P

r
1 ∈Mkl×n

q .

The naive solution would be to compute each ~wj := P j1~vj , apply the proof
from Section 3.1 and show that ~w1 + . . . + ~wr = ~w. However, this implies com-
mitting to all ~w1, . . . , ~wr which is rather costly.

We take a recursive approach as in Section 3.1. Concretely, for each ~vj , let
us tensor-decompose it into m smaller vectors: ~vj = ~vj,1 ⊗ · · ·~vj,m for j ∈ [r].
Then, we want to prove:

r∑
i=1

P i1(~vi,1 ⊗ · · · ⊗ ~vi,m) = ~x1. (40)

Similarly as in (18), Equation 40 implies that for a random challenge ~γ1 ←Mkl
q :〈

r∑
i=1

P i1(~vi,1 ⊗ · · · ⊗ ~vi,m)− ~xj , ~γj

〉
=

r∑
i=1

〈~vi,1, P̃ i2~ui,2〉 − 〈~x1, ~γ1〉 (41)

is equal to zero where ~ui,2 := ~vi,2 ⊗ · · · ⊗ ~vi,m, the matrix P i1 can be written as

P i1 =
(
P i1,1 P

i
1,2 · · · P i1,l

)
∈Mkl×lm

q
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and the matrix P̃ i2 is defined as

P̃ i2 =

γ
T
1 P

i
1,1

...
γT1 P

i
1,l

 ∈Ml×lm−1

q . (42)

As before, we construct ~xi,2 and ~y1 defined by:

~xi,2 = P̃ i2(~vi,2 ⊗ · · · ⊗ ~vi,m) and ~y1 =

r∑
i=1

~vi,1 ◦ ~xi,2 −
k∑
j=1

~x1,j ◦ ~γ1,j

and commit to ~xi,2. After proving that ~xi,2 is well-formed, we use Lemma 2.2
and argue that the polynomial y1 = NTT−1 (~y1) has the first d/l coefficients
equal to zero.

Now, note that equations for all ~xi,2, where i ∈ [r], can be combined into
one:

P 1
2 (~v1,2 ⊗ · · · ⊗ ~v1,m) + . . .+ P r2 (~vr,2 ⊗ · · · ⊗ ~vr,m) =


~x1,2
~x2,2

...
~xr,2


where each matrix P i2 ∈Mrl×lm−1

q is defined as follows:

P 1
2 =


P̃ 1
2

0
...
0

 , P 2
2 =


0

P̃ 2
2
...
0

 , · · · , P r2 =


0
0
...

P̃ r2

 .

Clearly, this is an equation of type (40) with m − 1 tensors. Thus, we recur-
sively continue until we end up with a standard linear equation. In the end,
proving linear and multiplicative relations along with showing that polynomials
yj = NTT−1 (~yj) have first d/l coefficients equal to zero follows identically as in
Section 3.1.

Proving knowledge of multiple secret keys. Suppose we want to prove
knowledge of r ≥ 1 secret keys ~s1, . . . , ~sr ∈ [−µ, µ]`d such that A~sj = ~pkιj for
ι1, . . . , ιr ∈ [n].

We sketch out the amortized protocol which stems from [4]. Similarly as in
Fig. 7 prover P starts by sending the BDLOP commitments e.g. to the tensor
decompositions of vectors ~v1, . . . , ~vr, where each ~vj ∈ {0, 1}n has 1 in exactly
the ιj-th position, and to ~w′ = A~y′ for ~y′ ← D`d

s′ .
The verifier generates r challenges c′1, . . . , c

′
r ← C and sends them to P.

Then, the prover computes

~z′ = ~y′ + c′1~sr + . . .+ c′r~sr
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and applies rejection sampling. After outputting ~z′, P wants to prove the fol-
lowing equation:

r∑
i=1

P i1~vi = ~w′ − NTT (A~z′) .

where ~w′ = NTT ( ~w′) and each P i1 ∈Mk×n
q is defined as

P i1 =
(
NTT

(
−c′i ~pk1

)
· · · NTT

(
−c′i ~pkn

))
.

Now, note that this equation is of type (40) for ~x1 = ~w′ − NTT (A~z′). Hence,
prover P simply follows the strategy described above.

E Payment System

In this section we use our one-out-of-many proof to construct a payment system
with confidential transactions. In such a system there is a (distributed) database
or blockchain that records accounts. An account is a pair act = (pk, cn) of a public
key pk and a coin cn. A coin contains some amount amt of money. Now users of
the system can transfer money between each other by computing transactions.
In a transaction a sender spends the coins in several input accounts and puts
their amounts into new output accounts with fresh public keys and newly minted
coins for one or more recipients. The system only accepts transactions where the
sender is the legitimate owner of the spent coins by knowing the secret keys
corresponding to the public keys in the accounts. Also each coin is only allowed
to be spent once (no double spending) and the sum of the amounts from the spent
coins must be equal to the sum of the amounts in the minted coins (balance) so
that transactions do not change the total amount of money in the system.

We follow the model and construction from [18], which is a slight modification
of the RingCT model [18]. The anonymity property of this model can directly
be achieved with a one-out-of-many proof. The amounts in the accounts are
hidden in that coins are commitments to amounts, cn = Com(amt; cnk), where
we call the commitment randomness cnk a coin key. The balance property of
a transaction is proven in zero-knowledge. Then, the sender hides his identity
by also proving knowledge of his secret keys in zero-knowledge, and the public
keys of the output accounts are not the long-term public keys of the recipients
but rerandomizations or completely fresh keys that can not be linked to the
recipients. Finally, the system hides the graph of transactions by hiding each
input account among many more untouched accounts. This is where the one-out-
of-many proof is used. Double spending is prevented with the help of so-called
serial numbers sn. For each public key one can compute a unique serial number
that can only be linked to the public key when knowing the secret key. Now
transactions reveal the serial numbers of the spent accounts and include a proof
that the serial numbers were correctly computed. The database also records all
spent serial numbers and transaction are only accepted when the serial numbers
are not yet contained among the spent ones.
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In our protocol a public key is an Module-LWE vector pk = ~u = B0~s. More
precisely, ~u is the top part of a BDLOP commitment to a single polynomial. So

B0 ∈ Rκ×(λ+κ+1)
q is the public commitment matrix, and the randomness vector

sk = ~s ∈ Rλ+κ+1
q is the secret key. We need the additional error polynomial in ~s

for the serial number corresponding to ~u. In fact, we set sn to be the commitment
sn = n = 〈~b1, ~s〉 to zero.

A coin is again a BDLOP commitment to a single polynomial ǎ ∈ Rq that
encodes a vector with coefficients in {0, 1, 2, 3} and represents an amount amt in
base 4 in the range [0, 264−1]. So, the coin is of the form cn = ~t = ~t0 ‖ t1 ∈ Rκ+1

q

where

~t0 = B0~r

t1 = 〈~b1, ~r〉+ ǎ

with the ternary randomness vector cnk = ~r ∈ Rκ+λ+1
q .

Now, in a transaction with m input accounts (~u
(in)
i , ~t

(in)
i ), i = 1, . . . ,m,

and n output accounts (~u
(out)
i , ~t

(out)
i ), i = 1, . . . , n, the sender needs to prove

knowledge of all of the coin keys ~r
(in)
i , ~r

(out)
i , and the secret keys ~s

(in)
i for all of

the input public keys. In addition, we will need commitments to auxiliary data
with top part ~t′0 = B′0~r

′ in the protocol and have the sender prove knowledge
of an opening for this as well. Since the auxiliary commitment contains more
than one message polynomial, the commitment matrix B′0 is wider than B′0 and
we assume it is an extension of B0. We use standard approximate proofs, but
amortize over all of them so the sender only needs to send one masked opening

~z = ~y +

m∑
i=1

αi~s
(in)
i +

m∑
i=1

βi~r
(in)
i +

n∑
i=1

γi~r
(out)
i + c~r′

with independent challenge polynomials αi, βi, γi, and c. In this equation the
secret keys and coin keys are shorter vectors than the auxiliary commitment
randomness vector ~r′ and we understand the former as implicitly zero-padded
to the same length as ~r′.

Then the sender wants to prove the equation

B′0~z = ~w +

m∑
i=1

αiu
(in)
i +

m∑
i=1

βi~t
(in)
i,0 +

n∑
i=1

γi~t
(out)
i,0 + c~t′0.

Doing this directly in the clear would reveal the input accounts. So, instead, we
use our one-out-of-many proof. In a nutshell, for each of the input accounts there

are matrices U
(in)
i ∈ Rκ×lrq and T

(in)
i =

(
T

(in)
i,0

T
(in)
i,1

)
∈ R(κ+1)×lr

q that contain the

actual public keys and coins in one of their columns, together with lr − 1 other
public keys / coins. Then, the sender’s goal is to prove the equation

B′0~z = ~w +

m∑
i=1

P1,i~vi +

n∑
i=1

γi~t
(out)
i,0 + c~t′0
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in committed form with matrices P1,i = αiU
(in)
i + βiT

(in)
i,0 and selector vectors

~vi. In particular, he cannot send ~w in the clear but must send a commitment
to it, which we choose to be part of the auxiliary commitment ~t′. See Section 3
for our Technique of proving this equation with a framework proof and a tensor
decomposition of the selector vectors.

For this proof and the other proofs to come we need a non-amortized open-
ing proof for the auxiliary commitment, but we want to avoid the cost of send-
ing a separate masked opening for it. Interestingly, this is not necessary. Af-
ter setting up the one-out-of-many proof in a first stage of the protocol where
the verifier sends the challenges αi, βi, γi, the prover knows the first part

~y′ = ~y +
∑m
i=1αi~s

(in)
i +

∑m
i=1 βi~r

(in)
i +

∑n
i=1 γi~r

(out)
i of the amortized masked

opening from Equation (E). So he can use this as the masking vector for the
auxiliary opening proof and not sample a new masking vector. In the protocol
this means he sends the vector ~w′ = B′0~y

′.
Next, for the balance proof, the sender recommits to the amounts from the

coins in the auxiliary commitment ~t′. So, he sends the commitment polynomials

t′k+1 = 〈~b′k+1, ~r
′〉+ ǎ

(in)
1

...

t′k+m = 〈~b′k+m, ~r′〉+ ǎ(in)
m

t′k+m+1 = 〈~b′k+m+1, ~r
′〉+ ǎ

(out)
1

...

t′k+m+n = 〈~b′k+m+n, ~r
′〉+ ǎ(out)

n

where k ≥ 1 is some offset; concretely k = 7 in the protocol. Then, the sender
shows that these commitments are to the same amounts as in the accounts.
At the same time he reveals the serial numbers n

(in)
i = 〈~b1, ~s(in)i 〉 of the spent

accounts and proves their correctness. More precisely, let t′1 = 〈~b′1, ~r′〉 be a
garbage commitment to zero, independent of all challenges, and notice that

〈~b′1, ~z〉 −
m∑
i=1

αin
(in)
i −

m∑
i=1

βit
(in)
i,1 −

n∑
i=1

γit
(out)
i,1 − ct′1

= 〈~b′1, ~y〉 −
m∑
i=1

βiǎ
(in)
i −

n∑
i=1

γiǎ
(out)
i

is an amortized masked opening of the amounts that doesn’t depend on the
challenge c and can be computed by the verifier. On the other hand,

〈~b′k+i, ~z〉 − ct′k+i = 〈~b′k+i, ~y′〉 − cǎ
(in)
i

are openings of the auxiliary recommitments with challenge c where the masking
polynomials depend on the first-stage challenges. Therefore, by multiplying the
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amortized opening by the challenge c, the auxiliary openings by the challenges
βi, γi, and subtracting, we obtain an opening of the differences of the amounts
with quadratic challenges of the form cβi. Hence, when the recommitments are
correct, this masked opening has total degree one. Finally, with a second garbage
commitment t′2 = 〈~b′2, ~r′〉 + 〈~b′1, ~y〉 we can remove the dependency from the
challenge c. This strategy can then be combined with the one-out-of-many proof
to again hide the input accounts. In summary, the sender proves the equation

c〈~b′1, ~z〉 −
m∑
i=1

βi〈~b′k+i, ~z〉 −
n∑
i=1

γi〈~b′k+m+i, ~z〉+ 〈~b′2, ~z〉

= w′′ +

m∑
i=1

cαin
(in)
i +

m∑
i=1

cβi(T
(in)
i,1 ~vi − t′k+i) +

n∑
i=1

cγi(t
(out)
i,1 − t′k+m+i)

+ ct′2 + c2t′1,

where

w′′ = −
m∑
i=1

βi〈~b′k+i, ~y′〉 −
n∑
i=1

γi〈~b′k+m+i, ~y
′〉+ 〈~b′2, ~y′〉.

The equation is proved in committed form as before, because sending w′′ in the
clear would reveal the input accounts.

With the recommitments to the amounts we can use the addition proof from
[25] to prove the balance property. In fact, in [25] the authors concentrated on
proving an additive relation among three integers represented in binary, but the
techniques can easily be extended to more integers in the base-4 representation
that we are using. The only thing that is not completely straight-forward is that
when there are many integers, then the “carry” vector that plays an essential
role in the addition proof will not be binary anymore and can not be proven to
be small with algebraic techniques. But the same problem appears in the multi-
plication proof from [25] and we can use the solution there with an “approximate
shortness proof” for the carry vector that has negligible additional cost in our
case.

The final proof protocol is presented in Figure 12.

E.1 Transaction Proof Size and Parameters

We now concretely calculate the size of the non-interactive version of the proof
protocol in Figure 12 via the Fiat-Shamir transform for various ring sizes lr,
numbers of input accounts m, and numbers of output accounts n. First, recall
that we have d = 128, l = 32, and log(q) ≈ 32. We set the MLWE and MSIS
ranks λ and κ, respectively, such that we get a root Hermite factor of roughly
1.004. This results in λ = κ = 10. A public key pk has size 3.28 Kilobytes, and
a coin has size 3.78 KB. The output coins are minted inside the protocol in
Figure 12, but their size is not part of the proof size.

Inspection of the protocol in Figure 12 shows that the proof size is given by
the sizes of the auxiliary commitment ~t′, the masked opening ~z, and the poly-
nomial h2. Note that challenges can always be expanded from a seed and don’t

54



contribute to the proof size. Also, in the non-interactive version the polynomial
vector ~w′ and the garbage polynomial g0 don’t have to be transmitted because
they can be computed by the verifier and checked with the hash function.

For the auxiliary commitment a common optimization that we also make use
of in our proof size calculation is that it is not necessary to transmit the full
top part ~t′0 and it suffices to send the rounding with respect to some power-
of-two, i.e. the quotient modulo 2D. This is known as the Dilithium public key
compression technique [14]. Moreover, the MLWE error for the top part doesn’t
have to be explicitly opened and no masked copy of it has to be included in ~z.
Then only a rounding of ~w′ with respect to a divisor 2γ2 of q− 1 is transmitted
and the remainder serves as a masking vector for the MLWE error where another
rejection sampling step is necessary. This is the signature compression technique
in Dilithium and goes back to the Bai-Galbraith signature scheme [2].

For ~z we use the improved Gaussian rejection sampling from [26]. It leaks
one bit of information about the secret vectors, but every coin and public key is
only proven twice so there is no problem in this application. Since the implicit
opening of the MLWE error due to the Bai-Galbraith compression technique
combined with public key compression is bounded in infinity norm by 2γ2, we
also use the infinity norm in assessing the hardness of the MSIS problem, and
let the verifier check that each individual polynomial coefficient of ~z is smaller
than the worst-case bound 12σ. We aim at having 2γ2 be roughly equal to 12σ,
while making sure that the expected number of Bai-Galbraith rejections stays
reasonably small.

For choosing σ we need to bound
∥∥∥αi~s(in)i

∥∥∥ and ‖c~r′‖. Then we can use the

triangular inequality to get a bound on

T =

∥∥∥∥∥
m∑
i=1

αi~s
(in)
i +

m∑
i=1

βi~r
(in)
i +

n∑
i=1

γi~r
(out)
i

∥∥∥∥∥
and set σ = T . For this we use the approach from [26, Section 3.2].

With the two optimization from above we find that the auxiliary commitment
needs space κ(log(q)−D)+(7+m+n+κ+1+m(2r−1)) log(q) bits. Furthermore,
the transmitted polynomial vector ~z has length λ+7+m+n+κ+1+m(2r−1).
For computing its bandwidth requirement we compute the entropy of the discrete
Gaussian with standard deviation σ and assume that ~z is entropy coded.

In Figure 3 we list the transaction proof sizes for a wide variation of anonymity
set sizes and the practial useful situation of 1 or 2 input accounts and 2 out-
put accounts. For example, in the casee of 2 input and 2 output accounts and
anonymity set size 1024, our protocol has a proof size of 26.49 Kilobytes. This
is almost five times smaller than the proof size from the MatRiCT protocol,
although there the anonymity set size is only 100. Our advantage grows towards
larger anonymity sets, since our protocol scales quasi-logarithmically instead of
polylogarithmically. So, for anonymity set size 225 our protocol is more than 18
times smaller. Figure 4 gives proof sizes for the fixed anonymity set size 1024
but varying number of input accounts, up to 100. Concretely, for m = 100 input
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accounts we achieve a proof size of 344.26 KB, which is about 3.4 times smaller
than the MatRiCT protocol.

56



Prover P Verifier V

Inputs:

for i = 1, . . . ,m :

~a
(in)
i ∈ {0, 1, 2, 3}l ⊂Ml

q U
(in)
i ,T

(in)
i ,n

(in)
i

~s
(in)
i , ~r

(in)
i ∈ Sκ+λ+1

3

~u
(in)
i = B0~s

(in)
i

n
(in)
i = 〈~b1, ~s(in)i 〉

~t
(in)
i,0 = B0~r

(in)
i

t
(in)
i,1 = 〈~b1, ~r(in)i 〉+ ǎ

(in)
i

U
(in)
i ,T

(in)
i,0 ∈ R

κ×lr
q

T
(in)
i,1 ∈ R

1×lr
q

T
(in)
i =

(
T

(in)
i,0

T
(in)
i,1

)
~vi ∈ {0, 1}l

r

⊂Mlr

q

NTT
(
U

(in)
i

)
~vi = NTT

(
~u
(in)
i

)
NTT

(
T

(in)
i,0

)
~vi = NTT

(
~t
(in)
i,0

)
NTT

(
T

(in)
i,1

)
~vi = NTT

(
t
(in)
i,1

)
for i = 1, . . . , n :

a
(out)
i ∈ {0, 1, 2, 3}l ⊂Ml

q

(~t
(out)
i , ~r

(out)
i , ~y, ~w,o, e, ~t′, ~r′)← STAGE1()

~t
(out)
i , ~t′ -

αi,βi ← C, i ∈ [m]

αi,βi,γi� γi,← C, i ∈ [n]

~y′ = ~y +

m∑
i=1

αi~s
(in)
i +

m∑
i=1

βi~r
(in)
i +

n∑
i=1

γi~r
(out)
i

~z = ~y′ + ~r′C over Rq[C]

~w′ = B′0~z − ~t′0C

w′′ = 〈~b′1, ~z〉C + 〈~b′2, ~z〉 −
m∑
i=1

βi〈~b′7+i, ~z〉

−
n∑
i=1

γi〈~b′7+m+i, ~z〉 − t′2C − t′1C2

−
m∑
i=1

αin
(in)
i C −

m∑
i=1

βi(t
(in)
i,1 − t

′
7+i)C

−
n∑
i=1

γi(t
(out)
i,1 − t′7+m+i)C

t′7+m+n+κ+1 = 〈~b′7+m+n+κ+1, ~r
′〉+w′′ ~w′, t′7+m+n+κ+1-

Fig. 12. Our interactive protocol for computing a transaction together with the proof
for it. The prover function STAGE1() is given in Figure 14.
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Prover P Verifier V

The prover and verifier run the OOOM protocol from Figure 15; As outputs they both
get the matrices P̂i,j , the prover gets the vectors ~xi,j and the verifier the commitments
t′7+m+n+κ+1+mr+1, . . . , t

′
7+m+n+κ+1+mr+m(r−1) to these vectors.

ψi� ψi,←Rq, i ∈ [m+ n+mr + 2]

(g0, t
′
5, t
′
6, t
′
7,h2)← GARBAGE() g0, t

′
5, t
′
6, t
′
7,h2-

c� c← C
if Rej (~z(c), ~z(c)− ~y, σ) = 1,

then abort ~z(c) - VERIFY()

Fig. 13. Transaction Proof, Part II. The prover function GARBAGE() is given in Fig-
ure 16 and computes the garbage polynomials and commitments. The verifier function
VERIFY() for checking the response by the prover is given in Figure 17.

STAGE1(~a
(in)
i ,~a

(out)
i , ~vi)

01 for i = 1, . . . , n:
02 ~r

(out)
i ← Sκ+λ+1

3

03 ~t
(out)
i,0 = B0~r

(out)
i

04 t
(out)
i,1 = 〈~b1, ~r(out)i 〉+ a

(out)
i

05 ~y ← D
κ+λ+7+m+n+κ+1+m(2r−1)
σ

06 ~w = B′0~y
07 o← {p ∈ Rq | p0 = · · · = p3 = 0}
08 e = (X − 4)−1(

∑m
i=1 a

(in)
i −

∑n
i=1 a

(out)
i )

09 for i = 1, . . . ,m :

10 ~vi = ~vi,1 ⊗ · · · ⊗ ~vi,r ∈
(
Ml

q

)⊗r
11 ~r′ ← S

κ+λ+7+m+n+κ+1+m(2r−1)
3

12 ~t′0 = B′0~r
′

13 t′1 = 〈~b′1, ~r′〉
14 t′2 = 〈~b′2, ~r′〉+ 〈~b′1, ~y〉
15 t′3 = 〈~b′3, ~r′〉+ o

16 t′4 = 〈~b′4, ~r′〉+ ě
17 for i = 1, . . . ,m :
18 t′7+i = 〈~b′7+i, ~r′〉+ ǎ

(in)
i

19 for i = 1, . . . , n :
20 t′7+m+i = 〈~b′7+m+i, ~r

′〉+ ǎ
(out)
i

21 for i = 1, . . . , κ :
22 t′7+m+n+i = 〈~b′7+m+n+i, ~r

′〉+ ŵi
23 for i = 0, . . . , r − 1, for j = 1, . . . ,m :
24 t′7+m+n+κ+1+mi+j = 〈~b′7+m+n+κ+1+mi+j , ~r

′〉+ v̌j,i

Fig. 14. Prover Stage I: Mint output coins, sample masking vectors, and compute
auxiliary commitment.
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Prover P Verifier V

Inputs:

for i = 1, . . . ,m :

U
(in)
i ,T

(in)
i,0 ∈ R

κ×lr
q

T
(in)
i,1 ∈ R

1×lr
q

~vi ∈ {0, 1}l
r

⊂Mlr

q

k = 7 +m+ n+ κ+ 1 +mr

for i = 1, . . . ,m :

P̂1,i = NTT

(
αiU

(in)
i + βiT

(in)
i,0

βiT
(in)
i,1

)

~x1,i = NTT

(
αi~u

(in)
i + βi~t

(in)
i

βit
(in)
i

)
~φ1� ~φ1 ← (Ml

q)
κ+1

for i = 1, . . . ,m :

P̂2,i =


~φT1 P̂

(1)
1,i

...
~φT1 P̂

(l)
1,i


~x2,i = P̂2,i(~vi,2 ⊗ · · · ⊗ ~vi,r)

tk+i = 〈~b′k+i, ~r′〉+ x̌2,i
tk+i -

...

~φr−1,i� ~φr−1,i ←Ml
q, i ∈ [m]

for i = 1, . . . ,m :

P̂r,i =


~φTr−1,iP̂

(1)
r−1,i

...
~φTr−1,iP̂

(l)
r−1,i


~xr,i = P̂r,i~vi,r

tk+(r−2)m+i) = 〈~b′k+(r−2)m+i, ~r
′〉+ x̌r,i

tk+(r−2)m+i-

~φr,i� ~φr,i ←Ml
q, i ∈ [m]

Fig. 15. One-Out-Of-Many Recursion for Transaction Proof.
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GARBAGE()

01 ~z = ~y′ + ~r′C over Rq[C]
02 for i = 1, . . . , 7 +m+ n+ κ+ 1 +m(2r − 1) :

03 fi = 〈~b′i, ~z〉 − t′iC
04 g = ψ1

∏1
j=−1(f4 − jC)C

05 k = 7
06 for i = 1, . . . ,m+ n :
07 g += ψ1+i

∏3
j=0(fk+i − jC)

08 k = 7 +m+ n+ κ+ 1
09 for i = 0, . . . , r − 1, for j = 1, . . . ,m :
10 g += ψ1+m+n+im+j

∏1
j=0(fk+im+j − jC)C2

11 k = 7 +m+ n

12 ~f ′ =


〈~b′k+1, ~y

′〉
...

〈~b′k+κ+1, ~y
′〉

−∑m
i+1 NTT

−1 (~x1,i)C

13 h =
∑m
i=1 fk+κ+1+ifk+κ+1+rm+i +

∑κ+1
i=1 φ̌1,if

′
iC

14 k = 7 +m+ n+ κ+ 1
15 for i = 1, . . . , r − 2, for j = 1, . . . ,m :
16 h += fk+im+jfk+rm+im+j + φ̌i+1,jfk+rm+(i−1)m+jC
17 for i = 1, . . . ,m :

18 h += NTT−1
(
P̂Tr,i~φr,i

)
fk+(r−1)m+iC − φ̌r,ifk+rm+(r−2)m+iC

19 h += ψ̌′m+n+rm+2(
∑m
i+1 f7+i −

∑n
i=1 f7+m+i)C + f4C

20 h −= f3C
21 g = g0 + g1C + g2C

2 + g3C
3

22 h = h0 + h1C + h2C
2

23 t′7 = 〈~b′7, ~r′〉+ g3 + h1

24 t′6 = 〈~b′6, ~r′〉+ g2 + h0 + 〈~b′7, ~y′〉
25 t′5 = 〈~b′5, ~r′〉+ g1 + 〈~b′6, ~y′〉
26 g0 = g0 + 〈~b′5, ~y′〉

Fig. 16. Garbage Commitments
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VERIFY()
01 ‖~z‖ ≤ B
02 B′0~z

?
= ~w′ + c~t′0

03 h2,0
?
= h2,1

?
= h2,2 =

?
= h2,3

?
= 0

04 for i = 1, . . . , 7 +m+ n+ κ+ 1 +m(2r − 1) :

05 fi = 〈~b′i, ~z〉 − t′ic
06 g = ψ1

∏1
j=−1(f4 − jc)c

07 k = 7
08 for i = 1, . . . ,m+ n :
09 g += ψ1+i

∏3
j=0(fk+i − jc)

10 k = 7 +m+ n+ κ+ 1
11 for i = 0, . . . , r − 1, for j = 1, . . . ,m :
12 g += ψ1+m+n+im+j

∏1
j=0(fk+im+j − jc)c2

13 k = 7 +m+ n

14 ~f ′0 =

f7+m+n+1

...
f7+m+n+κ

+B′0~z −
∑

+m
i=1βi~t

(out)
i,0 + c~t′0

15 f ′1 = f7+m+n+κ+1 + 〈~b′1, ~z〉c+ 〈~b′2, ~z〉 −
∑m
i=1 βi〈~b

′
7+i, ~z〉 −

∑n
i=1 γi〈~b

′
7+m+i, ~z〉

−t′2c− t′1c2 −
∑m
i=1αin

(in)
i c+

∑m
i=1 βit

′
7+ic−

∑n
i=1 γi(t

(out)
i,1 − t′7+m+i)c

16 h =
∑m
i=1 fk+κ+1+ifk+κ+1+rm+i −

∑κ
i=1 φ̌1,i

~f ′0,ic− φ̌1,κ+1f
′
1c

17 k = 7 +m+ n+ κ+ 1
18 for i = 1, . . . , r − 2, for j = 1, . . . ,m :
19 h += fk+im+jfk+rm+im+j + φ̌i+1,jfk+rm+(i−1)m+jc
20 for i = 1, . . . ,m :

21 h += NTT−1
(
P̂Tr,i~φr,i

)
fk+(r−1)m+ic− φ̌r,ifk+rm+(r−2)m+ic

22 h += ψ̌′m+n+rm+2(
∑m
i+1 f7+i −

∑n
i=1 f7+m+i)c+ f4c

23 h −= f3c

24 g0
?
= g + (h− h2c

2)c2 + f5 + f6c+ f7c
2

Fig. 17. Verification Equations
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