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Abstract. The dual attack has long been considered a relevant attack on lattice-based cryptographic
schemes relying on the hardness of learning with errors (LWE) and its structured variants. As solving
LWE corresponds to finding a nearest point on a lattice, one may naturally wonder how efficient
this dual approach is for solving more general closest vector problems, such as the classical closest
vector problem (CVP), the variants bounded distance decoding (BDD) and approximate CVP, and
preprocessing versions of these problems. While primal, sieving-based solutions to these problems (with
preprocessing) were recently studied in a series of works on approximate Voronoi cells [Laa16b,DLdW19,
Laa20,DLvW20], for the dual attack no such overview exists, especially for problems with preprocessing.
With one of the take-away messages of the approximate Voronoi cell line of work being that primal
attacks work well for approximate CVP(P) but scale poorly for BDD(P), one may wonder if the dual
attack suffers the same drawbacks, or if it is a better method for solving BDD(P).

In this work we provide an overview of cost estimates for dual algorithms for solving these “classical”
closest lattice vector problems. Heuristically we expect to solve the search version of average-case
CVPP in time and space 20.293d+o(d). For the distinguishing version of average-case CVPP, where
we wish to distinguish between random targets and targets planted at distance approximately the
Gaussian heuristic from the lattice, we obtain the same complexity in the single-target model, and
we obtain query time and space complexities of 20.195d+o(d) in the multi-target setting, where we are
given a large number of targets from either target distribution. This suggests an inequivalence between
distinguishing and searching, as we do not expect a similar improvement in the multi-target setting
to hold for search-CVPP. We analyze three slightly different decoders, both for distinguishing and
searching, and experimentally obtain concrete cost estimates for the dual attack in dimensions 50 to
80, which confirm our heuristic assumptions, and show that the hidden order terms in the asymptotic
estimates are quite small.

Our main take-away message is that the dual attack appears to mirror the approximate Voronoi cell line
of work – whereas using approximate Voronoi cells works well for approximate CVP(P) but scales poorly
for BDD(P), the dual approach scales well for BDD(P) instances but performs poorly on approximate
CVP(P).

Keywords: lattice-based cryptography, lattice algorithms, primal/dual attacks, closest vector problem
(CVP), bounded distance decoding (BDD)

1 Introduction

Post-quantum cryptography. Ever since the breakthrough work of Shor in the 1990s [Sho94], revealing how
quantum computers pose a major threat to currently deployed cryptographic primitives, researchers have
been studying alternative approaches which have the potential to be resistant against quantum attacks.
Over the past few decades, the field of “post-quantum cryptography” [BBD09] has gained in popularity,
and the recent NIST standardization process [oSN17] has further focused the attention of the cryptographic
community on preparing for a future where large-scale quantum computers are a reality.
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Lattice-based cryptography. Out of all proposed alternatives for “classical” cryptography, lattice-based cryp-
tography has emerged as a prime candidate for secure and efficient cryptography in the post-quantum era.
Many basic primitives are simple and efficient to realize with e.g. learning with errors (LWE) and its ring
variants [Reg05,SSTX09,Reg10], while more advanced cryptographic primitives (such as fully homomorphic
encryption [Gen09]) can also be constructed using lattices. By far the most schemes submitted to the NIST
competition base their security on the hardness of hard lattice problems.

Closest vector problems. Various hard lattice problems have been considered over time, with the two clas-
sical hard problems being the shortest vector problem (SVP) and the closest vector problem (CVP). The
latter problem asks to find a nearest lattice point to an arbitrary target, and is arguably the hardest. CVP
algorithms appear in various cryptographic contexts, both directly and indirectly (as a subroutine within an-
other algorithm). Closely related to CVP are easier variants, such as bounded distance decoding (BDD) and
approximate CVP, preprocessing versions of these problems, and modern related variants such as learning
with errors (LWE) and structured variants.

Primal attacks. For solving CVP and its variants, various approaches have been studied to date. Lattice
enumeration [Kan83,MW15,AN17] was long considered the most practical, with a low memory requirement
and fast heuristics. Babai’s polynomial time algorithms for the easiest CVP variants [Bab86] can be viewed as
based on enumeration as well. Lattice sieving methods [AKS01,MV10,BDGL16,DLdW19,Laa20,DLvW20]
make use of so-called approximate Voronoi cells, and achieve a superior asymptotic scaling of the time
complexity. With recent advances in sieving [BDGL16, ADH+19, DSvW21, svp20] this likely is the method
of choice when assessing the hardness of these problems in cryptographically relevant dimensions. The line
of work on approximate Voronoi cells showed that while results for preprocessing problems are promising
both for average-case CVPP and approximate CVPP, the results were somewhat disappointing for BDDP.
An open question was raised whether this is inherent to the primal approach, and if other approaches were
more suitable for BDDP.

Dual attacks. An alternative approach for solving hard lattice problems (and in particular closest vector
problems) is based on the dual lattice [AR04]. Using short vectors from the dual lattice, and computing dot
products with a target vector, one can obtain probabilistic evidence indicating whether the target vector
lies close to the lattice. Using many dual vectors, one can then construct both distinguishers and search
algorithms using a gradient ascent approach [LLM06, DRS14]. The dual attack has mostly been considered
in the context of LWE and BDD [LP11, APS15, HKM18, ADH+19], which suggests the dual approach may
work better for the BDD regime and worse for the approximate CVP regime. To this date several open
questions remain however, such as a thorough heuristic overview of the costs of the dual attack for classical
lattice problems (i.e. not LWE), as well as an experimental assessment of the practicality of the dual attack
for solving such closest vector problems. Moreover, the preprocessing setting has not yet been studied from
a heuristic point of view, in the way that the approximate Voronoi cell approach has been studied recently.

1.1 Contributions

Revisiting the dual attack. In this work we give a thorough, practical overview of the strengths and weaknesses
of the dual attack for solving most closest vector problems. After covering preliminaries (Section 2), we
describe a generalized model which covers most variants of CVP(P) (Section 3). We then study different
algorithms both for distinguishing and searching for nearby lattice points (Section 4). We provide a heuristic
complexity analysis of these different algorithms, both with and without preprocessing (Section 5), and we
finally verify the heuristics and obtain more concrete cost estimates through experiments (Section 6).

Decoders. Concretely, in terms of algorithms we provide three different decoders for combining dot products of
different dual vectors with the target vector. The Aharonov–Regev decoder was presented in [AR04] and finds
its motivation in approximating Gaussians over the lattice via the Fourier transform. Our novel Neyman–
Pearson decoder follows from applying the celebrated Neyman–Pearson lemma [NP33] to the considered
problem, and results in a slightly different, but asymptotically equivalent decoder to the AR decoder. The
third (new) decoder is a simpler alternative to the previous two decoders, which conveniently requires no
knowledge of the estimated distance from the lattice, has the same asymptotic performance as the other two
decoders, and also appears to perform well in practice.



Algorithms. Besides using these decoders for distinguishing, we present a heuristic search algorithm based
on the classical gradient ascent approach, previously studied from a theoretical point of view in e.g. [LLM06,
DRS14]. We implemented this search algorithm (as well as distinguishers) in dimensions 50 to 80, showing
that the actual performance closely matches our predictions, with fast convergence for most BDD instances.

Asymptotics. On the theoretical side, we show optimality of the Neyman–Pearson decoder within our model,
thereby showing optimality of the associated heuristics using the proposed decoders. For preprocessing
problems, we can solve BDDP with radius r · gd (with gd the Gaussian heuristic) in time edr

2(1+o(1))/e2 for
small r. For r close to 1, distinguishing many targets as either all being BDD samples or all being random
vectors can be done in time ed(1+o(1))/e

2 ≈ 20.195d+o(d). Actually finding a nearest vector, or distinguishing
based on only one target vector requires time 20.293d+o(d) when r ≈ 1. The results for the preprocessing
setting are shown in Figures 1a–1b. For the setting where preprocessing is not free, taking into account basis
reduction costs leads to Figures 1c–1d. These sketch the same picture as the preprocessing results: the dual
attack seems complementary to the primal attack, with the dual attack scaling well for r ≤ 1 and the primal
attack scaling well for r ≥ 1.

Experiments. To validate the heuristic, theoretical claims, as well as to get an idea how well the dual
attack really works for solving these problems in practice, we implemented and tested our algorithms as
well, focusing on the BDD(P) regime with radius slightly below the Gaussian heuristic. The performance of
the distinguishers and search algorithms is remarkably close to our theoretical predictions, even when the
preprocessing simply consists of a lattice sieve.

Take-away message. Summarizing, in practice the dual attack seems to perform as good as can be expected
from the theoretical estimates. Whereas a primal approach works better for approximate CVP(P), the dual
attack is arguably the right solution for solving BDD(P). With the approximate Voronoi cell approach and
the dual attack working well in disjoint regimes, one could say the dual attack is a complementary solution
to the primal attack.

1.2 Open problems

Recently, algorithms for CVP(P) have found further applications, besides for studying the hardness of lattice
problems [BKV19, PMHS19]. One application that may be of interest is in a hybrid with lattice enumera-
tion [DLdW20]. Within the enumeration tree, various CVP instances appear on the same lattice, one of which
leads to the solution. Rather than solving CVP for each of these targets, a distinguisher may be sufficient
for discarding the majority of targets, and depending upon the depth in the tree we may in fact be faced
with BDD instances, for which the dual attack may work better than the primal attack used in [DLdW20].
We leave a study of this hybrid for future work.

Throughout the paper some other open problems arose. Can the multi-target distinguisher be turned
into a search algorithm with the same complexity 20.195d+o(d) for “average-case” search CVPP? Which of
the presented decoders is best in practice? How should one choose the step size for the gradient ascent method,
and how does the step size influence the number of steps and the probability of converging to the correct
solution? On the implementation-side, since the dual attack scales particularly well across many cores running
in parallel, how does the dual attack compare to primal attacks on large-scale experiments? And finally, are
extrapolations based on our preliminary experimental results in moderate dimensions representative for the
true complexities in high dimensions?
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(a) Complexities for problems with preprocessing for
small radii r = O(1).
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Fig. 1. Asymptotic complexities for primal and dual attacks, with (a,b) and without preprocessing (c,d), in the
regimes of exponential (a,c) and arbitrary time complexity scalings (b,d). The radius r denotes the multiplicative
factor in front of the Gaussian heuristic for the distance from the target to the planted nearby lattice point. The dual
attack (blue) represents distinguishing and searching costs for one target. The primal attack (red) covers approaches
based on approximate Voronoi cells. When distinguishing a large number of targets, and using only one dual vector,
we obtain slightly improved results for the preprocessing regime (cyan). The dual attack works well for BDD(P) (the
regime r ≤ 1), while the primal attack works well for approximate CVP(P) (the regime r ≥ 1). The dual attack for
BDDP becomes polynomial-time for radius r · gd when r = O(

√
log d/d). The primal attack for approximate CVPP

becomes polynomial-time when r = O(
√
d/ log d).



2 Preliminaries

Notation. Reals and integers are denoted by lower case letters and distributions by upper case letter. Bold
letters are reserved for vectors (lower case) and matrices (upper case). The i-th entry of a vector v is denoted
by vi and the j-th column vector of a matrix B by bj . We denote the d-dimensional ball of radius r by Bd(r)
and the unit-sphere by Sd−1, which are always centered at 0 unless stated otherwise. We may omit the
dimension d if clear from context.

2.1 Lattices

Basics. Given a set B = {b1, . . . , bm} ⊂ Rd of linearly independent basis vectors (which can equivalently be
represented as a matrix B ∈ Rd×m with the vectors bi as columns), the lattice generated by B is defined
as L = L(B) := {Bx : x ∈ Zd}. In case m = d we say the lattice is full-rank, and unless otherwise stated,
throughout the paper we will implicitly assume m = d. We write Vol(L) := det(BTB)1/2 for the volume of a
lattice L, and w.l.o.g. throughout the paper we will assume that L is normalized to have volume one (i.e. by
multiplying B by the appropriate scalar multiple). Given a basis B, we write B∗ = {b∗1, . . . , b

∗
m} for its Gram–

Schmidt orthogonalization. We write Dt+L,s for the discrete Gaussian distribution on t+L with probability
mass function satisfying Pr[X = x] ∝ ρs(x) := exp(−π‖x‖2/s2), normalized such that

∑
x∈t+L Pr[X =

x] = 1. We define λ1(L) := minv∈L\{0} ‖v‖ and for t ∈ Rd we define dist(t,L) := minv∈L ‖t− v‖, where all
norms are Euclidean norms.

Dual lattices. Given a lattice L, its dual lattice L∗ contains all vectors w ∈ Rd such that 〈v,w〉 ∈ Z for all
primal lattice vectors v ∈ L. This set of vectors again forms a lattice, and for full-rank primal lattices L a
basis of this dual lattice is given by B−T . Since Vol(L∗) = 1/Vol(L), if L is normalized to have volume 1,
then also L∗ has volume 1. We commonly denote primal lattice vectors by v, and dual vectors by w.

Lattice problems. Given a description of a lattice L, the shortest vector problem (SVP) asks to find a shortest
non-zero lattice vector s ∈ L, satisfying ‖s‖ = λ1(L). For approximate versions of this problem (SVPr with
r ≥ 1), returning any non-zero lattice vector v ∈ L of norm ‖v‖ ≤ r · λ1(L) suffices as a solution. A
different relaxation of SVP is unique SVP (uSVPr with r ≤ 1), where one is tasked to find the shortest
non-zero vector in a lattice with the guarantee that there is one particularly short vector s in the lattice:
‖s‖ ≤ r ·minv∈L,v 6=λ·s ‖v‖. Given a description of a lattice L and a target vector t ∈ Rd, the closest vector
problem (CVP) is to find a lattice vector s ∈ L satisfying ‖t − s‖ = dist(t,L). Similarly, we may define
approximate CVP (CVPr with r ≥ 1) as the approximate version of CVP, where any vector s ∈ L with
‖t− s‖ ≤ γ · dist(t,L) qualifies as a solution. The analogue of uSVP for the inhomogeneous setting is often
called bounded distance decoding (BDDr with r ≤ 1), where one is tasked to find the closest vector with
the guarantee that it lies within radius r · λ1(L) of the lattice.

2.2 Heuristic assumptions

Before describing and analyzing dual lattice attacks, let us first describe the heuristic assumptions we will
use to model the problems. Under this heuristic model we will be able to obtain sharp bounds on the costs
of dual attacks, at the cost of no longer having a proof of correctness – for exotic, non-random lattices these
bounds may well be too optimistic, and even for average-case lattices we can only “prove” the resulting
complexities under these additional assumptions.

The Gaussian heuristic. The determinant det(L) = Vol(L) describes the volume of the fundamental domain,
as well as the density of lattice points in space. This metric indicates that if we have a random, large
region R ⊂ Rd of volume Vol(R), then the number of lattice points contained in R can be estimated as
Vol(R)/Vol(L). Since a ball of radius r has volume Vol(B(r)) = rdVd(1), with Vd(1) = (2πe/d)d/2+o(d) the
volume of the ball with unit radius, we expect for any constant ε > 0 with overwhelming probability the
ball of radius r around a point in space to contain no lattice points if r < (1 − ε)gd, and to contain many
lattice points if r > (1+ε)gd. Here, gd =

√
d/(2πe) ·

(
1 +O

(
1
d

))
denotes the Gaussian heuristic in dimension

d. Putting such a ball around the origin, we expect a shortest non-zero vector in the lattice to have norm
λ1(L) = gd(1 + o(1)), and similarly for random target vectors t ∈ Rd we expect the closest vector in the
lattice to t to lie at distance dist(t,L) = gd(1 + o(1)).



Distributions of lattice points. Building upon the Gaussian heuristic, we further estimate the distribution of
lattice points in space as follows: there is one lattice point 0 of norm 0, and for any α ≥ 1 we expect there to
be αd+o(d) lattice vectors of norm αgd(1 + o(1)). The Euclidean norm of the n-th shortest vector in a lattice
of volume 1 can therefore be estimated as n1/dgd(1 + o(1)).

The geometric series assumption. In the context of lattice basis reduction, we rely on the geometric series
assumption [SE94], which states that the norms of the Gram–Schmidt vectors of a block reduced basis form
a geometric sequence, i.e. ‖b∗i ‖ = δd−2i+1. Here, δ > 1 indicates the quality of the basis: the smaller δ,
the better the quality of the basis, and the harder these bases generally are to obtain. For block reduced

bases with block size k, we obtain the commonly known estimate δ = δk = g
1/(k−1)
k = 1 + O (log k/k) (see

e.g. [APS15, MW16]). This estimate is mostly accurate when k � d, as for k ≈ d the shape of the basis
is expected to be an average-case HKZ-shape for which the Gram–Schmidt norms do not exactly follow a
geometric sequence anymore.

2.3 Lattice algorithms and cost models

The cost of SVP. To solve SVP, several heuristic methods are known, and most belong to either the class
of enumeration algorithms (running in super-exponential time and polynomial space) [Kan83,MW15,AN17]
or sieving algorithms (running in 2O(d) time and space) [AKS01, Laa16a, BDGL16]. As in our analysis we
are interested in minimizing the asymptotic time complexity, we will model the cost of solving SVP by
the cost of the best heuristic sieve in dimension d [BDGL16], which classically runs in time TSVP(d) =
(3/2)d/2+o(d) ≈ 20.292d+o(d). Apart from solving SVP, sieving algorithms are actually expected to return all
the (4/3)d/2 ≈ 20.208d+o(d) shortest non-zero vectors in the lattice; compared to the best sieving algorithms
for finding only one short vector, the overhead in the time complexity is only a factor 2o(d) [Duc18]. To find
even more short lattice vectors, one may use a relaxed sieve [Laa16b, Algorithm 5].

The cost of approximate SVP. To approximate the shortest vector in a lattice and obtain a basis following
the GSA, one commonly uses block reduction with the block size k determining the parameter δ = δk
[Sch87, SE94, GN08, MW16]. The cost of block reduction is usually modeled as the cost of solving SVP in
dimension k, via TBKZ(k) = dO(1) ·TSVP(k), with some overhead which is polynomial in d. Together with the
geometric series assumption, this describes a trade-off between the time complexity for the basis reduction
and the quality of the reduced basis.

2.4 The cost of BDD(P)

In this section we describe the state of the art in terms of heuristic asymptotic time complexities for solving
BDD and BDDP.

Solving BDD. To the best of our knowledge, the most efficient way to solve BDD is through Kannan’s
embedding [Kan87]. In the following we briefly sketch the analysis. (We do not claim novelty; this is just for
convenience of the reader.)

Let B be a lattice basis (we assume w.l.o.g. that Vol(L(B)) = 1) and t = v + e be a target vector, where
v is a lattice vector and ‖e‖ ≤ αgd. The embedding attack constructs the new basis(

B t
0 c

)
for some constant c. It is easy to see that the new lattice contains the vector [e | c] and has determinant

c. One can now optimize over c to minimize the ratio ‖[e | c]‖/c
1
d+1 , which shows that the optimum is at

c = ‖e‖/
√
d. It can be verified that under the Gaussian heuristic, a BDD instance with ‖e‖ = αgd leads

to a uSVP instance with a gap of (2πeαd)−
1
d+1 ≈ 1/α between the first and second minimum. We can

now run our favorite SVP approximation algorithm to approximate the shortest vector in this lattice up
to a factor 1/α, which heuristically yields the solution. The algorithm of choice is usually lattice reduction,
where the SVP oracle is instantiated with sieving. We note that it was suggested in [ADPS16], and verified



in [AGVW17], that lattice reduction actually behaves somewhat better in finding the solution than suggested
by the approximation factor, but this does not impact the asymptotic running time of the approach so we
focus on the above estimate for simplicity.

Lemma 1 (Approximation factor of BKZ). Let α = da for some a > 0. Under suitable heuristics,

lattice block reduction with sieving achieves an approximation factor α in time 2
0.292
1+2ad+o(d).

Proof. Recall that lattice reduction with block size k approximates the shortest vector by a factor about

g
d/k
k /gd. Substituting k = βd for some β ∈ (0, 1) and noticing that gβd =

√
βgd this yields

g
d/k
k

gd
= β

1
2β g

1−β
β

d = d
1−β
2β +o(1) (1)

as long as β is at least a constant. (If β = o(1), the algorithm runs in sub-exponential time and the
corresponding approximation factor is too large to be relevant for our work). For block reduction to find a

short enough solution we need β to be such that d
1−β
2β +o(1) ≤ α. In other words, we need β ≥ (1+2a−o(1))−1.

Recall that block reduction in dimension k runs in time

20.292k+o(k) = 20.292βd+o(d) = 2
0.292
1+2ad+o(d).

ut

Corollary 1 (BDD via Kannan embedding). Let r = da be a radius for some a < 1
2 . Solving BDD

with radius r using Kannan’s embedding and lattice reduction with sieving has complexity 2
0.292

2(1−a)d+o(d) under
suitable heuristics.

Proof. Following the above outline of Kannan’s approach, we require an SVP algorithm with approximation
factor α = d

1
2−a+o(1). Lemma 1 shows that block reduction is such an algorithm with the claimed running

time. ut

Solving BDDP. The situation is less clear in the preprocessing setting. The above embedding approach is
unlikely to be able to make much use of the free preprocessing. The obvious approach would be to strongly
reduce the basis before embedding the target vector. But since the goal is to apply block reduction using
sieving to the final basis, the preprocessing might as well directly precompute many short vectors for the
individual blocks that will be considered during the reduction. Once the target is embedded, block reduction
will successively pass it through the blocks and attempt to shorten it using the precomputed vectors. This
is essentially an instance of the approximate Voronoi cell algorithm for which we know that its complexity
does not scale well with the radius in the BDD parameter range (see Figure 1a and Section 2.5).

Another approach for BDDP is to strongly reduce the basis and perform enumeration to decode the target.
While this might be an efficient way to tackle the problem for small instances in practice, it is asymptotically
inefficient for the parameter ranges considered in this work. As shown by [HKM18], there is a very narrow
range in the target distance parameter where the running time of enumeration switches from polynomial to
super-exponential. (The analysis of enumeration in [HKM18] is in a somewhat different setting but carries to
ours as well.) The parameters for which enumeration solves the problem in polynomial time are very small
(r = da for constant a < 0), which is outside the scope of this work for BDDP. Super-exponential running
times are clearly asymptotically worse than what can already be achieved in the non-preprocessing setting.

2.5 The cost of approximate CVP(P)

Closest vector problems with preprocessing. To compare our results with the approximate Voronoi cells ap-
proach, we recall the state of the art in this direction. For a fair comparison, in the preprocessing setting
we optimized for the time complexity, conditioned on the time complexity not exceeding the memory. This
matches the dual attack’s time–space trade-off (both the time and memory are |W|), and prohibits costly



nearest neighbor searching which can make the time complexity arbitrarily small at the cost of more mem-
ory [DLdW19,Laa20,DLvW20]. We also do not cover batch-CVPP improvements as outlined in [DLvW20];
this would only slightly change the plot in Figure 1a.

For the red curve in Figure 1a, we used the formulas from [DLdW19], solving for an equal time and
memory complexity, and then minimizing over all combinations of parameters that achieve an equal time and
memory complexity. For BDDP, as explained in e.g. [DLdW19] one can achieve slightly better complexities
than for average-case CVPP, but Figure 1a shows that this improvement is almost negligible when viewed
on a loglog-scale. Note that the orange line T = exp(d/8r2) denotes the asymptotic scaling for approximate
CVPP for large approximation factors, as described in [Laa16b, Section 4.2] – the lower bound on the list
size parameter α for approximate CVPP with approximation factor r scales as α = 1 + 1/(8r2) +O(r−4) =
exp(1/(8r2) +O(r−4)), so that the time complexity T = αd+o(d) indeed scales as T = exp(d/(8r2)). This is
almost the mirror image of the dual attack’s complexity for small radius r → 0, where the leading constant
is 1/e2 ≈ 1/7.4 rather than 1/8.

Closest vector problems, without preprocessing. For problems without preprocessing, we can do a similar
analysis as for the dual attack without preprocessing to analyze which block size is needed to make the
attacks work. Similar to the analysis in Section 5, using BKZ with a block size k = βd for constant β results

in an approximation factor g
d/k
k /gd = d1/(2β)−1/2 for the norms of the vectors output by the sieve on the top

block. For constant β the number of vectors remains expO(d). With an exponential number of vectors from
a larger sphere, using e.g. [Laa20, Theorem 3.1] shows that the volume of the resulting approximate Voronoi
cell is of the order dd/(2β)−d/2 larger than the exact Voronoi cell, defined by expO(d) vectors of length with
a constant approximation factor. To end up with a solution, we need to end up within a radius r · gd from
the origin, which is a region whose volume is a factor rd larger than the exact Voronoi cell. This yields the
inequality rd ≥ dd/(2β)−d/2, or equivalently β ≥ 1/(1 + 2 ln r/ ln d). Substituting the cost of BKZ with this
block size then yields the red curves for approximate CVPP of Figures 1c and 1d.



3 Model

Before describing and analyzing dual attacks from a practical point of view, we first carefully describe
the problem setting we consider in this paper, and the heuristic assumptions we make for studying the
performance of these algorithms. For simplicity, w.l.o.g. throughout the remainder of the paper we will
assume that lattices are normalized, so that Vol(L) = Vol(L∗) = 1.

3.1 Target distributions

To model closest vector problems accurately, and providing a tight analysis on the average-case performance
of algorithms for solving them, we first describe two possible ways of modeling the distribution of target
vectors given as input. The first is what may be described as the proper way of sampling uniformly random
target vectors.

Definition 1 (Random target distribution). Let L ⊂ Rd be a full-rank lattice and let B be a basis of
L. The random target distribution for L corresponds to the distribution obtained by sampling target vectors
t uniformly at random from the fundamental parallelepiped generated by the basis B.

This distribution is particularly convenient to work with when computing dot products with dual vectors, as
the coefficients of t in terms of the basis B are uniform on [−1/2, 1/2]. For modeling the broader spectrum
of closest vector problems, including variants where the target lies closer to the lattice than for the random
case, we will mostly make use of the following target distribution.

Definition 2 (Planted target distribution). Let L ⊂ Rd be a full-rank lattice, and let r > 0 be given.
In the planted target distribution with radius r, target vectors t ∈ Rd are sampled as follows:

– Sample a lattice vector c ∈ L from a sufficiently wide3 Gaussian over L.

– Sample an error vector e ∈ r · gd · Sd−1 uniformly at random.

– Return the target vector t = c + e.

Note that in the limit of r →∞, the planted target distribution converges to the random target distribution.
For r ≈ 1 most of the generated targets will lie at distance approximately gd from the lattice (which matches
the Gaussian heuristic prediction of the distance that random targets are expected to lie from the lattice),
but we are given the extra guarantee that there is always at least one lattice vector which is close to our
planted target vector. We stress that for any finite r, the planted target distribution does not exactly match
the random target distribution: as we will see later, with a sufficiently large number of samples, one can
distinguish between both distributions.

3.2 Planted closest vector problem

The closest vector problems we study in this paper can all be summarized as instances of what we define as
the planted closest vector problem below, for a suitable choice of r.

Definition 3 (Planted closest vector problem, searching). Let L ⊂ Rd be a full-rank lattice. Given a
sample t from the planted target distribution with radius r > 0, find a vector v ∈ L at distance at most r · gd
from t.

With this parameterization, r controls both the radius of the error vector e in the distribution of t, as well as
the desired distance from the returned lattice vector to the target point. The hardness of the above problem
depends both on the lattice dimension (rank) d and on this radius r, relative to the Gaussian heuristic
gd ≈

√
d/(2πe) in dimension d. Roughly speaking, there are three distinct regimes to consider:

3 Concretely, one may use a discrete Gaussian with a width sufficiently far above the smoothing parameter of the
lattice. Note that for analyzing the dual attack, the exact distribution of c is irrelevant.



The regime r� 1 — Bounded distance decoding.
For error vectors sampled from a relatively small noise distribution, we obtain instances of the well-
studied bounded distance decoding problem, with only one lattice vector c lying very close to the target
t. Heuristically, w.h.p. all other lattice vectors will lie at distance at least gd(1 + o(1)) from t, making
the planted solution at distance r ·gd the only solution. However, unless r < 1

2 there is no guarantee that
the planted solution is the only solution. As is well known, bounded distance decoding becomes easier
as the target lies closer and closer to the lattice; for sufficiently small r, the embedding approach via
the approximate shortest vector problem becomes polynomial-time with a suitable form of lattice basis
reduction (LLL [LLL82], BKZ [Sch87,SE94]).

The regime r ≈ 1 — “Average-case” closest vector problem.
For error vectors of norm close to the Gaussian heuristic, we roughly have instances of the (average-
case) closest vector problem, apart from the previous discussion on the difference between the planted
target distribution and the random target distribution. We will likely find the hardest instances of this
generalized problem in the regime where r = 1 ± o(1), as then the number of solutions within radius r
is small while the target does not lie much closer to the lattice than on average.

The regime r� 1 — Approximate closest vector problem.
For large r, the error vectors e are so large that we no longer expect v to be the closest lattice vector to
t. By the problem statement any lattice vector at distance r ·gd � gd from t suffices as a solution, and by
the Gaussian heuristic we expect there to be many of them. This problem is again well-known to become
easier and easier as r increases. For sufficiently large r, one can first run a form of basis reduction on
a basis of L and then run Babai’s nearest plane algorithm [Bab86] to recover a solution in polynomial
time.

We expect the hardness of the problem, as a function of r, to reach its peak at r = 1± o(1), and we expect
the problem to become easier both as r becomes much bigger or becomes much smaller.

3.3 The costs of preprocessing

Besides the direct computational problem described above, where we are given a single lattice L and a single
target vector t for which we wish to recover a nearby lattice vector, we will also consider preprocessing
variants of these problems. In these variants any amount of preprocessing on L can essentially be done free
of charge, before being given t and being tasked to find a nearby lattice point to t. The motivation for this
is that both in cryptographic applications and in algorithms appearing in cryptanalysis, one may face the
problem of having to decode many targets for the same lattice L. Then, rather than processing each of these
separately with a direct closest vector algorithm, it may be beneficial to do a one-time preprocessing step
on the lattice, producing data that may be useful for each of these instances, and then solving each of these
problem instances faster with this preprocessed data. In reality the costs of the preprocessing phase are of
course not negligible, but for a sufficiently large number of problem instances these preprocessing costs can
potentially be amortized and may therefore be less important than the costs of the query phase.

Note that a naive solution for any such preprocessing problem would be to run no preprocessing, and
running a standard closest vector algorithm to find a solution in the query phase. Non-trivial and potentially
useful algorithms are those which take more time in the preprocessing phase (and perhaps even more time
than any direct algorithm would require for solving a single closest vector problem instance), but which
then require less time in the query phase. Such approaches would take more time for solving one problem
instance from scratch, but perform better when solving a sufficiently large batch of closest vector problem
instances on the same lattice. Depending on the application, one can then choose between algorithms with
and without preprocessing.

3.4 Distinguishing and searching

Although most primal algorithms for solving closest vector problems come in only one flavor (directly finding
a nearby lattice vector), algorithms based on the dual lattice come in two flavors: algorithms which directly
solve the problem of finding a nearest lattice point, and algorithms which only return a yes/no answer
whether the given vector lies close to the lattice or not. Informally, this corresponds to solving the following
alternate distinguishing problem.



Definition 4 (Planted closest vector problem, distinguishing). Let L ⊂ Rd and r > 0 be given.
Given a target t ∈ Rd, decide whether it is from the planted target distribution with radius r or from the
random target distribution.

Algorithms for distinguishing can generally be turned into search algorithms with polynomial overhead.
However, as this polynomial overhead may be significant, and as for certain applications within cryptanalysis
or for undermining a security proof a distinguisher suffices, we will treat these problems separately. Moreover,
depending on the bit security model (which again depends on the application), distinguishing may not be
equivalent to searching, and may in fact be significantly easier.

3.5 Single-target and multi-target settings

When evaluating the complexity of an algorithm it is common to analyze its resource requirements to solve
the problem with high probability. In the cryptographic setting, there is a generic way of obtaining a trade-
off between complexity and success probability, given an algorithm for a search problem like BDD with low
success probability: assume that one is given many independent instances of the problem and it is sufficient
to solve any one of them. This allows for comparability across different algorithms in the cryptographic
setting: if, e.g. in some system, public keys are represented by random targets, we require that out of many
public keys, none of the secret keys can be recovered.

In the distinguishing case, the analog is to apply a low advantage distinguisher to many independent
samples and take the majority. Again, this makes sense, if we consider targets representing ciphertexts: even
given many encryptions of the same plaintext, they should be indistinguishable from many encryptions of
another plaintext. We call this setting the multi-target setting.

In other settings, we may really want to solve BDD (either the distinguishing or the search version) on
a single target with high probability. We call this the single-target setting. The algorithms we analyze in
this work give a natural trade-off between the time complexity and success probability, determined by the
number of dual vectors used and their lengths. Since usually there are only a limited number of very short
vectors in a lattice, when using a large number of vectors to increase the success probability we need to make
use of longer vectors. This has a negative impact on the power of the dual attack and thus this trade-off is
worse than the generic approach in the multi-target setting. So in the context of dual attacks, making this
distinction is important.

There is another reason to make this distinction: it seems that the dual distinguisher and the dual decoder
are not necessarily equivalent in the multi-target setting. In the distinguishing case, clearly the optimal choice
to solve the problem is to use a single shortest dual vector. Peeking ahead, applying this to a long list of
N = exp((r/e)2d) independent targets that are either all drawn from the random target distribution or
all from the planted target distribution with radius rgd will yield a distinguisher with high advantage (see
Lemma 8). In contrast, it is unlikely that a single dual vector is sufficient to solve the search version of BDD,
even once for N independent targets. To see this, observe that one short dual vector only yields information
about which hyperplane (defined by the dual vector) the closest point to a target appears to be in. At best,
this may allow us to reduce the problem by one dimension. The probability that this reduction in dimension
solves the problem is equivalent to the probability that after projecting onto the respective hyperplane,
the target is decodable in polynomial time. Even given a dual HKZ-reduced basis for the projected lattice,
the radius of the polynomial-time decodable targets is at most O(gd−1/

√
d− 1). The probability that the

orthogonal projection of a random target at distance rgd in dimension d lies in a (d − 1)-dimensional ball
with such a radius is proportional to (r

√
d)−d. This is super-exponentially small for all r = ω(1/

√
d), so this

will not yield a decoder with high success probability, even given N = 2O(d) targets.



4 Algorithms

In this section we will describe algorithms for solving closest vector problems using vectors from the dual
lattice, both for distinguishing between a planted distribution and the random distribution, and for actually
finding a nearby lattice vector to a (planted) target vector. The heuristic analysis of these algorithms will
follow in Section 5, and results of experiments are reported in Section 6.

4.1 The Aharonov–Regev decoder

We will start with the Fourier-based derivation of the dual attack, which naturally results in a decoder similar
to the one described by Aharonov–Regev [AR04] (and later used in [LLM06,DRS14]). First, suppose we have
a target vector t, and let c denote the closest lattice point to t. Then by using (asymptotic) properties of
Gaussians, we can derive the following approximations for the mass of a Gaussian at c− t:

ρs(c− t) ≈
∑
v∈L

ρs(v − t) ≈
∑
v∈L

ρs(v + t)

/∑
v∈L

ρs(v). (2)

The first approximation relies on c being significantly closer to t than all other vectors, so that ρs(c− t)�
ρs(v − t) for all other lattice vectors v ∈ L \ {c}. In that case the sum essentially collapses to the biggest
term ρs(c − t). The second approximation relies on s ≤ 1 being sufficiently small, so that the sum in the
denominator is approximately equal to 1.4 Next, applying the Fourier transform [AR04], we translate the
latter term to a function on the dual lattice:

ρs(c− t) ≈
∑

w∈L∗

ρ1/s(w) cos(2π〈w, t〉)

/ ∑
w∈L∗

ρ1/s(w). (3)

Finally, we can approximate this infinite sum over dual vectors by only taking the sum over a set W ⊂
L∗ of short dual vectors (e.g. those of norm at most some radius R), which contribute the most to the
numerator above. For this approximation to be accurate we require that the infinite sum over w ∈ L∗ is well
approximated by the finite sum over only vectors w ∈ W:

ρs(c− t) ≈ 1

M

∑
w∈W

ρ1/s(w) cos(2π〈w, t〉), M =
∑

w∈L∗

ρ1/s(w). (4)

Note that while the initial function ρs(c− t) cannot be evaluated without knowledge of c, this last term is a
finite sum over dot products of dual lattice vectors with the target vector, scaled with a constant M which
does not depend on the target t. In particular, disregarding the scaling factor 1/M , the finite sum can be
seen as an indicator to the magnitude of ρs(c− t), which itself is large if t lies close to the lattice (to c) and
small if t lies far from the lattice. This finite sum can therefore be used to assess if t lies close to the lattice:

f
(W)
AR (t) :=

∑
w∈W

ρ1/s(w) cos(2π〈w, t〉). (5)

This quantity can be seen as an instantiation of [AR04, Lemma 1.3] on W ⊂ L∗: sampling from a discrete
Gaussian restricted toW and taking the sum of cosines is equivalent to sampling from a uniform distribution
overW and weighing the terms with appropriate Gaussian weights. The above decoder computes the expected

value of this sum exactly, as f
(W)
AR (t) = Ew∼W [ρ1/s(w) cos(2π〈w, t〉)].

Note that there is one unspecified parameter s > 0 above, which corresponds to both the width of the
Gaussian over the primal lattice and the reciprocal of the width of the Gaussian over the dual lattice. For
the series of approximations to hold, we need both s and 1/s to be small enough, so that in the primal lattice
the mass of the entire sum over v ∈ L is concentrated around c, and the sum over all dual vectors is well
approximated by the sum over only a finite subset W ⊂ L∗.

4 For the method to work we only need the denominator to be constant in t.



4.2 The Neyman–Pearson decoder

While the above derivation of the Aharonov–Regev decoder is quite straightforward, it is unclear whether this
decoder is actually optimal for trying to distinguish (or search) using dual lattice vectors. Furthermore, the
role of the parameter s remains unclear; s should neither be too small nor too large, and finding the optimal
value is not obvious. Both Aharonov–Regev [AR04] and Dadush–Regev–Stephens-Davidowitz [DRS14] fixed
s = 1, but perhaps one can do better (in theory and in practice) with a better choice of s.

In the following subsection we prove the following lemma, showing that from a probabilistic point of view,
the following Neyman–Pearson decoder is optimal.

Lemma 2 (Optimal decoder). Let r > 0 be given. Suppose we wish to distinguish between samples from
the random target distribution and samples from the planted target distribution with radius r · gd, given a set
of dual vectors W ⊂ L∗, and based only on dot products 〈w, t〉 mod 1. Let s > 0 be defined as:

s = r · gd ·
√

2π

d
≈ r√

e
. (6)

Then an optimal distinguisher consists of computing the following quantity and making a decision based on
whether this quantity exceeds a threshold η:

f
(W)
NP (t) :=

∑
w∈W

ln

(
1 + 2

∞∑
k=1

ρ1/s(kw) cos(2πk〈w, t〉)

)
. (7)

At first sight this decoder shares many similarities with the Aharonov–Regev decoder, in the form of the
sum over Gaussian weights and cosines with dot products. The relation with the Aharonov-Regev decoder
can be formalized (see the next subsection) to show that, up to order terms, they are scalar multiples:

f
(W)
NP (t) ∼ 2 · f (W)

AR (t). (8)

In contrast to the Aharonov–Regev decoder however, the Neyman–Pearson decoder comes with a guarantee of
optimality within the model described in Section 3. Moreover, this decoder comes with an explicit description
of the optimal parameter s to use to achieve the best performance. We will later use this as a guideline for
choosing parameters s for the Aharonov–Regev decoder in practice.

Using the asymptotic (heuristic) relation gd ≈
√
d/(2πe), the above optimal parameter s is approximately

s ≈ r/
√
e. For BDD problems with radius close to the average-case CVP radius, we have r ≈ 1 and s ≈ 1/

√
e.

As the BDD radius decreases, the optimal value s decreases linearly with r as well, and thus the width 1/s
of the Gaussian in the dual increases and scales as 1/r. As r decreases, the Gaussian over the dual becomes
flatter and flatter, and most terms in the summations will roughly have equal weights. This suggests that at
least for the easier BDD instances of small radius, using equal weights in the summation may be almost as
good as using Gaussian weights.

4.3 Derivation of the Neyman–Pearson decoder

For the problem of constructing an efficient decoder we will approach the problem from a hypothesis testing
point of view, and use known results from the relevant literature to derive an optimal decoder which describes
what is the optimal distinguishing method based on the available evidence. This derivation relies on the
classical Neyman–Pearson lemma, stated below.

Lemma 3 (Neyman–Pearson lemma [NP33]). Suppose we wish to distinguish between two hypotheses
H0 and H1, given some evidence X. Then out of all statistical tests achieving a certain false positive proba-
bility ε0 (i.e. deciding that H1 holds while H0 is actually true), the test minimizing the false negative error
ε1 (i.e. deciding that H0 holds, when H1 is true) is of the form:

Pr(X | H0)

Pr(X | H1)
> η : Accept H0,

Pr(X | H0)

Pr(X | H1)
< η : Reject H0. (9)

Here η = η(ε0) ∈ R is some threshold determined by the false positive probability.



This lemma can be interpreted as follows: to decide between two hypotheses, based on a limited amount of
evidence, the best approach is to consider the ratio of probabilities of the evidence under either hypothesis,
and see if this quantity is smaller or larger than some threshold η. This ratio of probabilities under the two
different hypotheses is often called the likelihood ratio:

Λ(x) :=
Pr(X = x | H0)

Pr(X = x | H1)
. (10)

As deciding whether Λ(x) > η is equivalent to deciding whether lnΛ(x) > η′ := ln η, sometimes log-
likelihood ratios are studied for convenience, as this turns products of (independent) probabilities into sums.
Note that for continuous distributions, the probabilities can be replaced by the corresponding probability
density functions under H0 and H1, evaluated at x.

In our application, for a given r > 0 (the radius of the planted target distribution is r · gd), we wish to
distinguish between the following two hypotheses:

– H0: The target t was sampled from the random target distribution.

– H1: The target t was sampled from the planted distribution with radius r.

The evidence X here consists of having knowledge of a set of dual vectors W = {w1, . . . ,wN}, and dual
attacks commonly consist of using the values of the dot products xi = (〈wi, t〉 mod 1) as evidence. The
distribution of x is different under these two hypotheses, but in both cases we have a heuristic model
describing what we expect their densities to be. Therefore we can explicitly write out these (log-)likelihood
ratios, and obtain an explicit expression for the optimal decoder.

Under the hypothesis H0 it is clear that the random variable X = (〈w, t〉 mod 1) follows a uniform
distribution on [−1/2, 1/2), whose density at any point in this interval equals 1. The numerator of the
likelihood ratio therefore always equals 1. For the denominator, as explained in Section 5.1 the distribution
of X is that of a Gaussian (with mean 0 and variance ‖w‖2r2/d) modulo 1, whose density we will denote by
fX(x). The likelihood ratio for samples X1, . . . , XN , evaluated at x1, . . . , xN , thus satisfies:

Λ(x1, . . . , xN ) =

N∏
i=1

1

fXi(xi)
. (11)

Note that as the norms of the dual vectors wi may be different, the densities fXi in the denominator are
not the same. For convenience we will switch to the log-likelihood score lnΛ(x1, . . . , xN ), so that the optimal
score function turns into a sum of individual scores. Substituting the expression for fX(x) from (27), we
obtain:

lnΛ(x1, . . . , xN ) = −
∑
w∈W

ln

(
1 + 2

∞∑
k=1

exp
(
−2π2k2σ2

i

)
cos(2πk〈w, t〉)

)
. (12)

Here σ2
i = ‖e‖2‖wi‖2/d = r2g2d‖wi‖2/d is the width of the Gaussian distribution obtained via 〈wi, t〉, and

e is the error vector in the planted target parameterization t = c+ e with norm r · gd. Note that by flipping
the sign of the summation, we obtain an equivalent decoder where we accept H1 rather than H0 if some
threshold is exceeded. Expanding σi, and substituting s = rgd

√
2π/d, so that we obtain a nice and simple

Gaussian weight function for the exponential, this leads to the following result.

Lemma 4 (Optimal Neyman–Pearson decoder). Let a set of dual vectors W = {w1, . . . ,wN} and a
radius r > 0 be given. Suppose we wish to decide if a target vector t ∈ Rd comes from the random target
distribution or from the planted target distribution with radius r ·gd, based only on the evidence {x1, . . . , xN},
with xi = (〈wi, t〉 mod 1). Let the Gaussian width s be defined as:

s = r · gd ·
√

2π

d
. (13)



Then the optimal strategy, minimizing the false negative rate for any fixed false positive rate, is to test whether

f
(W)
NP (t) > η or not, with f

(W)
NP (t) given below:

f
(W)
NP (t) :=

∑
w∈W

ln

(
1 + 2

∞∑
k=1

ρ1/s(kw) cos(2πk〈w, t〉)

)
, (14)

=
∑
w∈W

ln

(
1 + 2 exp

(
−2π2r2g2d‖w‖2

d

)
cos(2π〈w, t〉) + . . .

)
(15)

The threshold η controls the trade-off between the false positive/negative errors.

Note that of course, if one takes into account the underlying problem structure, one can observe that the
vectors wi likely form a basis of the dual lattice, from which one can derive a basis for the primal lattice,
and from which one can then run a costly CVP algorithm to recover the nearest lattice point to t. If however
we only use the dot products with the dual vectors (modulo 1), the above lemma says we cannot do better
than computing the above quantity and seeing if it exceeds a properly chosen threshold.

Observe that as the Aharonov–Regev decoder fits in the same model, the previous lemma shows that
the Aharonov–Regev decoder is not optimal and using the Neyman–Pearson decoder should work strictly
better, assuming that the slightly simplified model in this paper is accurate5. The following lemma however
shows that the Aharonov–Regev decoder is asymptotically almost as good as the optimal Neyman–Pearson
decoder.

Corollary 2 (Equivalence with the Aharonov–Regev decoder). Suppose that r·minw∈W ‖w‖ = ω(1).
Then, ignoring lower order terms:

f
(W)
NP (t) ∼ 2 · f (W)

AR (t). (16)

Proof. For r·minw∈W ‖w‖ = ω(1), using that gd = Θ(
√
d) we have ρ1/s(w) = o(1), so that the dual Gaussian

weights decay quickly as either the norm of the argument w increases, or the parameter k in the infinite
summation in (14) increases. In particular, the summation over k is dominated by the term with k = 1.
Ignoring lower order terms, the argument of the logarithm is therefore of the form 1+2ρ1/s(w) cos(2π〈w, t〉) =
1 + o(1), and we can use a Taylor expansion of ln(1 + x) = x− x2/2 +O(x3) for small x = o(1) to eliminate
the logarithm. What remains is twice the sum appearing in the Aharonov–Regev decoder, plus lower order
terms.

As described in Section 5, the condition on r can be read as “suppose that the distinguishing advantage is
o(1)”. For smaller r the condition may not hold, but in that regime the problem can be solved in polynomial
time. The main regimes of interest are those where the condition on r is indeed satisfied.

4.4 The simple decoder

While the Neyman–Pearson decoder is in a sense a more complicated decoder than the Aharonov–Regev
decoder, attempting to achieve a superior theoretical performance, the third decoder we consider favors
simplicity over optimality.

In most applications, the setW will consist of short dual vectors, which will mostly have similar Euclidean
norms. For instance, if W is the output of a sieve, we expect the ratio between the norm of the shortest and
longest vectors in W to be approximately

√
4/3, i.e. at most a 16% difference in norms between the shortest

and longest vectors in W. As all norms are very similar anyway, one may attempt to simplify the decoder
even further by removing this weighing factor, and using the following “simple” decoder instead:

f
(W)
simple(t) :=

∑
w∈W

cos(2π〈w, t〉). (17)

5 Concretely, in our analysis we assumed that the dot product between uniformly random unit vectors is exactly
Gaussian, when in reality it follows a beta distribution which converges to a Gaussian distribution as d→∞.



Algorithm 1 A dual distinguisher

Require: A target t ∈ Rd, a set of dual vectors W ⊂ L∗, a decoder f
Ensure: The boolean output estimates whether t lies close to the lattice or not
1: Choose a threshold η > 0
2: return f (W)(t) > η

Algorithm 2 A dual search algorithm

Require: A target t ∈ Rd, a set of dual vectors W ⊂ L∗, a decoder f
Ensure: The output vector is an estimate for the closest lattice vector to t
1: Choose a step size parameter δ > 0
2: while ‖Babai(t)− t‖ > 1

2
λ1(L) do . any bound 0 < R ≤ 1

2
λ1(L) works

3: t← t + δ · ∇f (W)(t)

4: return Babai(t)

From an alternative point of view, this simple decoder can be seen as the limiting case of the Aharonov–Regev
decoder where we let s → 0+. For small s, the width of the dual Gaussian 1/s increases, and all vectors
will essentially have the same probability mass after normalization. As the optimal parameter s decreases
with the BDD radius r for the Neyman–Pearson decoder, this limiting case may be most relevant for BDD
instances with small radius.

Although this decoder may not come with the same optimality guarantees as the Neyman–Pearson
decoder, and only approximates it, this decoder does have one particularly convenient property: it can be
computed without knowledge of r! Whereas the other decoders require knowledge of r to compute the optimal
Gaussian width s, the simple decoder is a function only of W and t. This might make this decoder more
useful in practice, as r may not be known.

4.5 Distinguishing algorithms

As already described above, given any decoder f we can easily use this decoder as a distinguisher to decide
if we are close to the lattice or not, by evaluating it at t and seeing whether the resulting value is small or
large. Formally, this approach is depicted in Algorithm 1. Besides the decoder f and the set of dual vectors
W, the only parameter that needs to be chosen is the threshold η, which controls the trade-off between the
false positive (deciding t lies close to the lattice when it does not) and false negative error probabilities.
Increasing η decreases the false positive rate and increases the number of false negatives.

4.6 Search algorithms

To actually find the closest vector to a target vector, we will use the classical gradient ascent approach, which
was previously used in [LLM06,DRS14]. Recall that up to scaling, all decoders approximate a Gaussian mass
at c− t:

exp
(
− π
s2
‖c− t‖2

)
= ρs(c− t) ≈ C · f (W)(t). (18)

Computing the gradient of the Gaussian as a function of t, we obtain the relation:

2π

s2
(c− t) exp

(
− π
s2
‖c− t‖2

)
= ∇ρs(c− t) ≈ C · ∇f (W)(t). (19)

For the exact Gaussian mass function we can isolate c, which then gives us an approximation for c in terms
of f and its gradient:

c = t +
s2

2π
· ∇ρs(c− t)

ρs(c− t)
≈ t +

s2

2π
· ∇f

(W)(t)

f (W)(t)
. (20)
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Fig. 2. A sketch of the dual search algorithm based on the gradient ascent approach. Starting from a target vector
t we move in the direction of the approximate gradient, ∇f (W)(t), which ideally points directly to the true closest
vector c. We repeatedly update the target vector t to new targets t′ and recompute the gradient at this new point
at each iteration. Using a small step size δ (the green path) we will likely require more steps until convergence, but
we run a lower risk of overshooting and converging towards a different lattice vector ĉ (the red path). The gray balls
around the lattice points c and ĉ denote the radius where Babai’s polynomial-time algorithms are guaranteed to find
the nearest vector c, given as input a target vector within one of these balls. Note that we do not necessarily have
to continue until t′ lies within one of these balls; as soon as ‖Babai(t′)− t′‖ ≤ 1

2
λ1(L), we know that Babai(t′) must

be the closest vector to t′ and we can terminate the gradient ascent.

Here the direction ∇f (W)(t) can be seen as an approximation to the direction we need to move in, starting
from t, to move towards the closest vector c. The scalar s2/(2πf (W)(t)) controls the step size in this direction;
this would be our best guess to get as close to c in one step as possible. In practice one may choose to use
a smaller step size δ, and repeatedly iterate replacing t by t′ = t + δ · ∇f (W)(t) to slowly move towards c.
Ideally, iterating this procedure a few times, our estimates will get more accurate, and t′ will eventually lie
close enough to c for polynomial-time closest vector algorithms (e.g. Babai’s algorithms [Bab86]) to recover
c.

The above gradient ascent approach is formalized in Algorithm 2, and a sketch of the procedure is given
in Figure 2. This figure gives some rough intuition to the order of magnitude of the ideal step size, the
intuitive dependence of the rate of convergence on the step size, and why we want the gradient to point
towards c, starting from t. As long as 〈∇f (W)(t), t− c〉 < 0, we can always take a sufficiently small step in
the direction of the gradient and end up with a shifted target t′ which lies (slightly) closer to c than the
original target t.

For illustration, note that we can compute gradients for the decoders explicitly. For instance, for the
Aharonov–Regev decoder we have:

∇f (W)
AR (t) = −2π

∑
w∈W

ρ1/s(w) sin(2π〈w, t〉) ·w. (21)

Our best guess for the nearest lattice point c, given t and W, would be:

c
(W)
AR = t− s2 ·

∑
w∈W ρ1/s(w) sin(2π〈w, t〉) ·w∑

w∈W ρ1/s(w) cos(2π〈w, t〉)
. (22)



For the Neyman–Pearson decoder and simple decoder we can similarly derive explicit expressions for the
gradient, and obtain preliminary estimates for c based on the provided evidence.

4.7 Choosing the set of dual vectors W

Although some long dual vectors may contribute more to the output of the decoders if they happen to be
almost parallel to t − c, overall the largest contribution to the sums appearing in all three decoders comes
from the shortest dual vectors. Some logical choices for W would therefore be:

1. W = {s∗}, where s∗ is a shortest non-zero vector of L∗;
2. W = L∗ ∩B(R · gd), i.e. all dual lattice vectors of norm at most R · gd;
3. W = Sieve(L∗), i.e. the output of a lattice sieve applied to (a basis of) L∗;
4. W = BKZSieve(L∗, k), i.e. running a sieving-based BKZ algorithm with block size k on a basis of L∗,

and outputting the database of short vectors found in the top block of the basis [ADH+19].

The first choice commonly does not suffice to actually distinguish for one target vector, but the distinguishing
advantage per vector is maximized for this option (see Section 5). This choice of W is often considered in
cryptanalytic contexts when studying the performance of dual attacks on LWE. The second choice is a
more realistic choice when we actually wish to distinguish or find a closest lattice point to a single target
vector, rather than just maximizing the distinguishing advantage. Computing this set W may be costly
(see [DLdW19] for a preprocessing method attempting to achieve this), but in preprocessing problems this is
likely the best setW one can possibly use. The third option is an approximation to the second approach, and
may make more sense in practical contexts. The fourth option is a more sensible option when the costs of the
preprocessing phase are taken into account as well, as then we commonly wish to balance the preprocessing
costs and the costs of the dual attack via a suitable choice of the block size k.



5 Asymptotics

To study the performance of the algorithms from the previous section, we will first analyze the distributions
of the output of the decoder, when the target is either planted or random. Then we will analyze how this
can be used to assess the costs of distinguishing and searching for nearest vectors.

5.1 Gaussians modulo 1

From the definition of the planted target distribution with radius r · gd, the target is of the form t = c + e
where c ∈ L and e is sampled uniformly at random from the sphere of radius r · gd. All decoders consider
dot products between the target and dual lattice vectors, for which we have:

〈t,w〉 = 〈c + e,w〉 = 〈c,w〉+ 〈e,w〉 ∈ 〈e,w〉+ Z. (23)

Here 〈c,w〉 ∈ Z since c ∈ L and w ∈ L∗. As in all decoders the quantity 〈t,w〉 is the argument of a
cosine, with multiplicative factor 2π, we are interested in the distribution of 〈t,w〉 mod 1, which equals the
distribution of 〈e,w〉 mod 1.

Now, by assumption the distribution of e is independent from w. By either assuming the distribution of
e is spherically symmetric or the distribution of w is spherically symmetric6, we can rewrite the above as
follows:

〈e,w〉 = ‖e‖ · ‖w‖ ·
〈

e
‖e‖ ,

w
‖w‖

〉
∼ ‖e‖ · ‖w‖ · 〈r1, r2〉 , r1, r2 ∼ Sd−1. (24)

Here r1, r2 are drawn uniformly at random from Sd−1. Without loss of generality we may fix r1 = e1 as
the first unit vector, so that the dot product is the first coordinate of the random unit vector r2. In high
dimensions the uniform distribution on the unit sphere is essentially equivalent to sampling each coordinate
independently from a Gaussian with mean 0 and variance 1/d (and normalizing7), so up to order terms the
distribution of the first coordinate of r2 is equal to the Gaussian distribution with mean 0 and variance 1/d.
So focusing on the regime of large d, it follows that:

〈e,w〉 ∼ N
(
0, 1

d · ‖w‖
2 · ‖e‖2

)
. (25)

For the original dot product, taken modulo 1, we thus obtain:

(〈t,w〉 mod 1) ∼ N
(
0, 1

d · ‖w‖
2 · ‖e‖2

)
mod 1. (26)

This distribution is sketched in Figure 3a.
To study the asymptotic performance of various decoders, we first derive more concrete asymptotics on

the shape of this distribution below. More precisely, we study the shape of the distribution when starting
with a Gaussian distribution on R, and only taking the fractional part, i.e. evaluating a Gaussian modulo 1.
For completeness we provide a proof as well, although we do not claim novelty for this result; various works
on the dual attack have previously derived similar expressions for the shape of Gaussians modulo 1.

Lemma 5 (Properties of Gaussians modulo 1). Let Z ∼ N (0, σ2) with σ = ω(1), and let X =
[Z mod 1] ∈ [− 1

2 ,
1
2 ) denote the Gaussian distribution with variance σ2, evaluated modulo 1. Let ρ =

exp(−2π2σ2). Then the density fX of X satisfies:

fX(x) = 1 + 2

∞∑
k=1

ρk
2

cos(2πkx) (27)

= 1 + 2ρ cos(2πx) +O(ρ4), (28)

ln fX(x) = 2ρ cos(2πx)− 2ρ2 cos2(2πx) + 8
3ρ

3 cos3(2πx) +O(ρ4). (29)

6 The following argument therefore holds not only if t is from the planted target distribution, but also if t is fixed
and the distribution of the dual vectors is modeled via the Gaussian heuristic.

7 For large d the squared norm of such a vector follows a chi-squared distribution, which is closely concentrated
around 1.
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Fig. 3. A graphical sketch of Gaussians modulo 1, with varying planted target radii, and the output distributions of
the three decoders. We wish to distinguish between Gaussians with similar standard deviations but different means.

Furthermore, for x ∼ X and z ∼ Z, the following equations hold:

E[cos(2πx)] = ρ, Var[cos(2πx)] = 1
2 − ρ

2 +O(ρ4), (30)

E[ln fX(x)] = ρ2 +O(ρ4), Var[ln fX(x)] = 2ρ2 +O(ρ4), (31)

E[z sin(2πz)] = 2πσ2ρ, Var[z sin(2πz)] = 1
2σ

2 − Õ(ρ2), (32)

Proof. The lemma contains many claims, which we will prove one by one below.
The density. First, the density fX(x) at any point x ∈ (−1/2, 1/2) can be expressed as a sum of standard

Gaussian densities at x+m for m ∈ Z:

fX(x) =
1

σ
√

2π

∑
m∈Z

exp

(
− (x+m)2

2σ2

)
. (33)

Let us now express fX(x) in terms of its Fourier series, to obtain a simplified expression. For the Fourier
coefficients we obtain:

ck =

∫ 1/2

−1/2
fX(x) exp(2πikx)dx (34)

=
1

σ
√

2π

∑
m∈Z

∫ 1/2

−1/2
exp

(
− (x+m)2

2σ2

)
exp(2πikx)dx (35)

=
1

σ
√

2π

∑
m∈Z

∫ m+1/2

m−1/2
exp

(
− x2

2σ2

)
exp(2πikx)dx (36)

=
1

σ
√

2π

∫ ∞
−∞

exp

(
− x2

2σ2

)
exp(2πikx)dx. (37)

As the argument is even, the imaginary part will evaluate to 0, and we are only left with an integration over
the real part, exp(−x2/(2σ2)) cos(2πkx), which can be evaluated easily as [AS72, Equation 7.4.6]:

ck =
1

σ
√

2π

∫ ∞
−∞

exp

(
− x2

2σ2

)
cos(2πkx)dx = exp(−2π2k2σ2) = ρk

2

. (38)

Note that c0 = 1 and c−k = ck. We can now rewrite fX(x) in terms of its Fourier series as follows:

fX(x) =
∑
k∈Z

ck cos(2πkx) = 1 + 2

∞∑
k=1

ρk
2

cos(2πkx). (39)



For σ = ω(1) we have ρ = o(1) and the magnitude of the terms quickly decreases. Using the bounds

| cos(2πkx)| ≤ 1 for all x and k, and k2 ≥ 2 + k for all k ≥ 2, we get |
∑∞
k=2 ρ

k2 cos(2πkx)| ≤
∑∞
k=2 ρ

k+2 =
ρ4/(1− ρ) = O(ρ4). By only separating the term k = 1 from the sum, we therefore get the final expression
as claimed:

fX(x) = 1 + 2ρ cos(2πx) +O(ρ4). (40)

The log-density. Starting from the above density, using the Taylor expansion ln(1 + δ) = δ − 1
2δ

2 +
1
3δ

3 +O(δ4) for small δ, and observing that δ = 2ρ cos(2πx) = o(1) for σ = ω(1), the result follows.

Expectations and variances. All the stated equations follow from writing out the expectations by
their definitions, using the aforementioned expressions for fX(x) and ln fX(x):

E[g(x)] =

∫ 1/2

−1/2
fX(x)g(x)dx, Var[g(x)] = E[g(x)2]− E[g(x)]2. (41)

In the derivation of the first four equations we further used the following two results:∫ 1/2

−1/2
cos2(2πx)dx =

1

2
,

∫ 1/2

−1/2
cos2k+1(2πx)dx = 0 (k ∈ Z). (42)

For these first four results, what then remains is a technical exercise using Taylor series. For the last two
results, involving sines of Gaussians, we use complex expansions of which we take the imaginary part to
obtain the corresponding integrals over sines,8 after which the results again follow from standard properties
of expectations and variances. ut

5.2 Output distributions of the decoders

Using Lemma 5, we can easily derive expressions for the means µ and variances σ2 for each of the decoders
from the previous section, assuming that t was sampled from the planted target distribution for radius r.
These can then be used to assess the performance of these decoders. We remark that some of the analysis
for µsimple and σsimple was also recently carried out in [EJK20] in the context of analyzing small secret LWE.

Lemma 6 (Output distribution of the decoders). Let W ⊂ L∗. Let s = rgd
√

2π/d. Let t be sampled
from the planted target distribution with radius r · gd. Then over the randomness of t:

E
[
f
(W)
AR (t)

]
≈
∑
w∈W

ρ1/s(w)2, Var
[
f
(W)
AR (t)

]
≈ 1

2

∑
w∈W

ρ1/s(w)2
[
1 +O(ρ1/s(w)2)

]
,

E
[
f
(W)
NP (t)

]
≈ 2

∑
w∈W

ρ1/s(w)2
[
1 +O(ρ1/s(w)2)

]
, Var

[
f
(W)
NP (t)

]
≈ 2

∑
w∈W

ρ1/s(w)2
[
1 +O(ρ1/s(w)2)

]
,

E
[
f
(W)
simple(t)

]
≈
∑
w∈W

ρ1/s(w), Var
[
f
(W)
simple(t)

]
≈ 1

2

∑
w∈W

1
[
1 +O(ρ1/s(w)2)

]
.

Here ≈ denotes approximating the beta distributions, arising when taking dot products between vectors drawn
uniformly at random from a sphere, by normal distributions. For all three decoders, for targets from the
random target distribution we have µ̂ = 0 and σ̂2 = σ2, i.e. for random targets the mean of the output of
the decoder will be 0 and the variance will be the same as for the planted target distribution the decoder was
designed for.

Proof. All these results are based on straightforward expansions of the associated expectations and variances,
using e.g. that the expectation of a sum equals the sum of expectations. We illustrate two of these expansions

8 https://stats.stackexchange.com/q/294007/36155



below. For the expected value of the output of the Aharonov–Regev decoder we have:

E t

[
f
(W)
AR (t)

]
= E t

[ ∑
w∈W

ρ1/s(w) cos(2π〈w, t〉)

]
(43)

=
∑
w∈W

ρ1/s(w) · E t[cos(2π〈w, t〉)] (44)

≈
∑
w∈W

ρ1/s(w) · E zw [cos(2πzw)] (45)

=
∑
w∈W

ρ21/s(w). (46)

Here zw ∼ N (0, ‖e‖2 · ‖w‖2/d) is used to approximate the beta distribution that arises when taking dot
products between vectors sampled uniformly and independently from a sphere. The last equality then follows
from Lemma 5 to evaluate this expected value. For the variance we have:

Vart

[
f
(W)
AR (t)

]
= Vart

[ ∑
w∈W

ρ1/s(w) cos(2π〈w, t〉)

]
(47)

=
∑
w∈W

ρ21/s(w) ·Vart[cos(2π〈w, t〉)] (48)

≈ 1

2

∑
w∈W

ρ21/s(w). (49)

We leave the other four derivations to the reader. ut

Figure 3b thus illustrates the situation well, in that in both cases the output distribution follows a
Gaussian with the same variance, but the mean depends on whether t was planted or random.

In all applications we try to distinguish/search for a closest vector using a large number of samples 〈w, t〉,
either using many dual vectors w or many targets t, and taking appropriate sums as defined in the decoders.
As the terms of the summation are approximately identically distributed9, by the central limit theorem we
expect the output of the decoder to be approximately Gaussian, with the above means and variances.

Assuming that the output distributions are perfectly Gaussian, as sketched in Figure 3b, we can distin-
guish with constant errors iff µ/σ is at least constant, with the ratio implying the distinguishing advantage.
Considering the squares of this quantity for convenience, for the AR and NP decoders we have:

E
[
f
(W)
AR (t)

]2
Var

[
f
(W)
AR (t)

] ≈ E
[
f
(W)
NP (t)

]2
Var

[
f
(W)
NP (t)

] ≈ 2
∑
w∈W

ρ1/s(w)2. (50)

As long as this quantity is at least constant, we can confidently distinguish between planted and random
targets. For the simple decoder we get a slightly different expression for this ratio:

E
[
f
(W)
simple(t)

]2
Var

[
f
(W)
simple(t)

] ≈ 2

|W|

(∑
w∈W

ρ1/s(w)

)2

. (51)

Observe that the Cauchy–Schwarz inequality applied to the |W|-dimensional vectors x = (1)w∈W and
y = (ρ1/s(w))w∈W shows that this quantity for the simple decoder is never larger than for the other two
decoders, with equality only iff the weights ρ1/s(w) are all the same. As we wish to maximize this ratio to
maximize our distinguishing advantage, the simple decoder is not better than the other decoders, and is not
much worse if vectors in W have similar norms.
9 For the simple decoder indeed the distribution of each term is identical. Due to the weighing factors ρ1/s(w) in

the other two decoders, the terms are not quite identically distributed. However, in most cases of interest, the
important contribution to the output distribution comes from a subset of vectors of W with almost equal norms.



5.3 The direction of the gradient

A similar argument can be used to analyze the costs of the gradient ascent approach. To make progress,
we need the gradient to point in the direction of c, starting from t: as long as the gradient is pointing in
this direction, a small step in the direction of the gradient will bring us closer to c. Studying the associated
random variable 〈∇f (W)(t), t−c〉, we again see that by the central limit theorem this will be approximately
Gaussian. The following lemma describes the means and variances for different decoders.

Lemma 7 (Direction of the gradient). Let W ⊂ L∗. Let ρw = ρ1/s(w) for s = rgd
√

2π/d. Let t be

sampled from the planted target distribution as t = c+ e with c ∈ L and e uniform from r · gd · Sd−1. Then:

E
[
〈∇f (W)

AR (t), e〉
]
≈ −2πs2

∑
w∈W

‖w‖2ρ2w, Var
[
〈∇f (W)

AR (t), e〉
]
≈ πs2

∑
w∈W

‖w‖2ρ2w,

E
[
〈∇f (W)

NP (t), e〉
]
≈ −4πs2

∑
w∈W

‖w‖2ρ2w, Var
[
〈∇f (W)

NP (t), e〉
]
≈ 4πs2

∑
w∈W

‖w‖2ρ2w,

E
[
〈∇f (W)

simple(t), e〉
]
≈ −2πs2

∑
w∈W

‖w‖2ρw, Var
[
〈∇f (W)

simple(t), e〉
]
≈ πs2

∑
w∈W

‖w‖2.

Proof. Similar to the proof of Lemma 6 above, this is mostly a matter of applying properties from Lemma 5,
and writing out the resulting expectations and variances. We again sketch the procedure by writing out the
expressions for the Aharonov–Regev decoder. First, the gradient can be explicitly written as:

∇f (W)
AR (t) = −2π

∑
w∈W

ρ1/s(w) sin(2π〈w, t〉) ·w. (52)

Note that the term 〈w, t〉 inside the sine can equivalently be replaced by 〈w, t〉, as 〈w, c〉 ∈ Z and the sine
is periodic modulo 2π. Taking the dot product with e, we obtain:

E
[
〈∇f (W)

AR (t), e〉
]

= E e

[
−2π

∑
w∈W

ρ1/s(w) sin(2π〈w, e〉) · 〈w, e〉

]
(53)

= −2π
∑
w∈W

ρ1/s(w)E e [〈w, e〉 · sin(2π〈w, e〉)] (54)

≈ −2π
∑
w∈W

ρ1/s(w)E zw [zw sin(2πzw)] , (55)

= −2πs2
∑
w∈W

‖w‖2ρ21/s(w). (56)

In the last expression, the Gaussian random variable zw ∼ N (0, ‖e‖2‖w‖2/d) approximates the beta dis-
tribution one obtains when taking dot products between random vectors from a sphere. The expectations
over zw then follow from Lemma 5, where we then use the definition of s = r · gd ·

√
2π/d to obtain a

term ρ1/s(w) = exp(−2π2σ2) with σ2 = ‖e‖2‖w‖2/d), and multiplicative factors s2 and ‖w‖2 from the
contribution 2πσ2 to the expectation of z sin(2πz). The other five asymptotic relations can be derived in a
similar fashion. ut

Note that the above lemma describes that, as long as the mean of 〈∇f (W)(t), e〉 is a constant multiple
of the standard deviation, with high probability the gradient points a “significant amount” in the direction
of t. To satisfy this, we again get a similar condition on

∑
w∈W ρ21/s(w) being non-negligible, i.e. we get the

same heuristic complexities for the gradient ascent to make progress as for the distinguisher to successfully
distinguish, which motivates Lemma 10.

As before, to get an idea of the costs of this method, we can look at the ratio between the squared means
and the standard deviations. For the AR decoder for instance, this quantity scales as:

E
[
〈∇f (W)

AR (t), t− c〉
]2

Var
[
〈∇f (W)

AR (t), t− c〉
] = 4πs2

∑
w∈W

‖w‖2ρ21/s(w). (57)



Up to polynomial factors in d (e.g. s2 and ‖w‖2), this rough cost estimate is equivalent to the condition
for the distinguisher to succeed. This is unsurprising, as in many cases there is a polynomial-time reduction
between searching and distinguishing.

5.4 Cost estimates

Based on the sketch of Figure 3b, as described above we can get concrete cost estimates for these algorithms
by inspecting the means and variances, and computing the right ratio. These can be estimated both with
and without using specific information about the data set or the lattice.

Data-dependent estimates, example. From Figure 3b, we may estimate that the output distributions
of both decoders are roughly Gaussian. Suppose we wish to balance the false positive and false negative
error rates, and we want to guarantee that each error rate is at most 10%. If X is from a standard normal
distribution, then the tail Pr(X ≥ x) is 10% iff x ≈ 1.281551 . . . . Alternatively, if X ∼ N (0, σ2), we
have Pr(X ≥ 1.2816σ) ≈ 0.10. As we estimate that the standard deviations of both output distributions
are roughly the same, and the mean of the random target distribution is 0, we will put the distinguishing
threshold η halfway, around µ/2, with µ denoting the mean of the planted output distribution. To distinguish
90th percentiles we therefore need µ/2 ≈ 1.2816σ, or squaring and rewriting, we need µ2/σ2 ≈ (2 ·1.2816)2 ≈
6.5695.

Suppose we have a list W of many short dual vectors, sorted from smallest to largest. For e.g. the
Neyman–Pearson decoder we can then start computing the summation from (50), starting from the shortest
dual vectors, and adding more and more vectors until the sum exceeds 6.5695. Around the point where the
partial sum exceeds 6.5695, we expect to have enough vectors to distinguish with false positive and false
negative error rates of at most 10%.

Data-independent estimates, example. Continuing from the previous example, we can obtain even
more direct estimates of the required number of vectors to distinguish with a certain confidence based on
heuristics of vector norms in the dual lattice. Using the Gaussian heuristic, we estimate that the norm of
the ith shortest dual vector satisfies ‖wi‖ = i1/d · gd. Similar to the data-dependent setting, we can then
compute the partial sum:

µ2

σ2
≈ 2

∑
w∈W

ρ1/s(w)2 ≈ 2

n∑
i=1

exp(−2πs2i2/dg2d). (58)

For given s (e.g. s = r ·gd ·
√

2π/d), the above expression is only a function of the number of points n used for
distinguishing, the lattice dimension d, the target radius r, and the Gaussian heuristic gd = Γ (d/2+1)1/d/

√
π.

Given d and r we can compute this sum and find the value n for which we first expect the sum to exceed
6.5695. This could then be used as an estimate for the number of dual lattice vectors needed to distinguish
with false positive and false negative error rates of at most 10%.

5.5 Closest vector problems with preprocessing

We study two separate applications: (i) we are given a large number of target vectors, and we wish to decide
whether they come from the planted target distribution or from the random distribution; and (ii) we have
only one target vector and we either want to distinguish correctly or find a closest lattice point to it. The
former problem has a lower asymptotic complexity, as it allows us to reuse the shortest dual vector for
different targets.

Lemma 8 (Multi-target distinguishing, with preprocessing). Suppose an arbitrary number of targets
t1, t2, . . . is given, which are either all from the random target distribution or all from the planted target
distribution with given radius r · gd, for arbitrary r > 0. Let w ∈ L∗ be the shortest dual vector of norm
‖w‖ = gd(1 + o(1)), and suppose w is known. Then heuristically we can distinguish between these two cases
using w in time:

T = 2r
2(d+o(d))/(e2 ln 2) ≈ 20.195r

2(d+o(d)). (59)



Proof. As described before, we can confidently distinguish if the sum of the squared weights ρ1/s(w)2 is

constant, where s = r · gd ·
√

2π/d as before. In this case we sum over different targets t, rather than vectors
w, so using T target vectors, the sum equals T · ρ1/s(w)2 = T · exp(−2πs2‖w‖2) = T · exp(−4π2r2g4d/d) =

T · exp(−r2(d+ o(d))/e2), where we used the relation gd =
√
d/(2πe)(1 + o(1)) for large d. This sum is then

constant for the given expression for T . ut

For r = 1 we need 20.195d+o(d) target vectors to distinguish planted targets from random. This only works
when using many targets, as otherwise the dual vectors increase in length and increase the asymptotic
complexity. Note that we do not claim to find a closest vector to any of the targets in this amount of time.

We stress that even for r � 1 we obtain a non-zero distinguishing advantage. This is because even
when planting a target at distance 10 ·λ1(L), the resulting distribution is slightly different from the uniform
distribution (modulo the fundamental domain). As expected, we do observe that for large r the distribution
becomes almost indistinguishable from random.

Lemma 9 (Single-target distinguishing, with preprocessing). Suppose we are given a single target
t from either the random target distribution or the planted target distribution with radius r · gd, with r > 0
known. Let w1,w2, · · · ∈ L∗ be the (given) shortest vectors of the dual lattice, and suppose their norms follow
the Gaussian heuristic prediction, ‖wn‖ = n1/dgd(1 + o(1)). Then heuristically we can distinguish whether t
is random or planted in time:

T = αd+o(d), (with α := min{β : e2 lnβ = β2r2}.) (60)

Proof. As before, we wish to use a number of vectors T such that the quantity T ·
∑

w∈W ρ1/s(w)2 is constant.

Using the shortest T = αd+o(d) dual vectors asW, we notice that the above sum can asymptotically be written
as:

T ·
∑
w∈W

ρ1/s(w)2 ≈ max
x∈[1,α]

xd · ρ1/s(xgd)2 = αd · ρ1/s(αgd)2. (61)

Since we wish to make T as small as possible, we want to minimize over α such that this quantity is at least
constant. Substituting the value s as before, this leads to the given definition of α. ut

For what approximately corresponds to average-case CVPP, substituting r = 1 leads to α ≈ 1.2253
and T ≈ 20.293d+o(d), where we stress that the constant 0.2931 . . . is not the same as the log2(3/2)/2 ≈
0.2924 . . . exponent of sieving for SVP. For smaller radii the complexities decrease quickly, and similar to
the multi-target distinguishing case the complexity scales as expO(r2d), with the complexity for BDD with
preprocessing becoming polynomial when r = O(

√
(ln d)/d). This is depicted in Figures 1a and 1b.

For finding closest vectors, Algorithm 2 gives a natural heuristic approach based on a gradient ascent.
As argued above, the quantity 〈∇f (W)(t), t − c〉 may be of particular interest. This quantity is sufficiently
bounded away from 0 for similar parameters as for distinguishing to work, thereby suggesting that similar
asymptotics likely hold for searching and distinguishing. After all, if we can use a distinguisher to correctly
determine when we are close to the lattice or not, using it as a black box we can take small steps in well-
chosen directions starting from t and determine if we are making progress or not. In the next section we will
compare experimental results for searching and distinguishing to further strengthen the following claim.

Lemma 10 (Single-target searching, with preprocessing). Heuristically we expect to be able to solve
the planted closest vector problem with preprocessing with radii r · gd for r < 1 with similar complexities as
Lemma 9.

Finally, while the above results cover distinguishing planted cases at arbitrary radii, and searching close
vectors for radii r < 1, this does not give any insights how to solve the search version of approximate CVPP.
Experimentally, as well as intuitively, it is unclear if any guarantees can be given on the quality of the
output of such a gradient ascent method if the algorithm fails to find the nearest lattice point. This may
be inherent to the dual approach, similar to how the poor performance for BDD with preprocessing may
be inherent to the primal approximate Voronoi cell approach. Note however that we can always achieve
the same complexities for approximate CVPP as for “average-case CVPP” (BDDP with radius approaching
gd) as indicated in Figures 1a and 1b). We leave it as an open problem to study if the dual attack can be
improved for approximate CVPP, compared to exact CVPP.



5.6 Closest vector problems without preprocessing

While the previous results focused on being given the short dual vectors, here we will take into account
the costs for generating these dual vectors as well. We will focus on using some form of sieving based block
reduction, which covers the most sensible, efficient choices of preprocessing before running the dual attack.

Lemma 11 (Single-target searching, without preprocessing). Heuristically we expect to be able to
solve the planted closest vector problem (without preprocessing) with target radius r · gd for r = dα, α < 0,
in time T as follows:

T = (3/2)(d+o(d))/(2−4α) ≈ 20.292(d+o(d))/(1−2α). (62)

Proof. Let us parameterize the block size k for the initial BKZ preprocessing as k = βd. For β = 1 − o(1),
at the same asymptotic cost as BKZ with block size k we can run CVP-style sieving on the entire lattice as
described in [Laa16b] to solve average-case CVP and BDD with radius approaching gd. As BDD with radius
a constant multiple of gd requires a block size d − o(d), we will focus on the regime where r scales with d,
i.e. r = dα for α < 0, so that β ∈ (0, 1).

Running BKZ on the dual lattice with block size k requires time (3/2)d/2+o(d) as outlined in the prelim-
inaries. The last step of a sieving-based BKZ run considers the top block of size k, and runs sieving on it to
essentially find the (4/3)d/2+o(d) shortest vectors in this block. The Gaussian heuristic in this block equals

g
(d−1)/(k−1)
k = g

1/β+o(1)
βd for constant β, and the sieving list returns (4/3)d/2+o(d) vectors, most of which have

norm
√

4/3 ·g1/β+o(1)βd . With these vectors we are therefore able to successfully distinguish in the dual attack,
if the following condition is satisfied:

(4/3)d/2+o(d) · ρ1/s
(√

4/3 · g1/β+o(1)βd

)
= Θ(1). (63)

As the left hand term is exponential in d, for large d this inequality can be satisfied if and only if the leading
term in d is constant or increasing with d. Gathering exponents, and using crude but sufficiently precise

estimates such as (4/3)d/2+o(d) = expO(d) and g
1/β
βd = O(d1/(2β)+o(1)), we get:

exp
[
O(d)−O(r2d1/β+o(1))

]
≥ Θ(1). (64)

If r2d2/β+o(1) = o(d) the exponent is increasing in d and the inequality is satisfied. If r2d2/β+o(1) = ω(d) the
exponent is negative for large d, and we fail to distinguish. Writing r2 = d2 ln r/ ln d, and taking logarithms,
this leads to the condition β ≥ ln d/(ln d − 2 ln r), which for r = dα translates to β ≥ 1/(1 − 2α). Finally,
observe that the preprocessing step takes time (3/2)d/2+o(d), and the distinguishing/search phase only takes
time (4/3)d/2+o(d). The overall time complexity is therefore equal to the time of the basis reduction step. ut

The resulting trade-offs between the radius r and the time complexity T are depicted in Figures 1c
and 1d. These figures are similar to the plots for the preprocessing case, except that the x-axes have been
stretched out significantly; to reduce the constant in the exponent one needs r to scale polynomially with d
(as opposed to r = O(1) for the preprocessing case), and to achieve polynomial time complexity one needs
r = 2−O(d) (cf. r = O(

√
log d/d) for the preprocessing case). Note that the latter regime matches what we

intuitively expect; a BDD instance with exponentially small radius can also be solved in polynomial time
using LLL basis reduction followed by one of Babai’s algorithms.

Finally, similar to the preprocessing case we do not expect the dual approach to work well for solving
approximate CVP. Finding a way to give better guarantees for approximate CVP(P), or showing that the
dual attack is unable to solve this problem efficiently, is left as an open problem.



6 Experiments

6.1 Setup

To verify our assumptions and the heuristic estimates, we conducted the following experiments. We used
G6K [ADH+19] to compute a large set of short vectorsWd for the SVP challenge lattice (seed 0) in dimension
d ∈ {55, 60, 65, 70, 75, 80} by extracting the vectors in the sieving database after a full sieve on these lattices.
To give a sense of the size and the shape of the Wd, we list these parameters in Table 1. Note that these
are not the |Wd| shortest vectors, so our results are likely to be slightly sub-optimal, but, as outlined below,
these databases are sufficient to verify our heuristic estimates. We treated the challenge lattices as the dual
of the lattices we target to solve BDD for and created samples from the planted target distribution with
parameter r · gd , where we arbitrarily fixed the closest lattice point to be 0.

6.2 Evaluating the distinguishers

Our first experiment was targeted at verifying the heuristic complexity of the distinguishing algorithms and
comparing the three different score functions. For this, we chose 1000 different targets of length rgd for
various r ∈ [0.5, 0.9]. For each of them, we computed the score functions fj for j ∈ {simple,AR,NP} using
the i shortest vectors of Wd. We denote the resulting set of scores as f ij(Wd, r). (For practicality reasons

we only computed f ij(Wd, r) for i being multiples of 100.) Additionally, we computed the score functions

f̂ ij(Wd, r) for targets from the random target distribution, i.e. we chose 〈t,w〉 uniformly at random from
[−0.5, 0.5] for all dual vectors w. We now evaluated how well the score functions can distinguish between
targets at distance rgd from the random target distribution. Let p ∈ [0, 0.5) be a parameter. For each r we

computed the minimal i such that f ij(Wd, r) and f̂ ij(Wd, r) overlap by at most a p-fraction. In other words,

we computed the minimal i such that the p-percentile of f ij(Wd, r) is larger than the (1 − p)-percentile of

f̂ ij(Wd, r). Additionally, we computed two types of predictions for the distinguishing complexity. First, we
used the vectors in Wd to predict the complexity of the fAR distinguisher by assuming that the result of the
score function under the planted and random target distributions was a perfect Gaussian. We call this the
data dependent (d.d.) estimate. Second, we also estimated the complexity in a similar way, but by assuming
that Wd contained all the shortest vectors in the dual lattice and that the lengths of these followed the
distribution given by the Gaussian heuristic. We denote this by the data independent (d.i.) estimate. The
results show that the estimates are very close to the experimental data, which in turn verifies the assumption
that the result of the score function can indeed be well approximated by a Gaussian. For fsimple this was
independently verified in [EJK20] in a similar setting.

Exemplary results are plotted in Figures 4a and 4b, for varying radius and dimension, respectively, and
p = 0.1. They represent typical examples from our data sets. We fitted models to the curves to evaluate
the dependency of the practical complexity on r (d, resp.). Figure 1a suggests that at least for r not too
close to 1, the dependency on r should be roughly quadratic. If all dual vectors in the database had length
‖w‖ = gd, we would expect a curve of the form exp((d/e2)r2) + O(1). However, there are longer vectors in
our sets Wd, and the vectors are used in increasing length. This has a progressively negative effect on the
complexity, which explains the worse constants computed for the curves in Figure 4a. On the other hand, the
curves in Figure 4b adhere very closely to the heuristic value computed in Lemmas 9. The slight variances
in the leading constant in the exponent can be easily explained with the small set of data points used to fit
the curves. Finally, we see that the score functions all perform similarly well. Since fsimple is the fastest to
compute, this will likely give the best results in practice for distinguishing.

6.3 Evaluating the search algorithms

In the second part of our experiments, we evaluated the decoding algorithm based on gradient ascent. During
our experiments we noticed that fAR and fsimple perform similarly well, so we arbitrarily choose to report
the results for fAR. We chose the step size such that the update corresponds to (22) as a sensible first guess.
Otherwise, the methodology was similar to the previous set of experiments. We only performed one step of
the gradient ascent algorithm and declared success if it resulted in a target closer to the lattice than the
initial target. Intuitively, since after a successful first step the problem becomes easier, this should be a good



Dimension 55 60 65 70 75 80

|Wd| 8729 17918 36783 75510 155007 318199
min ‖w‖/gd 1.0815 1.0147 1.0575 1.0377 1.0527 1.0306
max ‖w‖/gd 1.3161 1.2945 1.2888 1.2812 1.2748 1.2632

Table 1. Parameters of the set of short vectors used in experiments.

proxy for the success probability of the full algorithm. Exemplary results are given in Figures 4c and 4d
again depending on r and the dimension d, respectively. The results are similar to the distinguishing case,
with close adherence to the heuristic estimate of Lemma 9 w.r.t. the dependence on d. As expected, the
success probability only affects constant factors in the complexity.

In the previous experiments, we only considered the gradient ascent method with a fixed step size given
by the analysis in Section 4.6. Since we only compute an approximation of the true step, it stands to reason
that in some cases a poor approximation may lead to failure of the algorithm, even though the computed
update is roughly pointing in the right direction. One may hope to reduce the number of such cases by
reducing the step size. This should give a trade-off between the success probability of the algorithm and the
running time. In order to evaluate the potential of this approach, we repeated the above experiments, but we
now deemed any trial successful where the first update u satisfied 〈u, e〉 < 0, where e is the error vector of
the target. If this is satisfied, this implies that there is a step size such that the update succeeds in reducing
the distance to the lattice. The results are shown in Figures 4e and 4f, analogously to the ones above. They
show that the results only differ in small constant factors (. e). In practice, it might be worth exploring this
trade-off, but we leave this for future work.

To give a sense of how many steps the search algorithm needs, we ran another set of experiments: for
various radii and number of vectors fromW80 we ran the full algorithm until we had successfully decoded 100
targets in the 80-dimensional lattice. For the successful invocations we recorded the number of required steps.
The results are given in Figure 7. There is a small caveat regarding the implementation of our algorithm. At
least after performing the first update, it is in general not clear how close the new target is to the lattice,
which impacts the optimal choice for parameter s, which should be chosen for the next step (see Lemma 6).
We exploited the fact that we know the closest lattice vector to recompute this s for the subsequent steps. So
the concrete number of steps we report might be somewhat optimistic. In practice, one could use the simple
decoder to estimate the distance to the lattice, which we expect not to impact the running time significantly.
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(a) Complexity of distinguishing the planted target
distribution with radius r ·gd from the random target
distribution with success probability 0.90 in dimen-
sion 80.
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(b) Complexity of distinguishing a planted target
with radius 0.75 · gd from a random target with suc-
cess probability 0.90. The theoretical estimate from
Lemma 9 is exp(0.0913d+ o(d)).
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(c) Complexity of decoding a target at distance r · gd
with success probability p in dimension 80.
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(d) Complexity of decoding a target with radius
0.75·gd with success probability p. Lemma 10 predicts
exp(0.0913d+ o(d)).
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(e) “Lower bound” for complexity of decoding a tar-
get with radius r · gd in dimension 80 with success
probability p.
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(f) “Lower bound” for complexity of decoding a tar-
get with radius 0.75 · gd with success probability p.

Fig. 4. Exemplary results, for distinguishing (a,b), decoding (c,d), and a “lower bound” (e,f). Left (a,c,e): d = 80
fixed, varying r. Right (b,d,f): r = 0.75 fixed, varying d.
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(a) Complexity of distinguishing the planted target
distribution with radius r · gd from the planted tar-
get distribution with radius gd with success probability
0.90 in dimension 80.
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(b) Complexity of distinguishing the planted target
distribution with radius 0.75 · gd from the planted tar-
get distribution with radius gd with success probability
0.90.

Fig. 5. Similar to Figures 4a and 4b, but distinguishing the planted target distribution of radius r · gd from another
planted target distribution with radius gd, instead of from the random target distribution.
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(a) Aggregation of the plots in Figure 4a, 4c and 4e,
where we chose fAR for the first and p = 0.9 for the
latter two.
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(b) Aggregation of the plots in Figure 4b, 4d and 4f,
where we chose fAR for the first and p = 0.9 for the
latter two.

Fig. 6. Aggregation of the plots of Figure 4(vertically).
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Fig. 7. Median number of steps required to decode target in 80 dimensional lattice. Gray area marks the 25- and
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