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Abstract. In this work, we present a small architecture for quantum-
safe hybrid key exchange targeting ECDH and SIKE. This is the first
known hardware implementation of ECDH/SIKE-based hybrid key ex-
change in the literature. We propose new ECDH and EdDSA parameter
sets defined over the SIKE primes. As a proof-of-concept, we evaluate
SIKEX434, a hybrid PQC scheme composed of SIKEp434 and our pro-
posed ECDH scheme X434 over a new, low-footprint architecture. Both
schemes utilize the same 434-bit prime to save area. With only 1663
slices on a small Artix-7 device, our SIKE architecture can compute an
entire hybrid key exchange in 320 ms. This is the smallest SIKE ar-
chitecture in the literature. The hybrid SIKEX434 adds approximately
16% communication overhead and 10% latency overhead over SIKEp434.
The additional overhead to support multiple primes indicates the need
for new standardized ECC parameters for area-efficient designs in the
future.

Key Words: Hybrid cryptosystem, isogeny-based cryptography, elliptic
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1 Introduction

Quantum computers will bring about a new paradigm in computing technology,
producing huge advances in various technological, medical, and financial sectors.
While seen as a great boon for society, the major downside is that quantum
computers can also be used maliciously to break the foundational security in the
internet and various digital applications. Within hours, a large-scale quantum
computer can break cryptosystems such as RSA and elliptic curve cryptogra-
phy through Shor’s algorithm [39]. Other cryptosystems such as AES can be
weakened through Grover’s algorithm [22], but not fully broken.

Given the uncertainty of when a large-scale quantum computer will emerge
and the threats it poses, the National Institute of Standards and Technology
(NIST) has solicited and evaluated classical and quantum-safe (post-quantum)
candidates in its post-quantum cryptography (PQC) standardization project
[8]. Now in its third round of review, there are still no clear winners, as a vari-
ety of tradeoffs in performance, communication overhead, security foundation,



side-channel resistance, and so on continue to be evaluated. Although this stan-
dardization process was initiated in 2017, the winner has not been announced
and no standards have been created. As history has shown, adoption of new
cryptosystems is slow as standards must be created, new cryptosystems must
be deployed, and an entire infrastructure slowly upgrades, perhaps even taking
decades.

With the impending emergence of a large-scale quantum computer, hybrid
key exchanges are seen as a solution to ease the transition to a quantum-safe
infrastructure. A hybrid key exchange is a cryptosystem that uses multiple key
exchange algorithms to reach a shared secret. The benefit here is that now an at-
tacker must break each key exchange algorithm rather than simply one, greatly
strengthening the key exchange. For instance, one hybrid key exchange could
be pairing an extensively studied classically-safe key exchange with a quantum-
safe alternative. Another example could be pairing two or more quantum-safe
schemes. There are several classes of known quantum-safe key exchanges and
signature schemes, but, unfortunately, there are still many gaps in quantify-
ing their resistance to attacks and more research is still needed. Hybrid key
exchanges allow us to hedge our risks and confidence in quantum-safe schemes.

Here, we investigate a hybrid key exchange composed of the classically-
safe elliptic curve Diffie-Hellman (ECDH) and the quantum-safe supersingular
isogeny key encapsulation (SIKE) [24] mechanism. ECDH and other elliptic curve
schemes have been the de facto standard for public-key cryptography because of
their small key sizes and competitive performance. Among quantum-safe key ex-
changes, there are many tradeoffs in terms of security confidence, performance,
and communication overhead. However, SIKE is a NIST PQC Round 3 Alter-
native candidate based on isogenies of elliptic curves that features the smallest
public key sizes but suffers from slow performance. By addressing shared compu-
tational similarities between ECDH and SIKE, we present a low-area hardware
implementation of hybrid ECDH+SIKE.

Contributions:

– We propose new RFC 7748-style ECDH parameter sets over SIKE primes,
including X434, X503, and X610.

– We propose new RFC 8032-style EdDSA parameter sets over SIKE primes,
including Ed434, Ed503, Ed610, and Ed751.

– We propose, implement, and evaluate a small hybrid PQC architecture that
performs SIKEX434, a hybrid PQC composed of SIKEp434 and X434. This
is the smallest NIST Security Level 1 SIKE implementation in the literature.

2 Elliptic and Isogeny-Based Cryptography

Elliptic curve cryptography centers on the cryptographic applications of elliptic
curves defined over finite fields. The primary applications in our digital society
have been key establishment through the elliptic curve Diffie-Hellman (ECDH)
key exchange and authentication through the elliptic curve digital signature
algorithm (ECDSA). We define an elliptic curve over a finite field as the set of



all points (x, y) as well as the point at infinity that satisfy the short Weierstrass
equation:

E/Fq : y2 = x3 + ax+ b

where a, b, x, y ∈ Fq. This set forms an abelian group over addition for which
point addition and doubling can be defined. A series of point addition and dou-
blings can compute an elliptic curve point multiplication, Q = kP where k ∈ Z
and P,Q ∈ E. ECDH and ECDSA are protected by the elliptic curve discrete
logarithm problem (ECDLP), where given P,Q it is infeasible to find k as the
size of the abelian group becomes large. We note that we have defined an elliptic
curve here using the “traditional” short Weierstrass curve. New constructions
of elliptic curves have shown additional benefits when used in an implementa-
tion. In the following sections, we choose to use Montgomery [37] curves for
ECDH and twisted Edwards [16,3] curves for EdDSA (an ECDSA alternative)
for better performance, implementation simplicity, and conformity to existing
RFC standards. Elliptic curve cryptosystems defined over these elliptic curves
are still protected by the ECDLP. However, the ECDLP is only hard for classical
computers, whereas quantum computers can take advantage of Shor’s algorithm
[39] to efficiently factor the point multiplication and find k.

Isogeny-based cryptography has become a hot topic in the cryptographic
community. In particular, we are focused on isogenies between elliptic curves.
An isogeny can be thought of as a mapping between elliptic curves that preserves
the point at infinity. Given elliptic curves E and E′, it is difficult to find the
isogeny φ such that φ : E → E′. This problem is still considered to be difficult
for quantum computers.

Isogenies of elliptic curves were first proposed as a key-exchange over ordinary
elliptic curves in 2006 in independent works by Couveignes [14] and Rostovtsev
and Stolbunov [38]. Isogenies of supersingular elliptic curves were also proposed
as a hash function in 2006 by Charles, Lauter, and Goren [7]. In 2010, Childs,
Jao, and Soukharev [9] investigated the quantum resistance of isogenies over
ordinary elliptic curves and found a new quantum subexponential time algorithm
to compute isogenies. To counteract this quantum attack, Jao, De Feo, and
Plût [15] proposed a new quantum-safe isogeny-based key exchange based on
the difficulty to compute isogenies between supersingular elliptic curves, known
as the supersingular isogeny Diffie-Hellman (SIDH) key exchange. Of known
quantum-safe key exchange schemes, SIDH provided the smallest public key size
at the cost of slower performance. Since the discovery of SIDH, the research of
isogenies of elliptic curves in cryptography has continued to gain momentum,
with new applications [2,11,20,25,12,42], security analyses [1,13,19,27,28,21,41],
and performance boosts [10,17,29,32,30,33,26,31,34].

Within the NIST PQC standardization project, the Supersingular Isogeny
Key Encapsulation (SIKE) scheme was the only submitted isogeny-based cryp-
tosystem. SIKE can be thought of as an upgrade to the SIDH key exchange,
with better defense against active attacks and IND-CCA security. At this time,
SIKE is currently in the third round of NIST PQC standardization as an al-



Table 1. Proposed ECDH parameter sets over SIKE primes

SIKE ECDH
SIKE Security Public Key Ciphertext base Pollard Rho Public Key

Scheme Level (Bytes) (Bytes) a coef x-coord Attack (ops) (Bytes)

p434 1 330 346 439,322 4 2215.4 55

p503 2 378 402 308,290 2 2249.8 63

p610 3 462 486 1,135,802 2 2303.5 77

p751 5 564 596 624,450 3 2374.2 94

ternative candidate. Among NIST PQC candidates, SIKE features by far the
smallest public key sizes. The primary downsides are that its security problem is
among the newest and that it is slow. Since SIKE’s submission, the confidence
in SIKE’s hard problem has improved (with new and smaller parameter sets)
and new implementations and optimizations contiune to improve performance.
SIKE is protected by the difficulty to compute isogenies between elliptic curves.
Specifically, SIKE uses a slight variation of this problem over supersingular el-
liptic curves where a kernel defines the isogeny. Because of the breadth of theory
in elliptic curve and isogeny-based cryptography, we point the reader to [18] for
a more in-depth review of isogeny fundamentals.

3 Proposed Hybrid Key Exchange Based on Elliptic
Curves

ECDH+SIKE. Our proposed hybrid key exchange is based on ECDH and
SIKE which both relate to different hard problems based on elliptic curves de-
fined over finite fields. Here, we define a Montgomery [37] curve over a finite
field Fq as the collection of all points (x, y) and point at infinity that satisfy the
Montgomery [37] form:

E/Fq : by2 = x3 + ax2 + x

SIKEp434. In the SIKE submission to the NIST PQC standardization
project, there are 4 different parameter sets based on varying levels of secu-
rity ranging from NIST Level 1 which is believed to be as hard as brute-forcing
AES128 to NIST Level 5 which is believed to be as hard as brute-forcing AES256.
For a low-area implementation, the NIST Level 1 parameters are the obvious
pick. SIKEp434 is the parameter set, where all arithmetic is defined over a finite
field Fq = Fp2 with the 434-bit prime p434 = 22163137−1. The primary computa-
tions in SIKE include a double-point multiplication, large-degree isogeny, and the
SHAKE256 hash. As a key encapsulation mechanism, SIKE includes three dif-
ferent phases: key generation, key encapsulation, and key decapsulation. Lastly,
the starting elliptic curve is

E0/Fp2 : y2 = x3 + 6x2 + x



New ECDH Schemes for SIKE Primes. In order to further reduce a
hybrid PQC implementation’s area footprint, we propose new parameter sets
for ECDH, which we call X434, X503, and X610 that share the SIKE prime.
The SIKE elliptic curves are specially crafted to be supersingular elliptic curves.
These are necessary for supersingular isogeny-based cryptography, but are weak
for classical elliptic curve schemes such as ECDH. To find appropriate curves for
X434, X503, and X610, we searched for an elliptic curve with the smallest value
a24 = (a + 2)/4 such that the curve and its quadratic twist both have 4·prime
order, similar to how Ed448 was found [23]. This a24 value is important for
elliptic curve scalar multiplication over Montgomery curves. Our chosen curve
over the p434 SIKE prime, called X434, has a = 439322 and b = 1, thus:

E/Fp : y2 = x3 + 439322x2 + x

The base point is at x = 4. This elliptic curve satisfies the Safecurves criteria,
described on safecurves.cr.yp.to. For instance, the Pollard Rho attack would
take approximately 2215.4 operations, which is close to the security strength of
AES256. Since this curve was to be paired with the quantum-safe SIKE Level
1, we opted for a high-strength ECDH parameter set. We summarize each SIKE
scheme and corresponding RFC 7748-style curve in Table 1. Note that each curve
has a Montgomery b coefficient of 1. We do not claim X751 as a contribution as
it was originally found in [12].

Our proposed and implemented X434 key exchange scheme was adapted from
the X25519 and X448 key exchanges described in RFC 7748. Specifically, a pri-
vate scalar is created by choosing a random 55 byte value, setting bit 433, and
clearing bits 0, 1, 434, 435, 436, 437, 438, and 439. These bits are set and cleared
to ensure that a proper public key is generated. The key exchange is composed
of 2 different phases: the key generation and the key agreement phases, each
requiring an elliptic curve scalar point multiplication. Upon receiving a public
key from another party for the key agreement phase, bits 434 through 439 are
cleared. Lastly, public and shared keys are 55 bytes long.

SIKEX434 Operation. From here on, we call the hybrid key exchange
with SIKEp434 and X434 as “SIKEX434”. Since SIKEp434 is a key encapsu-
lation mechanism and X434 is a Diffie-Hellman key exchange, we combine the
two into a key encapsulation mechanism. In Figure 1, we illustrate an example
of a hybrid key exchange with SIKEX434. In this example, a client wants to
establish a secure channel with a server using X434. First, the client generates
a public key for X434 and SIKEp434. Then, in the Client Hello message, the
server concatenates the two public keys. X434 and SIKEp434 public keys are
55 and 330 bytes, respectively, so a combined public key is 385 bytes, which is
about 17% larger than simply a SIKEp434 public key. Upon receiving the Client
Hello message, the server continues the key exchange by performing a public
key generation for X434, computing the X434 shared secret, and SIKEp434 en-
capsulating the SIKEp434 public key. For ease of notation, the output of X434
key generation on the server side is considered a ciphertext. Lastly, the server
computes the X434 shared secret. The Server Hello is composed of the 55 byte



1. ECDHX434 Keygen ePK

2. SIKEp434 Keygen sPK

7. ECDHX434 Compute 

Shared Secret eSS’

8. SIKEp434 Decapsulate 

sSS’

9. Z = SHAKE256(eSS’, sSS’)

10. AES-256-CCM, key = Z

Client Server

3. ECDHX434 Keygen eCT

4. ECDHX434 Compute 

Shared Secret eSS

5. SIKEp434 Encapsulate 

sCT, sSS

6. Z = SHAKE256(eSS, sSS)

10. AES-256-CCM, key = Z

Client Hello

{ePK, sPK}

{eCT, sCT}

Server Hello

Handshake Complete

Application Data

55

55

330

346

Fig. 1. Proposed SIKEX434 hybrid key exchange. 385 bytes are sent in Client Hello
and 401 bytes are sent in Server Hello.

X434 ciphertext and 346 byte SIKEp434 ciphertext, for a total 401 bytes. The
Server can then use SHAKE256 (which is already included as part of SIKE)
as a key derivation function by hashing the 55 byte X434 shared secret and 16
byte SIKEp434 shared secret. Upon receiving the Server Hello, the Client can
proceed by computing the X434 shared secret and decapsulating the SIKEp434
ciphertext. Upon completion, the Client can similarly use the key derivation
function to find the final shared key. If the hybrid key exchange was successful,
both parties can use the shared key in AES to send and receive messages.

The Case Against X25519 and X448. Here, we made the choice to go
against Curve25519 and Curve448, two well-known curves for ECDH and Ed-
DSA, to save area. X25519 uses a much smaller prime size and would have
drastically sped up the classical cryptosystem used in a hybrid key exchange.
Meanwhile, X448 uses a slightly larger, but better shape of prime than X434,
most likely resulting in a similar timing profile. However, because SIKE is lim-
ited (for reasonable performance) to only smooth isogeny-friendly primes such
as SIKEp434 we cannot use these standardized ECDH primes. Although we
do not have results (at this time), pairing X25519 or X448 would mean that
our modular multiplier as we describe in Section 5 would be much larger. For
instance, consider taking X25519 with the Montgomery multiplier we describe
in the following section. X25519’s prime was specifically chosen for its pseudo-
Mersenne prime shape that cannot be taken advantage of by SIKE primes. For
Montgomery multiplication, this would result in more arithmetic logic (small
multipliers) to compute the Montgomery q constant each computation. Further-
more, additional registers and control logic would be needed to switch between



Table 2. Proposed EdDSA parameter sets over SIKE primes

SIKE EdDSA
SIKE SIKE/EdDSA Security Public Key Ciphertext Public Key Signature

Scheme Prime Level (Bytes) (Bytes) d coef (Bytes) (Bytes)

p434 22163137 − 1 1 330 346 109,831 55 110

p503 22503159 − 1 2 378 402 77,073 63 126

p610 23053192 − 1 3 462 486 283,951 77 144

p751 23723239 − 1 5 564 596 156,113 94 188

the X25519 multiplication reduction and the SIKEp434 multiplication reduc-
tion. Lastly, the latency of SIKE is significantly longer than ECDH, so including
X25519 would only have a tiny improvement in total latency of a hybrid key
exchange.

4 Proposed EdDSA Schemes Over SIKE Parameters

In addition to ECDH for a hybrid key establishment, digital signatures are an-
other strong use case for elliptic curves. Although elliptic curve-based digital
signatures would also be broken by a sufficiently large quantum computer, the
use cases and security longevity between key establishment and authentication
are different. For instance, quantum-safe key establishment must be implemented
and deployed well in advance of large-scale quantum computers as retroactive
decryptions could break past secure communications. The concern here is that
highly confidential communications including top-secret classified information
that is encrypted with classical cryptosystems could be broken well before it
was supposed to be declassified. One primary application of digital signatures
is authentication. Retroactive authentication is not so much an issue in our
digital infrastructure as authenticating a session is typically short-term. When
large quantum computers are available, implementations using classical-safe dig-
ital signature schemes can make the switch to quantum-safe digital signature
schemes and carry on business as usual.

Here, we see elliptic curve-base digital signatures as an important comple-
ment to hybrid PQC schemes. Similar to our parameter selection for RFC 7748-
style ECDH parameter sets, we can also create new parameter sets for RFC
8032-style Edwards Digital Signature Algorithm (EdDSA). We chose to go with
EdDSA over ECDSA as EdDSA features improved performance, implementation
simplicity, and no need to generate a nonce for each signature. Up until now,
Ed25519 [4] and Ed448 [23] were the primary EdDSA curves. Although it uses
a smaller curve, Ed25519 is less ideal for a small footprint implementation with
SIKE as it uses SHA-512 whereas Ed448 uses SHAKE256. SHAKE256, used in
all SIKE parameter sets, is based on the Keccak [5] sponge family of hashes and
is standardized in SHA-3.

New EdDSA Schemes for SIKE Primes. Here, we propose new param-
eter sets for EdDSA, which we call Ed434, Ed503, Ed610, and Ed751 that share



Ed434 Key Generation

1. s’ = SHAKE256(rand(55 bytes))

2. s = prune(lower(s’))

3. A = [s]B

4. Compress A to 55 bytes

Ed434 Sign

5. r’ = SHAKE256(upper(s’)||m)

6. r = r’ mod l
7. R = [r]B

8. k = SHAKE256(R||A||m)

9. S = r + ks mod l

Client Server

Ed434 Verify

10. Validate R is on Ed434

11. Validate S < l
12. k = SHAKE256(R||A||m)

13. Verify R = [S]B - [k]A

{m,(R,S)}

{A}

     55 55

55

Fig. 2. Proposed Ed434 digital signature scheme.

the SIKE prime. All EdDSA schemes are defined over twisted Edwards curves
of the following form:

E/Fq : ax2 + y2 = 1 + dx2y2

To find appropriate curves for Ed434, Ed503, Ed610, and Ed751, we fixed
a = 1 and searched for the smallest positive d value such that both the curve
and its quadratic twist have 4·prime order and d was not a square in Fq. If d
is not a square, then the Edwards curve arithmetic is complete. We summarize
our found curves in Table 2.

Another method to search for the Edward curve parameters could have been
to apply an isomorphism from the Montgomery curves, similar to how Ed25519
was created as an isomorphism from X25519. For instance, applying a simi-
lar isomorphism from X434 to Ed434 would have created the curve, E/Fp :
x2 + y2 = 1 + (109830/109831)x2y2. Furthermore, the birational equivalence is
further that xEd =

√
439324xMontyMont and yEd = (xMont−1)(xMont +1). The

isomorphic base point is then (x, 35 ), for which x is positive. We opted to find
smaller twisted Edwards curves to save space when storing the curve and base
point. Also, interestingly enough, the Edwards d coefficients are the equivalent
to the Montgomery a24 for each of the ECDH schemes.

Ed434. Here, we describe the operation for Ed434, an RFC 8032-style Ed-
DSA scheme over the SIKE prime p434. This is depicted in Figure 2. The EdDSA
schemes over other SIKE primes are extremely similar. Ed434 is the collection of
all points (x, y) that satisfy the twisted Edwards elliptic curve form (note that
a = 1) over the finite field p434 = 22163137 − 1:

E/Fp : x2 + y2 = 1 + 109831x2y2

Ed434 Key Generation. The Ed434 public key is generated by first col-
lecting 55 bytes of random data. These 55 bytes are hashed using SHAKE256
and the output digest is the first 110 bytes. The lower 55 bytes of this output
digest are pruned to an output s by setting bit 433, and clearing bits 0, 1, 434,
435, 436, 437, 438, and 439. This result is interpreted as a scalar and used to



perform a scalar point multiplication over the base point A = [s]B. Finally, this
point result is compressed by encoding the first 55 bytes with the y-coordinate
and the least significant bit of the x-coordinate is copied to the most significant
bit of the final byte, resulting in a 55 byte public key.

Ed434 Sign. A message is signed by first SHAKE256 hashing the upper 55
bytes of the secret key hash with the message to a 110-byte r. r is reduced modulo
the large prime order of the curve, `, and interpreted as a scalar to perform a
scalar point multiplication over the base point R = [r]B. Point R is represented
in the compressed Edwards form as was done with the public key A. SHAKE256
is once again used to hash R, A, and the message to a 110-byte digest k. Lastly,
the signature component S is computed by performing S = r+ k · s mod `. The
final signature is the compressed Edwards point R and the scalar S, totaling to
110 bytes.

Ed434 Verify. A message and signature is verifed by first validating the
point R and scalar S are of the correct form. This entails checking that R
decodes to a valid Ed434 point and that the scalar S is less than the large prime
order of Ed434. Note that decoding an Ed434 Edwards point involves a few
exponentiations in a similar manner to Ed448, but no square roots are needed
(see Section 5.2.3 of RFC 8032). Upon validating signature components R and
S, SHAKE256 is once again used to hash R, A, and the message to a 110-byte
digest k. Lastly, this k value is used to verify the group equation [S]B = R+[k]A.
If the left and right side are equivalent, then the signature is valid. Note that
similar to [4], one can instead check that the encodings of the left and right hand
side of R = [S]B − [k]A match to avoid decoding point R.

5 ECC/SIKE for Small Devices

Here, we present some details and results of our small footprint architecture to
accelerate SIKE and ECDH over the 434-bit prime. Our core components and
area numbers are shown in Figure 3.

Field Addition. At the lowest level, ECDH and SIKE are composed of
modular addition and multiplication over p434. One primary reason to create
the parameter set for X434 was so that the field arithmetic unit could be reused
between the two key exchanges. To keep interface and arithmetic overhead low,
all data in our architecture is stored by 32-bit word in a single-port 4KB SRAM.
Each intermediate Fp value requires 55 bytes or 14 words. For a given cycle we
can only perform one read or write operation of 32-bit data. Fp addition performs
c = a+ b where a, b, c ∈ Fp. Thus, if a+ b > p, then we perform a reduction and
the result is c = a+ b−p. Fp subtraction is similar, but a reduction is performed
by adding p if the result is negative. For addition and subtraction, we first load
one full operand, perform the addition or subtraction, perform a reduction, and
store the result. Our architecture can internally store two full p434 registers, so
we store the addition/subtraction result in register 1 and store the conditional
reduction result in register 2. We choose the correct register to store back in
our SRAM by checking the negative bit of operand 2 for Fp addition and the



Small SIKEX434 Unit
46.2 kGE

Modular Arithmetic Unit

35.1 kGE

Keccak Unit

3.7 kGE

Elliptic Curve 

Controller

5.7 kGE

Single-port 

4KB SRAM

Fig. 3. High-level components of the small SIKEX434 unit. The numbers below the
component indicate its size in Gate Equivalents (GE).

negative bit of operand 1 for Fp subtraction. An Fp addition/subtraction requires
48 cycles.

Field Multiplication. The modular multiplier is the largest piece of this
architecture. It is an intense computation which is used extensively for both
SIKEp434 and X434. Since the multiplication of two similarly sized values pro-
duces a result double the size, an expensive reduction is also needed. Unfortu-
nately, efficient modular multiplication with p434 is limited to Barrett or Mont-
gomery multiplication algorithms. Our modular multiplier is adapted from the
carry-save adder Montgomery multiplier from [40] with a digit size of 4-bits.
Montgomery multiplication [36] converts expensive division operations into shift
operations, which are extremely cheap in hardware. Each cycle, this systolic
modular multiplier computes 4 bits of a modular multiplication result. Since the
final result is in two different buffers, one for sum and one for carry, we finish
the computation by adding these two with our field addition unit. By limiting
this modular multiplier to only support p434, we can optimize away many gates
in this multiplier architecture, such as any AND gate connected to the modulus
registers. For p434, this is 434 AND gates. If multiple primes were to be sup-
ported, then there would have to be some storage to swap between primes, these
AND gates would have been included, and there would be a larger critical path.
An Fp multiplication requires 158 cycles.

Controller. The controller handles all sequencing necessary for ECDH point
multiplications and SIKE isogenies. The controller reads from a program ROM
that contains all elliptic curve-related subroutines. Each subroutine is composed
of a sequence of Fp addition, subtraction, and multiplication, and Fp2 addition,
subtraction, multiplication, and squaring. There are 1058 instructions total in
our program ROM, for which the Fermat’s Little Theorem-based Fp inversion



Table 3. FPGA results of small SIKEX434 accelerator on a Xilinx Artix-7.

Frequency Area

MHz
# # # # #

FFs LUTs Slices DSPs BRAMs

195 1,942 5,841 1,663 0 1

Table 4. ASIC results of small SIKEX434 accelerator on 65nm tcbn65lptc. Note that
this excludes the single-port 4KB SRAM.

Frequency Critical Path Area

MHz ns um2 GE

278 6.41 66,578 46,235

required almost 600. ECDH used the classical Montgomery ladder. The isogeny
and point arithmetic required for SIKE are the fastest known formulas in the
literature that can be found in [24]. The large-degree isogeny requires a number
of pivot points for efficient computation and our architecture can store up to 6
pivot points.

Keccak Unit. SIKE utilizes SHAKE256 as a hash function throughout its
operation. However, the latency of SIKE’s isogeny arithmetic dominates the com-
putations, so we opted for an extremely small SHAKE256 module. SHAKE256 is
based on the Keccak sponge family of hashes. Most fast implementations utilize
1600 registers to represent the full Keccak internal state. Our implementation
simply reuses the single-port 4KB SRAM to hold the 1600-bit state. Our imple-
mentation utilizes various shifts and arithmetic functions as part of the Keccak
sponge family, but performed over a single word at a time. Depending on the
size of a SHAKE256 hash, generally each permutation operation takes slightly
over 220,000 cycles, which is still significantly less than a SIKE operation.

Verification. SIKE and ECDH were tested separately and then put to-
gether for hybrid key exchange. SIKE was tested against the SIKE submission’s
Known Answer Tests and ECDH was tested against python-generated key gen-
eration and key agreement test vectors. Our hybrid key exchange generated a
shared secret by using the concatenation key derivation function method from
[6]. Essentially, a shared secret was produced by hashing a concatenation of the
SIKEp434 and X434 shared secrets with SHAKE256 and using the first 256 bits
of the result.

6 Hybrid Architecture Results

Here, we describe our small SIKEX434 hardware implementation results. For
FPGA results, we used the NIST PQC recommended Artix-7 FPGA. We syn-
thesized the SIKEX434 core with Xilinx Vivado 2019.2 to a Xilinx Artix-7
xc7a200tffbg676-2 device. On the ASIC side, we synthesized using Synopsis De-
sign Compiler Q-2019.12 with the TSMC 65nm library tcbn65lptc. All results
were obtained after place-and-route.



Table 5. Latency of operations on our SIKEX434 accelerator. Note that the latency
is identical for Artix-7 and ASIC.

Scheme
Latency Time (ms)

(cc× 106)
Artix-7 ASIC

@195 MHz @278 MHz

X434 Keygen 1.2 6.2 4.3

X434 KeyAgree 1.2 6.2 4.3

SIKEp434 Keygen 12.4 63.6 44.6

SIKEp434 Encap 21.4 109.8 77.0

SIKEp434 Decap 23.1 118.5 83.1

SIKEp434 E + D 44.5 228.2 160.1

SIKEp434 Total 56.9 291.8 204.7

SIKEX434 Keygen 13.6 69.7 48.9

SIKEX434 Encap 24.1 123.6 86.7

SIKEX434 Decap 24.6 126.2 88.5

SIKEX434 E + D 48.7 249.7 175.2

SIKEX434 Total 62.3 319.5 224.1

Area. We present our FPGA results in Table 3 and ASIC results in Table 4.
On the FPGA side, we used a total of 1663 slices for our entire design and one 36k
BRAM. This equated to 1942 flip-flops and 5841 look-up tables. The maximum
frequency for this configuration was 195 MHz. For the ASIC, we synthesized at
100 MHz, which the Synopsys Compiler easily beat, giving a slack of 6.41 ns. The
critical path is thus 3.59 ns, which corresponds to a frequency of 278 MHz. The
total area of the design was 66,578 um2 which we converted to gate equivalents
(GE) by dividing by 1.44, which was the size of a NAND gate in um2. Note that
this excludes the single-port 4KB SRAM. We further break down the size of the
46.2 kGE in Figure 3. The finite field accelerator took the majority of the design
at 35.1 kGE. This area could continue to go down notably by reducing the digit
size of the systolic multiplier from 4 down to 1 or 2 at the expense of almost
quadrupling or doubling the resulting time, respectively.

Timing. The latencies between operations are identical between the two
device targets, which are presented in Table 5. The “E + D” column includes the
key encapsulation and decapsulation time as was done in the SIKE submission.
Since key generation only needs to be performed a single time by a party, it is
expected that the encapsulation and decapsulation timings are the customer-felt
latency. As the timings show, the SIKEX434 E + D time for ASIC is 175.2 ms
and the time for an entire SIKEX434 hybrid key exchange is 224.1 ms. Note that
given more aggressive timing for the synthesis that these numbers can continue
to improve at the cost of increased area. However, higher frequencies greatly
impact the resulting power and energy consumption.

SIKEX434 Overhead. Comparing SIKEp434 to SIKEX434 shows a 9.5%
increase of latency for the additional hybrid computations. These hybrid com-
putations include four additional X434 operations as well as two additional
SHAKE256 KDF operations. On the communication side, SIKEp434 requires



Fig. 4. Timing breakdown of SIKEp434 and X434 primitives. Note that X434 opera-
tions are performed twice in a full SIKEX434 operation.

Table 6. Area comparison of isogeny architectures on a Artix-7 at approximately NIST
security level 1 (SIKEp434).

Work
# # # # #

FFs LUTs Slices DSPs BRAMs

Massolino et al. [35] (128)1 7,202 11,943 3,491 57 21

Massolino et al. [35] (256)1 11,661 22,673 7,329 162 37

Koziel et al. [26] 24,328 21,946 8,006 240 26.5

This work 1,942 5,841 1,663 0 1

1. Implementation also includes SIKEp503, SIKEp610, and SIKEp751

16.3% additional overhead. A timing breakdown of each cryptosystem’s primi-
tives are presented in Figure 4.

Comparison. A fair comparison with other implementations is difficult as
their focus has generally been on performance. Since our focus is on NIST Se-
curity Level 1, we summarize Artix-7 area and timing comparison results in
Tables 6 and 7, respectively. The SIKE submission’s hardware implementation
is based on the high performance implementation from [26]. For SIKEp434, this
implementation requires 8006 slices, 240 DSPs, and 26.5 BRAMs to compute
SIKEp434 in 14.4 ms on the Artix-7. This is 16 times faster than our implemen-
tation for 5 times as many slices and significantly more BRAMs and DSPs. The
more area-efficient implementation from [35] supports all four SIKE parameter
sets using a hardware software co-design methodology. Their smaller implemen-
tation implements SIKEp434 in just over 50 ms with 3415 slices, 57 DSPs, and
21 BRAMs. This is over 4 times faster at the cost of 2 times as many slices
and again significantly more BRAMs and DSPs. Unfortunately, this disparity in
BRAMs and DSPs make a fair area-time comparison difficult. Hopefully there
will be more ASIC area results for SIKE implementations in the future for more



Table 7. Timing comparison of isogeny architectures on a Artix-7 at approximately
NIST security level 1 (SIKEp434). Note that SIKE total time includes key encapsula-
tion and decapsulation.

Work
Freq. Cycles Total Time

(MHz) (cc× 106) (ms)

Massolino et al. [35] (128) 145.1 27.3 52.8

Massolino et al. [35] (256) 109.1 8.6 31.7

Koziel et al. [26] 132.2 1.91 14.4

This work 163.1 44.5 228.2

accurate comparisons of resource cost. Nonetheless, this implementation shows
a lower area bound for SIKEp434 and SIKEX434 hardware implementations.

7 Conclusion

In this work, we proposed the hybrid key exchange SIKEX434 composed of
SIKEp434 and X434 as well as new ECDH and EdDSA schemes over SIKE pa-
rameters SIKEp434, SIKEp503, SIKEp610, and SIKEp751. We presented the
smallest SIKE architecture in the literature for this design that is 1663 slices
in FPGA and 46 kGE and 4KB SRAM in ASIC. This design can accomplish
the entire SIKEX434 on ASIC in less than 250 ms. An expected segment of a
key exchange will also take less than a tenth of a second. SIKEX434 adds ap-
proximately 16% communication overhead and 10% latency overhead. With a
385 byte public key and 401 byte ciphertext, this hybrid key exchange is still
50% smaller than the next smallest key in the NIST PQC contest. As research
continues into quantum computer attacks on cryptosystems, adapting and inno-
vating hybrid key exchange schemes will be necessary as we transition to a fully
quantum-safe infrastructure.
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cation and exponentiation architectures for fast RSA cryptosystem based on digit
serial computation. IEEE Trans. Industrial Electronics, 58(7):3101–3109, 2011.

41. Yan Bo Ti. Fault Attack on Supersingular Isogeny Cryptosystems. In Post-
Quantum Cryptography : 8th International Workshop, PQCrypto 2017, Utrecht,
The Netherlands, June 26-28, 2017, Proceedings, pages 107–122, Cham, 2017.
Springer International Publishing.

42. Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir
Soukharev. A Post-quantum Digital Signature Scheme Based on Supersingular
Isogenies. In Financial Cryptography and Data Security: 21st International Con-
ference, FC 2017, pages 163–181, Cham, 2017. Springer International Publishing.


