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Abstract. In TCC 2013, Boyen suggested the first lattice based con-
struction of attribute based encryption (ABE) for the circuit class NC1.
Unfortunately, soon after, a flaw was found in the security proof of the
scheme. However, it remained unclear whether the scheme is actually
insecure, and if so, whether it can be repaired. Meanwhile, the construc-
tion has been heavily cited and continues to be extensively studied due
to its technical novelty. In particular, this is the first lattice based ABE
which uses linear secret sharing schemes (LSSS) as a crucial tool to en-
force access control.

In this work, we show that the scheme is in fact insecure. To do so, we
provide a polynomial-time attack that completely breaks the security of
the scheme. We suggest a route to fix the security of the scheme, via the
notion of admissible linear secret sharing schemes (LSSS) and instantiate
these for the class of DNFs. Subsequent to our work, Datta, Komargodski
and Waters (Eurocrypt 2021) provided a construction of admissible LSSS
for NC1 and resurrected Boyen’s claimed result.

1 Introduction

The long-standing problem of Attribute-Based Encryption (ABE) from Learning
with Errors (LWE) was finally resolved in 2013 by two independent works: Gor-
bunov, Vaikuntanathan and Wee [GVW13] provided an ABE for P, and Boyen
provided an ABE for NC1 [Boy13a]. Subsequently, Boneh et al. [BGG+14] also
provided an ABE for arithmetic (rather than Boolean) circuits. These works
marked important progress in the area of lattice based cryptography and have
had many follow-ups and much impact.

Moreover, the techniques used by these works are very different and have led
to generalizations in diverse directions. Here, the construction of Boyen [Boy13a]



was particularly unlike the others since it used linear secret sharing schemes
(LSSS) as a crucial tool. While using LSSS in pairing-based ABE constructions
is common [GPSW06, LOS+10, LW11b], this was the only lattice based ABE
to leverage this tool until the very recent work of Datta, Komargodski and
Waters [DKW21]. To this day, there are several outstanding open problems in
lattice-based ABE that have solutions in the pairings world – notable examples
are ciphertext policy ABE [BSW07, Wat11], adaptive security [LOS+10, OT10,
LW12]. Since pairing-based solutions to these problems make crucial use of the
tool of LSSS, there have been multiple attempts to generalize the construction
by Boyen to resolve these problems.

In this work, we show that Boyen’s ABE construction is insecure, if the scheme
is instantiated by the linear secret sharing scheme specified in the paper. We
provide a polynomial-time attack that completely breaks the security of the
scheme. We examine possible directions to repair the scheme and discuss the
technical challenges in instantiating these for circuit class NC1. Subsequent to
our work, the very recent work of Datta, Komargodski and Waters [DKW21]
instantiated this approach for NC1 and resurrected Boyen’s claimed result.

Since our attack is quite simple, we provide the formal description directly.
We refer the reader to Section 2 for some preliminary definitions, to Section 3
for a recap of Boyen’s scheme, to Section 4 for a formal description of our attack,
and Section 5 for a discussion of possible approaches to fix the construction.

2 Preliminaries

Notation: Let λ ∈ N+ be the security parameter. For a positive integer n, [n]
denotes {1, 2, . . . , n}. A non negative function negl(λ) is negligible if for every
polynomial p(λ), it holds that negl(λ) ≤ 1/p(λ) for sufficiently large λ ∈ N. We
use the notation x $←− X to denote the process of choosing a value x uniformly at
random from distribution X . As usual, PPT stands for probabilistic polynomial-
time.

Statistical distance: The statistical distance between two random variables X
and Y over a finite domain D is defined as

SD(X,Y ) :=
1

2

∑
α∈D

∣∣∣Pr[X = α]− Pr[Y = α]
∣∣∣.

Two random variables are δ-close if SD(X,Y ) ≤ δ. Two distribution ensem-
bles {Xλ}λ∈N and {Yλ}λ∈N are statistically indistinguishable if SD(Xλ, Yλ) is
negligible in λ. We say that these random variables are computationally indis-
tinguishable if for every PPT algorithm A it holds that∣∣∣ Pr

x←Xλ
[A(1λ, x) = 1]− Pr

y←Yλ
[A(1λ, y) = 1]

∣∣∣ ≤ negl(λ).

In the following, let SampZ(γ) be a sampling algorithm for the truncated
discrete Gaussian distribution over Z with parameter γ > 0 whose support is
restricted to z ∈ Z such that |z| ≤

√
nγ.
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2.1 Lattice Preliminaries

For a vector v ∈ Rn, let ‖v‖, ‖v‖∞ denote the Euclidean and sup norm, respec-
tively. For two matrices A and B, [A | B] denotes their vertical concatenation
and [A;B] denotes their horizontal concatenation .

For any (ordered) set S = {s1, · · · , sk} ⊂ Rm of linearly independent vec-
tors, let S̃ = {s̃1, · · · , s̃k} denote its Gram-Schmidt orthogonalization, defined
iteratively as follows: s̃1 = s1, and for each i = 2, · · · , k, the vector s̃i is the
component of si orthogonal to Span(s1, . . . , si−1).

A lattice L of Rn is a discrete subgroup of Rn. We will only consider full-rank
integer lattices, i.e., L spans Rn with real coefficients and L ⊆ Zn. A basis of L
is an ordered set B = (B1, ...,Bn) such that

L = L(B) = B · Zn =
{∑n

i=1 ci ·Bi : ci ∈ Z
}
.

By convention, Bi are column vectors and B · k = k1B1 + · · ·+ knBn, where k
is a column vector.

2.2 Lattice Trapdoors

We list all known results about lattice trapdoors in the following lemma.

Lemma 2.1. Let n,m, q > 0 be integers with q prime. There exists polynomial
time algorithms with the properties below:

TrapGen(1n, 1m, q)→ (A,TA) [Ajt99, AP11, MP12]: A randomized algorithm
that outputs (A,TA) where A ∈ Zn×mq for some m = O(n log q), the distri-
bution of A is 2−n close to uniform, and ‖T̃A‖ ≤ τ0 = O(

√
n log q).

ExtBasis(A,TA,B)→ T[A|B] [CHKP12]: A deterministic algorithm that given
full-rank matrices A ∈ Zn×mq and B ∈ Zn×m̄q and a basis TA of Λ⊥q (A),
outputs a basis T[A|B] of Λ⊥q ([A | B]) such that ‖T̃A‖ = ‖T̃[A|B]‖.

RndBasis(T, τ) → S [CHKP12]: A randomized algorithm that given a basis
T ∈ Zm×m and parameter τ ≥ ‖T̃‖ · ω(

√
log n), outputs a new basis S such

that L(T) = L(S) and ‖S̃‖ ≤ τ ·
√
m.

SamplePre(A, TA, U, σ) → R [GPV08]: A randomized algorithm that given
A ∈ Zn×mq , and a basis TA ∈ Zm×m of Λ⊥q (A), U ∈ Zn×kq , and σ =

‖T̃A‖ ·ω(
√
log n), outputs a random sample R whose row’s distributions are

statistically close to Dσ(Λ
⊥
q (A)) conditioned on A ·R ≡ U (mod q).

2.3 Key-Policy Attribute-Based Encryption

Definition 2.1. A key-policy attribute-based encryption scheme kpABE for a
class of policies F = {Fλ}λ∈N where Fλ = {f : Xλ → {0, 1}} is a tuple (Setup,
Extract,Encrypt,Decrypt) of PPT algorithms with the following properties:

Setup(1λ, U)→ (Pub,Msk): The setup algorithm takes the security parameter λ
and the description of attribute universe U as input and outputs the public
parameters Pub and a master secret key Msk.
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Extract(Pub,Msk,Policy)→ KeyPolicy: The key-generation algorithm takes the pub-
lic parameters Pub, the master secret key Msk, and an access policy Policy ∈
Fλ as input. It outputs a private key KeyPolicy.

Encrypt(Pub,Attrib,Msg)→ CtxAttrib: The encryption algorithm takes as input
the public parameters Pub, a set of attributes Attrib ∈ Xλ, and a message
Msg. The algorithm outputs a ciphertext Ctxx which is an encryption of
message Msg labelled with a set of attributes x.

Decrypt(Pub,KeyPolicy,CtxAttrib)→ Msg/⊥: The decryption algorithm takes as in-
put the public parameters Pub, a key KeyPolicy, a ciphertext CtxAttrib, and
outputs a message Msg or a rejection symbol ⊥.

Correctness: For correctness, we require that there exists a negligible function
negl(λ) such that for all sufficiently large λ ∈ N, for every policy Policy ∈ Fλ, a
set of attributes Attrib ∈ Xλ where Attrib satisfies Policy, and message Msg, it
holds that

Pr

Msg = Msg′

∣∣∣∣∣∣∣∣
(Pub,Msk)← Setup(1λ, U);

KeyPolicy ← Extract(Pub,Msk,Policy);
CtxAttrib ← Encrypt(Pub,Attrib,Msg);

Msg′ ← Decrypt(Pub,KeyPolicy,CtxAttrib)

 ≥ 1− negl(λ)

over the choice of the random coins used in the algorithms.

Security model for key-policy ABE: We review a security model for key-policy
ABE schemes [SW05, GPSW06]. The game-based security model allows the
adversary to query policies for any private keys that cannot be used to decrypt
the challenge ciphertext. The security definition guarantees that the adversary
will choose to be challenged on an encryption to a set of attributes Attrib† and
can ask for any private key for access policy Policy such that Attrib† does not
satisfy Policy. Below is the formal security game.

Definition 2.2 (Selective security).We say that a KP-ABE scheme kpABE =
(Setup,Extract,Encrypt,Decrypt) over a policy space F = {Fλ}λ∈N and a mes-
sage space M = {Mλ}λ∈N is selectively secure if for any PPT adversary A
there exists a negligible function negl() such that

AdvselkpABE,A(λ) :=
∣∣∣Pr [ExpselkpABE,A(λ, 0) = 1

]
− Pr

[
ExpselkpABE,A(λ, 1) = 1

]∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N, the experi-
ment ExpselkpABE,A between the adversary A and a challenger is defined as follows:

1. Target: The adversary submits the challenge set of attributes Attrib†.
2. Setup: The challenger samples (Pub,Msk)← Setup(1λ, U) and gives Pub to

the adversary.
3. Key Query Phase 1: The adversary can adaptively query the challenger

with any function Policy. For each query, the challenger replies with KeyPolicy ←
Extract(Pub,Msk,Policy) as long as Attrib† does not satisfy Policy.
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4. Challenge: The adversary submits a pair of messages (Msg0,Msg1) and the
challenger replies with CtxAttrib† ← Encrypt(Pub,Attrib†,Msgb).

5. Key Query Phase 2: Again, the adversary can adaptively query the chal-
lenger with any function Policy. For each query, the challenger replies with
KeyPolicy ← Extract(Pub,Msk,Policy) as long as Attrib† does not satisfy Policy.

6. Output : The adversary outputs a bit b′ which is defined as the output of
the experiment.

Remark 2.1 (Static Security.). We can consider weaker security notion than the
above selective security that we call static security, where the adversary chooses
the key policies for which it makes the key queries at the beginning of the game
in addition to the target attribute.

2.4 Linear Secret Sharing Scheme

We follow the notion and notation in Beimel’s survey [Bei11].

Definition 2.3 (Access structure [Bei11]). Let P = {P1, P2, · · · , Pn} be a
set of parties. A collection A ⊆ 2{P1,P2,··· ,Pn} is monotone if for any B and C : if
B ∈ A and B ⊂ C then C ∈ A. An access structure (respectively, monotone ac-
cess structure) is a collection (respectively, monotone collection) A of nonempty
subsets of {P1, P2, · · · , Pn}, i.e., A ⊆ 2{P1,P2,··· ,Pn}\{∅}. The sets in A are called
the authorized sets, and the sets not in A are called the unauthorized sets.

In an ABE system, the role of the parties is defined by attributes. An access
structure A in ABE contains the authorized sets of attributes. Unless otherwise
stated, by an access structure we mean a monotone access structure for the rest
of this paper.

Definition 2.4 (Linear secret sharing scheme). A linear secret sharing
scheme Π over a set of parties P consists of an index map ρ and a share gen-
erating matrix L ∈ Z`×(1+θ)

q with ` rows and θ columns. Π specifies the number
of shares ` and θ depends on the structure of Π. For i ∈ [`], the function ρ
maps the i-th row of L to its corresponding party in P denoted by ρ(i). Let
s ∈ Zq be the secret to be shared among the parties. We construct a vector
v = (s, r1, r2, . . . , rθ)

> where r1, r2, . . . , rθ ← Zq. The matrix L maps v to a
vector L · v = (s1, s2, . . . , s`)

> which is a set of the shares of secret s according
to Π. Each party ρ(i) is assigned the share si = (L · v)i.

Every LSSS in the above definition enjoys the linear reconstruction property:
LetΠ be an LSSS for an access structure A. Let S ∈ A be an arbitrary authorized
set, and let I ⊂ [`] be the corresponding index set defined as I = {i ∈ [`] : ρ(I) ∈
S}. We can find a reconstruction vector g = (g1, . . . , g`)

> ∈ Z`q in polynomial
time in the size of L (see, e.g., [Bei11]), such that (a) the support of g is a
subset of I, that is, gi = 0 for all i 6∈ [`] and (b) if {si = (L · v)i}i∈I are valid
shares of a secret s according to Π, we have

∑
i∈I gi · si = s. This means that

g>L = (1, 0, . . . , 0).
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Converting monotone boolean formulas to LSSS matrices and index
functions: We review the algorithm described in [LW11a, Appendix G] for
converting any monotone boolean formula into its equivalent LSSS matrix. This
section is a paraphrase of [LW11a, Appendix G]. We will use (1, 0, 0, . . . , 0) as
the sharing vector for the LSSS matrix.

1. Represent the monotone boolean formula as an access tree, that is, a tree,
where internal nodes denote ∧ and ∨ and leaves denote the variables.

2. Initialize a global counter c.
3. Label the root node of the access tree with the vector (1) (a vector of length

1).
4. Visit each level of the tree following a top-down approach, and in the process

of doing that, mark each node with a vector which is determined by the vector
assigned to its parent node as follows:
– If the parent node is ∨ labelled by the vector v, label its children by v.

Keep the value of c.
– If the parent node is ∧ labelled by the vector v, pad v with 0’s at the

end (if necessary) to make it of length c. Label one of its children with
the vector (v | 1) and the other one with the vector (0c | −1), where
“|” denotes the concatenation and 0c denotes the zero vector of length c.
Next, increment c by one.

5. If the entire tree are labelled, the labels of the leaves form the rows of the
LSSS matrix. If any of these vectors are of different lengths, pad them with
0’s.

Example: We consider the boolean formula P (A,B,C,D) = A∨ (B ∧ (C ∨D)).
The access tree along with the labels (vectors) for each node is shown in Figure
2.1. From the labels of each leaf, we obtain the following LSSS matrix and index
function:

L =


1 0
0 −1
1 1
1 1

 and ρ(i) :=


A if i = 1

B if i = 2

C if i = 3

D if i = 4

,

where first row corresponds to attribute A, second row corresponds to attribute
B and so on. Each subset of the rows of this matrix includes the vector (1, 0) in its
span if and only if the corresponding attributes satisfy the formula P (A,B,C,D) =
A ∨ (B ∧ (C ∨D)). We denote the LSSS by M = (L, ρ).

Requirement on LSSS: First, Boyen’s KP-ABE requires an LSSS matrix and
share to be defined in Z instead of Zq for some prime q. Second, the LSSS
matrix and reconstruction vector to be low norm. Fortunately, the matrix in the
above construction is in {−1, 0,+1}`×(1+θ) and the reconstruction vector in the
above construction is in {0, 1}`.
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∨

∧

∨

DC

B

A

(1), c = 0

(1), c = 0 (1), c = 0

(0,−1), c = 1 (1, 1), c = 1

(1, 1), c = 1 (1, 1), c = 1

Fig. 1: Access tree for P (A,B,C,D) = A ∨ (B ∧ (C ∨D)) with labels

3 Boyen’s KP-ABE scheme

We review Boyen’s KP-ABE scheme for low-norm LSSS [Boy13a]. The following
scheme is a simple version of the scheme in the paper, where it is assumed that
each attribute i appears exactly once on the i-th row of the LSSS matrix. Thus, ρ
is always the identity function. Let ` be the number of attributes and we consider
U = {1, 2, . . . , `}.

Setup(1λ, 1`): Given as input the security parameter 1λ and the length of at-
tributes 1`, do the following:
1. Generate (Ai,Bi) ← TrapGen(1λ) for i ∈ [`]. (Let τ0 be the quality of

Bi.)
2. Generate A← Zn×mq and u← Znq .
3. Output

Pub =
(
{Ai}i∈[`],A0,u

)
and Msk = {Bi}i∈[`].

Extract(Pub,Msk,Policy): Upon input the master public key Pub, the master
secret key Msk and the policy Policy, do the following:
1. Convert policy Policy into a (low-norm, and preferably deterministic)

LSSS L ∈ Z`×(1+θ) assigning the i-th row of L to the attribute of index
i ∈ [`].5

2. Select θ ephemeral matrices Zi ← Zn×mq for i ∈ [θ].

3. Create an ephemeral matrix M := [Mtd |Mext] ∈ Z`n×(`+1+θ)m
q , where

Mtd ∈ Z`n×`mq is a block-diagonal assembly of A1, . . . ,A` and Mext ∈
Z`n×(1+θ)m
q is a “tensor” product of the LSSS matrix L and a random-

ization matrix consisting of Z1, . . . ,Zθ with A0. The structure of M is

5 Boyen does not specify the conversion algorithm.
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shown below:

M =



A1

A2

. . .
A`︸ ︷︷ ︸

Public, constant, from Pub

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1,0 A0

l2,0 A0

...
l`,0 A0︸ ︷︷ ︸
From Pub

l1,1 Z1 . . . l1,θ Zθ

l2,1 Z1 . . . l2,θ Zθ
...

...
l`,1 Z1 . . . l`,θ Zθ︸ ︷︷ ︸

Secret, random, ephemeral


mod q ∈ Z`n×(`+1+θ)m

q

4. Create a trapdoor W for the lattice Λ⊥q (M) using the master secret key
Bi’s as follows: We haveM = [Mtd |Mext], whereMtd := Diag(A1,A2, . . . ,A`),
and its trivial trapdoor B := Diag(B1,B2, . . . ,B`). The algorithm ex-
tends this trivial trapdoor into W by using ExtBasis, that is, W :=
ExtBasis(Mtd,B,Mext).

5. Re-randomizeW into a structure-less short trapdoorK;K← RndBasis(W, τ),
where τ = τ0 · ω(

√
log n).

6. Output the private key KeyPolicy = (K, L).6

Encrypt(Pub,Attrib,Msg ∈ {0, 1}): Upon input the master public key Pub, the
attribute vector Attrib and the message bit Msg, do the following:
1. Construct an encryption matrix F as follows: Define F0 := A0. For
i ∈ [`], let Fi := Ai if i ∈ Attrib and O otherwise. Let

F := [F1 | F2 | · · · | F` | F0] ∈ Zn×(1+`)m
q .

2. Select a random vector s ← Znq and low-norm Gaussian noises e0 ∈ Z
and e1 ∈ Z(1+`)m.

3. Compute

c0 := u> · s+ e0 + bq/2e ·Msg

c1 := F>s+ e1.

4. Output the ciphertext CtxAttrib = (c0, c1).

Decrypt(Pub,KeyPolicy,CtxAttrib): Upon input the master public key Pub, the se-
cret key KeyPolicy and the ciphertext CtxAttrib, do the following:
1. Find a short vector g ∈ Z` satisfying

g>·L =
[
d, 0, . . . , 0

]
for small non-zero d ∈ Z and ∀i ∈ [`] : (gi = 0)∨(i ∈ Attrib).

2. Apply the linear combination g to the block-rows of M to transform M
into a real encryption matrix M′ that matches the encryption matrix F
of the given ciphertext; that is, compute

M′ := (g> ⊗ In) ·M
= [g1A1 | g2A2 | · · · | g`A` | dA0 | O . . .O] ∈ Zn×(`+1+θ)m

q .
6 We omit the two optimizations mentioned in the original scheme. One of the opti-
mizations has a problem, we discuss it in Appendix A.
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3. Let M′′ be the matrix containing only the |Attrib| + 1 non-zero block-
columns of M′. Let K′′ be the matrix obtained by removing from secret
key K the matching rows and columns, i.e., rows and columns with
the same indices as the columns removed from M′. We have M′ ·K ≡
O (mod q), which gives M′′ · K′′ ≡ O (mod q), and K′′ is a basis of
Λ⊥q (M

′′). 7

4. Similarly, let F′′ be the matrix retaining the |Attrib|+ 1 non-zero block-
columns of F, c′′1 be the ciphertext vector from which only the matching
components of c1 remain.

5. Let us define G as

G := Diag(g1, g2, . . . , g`, d)⊗ Im

=


g1Im

. . .
g` · Im

d · Im

 ∈ Z(`+1)m×(`+1)m.

We also define G′′ ∈ Z(|Attrib|+1)m×(|Attrib|+1)m from G by retaining
all non-zero diagonal blocks of G. Since F′′ · G′′ ≡ M′′ (mod q) and
M′′ · K′′ ≡ O (mod q), we have F′′ ·

(
G′′ · K′′

)
≡ O (mod q). Thus

T := G′′ ·K′′ is a trapdoor for sampling short vectors in Λ⊥q (F′′), whose
norm is bounded as ‖T‖ ≤ ‖G′′‖ · ‖K′′‖ ≤ max{g1, . . . , g`, d}‖K′′‖.

6. Using SamplePre with trapdoor T, find a short non-zero vector f ′′ such
that F′′ · f ′′ ≡ u (mod q).

7. Compute v := c0 − (f ′′)> · c′′1 mod q.
8. Output

Msg := b(2/q) · ve mod 2.

Correctness: Recall that we assume that the LSSS matrix and reconstruction
vector are low-norm and can be reconstructed in Z. We analyze two components
of the system

Extract in which the randomized invocation of RndBasis to obtain K. We have
‖K̃‖ ≤ τ ·

√
(`+ 1 + θ)m.

Decrypt in which the calculation of the trapdoor T from K′′, multiplies the
norm of K′′ by a factor ≤ max{g1, . . . , g`, d} that only depends on the linear-
sharing reconstruction vector g, which in turn is a function of policy Policy
and its input attribute vector Attrib.

7 This part in the original description of Boyen’s scheme has a problem. We discuss
this in Appendix A.
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In Decrypt, we find a short solution f ′′ such that F′′ · f ′′ ≡ u (mod q). We
compute

v := c0 − (f ′′)> · c′′1
≡ u> · s+ e0 + bq/2eMsg − (f ′′)> ·

(
(F′′)>s+ e′′1

)
≡ bq/2eMsg + e0 − (f ′′)> · e′′1 (mod q).

Thus, if we bound the error terms, e.g., e0 − (f ′′)> · e′′1 < q/5, we can recover
Msg by computing b(2/q)ve mod 2.

4 Cryptanalysis of Boyen’s KP-ABE Scheme

In this section, we show Boyen’s KP-ABE scheme in the previous section is in-
secure if the LSSS conversion scheme is specified arbitrarily, say, if we use the
conversion scheme by Lewko and Waters [LW11a]. We demonstrate an attack
based on the basis extension technique by Cash et al. [CHKP12], which allows an
adversary to break the static security of KP-ABE. The attack allows an adver-
sary to decrypt the ciphertext encrypted with an unauthorized set of attributes
which does not satisfy the policy. We use an algorithm ExtendRight to obtain the
basis of an extended matrix which will serve as the trapdoor for the encryption
matrix F and allows us to decrypt the ciphertext.

Idea: Let us consider the static security model: The adversary first declares the
challenge set of attributes Attrib†. It also obtains a secret keyK for a policy Policy
of its choice, where Attrib† does not satisfy Policy. Let L be the corresponding
LSSS matrix obtained by the conversion algorithm in Extract. The adversary
carefully crafts Attrib† and Policy so that the spanned space by the submatrix of
L obtained by taking the rows corresponding to Attrib† contains the zero vector.
Let g be the transformation vector such that g>L = 0 and (gi = 0)∨(i ∈ Attrib†)
for all i ∈ [`]. The adversary uses this g to transform the ephemeral matrix
M obtained from LSSS of Policy to the encryption matrix F corresponding to
Attrib† which can be obtained from simple linear combinations of the rows of
M. Along the way, the secret key K that it obtained in the key query phase
also gets transformed into K′. We use ExtendRight to obtain a new trapdoor T
from K′ which is the trapdoor for F. The adversary thus decrypts the challenge
ciphertext in the process.

4.1 Attack Procedure

Let the attributes in the system be U = {1, 2, 3}. To each attribute, we have a
random matrix Ai ∈ Zn×mq associated with it as per the Setup algorithm.
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Step 1: The adversary announces Attrib† = {2, 3} as a challenge set of attributes
and receives the public parameters Pub = (A0,A1,A2,A3,u). The encryption
matrix will look like

F = [ O A2 A3 | A0 ] ∈ Zn×4m
q ,

where A0 ∈ Zn×mq is a randomly chosen matrix sampled during Setup.

Step 2: The adversary submits a key-extract query for a policy P (Attrib) =
1 ∧ (2 ∨ 3), which is unsatisfied by the target set Attrib† = {2, 3} since it lacks
1. The adversary receives a private key KeyP = (K,M) for the policy P which
is generated as follows.

Using the Lewko-Waters conversion, Extract converts the policy P into an
LSSS matrix L, where

L =

1 1
0 −1
0 1

 .
The ephemeral matrix M will be

M :=

A1 A0 Z1

A2 −Z1

A3 Z1

 ∈ Z3n×5m
q ,

where Z1 ∈ Zn×mq is a random matrix sampled in Extract. Extract generates a
short trapdoor for the lattice Λ⊥q (M), randomizes it into a structure-less short
trapdoor K. Thus, K satisfies M ·K ≡ O (mod q) and it is full-rank. For ease
of notation, we divide K into small matrices; Let

K =

K1,1 . . . K1,5

...
. . .

...
K5,1 . . . K5,5

 ,
where Ki,j ∈ Zm×m.

Step 3: The adversary generates a trapdoor T for the lattice Λ⊥q (F) from K.
Notice that g> = (0, 1, 1) helps to transform L into g> · L = 0 and transform
M eventually into the “submatrix” of the encryption matrix F; along the way it
will also help the adversary to obtain a trapdoor T for the lattice Λ⊥q (F) from
the private key K using basis extension technique ExtendRight. Let us now see
how the adversary does that.

Step 3-a: Obtain the trapdoor for [O A2 A3 O O]: Define

M′ := (g> ⊗ In) ·M =
[
O In In

]
·

A1 A0 Z1

A2 −Z1

A3 Z1


=
[
O A2 A3

∣∣ O ∣∣ O ]
.
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Since M ·K ≡ O (mod q), we have

M′ ·K ≡ (g> ⊗ In) ·M ·K ≡ O (mod q). (1)

Let M′′ be the matrix containing only the first three block-columns of M′, that
is, M′′ :=

[
O A2 A3

]
.

Step 3-b: “Shorten” the trapdoor into a trapdoor for [O A2 A3]: We next con-
sider the matrix obtained by removing the last two block-rows of K; i.e., K′ :=[
K1,1 ... K1,5

K2,1 ... K2,5

K3,1 ... K3,5

]
. By the construction, K′ has rank 3m. Thus, the adversary can

take 3m linearly-independent columns from K′; let us denote the columns as
K′′ ∈ Z3m×3m. We note that M′′ ·K′ ≡ O (mod q) and, thus, M′′ ·K′′ ≡ O
(mod q). Since the rank of K′′ (over Z) is 3m, the adversary can compute a
trapdoor K′′′ of Λ⊥q (M′′).

Step 3-c: Extend the trapdoor into a trapdoor for F = [O A2 A3 A0]: The
adversary now use ExtBasis to obtain a basis T for the extended matrix F =
[O A2 A3 | A0] = [M′′ | A0], that is, T := ExtBasis([O A2 A3],K

′′′,A0).

Step 4: Submit two plaintexts Msg0 = 0 and Msg1 = 1 and receives the challenge
ciphertext CtxAttrib† = (c0, c1), where

c0 := u> · s+ e0 + bq/2e ·Msgb

c1 := F>s+ e1.

The adversary can successfully decrypt the challenge ciphertext, since it has the
trapdoor of F: generate a short vector f satisfying F · f ≡ u (mod q); compute
v := c0 − f> · c1 mod q; and output b′ := b(2/q)ve mod 2 as the guess of b.

4.2 Source of Insecurity

The most important problem is that the conversion from policy to LSSS is
unspecified. If we take the suggested conversion scheme in Lewko and Wa-
ters [LW11a], the KP-ABE scheme is insecure as explained. The insecurity stems
from the fact that, if we apply the conversion directly, then the security proof
of [Boy13a, Theorem 5] is incorrect.

The following is a quotation from the extract algorithm simulated by the
challenger [Boy13a, The proof of Theorem 5]:

1. As in the real scheme, derive from Policy a (low-norm) linear sharing
matrix L ∈ Z`×(1+θ).

2. Let φ = Attrib†. Make L′ from L, keeping only the rows of index
i such that i ∈ Attrib†. Make L′′ from L′ by dropping the leftmost
column of index j = 0 (keeping j = 1, . . . , θ).

3. W.l.o.g., suppose that Attrib† = {i1, i2, . . . , iφ} = {1, 2, . . . , φ}; i.e.,
the first φ attributes, from 1 to φ, are arbitrarily assumed to be the
attacker’s targets.

12



4. W.l.o.g., suppose that the φ left-most columns of L′′ form a φ-
dimensional square matrix of full rank. The columns of L from which
L′′ is derived can always be reordered to achieve this, since the order
of its columns (other than that of index j = 0) is arbitrary. No-
tice that this step requires that the challenge Attrib† do not satisfy
the query Policy. If it did, by definition some non-zero [d, 0, . . . , 0]>

would be in the span of L, and thus [0, . . . , 0]> non-trivially in that
of L′′; therefore the φ left-most columns of L′′ would not be full-rank.

The security proof relies on a statement that the shortened LSSS matrix L′′

is full-rank if the challenge attribute does not satisfy the policy. However, we
cannot expect it to be true for general LSSS. Even if the space spanned by the
rows of L′ does not contain a vector (1, 0, ..., 0), L′′ would contain (0, 0, ..., 0) if
rows of L′ are not linearly independent.

5 Discussion on Possible Fixes

In this section, we discuss possible fixes to Boyen’s scheme and their limitations.8
In the presentation slides [Boy13b], Boyen introduced admissible LSSS to rescue
his KP-ABE scheme:9

Definition 5.1 (Admissible LSSS [Boy13b]). An LSSS (L, ρ) for an access
structure A is said to be admissible if for any set of attributes P 6∈ A, any non-
trivial combination of L[IP ] equals to (0, . . . , 0), where IP = {i ∈ [`] : ρ(i) ∈ P}
and L[IP ] is the submatrix whose rows are taken from L according to IP .

This patch ensures that the shortened LSSS matrix L′′ is full-rank in Step 4
of the simulated key-extraction algorithm in the security proof. Therefore, if we
use admissible LSSS, the construction is indeed secure. The problem is whether
we can construct admissible LSSS that is expressive enough.

Fortunately, any (monotone) boolean function can be converted into admis-
sible LSSS as follows:

1. Convert a boolean function into a DNF.
2. Apply the Lewko-Waters conversion.

For example, let us consider the policy P (A,B,C) = A ∧ (B ∨ C).

1. Applying the conversion, we obtain a new DNF P ′(A,B,C) = (A ∧ B) ∨
(A ∧ C).

2. Applying the labeling algorithm, we obtain the labeled tree in Figure 2.

8 As we noted in the introduction, a fix for the scheme is provided by the recent work
[DKW21].

9 Before the presentation at TCC 2013, subset of authors contacted Boyen about the
problem in the proof and an attack.
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∨

∧

CA

∧

BA

(1), c = 0

(1), c = 0 (1), c = 0

(1, 1)
c = 1

(0,−1)
c = 1

(1, 1)
c = 1

(0,−1)
c = 1

Fig. 2: Access tree for P ′(A,B,C) = (A ∧B) ∨ (A ∧ C) with labels

3. We obtain an LSSS M = (L, ρ),

L =


1 1 0
0 −1 0
1 0 1
0 0 −1

 and ρ(i) =


A if i = 1, 3

B if i = 2

C if i = 4

.

Unfortunately, this DNF-then-LW conversion sometimes introduces exponen-
tial blowup even if we restrict boolean functions to be monotone, which means
that the scheme cannot deal with general NC1 circuits. Miltersen, Radhakrish-
nan, and Wegener [MRW05] explicitly constructs a monotone function with a
CNF of size nO(1) whose minimum size DNF has size 2n−Θ(n log logn/ logn), where
the size of CNF denotes the number of clauses in a CNF and the size of DNF
denotes the number of terms in a DNF.

Let cnfsize(f) and dnfsize(f) denote the minimum number of clauses in a
CNF for f and the minimum number of terms in a DNF for f , respectively.
Define the majority function Maj by

Majk(x) :=

{
1 if

∑k
i=1 xi ≥ k/2

0 o.w.
.

We now that cnfsize(Majk) ≤ dnfsize(Majk) =
(

k
dk/2e

)
. For our case, we only need

k = 2; Maj2(x1, x2) = x1 ∨ x2 and cnfsize(Maj2) = 1 and dnfsize(Maj2) = 2.

Theorem 5.1 ([MRW05]). Suppose 1 ≤ k ≤ N . Let the set of N variables
{x1, . . . , xN} be partitioned into ` = dN/ke sets S1, . . . , S` with |Si| = k for
i < `. The function hk,N : {0, 1}N → {0, 1} is defined as follows:

hk,N (x) =
∧̀
i=1

Maj(xj : j ∈ Si).
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Then, we have

cnfsize(hk,N ) ≤ dN/ke ·
(

k

dk/2e

)
and dnfsize(hk,N ) ≥

(
k

dk/2e

)bN/kc
.

Let us consider h2,2`(x) =
∧`
j=1(x2j−1 ∨ x2j) for some `, which is CNF

and monotone. Through the Lewko-Waters conversion, we can obtain the LSSS
matrix corresponding to h2,2` and we have L ∈ Z2`×`. However, the DNF size of
h2,2` is at least

(
2
1

)2`/2
= 2` according to the above theorem. Thus, if we apply

the DNF-then-LW conversion to h2,2`, then the number of rows of the obtained
LSSS matrix is at least 2`.
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A Incorrect Decryption and Optimization

We comment on issues in the original description of Boyen’s scheme. The first
problem is with optimization for the scheme noted by him in order to make
the secret keys short. If we apply the optimization to the scheme described in
Sec. 3, the scheme may loose correctness in some cases. The second problem is
with the decryption. Similar to the above case, we cannot guarantee correctness
of the scheme if the decryption algorithm works as specified. In both cases, the
problem stems from the fact that a submatrix of a full-rank matrix needs not
be full-rank as well and can be fixed by small change.

On the optimization and decryption: In Step 5 of Extract, Boyen wrote as follows:

5. A redundant form of the policy-based private key may be output, as,
Key = (K, L). However, two optimizations can be made:
(a) If the sharing matrix L is deterministic in Policy, it may be omitted.
(b) It is not necessary to transmit all of K since the decryptor will only

ever need the upper-left quadrant of dimension (`+1)m× (`+1)m,
which we denote by K′ ∈ Z(`+1)m×(`+1)m.

Hence, the private key for Policy may be given in compressed form, as,
Key = K′.

In Step 3 of Decrypt, Boyen wrote as follows:

3. Let M′′ be the matrix containing only the |Attrib|+1 non-zero block-
columns of M′. Let K′′ be the matrix obtained by removing from secret
key K the matching rows and columns, i.e., rows and columns with the
same indices as the columns removed from M′. We have M′ · K ≡ O
(mod q), which gives M′′ ·K′′ ≡ O (mod q), and K′′ is a short trapdoor
of Λ⊥q (M′′).

If we apply this optimization (b), then our attack fails. On the other hand,
a proper decryptor also fails to decrypt a ciphertext. In addition, even if we do
not apply optimization (b), Step 3 of Decrypt has a problem. We explain the
problem by using the example.

Example: Let us use the example Policy(1, 2, 3) = 1∧ (2∨ 3) and Attrib = {1, 2}.
In the key-extract algorithm on the query Policy, the ephemeral matrix M will
be of the form

M :=

A1 A0 Z1

A2 −Z1

A3 Z1

 ∈ Z3n×5m
q ,

where Z1 is a random matrix chosen by Extract. By the definition of the private
key, we have a “short” basis K of Λ⊥q (M). For ease of notation, we divide K into
small matrices; Let

K =

K1,1 . . . K1,5

...
. . .

...
K5,1 . . . K5,5

 ,
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where Ki,j ∈ Zm×m. If we apply the optimization (b), then the private key is

K′ =

[
K1,1 ... K1,4

...
. . .

...
K4,1 ... K4,4

]
. We note that the rank of K′ is at least 3m.

Suppose that we encrypt a message with Attrib = {1, 2}. In this case, we use
g = (1, 1, 0) and M′ = [A1 A2 O | A0 | O]. Thus, we use indices {1, 2, 4} to
make M′ and K′;

M′′ = [A1 A2 A0]

K′′ =

K1,1 K1,2 K1,4

K2,1 K2,2 K2,4

K4,1 K4,2 K4,4

 .
It is easy to verify that removing third and fifth block-columns and block-rows
from K (or from K′) does not ensure the rank of K′′ is 3m. Thus, the optimiza-
tion (b) in Extract and Step 3 in Decrypt have a problem.

Patch: We can patch the optimization (b) and step 3 as follows:
On the optimization (b), the extract algorithm can take the upper submatrix

∈ Z(`+1)m×(`+1+θ)m instead of the upper-left submatrix ∈ Z(`+1)m×(`+1)m. In

the above example, this optimization results in K′ =

[
K1,1 ... K1,5

...
. . .

...
K4,1 ... K4,5

]
, which is a

submatrix consisting of upper block-rows (instead of the left-top matrix).
On decryption, the decryption algorithm first takes the block-rows corre-

sponding to the indices, takes (|Attrib|+ 1)m linearly-independent vectors, and
converts them into the basis. In the above example, this step first computes

K∗ =

[
K1,1 ... K1,5

K2,1 ... K2,5

K4,1 ... K4,5

]
, takes 3m linearly-independent vectors from K∗, and con-

verts them into the basis K′′ of Λ⊥q (M′′).
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