
Rainbow on Cortex-M4
Tung Chou1, Matthias J. Kannwischer2,3 and Bo-Yin Yang1,3

1 Research Center for Information Technology and Innovation, Academia Sinica, Taipei, Taiwan
{blueprint,by}@crypto.tw

2 Max Planck Institute for Security and Privacy, Bochum, Germany
matthias@kannwischer.eu

3 Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract. We present the first Cortex-M4 implementation of the NISTPQC signature
finalist Rainbow. We target the Giant Gecko EFM32GG11B which comes with 512 kB
of RAM which can easily accommodate the keys of RainbowI.
We present fast constant-time bitsliced F16 multiplication allowing multiplication
of 32 field elements in 32 clock cycles. Additionally, we introduce a new way of
computing the public map P in the verification procedure allowing vastly faster
signature verification.
Both the signing and verification procedures of our implementation are by far the
fastest among the NISTPQC signature finalists. Signing of rainbowIclassic requires
roughly 957 000 clock cycles which is 4× faster than the state of the art Dilithium2
implementation and 45× faster than Falcon-512. Verification needs about 239 000
cycles which is 5× and 2× faster respectively. The cost of signing can be further
decreased by 20% when storing the secret key in a bitsliced representation.
Keywords: Rainbow, NISTPQC, Cortex-M4, MQ signatures, finite field arithmetic

1 Introduction
The advance of large scale quantum computers is threatening all conventional public-key
cryptography currently deployed due to Shor’s algorithm [Sho94]. Hence, researchers
are looking into quantum-safe replacements for existing protocols. In 2016, the Amer-
ican National Institute of Standards and Technology (NIST) [NIS] called for proposals
to replace their existing standards for digital signatures, public-key encryption (PKE),
and key-encapsulation mechanisms (KEM). In 2020, the third and final round of the
standardization process (NISTPQC) with 7 remaining finalists and 8 alternate candidates
started. Out of these remaining schemes, 6 are digital signature schemes (3 finalists and 3
alternate candidates). They can be grouped into three major families; each of which has
its own advantages and disadvantages: Hash-based signatures (SPHINCS+ [ABB+20])
have small keys, but large signatures; Lattice-based signatures (Dilithium [BLD+20] and
Falcon [FHK+20]) have medium keys and medium signatures; Multivariate Quadratic
(MQ-)based signatures (GeMSS [CFM+20] and Rainbow [DCK+20a]) have very small
signatures, but large keys. The sixth signature scheme is Picnic built on top of zero
knowledge proofs which does not quite fit any of those families.

Rainbow has a reputation for extremely fast verification (and signing), and comes with
very small signatures. However, while implementations of both hash-based signatures and
lattice-based signatures have received broad attention from the community, there appears
to be only very little work on implementations of MQ-based schemes, even though the
aforementioned characteristics of Rainbow make it particularly suitable either for root
certificates, for any cases where the key can be built into the application, or in any situation
not calling for frequent downloading or updating.

mailto:{blueprint,by}@crypto.tw
mailto:matthias@kannwischer.eu

2 Rainbow on Cortex-M4

Especially, implementing multivariate schemes and in particular UOV-based schemes
on embedded platforms seems to be poorly explored which may be due to the large public
keys of these schemes. It may also be due to the implementation complexity of the schemes
as effectively and securely implementing the Gaussian elimination and field arithmetic on
an embedded platform is difficult.

So we try to bridge that gap in this work and present Cortex-M4 implementations
of the smallest Rainbow instances rainbowIclassic, rainbowIcircumzenithal, and
rainbowIcompressed. As the public keys for those parameter sets are 157.8 kB, 58 kB,
and 58 kB respectively these are still within reach of fitting onto some embedded platforms.
The larger Rainbow parameter sets (level 3 and level 5) have public keys of 258 kB up to
1885 kB and, thus, may be arguably unsuitable for embedded platforms. However, our
methods are not simply tailored only for F16 and rainbowI. If there are larger Cortex-M’s,
part of our methods will extend straightforwardly and be useful for rainbowIII and
rainbowV which use F256.

Contribution. We present optimized Cortex-M4 implementations of all three third-round
instances of Rainbow with the parameter set aiming at NIST security level 1. Our achieved
speed-ups mostly come from bitsliced multiplication of F16 elements making use of the
conditional execution instructions available on the Cortex-M4. This multiplication can be
even faster by switching to a direct F16 representation (F16 = F2[x]/(x4 + x+ 1)) rather
than the tower field representation mandated by the Rainbow specification. We argue
that the specification should be changed. Furthermore, we choose an approach [CCNY12]
which was not previously used in the literature describing how to evaluate MQ public
maps [CLP+18, DCK+20a, BPSV19]. In Rainbow, this is vastly faster. As verification for
rainbowIclassic only consists of hashing and evaluating the public map, our approach
results in blazingly fast verification.

As our target platform (the EFM32GG11B) comes with a SHA256 and AES hardware ac-
celerator, we also present how Rainbow implementations can benefit from faster symmetric
operations.

Code. Our Open-Source Cortex-M4 implementation of Rainbow is available at https:
//github.com/rainbowm4/rainbowm4.

Related Work. Rainbow and its near relative TTS [YC05] were implemented in a
sequence of papers [CCC+08, CCC+09, CLP+18] for Intel platforms, but they tend to be
for prior parameters and use different Intel-specific optimizations different from what we
use. [CLP+18] mostly uses the VPSHUFB table look-up instruction in AVX2 instruction
set for F16 and is inapplicable to the ARM Cortex-M4, and [CCC+09] uses Wiedemann to
evaluate matrix inverses which is not constant time.

There is a large body of work targeting the Cortex-M4 on the other NISTPQC finalists
Dilithium [GKS20], Falcon [Por19], Kyber [ABCG20], Saber [KRS19, BMKV20, CHK+21],
and NTRU [KRS19, CHK+21]. Unfortunately, these lattice-based finalists use modular
integer arithmetic and polynomial multiplication for relatively many coefficients, which
means their optimizations do not carry over to Rainbow.

There are very few implementations on the Cortex-M4 for MQ. In particular, the work
covering Rainbow is very limited, especially with the most recent parameter sets. The only
M4 work on Rainbow to our knowledge was from Moya Riera’s Bachelor thesis [MR19],
which optimized level 1 parameter sets of the second round Rainbow. However, this
implementation used look-up tables for F16 arithmetic which is not constant-time on all
Cortex-M4 platforms, and additionally (despite the smaller parameters) was considerably
slower than our work.

https://github.com/rainbowm4/rainbowm4
https://github.com/rainbowm4/rainbowm4

Chou, Kannwischer, Yang 3

Applicability to other contexts. Our techniques for evaluating quadratic systems (Sec-
tion 3.3) and solving linear systems (Section 3.2) equally benefit Unbalanced Oil and
Vinegar [KPG99] and all its derivatives. Our constant-time matrix solving (Section 3.2) gen-
eralizes the Gauss-Jordan Elimination used in key generation of code-based cryptography,
e.g., as briefly mentioned in McBits [Cho17].

Structure. In Section 2 we introduce Rainbow and the features of the Cortex-M4 that
proved useful when implementing Rainbow. Section 3.1 introduces fast bitsliced F16
arithmetic for the Cortex-M4 which is used in the core operations within Rainbow.
Section 3.2 shows how the matrix inversion in the signing operation can be implemented
efficiently and in constant time. Section 3.3 describes how the public map can be evaluated
in variable time and, consequently, how verification can be sped up. Section 4 shows how a
different F16 representation can speed up Rainbow even further, although it would require
a change of the specification. In Section 5, we present the performance of the resulting
implementations and compare it to other NISTPQC finalists.

2 Preliminaries
We introduce the Rainbow signature in Section 2.1 and describe useful features of the
Cortex-M4 for Rainbow in Section 2.3.

2.1 Recap of Multivariate Signatures
A Multivariate Quadratic Public Key Cryptosystem works on a field K = Fq which is called
the “base field”. For Rainbow I this is F16. It has a public map P = T ◦ Q ◦ S : Kn → Km

where T and S are typically affine but is here (for Rainbow) linear. So, S : w 7→ x = MSw
and T : y 7→ z = MT y. The map Q : x 7→ y, called the central map must be quadratic and
be easily invertible. The various MPKCs are characterized by the construction of their
Q’s, obviously it must be hard to decompose P : w 7→ z into its component maps. Usually
n > m and we have a digital signature.

2.2 Summary of Rainbow
Rainbow was proposed by Ding and Schmidt in 2004 [DS05], with a multi-stage Unbalanced
Oil and Vinegar (UOV) structure. Since 2008 it has always appeared with exactly two
stages [DYC+08], and this is what we describe below.

2.2.1 The Central Map in Rainbow

Modern variants of Rainbow(Fq, v1, o1, o2) are parametrized by four integers q, v1, o1, o2
[DS05, DYC+08].

• There are two “segments” of central maps in each which we designate “oil” and
“vinegar” variables. In the first segment the vinegar variables are the xi for i ∈ V1 =
{1, . . . , v1} and the oil variables are the xi for i ∈ O1 = {v1 + 1, · · · , v2 := v1 + o1}.
In the second segment, the vinegar variables have the index set V2 = {1, · · · , v2 :=
v1 + o1} and the oil variables the index set O2 = {v2 + 1, · · · , n = v3 = v2 + o2 =
v1 + o1 + o2}.

• The central mapQ hasm = o1+o2 structured quadratic equations y = (yv1+1, . . . , yn) =

4 Rainbow on Cortex-M4

(qv1+1(x), . . . , qn(x)), where (notice the unusual indexing):

yk = qk(x) =
v1∑

i=1

v2∑
j=i

α
(k)
ij xixj , for k ∈ O1;

yk = qk(x) =
v2∑

i=1

n∑
j=i

α
(k)
ij xixj , for k ∈ O2.

• Note that in every qk, where k ∈ O1, there is no cross-term xixj where both i and j
are in O1. So given all the yi in the first stage with v1 < i ≤ v2, and all the vinegar
variables xj with j ≤ v1, we can easily compute the corresponding oil variables
xv1+1, . . . , xv2 by solving a linear system.

Similarly, in every qk, where k ∈ O2, there is no cross-term xixj where both i and
j are in O2. So given all the yi in the second stage with v2 < i ≤ n, and all the
vinegar variables xj with j ≤ v2, we can easily compute xv2+1, . . . , xvn by solving a
linear system.

• An inverse image x of Q such that Q(x) = y, can be found as follows:

1. Randomly guess the initial vinegar variables x̄ = (x1, . . . xv1) and from that
and (yv1+1, . . . , yv2) solve for (xv1+1, . . . , xv2) via Gauss-Jordan elimination. If
there is no solution, restart from the beginning.

2. Having now the values x̄ = (x1, . . . xv2), from that and (yv2+1, . . . , yn) again
solve for (xv2+1, . . . , xn) via Gauss-Jordan elimination. If there is no solution,
restart from the beginning.

The procedure is obviously extensible to any number of stages. A toy example of the
central map Q in Rainbow can be found in Appendix A.

2.2.2 Procedures of MPKC Signatures including Rainbow

An MPKC signature system comprises three main procedures: key generation, signing
messages, and verifying signatures. Signing and verification are much more important
because a signature key is not expected to change often.

Key generation. The user randomly chooses a secret key which consists of invertible S,
T , and Q, then computes P = T ◦ Q ◦ S as the public key. S−1, T−1 and the parameters
in Q are kept as the private key. We mostly follow [DCK+20a, Sec. 4] and its reference
implementation (aside from doing multiplications more efficiently), as it is a faster approach
for key generation of Rainbow compared to the alternative, which is MQ key polynomial
interpolation of T ◦ Q ◦ S [Wol04].

Signing. The signer first computes the hash value of the message as the digest z ∈ Km.
With the secret key, the signer computes y = T−1(z), x = Q−1(y), and w = S−1(x) ∈ Kn

which is the signature of the message. This is common to all multivariate signatures
although the details of computing Q−1(y) vary with specific schemes.

Verification. To verify a signature w ∈ Kn of a message, the user evaluates the public
polynomial P(w) = z and checks whether the digest of the message is equal to z.

Chou, Kannwischer, Yang 5

Table 1: Parameters of Rainbow [DCK+20a].

security NIST Round Round 2 Round 3
Field F16 F16

128 bits (v1, o1, o2) 32, 32, 32 36, 32, 32
n→ m 96→ 64 100→ 64
Field F256 F256

192 bits (v1, o1, o2) 68, 36, 36 68, 32, 48
n→ m 140→ 72 148→ 80
Field F256 F256

256 bits (v1, o1, o2) 92, 48, 48 96, 36, 64
n→ m 188→ 96 196→ 100

2.2.3 Parameters of Rainbow

Ding et al. [DCK+20a] chose the parameters for security requirements in Table 1. Pre-
viously, against a Rainbow cryptosystem with m equations and n variables, the most
pertinent attacks were substituting n−m variables at random and trying to solve for the
remaining m variables (“Direct Attack”), and a structural attack which involves solving
an associated quadratic system with n variables and n+m− 1 equations (“Rainbow Band
Separation”) [DYC+08]. Recently, Beullens posted the new “Intersection” and “Rect-
angular MinRank” attacks against Rainbow [Beu20]. The Rainbow team acknowledged
these attacks, emphasizing that Round-3 Rainbow still meets its planned security levels
[DCK+20b].

2.2.4 Computational Costs of Rainbow Signing

The signer, as above, calculates the hash digest z of message and inverts P with the secret
key T , S, and Q, and does

z ∈ Km T−1

7−→ y Q
−1

7−→ x S−1

7−→ w ∈ Kn ,

where w is the signature. Inverting the central map Q is clearly slower than inverting
S, T . While inverting Q with given y, the signer randomly guesses vinegar variables
x̄ = (x1, . . . xv1) and solves (xv1+1, . . . , xv2) by

yv1+1 = ᾱ
(v1+1)
v1+1 xv1+1 + · · ·+ ᾱ(v1+1)

v2
xv2 + β̄

(v1+1)
V1

...

yv1+o1 = ᾱ
(v2)
v1+1xv1+1 + · · ·+ ᾱ(v2)

v2
xv2 + β̄

(v2)
V1

.

(1)

Here (β̄(v1+1)
V1

, . . . , β̄
(v2)
V1

) is evaluated as quadratic forms in x̄. This is obtained from
evaluation of secret-quadratic equations with secret values x̄ and the matrix

ᾱ
(k)
i · · · ᾱ

(k)
i′

. . .
ᾱ

(k′)
i ᾱ

(k′)
i′

 , where i, i′ and k, k′ ∈ O1 ,

which we call matVO(x̄). If matVO(x̄) is a singular matrix the initial guesses are discarded
and the process is restarted. The signer will repeat this procedure to solve for xi with
i ∈ O2, that is the variables xv2+1, . . . , xn as we have now values of xi for i ∈ V1∪O1 = V2,
using also the values yv2+1, . . . , yn.

6 Rainbow on Cortex-M4

Clearly, the main computation cost of signing is solving linear equations and computing
the matrices matVO(x̄) from vinegar variables x̄, twice.

Note that randomness (vinegar variables and salt) is generated using AES counter
mode according to the spec, with every byte sampled providing two random F16 elements.

2.2.5 Variations on the Basic Rainbow

In NIST round 2 and 3, Rainbow’s authors included circumzenithal and compressed
variants, expanding most of the public key using AES counter mode from a seed, and
storing only parts of the keys not producible in this way. The private key can be derived
from the private matrices S and T and this public key and stored separately. This method,
first appearing in [PBB10], reverses the normal procedure of deriving the public key from
the private key during key generation. Note that a circumzenithal arc or rainbow is a
meteorological phenomenon resembling an inverted rainbow. In the compressed variant,
the entire private key is additionally generated on the fly from the public key seed and
the private seed for S and T . These variations obviously trade key sizes for the time
recomputing keys.

2.3 Cortex-M4
The Cortex-M4 is NIST’s primary microcontroller optimization target for the post-quantum
competition. The Cortex-M4 is a 32-bit processor that implements the ARMv7E-M instruc-
tion set which comes with a number of powerful instructions. For example, the DSP
instructions [KRS19, BMKV20, BFM+18] as well as the single-cycle long multiplication
instructions [GKS20, CHK+21, SJA19] proved to be very beneficial for implementing
post-quantum cryptography.

However, for implementing Rainbow, we mostly rely on instructions that are also
present in the ARMv7-M instruction set (a subset of ARMv7E-M) which is, for example,
implemented by the Cortex-M3 microarchitecture. However, Cortex-M3 cores usually
come with considerably less RAM which makes them arguably less suitable for Rainbow
implementations.

The following features of ARMv7-M are particularly useful for implementing Rainbow:

Conditional execution. The feature benefiting Rainbow the most is conditional execution.
Using the it instruction one can execute up to four instructions conditionally on a flag
value. For example,

ite EQ
addeq r0, r1
addne r0, r2

either adds r1 or r2 to r0 depending on the Z flag (equal) being set or not.
Note that the ARMv7-M manual [ARM18, Section A4.1.2] states that

”If the flags do not satisfy this condition, the instruction acts as a NOP, that
is, execution advances to the next instruction as normal, including any relevant
checks for exceptions being taken, but has no other effect“

Hence, it is safe to use single-cycle instructions with secret-dependent conditions in
constant-time code as the run-time will be one cycle irrespective of the condition flags. In
future ARM architectures it needs to be carefully evaluated if this is still the case. An it
block can consist of up to four instructions of which the first must be the then branch and
the following can be either then or else. The it instruction encodes which instructions
of an it block belong to which branch, e.g., itttt, ittee, and itete. The conditions
that can be used are the same as those for branch instructions (eq, ne, cs, cc, mi, pl,
vs, vc, hi, ls, ge, lt, gt, le) and the flags can be set using arithmetic instructions (e.g.,

Chou, Kannwischer, Yang 7

adds, subs) or explicit comparison instructions (e.g. cmp, tst). The conditions within
an it block must be the same for all instructions (or the opposite for the else branch).
it* instructions takes 1 cycle each on the M4 (unless it is the second of a pair of 2-byte
instructions, which doesn’t happen in our implementations).

Barrel shifting. Standard data-processing instructions (e.g., add, eor, and) allow to have
a flexible second operand, i.e., the second argument can be shifted or rotated without
changing the latency (1 cycle) for each instruction. For example,

add r0, r1, r2, LSL#2
will shift r2 left by two bit positions add it to r1 and store the result to r0. Similarly,
other shifts and rotations can be used (lsr, asr, ror, rrx).

Special immediates. Standard data-processing instructions can also be used with a
constant as a second operand. mov’s are limited to 16 bits immediates 0x0000XYZW while
immediates for other instructions are limited to an 8-bit value 0xXY shifted by some amount,
or the special patterns 0x00XY00XY, 0xXY00XY00, and 0xXYXYXYXY.

3 Implementation Building Blocks
This section introduces the novel implementation approaches that can be used to speed up
Rainbow implementations. Section 3.1 introduces fast bitsliced F16 multiplication which is
useful throughout all aspects of Rainbow. We can speed up the multiplication further by
switching to a direct F16 representation which is described in Section 4. Section 3.2 shows
how we can adapt constant-time F16 matrix inversion to benefit from the fast bitsliced
multiplication. This speeds up the signing procedure of Rainbow and can also be adapted
for F256 parameter sets. Section 3.3 presents a novel approach for evaluating the public
map P which is the core operation of Rainbow verification. We exploit that verification
can run in variable time depending on both the public key and the signature. This also
works for other parameter sets of Rainbow.

3.1 F16 multiplication
The core operation within Rainbow is arithmetic in a finite field. As mentioned before,
for rainbowI parameter sets this field is F16 (for the higher levels it is F256). The F16
representation used within Rainbow is the tower field representation:

F16 := F4[y]/(y2 + y + x)

with

F4 := F2[x]/(x2 + x+ 1)

Hence, an element is represented by four bits ei with e = (e3 · x+ e2) · y + e1 · x+ e0.
These bits are packed into a nibble with e0 at the least significant bit position. Two
elements are packed into a byte with the least significant nibble in the lower half of the
byte.

One approach of multiplying two F16 elements is using Karatsuba multiplication [KO63]
and is, for example, used in the reference implementation of Rainbow. It allows us to
implement a F16 multiplication using three F4 multiplications.

Given a = a1 · y + a0 and b = b1 · y + b0 where ai, bi ∈ F4,

8 Rainbow on Cortex-M4

7 7 7 76 6 6 65 5 5 54 4 4 43 3 3 32 2 2 21 1 1 10 0 0 0r0

15 15 15 1514 14 14 1413 13 13 1312 12 12 1211 11 11 1110 10 10 109 9 9 98 8 8 8r1

23 23 23 2322 22 22 2221 21 21 2120 20 20 2019 19 19 1918 18 18 1817 17 17 1716 16 16 16r2

31 31 31 3130 30 30 3029 29 29 2928 28 28 2827 27 27 2726 26 26 2625 25 25 2524 24 24 24r3

31

31

31

31

23

23

23

23

15

15

15

15

7

7

7

7

30

30

30

30

22

22

22

22

14

14

14

14

6

6

6

6

29

29

29

29

21

21

21

21

13

13

13

13

5

5

5

5

28

28

28

28

20

20

20

20

12

12

12

12

4

4

4

4

27

27

27

27

19

19

19

19

11

11

11

11

3

3

3

3

26

26

26

26

18

18

18

18

10

10

10

10

2

2

2

2

25

25

25

25

17

17

17

17

9

9

9

9

1

1

1

1

24

24

24

24

16

16

16

16

8

8

8

8

0

0

0

0

r0

r1

r2

r3

Figure 1: Bitsliced representation. The upper part denotes 32 elements in standard
representation packed in 4 registers. Numbers denote the index of the field element.
Shades of gray denote the different bits within a F16 element. The lower part denotes the
bitsliced field elements with the least significant bit of each element packed in r0.

a · b = (a1 · y + a0) · (b1 · y + b0)
= (a1 · b1) · y2 + (a0 · b1 + a1 · b0) · y + a0 · b0

= (a1 · b1) · y2 + ((a0 + a1) · (b0 + b1) + a0 · b0 + a1 · b1) · y + a0 · b0

= (a1 · b1) · (y + x) + ((a0 + a1) · (b0 + b1) + a0 · b0 + a1 · b1) · y + a0 · b0

= ((a0 + a1) · (b0 + b1) + a0 · b0) · y + a0 · b0 + a1 · b1 · x

However, this approach is rather slow on 32-bit (or larger) platforms as it utilizes the
available 32-bit arithmetic inefficiently. We, hence, opt for bitslicing the field elements
into four registers and implementing the multiplication using only logic operations. This is
particularly useful when 32 or more F16 elements need to be multiplied by a single F16
elements which is almost always the case in Rainbow.

Bitslicing. As two F16 elements fit into one byte, we can fit eight F16 elements into one
32-bit register. However, we can achieve significantly faster F16 multiplication routines
that run in constant time, when we bitslice the field elements into 4 separate registers
holding a total of 32 elements. To make use of fast bitsliced multiplication, we need a way
of converting a packed nibble representation of F16 elements into a bitsliced representation.
A straightforward approach would load each field element individually, mask out the
desired bit and pack it into the corresponding registers in the same order as the inputs.
However, it is much more efficient to load 32 elements at once into four registers, and
reorganizing the elements in an interleaved fashion as illustrated in Figure 1. Each row
corresponds to a register containing 8 field elements. The colors denote the bit within
the field element where light gray is the least significant bit, while dark gray is the most
significant bit. This approach is similar to the one proposed by Chou for McBits [Cho17].
1 This interleaving can be implemented efficiently in 28 cycles as shown in Appendix B.
The same code can be used for the transformation from bitsliced representation to normal
representation. The correct order of the field elements will be restored when reversing the
bitslicing. Note that addition in F16 is bitwise XOR and, hence, behaves the same on the
bitsliced representation.

1We may regard this as computing a transposition of binary matrices.

Chou, Kannwischer, Yang 9

Bitsliced Multiplication. We first consider F4 multiplication, then use it to construct F16
multiplication, and then apply multiple simplifications to achieve a minimal instruction
sequence. There are multiple approaches to arrive at the same instruction sequence, but
we find this description the most intuitive to follow.

F4 multiplication. Recall that a F4 element (F2[x]/(x2 + x+ 1)) is represented by two
bits a0, a1, s.t., a = a1 · x + a0. When multiplying two elements a = a1 · x + a0 and
b = b1 · x + b0, we obtain c = a · b = c1x + c0. As x · x ≡ x + 1, x · (x + 1) ≡ 1, and
(x + 1) · (x + 1) ≡ x (mod x2 + x + 1), it is easy to see that we can compute c0, c1, by
computing

c0 = a0 · b0 + a1 · b1

c1 = a1 · b0 + (a0 + a1) · b1

where · denotes logical AND and + denotes XOR. This can be very efficiently computed
on bitsliced elements.

Constructing F16 multiplication. When multiplying two F16 elements a = (a3 · x+ a2) ·
y + a1 · x+ a0 and b = (b3 · x+ b2) · y + b1 · x+ b0, we can rewrite them by using two F4
elements as a = α1 · y + α0, b = β1 · y + β0 with α0, α1, β0, β1 ∈ F4. We can, thus, write

a · b = (α1 · y + α0) · (β1 · y + β0)
= (α1 · β1) · y2 + (α0 · β1 + α1 · β0) · y + α0 · β0

= (α0 · β1 + α1 · β0 + α1 · β1) · y + α0 · β0 + (α1 · β1) · x
= γ1y + γ0

We can now consider γ0 and γ1 separately and substitute the F4 multiplication.

γ0 = α0 · β0 + (α1 · β1) · x
= (a1 · b0 + (a0 + a1) · b1) · x+ a0 · b0 + a1 · b1+

((a3 · b2 + (a2 + a3) · b3) · x+ a2 · b2 + a3 · b3) · x
= a0 · b0 + a1 · b1 + a3 · b2 + (a2 + a3) · b3+

(a1 · b0 + (a0 + a1) · b1 + a3 · b2 + (a2 + a3) · b3 + a2 · b2 + a3 · b3) · x
= a0 · b0 + a1 · b1 + a3 · b2 + (a2 + a3) · b3+

(a1 · b0 + (a0 + a1) · b1 + (a2 + a3) · b2 + a2 · b3) · x
= c1 · x+ c0

Hence, the least significant bits of the result can be computed as

c0 = a0 · b0 + a1 · b1 + a3 · b2 + (a2 + a3) · b3

c1 = a1 · b0 + (a0 + a1) · b1 + (a2 + a3) · b2 + a2 · b3

10 Rainbow on Cortex-M4

We proceed similarly for γ1:

γ1 = α0 · β1 + α1 · β0 + α1 · β1

= (a1 · b2 + (a0 + a1) · b3) · x+ a0 · b2 + a1 · b3+
(a3 · b0 + (a2 + a3) · b1) · x+ a2 · b0 + a3 · b1+
(a3 · b2 + (a2 + a3) · b3) · x+ a2 · b2 + a3 · b3

= a2 · b0 + a3 · b1 + (a0 + a2) · b2 + (a1 + a3) · b3+
(a3 · b0 + (a2 + a3) · b1 + (a1 + a3) · b2 + (a0 + a1 + a2 + a3) · b3) · x

= c3 · x+ c2

And hence,

c2 = a2 · b0 + a3 · b1 + (a0 + a2) · b2 + (a1 + a3) · b3

c3 = a3 · b0 + (a2 + a3) · b1 + (a1 + a3) · b2 + (a0 + a1 + a2 + a3) · b3

Now that we have established how a · b is calculated, we need to come up with an
instruction sequence that does so efficiently. Consider the most common multiplication
case within Rainbow: We have a large number (≥ 32) of field elements a(i) which are
multiplied by a single field element b and then added to a bitsliced accumulator c(i). This
is, for example, the case in the matrix-vector multiplication. In this case, it is best to
bitslice a(i) and keep b in nibble-sliced representation. For sake of explanation, we assume
that we are multiplying exactly 32 elements a(0), . . . , a(31) which are bitsliced into four
registers. The register containing the least significant bits of a(0), . . . , a(31) is denoted
as a0 = a

(0)
0 , . . . , a

(31)
0 and similarly for a1, . . . , a3 and c0, . . . , c3. b is stored in the least

significant four bits of a register, with b0 denoting the least significant bit.
Algorithm 1 shows the instruction sequence that implements the computation of the

product and accumulates it into c0, . . . , c3. If only a multiplication is needed, but no
accumulation, c0, . . . , c3 first need to be initialized to zero. The instruction sequence
heavily relies on using conditional execution to only execute the additions of ai if certain
bits of b are set. We compute a0 + a1 and a2 + a3 in two separate registers tmp0, tmp1
as those are used both in c1, c3 and c0, c1, c3 respectively. Also, we save another cycle by
storing (b2 · a2) + (b3 · a3) in a temporary register tmp2 and (b2 · a3) + (b3 · (a2 + a3)) in
tmp3 which is required to compute c1, c2 and c0, c1, c3 respectively. Another shortcut that
we have been using is line 16, which is functionally equivalent to computing
mov tmp3, #0
tst b, #4
in a single cycle. In total our instruction sequence requires 32 clock cycles, i.e., one clock
cycle for each field multiplication.

This approach is directly extensible to parameter sets using F256 (RainbowIII and
RainbowV).

3.2 F16 Matrix Inversion
Besides F16 multiplication, the Rainbow signature requires solving two matrix equations.
Since if A−1 exists, Ax = b↔ x = A−1b, we may without much loss of generality consider
matrix inversion as a part of the signing procedure. As it operates on secret inputs, it is
required to be constant-time which is not the case in a straightforward implementation
of Gaussian elimination. We use an adapted version of the constant-time Gauss-Jordan
elimination first presented by Bernstein, Chou, and Schwabe [BCS13]. Rainbow’s constant
time variant is illustrated in Algorithm 2 and is essentially the same as in the Rainbow
reference implementation. However, for an implementation we need to choose how to
implement the field arithmetic.

Chou, Kannwischer, Yang 11

Algorithm 1 F16 Multiply and Accumulate Instruction Sequence
Input: 32 F16 elements bitsliced into a0, a1, a2, a3
Input: 1 F16 element in the least significant nibble of b
Input: 32 F16 elements bitsliced in the accumulator c0, c1, c2, c3
Output: Each of the elements in ai multiplied by b and added to ci

1: tst b, #1
2: itttt ne . conditional exec. if b&1 6= 0
3: eorne c0, c0, a0 . c0 += b0 · a0
4: eorne c1, c1, a1 . c1 += b0 · a1
5: eorne c2, c2, a2 . c2 += b0 · a2
6: eorne c3, c3, a3 . c3 += b0 · a3
7: eor tmp0, a0, a1 . tmp0 = a0 + a1
8: eor tmp1, a2, a3 . tmp1 = a2 + a3
9: tst b, #2
10: itttt ne . conditional exec. if b&2 6= 0
11: eorne c0, c0, a1 . c0 += b1 · a1
12: eorne c1, c1, tmp0 . c1 += b1 · (a0 + a1)
13: eorne c2, c2, a3 . c2 += b1 · a3
14: eorne c3, c3, tmp1 . c3 += b1 · (a2 + a3)
15: mov tmp2, #0
16: ands tmp3, tmp2, b, lsr #3 . Set tmp3=0; set cs flag if b&4 6= 0
17: itttt cs . conditional exec. if b&4 6= 0
18: eorcs tmp2, tmp2, a2 . tmp2 = b2 · a2
19: eorcs tmp3, tmp3, a3 . tmp3 = b2 · a3
20: eorcs c2, c2, a0 . c2 += b2 · a0
21: eorcs c3, c3, a1 . c3 += b2 · a1
22: tst b, #8
23: itttt ne . conditional exec. if b&8 6= 0
24: eorne c2, c2, a1 . c2 += b3 · a1
25: eorne c3, c3, tmp0 . c3 += b3 · (a0 + a1)
26: eorne tmp2, tmp2, a3 . tmp2 = b2 · a2 + b3 · a3
27: eorne tmp3, tmp3, tmp1 . tmp3 = b2 · a3 + b3 · (a2 + a3)
28: eor c0, c0, tmp3 . c0 += b2 · a3 + b3 · (a2 + a3)
29: eor c1, c1, tmp2 . c1 += b2 · a2 + b3 · a3
30: eor c1, c1, tmp3 . c1 += b2 · a3 + b3 · (a2 + a3)
31: eor c2, c2, tmp2 . c2 += b2 · a2 + b3 · a3
32: eor c3, c3, tmp3 . c3 += b2 · a3 + b3 · (a2 + a3)

12 Rainbow on Cortex-M4

Algorithm 2 Matrix inversion using constant-time Gaussian elimination (for us F = F16)
Input: Matrix A ∈ Fo×o

Output: Inverse A−1 ∈ Fo×o

Output: fail ∈ {0, 1}, 1 if A is not invertible
1: A′ ← (A|Io) ∈ Fo×2·o

2: fail← 0
3: for i← 0, . . . , o− 1 do
4: for j ← i+ 1, . . . , o− 1 do . make sure A′i,i 6= 0
5: p← A′i,i
6: for k ← i, . . . , 2 · o− 1 do
7: if p = 0 then A′i,k ← A′i,k +A′j,k . needs to be constant-time
8: if A′i,i = 0 then fail← 1 . needs to be constant-time
9: p−1 ← A′−1

i,i . constant-time inversion in F
10: for k ← i, . . . , 2 · o− 1 do . normalize row i→ A′i,i = 1
11: A′i,k ← p−1 ·A′i,k
12: for j ← 0, . . . , o− 1 do . subtract from other rows → A′j,i = 0
13: if j = i then continue
14: for k ← i, . . . , 2 · o− 1 do
15: A′j,k ← A′j,k +A′j,i ·A′i,k
16: (Io|A−1)← A′

17: return A−1, fail

Field inversion. For F16 inversion (line. 9) the most efficient implementation uses a
constant-time table look-up. As the number of possible input values is small (16), we can
pack the look-up table (16 ·4 bit) into the 16-bit immediate arguments of 4 mov instructions
and then select the right bits by shifting them into the right place. The code for the F16
representation used in Rainbow is shown in Algorithm 3. For larger fields (e.g., F256) this
approach does not work, and one would rather store a table in flash memory, loop through
it, and conditionally select the right element. For a = 0, the inverse doesn’t exist and
special treatment is needed, i.e., the entire matrix inversion fails and fail = 1. In that
case, the matrix gets discarded and one samples a new set of vinegar variables.

Note that a field element at index i can be efficiently retrieved from a packed matrix
representation (starting at address a) using the following instruction sequence:

lsrs i, i, #1

Algorithm 3 15 cycle table lookup to a 16 element look-up table encoded into the
immediate arguments of 4 mov instructions. The i-th bit of each constant encodes one bit
of the inverse of i. For example, the inverse of yx+ y + x+ 1 (encoded as 0xF) is y (0x4),
i.e., the 15-th bit is only set in the third constant (0xFA30).
1: movw t, #0x58D6
2: lsr.w einv, t, e
3: and.w einv, #1
4: movw t, #0x2B9C
5: lsr.w t, t, e
6: and.w t, #1
7: orr.w einv, einv, t, lsl #1
8: movw t, #0xFA30

9: lsr.w t, t, e
10: and.w t, #1
11: orr.w einv, einv, t, lsl #2
12: movw t, #0x65F0
13: lsr.w t, t, e
14: and.w t, #1
15: orr.w einv, einv, t, lsl #3

Chou, Kannwischer, Yang 13

a00 a01 . . . a0o 1 0 . . . 0
a10 a11 · · · a1o 0 1 . . . 0
...

...
ao0 . . . aoo 0 . . . 1

1 0 . . . 0 b00 b01 . . . b0o

0 1 . . . 0 b10 b11 · · · b1o

...
...

0 . . . 1 bo0 . . . boo

bitsliced bitsliced

constant-time Gaussian elimination, b = a−1

Figure 2: Partially bitsliced inversion. Input is in normal representation. Output is in
bitsliced representation.

ldrb pivot, [a, i]
ite cs
lsrcs pivot, pivot, #4
andcc pivot, pivot, #0xF

Field multiplication. The optimal choice for implementing F16 multiplication is less
obvious. To achieve the fastest multiplication one would want to keep the entire extended
matrix A′ in bitsliced representation. However, when making sure that the pivot element
is not zero in lines 4 to 7 and when inverting the pivot element in line 9, one needs to
access individual field elements which is tedious and inefficient when working on a bitsliced
matrix. Hence, it is faster to keep the matrix in normal (packed nibble-) representation,
only perform the bitslicing ad hoc just before multiplying and convert back just after. It
is notable, that that individual element accesses only occur to the left half of the matrix.
Hence, we can bitslice the right half and keep it bitsliced throughout the computation.
This is illustrated in Figure 2. As the output of the matrix inversion is always the input
to matrix multiplication, it is possible to return the bitsliced inverse.

An additional speed-up is achieved by letting the inner loops in line 6 and line 14
always start at k = 0. This does not change the result, but greatly simplifies the loop
control and the overhead of accessing the packed elements. Overall, this results in a small
speed-up even though the number of additions and multiplications is slightly increased.

Avoiding matrix inversion As the inverse of the matrix is multiplied by the variables
y directly after inversion and is not used at any other point in the Rainbow signature
generation, one can also eliminate the matrix inversion and simply solve for x in Ax = y.
The Gaussian elimination proceeds similar to Algorithm 2, but one cannot benefit from
bitslicing the right part of the matrix. This approach is 33 000 cycles faster than inverting
the matrix first and then multiplying. Unfortunately, according to the Rainbow specification
the vinegar variables and the matrix are sampled from the same PRG. In the first layer, a
new matrix is sampled until it is invertible before the vinegar variables of the second layer
are sampled. If one wants to merge these steps one would have to change the way the
matrix and variables are sampled or would have to roll back the PRG in case the matrix
is not invertible before sampling another matrix. Therefore, we only use this approach to
eliminate the inversion in the second layer of Rainbow.

3.3 Evaluating the Public Map P
One of the key advantages of Rainbow, is a very simple verification procedure: One applies
the public map P to the signature z and verifies that the result matches the (randomized)
hash of the message. The application of P consists of the substitution of the variables

14 Rainbow on Cortex-M4

Algorithm 4 Traditional way of computing
the public map P
Input: Public Key A ∈ F((n

2))×m in Macaulay
form
Input: Variables z ∈ Fn

Output: P(z) ∈ Fm

1: h ∈ Fm ← 0
2: for i← 0, . . . , n− 1 do
3: for j ← i, . . . , n− 1 do
4: t ∈ F← zi · zj

5: for k ← 0, . . . ,m− 1 do
6: hk ← hk +Ai,j,k · t

return h

Algorithm 5 Our way of computing public
map P in variable time
Input: Public Key A ∈ F((n

2))×m in Macaulay
form
Input: Variables z ∈ Fn

Output: P(z) ∈ Fm

1: h′ ∈ F|F|×m ← 0
2: for i← 0, . . . , n− 1 do
3: for j ← i, . . . , n− 1 do
4: t ∈ F← zi · zj

5: for k ← 0, . . . ,m− 1 do
6: h′t,k ← h′t,k +Ai,j,k

7: h← h′1
8: for t ∈ F \ {0, 1} do
9: for k ← 0, . . . ,m− 1 do
10: hk ← hk + h′t,k · t

return h

z1, ..., zn into the system of equations represented by the public key. The public key is
stored as a Macaulay matrix A ∈ F((n

2))×m which allows us to sequentially load it exactly
once while processing the variables.

Macaulay matrix indexing. Here, by writing the index set as
((

n
2
))
×m we mean that the

indices in Ai,j,k satisfy 0 ≤ i ≤ j < n, 0 ≤ k < m.
The standard procedure to compute P (which can be in constant time) is illustrated

in Algorithm 4 and requires
((

n
2
))
·m+

((
n
2
))
field multiplications. The documentation of

the UOV-derived NIST submissions [DCK+20a, BPSV19, SPK17] each describe some
variation of this.2

However, we propose a different and much more efficient way to compute the public
map only requiring (|F| − 2) ·m +

((
n
2
))
multiplications. This method is not mentioned

in previous documents describing UOV-based MQ systems. Our modified procedure for
computing P is illustrated in Algorithm 5. One key observation is that we do not need
the verification to have a runtime that is independent of the inputs as both the signature
and the public key are considered public. Therefore, we propose to use one accumulator
(of m field elements) for each possible value of the monomial zi · zj . The corresponding
column of the matrix A is then added to the accumulator corresponding to the value of
zi · zj . This obviously may leak the value of zi · zj through a cache timing side-channel,
but that does not need to concern us. The computation of the monomials within the loop
costs

((
n
2
))
multiplications. In the very end, we combine the accumulators by multiplying

each of them with the corresponding F16 element requiring (|F| − 2) ·m multiplications
as multiplications by 0 and 1 are trivial. This allows a massive speed-up at the cost of
additional memory large enough to hold |F| ·m field elements (or (|F| − 1) ·m if one omits
the buffer for zi ·zj = 0.) In the case of rainbowI, the additional memory of 16 ·64/2 = 512
bytes is negligible. For the larger parameter sets using F256 this approach is probably
still worthwhile on some platforms. For rainbowIII (m = 80) and rainbowV (m = 100),
256 · 80 = 20 480 bytes and 256 · 100 = 25 600 bytes are required respectively.

2Note that the secret MQ evaluation we used during signing is performed like it was in [DCK+20a],
which uses a separate buffer in the inner two loops and only multiplies by zi outside these loops, because
multiplying a vector is much faster than multiplying individual elements. In addition, we accelerated
multiplications as in the previous section.

Chou, Kannwischer, Yang 15

One could further reduce the number of multiplications to (log2(|F16|)− 1) ·m = 3 ·m
by instead doing more additions. First, we sum up the accumulators corresponding to the
elements that have the least significant bit is set, i.e., 1, x+1, y+1, y+x+1, yx+1, yx+x+
1, yx+y+1, yx+y+x+1. Then, we sum up the accumulators corresponding to the elements
that have the second bit set (x, x+ 1, y + x, y + x+ 1, y + x, y + x+ 1, yx+ x, yx+ x+ 1),
multiply the sum by x, and then added to the first sum. Similarly, we proceed for the
other two bits corresponding to y, and yx. That approach is then similar to the one by
Cheng, Chou, Niederhagen, and Yang [CCNY12, Sec. 3.1]. However, we chose not to
implement this trick as the performance gain is negligible and the final multiplications
already take less than 1% of our total run-time.

Instead, as variable run-time is of no concern, we can further improve the procedure:

F16 Multiplication using LUTs. As the signature z is public, we may use look-up tables to
compute the F16 multiplications. This is particularly useful when individual field elements
are to be multiplied when computing the monomials zi · zj as those multiplications are
tedious to bitslice. We replace those multiplications by a look-up to a 256 element look-up
table. For efficiency, we do not pack the elements in the look-up table and it, consequently,
occupies 256 bytes in the case of F16. For the multiplications of the accumulators in the
end, we stick with bitsliced multiplications as those bulk multiplications outperform table
look-ups.

Skipping parts of the public key. Whenever zi · zj = 0, the corresponding entries in A
have no impact on the result h. This is the case when either zi = 0 or zj = 0. When
zj = 0, the inner loop can be skipped saving load, addition, and store operations of m field
elements. Even more importantly, when zi = 0, both inner loops can be skipped which
saves (n− i) ·m operations. The additional cost of branching depending on the variables
is by far outweighed by the savings: Processing one column takes 37 cycles (3 cycles for
multiplication using a LUT, 18 cycles load of accumulator and column, 8 cycle addition,
and 8 cycle store.) Checking for zj = 0 in the inner loop costs two cycles (cmp, beq). As
it is expected to skip the computation in 1

16 of cases, implementing the check pays off
slightly. For the outer loop, the speed-up is more pronounced as we skip n/2 = 50 columns
on average. This saves more than 1850 cycles and is expected to happen for every 16th
execution, i.e., saving significantly more than the 2 cycles needed for the check.

4 Alternative F16 Representation
In addition to F16 tower field representation as mandated by the Rainbow specification,
we have also experimented with using the direct representation F16 = F2[x]/(x4 + x+ 1).
By switching to that representation one can implement bitsliced multiplication using the
instruction sequence presented in Algorithm 6. This sequence needs only 27 cycles (one
cycle per instruction) compared to 32 cycles for the multiplication for the tower field
representation.

Unfortunately, Rainbow keys, signatures, and all values sampled in the signing procedure
are using the tower field representation and one would have to convert to and from the
direct representation to make use of Algorithm 6. The conversion can only be done
by multiplication by a 4 × 4 bit matrix while bitsliced. This conversion outweighs the
performance gain from faster multiplication.

Consequently, the only way to benefit from this more efficient representation is to
change the Rainbow specification to use F2[x]/(x4 + x+ 1) everywhere. For a Cortex-M4
implementation, there is no benefit to use the tower field implementation and a change of
the specification would only make it faster. Clearly, the same is the case for other bitsliced
implementations which are likely to be used on other microcontroller platforms. For

16 Rainbow on Cortex-M4

Algorithm 6 Bitsliced Multiply and Accumulate for F16 = F2[x]/(x4 + x+ 1)
Input: 32 F16 elements bitsliced into a0, a1, a2, a3
Input: 1 F16 element in the least significant nibble of b
Input: 32 F16 elements bitsliced in the accumulator c0, c1, c2, c3
Output: Each of the elements in ai multiplied by b and added to ci

1: eor tmp0, a0, a3
2: eor tmp1, a2, a3
3: eor tmp2, a1, a2

4: tst b, #1
5: itttt ne
6: eorne c0, c0, a0
7: eorne c1, c1, a1
8: eorne c2, c2, a2
9: eorne c3, c3, a3

10: tst b, #2
11: itttt ne
12: eorne c0, c0, a3
13: eorne c1, c1, tmp0
14: eorne c2, c2, a1
15: eorne c3, c3, a2

16: tst b, #4
17: itttt ne
18: eorne c0, c0, a2

19: eorne c1, c1, tmp1
20: eorne c2, c2, tmp0
21: eorne c3, c3, a1

22: tst b, #8
23: itttt ne
24: eorne c0, c0, a1
25: eorne c1, c1, tmp2
26: eorne c2, c2, tmp1
27: eorne c3, c3, tmp0

AVX2 implementations (e.g., the one from [DCK+20a]) a change of the field representation
does not have any impact on performance as field multiplication is implemented using
constant-time table lookups. Hence, we argue that the Rainbow specification should be
changed to use the direct representation for F16 and F256.

When changing the field representation, one also has to update the lookup tables
for the inverse described in Section 3.2 and the variable-time multiplication described in
Section 3.3. Besides that, all other parts of Rainbow remain the same.

5 Results
This section presents the results when applying the optimization presented in this paper to
the reference implementation that is part of the Rainbow submission package [DCK+20a].

Platform. Due to Rainbow’s large keys, we use the somewhat non-standard microcon-
troller EFM32GG11B3 which is part of Silicon Labs’ Giant Gecko Starter Kit. It comes with
512 kB of RAM and 2 MiB of flash memory. The core can run at a frequency of up to 72
MHz. It comes with a TRNG which we use to obtain the required randomness in Rainbow.
Another feature of the EFM32GG11B that makes it an attractive target for post-quantum
cryptography is that it comes with a cryptography accelerator supporting AES128, AES256,
SHA-1, SHA256, and 256-bit multiplication. Section 5.2 presents how using the AES256 and
SHA256 changes the performance of our implementations.

SHA2 and AES256. For hashing Rainbow uses SHA2. We use the SHA2 implementation from
SUPERCOP4. Additionally, Rainbow uses AES256 extensively for expanding matrices from
a random seed. We use the bitsliced implementation5 by Adomnicai and Peyrin [AP20].

Benchmarking. We base our benchmarking on the testing and benchmarking framework
pqm4 [KRSS]. As pqm4 is built for the STM32F407, we adapt their hardware abstraction
layer to support the Giant Gecko. We use the arm-none-eabi-gcc compiler version 10.2.0
and compile with -O3. We do not run the Giant Gecko at the maximum frequency, but

3The full name of core is EFM32GG11B820F2048GL192.
4https://bench.cr.yp.to/supercop.html
5https://github.com/aadomn/aes

https://bench.cr.yp.to/supercop.html
https://github.com/aadomn/aes

Chou, Kannwischer, Yang 17

instead, down-clock it to 16 MHz and configure it to have zero wait states when fetching
instructions and data from flash memory. This ensures that the resulting cycle counts are
comparable to the ones produced by pqm4 on the STM32F407. Similar to pqm4, we use
the built-in SysTick timer to count cycles. As the EFM32GG11B is not commonly used in
the literature, we perform experiments to confirm that the timing behavior is comparable
to the STM32F407. We benchmarked the schemes from pqm4 [KRSS] and found a very
small cycle count difference of less than 1%.

5.1 RainbowI with and without precomputation
Table 2 contains the performance results obtained on the EFM32GG11B. The runtime
of our implementation of verification heavily depends on the signature as explained in
Section 3.3. Signing also has varying run-time depending on how many attempts are
needed until the matrix inversion succeeds. Hence, we run 10 000 iterations of signing and
verification (with different messages) and report the average. For comparison, we report
the performance results of Moya Riera [MR19] for the round 2 parameters. Despite the
larger parameters, we achieve a reduction in cycle counts by 27%, 47%, and 85% for key
generation, signing, and verification respectively. For reference for the other parameter
sets, we also report the cycle counts for the C implementation that is part of the Rainbow
submission package [DCK+20a].

According to the specification, the Rainbow secret key is stored in nibble-packed
representation. In our implementation, for each part of the secret key, the first step
is to convert it to bitsliced representation. This change of representation can also be
precomputed. We include the precomputation in the key generation, but it could also
be implemented differently. This saves around 187 000 cycles for signing. However, this
makes the secret key representation implementation-specific and platform-specific (due to
Endianness) which may not be desirable. For rainbowIcompressed, this approach does
not work as the secret key only consists of a seed that is used to re-sample the secret
key during signing. One could also consider precomputing the bitsliced representation
of the public key. However, this would only result in negligible speed-up due to the
optimized verification algorithm that uses very few multiplications. Additionally, having
an implementation-specific public key representation appears even less enticing.

The results for the alternative F16 representation described in Section 4 are also shown
in Table 2. It consistently reduces the runtime by up to 7% for signing.

Table 3 presents the stack requirement and code size of our implementations. As we
do not use any dynamically allocated memory, all intermediate variables are included in
the stack. It does not include keys, the message, and the signature as those are allocated
by the calling code. We measure the stack consumption by writing a fixed value to each
byte of the stack, running the procedure and then checking how much of the stack has
been overwritten.

For obtaining the code-size, we run arm-none-eabi-size on the binary that includes
all the code required to execute, i.e., we strip out all unused code. However, this includes
the platform code and we, hence, subtract 21 kB to obtain the code-size of the Rainbow
code. We additionally report the code size when only a part of the signature scheme
is needed. If used by the procedure, the code size includes 5 kB for AES256 and 8 kB
for SHA256. SHA256 is only used in signing and verification. AES256 is only used in key
generation, signing, and for circumzenithal verification (rainbowIcircumzenithal and
rainbowIcompressed).

Optimizing RAM and code size is not the primary target for our work; we merely report
them for completeness. classic inherently provides competitive memory consumption
for signing and verification. circumzenithal and compressed require significantly more
RAM. However, one needs to take into account that they also have smaller keys. For
example, circumzenithal public keys are almost 100 kB smaller than classic public

18 Rainbow on Cortex-M4

Table 2: Performance of RainbowI parameter sets on ARM Cortex-M4. Cycle counts
are obtained on the EFM32GG11B running at 16 MHz. For signing and verifica-
tion, the cycle counts are the average of 10 000 executions. For rainbowIclassic and
rainbowIcircumzenithal, signing can be sped up by precomputing the bitsliced secret
key. We include the precomputation in the key generation.

clock cycles
parameter set w/o precomp. w/ precomp.

[MR19]
K: 134 354k

rainbowIclassic S: 1 815k
(Round 2) V: 1 619k

rainbowIclassic

ref.
K: 417 316k
S: 5 433k
V: 3 529k

This work
K: 98 431k K: 98 691k
S: 957k S: 770k
V: 239k V: 238k

This work
K: 94 584k K: 94 845k

rainbowIclassic S: 907k S: 719k
F16 = F2[X]/(X4 +X + 1) V: 238k V: 238k

rainbowIcircumzenithal

ref.
K: 462 322k
S: 5 422k
V: 27 965k

This work
K: 107 639k K: 107 899k
S: 955k S: 769k
V: 12 903k V: 12 903k

This work
K: 103 343k K: 103 604k

rainbowIcircumzenithal S: 902k S: 717k
F16 = F2[X]/(X4 +X + 1) V: 12 902k V: 12 902k

rainbowIcompressed

ref.
K: 462 387k
S: 217 061k
V: 27 968k

This work
K: 107 711k
S: 56 643k
V: 12 903k

This work
K: 103 415k

rainbowIcompressed S: 54 778k
F16 = F2[X]/(X4 +X + 1) V: 12 902k

Chou, Kannwischer, Yang 19

Table 3: Stack consumption and code size of our Rainbow M4 implementation.

parameter set stack [bytes] code size [kB]

rainbowIclassic

K: 40 696 K: 36
S: 4 052 S: 32
V: 812 V: 12

all: 56

rainbowIcircumzenithal

K: 142 304 K: 27
S: 4 052 S: 32
V: 20 156 V: 22

all: 51

rainbowIcompressed

K: 245 976 K: 27
S: 224 240 S: 43
V: 20 156 V: 22

all: 53

keys. If keys reside in RAM, circumzenithal outperforms classic in terms of RAM
consumption. Clearly, more RAM efficient implementations are possible, and it is an
interesting area of future work.

5.2 Hardware Acceleration for SHA2 and AES

Symmetric cryptography is at the core of virtually all post-quantum cryptography schemes
often making up the majority of cycles [KRSS] (e.g., up to 80% for Kyber [ABCG20], 81%
for Dilithium [GKS20]). We report the cycles for our Rainbow implementations (with
precomputation) in Table 4. When using software implementations for AES and SHA2, we see
that for rainbowIclassic only 10% of signing and 4% of verification are spent in hashing.
This looks very differently for circumzenithal verification (rainbowIcircumzenithal and
rainbowIcompressed) where 92% are spent in symmetric primitives.

Interestingly, the Giant Gecko provides hardware support for the symmetric cryp-
tography needed by Rainbow. We, hence, also report results using the hardware accel-
erator. This provides a vast speed-up for verification of rainbowIcircumzenithal and
rainbowIcompressed of 13×. For rainbowIclassic the speed-up is less notable.

5.3 Comparison to other Post-Quantum Signature Schemes

Table 5 compares our rainbowIclassic implementation with the other to NISTPQC
signature finalists: Dilithium [BLD+20] and Falcon [FHK+20]. Both have been optimized
for the Cortex-M4 [GKS20, Por19]. The results shown are taken from the corresponding
publications and have been obtained by benchmarking on the STM32F407. However, as
the EFM32GG11B timings are very close, the results are comparable to ours.

For our implementation, we report the one with software implementations of AES and
SHA256. Interestingly, both Falcon and Dilithium signing benefit from precomputation as
well. For all implementations, precomputation is included in the key generation cycles.

Our implementation of rainbowIclassic signing is 4× faster than the state of the
art Dilithium2 implementation and 4× faster than Falcon-512. Verification is 5× than
Dilithium2 and 2× faster than Falcon-512. Consequently, our implementation of Rainbow
on the Cortex-M4 is by far the fastest among the finalists of the NISTPQC competition.

20 Rainbow on Cortex-M4

Table 4: Hashing results for our implementations with precomputation. We report the
cycles spent in AES and SHA256 combined. We report both software results, and results
using the hardware accelerator of the Giant Gecko.

parameter set AES, SHA2 total cc AES+SHA2 cc

rainbowIclassic

sw
K: 98 691k K: 12 451k (13%)
S: 770k S: 78k (10%)
V: 238k V: 9k (4%)

hw
K: 86 490k K: 679k (1%)
S: 697k S: 4k (1%)
V: 230k V: 1k (0%)

rainbowIcircumzenithal

sw
K: 107 899k K: 12 466k (12%)
S: 769k S: 78k (10%)
V: 12 903k V: 12 131k (92%)

hw
K: 95 683k K: 680k (1%)
S: 694k S: 4k (1%)
V: 1 027k V: 664k (65%)

rainbowIcompressed

sw
K: 107 711k K: 12 466k (12%)
S: 56 643k S: 12 544k (22%)
V: 12 903k V: 12 131k (92%)

hw
K: 95 494k K: 680k (1%)
S: 44 355k S: 684k (2%)
V: 1 026k V: 664k (65%)

Acknowledgements
This work has been supported by the European Commission through the ERC Starting
Grant 805031 (EPOQUE). Taiwanese authors were supported by Taiwan Ministry of Science
and Technology Grants 109-2221-E-001-009-MY3 and 109-2222-E-001-001-MY3, Sinica
Investigator Award AS-IA-109-M01, Executive Yuan Data Safety and Talent Cultivation
Project (AS-KPQ-109-DSTCP).

Chou, Kannwischer, Yang 21

Table 5: Comparison to other NIST PQC finalist signature schemes. Signing benefits from
precomputation of a different representation of the secret key compared to the reference
implementation. The precomputation is included in the key generation of the respective
implementations.

scheme implementation precomp. cycle count

dilithium2 [GKS20]

no
K: 1 315k
S: 3 987k
V: 1 259k

yes
K: 2 267k
S: 3 097k
V: 1 259k

falcon-512 [Por19]

no
K: 171 294k
S: 43 302k
V: 504k

yes
K: 187 485k
S: 21 156k
V: 504k

rainbowIclassic This work

no
K: 98 431k
S: 957k
V: 239k

yes
K: 98 691k
S: 770k
V: 238k

22 Rainbow on Cortex-M4

References
[ABB+20] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph

Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas
Hülsing, Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M Lauridsen,
Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld,
Peter Schwabe, and Bas Westerbaan. SPHINCS+. Submission to the NIST
Post-Quantum Cryptography Standardization Project [NIS], 2020. Avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-
M4 optimizations for {R,M} LWE schemes. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2020(3):336–357, Jun. 2020.
https://eprint.iacr.org/2020/012.

[AP20] Alexandre Adomnicai and Thomas Peyrin. Fixslicing AES-like ciphers: New
bitsliced AES speed records on ARM-Cortex M and RISC-V. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2021(1):402–425,
Dec. 2020. https://eprint.iacr.org/2020/1123.

[ARM18] ARM. ARMv7-M architecture reference manual, 2018. https://developer.
arm.com/documentation/ddi0403/ed.

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: fast constant-
time code-based cryptography. In Cryptographic Hardware and Embedded
Systems – CHES 2013, Lecture Notes in Computer Science. Springer-Verlag
Berlin Heidelberg, 2013. Document ID: e801a97c500b3ac879d77bcecf054ce5,
http://cryptojedi.org/papers/#mcbits.

[Beu20] Ward Beullens. Improved cryptanalysis of UOV and Rainbow. Available at
https://eprint.iacr.org/2020/1343, 2020.

[BFM+18] Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and
Martijn Stam. Fly, you fool! Faster Frodo for the ARM Cortex-M4. 2018.
https://eprint.iacr.org/2018/1116.

[BLD+20] Shi Bai, Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lep-
oint, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-
DILITHIUM. Submission to the NIST Post-Quantum Cryptography Standard-
ization Project [NIS], 2020. Available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[BMKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
Time-memory trade-off in Toom–Cook multiplication: an application to
module-lattice based cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(2):222–244, Mar. 2020. https://
eprint.iacr.org/2020/268.

[BPSV19] Ward Beullens, Bart Preneel, Alan Szepieniec, and Frederik Vercautern.
LUOV. Submission to the NIST Post-Quantum Cryptography Standardiza-
tion Project [NIS], 2019. Available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[CCC+08] Anna Inn-Tung Chen, Chia-Hsin Owen Chen, Ming-Shing Chen, Chen-Mou
Cheng, and Bo-Yin Yang. Practical-sized instances of multivariate PKCs:

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/012
https://eprint.iacr.org/2020/1123
https://developer.arm.com/documentation/ddi0403/ed
https://developer.arm.com/documentation/ddi0403/ed
http://cryptojedi.org/papers/#mcbits
https://eprint.iacr.org/2020/1343
https://eprint.iacr.org/2018/1116
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/268
https://eprint.iacr.org/2020/268
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

Chou, Kannwischer, Yang 23

Rainbow, TTS, and `IC-derivatives. In PQCrypto, volume 5299 of Lecture
Notes in Computer Science, pages 95–108. Springer, 2008.

[CCC+09] Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng,
Jintai Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and Bo-Yin Yang.
SSE implementation of multivariate PKCs on modern x86 CPUs. In CHES,
volume 5747 of Lecture Notes in Computer Science, pages 33–48. Springer,
2009.

[CCNY12] Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, and Bo-Yin Yang. Solving
quadratic equations with XL on parallel architectures. In CHES, volume 7428
of Lecture Notes in Computer Science, pages 356–373. Springer, 2012.

[CFM+20] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Perret, and
J. Ryckeghem. GeMSS. Submission to the NIST Post-Quantum Cryptography
Standardization Project [NIS], 2020. Available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for NTT-
unfriendly rings: New speed records for Saber and NTRU on Cortex-M4
and AVX2. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(2):159–188, 2021. https://eprint.iacr.org/2020/1278.

[Cho17] Tung Chou. McBits revisited. In Cryptographic Hardware and Embedded
Systems - CHES 2017, pages 213–231, 2017. https://eprint.iacr.org/
2017/793.

[CLP+18] Ming-Shing Chen, Wen-Ding Li, Bo-Yuan Peng, Chen-Mou Cheng, and Bo-Yin
Yang. Implementing 128-bit secure MPKC signatures. IEICE Transactions,
E101-A(3):553–569, 2018.

[DCK+20a] Jintai Ding, Ming-Shing Chen, Matthias Kannwischer, Jacques Patarin,
Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin Yang. Rainbow.
Submission to the NIST Post-Quantum Cryptography Standardization
Project [NIS], 2020. Available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[DCK+20b] Jintai Ding, Ming-Shing Chen, Matthias Kannwischer, Jacques Patarin, Al-
brecht Petzoldt, Dieter Schmidt, and Bo-Yin Yang. Response to recent
paper by Ward Beullens, 2020. Available at http://precision.moscito.
org/by-publ/recent/response-ward.pdf.

[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial
signature scheme. In Conference on Applied Cryptography and Network
Security — ACNS 2005, volume 3531 of Lecture Notes in Computer Science,
pages 164–175. Springer, 2005.

[DYC+08] Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing Chen, and
Chen-Mou Cheng. New differential-algebraic attacks and reparametrization
of rainbow. In Applied Cryptography and Network Security, volume 5037 of
Lecture Notes in Computer Science, pages 242–257. Springer, 2008. http:
//eprint.iacr.org/2008/108.

[FHK+20] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. Falcon. Submission to the NIST

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/1278
https://eprint.iacr.org/2017/793
https://eprint.iacr.org/2017/793
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
http://precision.moscito.org/by-publ/recent/response-ward.pdf
http://precision.moscito.org/by-publ/recent/response-ward.pdf
http://eprint.iacr.org/2008/108
http://eprint.iacr.org/2008/108

24 Rainbow on Cortex-M4

Post-Quantum Cryptography Standardization Project [NIS], 2020. Avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

[GKS20] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Com-
pact Dilithium implementations on Cortex-M3 and Cortex-M4. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2021(1):1–24,
2020. https://eprint.iacr.org/2020/1278.

[KO63] Anatolii Karatsuba and Yuri Ofman. Multiplication of multidigit numbers on
automata. Soviet Physics Doklady, 7:595–596, 1963. Translated from Doklady
Akademii Nauk SSSR, Vol. 145, No. 2, pp. 293–294, July 1962. Scanned
version on http://cr.yp.to/bib/1963/karatsuba.html.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and
Vinegar signature schemes. In Advances in Cryptology — EUROCRYPT 1999,
volume 1592 of Lecture Notes in Computer Science, pages 206–222. Springer,
1999.

[KRS19] Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster
multiplication in Z2m [x] on Cortex-M4 to speed up NIST PQC candi-
dates. In Applied Cryptography and Network Security, pages 281–301, 2019.
https://eprint.iacr.org/2018/1018.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://
github.com/mupq/pqm4.

[MR19] Joan Moya Riera. Performance Analysis of Rainbow on ARM Cortex-
M4. Bachelor’s thesis, Technische Universität München, 2019. http:
//hdl.handle.net/2117/169145.

[NIS] NIST, the US National Institute of Standards and Technology. Post-quantum
cryptography standardization project. https://csrc.nist.gov/Projects/
post-quantum-cryptography.

[PBB10] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann. Cyclicrainbow
- a multivariate signature scheme with a partially cyclic public key. In
INDOCRYPT, volume 6498 of Lecture Notes in Computer Science, pages
33–48. Springer, 2010.

[Por19] Thomas Pornin. New efficient, constant-time implementations of Falcon.
Cryptology ePrint Archive, Report 2019/893, 2019. https://eprint.iacr.
org/2019/893.

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In FOCS 1994, pages 124–134. IEEE, 1994. https://ieeexplore.
ieee.org/abstract/document/365700.

[SJA19] Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh. SIKE round 2 speed
record on ARM Cortex-M4. In Cryptology and Network Security - CANS,
pages 39–60, 2019. https://eprint.iacr.org/2019/535.

[SPK17] Kyung-Ah Shim, Cheol-Min Park, and Aeyoung Kim. HiMQ-3.
Submission to the NIST Post-Quantum Cryptography Standardization
Project [NIS], 2017. Available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/1278
http://cr.yp.to/bib/1963/karatsuba.html
https://eprint.iacr.org/2018/1018
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
http://hdl.handle.net/2117/169145
http://hdl.handle.net/2117/169145
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://eprint.iacr.org/2019/893
https://eprint.iacr.org/2019/893
https://ieeexplore.ieee.org/abstract/document/365700
https://ieeexplore.ieee.org/abstract/document/365700
https://eprint.iacr.org/2019/535
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Chou, Kannwischer, Yang 25

[Wol04] Christopher Wolf. Efficient public key generation for HFE and variations.
In Cryptographic Algorithms and their Uses - 2004, International Workshop,
pages 78–93. Queensland University of Technology, 2004.

[YC05] Bo-Yin Yang and Jiun-Ming Chen. Building secure tame-like multivariate
public-key cryptosystems: The new TTS. In ACISP 2005, volume 3574 of
Lecture Notes in Computer Science, pages 518–531. Springer, July 2005.

A Toy Example of the Central Map of Rainbow
• K = GF(7), (v1, o1, o2) = (2, 2, 2)

• central map Q = (q(3), q(4), q(5), q(6)) with

q(3) = x2
1 + 3x1x2 + 5x1x3 + 6x1x4 + 2x2

2 + 6x2x3 + 4x2x4 + 2x2 + 6x3 + 2x4 + 5,
q(4) = 2x2

1 + x1x2 + x1x3 + 3x1x4 + 4x1 + x2
2 + x2x3 + 4x2x4 + 6x2 + x4,

q(5) = 2x2
1 + 3x1x2 + 3x1x3 + 3x1x4 + x1x5 + 3x1x6 + 6x1 + 4x2

2 + x2x3 + 4x2x4

+ x2x5 + 3x2x6 + 3x2 + 3x3x4 + x3x5 + 2x3x6 + 2x3 + 3x4x5 + x5 + 6x6,

q(6) = 2x2
1 + 5x1x2 + x1x3 + 5x1x4 + 5x1x6 + 6x1 + 5x2

2 + 3x2x3 + 5x2x5 + 4x2x6

+ x2 + 3x2
3 + 5x3x4 + 4x3x5 + 2x3x6 + 4x3 + x2

4 + 6x4x5 + 3x4x6

+ 4x4 + 4x5 + x6 + 2.

• Goal: Find pre image x ∈ K6 of y = (6, 2, 0, 5) under the map Q

• Choose random values for the Vinegar variables x1 and x2, e.g. (x1, x2) = (0, 1) and
substitute them into the polynomials q(3), . . . , q(6).

q̃(3) = 5x3 + 6x4 + 2, q̃(4) = x3 + 5x4,

q̃(5) = 3x3x4 + x3x5 + 2x3x6 + 3x3 + 3x4x5 + 4x4 + 2x5 + 2x6,

q̃(6) = 3x2
3 + 5x3x4 + 4x3x5 + 2x3x6 + x2

4 + 6x4x5 + 3x4x6 + 4x4 + 2x5 + 5x6 + 1.

• Set q̃(3) = y1 = 6 and q̃(4) = y2 = 2 and solve for x3, x4 ⇒ (x3, x4) = (3, 4)

• Substitute into q̃(5) and q̃(6) ⇒ ˜̃q(5) = 3x5 + x6 + 5, ˜̃q(6) = 3x5 + 2x6 + 1

• Set ˜̃q(5) = y3 = 0 and ˜̃q(6) = y4 = 5, solve for x5 and x6 ⇒ (x5, x6) = (0, 2)

A pre image of y = (6, 2, 0, 5) is given by x = (0, 1, 3, 4, 0, 2).

26 Rainbow on Cortex-M4

B Conversion to bitsliced representation

Algorithm 7 Conversion of F16 elements from normal to bitsliced representation and vice
versa.
Input: 32 F16 elements in a0, a1, a2, a3
Output: Bitsliced F16 elements in b0 (LSB), b1, b2, b3 (MSB)

1: and b0, a0, #0x11111111
2: and t, a1, #0x11111111
3: orr b0, b0, t, lsl#1
4: and t, a2, #0x11111111
5: orr b0, b0, t, lsl#2
6: and t, a3, #0x11111111
7: orr b0, b0, t, lsl#3

8: and b1, a1, #0x22222222
9: and t, a0, #0x22222222
10: orr b1, b1, t, lsr#1
11: and t, a2, #0x22222222
12: orr b1, b1, t, lsl#1
13: and t, a3, #0x222222221
14: orr b1, b1, t, lsl#2

15: and b2, a2, #0x44444444
16: and t, a0, #0x44444444
17: orr b2, b2, t, lsr#2
18: and t, a1, #0x44444444
19: orr b2, b2, t, lsr#1
20: and t, a3, #0x44444444
21: orr b2, b2, t, lsl#1

22: and b3, a3, #0x88888888
23: and t, a0, #0x88888888
24: orr b3, b3, t, lsr#3
25: and t, a1, #0x88888888
26: orr b3, b3, t, lsr#2
27: and t, a2, #0x88888888
28: orr b3, b3, t, lsr#1

	Introduction
	Preliminaries
	Recap of Multivariate Signatures
	Summary of Rainbow
	Cortex-M4

	Implementation Building Blocks
	F16 multiplication
	F16 Matrix Inversion
	Evaluating the Public Map P

	Alternative F16 Representation
	Results
	RainbowI with and without precomputation
	Hardware Acceleration for SHA2 and AES
	Comparison to other Post-Quantum Signature Schemes

	Toy Example of the Central Map of Rainbow
	Conversion to bitsliced representation

