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Abstract. Multiparty computation does not tolerate n/3 corruptions under a plain asyn-
chronous communication network, whatever the computational assumptions. However, Beer-
liová-Hirt-Nielsen [BHN10, Podc’10] showed that, assuming access to a synchronous broadcast
at the beginning of the protocol, enables to tolerate up to t < n/2 corruptions. This model is
denoted as “Almost asynchronous” MPC. Yet, their work [BHN10] has limitations: (i) Setup
assumptions: their protocol is based on an encryption scheme, with homomorphic additiv-
ity, which requires that a trusted entity gives to players secret shares of a global decryption
key ahead of the protocol. It was left as an open question in [BHN10] whether one can re-
move this assumption, denoted as “trusted setup”. (ii) Common Randomness generation: the
generation of threshold additively homomorphic encrypted randomness uses the broadcast,
therefore is allowed only at the beginning of the protocol (iii) Proactive security is not guaran-
teed, enabling it comes with new challenges in this model. (iv) Triple generation latency: The
protocol to preprocess the material necessary for multiplication has latency t, which is thus
linear in the number of players. We remove all the previous limitations. The new protocols
for (ii), (iii) and (iv) involve complexity tradeoffs, they are not mandatory for (i) removing
the trusted setup.

1 Introduction

Secure multiparty computation (MPC) allows a set of n players holding private inputs to securely
compute any arithmetic circuit over a (small) fixed finite field Fp on these inputs, even if up to t
players, denoted as “corrupted”, are fully controlled by an adversary A which we assume computa-
tionally bounded. MPC protocols in the synchronous model are extensively studied. The underlying
assumption there is that the delay of the messages in the network is bounded by a known constant.
However, the safety of these protocols fails when this assumption is not satisfied. Thus, protocols
[DGKN09; HNP05; CHP13; BBCK14] were developed for the asynchronous communication model.
This setting comes with limitations: Ben-Or, Kelmer, and Rabin [BKR94] proved that AMPC proto-
cols are possible if and only if t < n/3, while we can tolerate t < n/2 in a synchronous environment.
Moreover, Canetti [Can96] showed that it is impossible to enforce input provision, i.e. the inputs
of all the (honest) parties are considered for the computation, which obviously, can represent an
important setback for practical applications.
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In [BHN10], Beerliová-Trub́ıniová, Hirt and Nielsen observed that, in a fully asynchronous net-
work, assuming one initial synchronous broadcast round is sufficient to enforce input provision and
tolerate t < n/2 corruptions. More precisely, they show that the minimum assumption is that play-
ers start with a consistent view of encrypted inputs. This model of [BHN08], which they denote
“almost asynchronous” is relevant in, e.g., the use case where players would publish encryptions of
their inputs on a public ledger, to demonstrate their interest in taking part to a MPC computation.
Then, after a timeout (corresponding to an upper-bound on the publication delay of the ledger), the
actual computation is done asynchronously on the published encrypted inputs. In their protocol,
the circuit is evaluated using the King/Slaves paradigm [HNP05], in n parallel instances. Every
player simultaneously acts as a king to evaluate its own computation instance with the help of the
other players, and as a slave for other n − 1 instances computing the same circuit. Their protocol
assumes a mechanism by which players start with a consistent view on correct threshold encryptions
of the inputs, in which all the honest inputs are taken into account. Players precompute threshold
ciphertexts of multiplication triples, then perform additively homomorphic operations on these ci-
phertexts. This computation structure guarantees that every (recipient) player ultimately learns at
least t+ 1 identical plaintext outputs of the circuit (with respect to the instances of honest kings),
then terminates within a constant number of interactions. The problem is that, to implement the
threshold additive encryption required in their protocol, they need that a trusted entity assigns
secret keys to players ahead of the execution. But, under asynchrony, it is impossible to implement
such a trusted entity with an asynchronous distributed protocol (see [AJM+21] for a state of the
art) under honest majority. The reason is that Byzantine agreement is impossible beyond t < n/3.

It was left as an open problem how to remove this “trusted setup”: in [BHN10, §4.3 ”our protocol
requires quite strong setup assumptions, and it is not clear whether they are necessary.”]. The main
contribution of the present paper is to remove it.

In detail, recall that a protocol is called transparent (or “ad hoc” [DHMR08; RSY21]) if it does
not require a trusted setup phase, i.e., all public parameters are random coins. Our protocol has
transparent setup, since we assume only a bulletin board ([BCG21]). As formalized in §2.3.1 and
denoted FBoard, this functionality enables each player i ∈ [n] to write an arbitrary string of bounded
size ahead of the execution, such that FBoard will make it visible to all players that i wrote this
string. But FBoard does not perform any check on the strings (and allow players to re-write their
strings): this is why FBoard is also denoted as “bare / untrusted PKI ” in [GJPR21].

Theorem 1. Consider n = 2t + 1 players in an asynchronous communication network, of which
t are maliciously corrupt by a polynomial adversary, in the untrusted PKI model, with access to
one synchronous broadcast at the beginning of the execution. Then there exists a protocol that UC
implements secure evaluation of any arithmetic circuit over any (not too large) finite field Fp,
with input provision. Both the latency, and communication complexity measured in the number of
threshold ciphertexts, are the same as in [BHN10]. However our threshold encryption in this model
has ciphertexts of size O(n) (instead of O(1) in the trusted setup of [BHN10]).

In what follows we highlight the technical hurdles with respect to previous works, then overview
the protocol of Theorem 1. Then in §1.2 we sketch how we solve the other limitations (ii) (iii) and
(iv) mentionned in the abstract. Then in §1.3 we depict the ways in which our modular constructions
can be combined with each other. Finally in §1.4 we outline a minor contribution, which is how
recent works on threshold FHE can be adapted to fit into the almost-asynchronous model.
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1.0.1 Roadmap of the Proof of Theorem 1 We first stress in §1.1.1, §1.1.2 that previously
known transparent threshold encryption schemes support only a finite number of homomorphic
additions, due to correct decryption being not guaranteed when plaintexts grow too large. Then,
in §1.1.3, we evidence the difficulty to find an interactive mechanisms to bring down the size of the
plaintexts. We then sketch in §1.1.1 the main novel ingredient that we introduce to solve Theorem 1.
Namely: a threshold encryption scheme (TAE) with transparent setup, equipped with an interactive
two-move mechanism (Resize) to enable an unlimited number of additively homomorphic operations.
In §2.1 we detail the model, in §2.2 we recall the baseline protocol of [BHN10], in 2.3.1 we present
our new transparent setup and in §2.4 we recall basic cryptographic primitives. In §3 we specify
TAE, then in §3.4 we deduce the proof of Theorem 1 by recasting the baseline protocol with these
new ingredients.

1.1 Main contribution: Threshold-Additive Encryption (TAE) with Transparent
Setup

1.1.1 Previous Works: PVSS as Threshold Encryption with Transparent Setup Let us
first recall what is a verifiable threshold encryption scheme. It is a public key cryptosystem between
n fixed players, that comes with: a public algorithm, denoted PubDec.Contrib, that enables any of
these players, on input a ciphertext and his secret key, to ouput a “decryption share” along with a
ZK proof of correctness; and a public algorithm denoted PubDec.Combine that, on input any t+ 1
decryption shares, reconstructs the plaintext. This is often achieved assuming a trusted dealer, that
publishes a global encryption key and and privately gives shares of the decryption key to players
as their secret keys ([CDN01; CLO+13]). On the other hand, how to achieve threshold encryption
with the transparent setup FBoard follows from an old idea. Namely: generate a secret sharing of the
plaintext with threshold (t + 1), for instance with Shamir’s scheme. Then, output the encryption
of the shares under the public keys of the players (the i-th under the public key of the i-th player),
along with a NIZK proof of correctness. This is suggested for the first time by Goldreich et al.
[GMW91, §3.3], where it is presented as a scheme to verifiably share a secret in one single round of
broadcast. Notice that, as detailed in §2.3.2, it is only recently that UC NIZK could be implemented
under honest majority only using FBoard. Remarkably, this has been independently re-discovered by
three other research threads: first by [Sta96], in which it is formalized as Publicly Verifiable Secret
Sharing scheme (PVSS), followed by [FO98; Sch99; YY01] [CS03, §1.1]; then rediscovered by
Fouque and Stern [FS01, §4] as the main tool for a one-round discrete-log key generation protocol;
and finally rediscovered as threshold broadcast encryption by Daza et al [DHMR08], followed by
[CFY17] [RSY21, Appendix E].

1.1.2 Previous Limitations in the Number of Linear Homomorphic Operations, due
to Growth of Size of the Plaintext Since we follow the blueprint of the MPC protocol [BHN10],
we need to support homomorphic linear combinations on the ciphertexts, i.e., additions and scalar
multiplications . The straightforward idea to achieve this is to instantiate the previous PVSS, with
linearly homomorphic encryption. Unfortunately, all of the previous works which applied this idea,
ended up with supporting only a limited number of linear operations. So this is incompatible with
secure MPC evaluation of circuits of unlimited size. These works are either based on the additive
variant of el Gamal, which we denote as “in-the-exponent”, or the variant of Paillier encryption
which we denote as “shifted to the negatives”, which we both formalize in §2.4.3 and §2.4.4. Let us
illustrate the roadblock encountered by these previous works.
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el Gamal-in-the exponent the PVSS of [Sch99, §5], which is applied to electronic voting, is in-
stantiated with a variation of el Gamal encryption, in which the plaintext is now encoded in the
exponent of the ordinary el Gamal plaintext, which makes it additively homomorphic. We denote
this variation as “el-Gamal in the exponent”, see §2.4.4 for details. But in this scheme, decryption
is performed by computation of discrete logarithm, which is a computationally hard task (although
denoted by “can be computed efficiently” in [Sch99, bottom of page 11]). Since the size of the plain-
text grows at each linear homomorphic operation, decryption is thus computationally untractable
above a certain plaintext size, and thus, after a certain number of additions. This is stressed by
[RSY21]: “In Shamir-and-ElGamal we are limited to polynomial-size message spaces since final
decryption uses brute-force search to find a discrete log.”.

Paillier The additive PVSS of [RSY21, Appendix E.2], is instantiated with Paillier encryption. Since
players have different public keys Ni, they have different plaintext spaces Z/NiZ. Thus, additions of
PVSS are guaranteed to decrypt correctly only if the plaintexts’ sizes do not wraparound in any of
the Z/NiZ, i.e., stay below the min(Ni). This is why it is said in [RSY21] that this PVSS ”supports
a limited number (currently set to n) of homomorphic additions”.

Contrast with trusted setup. Notice that this issue does not happen when assuming a trusted setup.
For instance in the Paillier additive threshold scheme considered in [CDN01; BHN10], then all
plaintexts belong to a fixed Z/NZ with unique N . This guarantees unlimited homomorphic linear
operations modulo N in this single ring of plaintexts. This enables their MPC protocols to directly
evaluate circuits over Z/NZ.

Semi Homomorphic Encryption (SHE) Bendlin et al.[BDOZ11, Section 2] coined the notion of SHE,
to denote any public key encryption scheme that supports a limited number of linear operations.
Namely, a SHE guarantees correct decryption modulo p as long as the size of plaintext is below some
bound M . Concretely, for Paillier, this requires to translate the plaintext space from [0, . . . , N − 1]
to [−M,M ], with M := (N − 1)/2, in order to also ensure correct decryption modulo p after
multiplication by −1: see §2.4.3 for details. But if the size of the plaintext grows above M :=
(N−1)/2, then the decryption modulo p is in general not equal to the plaintext modulo p. Although
not considered in [BDOZ11], we observe in §2.4.4 that el Gamal in the exponent is also a SHE.

1.1.3 Our contribution: Maintaining Small Plaintexts Sizes under Asynchrony Recall
that a PVSS ciphertext is, itself, a vector of n ciphertexts of shares. To maintain the plaintexts of
the PVSS shares of small sizes, and thus overcome the previously mentioned issues, one could think
of the following mechanisms.

First attempt. At regular intervals, each honest player i would decrypt its share (the i-th) of
the PVSS, reduce it modulo p to reduce the size of the plaintext (plaintexts being meaningful
(mod p)), then re-encrypt it with its public key, and send it to the other players. This however
fails in our asynchronous model. Indeed, a honest player i (even up to t of them) could be isolated
from the network for an arbitrarily long time, while many noninteractive homomorphic additions
are performed on the PVSS ciphertexts by the other players. Thus, the plaintext sizes of the i-th
shares of the PVSS have grown very large. Thus when i is online again, he is unable to perform
the correct decryption modulo p of his PVSS share, due to the limitation of SHE on the size of the
plaintext for correctness of decryption modulo p.
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Second attempt. In order to maintain the share si of each player i small, one can notice that the
share of i, and thus its reduction mod p, of small size, is a linear combination mod p of the shares
of any other t+ 1 players (with the public Lagrange coefficients for polynomial interpolation). But,
having naively each player j send the summand of the linear combination to i, would reveal the
share of j to i. Thus, the linear combination needs to be done in an MPC manner, which involves
resharing : we keep this idea for later.

Third attempt. One could think of the interactive mechanism, proposed by Choudhury-Loftus-
Orsini-Patra-Smart, under the name “refresh” in Figure 3 of [CLO+13]. It consists of, on input
a ciphertext X to be refreshed: collectively precompute a ciphertext Ma, denoted “mask”, such
that the plaintext ma is unpredictable uniform in the whole plaintext space; homomorphically
compute the sum Ma�X; threshold decryption into x+ma; re-encryption of it then homomorphic
subtraction of the mask Ma. However, applied in their context this mechanism leaves unchanged
the plaintext: it reduces only the noise. In addition, their mechanism is inapplicable in the context
of SHE because it requires to sum homomorphically the plaintext with a random mask, whose
plaintext is sampled uniformly in all the plaintext space. Thus, the sum with the plaintext would
go beyond the correct decryption bound M , thus decryption modp would be incorrect. Notice
that in [CLO+13] this is correct, since their trusted setup allows an encryption scheme enjoying
unlimited homomorphic additions mod p. Finally, a last issue of [CLO+13] is that they require a
consensus on the masks used. In our model this would require that we generate the masks using
the broadcast, which is costly.

Solution: interactive masking mod, p. We overcome both problems of the third attempt with the
crucial observation the mask needs only be sampled uniformly in the small subset Fp := [0, . . . , p−1]
of the plaintext space. Indeed, since the SHE decryption is modulo p, this is sufficient for the
decryption of the masked plaintext (x + ma) mod p to vary uniformly in [0, . . . , p − 1], and thus
preserve privacy. Moreover, since ma ∈ Fp, the final homomorphic subtraction of Ma keeps the
plaintext in a small interval: [−(p − 1), . . . , p − 1], as desired. To address the last issue, on the
consensus on the masks required in [CLO+13], we emphasize a major relaxation of their model.
Namely, our masks are specific to each king/slaves instance. Moreover we even tolerate that a corrupt
king sends different encrypted masks to two honest players. Hence we do not need consensus of
the slaves on the masks returned by a possibly dishonest king: this is the same relaxation as the
one observed in [BHN10] in the context of multiplicative triples. This allows us to adapt the triple
generation mechanism of [BHN10] to build a slow king-dependent encrypted randomness generation
protocol (detailed in §B.3). We denote Resize the overall mechanism, since it has for effect to reduce
smaller than p the sizes of the plaintexts. All in all, such PVSS instantiated with SHE and equipped
with this Resize is an instantiation of what we denote “threshold additive encryption” (TAE) with
transparent setup, in §3.1.

Alternative Solution: bivariate PVSS, from any PKE. In §3.1.1 we remove the need for SHE and
construct a TAE from any public key encryption scheme (PKE). The idea is given by the Second
attempt above: a solution not to expose the individual shares to j, is that players compute the
linear combination mod p of their shares in an MPC manner before opening them to j. Precisely,
a MPC linear combination of shares requires each player to reshare its share: we go one step
beyond this idea, and construct directly TAE as a PVSS based on a bivariate sharing. Then, we
have a generalization of the mechanism for reduction mod p, which enables to realize homomorphic
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additions, and more generally linear combinations, in one interaction with the king, i.e., in two
steps. This two-steps structure is the same as for any other threshold mechanism, e.g., for signatures
([ACR21]), decryption ([CDN01]) or common randomness ([CKS05]).

Epilogue: another tradeoff, with BGV. Let us make here the simple but apparently new observation
that, instantiating PVSS with the encryption scheme of [BGV14], enables unlimited additions,
without the need of any interactive Resize mechanism at all. Of, course multiplications still require
interactions, because they involve threshold decryptions (of the inputs masked by the two first
elements of a triple). The reason of the observation is that the scheme [BGV14] has a single plaintext
space: Fp (embedded in a large lattice FNp ) independent of private keys, and that ciphertexts enjoy
an unlimited number of noninteractive additions. However, BGV ciphertexts are very large, since
typical lattice dimensions N are at least 212, in order to guarantee hardness of LWE.

1.2 Advanced contributions

1.2.1 Fast King dependent encrypted randomness generator We stated in §1.1.3 that,
in order to periodically reduce the size of plaintexts, we need preprocessed ciphertexts of random
values in Fp, denoted as “masks”, Using a straightforward simplification of the triple generation
method of [BHN10] (detailed in §B.3), we can generate a encrypted random value from a chain
of t + 1 consecutive randomizations that is relative to a king. For each randomization, the latter
collects t + 1 signed contributions appended with a NIZK proof of correct encryption. However,
generating an encrypted random value is much less constraining than generating a multiplication
triple. Hence, we show in Section §4.1 that the interactions can be reduced to one-round trip (still
without broadcast). For this, the main idea is to have the king simply collect and sum t+1 random
encrypted values, appended with a non-interactive ZK (NIZK) proof of correct encryption. As at
least one honest player contributed, the result is unpredictable to an adversary. Furthermore, as
pointed above we do not need consensus of slaves on the masks returned by a possibly dishonest
king. Thus, in contrast with the full-fledged new computation structure detailed later in §1.2.4, we
do not need here to have one additional round-trip to collect t+ 1 signatures and guarantee unicity
of the mask.

1.2.2 Constant time triples generation In order to multiply secrets, a mainstream approach,
since Beaver [Bea91], consists in having players precompute random secret multiplication triples
in an input-independent offline phase, that are later used in the so-called online phase to evaluate
a circuit. This preprocessing is achieved asynchronously in [BHN10] at a cost of a number of
consecutive interactions linear in the number of players. We bring this latency down from linear to
a small constant, by leveraging the initial round of synchronous broadcast and an innovative method
from Choudhury-Hirt-Patra [CHP13], that extracts fresh random triples from triples coming from
different players. However, their method is inherently limited to t < n/4, due to usage of Byzantine
agreement, i.e., consensus, on the set of input triples taken into account. We push this limit to
t < n/2, thanks to two technical novelties, as detailed in §4.2. First, we require every player to
append a NIKZ proof to the encrypted triple that it broadcasts, in order to prove its multiplicativity.
Second, we make the following structural modification. Where, in [CHP13], the number of input
triples taken into account in the extraction is fixed equal to n− t, by contrast we take into account
all the n− t+ t′ = t+ t′+1 correct triples broadcasted, where t′ is the variable number of corrupted
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players who broadcasted correct triples. This enables extraction of (t+ t′)/2 + 1− t′ unpredictable
triples, and thus of at least one.

Thus, to evaluate a circuit with cM multiplication gates, this triples generation requires each
player to broadcast cM encrypted triples, unlike the one of [BHN10] (§2.2), used in Thm 1, which
is broadcast-free but has latency linear in n.

1.2.3 On-the-fly generation of threshold-additive encrypted randomness In [BHN10]
the authors detailed only the computation of deterministic circuits. For randomized circuits, they
suggested (p213) that players provide “additional random inputs”. But recall that providing inputs
requires the use of the broadcast channel. Thus their suggestion has broadcast complexity linear
in the number of random gates. In section 4.3 we introduce an alternative that has broadcast
complexity independent from the number of random gates, but exponential in n the number of
players. Let us sketch the idea.

In a first attempt, one could think of building on the mainstream coin-tossing scheme introduced
by Cachin et al. in [CKS05]. Recall that this scheme enables players to locally generate shares of a
random coin. The problem is that these are multiplicative shares, namely, they live in the exponent
of a group with hard discrete log. Thus, multiplicative reconstruction does not commute with
computing additively homomorphic encryption.

Thus, we take instead advantage of the scheme introduced by Cramer et al. [CDI05], denoted
as pseudo-random secret sharing (PRSS). PRSS enables each player to produce directly the Shamir
share of a random value. The linearity of the reconstruction of Shamir, and the additive homomor-
phic property of TAE, make it possible to encrypt the Shamir shares obtained locally at each player,
then apply Shamir’s linear reconstruction homomorphically on these encrypted shares, to deduce
an encryption of the reconstruction of the coin. Finally, we augment this scheme with ZK proofs to
add the robustness which was missing in [CDI05].

Theorem 2. (Informal) Assuming the same setting as in Theorem 1, one can do almost-asynchronous
MPC in latency in O(cM ) round-trips of messages 2, in particular, independently of the number
of players. The broadcast size is independent of the number of random gates, and is linear in the
number of inputs cI and cM . The non-broadcast communication size is unchanged from Theorem
1. Instantiated in our new computation structure (§1.2.4 and §4.4), termination is guaranteed at
the pace of the fastest honest king (while in [BHN10] it is conditional on the slowest honest king
among t+ 1).

1.2.4 Proactive Security Ostrovsky and Yung [OY91] introduced the notion of proactive se-
curity, in which the life span of a protocol is divided into separate time periods denoted “epochs”.
It is assumed that the adversary is mobile, in that it can change its corruptions, as long as at most
t players are corrupt per epoch. In our model this brings three new difficulties.

First, in the protocol of Theorem 1, which follows the baseline of [BHN10], a freshly decorrupted
player, with all his memory erased, could not take over the role of a king. Thus, the adversary can
freeze the circuit evaluation after the first two epochs. The reason being that, to drive the protocol,
a king must be convinced by its slaves, in zero-knowledge, that they did correctly their task since
the beginning of the protocol.

2Here cM denotes the number of multiplication gates
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Second, even if players manage to refresh their encryption key pairs and reencrypt the decryption
shares of ciphertexts at regular intervals, then, the adversary A may still use the new keys of newly
corrupted players, to decrypt their share of a given ciphertext c, for which A may have previously
gained knowledge of t other shares. Thus, within 2 epochs, it may gain knowledge of t + 1 shares,
which is enough to reconstruct the secret plaintexts.

Thirdly despite, different protocols, e.g., [CKLS02; SLL10; MZW+19] based on resharing have
been proposed, following the seminal work of [HJKY95] on proactive security, they are not directly
applicable in our setting as they either require broadcast or Byzantine consensus. Finally, the
solution of [ZSV05] does not require consensus but has communication complexity exponential in
n.

Necessity of a new computation structure To answer the aforementioned challenges, we first note
that the computation model of [BHN10] does not guarantee the correctness of intermediary cipher-
texts. Thus, a freshly decorrupted players who would like to resume the computation as a king,
would have to start again from the beginning. We detail in §4.4 a new computation structure for
proactive security, that creates a chain of correctness that guarantees the correctness of interme-
diary ciphertext and makes possible to resume the computation from the last step. Precisely, we
make it possible for a new king to take over the role of a corrupted king, by enforcing the invariant
that each correctly formed ciphertext output by a gate of the circuit, comes with publicly verifiable
NIZK that they were correctly computed from the inputs. Players check these NIZK and sign the
output if verification passes. Thus, the signature of any t+ 1 players on the ciphertext output of a
gate constitutes a publicly verifiable certificate of correctness, which enables a new king to safely
use it.

Furthermore, contrary to the computation model of [BHN10], in which a dishonest king may
send different intermediary ciphertext outputs to its slaves, our new computation model enables a
weak form of consensus on the intermediary ciphertexts output, thanks to a validation mechanism
with the endorsement of t+ 1 signatures. The word “weak” is because the consensus is relative to
each King/Slaves instance, and because it does not terminate if the king is dishonest. This allows
us in §4.5.2 to adapt the resharing of [CKLS02] to rerandomize the PVSS shares, using only this
weak form of consensus.

For simplicity, we first describe in §4.5.1 a simplified model, with a global clock and a synchrony
assumption at every epoch change as in [CKLS02]. We adapt the refresh mechanism of [CKLS02]
in our context of PVSS, as detailed in §4.5.2, and of weak form of consensus. Notice that we
could have followed instead the alternative approach of [MZW+19], where players interactively
generate a ciphertext c0 of 0 then add it to previous ciphertexts, which has the same effect to re-
randomize decryption shares. However, as already pointed in [CKLS02], this costs an interaction,
during which players hold simultaneously their old and new keys, which is unsafe. The interaction
may furthermore take an infinite time is the king is dishonest (see our §4.5.3 for a fix). By contrast,
(our adaptation of) the mechanism of [CKLS02] enables players to erase their old key just after they
performed a sequence of noninteractive steps, which takes an infinitesimal time. Subsequently, we
discuss in §4.5.3 the difficulties of removing this synchrony assumption then remove it at the cost
of an additional interaction. Then in §4.5.3 we sketch, from the encrypted randomness generator
introduced above, a decentralized mechanism to refresh the keys, in particular which needs not
access to the bulletin board and which goes at the actual network pace.

In summary, we obtain the following theorem.
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Theorem 3. (Informal) Theorem 1 and 2 can be improved with proactive security with O(n3) bits
of communication per secret to be refreshed and per epoch.

1.3 Fitting the components together

1 As sketeched in 3.1.1, TAE can be implemented from any public key cryptosystem with plaintext
spaces containing Fp. This enables to do an unlimited number of additions, at the costs of an
interaction for each linear combination and of threshold ciphertexts of size n2, because of bivariate

PVSS. 2 In §3.3 we explain how the use of a SHE enables to implement a TAE enjoying a number
of noninteractive additions equal to M/p, where M is the (large) upper bound on the plaintext
size up to which correct decryption modulo p is guaranteed, followed by only one interaction due
to the Resize mechanism sketched in §1.1.3, thus improving the latency complexity. Furthermore,
as stressed in §1.1.3, this implementation of TAE can be realized with classical n-sized PVSS, even
with SHE, thus reducing the communication complexity by n.

Note that to be able to compute circuit of unlimited depth, a key ingredient is the Resize
mechanism. This requires the precomputation of random masks, driven by each king. We adapt

the triples generation mechanism of [BHN10] 3 to produce random masks from t+ 1 consecutive

interactions. Later in §4.4.1 4 we show that masks can be produced in just one interaction with
the king, which is a simple example of our new computation structure.
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Fig. 1: Modularity of our contributions

Anticipating on the triple generation (presented in §4.2), we introduce a trade-off between
the initial broadcast size and the communication complexity. The triple generation mechanism of

[BHN10] 5 enables to produce multiplication triples on-the-fly at a cost of O(n2) interactions

without using any initial broadcast, while our method 6 presented in §4.2 generates triples in a
constant number of interactions but requires the broadcast of O(cM ) elements, where cM is the
number of multiplication gates.
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As noted by [BHN10, §3] ”any probabilistic polynomial-time functions can easily be computed
by evaluating a deterministic function on the actual inputs and some additional random inputs
provided by the parties.”. Such a Random gate, that produces a random number, uniformly and
independently of everything else afresh for each invocation of the circuit, is implemented in [BHN10]

7 by broadcasting O(ncr)) elements, where cr is the number of random gates. This can turn to
be prohibitive for some applications (gradient descent, ...). Thus, we show that leveraging PRSS

[CDI05] 8 , this can be implemented by broadcasting O(exp(n)), which is independent of cr.
Finally, we introduce a last trade-off for proactive security. We propose a noninteractive solution

for refreshing ciphertexts in §4.5.2 9 , using our implementation of TAE, inspired by the re-sharing

technique of [CKLS02], at the cost of a O(n2) communication complexity per player. Note that

if solution 8 is used to implement Random gates, then the PRSS keys have to be, in all cases,
refreshed interactively.

1.4 Adapting Recent Works to the Almost Asynchronous Model

Following the initial result of [BHN10] to achieve security for an honest majority in the almost-
asynchronous model, technical advances have been made. In §4.4.1 we analyze how recent works
can be adapted to our almost asynchronous setting without trusted setup, and at which cost.

Following [DLS05] Recently, [DMR+21] proved that the threshold encryption scheme of [DLS05]
allowed MPC in two rounds, of which only the first requires broadcast. It is in the model of FBoard,
augmented with a public uniform random string. The use of FBoard is explained in [DLS05] (“two
rounds with PKI”). However it comes with the limitation that the second round is specified to
be synchronous, unlike in our model. In addition, the size of their ciphertexts is polynomial in
the depth of the circuit, thus limiting the depth of supported circuit. As a minor contribution,
in §4.4.1 we observe that the first limitation is only apparent. Furthermore we observe that the
interactive boostrapping mechanism of [CLO+13] is applicable and allows to regularly reinitialize
the polynomial growth of ciphertexts. Importantly, as observed for our Thm 1, if casting the previous
MPC protocol in the king/slaves computation model, then, the masks required by [CLO+13] need
not anymore be generated by using the initial broadcast, since no consensus on the boostrapped
ciphertexts is required, even not within a (dishonest) king/slaves instance.

Following [Sha17] First, and of independent interest, we observe in §4.4.1 a very simple and al-
ternative proof of the recent feasability result of [GJPR21], of MPC in two rounds in the FBoard
model without any public random string. Our construction is likely to have a different complexity
tradeoff, since they use garbled circuits. Concretely, we replace the first round of input-independent
broadcast of [BJMS20], which inherits from [Sha17], by a writing on FBoard in the (transparent)
setup phase: this possibility was already observed by [GPS19a]. Now, to make the resulting scheme
suitable for almost asynchronous MPC, it remains to remove the synchrony assumption in the final
reconstruction round, and, also to prevent the polynomial growth of ciphertexts of [BJMS20] in
both the number of players and in the depth of the circuit. This can be done exactly as in the
previous paragraph.

But, let us observe that both previous solutions, using threshold FHE, have still their ciphertext
sizes much larger than our TAE. Indeed, in addition to the polynomial dependency in depth, their
ciphertexts initially consist of vectors of dimension the number of players, whose entries are of size
quadratic in the number of players. In any case, recall that a minimum order of magnitude is that
these entries are elements of lattices of dimension 212 (for hardness of LWE).
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Other recent works incompatible with our setting On the one hand, [Coh16] removes the need for
the costly king/slaves communication paradigm, but requires the same trusted setup as [BHN10]
for its threshold encryption. Also, [BBCK14] assumes trusted hardware to reach honest majority.
Finally, the following two related papers accepted at TCC’21 (Iacr eprints 2021/1230 and 1233)
have security with abort, whereas we guarantee output delivery.

2 Model and Definitions

2.1 Overall Goal

We consider n = 2t + 1 players P = {P1, . . . , Pn}, which are a probabilistic polynomial-time
(PPT) interactive Turing machines, of fixed and public identities. They are connected by pairwise
authenticated channels. We consider a PPT entity denoted as the “adversary” who can take full
control of up to t players, which are then denoted as “corrupt”, before the protocol starts. For
this reason we denote it as “static”. Notice that a stronger adversary will be considered in §4.5. It
can read the content of any message sent on the network. Being PPT, the adversary has however
negligible advantage in the IND-CPA games that are satisfied by the encryption schemes considered.

2.1.1 Goal: Secure Computation of an Arithmetic Circuit over Fp, with Input Pro-
vision Let us make precise the terminology used in Theorem 1. Let p ≥ n be any prime number,
where n is the number of players defined above. We denote Fp := Z/pZ the finite field with p
elements. For simplicity we state here the standalone security model, but will actually prove uni-
versal composability of our protocol. A MPC protocol takes as public parameter a fixed circuit
F : Fnp → Fp which is denoted as “arithmetic”, in the sense that it is composed of addition gates,
(bilinear or constant) multiplication gates (bilinear or constant, i.e., “scalar”) and random values
gates. For the sake of simplicity, we assume that all players are recipients of the final output. The
robustness with input provision guarantee is that, for any set of inputs xi ∈ Fnp , if each player
starts with input xi, then all players receive the same output y, and y is a (random) evaluation of
F (x′1, . . . , x

′
n) such that x′i = xi for all indices i of uncorrupted players. The privacy guarantee is

that the adversary learns no more than y (and even nothing if no recipient is corrupted).

2.1.2 The Almost Asynchronous Model, after [BHN10] As observed in [BHN10], achieving
a consistent view on ciphertexts of the inputs can be implemented assuming access to a synchronous
broadcast channel at the starting time of the protocol (with delivery delay ∆): this is what they
denote in [BHN08] the “almost asynchronous model”. Any other related mechanism, e.g., a public
ledger would also suit. Concretely, Pi broadcasts an encryption of its input, along with a call to
a mechanism, which we denote F1:M

ZK below, that guarantees that all players receive a proof of
plaintext knowledge (PoPK). The most straightforward implementation of F1:M

ZK consists in having
Pi broadcast a NIZK PoPK.

But apart from the messages broadcast at t = 0, the network is otherwise fully asynchronous.
Namely, messages sent by uncorrupted players are guaranteed to be eventually delivered, but the
schedule is determined by the adversary.
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2.2 Reminder of [BHN10, PODC’10]

Let us review in more details the MPC protocol of [BHN10] outlined in the introduction. It securely
computes any arithmetic circuit over Z/NZ, with N a publicly known (large) integer, in the almost
asynchronous model, and tolerates t < n/2 corruptions. Moreover it enforces input provision. Let
us denote E an encryption scheme with plaintext space Z/NZ, that furthermore comes with a
public noninteractive algorithm, denoted �, that computes the homomorphic addition of any two
ciphertexts. Moreover, decryption of threshold ciphertexts is done by an interactive mechanism. Let
F be the arithmetic circuit to be computed, which we assume deterministic here for simplicity. How
to evaluate random gates will be discussed and improved in §4.3. The whole circuit is evaluated n
in parallel, once for every player, denoted as king, and with all players (including the king), acting
as its slaves.

(0) Trusted Setup: Taking as input the number of players n = 2t + 1, a trusted dealer publishes a
public encryption key pk for E , and sends privately a secret key ski to each player Pi.

(1) Inputs broadcast: Each player Pi broadcasts its encrypted input Epk(xi) with a proof of plaintext
knowledge. From now on, the communication pattern is asynchronous: each player waits for at most
t+ 1 correct messages from any t+ 1 distinct players before sending new messages.

(2) Triples generation: is a subprotocol that enables players to jointly generate, with respect to a
king, a multiplicative triple of encrypted values unknown to the adversary A. The detail is that
the king starts from a default known encrypted triple and sends a randomization request to every
n slaves and waits for a valid answer. The king iterates this process a total of t + 1 times. Such
a chain of t + 1 consecutive randomizations guarantees that the plaintext values of the factors of
the encrypted triple, are indistinguishable to the adversary from uniform random ones. Details of
the protocol in our model are presented in figure 5.

(3) Circuit evaluation: Each king Pj evaluates the circuit of F in a gate-by-gate manner, with the
help of all players (including the king) acting as slaves. At each interactive step, the slaves prove to
the king that their calculation is correct, which mainly consists in proving correct computation of
their decryptions share. In particular, thanks to the multiplicative triples, the multiplication gates
are brought down to threshold decryptions and homomorphic additions. This is an adaptation of
the technique of [Bea91] over threshold ciphertexts, which we recast in Figure 6 in our model.

(4) Termination: Each encrypted circuit output, Epk(F (x1, x2, ..., xn)), is jointly decrypted to the
king, which thus learns the plaintext result z. It sends z to all slaves. Players receiving z sign it
and send the signature to the king. Upon receiving signature shares from t + 1 players, the king
sends these signatures to all players. This guarantees unicity of one (t+ 1)-signed output per king.
Once t + 1 kings have finished with the same signed output, then necessarily this must be the
correct one, and all players adopt it.

2.3 The new transparent setup for Theorem 1

In 2.3.1 we formalize our setup, which is the untrusted PKI denoted as FBoard. Then in 2.3.2 we
specify the zero-knowledge functionalities that are implementable from FBoard (and from the first
broadcast for F1:M

ZK ) that we will use in our MPC protocol. In §2.3.3 we compare our setup with
the trusted one of [BHN10]. In §2.3.2 we discuss other possibly instantiations of ZK-PoK under the
additional assumption of a public uniform random string, which is still a setup known as transparent,
by contrast with the trusted structured random strings required in SNARKS.
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2.3.1 FBoard We formalize in figure §2 the public “bulletin board”, denoted FBoard, which is
discussed in [BCG21], and also named as “bare/ untrusted PKI” in [GJPR21]. It is actually very
close to the functionality denoted certification authority FCA in Canetti [Can04]. Each player can
write on this board an arbitrary string, whose maximal size is a public parameter. FBoard does not
perform any check on the written value. Notice however that, in our protocol, players are instructed
to broadcast a ZK proof of knowledge of their secret key, which thus has the same effect as the
“KRK” functionality in [CDPW07]. As will be described in §2.3.2, implementing these ZK proofs
is possible without further setup thanks to the honest majority setting. This will be required in our
UC proof §B.6, when analyzing the view provided by the simulator, although our simulator will
not extract secret keys from corrupt players. FBoard allows players to rewrite their string. FBoard

enables every player to read the most recent string written by each player. Notice that in our
protocol, honest players are instructed to write once (once per epoch, in §4.5).

FBoard

Write On input (write, sid, vi) from player Pi before the protocol starts, record the tuple (sid, Pi, vi).

Read On input (read, sid, Pi) from player Pj , return the last tuple written by Pi: (sid, Pi, vi), if any,
or return (sid, Pi,⊥) otherwise.

Fig. 2: Bulletin board functionality

To keep our proofs simple we disabled the possibility to (re)-write after the protocol starts (in
§4.5: outside of the Refresh windows), although our Theorem 1 would remain true.

2.3.2 ZK implemented from FBoard During the transparent setup phase, apart from its public
key, each player can also publish a random string, denoted as CRS. As observed in [GPS19b, §C.1],
and credited to the [GO07], when honest players generate these CRS as specified in [GO07] under the
name “multi-string CRS”, then it is possible to implement a non-interactive zero knowledge proof
system, noted NIZK for short, enjoying a property known as “simulation sound extractability”. But
as proven in [Gro06, §6.1], this property in turn implies that the NIZK implements FZK in the UC
sense. [ Notice that the word “sound” was dropped from the definition [GO07, p. 5] (and reappears
page 9), this definition is nevertheless the same as the “simulation sound extractability” considered
in [Gro06, §6.1]. ] Notice that this implementation of UC NIZK, from the previous mechanism
denoted as “multi-string CRS”, is specific to the honest majority setting. In the general case, a
common uniform string is required to implement NIZK (see §2.3.4).

Next, although UC NIZK will be used in our advanced contributions §4.4, they are slightly
overkill for the protocol §3.4.1 underlying Theorem 1. Thus, we describe the two weakenings that
will be used in §3.4.1.

(Possibly interactive) zero knowledge. The zero-knowledge functionality FZK is presented in figure
3. It is exactly the same as defined in [CLOS02], noticeably, the adversary cannot trigger an abort.
The same FZK is also used, unchanged, by [Coh16].

As stressed in [CLOS02], FZK actually specifies a proof of knowledge (PoK). Namely, if the
verifer receives a message from the functionality proving that x belongs to the language, then, he
is furthermore ensured that the prover knows a witness w, i.e., R(x,w) = 1.
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FZK

The functionality is parameterized with an NP relation R of an NP language L, running with a prover
P , a verifier V and an adversary A:

• Upon receiving (prove, sid, x, w) from P , ignore if R(x,w) = 0. Otherwise send (verification, sid, x)
to A and V and halt.

Fig. 3: Zero-knowledge functionality

One-to-many zero knowledge. The following functionality, denoted F1:M
ZK and presented in figure 4,

was first introduced in [CLOS02, Figure 14], then also appears under the name FRZK in the malicious
compiler of [AJL+12, §E]. Noticeably, the latter compiler guarantees, in turn, the malicious security
of [DLS05], revisited in the recent [DMR+21], that we fit in our model in §1.4.

F1:M
ZK

The functionality is parameterized with an NP relation R of an NP language L, running with a prover
P , a set of verifiers P1, . . . , Pn and an adversary A:

• Upon receiving (prove, sid, x, w) from P , ignore if R(x,w) = 0. Otherwise send (verification, sid, x)
to A and all verifiers P1, . . . , Pn and halt.

Fig. 4: One-to-Many Zero-knowledge functionality

In particular, it guarantees that either all honest players or none of them receive the proof
within a fixed delay. This can trivially be implemented in the first round of broadcast, by having
the prover broadcast a NIZK. Less trivially, it is observed in [BHN10, §5.1-5.2] that it can be
implemented by what they denote as “almost-asynchronous NIZK”. Namely, the prover broadcasts
a string, which the players then interactively check as validly proving the claim. Unfortunately,
their implementation of this original idea requires a trusted dealer of a shared secret between the
verifiers, and thus is non-transparent.

Comparison with the weaker F1:M
ZK of [Coh16]. Notice that a functionality, also denoted F1:M

ZK ,
appears in [Coh16], but is strictly weaker than the one defined above that we use. Indeed, this
variant guarantees only that all players ultimately receive a proof, upon querying F1:M

ZK . But then,
under asynchrony, a player may never know if the prover did not correctly called F1:M

ZK , or if the
answer to his query is just taking a long time to arrive. This is why, in [Coh16], where this weaker
F1:M
ZK is used to prove plaintext input knowledge (as is the stronger F1:M

ZK in our §3.4.1), then,
contrary to us, some honest inputs may never be taken into account. Indeed, in [Coh16], players
perform consensus on a set of n − t inputs for which they received a proof of plaintext knowledge
from the weak F1:M

ZK . This limitation can be seen more concretely in the implementation of F1:M
ZK in

[Coh16]. Namely, a prover is instructed to prove its claim to a quorum of players sufficiently large
to contain at least a honest one. Then gather signatures from this quorum, which thus constitute
a proof of validity of its claim. But a malicious prover may forward this proof, i.e. the signatures,
only to some honest players, not all. Thus, unlike in our F1:M

ZK , there is no guarantee that either
all honest players receive a proof or none. What is guaranteed by the implementation of [Coh16]
(but not explicit), is that, if any (honest) player requests all players if they did receive a quorum of
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signatures attesting validity of the proof, then, if at least one honest player received the quorum,
then it will ultimately have the signatures forwarded to the requesting player.

2.3.3 Comparison with the setup of [BHN10] In [BHN10], players are assigned a (common)
public key (and correlated private keys) by a trusted authority: this is what [BCG21, p9] denote
as a full blown trusted party. If the adversary learns these secrets, then the security is ruined. By
contrast, the FBoard that we use manipulates no secret information.

Let us also observe, although this is orthogonal to our concern, that all the instantiations of
ZK proofs specified in [BHN10] also require a trusted setup, by contrast with the ones recalled in
§2.3.2 and also in 2.3.4 (the latter requiring furthermore a public uniform random string). First,
[BHN10, §5.1-5.2] assumes a secret sharing of a secret key by a trusted authority. Then, in [BHN10,
§2.4], they use [Dam00], which requires a public string generated with a secret trapdoor that the
adversary should not learn. This setup, also known as “structured common reference string” (also
used in [GOS12] and SNARKS), is therefore not transparent. By contrast, the implementations of
NIZK considered above in §2.3.2 do not require any public string.

By contrast, even the random string further required in the alternative implementations §2.3.4,
is a mere public coin, thus is a transparent setup. Namely, it needs only be uniform, so needs not
be generated with a secret trapdoor.

2.3.4 Alternative implementations of NIZK requiring furthermore a public uniform
string Even though these are orthogonal to our work and in no way necessary for Theorem 1,
let us discuss, for completeness, some instantiations of NIZK under the additional assumption of
a public uniform string, which is still a transparent setup. How to implement a public distributed
random beacon with transparent setup is well studied [CD20; Vin21]. We follow the example of the
NIZK of [DDO+01], which enjoy many properties.

First, they implement non-interactively FZK in the strong sense of uniform composability (UC).
This fact, which follows from the explicit simulation-soundness properties of their scheme, was
observed independently by [CLOS02], [AJL+12, p497] and [Coh16, §4.2].

Second, they require only that players are provided with a public uniform random string, which
needs not be generated with any trapdoor. This assumption, which would be necessary without
honest majority, is also the one required by [AC20; ACR21]. Hence, without public random group
elements, the Pedersen commitment scheme would simply not exist. This minimal assumption is also
the one of the UC-NIZK implemented in [CSW19], and of the ZK-Starks [BBHR19], which is the
proof system deployed in Ethereum. As nailed by the latter (footnote 8), randomness is actually
necessary in any ZK proof system. See §B.1 for a concrete illustration of how to build a NIZK
PoPK (and also a proof of correct re-encryption) for our TAE from the framework of [ACR21].
The proofs have logarithmic size in the statement proven. Their construction is conceptually as
simple as opening O(n) linear forms on a commitment in a DDH-hard group (noted additively).
An application of the basic compression mechanism of [ACR21] then enables to compress the total
size in O(log(n)).

Third, the public uniform string can be safely re-used identically in multiple executions. Thus
they achieve the stronger primitive which [CLOS02] formalize as the “multi-session” F̂ZK .

Notice that these implementations are provably UC in a local setup, where concretely a fresh
random string is initially queried by players to the beacon. This enables the simulator to sample
it with a trapdoor. As for [AC20; ACR21], in the noninteractive regime with Fiat-Shamir, sim-
ulatability can be proven if the random oracle is initialized by players in the setup, since then

15



the simulator can reprogram it. These assumptions are discussed in [Pas03; CDPW07]. Although
discussing implementations of FZK is orthogonal to this work, for completeness we discuss in §B.7
implementations with a global setup.

2.4 Cryptographic primitives

2.4.1 Shamir secret sharing We denote Fp[X]t the ring of polynomials with coefficients in
Fp, of degree bounded by t. Let us recall quickly the secret sharing scheme of Shamir over Fp. We
consider n fixed public nonzero distinct values in Fp, denoted [1, . . . , n] for simplicity, denoted as
the evaluation points. On input a secret m ∈ Fp, sample at random a polynomial f(X) ∈ Fp[X]t,
so of degree at most t, with nonconstant coefficients varying uniformly at random in Fp, and such
that f(0) = m, i.e., the constant coefficient is m. Then, output the n-sized vector [f(1), . . . , f(n)],
denoted the “shares”. It has the property that, for any fixed secret m, then any t shares vary
uniformly (see Property 11 for details). While any t+ 1 shares linearly determine m as follows. For
any subset I ⊂ {1, . . . , n} of t + 1 distinct indices, there exists t + 1 elements λi ∈ Fp, denoted
the Lagrange interpolation coefficients, such that for every polynomial f(X) ∈ Fp[X]t we have
f(0) =

∑
i∈I λif(i).

2.4.2 Semi-Homomorphic Encryption (SHE) Let us recall a simplified version of the defini-
tion of [BDOZ11, §2] of a public key Semi Homomorphic Encryption scheme (SHE). For simplicity
we do not consider the limit on the size of noise in ciphertexts, since this limitation does not con-
cern el Gamal in the exponent nor Paillier. A SHE is a tuple of algorithms (KeyGen, E,D) where:
KeyGen(κ, p) is a randomized algorithm that takes as input a security parameter κ and a modulus
p; It outputs a public/secret key pair (pk, sk) and a set of parameters P = (p,M,G). Here, M is an
integer and (G,⊕) is the abelian group where the ciphertexts belong (written in additive notation).
For practical purposes one can think of M to be of size super-polynomial in κ, and p as being
much smaller than M . We will assume that every other algorithm takes as input the parameters P ,
without specifying this explicitly. Epk(x) is a PPT algorithm that takes as input an integer x ∈ Z
and outputs a ciphertext c ∈ G. Given c1 = Epk(x1), c2 = Epk(x2) ∈ G, we have that c1 ⊕ c2 is a
ciphertext of x1 +x2, i.e., is an image of x1 +x2 under Epk, which we thus also denote Epk(x1 +x2).
Dsk is a deterministic algorithm that takes as input a ciphertext c ∈ G and outputs x0 ∈ Fp ∪ {⊥}.
We say that a SHE with parameters P = (p,M,G) is correct if, for all x ∈ Z such that

∣∣x∣∣ ≤ M ,
then Dsk(Epk(x)) = x mod p. We also require ind-CPA, with the usual definition.

2.4.3 Example of SHE: Paillier “shifted to the negatives” The Paillier encryption scheme,
as e.g., recalled in [BDOZ11, §2.1], has plaintext space Z/NZ with public key pk := N a large
product of two secret primes, which themselves constitute the secret key, and ciphertext space
(Z/N2Z)∗. Now, we modify the baseline Paillier encryption, in order to have decryption space Fp
(p ≤ (N − 1)/2), with compatibility with taking the negative modulo p (and not N anymore), as
follows. Let us denote (KeyGen, EN , DN ) the baseline Paillier encryption with public key N , then
we define: Eshift

N := EN and, for every Paillier ciphertext c, we define Dshift
N (c) equal to: DN (c) mod p

if DN (c) ∈ [0, (N − 1)/2], or to (DN (c)−N) mod p if DN (c) ∈ [(N + 1)/2, N ]. It follows that, for
all x of size

∣∣x∣∣ ≤M := (N − 1)/2, then Dshift
N

(
Eshift
N (x)

)
= x mod p, which is the SHE property.

Notice that, for our purpose of instantiating TAE with Paillier, we need that p be smaller than
all the (Ni − 1)/2 for the public keys Ni generated with KeyGen. Thus, if a published public key
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Ni is smaller than p, then players do as if Pi did not publish a key at all, as e.g., could happen if
Pi is corrupt.

2.4.4 Example of SHE: ElGamal in-the-exponent The following scheme was used in [Sch99,
§5] to instantiate a PVSS applicable to electronic voting. Notice that, although it supports a limited
number of homomorphic additions, this scheme was not yet formalized, to our knowledge, as a “semi-
homomorphic encryption” as defined in [BDOZ11]. Let (G, g) be a group of prime order q, along
with a public fixed generator g. Precisely, we assume that the DDH problem is hard in G, while g
can be any element different from the unit. We denote G additively, as in [ACR21]. The plaintext
space of the baseline ElGamal encryption is G, which is isomorphic to Z/qZ. The ciphertext space
is also G. KeyGen is as follows. Sample sk ∈ Z∗q at random, and define pk := sk.g as the public

key (with a multiplicative notation, this would read gsk). Now, to encrypt γ ∈ G under public key
pk, sample r ∈ Fq at random and output (r.pk, γ + r.g). Decryption is Dec

(
sk, (ciph1, ciph2)

)
:=

ciph2 − 1/sk.(ciph1).
We modify this baseline scheme in order to obtain a decryption space equal to Fp. We consider

Fp as the subset [0, . . . , p − 1] ⊂ Fq. For encryption, we map the input plaintext x → x.g (which
reads gx with a multiplicative notation), then apply the previously defined ElGamal. This is where
our terminology “in-the-exponent” comes from. Now, decryption of a ciphertext c ∈ G consists in:
applying the decryption of the baseline ElGamal to obtain some x.g ∈ G, then try to compute the
discrete logarithm x. (Notice that this step is denoted as “can be computed efficiently” in [Sch99],
bottom of page 11.) Let M be a parameter such that discrete logarithm computation is efficiently
computablen for exponents in [−M,M ], we thus need to assume p ≤ M . If a discrete logarithm
x ∈ [−M,M ] is found, then output x mod p ∈ Fp. Else, output abort.

3 Proof of Theorem 1

3.1 Overview of transparent Threshold-Additive Encryption (TAE)

We sketch the TAE, following the program presented in §1.1.3. It is built from any SHE public key
encryption scheme as defined in 2.4.2. Namely: a triple (KeyGen, E,Dec), with plaintext space Z,
and such that, on input a ciphertext of a plaintext m of size smaller than M , then Dec correctly
returns m, up to modulo p (e.g., M = (N − 1)/2 in the case of Paillier). The TAE has transparent
setup, in that it takes as input any vector of (possibly empty) public keys pk = [pk1, . . . , pkn]. In
the vector of public keys above, up to t can be empty (⊥), concretely, when corrupt players do not
publish theirs.

To encrypt a plaintext s ∈ [0, . . . , p−1] ⊂ Z with TAE, sample at random the nonzero coefficients
of a symmetric polynomial B of degree ≤ t, i.e., in Fp[X]t. Set the zero coefficient B(0) as s.
Finally, output the TAE.ciphertext cs consisting of the vector of E-ciphertexts of evaluations of
B: Epkj

(
B(j)

)
. The homomorphic linear operations between TAE.ciphertexts are denoted with �

(addition) and � (scalar multiplication), are defined by applying, entry-wise, the homomorphic
addition and scalar multiplication of E. Correctness modulo p of � (and likewise for �) below the
size bound M , follows from the fact that the sum of two TAE.ciphertexts cx and cy, is the table of
encrypted evaluations of the sum of the underlying polynomials, Bx and By, whose sum is Bx+y.
Consider any ciphertext c, with plaintexts of shares below the size bound M . Any set of t + 1
players can compute as follows the correct decryption mod p of c (the meaning of “correct” will be
specified later, in terms of well formed ciphertexts.). Each player j computes the decryption of the
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j-th coordinate of c, which we denote sj : the decryption share of j. By definition of SHE we have
sj ∈ [0, . . . , p− 1]. We denote the result . Players send their decryption shares to all players (or, in
our MPC protocol of §3.4.1: to the king, along with a correct decryption proof, then king-to-all).
Upon reception of any t + 1 of them, a player interpolates the unique polynomial B ∈ Fp[X]t
through the sj received, and outputs the evaluation B(0), which is equal to s mod p as desired.

No Robustness We will not require for Robustness in our specification of TAE, namely, we do not
specify that the algorithms listed in §3.2 come with a mechanism to verify correctness of their
output. Notice that, by contrast, robustness is a requirement of verifiable threshold homomorphic
encryption, as used in [CDN01].The reason for our choice is that robustness will be trivially enforced
at the level of the MPC protocol, by having players ZK prove that they correctly computed their
encryptions and their shares of the TAE operations. The reason for this modularity is that we need
different levels of robustness. For the purpose of Theorem 1, slaves prove correctness in ZK only to
their king K. But, as in the MPC protocol of [BHN10], kings do not prove to slaves the correctness
of their computations, nor even of the inputs that they used. By contrast, in the proactive MPC
protocol (§4), both slaves and kings will incorporate NIZK proofs of correctness in their shares and
aggregation, until a quorum of t+ 1 slaves validate the proofs by putting their signature.

3.1.1 Alternative TAE from any PKE, with Interactive Linear Combinations In this
paragraph we overview the alternative possibility to implement TAE from any public key encryption
scheme, PKE in short, thanks to a novel bivariate PVSS, at the cost that linear combination are
also computed interactively. To encrypt a plaintext s ∈ [0, . . . , p − 1] ⊂ Z with TAE, sample at
random the nonzero coefficients of a symmetric bivariate polynomial B of bidegree ≤ (t, t), i.e., in
Fp[X,Y ](t,t). Set the zero coefficient B(0, 0) as s. Finally, output the TAE.ciphertext cs consisting

of the n× n array of E-ciphertexts of evaluations of B: Epkj

(
B(i, j)

)
.

Interactive Additions for the Alternative TAE. The homomorphic linear operations between
TAE.ciphertexts, and likewise for scalar multiplication or general linear combinations, proceeds by a
two steps threshold mechanism. The mechanism maintains the invariant that, on each ciphertext,
which is an n× n array, then at least t+ 1 lines are filled with values. On input two ciphertexts cx
and cy to be added, each player j decrypts t+ 1 nonempty values xi and yi on the j-th column of
each ciphertext. Then computes the t+ 1 sums of plaintexts xi+yi modulo p, then interpolates the
unique polynomial B(X, j) ∈ Fp[X]t through these t+1 evaluations. He finally outputs its addition
share, consisting in the row vector of encryptions of B at the n points j′ ∈ [n], under the public
keys of players:

[
Epkj′ (B(X, j′), j′ ∈ [n]

]
. On input any t+ 1 addition shares computed by distinct

players, denote I the set of their t + 1 indices, output the ciphertext sum consisting in the n × n
array where the t+ 1 lines in I are equal to the shares received, and the other lines are empty (the
entries are set to ⊥).

Resizing for the Alternative TAE. We now sketch a threshold mechanism that inputs a ciphertext
c, and output a ciphertext c(out) with same plaintext, but where in addition all the plaintexts of
the entries in the n× n table constituting c(out) have been reduced mod, p, thus are back to small
size. On input c, each player Pj decrypts t+ 1 entries on its column j into dci∈[t+1],j , reduces them

modulo p into d
c,(out)
i∈[t+1],j , interpolates the univariate polynomial Bj(X) of degree t+1 through them,

and deduces the remaining t evaluations d
c,(out)
i∈[t+1,...,n],j . The key observation is that, by symmetry
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of the bivariate polynomial Bc underlying c, we have that the dci∈[n],j are also the evaluations of

Bc on the j-th row, i.e., at the points (i, j ∈ [n]). Finally, Pj outputs the j-th row, consiting in the

re-encryption of the d
c,(out)
i∈[n],j under the public keys pki∈[n]. We denote this output a resize “share”

of c. We then have the public algorithm takes as input any t+ 1 correctly computed Resize shares,
and outputs, n×n ciphertext c(out), naively built as the n×n table in which the rows are set equal
to the received shares if the case, and the remaining t rows are set empty (⊥).

3.2 Specification of TAE

3.2.1 List of Algorithms Required Every algorithm for TAE takes as parameter the n public
keys that are on the bulletin board. Since there is no condition on how the keys of malicious players
were generated, nor any interaction nor trusted party needed to generate the keys, this setup is
therefore transparent. The algorithms are straightforward to adapt for the cases where up to t keys
are empty (⊥). We consider a finite field Fp of prime order p. We fix E any SHE as defined in §2.4.2.
We abuse notations and also denote as pki the public keys used for E . This abuse is because, in our
implementation §3.3, E will be the baseline public key encryption scheme, thus the public keys will
coincide. By “correct computation” of a decryption share from a secret key i, we imply in particular
that the pair (ski, pki) was correctly generated with the KeyGen of E.

Definition 4. A (t + 1)-out-of n threshold encryption scheme with transparent setup (TAE) over
Fp is the data of a space C denoted as the global ciphertext space, spaces sK and pK denoted as
the “secret keys” and “public keys” spaces, of an integer MTAE denoted the plaintext size bound
for correct decryption mod p, and of the following algorithms. The {0, 1}∗ denotes binary strings of
which the lengths will be specified in our implementation. Λ denotes an arbitrary linear combination
with arbitrary length L. Note the one can perform at once the threshold decryption of the linear
combination of the plaintexts of ciphertexts.

Encrypt: pKn × Fp → C
PubDec.Contrib: sK × C → {0, 1}∗ ∪ abort, denoted as “decryption share”.

PubDec.Combine: ({0, 1}∗)t+1 → Fp ∪ abort.

�: C2 −→ C
� : C × Fp −→ C
Which furthermore satisfies correctness of decryption mod p, privacy: IND-CPA and reconstructibil-
ity of decryption shares as defined below.

In appendix §A.2 we further specify a private decryption algorithm, which is used for Theorem
1 only in the case where some outputs of the circuit are not to be learned by all players.

3.2.2 Correctness of decryptions mod p We firstly make a definition that characterizes a
ciphertext obtained from repeated applications of � and �. Let us consider a circuit C, with some
arbitrary number L of input gates, all equal to Encrypt; with intermediary gates equal to ·� · and
· � λ (the various factors λ ∈ Fp in the latter are public fixed values); and with one single output
wire.

We then enrich the wires of circuit with labels, indicating an upper bound on the plaintext sizes
through these wires. The fan-out wire of an Encrypt gate has size label p− 1. The fan-out wire of
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a ·� · gate has size label equal to the sum of the fan-in wires, while the one of a ·�λ has size label
equal to the product of the size label of the fan-in wire, times λ.

Let A be the size label of the output wire. Then, for any L inputs (mi)i∈[L] ∈ Fp (one for each
input Encrypt gate), denote c the output of the circuit, we say that c is a homomorphic linear
combination of plaintext size ≤ A.

Definition 5. A TAE.ciphertext is a homomorphic linear combination of plaintext size ≤MTAE.

The correctness requirement is then that, for any TAE.ciphertext c, consider C be a circuit such
as in the definition, i.e., with output size label ≤ MTAE, and a collection of inputs (mi)i∈[L] ∈ FLp ,

such that c = C((mi)i∈[L]) is the output, denote ΛC the linear form FLp → Fp defined by the
circuit C and denote y := ΛC((mi∈[L])), i.e., the deterministic output of C if applied directly on
the plaintexts, then, any public threshold decryption of c is equal to y.

In the sentence above, by any public threshold decryption, we mean: the output of PubDec.Combine
applied on any t + 1 decryption shares, i.e., outputs of PubDec.Contribski(c) computed with any
t+ 1 secret keys ski with distinct indices.

We can thus say that y is the plaintext of the TAE.ciphertext c.

3.2.3 IND-CPA Is defined as usual. Consider a PPT adversary A playing with a challenge oracle
OTAE, which correctly generates (ski, pki) := KeyGen() ∀i ∈ [n] and gives all the pki to the adversary.
Then, A can initially request “corruption” of at most t indices IA ⊂ [n], for which OTAE reveals
the ski∈IA to her. She can then make TAE.Encrypt requests to OTAE. A can submit two plaintexts
m0, m1 to the OTAE, who samples b ∈ {0, 1} and returns the encryption ci = TAE.Encrypt(mi) to
her. IND-CPA requires that A has negligible advantage in distinguishing b.

3.2.4 Reconstructibility of Public Decryption shares. This requirement, which we will use
in the UC proof of Theorem 1 in §B.6, strenghtens the classical property known as “simulatability
of decryption shares”. It states existence of an efficient algorithm ShReco as follows. Consider the
data of: any plaintext m ∈ Fp, along with a subset of t indices IA ⊂ [n] and any t strings (mi∈IA)
of the same format as decryption shares. Then, on input this data, we have that ShReco outputs
t + 1 strings (mi∈[n]\IA), such that for any TAE.ciphertext of m such that the decryption shares
produced by secret keys in IA are equal to the (mi∈[n]\IA), then the decryption shares produced by
the remaining keys are equal to the (mi∈[n]\IA). We insist that ShReco does not take any secret key
as input. Nor does the requirement depend on any ciphertext of m that would be taken as input
of ShReco, as the case in usual definitions of “simulatability of decryption shares”, e.g., [AJN+16,
p. 17]. This requirement is what limited usual definitions: to simulatability of correctly computed
decryption shares of a given input ciphertext. Thus these definitions did not enable a fake decryption
(of a ciphertext, into an arbitrary plaintexts), which we need in our proof .

3.2.5 Inference of (Adversarial) Shares In the UC proof of Thm 1 in §B.6, contrary to
[BHN10], the simulator does not know the secret keys of corrupt players. To cope with this, we
require an algorithm ShReco that takes as input any t + 1 decryption shares of some ciphertext
cm output by any t + 1 secret keys of distinct indices, and outputs the t decryption shares of the
remaining keys. We insist that ShReco does not take any secret key as input.
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3.3 Implementation of TAE

We use the notations of §2.4. We consider a public key SHE scheme (KeyGen, E,Dec) over Fp
as defined in §2.4.2, we denote M the size bound for correct decryption modp. Given n public
keys pk1 . . . , pkn, denote (Ci∈[n]) the corresponding ciphertext spaces. For brevity, we simplify
the encryption notation E(pki, x) to Ei(x). Then, we define the global ciphertext space C :=
C1×· · ·×Cn. We now introduce the following intrinsic definition. As stated later in Proposition 10,
with respect to the following implementation of TAE, it will turn out that this definition is satisfied
by any TAE.ciphertext (Definition 5), which will thus imply correct decryption modp.

Definition 6. Let A ≤M be an integer. A ciphertext c = [c1, . . . , cn] ∈ C is a well formed ciphertext
with plaintext sizes smaller than A if each ci is a Epki-ciphertext of some si ∈ Z with size

∣∣si∣∣ ≤ A,
which thus decrypts to mi := si mod p by the definition of SHE, and such that there exists a
polynomial B(X) ∈ Fp[X]t, such that si mod p = mi = B(i). We then say that m := B(0) is the
plaintext of c.

Encrypt Let (pk ∈ pKn,m ∈ Fp) be the inputs. Sample a random polynomial B(X) ∈ Fp[X]t,
such that B(0) = m. Output

[
Ei(B(i)), i ∈ [n]

]
.

� and � are computed, coordinate by coordinate, by the � and � of the SHE.

Threshold decryption PubDec.Contrib: on input (ski, c ∈ C) , output Decski(ci).
PubDec.Combine: on input (correct) decryption shares mi∈I ∈ Fp computed from t + 1 secret
keys with indices in any (t + 1)-subset I ⊂ [n], interpolate the unique polynomial B(X) ∈ Fp[X]t
evaluating to them at the [i ∈ I], then output B(0).

It follows easily from the description that the previous implemention of TAE satisfies correctness
of threshold decryption modulo p, with respect to the same bound MTAE := M as the correct
decryption bound of the SHE. In addition to this fact, in §A.1 we also prove Reconstructibility of
decryption shares and IND-CPA.

ShReco: on input a plaintext m and t elements mi∈IA ∈ Fp computed by secret keys with indices i
in some t-subset IA ⊂ [n], interpolate the unique polynomial B ∈ Fp[X]t evaluating to the mi∈IA
at the [i ∈ IA] and to m at 0. Then, output B(i) for each i ∈ [n]\IA.

ShInfer: on input t + 1 decryption shares mi∈I computed by secret keys with indices i in some
(t+ 1)-subset I ⊂ [n], interpolate the unique polynomial B ∈ Fp[X]t evaluating to the mi∈I at the
[i ∈ I]. Then, output B(i) for each i ∈ [n]\I.

3.4 Proof of Theorem 1

3.4.1 Protocol We now present the overall protocol, that is further formalized in Appendix B.
Note that we later introduce improvements for the triples generation (2) and the termination (4)
in Sections 4.2 and 4.4 respectively, but they are in no way necessary for theorem 1. The structure
is the same as the protocol of [BHN10], which was reminded in §2.2. We modify this baseline by
using the above TAE with transparent setup instead of their additively homomorphic encryption
with trusted setup.

21



We control the growth of size of plaintexts as follows. The wires of the circuit are labelled, as
above Definition 5, by an upper-bound on the size of the plaintext. The previous rules of computation
of the labels of fan-out wires are unchanged: Encrypt (has output label p), � (addition of input
labels), �λ (multiplication with λ). In addition to the previous context of Definition 5, the MPC
circuit has now also PubDec gates in different subprotocols (Multiplication, Termination and the
new Resize that we are going to introduce). The output wires of PubDec gates are set to p.
For instance, in the multiplication, the PubDec output wires are themselves input wires for the
right input of · � λ, i.e., define the public constants λ. For large circuits, labels might grow larger
than MTAE. To prevent this, and thus ensure correct decryption mod p, we also include a few Resize
gates, as detailed in (3) below. Notice that this formalism parallels the one of so-called “well-formed-
circuits” in [CLO+13], where in their context the labels are upper-bounds for the noise, instead
of the plaintext size, and where special bootstrapping gates (denoted as refresh) are introduced to
bring down the size of the noise, not of the plaintext size.

(0) Transparent Setup: Taking as input the number of players, each player generates locally a pub-
lic/private key pair and sends the public key to FBoard. Then it obtains all the submitted public keys.
Likewise, players publish their individual CRS, following [GO07], in order to implement UC-NIZK
(yielding FZK , and F1:M

ZK when combined with the broadcast).

(1) Inputs distribution: Players broadcast their encrypted inputs, and call F1:M
ZK to provide all players

with a proof of plaintext knowledge (PoPK) along with a proof of knowledge of their secret keys.
See in §B.1 for an efficient noninteractive PoPK using [ACR21], which although assumes a common
uniform string, which is not mandatory in our honest majority setting if using instead [GO07]. Upon
completion of these steps, for every input wire, the players have agreement on: either a correctly
formed ciphertext X = TAE.Encrypt(x) of an input value, or on an empty string (⊥).

(2) Triples generation: The structure of this step is only slightly adapted from [BHN10], of which
we recall the triple generation for convenience in Figure 5 of §B.2 (formalized in the FZK-hybrid
model).

(2) Masks generation: In order to implement Resize gates (detailed below), we need random masks.
We detail in §B.3 an adaptation of the triple generation of [BHN10] to produce such random values.

(3) Circuit evaluation: The difference is that homomorphic linear combinations, which were com-
puted on E−ciphertexts, are now replaced by � and � on TAE.ciphertexts. This difference applies
in particular to the Multiplication subprotocol. Note that the evaluation of a circuit require O(cM )
consecutive interactions, where cM denotes the number of multiplication gates.

(3) Resize gates: To resize a ciphertext, players use a fresh random mask that is subtracted from the
plaintext using �. Then they compute the threshold decryption, in Fp. Then the king re-encrypts
it and subtracts the mask using �(−1) then �. We detail this protocol in §B.5.

(4) Termination: This step is unchanged from [BHN10].

In §B.6 we prove that the protocol implements secure circuit evaluation, in the uniform com-
posability (UC) sense. Since UC-NIZK are implementable from FBoard in the honest majority
setting (by [GO07]), we make the proof in the (FBoard, F1:M

ZK , FZK))-hybrid model, concretely we
allow simulator to simulate all these functionalities. However, we do not allow the simulator to
“rewind” the adversary, i.e., to extract witnesses from these two functionalities that it simulates.
As in [BHN08, B], we do allow rewinding in intermediary games, whose purposes are to analyze the
distribution of the view provided by the simulator, not to define the simulator. The main difference
with [BHN10] (and also [CDN01; Coh16]) is that, there, S im had the additional power to simulate
the trusted setup, and therefore learn (even choose) the secret keys assigned to corrupt players.
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He could therefore compute the decryption shares of corrupt players, then use this information to
simulate compatible honest decryption shares of any plaintext of its choice. Our main innovation
compared to [BHN10] is a way around that enables the simulator to still infer decryption shares of
corrupt players despite its weaker power in our setting, thanks to the algorithm that we denoted
ShInfer: inference of adversarial shares.

3.5 Complexity analysis

Let cI , cO and cM the number of input, output, and multiplication gates. All ZK proofs with trans-
parent setup considered in 2.3.2 have size at most linear in the circuit to be proven. Furthermore,
those of [AC20; ACR21] have size logarithmic in the circuit to be proven, and can be made nonin-
teractive by Fiat-Shamir. Therefore, we will omit the ZK proofs from the complexity analysis. We
now analyze the overall protocol complexity. The communication complexity is measured as the
number of TAE.ciphertext sent: in our implementation of TAE with transparent setup they are of
size O(n), whereas in the implementation of [BHN10] with trusted setup they are of size O(1). We
neglect the cost of Resize gates (and of the masks generation), since they happen once avery M/p
noninteractive additions.

Input distribution (synchronous) In the first step, players broadcast their TAE.encrypted inputs,
along with a NIZK PoPK. Thus, the size of the input to the broadcast channel is O(cI).

Triple generation from [BHN10] (asynchronous) The generation of a triple requires O(n2) random-
izations (n in parallel, n times), even if only O(n) randomizations are actually taken into account
in the triple output. Each randomization is sent to all players, which thus involves n messages. A
basic optimization presented in [BHN08, Appendix A.2] allows to reduce the amortized number of
randomizations to n. Since each of the n kings need one triple per multiplication gate, the total
communication complexity of generating triples is O(cMn

3).

Circuit evaluation (communication size) The gates � and � are performed locally, thus require
no interaction. Each multiplication gate requires two PubDec (of the masked inputs). Players in
PubDec communicate a total of O(n2) elements: 1 share sent to the king per player, times n
players, times n kings.

Termination from [BHN10] The termination step requires each encrypted circuit output to be
jointly decrypted to the king using PubDec.Combine, which then sends the plaintext result z to all
slaves. Each player receiving z signs it and sends the signature to the king. Upon receiving signature
shares from t+ 1 players, the king sends these signatures to all players. This guarantees unicity of
one (t+1)-signed output per king. Once t+1 kings have finished with the same signed output, then
necessarily this must be the correct one, and all players adopt it. The total communication size for
decryption is O(n2) (as PubDec). Then the termination process in itself communicates O(cOn

3)
elements.

4 Overview of advanced contributions

We now discuss some extensions to the Main Theorem 1. This section is intended to give a high-level
overview of our more advanced results. Most details can be found in the appendices. Specifically, we
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first detail in §4.1 a new constant-round protocol to generate a random value related to a king that
we use for Resize. Then, we outline in §4.2 a new triple generation protocol used to prove Theorem
2. Then, we show in section 4.3 a new method for on-the-fly encrypted randomness generation.
Finally, we detail in §4.4 an extension of the communication model of [BHN10] presented in §2.2 to
achieve proactive security as detailed in section 4.5.

4.1 Fast King dependent encrypted randomness generator TAE.Randk used in
Theorem 2

Recall that, thanks to the observation that there needs not be consensus on the encrypted masks
used in the Resize gates, we could generate them by adapting the method of [BHN10] for triples, as
detailed in Appendix §B.3. but this took t+ 1 round trips between slaves and their kings. We now
show that this can be reduced to one round trip, still without using broadcast. We introduce the
following two-steps TAE.Randk to generate a random value shared within a king/slaves instance.
It can be seen as a toy example of our new computation structure (formalized in §4.5).

contribRandk ; Each player Pi samples mi ← Fp and send M (i) = Encrypt(mi, pk) to the king Pk
along with its signature and a ZK proof of plaintext knowledge.

combineRandk : Upon receiving messages from any subset t+ 1 slaves with correct proofs, the king
outputs their � sum, appended with the t+ 1 signed messages.

players receiving such an output M accept it if: it is appended with t + 1 signed messages M (i)

from different players with valid PoPK, and such that M is their � sum.

Proposition 7. If a honest player accepts such an output M , then its threshold decryption (PubDec),
in Fp, is unpredictable to the adversary A.

(Proof sketch). As soon as at least one player contributed to M (with an additive contribution
M (i)), we have that the threshold decryption of M , in Fp, is unpredictable.

4.2 Triple generation in constant round trips used in Theorem 2

We outline below our new alternative triples generation protocol, stated in Theorem 2 denoted as
PreProc, that allows all the honest players to terminate the protocol and to output t+t′

2 + 1 − t′
random multiplication triples unknown to the adversary. PreProc is detailed in appendix C.1.1 (fig.
7), and its proof in C.1.3. PreProc is independent of the threshold additive encryption scheme,
e.g, which could either be the one considered in [CDN01; BHN10], which requires trusted setup, or
ours in §3, which does not. Thus, we adopt generic notations: E denotes any threshold encryption
scheme that enables (possibly with interactions) the addition of ciphertexts (noted �) and the
scalar multiplication (noted �). PreProc is in three steps as follows:

1. Triple distribution In the initial broadcast round, each player Pi broadcasts one or several
triples, encrypted with a threshold additive scheme, each of them appended with NIZK proofs
of plaintext multiplication (PoPM). The relation to be proven is formalized as RPoPM in §C.1.3,
and can be directly and efficiently implemented in size logarithmic in the number of triples,
e.g., with the technique recalled in [ACR21, §6].

2. Triples verification Each player then verifies the correctness of the multiplication triples and
outputs the set U of the players who broadcasted correct multiplicative triples. Let us denote
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|U| := t+1+ t′ their number3. Notice that, by contrast to [CHP13], this verification is local and
deterministic, thus all honest players output the same U without needing Byzantine Agreement.

3. Randomness extraction Finally, each player executes the triple extraction protocol TripExt,
presented in Appendix C.1.2, on the set of triples broadcasted by players in U to extract
t+t′

2 + 1 − t′ random multiplication triples unknown to A. Our protocol is adapted from the
protocol for the transformation of t-shared triples proposed in [CHP13], but unlike theirs,
considers a variable number of encrypted triples, appended with a noninteractive PoPM. This
enables the extraction of at least one triple without consensus. In short, the idea is to define
two polynomials x(.), y(.) of degree t+t′

2 , and to sacrifice t+t′

2 triples to interpolate a polynomial
z(.) of degree t+ t′, where z = x(.)y(.) holds. As A knows t′ input triples, he learns t′ distinct

values of x(.), y(.) and z(.), implying t+t′

2 +1− t′ degrees of freedom that can be used to extract
random triples.

This protocol only involves one broadcast of O(cM ) elements and one interactive decryptions
during the extraction. We refer the reader to Appendix C for further details.

4.3 On-the-fly Threshold-Additive Encrypted Randomness used in Theorem 2

We propose a linear threshold construction to generate TAE encrypted random values without setup,
such that players have a consistent view on the ciphertexts, using only a constant broadcast size.
This leverages the construction introduced by [CDI05, §4] and denoted pseudorandom secret sharing
(PRSS) and our TAE. The former enables players to generate, without interaction, an unlimited
number of shared unpredictable random values, that come in the form of Shamir shares, that players
generate locally. We introduce the following theorem.

Theorem 8. In the same model than Theorem 1, the player can produce encrypted random values
unknown to the adversary, in a fix (constant) number of consecutive interactions.

The former enables players to generate, without interaction, an unlimited number of shared
unpredictable random values, that come in the form of Shamir shares, that players generate locally.

We give details of Theorem 8 in appendix C.2 as well of security proofs. In brief, the main idea
of this construction is to combine the linearity of the PRSS with the homomorphic properties of
the TAE. This enables to generate key pairs on-the-fly which would be used in section 4.5 to enable
proactive security.

4.4 New Computation Structure

We present the new computation structure to evaluate a circuit introduced in §1.2.4.

Stage, and speedup wrt [BHN10] We break down the actual computation of a circuit into a
series of intermediary functions denoted as Stages. They represent the incompressible steps in our
protocol and are entirely defined by a public Stage Identification tag (SID) as follows. The identity
of the king is encoded as SID.kingNb. The function to be computed is denoted as SID.function.
Finally, SID.prev contains a list of SID’s whose outputs are used as input of this stage. A stage
takes as inputs outputs from previous stages and produces an output that we call a verified stage

3Recall that t′ denotes the number of correct triples broadcast by the adversary.
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output (Verif0ut in short), which consists of two elements: the result of the function SID.function
applied to the inputs from SID.prev and a Quorum Verification Certificates (QVC in short)
which consists in the concatenation of t + 1 signatures on the result. Given a Verif0ut, we use
Verif0ut.value and Verif0ut.QVC to refer to the above-mentioned elements. Throughout the
computation, we maintain the following invariant from the distribution to the termination:

Inv stage : any output of a stage signed by at least t+ 1

players is a correct verified stage output.(1)

This essentially forms a chain of correctness from distribution to termination.

Remark 1. Note that a player cannot terminate until it knows that all honest players will also
terminate. In [BHN10], this requires every player to wait until they receive t + 1 identical results
to be sure that at least one honest king learns the correct result. In our protocol a signed value is
correct (per Inv stage). Upon receiving one correct output a player multicasts it and immediately
terminates.

Overall structure of a Stage In summary, a stage takes as inputs a set of verified stage
outputs {Xi}i and produces another VerifOut whose value is equal to SID.function({Xi}i).
The computation of this output follows a threshold mechanism in two steps.

contribsid: 4 a contribution function for stage SID applied by each slave Pj on: the stage input and
its private input, denoted sj, typically its secret key.

combinesid: a public function applied on any t+ 1 correct contributions, such that:

from any set S of t+ 1 slaves, we have

(2) Verif0ut.value = combinesid({contribsid({Xi}i, sj}j∈S).

The execution of a Stage for a player is presented in figure 9 in Appendix D, along a more complete
description of the data structures used and the pseudocodes.

A king drives a Stage in two exchanges of messages called phases. The first one is denoted as
contribution phase. Each slave computes locally the function contribsid on the inputs of the stage
along with its secret input sj . It sends the result, denoted “contribution” to the king, appended
with a NIZK proof of correctness. Upon receiving t+ 1 correct “contributions” from t+ 1 distinct
slaves, appended with the NIZK proofs, the king Combines these t+ 1 contributions into the stage
output, and appends to it a concatenation of the proofs (denoted Combine Proof ).

In the second one, denoted verification phase, the king multicasts the above stage output ap-
pended with the concatenation of the proofs. Upon receiving it, each slave checks correctness of
the NIZK then signs the stage output if correct. The king collects any t + 1 signatures then con-
catenates them. Notice that this could be reduced to logarithmic size, thanks to the threshold
signature without trusted setup of [ACR21, §5]. It appends them to the stage output: altogether,
this constitutes what we denote the verified stage output. Noticeably, these t + 1 signatures by
themselves guarantee that at least one honest player checked correctness of the stage output, and
thus guarantee its correctness. Remarkably, this is why this data structure Verif0ut needs not to
be further appended with the previous t+ 1 NIZK proofs to guarantee its correctness. Finally note
that this verification mechanism, enable any new king to take over the computation, from the point
where a former king became corrupt and stopped, which serves to enforce proactive security.

4 To simplify notation, here sid denotes SID.function
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Remark 2 (Optimization). At first glance, it seems that it takes 2 round trips for each operation.
However, similarly to the “pipelining” technique of [YMR+19], one can have players speculatively
execute the stages on some unsigned outputs of the previous stage while they are simultaneously
performing the verification phase on these outputs. They abort if it turns out that these outputs
cannot pass the verification. This halves the latency of a stage down to one round trip.

4.4.1 Fitting recent works in the almost asynchronous model Let us take the example
of the MPC protocol [DLS05], the same observations and contributions apply to [BJMS20]. In
their §5 they describe how to realize MPC in 2 rounds, from a “PKI setup” which we observe is
actually equivalent to our FBoard. Notice that, [DLS05, p. 9] also assume the setup of a public
uniform random matrix denoted B. This is not mandatory in [BJMS20], but their protocol requires
3 rounds. We now make here the simple but apparently new observation that their first round, of
synchronous broadcast, can be replaced by a call to FBoard in the setup. Namely, and we credit
this observation to [GPS19a], each player i in [BJMS20] can instead use FBoard to publish the
input-independent material, denoted parami, that it was intended to broadcast in the first round
of [BJMS20]. As a consequence, we observe that this modification yields an alternative proof of the
result of [GJPR21], which is that MPC is feasible in two rounds in the FBoard model, without any
public random string.

Now, there remains an apparent separation between the previous MPC in two rounds, and the
almost-asynchronous model. It is that the protocol of [DLS05] requires synchronous broadcast in
the second round, which makes it incompatible with our model. To overcome this, let us recall that
the general result of [DMR+21, §6 Thm 7] states that broadcast is not required in the 2st and last
round, as long as players are instructed to append PoPKs to their messages in the 1st round. We
now make the simple but apparently new observation that even synchrony is not required in the 2st

and last round, and thus that AMPC is possible. Indeed, it is stated at the end of the protocol of
[DLS05, p11] that players are able to output in the last round from any set of t+1 correctly formed
messages. Thus, this implies correctness of the modification of [DLS05, p11] in which we specify
that the 2st and last round is now asynchronous, i.e., that players output as soon as they receive
any set of t+ 1 correctly formed messages. Indeed, whatever the scheduling of messages, the output
of honest players is identical than in the baseline synchronous termination, since, in this baseline,
each player takes only into account an arbitrary chosen subset of t+ 1 well-formed messages.

Then, the main limitation of the TFHE schemes [DLS05; BJMS20] presented in §1.4, is their
ciphertext size polynomial in the depth of the circuit. Our second contribution here is to remove
this limitation, using a mechanism similar as in [CLO+13]. Recall that they describe an interactive
protocol, denoted “Refresh”, as known as “interactive bootstrapping”, that brings down the size
of noise of threshold ciphertexts c. Concretely, players first collectively generate a random cipher-
text, denoted as the “mask” cr. Specifically, cr is the homomorphic sum of random ciphertexts
synchronously broadcast by players. Players then homomorphically add the mask to the ciphertext
cr to be refreshed, open r + m, compute a re-encryption of it then homomorphically subtract cr.
The problem is that both synchrony and broadcast are required, in order to guarantee consensus
on the mask. Our observation is that, in our model, consensus on ciphertext masks need only hold
inside every king/slaves instance. This weak form of consensus can be precisely implemented in our
new computation structure by having the king choose which t + 1 random contribution to sum to
form cr, then collect t+ 1 signatures on cr to guarantee its unicity. We detail more this subroutine,
denoted TAE.Randk, in Appendix 4.1.
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4.5 Proactive security

In the model denoted as “proactive”, the execution is divided in timeframes, denoted as “epochs”,
such that the adversary can statically corrupt at most t players at the beginning of an epoch. Thus,
to prevent the adversary to gain too much knowledge, players perform what we describe below as
Refresh operations between every two epochs.

For simplicity we first define in §4.5.1 a model with epochs determined by a global clock, and
with the synchrony assumption of [CKLS02] that all messages are delivered at the end of each
epoch. How to implement a —more realistic— weak clock is well studied topic, e.g., see [NK20] for
one with linear communication. In §4.5.2 we describe a mechanism to refresh ciphertexts with fix
latency, and no interaction before the old keys are erased. Then in §4.5.3, we remove the synchrony,
and adapt the refresh mechanism in consequence, at the cost of one more interaction. Finally in
§4.5.3 we also sketch a decentralized mechanism to refresh the keys, in particular which needs not
access to the bulletin board and which goes at the actual network pace. Note that we also provide
further explanations about how our model stands compared to previous works [SLL10; BELO14;
CKLS02] in E.1.

4.5.1 Simple Model and Overall Structure of a Non-interactive Refresh We assume a
global clock that ticks epoch numbers: e = 1, 2, . . . . Furthermore, the clock also regularly ticks
another signal, that we denote as “beginning of Refresh”. This signal is ticked a fixed public delay
δRefresh before every next epoch. The adversary can possibly decorrupt players at the beginning of
Refresh. Corrupt players during Refresh leak twice more information to the adversary. Indeed, we
will see that players during a Refresh know both secret informations relative to the current epoch
e and to the next epoch e + 1. Thus, if a player is corrupt during the refresh at the end of some
epoch e, then we make the classical convention that the player also counts in the corruption budget
relative to epoch e+ 1 (whose limit is also t).

Let us outline the different steps of a Refresh: Upon being notified a Refresh in epoch e, players
generate a new key pair for epoch e + 1 and publish the public key on the bulletin board. It is
assumed that, within a known delay δBoard ≤ δRefresh, all newly published keys are made accessible
to all players by the bulletin board. We also make the synchrony assumption that, within a known
delay δsync ≤ δRefresh, all messages sent in epoch e prior to the Refresh are delivered. From this point,
players which did not publish a new key are considered as corrupt and their key is set to ⊥. When
max(δBoard, δsync) is elapsed, players locally perform a sequence of actions on the TAE.ciphertexts
encrypted with the keys of epoch e. In detail, each slave, for each king/slave instance, gathers all
TAE.ciphertexts that will be needed to finish the evaluation of the circuit, i.e., not the ones that
were already processed through intermediary gates. Then it computes on each TAE.ciphertexts what
is denoted as a ReShare.Contrib, as will be detailed in the next paragraph, then multicasts it. These
actions being noninteractive, they thus take an infinitesimal time in our complexity model where
latency is measured only in terms of communication delays.

Upon finishing ReShare.Contrib, players erase from their memory all their data excepted the
keys of epoch e+ 1 (their secret key, and the n public keys). Therefore, when the clock ticks e+ 1,
players have no more sensitive information relative to epoch e in memory.

Finally, all players acting as kings (including the ones which were freshly decorrupted), apply
a public algorithm ReShare.Combine, that takes as input any t + 1 correct ReShare.contrib of the
same TAE.ciphertext (of epoch e), and which outputs a TAE.ciphertext encrypted with the keys of
epoch e + 1. Then they multicast these new TAE.ciphertext to their slaves, which enables them to
take over the computation of the circuit.
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Kings not only process the ReShare.Combine of their own slaves, but also of all slaves of all
king/slaves instances (recall that the same player plays the role of n slaves in parallel). Therefore,
this enables kings to take over the computation from the set of TAE.ciphertexts issued by the slaves
of the king which was the most advanced in the computation of the circuit: this explains the last
claim of Theorem 2. Notice that if we had not made the synchrony assumption, then, even in a
honest king instance, some slaves may send Refreshk.contrib of older ciphertexts, i.e. outputs of
previous gates, than more advanced other slaves. Thus, the king would never receive a set of t+ 1
contributions out of the same ciphertext, thus the computation would be stuck, because slaves would
since have erased their old keys. in §4.5.3 we discuss further issues, and a solution for removing this
assumption.

4.5.2 ReShare of TAE.ciphertexts, in our implementation §3.3 of TAE We recall that a
well formed ciphertext cs of some secret plaintext s ∈ Fp, is a vector of encryptions of evaluations of
a polynomial B ∈ Fp[X]t such that B(0) = s.

Before describing our solution, let us recall the structure of the resharing mechanism of [CKLS02],
that we use as inspiration. For convenience, we simplify it into semi-honest security and thus non-
verifiable plain Shamir sharing. The initial state is that each player Pi owns a share si of a secret
s, under univariate Shamir sharing with threshold t.

1. Non-interactive resharing of each share: Every player Pi randomly generates a polynomialBi(Y )

of degree t evaluating to si at 0, and sends to each Pj the evaluation s
(j)
i := Bi(j). Then Pi

immediately deletes its share si.

Players perform multi-valued Byzantine consensus to select a subset I of t + 1 indices of players
of which the sharings have successfully terminated. Let λi∈I denote the Lagrange interpolation
coefficients associated to I.

2. Generation of a new share: Each player Pj computes its new share s′j :=
∑
i∈I λis

(j)
i .

This indeed defines a sharing of s, since the s′j are evaluations at j of the polynomial
∑
i∈I λiBi(Y ),

whose value at zero is equal to
∑
i∈I λisi = s. We adapt this idea to our context of publicly

verifiable secret sharing (PVSS), where shares come as public ciphertexts. But apart from this
intuitive change, there is the nontrivial hurdle that Byzantine consensus is impossible under our
honest majority setting. To overcome it, we observe that in our king/slaves computation model,
the resharing of the PVSS needs only be consistent within a King/slaves instance. Then, using our
new computation structure, makes it possible to enforce a king-dependent consistent multivalued
consensus on a subset of t+1 contributors. Namely, the king chooses a subset I of t+1 contributions
and requests signatures of players on this a subset. Upon collecting t+1 signatures, this guarantees
unicity of this subset within a king/slave instance. The words “consistent” and “king-dependent”
are here to stress that this weak form consensus, which is relative to a king/slave instance, is not
guaranteed to terminate if the king is dishonest.

In appendix §E.2 we formalize the adaptation of the resharing mechanism of [CKLS02] in our
context of PVSS, in the form of a threshold mechanism denoted ReSharek, where k stands for
“king-dependent”. Namely, step 1. above is adapted as ReSharek.contrib, then the linear combi-
nation of step 2. is now performed homomorphically on PVSS ciphertexts, which we formalize as
ReSharek.Combine. Then in §E.3 we will state more precisely the following proposition and prove
it.
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Proposition 9. The view of A during the Refresh operation is computationally independent of the
plaintext s and of its view in previous epochs.

4.5.3 Advanced model: Proactivity with responsive refresh window The refresh window
is a weakness point in the protocol, since the corruption budget of the adversary counts twice. In
this subsection we observe that we can improve security by making the duration of this refresh
window, not a constant as before, but a variable depending on the execution. For this we: remove
the synchrony assumption with parameter δsync, at the cost of only one interaction. Then, we
remove the dependency to the bulletin board, and thus to δBoard, in the favorable epochs where no
player is decorrupted at the beginning of the Refresh.

Removing synchrony assumption within δsync After the clock ticks the beginning of a Refresh, every
king gathers all TAE.ciphertexts that will be needed to finish the evaluation of the circuit, i.e., not
the ones that were already processed through intermediary gates. Then it sends them to its slaves,
in the form of a “Refresh” request. Upon receiving this Refresh request message, slaves compute
their ReSharek.contrib on it. This guarantees unicity of the set of ciphertexts on which the slaves
of a honest king perform their ReSharek. However, slaves of a dishonest king may wait indefinitely
before receiving a request, and thus keep their old key, which is unsafe. Thus, we specify that they
erase their old key as soon as they have received from t + 1 kings a set of refreshed ciphertexts,
which guarantees that, since at least one of them is honest, it will send them to all other kings, who
will be able to take over the computation from this point.

Replacing re-publication on the board by distributed update of keys We introduce a new key gen-
eration method and an alternative ciphertext refresh mechanism. Finally, note we now take into
account the set of secret keys (rA)j∈A for the PRSS relatively to the current epoch. This time, the
steps of a refresh are as follows:

1. Ahead of the refresh window, freshly decorrupted player can publish a temporary key to the
bulletin board.

2. Players collectively evaluate n instances of the KeyGen protocol of §C.2.5, in an MPC manner,
with either the temporary keys or the old ones, once for each recipient player. This creates,
for each player j, a new key pair, such that: the private key comes as TAE.ciphertexts, with
the signature of t + 1 players attesting its correctness, which is furthermore privately opened
to j, and, such that the public key is publicly opened. Next, players generate new PRSS keys.
For this they perform

(
n
n−t
)

executions of the Keygen protocol of §C.2.5. Each execution has
parameter a set A of n− t recipient players.

3. Finally, players refresh the other ciphertexts, which are to be used in future epochs, using the
subsharing method presented in §4.5.2.

Only then, they can erase from their memory their secret keys of previous epochs, and all plaintexts
and ciphertexts related to previous epochs.
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A Complements on the TAE with transparent setup of §3

A.1 Proof of the implementation of TAE in §3.3

A.1.1 Correctness We prove the following more precise proposition, which will be useful to
quantify the output of Resize gates (Lemma 4).

Proposition 10. With respect to the implementations of TAE in §3.3, for any A ≤ M , we have
that any homomorphic linear combination of maximum plaintext size ≤ A (as defined in 3.2.2),
satisfies the definition of being a well formed ciphertext of plaintext sizes ≤ A.

Lemma 1. For any two well formed ciphertext c and c′, with plaintext sizes ≤ A and ≤ A′ such that
A + A′ ≤ M , then c � c′ is a well formed ciphertext of plaintext sizes ≤ A + A′, and such that the
plaintext of c� c′ is the sum of their plaintexts. We have the same result for the �λ: the output is
of plaintext sizes ≤ λA.

Proof. For each i ∈ [n], the i-th coordinate of c � c′ has plaintext equal to the sum of plaintexts:
si + s′i, which has size smaller than M . In addition, si + s′i decrypts to si + s′i mod p = (B+B′)(i).
Since B + B′ ∈ Fp[X]t, this concludes the claim of being a well formed ciphertext of plaintext sizes
≤ A + A′. Then, the last claim follows from the fact that the plaintext of c � c′ is equal to
(B +B′)(0) = B(0) +B′(0).

End of the proof of Proposition 10 The proposition follows by applying the following Claim to
a := A and to the actual output wire wout of C.

The Claim is that for each a ≤ A: for every fan-out wire w with label ≤ a, then the output
of this wire is a well formed ciphertext cw, of plaintexts sizes lower than a, and plaintext equal to
ΛCw

(mi), where Cw denotes the sub-circuit (prefix) of C consisting of the ancestors of w.
The proof of the Claim is by recurrence on a. Namely, for any � or � gate with output wire

with label ≤ a, then, the recurrence assumption applies to the fan-in wire(s), and thus Lemma 1
applies to the gate.

A.1.2 Shares reconstructibility By Proposition 10, any TAE.ciphertext c of m is a well formed
ciphertext of m, in particular, the decryptions of the n = 2t + 1 coordinates are evaluations of a
degree t polynomial B ∈ Fp[X] such that B(0) = m. Thus, any t of these decryptions along with
m, determine the t + 1 remaining decryptions. But by constructions, these decryptions are the
decryption shares of c, which concludes the proof.

A.1.3 IND-CPA Recall that the first step of Encrypt consists in generating a Shamir’s secret
sharing of the plaintext m. We first recall a classical property of this scheme, then in the next
paragraph we deduce IND-CPA from it.

Property 11. For any fixed plaintext m, for any subset IA ⊂ [n] of t indices, then the distribution
obtained by: sample (bj)j∈[t] uniformly independently, then output mi := m +

∑
j∈[t] bji

j for all

i ∈ IA, is uniform in Ftp independent of m.

The proof follows from invertibility of the Vandermonde determinant.
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Deducing IND-CPA We are going to show a bit more than IND-CPA, namely, that no adversary,
being allowed to see a set IA ⊂ [n] of t secret keys and make encryption requests, has nonnegligible
distinguishing advantage between: the correctly generated TAE.Encrypt of a challenge plaintext
m of its choice, and, a sample of the following distribution, which we denote V, of elements of C
such that:

– the entries in IA are E encryptions of uniform independent values in Fp;
– the entries on the remaining columns are E encryptions of 0.

Since this distribution V is independent from m, the indistinguishability that we claim indeed
implies IND-CPA. Let us prove it by contradiction: let us assume a PPT adversary ATAE that has
nonneglible advantage in the game above. Then, the following adversary AE would have nonneglible
advantage in the (n−t)-message IND-CPA game of the baseline encryption E. Recall that the (n−t)-
message IND-CPA game is the variant of the IND-CPA game in which the adversary, instead of
sending two challenge plaintexts, sends two sequences of (n − t) challenge plaintexts. A standard
argument (with (n − t) hybrid games) shows that indistinguishability of this variant is implied
by IND-CPA, with distinguishing advantage at most (n − t) times larger. [ Let us make the side
remark that [CLO+13, p13] use the 2-message IND-CPA in their proof, in a different context. ] We
are actually going to show that AE wins a slightly stronger game than (n− t)-message IND-CPA,
i.e., that it will have nonnegligible advantage in distinguishing between the E-encryption of (n− t)
messages of its choice, and (n− t) E-ciphertexts of 0. Notice that we also make the variation that
the (n − t) messages are encrypted under n − t distinct independently generated public keys, but
this can be reduced to the standard version of multi-message IND-CPA.

Let us denote OE the oracle challenged by AE in the (n − t)-message IND-CPA game for E
encryption (with the (n − t) keys variation mentionned above). This game starts by OE honestly
sampling (n− t) public keys for E: pkt+1, . . . , pkn then giving them to AE . Then, AE runs a copy
of ATAE, and plays the role of the challenging oracle towards ATAE. Precisely, AE samples t public
keys pairs: (ski, pki)i∈[1,...,t]. Then AE re-shuffles the indices of all the pki∈[n], of which we recall
that she knows the secret keys of t of them, and gives them to ATAE. Then, upon request of ATAE

of opening t private keys: if some of them are not in the t set IA for which AE knows the secret
key, then AE restarts ATAE. We claim that this happens with probability ≤ (t + (t + 1)/2t + 1)t.
Indeed, all public keys pki∈[n] are sampled independently with the same distribution, so ATAE has
no advantage in distinguishing those for which AE knows the secret key.

Provided many such restarts of ATAE, once the previous step succeeds, denote IA the set of
corrupt keys, then AE continues and honestly responds to the TAE.Encrypt requests of ATAE.
Upon receiving one challenge plaintexts m from ATAE, AE computes the first two steps of Encrypt
on both of them. Concretely, she samples a random polynomial B = m +

∑
j∈[t] bjX

j evaluating

to m at 0, then computes the n-sized vector of evaluations [B(i), i ∈ [n]]. She then sends the
challenge (n− t) plaintext messages: {B(i)i∈[n]\IA} to OE . Upon receiving the response ciphertexts
{ci, i ∈ [n]\IA} from OE , she then computes the n-sized vector V consisting of:

– The entries in IA equal to the correctly generated encryptions
{
E(B(i)), i ∈ IA

}
– The remaining entries are set to the {ci, i ∈ [n]\IA}.

And sends it to ATAE as a response to its challenge. Upon answer a bit b from ATAE, then AE
outputs the same bit b to OE .

Without computing the probabilities, the idea why AE has nonnegligible advantage with this
strategy is that:
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– in the case where the ciphertexts {ci, i ∈ [n]\IA} are encryptions of the actual n− t evaluations
{B(i)i∈[n]\IA}, then ATAE receives from AE a correctly generated TAE.Encrypt of m.

– in the case where the ciphertexts {ci,j , i ∈ [n], i ∈ [n]\IA} are encryptions of 0, then, by Prop-
erty 11 of uniform independence of any t plaintext Shamir shares, we have that what ATAE

receives from AE is undistinguishable from a sample in the distribution V.

A.2 Adding Threshold Private decryption to TAE

The following threshold mechanism PrivDec verifiably outputs the plaintext encrypted under the
public key pkr of a designated recipient. It is not used for Theorem 1 in the case where the output of
the circuit is meant to be learned by all participants. It will be used in the more advanced proactive
protocol of §4.5 , specifically, in the subroutine that generates a new private/public key pair for
every player.

Specification

PrivDec.Contrib : pK × sK × C → {0, 1}∗ ∪ abort. Notice that the notation {0, 1}∗ is because the
length is unspecified, but in our implementation it consists of a Epkr -ciphertext of an element of
Fp.

PrivDec.Combine : ({0, 1}∗)t+1 → {0, 1}∗ ∪ abort takes t + 1 outputs of PrivDec.Contrib and
outputs in ({0, 1}∗) or abort.

Implementation The following implementation is simple from a conceptual perspective: each player
applies PubDec.Contrib on the ciphertext, then encrypts the output under the recipient’s public
key.

PrivDec.Contrib : On input pkr, which is the recipient’s public key, ski and c, outputs
E(pkr,PubDec.Contrib(ski, c)) , or abort.

PrivDec.Combine On input t+1 correct PrivDec shares, decrypt them then apply PubDec.Combine.

B Complements on Theorem 1 and UC proof

B.1 Efficient Implementation of the ZK proofs

First note that the non-interactive zero knowledge proof of plaintext knowledge (PoPK) proposed
in [BHN10, §5] requires, itself, a trusted setup (to build their key ingredient denoted “ANI-VSS”),
although it could be also instantiated by any setup-free NIZK system. In the context of our imple-
mentation of TAE, in §3, of (setup-free) TAE encryption, the statements to be proven are naturally
expressed in terms of arithmetic relations in (DDH-hard) groups. Hence, instead of compiling these
relations into generic arithmetic circuits, there exists a much more efficient way to prove them
directly, which is provided by the framework [ACR21]. Notice again that this framework however
requires a common uniform random string, which is not needed by other NIZK systems in our
specific setting of honest majority with FBoard.
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B.1.1 Example: proof of plaintext knowledge, for Encrypt Thus, although this matter
is orthogonal to our main results, for completeness, let us give an explicit example of succint
NIZK proof of plaintext knowledge (PoPK) from [ACR21] in the case of TAE instantiated with el
Gamal in-the-exponent encryption. Before we proceed, let us notice that the case of TAE based
on Paillier encryption can then be directly derived. Indeed, the proof below operates on Pedersen
commitments, thus it is sufficient to combine it with the proof of [FS01, §3.2] of equality between
a Paillier plaintext and a Pedersen commitment.

The prover has a secret plaintext s ∈ [0, . . . , p − 1] ⊂ Fq. His goal is to compute a c :=
Encrypt(s), along with a proof of knowledge of the plaintext of c. Let (pki)i be the public keys
of the n players. The prover samples B =

∑
j∈[n] bjX

j a secret polynomial of degree at most t,
such that b0 := s. He computes the well formed ciphertext c consisting in the n sized vector of the
el Gamal in-the-exponent ciphertexts ci = Epki(B(i)) for all i ∈ [n] . The goal of the prover is to
prove knowledge of some degree ≤ t polynomial B′, such that the (ci)i∈[n] are encryptions of B′(i).

For each i ∈ [n], denote ri the secret random elements of Fq sampled by the prover to compute
ci. The key point is that the el Gamal ciphertexts ci are obtained by linear forms in the secrets
inputs of the prover, namely, the (ri) and (bj):

(3) Epki(B(i)) =

{
ri.pki ,

(∑
j

bji
j
)
.g + ri.g

}
∀i ∈ [n]

The prover is left with computing a public single compact commitment P = Com
(
(bj)j∈{0,...,t}, (ri)i∈[n]

)
and ZK proves that the content of the public P satisfies the n affine forms (3).

Concretely, Com denotes the Pedersen vector commitment, which is a randomized transfor-
mation Fq → G where G (of cardinality q) is the same group as the one used for the el Gamal
encryption scheme. Namely, as recalled in [ACR21], this commitment scheme uses as setup several
random elements of G. They can be derived from any public uniform random source. Uniformity
of the sampling guarantees that these elements, which are automatically generators of G, have sta-
tistically no nontrivial linear relation between them. Thus, they enable to commit to a vector of
elements of Fq in a single compact commitment.

To prove that P opens to the n affine forms of (3), the prover can open each of these affine
forms by the basic Σ-protocol of [ACR21, §4.1] (which is an easy variation on Chaum-Pedersen),
made noninteractive with Fiat-Shamir. Each proof size is O(n): the number of inputs of the affine
form. Better: recall that this basic Σ protocol can be compressed into a proof of log(n) size, by
the mechanism of [ACR21, §4.1]. Last, recall that the size of opening the n affine forms (3) can be
brought down to the one of one single affine form, i.e. O(log(n)), by the standard trick of opening
a linear combination of them by powers of a random challenge ([ACR21, p. 4.5], [AC20, §5.1]).

B.1.2 Remarks . A direct PoPK (in the univariate case) is described in [Sch99, §3]. However, it
is simpler to construct than in our setting, since in his setting, he does not need a blinding factor
in the Pedersen commitment to the plaintext, since he assumes that the plaintext is uniformly
distributed in Fq. Also, unlike ours, the size is not compressed nor amortized (from O(n4) down
to O(log(n))). The other remark is that there is a hidden difficulty, which is not addressed in
[Sch99, §3], and which is, in our setting, that the prover must also provide a range proof that the
coefficients bj of B, are indeed in a small range (in our setting: [0, . . . , p− 1]), in order to guarantee
that decryption of each ci is tractable. This range proof can be done on the same commitment P ,
with equally compressed size, using the range proof detailed in [AC20].
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B.1.3 Example: proof of correct re-encryption, for PrivDec Denote (sk, pk := gsk) the
key pair of the prover. His goal is, on input a coordinate c of a well formed ciphertext, encrypted
under pk, output a re-encryption cR of c under the receiver’s public key pkR, and prove that
correct computation of this output. By assumption c is an el-Gamal ciphertext of some gs, for some
s ∈ [−M,M ], thus of the form:

(4) c =
(
(sk r)g, (r + s)g

)
Then, el-Gamal in the exponent decryption returns s′ ∈ Fp equal to s mod p, thus of the form

(5) s′ = s+ λp

Then, re-encryption of s′ is of the form

(6) cR =
(
r′pkR, (r

′ + s′)g
)

The prover is left with ZK proving knowledge of (sk, s, s′, λ, r, r′), such that the affine equations
(4), (5), (6) and (pk = sk g) hold, with respect to the public inputs (pk, c, cR, pkR). Again, this is
an instance of the basic Σ-protocol of [ACR21, §4.1], modulo the hidden extra difficulty of proving
the range proof s′ ∈ [0, . . . , p− 1], which is again handled by [AC20].

B.2 Complements on the Triple Generation

We detail in figure 5 the triple generation protocol that we use in the protocol §3.4 proving Theorem
1. The triple generation is an adaptation of [BHN10] our model: TAE (with n public keys locally
generated) instead of threshold encryption with trusted setup (with trusted generation of secret
keys and of one single public key), and FZK (instead of the mechanism of [BHN10, §5.2] with a
trusted setup).

We adopt generic notations: E denotes any threshold encryption scheme that enables (possibly
with interactions) the addition of ciphertexts (noted �) and the scalar multiplication (noted �).

B.2.1 Analysis of triple generation In this paragraph we single out guarantees of the triple
generation mechanism, that will be used in the UC proof of the protocol §3.4.1. The guarantees
and proofs are borrowed unchanged from [BHN10]. In particular, the statements of guarantees
1 and 3 (which hold except with negligible probability) are motivated by the fact that there is
no agreement among the players on the multiplication triples (A,B,C), even with respect to one
instance of king/slaves, since a dishonest king can send different triples to different players.

Guarantee 1: Let us state this first guarantee in terms of the following game TripleA between an
adversary A and a challenger defined as:

1. Challenger runs (pki, ski)← KeyGen()∀i ∈ [n] and gives all the pki to A.
2. A adaptively outputs a set S ⊂ [n] of at most t players, and receives their secret keys. Then he

executes once the triple generation protocol GenTriplek and gives a correct triple (A,B,C) to
the challenger.

3. The challenger chooses a random bit β ← {0, 1}.
– If β = 0, it chooses (a, b) ∈ R2 uniformly and outputs (a,b, ab).
– If β = 1, it generates a valid output Dec(A), Dec(B), Dec(C).
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Protocol GenTriplek in the FZK-hybrid model

Code for slave Pi :

– Upon receiving (Pk, sid, j, (Aj , Bj , Cj)), player Pi:

1. Samples uniformly random plaintexts u, v ∈ ZN and compute U ← E(u), V ← E(v), X ←
[u � Bj ], Y ← [v � Aj ] and Z ← [u � V ] and sends (prove, sid, (U, u), (V, v), (X,Y, Z)) to
FZK .

2. Requests output from FZK until receiving (verification, sid, 1) that proves that : 1) u such
that U ∈ E(u) and X ∈ [u � Bj ] 2) v such that V ∈ E(v) and Y ∈ [v � Aj ] 3) u such that
U ∈ E(u) and Z ∈ [u� V ].

3. Sends (Aj , Bj , Cj , U, V,X, Y, Z) to all players.

– Upon receiving (Aj , Bj , Cj , U, V,X, Y, Z) from Pl, player Pi:

1. Requests the output from FZK until receiving (verification, sid, , 1) for
(Aj , Bj , Cj , U, V,X, Y, Z) and computes Aj+1 = Aj�U,Bj+1 = Bj�V,Cj+1 = Cj�X�Y �
Z and sends back a signature share σi on ((Aj , Bj , Cj), (Pk, sid, j, Pl), (Aj+1, Bj+1, Cj+1))
to Pl. Otherwise do nothing.

– Upon receiving t + 1 signature shares σl on ((Aj , Bj , Cj), (Pk, sid, j, Pi), (Aj+1, Bj+1, Cj+1)),
computes a signature σ and sends ((Aj , Bj , Cj), (Pk, sid, j, Pi, σ), (Aj+1, Bj+1, Cj+1)).

Code for king Pk :

– Initialize (A0, B0, C0) = (E(1, ε), E(1, ε), E(1, ε)) and an empty set Dtriple,sid.

– For j = 0, ...., t:

1. Send (Pk, sid, j, (Aj , Bj , Cj)) to all players not in Dtriple,sid.
2. Upon receiving ((Aj , Bj , Cj), (Pk, sid, j, Pi, σ), (Aj+1,

Bj+1, Cj+1)) with a valid signature from a player not in Dtriple,sid, store this answer and
add Pi to Dtriple,sid.

– Send ((Aj , Bj , Cj), (Pk, sid, j, Pi, σ
(j)), (Aj+1, Bj+1, Cj+1)) for j = 0, ..., t to every player.

Fig. 5: Triple generation protocol
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4. A gets the output and outputs a bit β′.
The output of the experiment is 1 if β = β′(A wins), and 0 otherwise (A loses).

The first guarantee states that the adversary A has negligible advantage in this game.

Proof. This follows from the fact that A and B are the result of t+1 randomizations, which implies
that they were randomized by at least one honest player Pi. Recall that a and b is the sum over
t+ 1 randomizers uj (resp vj) with one of them being from the honest player Pi. Moreover, every
randomizing player Pj proves knowledge of its randomizer uj (resp vj). Hence we can, by rewinding,
extract the uj and vj from the view of the adversary. Thus, distinguishing a and b from uniformly
random is equivalent to distinguishing ui and vi from uniformly random for at least one honest Pi,
which is impossible by the semantic security of the cryptosystem.

Guarantee 2: We present a slight adaptation of the above guarantee to address the distribution,
not only of individual triples for a given sid as before, but also of triples between stages. Thus,
when a triple (A,B,C) for a stage sid is accepted, then we state that the plaintexts of A and B
are indistinguishable from uniformly random values which are statistically independent from the
plaintexts of any triple accepted for any other stage sid′ 6= sid.

Proof. This follows from the fact that honest players use different randomizers when contributing
to different multiplication stages sid.

Guarantee 3: When for the same multiplication stage sid, two honest players accept the triples
(A,B,C) and (A′, B′, C ′), respectively, then either the plaintexts of (A,B,C) and (A′, B′, C ′) are
indistinguishable from uniformly random, statistically independent values to the adversary, or the
adversary knows the plaintexts of A−A′ and B −B′ .

Proof. This follows from the fact that either there is at least one honest player Pi that has random-
ized, with the same (ui, vi), one triple in some position, but not the other one in another position,
or both triples have been randomized by exactly the same set of honest player Pi in exactly the
same positions with exactly the same (ui, vi). In this case only the adversarially chosen randomizers
are different, and they are known to the adversary in the sense that they can be extracted from the
adversary in expected polynomial time.

B.3 Slow King-Dependent Encrypted Randomness Generation

We define a subprotocol TAE.Randslowk that takes no input and allows a king k to output an
encrypted value whose plaintext, which we denote “mask” m ∈ Fp, is uniform unpredictable by the
Adversary. We start from the observation that the properties required for the output are actually
identical to those of the first two components of the triples, i.e, to be uniform unpredictable. Thus,
using a straightforward simplification of the triples generation method of [BHN10], introduced in
§2.2 and detailed in Figure 5, we can generate an encrypted random value M from a chain of t+ 1
consecutive randomizations. In details, starting from an initial ciphertext M0, the king sends a
randomization request to all players and waits for the first correct contribution. Upon request, each
player Pj randomizes this ciphertext with a randomizer uj and sends back the result to the king.
Iterating this operation t+1 times, each time by a different player, we obtain an encrypted random
value M .
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Remark 3. The previous adaptation of the technique presented in [BHN10] requires t+1 consecutive
interactions, and is therefore slow. We present in §4.1 a function TAE.Randk that requires only
two consecutive interactions to produce an encrypted random value.

Guarantees: Because we use the same generation technique as for the triples presented in §B.2.1,
the same three guarantees remain valid for M , the encryption of a random mask m ∈ Fp.

B.4 Multiplication protocol, and Analysis

We first recall the protocol EncBeaver used in [BHN10] and adapted from [Bea91], which is given in
Figure 6, that we use to do multiplications between two values encrypted with a threshold additive
scheme. We then formalize and prove the correctness and termination properties of the protocol in
Lemma 2 and the privacy property in Lemma 3.

EncBeaver({X(j), Y (j), A(j), B(j), C(j))}j∈[l])

– We recall that � denotes the homomorphic addition and � the homomorphic multiplication by a
constant.

1. For each j ∈ [l], each players Pj computes F (j) = X(j) �A(j) and G(j) = Y (j) �B(j).
2. For all j ∈ [l], the players invoke PubDec(F (j), G(j)) to publicly decrypt {f (l), g(l)}j∈[l].
3. For each j ∈ [l], the players compute Z(j) = E(f (j)g(j)) � (−f (j) � B(j)) � (−g(j) � A(j)) � C(j)

and terminate.

Fig. 6: EncBeaver

Lemma 2. For every possible A and for every possible scheduler, protocol EncBeaver achieves:
(1) Termination: All the honest players eventually terminate. (2) Correctness: The protocol outputs
{E(x(j).y(j))}j∈[l].

Proof. Termination: This property follows from the termination property of PubDec.

Correctness: This property follows from the fact that for each j ∈ [l], we have x(j)y(j) =
((x(j) + a(j))− a(j))((y(i) + b(j))− b(j)) = f (j).g(j) + (−f (j)b(j)) + (−g(j)a(j)) + c(j). In particular,
we have E(x(j)y(j)) = E(f (j)g(j)) � (−f (j) �B(j)) � (−g(j) �A(j)) � C(j).

Assuming an adversary A gets valid multiplication triples from Pk (possibly corrupt) and holds
two ciphertexts X and Y of x and y respectively, then participating in the multiplication protocol.
The following lemma states that the multiplication protocol (recalled in Figure 6) leaks no more
information to the adversary than the public values.

Note that we describe the more complex case where the adversary controls the king, as the case
of a honest king is much simpler.

Lemma 3 (From [BHN10]). Let us state this lemma in terms of the following game MultA
between an adversary A that controls a king Pk and a challenger defined as:
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1. Challenger runs (pki, ski)← KeyGen() for all i ∈ [n] and gives all the pki to A.
2. A adaptively outputs a set S ⊂ [n] (that includes k) of at most t players, and receives their

secret keys. Then he executes the triple generation protocol GenTriplek. Recall from Guaran-
tee 3 presented in §B.2.1, that honest players {Pj}j∈IH might respectively accept valid triples

(A(j), B(j), C(j))j that differ from (δ
(j)
a , δ

(j)
b , δ

(j)
c )j. In this game, let assume that j ∈ [IH]. Fi-

nally A gives two encryptions X of x and Y of y to the challenger.
3. The challenger chooses a random bit β ← {0, 1}.

– If β = 0, it chooses f (j0), g(j0) ∈ Fp uniformly for the first j0 and then generates the

following (f (j), g(j))s each time shifted by (δ
(j)
a , δ

(j)
b ),

– If β = 1, it successively generates valid decryptions of X �A(j), Y �B(j) for all j ∈ [IH].
4. A gets the output and outputs a bit β′.

The output of the experiment is 1 if β = β′(A wins), and 0 otherwise (A loses).

Proof. During the protocol, A might learn the decryptions f (j) = x + a(j) mod n and g(j) =
y + b(j) mod n for all j ∈ [IA]. However, (A(j), B(j), C(j))j∈[IH] are correct multiplication triples

for a multiplication stage sid. It follows that either 1) they encrypt values {(a(j), b(j))}j∈[IH] which

are uniformly random and independent, or 2) they encrypt values {(a(j), b(j))}j∈[IH] which are

individually uniformly random and (a(j+1), b(j+1)) = (a(j), b(j)) + (δ
(j+1)
a , δ

(j+1)
b ) for (δ

(j+1)
a , δ

(j+1)
b )

known to the adversary.
In the first case, the {(f (j), g(j))}j∈[IH]s are uniformly random and independent and thus to-

gether leak no information to the adversary. This follows from Guarantee 1 of §B.2.1.
In the second case, (f (j), g(j)) is uniformly random, and therefore leaks no information to the

adversary, and (f (j+1), g(j+1)) = (f (j), g(j)) + (δ
(j+1)
a , δ

(j+1)
b ) and therefore leaks no more informa-

tion than (f (j), g(j)) to the adversary, as the adversary can compute it from (f (j), g(j)) in expected
poly-time.

B.5 Resize: interactive reduction modulo p of plaintexts, and Analysis

Resize is a two-steps mechanism that takes as inputs a TAE.ciphertext X of a value x ∈ Z of
plaintext size below the correct decryption bound A (i.e. all the plaintexts of X are lower than
A).. It consumes a TAE.ciphertext M , of a random value m ∈ Fp, generated from TAE.Randslowk

as introduced in §B.3, denoted the “mask”. It outputs a TAE.ciphertext of x′ = x mod p of small
plaintext sizes:

∣∣x′∣∣ ≤ (n+ 1)(p− 1). Before we proceed, let us mention that the above claim, made
precise in (2) of the Lemma below, is formulated in terms the sizes of the plaintexts of the n entries
of x′, which is specific to our implementation of TAE. But the claim actually holds more generally,
namely, it holds that, for any TAE, then the output of Resize is a TAE.ciphertext of plaintext size
≤ (n+ 1)(p− 1). In details, Resize consists of:

1. a masking operation between X and M to produce X� ((−1)�M), which is then opened using
PubDec to recover the plaintext value x−m,

2. then king computes the encryption X ′ := TAE.Encrypt(x−m, pk)�M in order to remove the
mask M .

We now proof the correctness and termination of Resize in Lemma 4 and the privacy property
in Lemma 5.
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Lemma 4. For every possible A, for every possible scheduler and for an honest king Pk, protocol
Resize achieves: (1) Terminationk: All the honest players eventually terminate. (2) Correctnessk:
The protocol outputs a well formed ciphertext X ′ of x, such with plaintexts sizes ≤ (n+ 1)(p− 1).

Proof. Terminationk: This property follows from the fact that at least t+ 1 players are honest.
Correctnessk: This property follows from the correctness properties of our TAE (Proposition 10,

in particular Lemma 1).

Lemma 5 (Adapted from Lemma 3). Provided we can write a game ResA similar to the one
presented in Lemma 3, we can state that the Resize protocol leaks no information to the adversary.

Proof. This follows directly from the proof of Lemma 3 applied on x + m instead on x + a (resp
y + b).

B.6 UC proof of the protocol of §3.4 for Theorem 1

B.6.1 Roadmap We prove that the protocol implements, in the sense of uniform composability
(UC), the ideal functionality FC of secure evaluation of an arithmetic circuit C over Fp. Concretely,
we exhibit a simulator S im such that no non-uniform PPT environment Z, which can choose the
honest inputs, observe the honest outputs, and fully controls t out of the n = 2t + 1 players (via
an adversary A), can distinguish between: (i) the real execution REALΠ of the protocol, where
honest players interact with the corrupt ones, and (ii) the ideal execution IDEALFC

where: honest
players interact with an ideal functionality F , and the simulator S im interacts, on the one side, with
FC on behalf of corrupt players, and on the other side with the corrupt players: both on behalf of
both honest players (to be sure, in the UC definition S im is instead allowed to simulate the corrupt
players to A, but we will not need this additional power) and of the ideal functionality FZK .
However we do not allow S im to use the witnesses given by corrupt players to the functionalities
F1:M
ZK and FZK simulated by S im, i.e., we do not allow rewinding.

To keep the focus on the core security properties, we consider in the simulation, similarly to
[BHN10], deterministic functions. However, we observe that the simulation can be easily modified to
cover any probabilistic polynomial-time functions, by letting the environment Z choose the random
input ri for random gates.

Finally, we consider that the protocol instructs players to initialize FBoard at the beginning of
every execution (parametrised by the “session-id” (sid)). This model, known as local setup, is also
assumed in the proof of [BHN08]. It enables S im to simulate FBoard, and thus provide fake keys
to the adversary on behalf of honest players. In §B.6.2, we detail the construction of our simulator
and in §B.6.2 we prove the overall protocol. We then discuss the global setup model in §B.7.

B.6.2 Description of the simulator Let us now exhibit S im, the proof of undistinguishability
is provided in §B.6.2. The main difference with [BHN10] (and also [CDN01; Coh16]) is that, there,
S im had the additional power to simulate the trusted setup, and therefore learn (even choose)
the secret keys assigned to corrupt players. He could therefore compute the decryption shares of
corrupt players, then use this information to simulate compatible honest decryption shares. Our
main innovation compared to [BHN10] is a technique to enable S im to still simulate the opening
of any ciphertext. We exhibit this technique below in the simulation of opening (4). Concretely,
S im uses the shares reconstructibility (§3.2.4) of TAE to infer corrupt decryption shares, from the
knowledge of the t+1 decryption shares of the simulated honest players. We denote IA the t indices
of corrupt players and IH the t+ 1 indices of honest ones.

43



(0) Simulating the setup. S im starts by simulating FBoard and collects the public keys pki of corrupt
players (i ∈ IA) on behalf of FBoard. For every honest player (i ∈ IH), it correctly KeyGens a “fake”
key pair (ski, pki), and defines pk = (pk1, ..., pkn). Note that non-received keys are set to ⊥. Upon
read requests from corrupt players to FBoard, it returns the previous pki∈IA∪IH .

(1) Simulating the Input distribution. S im simulates the operations of all honest players in the input
distribution phase. S im sets every ciphertext of a simulated honest player to 0, i.e x̃i := 0 for
i ∈ IH. Then S im simulates honestly F1:M

ZK , without rewinding, i.e., it immediately erases from its
memory the secret witnesses input from the adversary, upon having checked correctness (or not)
of these inputs. When the adversary sends a request to F1:M

ZK for j ∈ IH on behalf of a corrupted
player, S im responds with a confirmation of the validity of the ciphertext c̃j and immediately
deletes the plaintexts, thus preventing itself from subsequently using them beyond the ciphertexts
ci∈IA . From these ciphertexts, S im can recover the plaintexts xi∈IA that it just erased, by using
the t+ 1 decryption keys of simulated honest players to apply threshold decryption. Likewise, S im

immediately erases the secret keys that it receives from corrupt players on behalf of F1:M
ZK .

(2) - (3) Simulating the Computation. S im honestly simulates FZK throughout the computation phase.
S im honestly follows the protocol, on behalf of honest players, using the fake inputs. Specifically, S im

runs the protocol honestly for additions, possibly with Resize as detailed in §B.5. Multiplications are
evaluated using the Beaver [Bea91] technique recalled in Figure 6. S im runs the protocol honestly
for multiplications and Resize and, as before, aborts if some share from a corrupted player is not
correct.

(4) Simulating the threshold decryption. Now the kings (both corrupt and simulated) who followed the

protocol so far have formed ciphertexts c
(k)
ỹ of the evaluation ỹ. S im handles the decrypted inputs

xi∈IA of corrupt players to FC and retrieves from it an evaluation of the circuit on the actual
inputs: y := C(xi∈IA , xi∈IH) Since honest players also receive y from FC and output it, S im must

thus simulate the false opening of the c
(k)
ỹ into y. In what follows we describe the strategy for this

simulation, which we denote a simulated decryption of c
(k)
ỹ to y. For honest kings k, S im simply

returns y to the corrupt players on behalf of k. For corrupt kings, S im will use twice the shares
reconstruction, in a nonstandard way as follows:

(a) First it does a corrupt share inference: from the t + 1 decryption shares d̃i∈IH of c
(k)
ỹ held by

simulated honest players, it applies ShInfer to deduce the t corrupt decryption shares d̃i∈IA of

c
(k)
ỹ .

(b) Second to simulate consistent decryption shares from these d̃i∈IA and the plaintext y, it applies
ShReco to deduce the (unique) corresponding t+ 1 honest decryption shares di∈IH of y.

It sends them to k on behalf of honest players, along with fake proofs that these are correct

decryption shares of c
(k)
ỹ , namely, it sends verification to k on behalf of FZK .

B.6.3 Proof of undistinguishability with a real execution We go through a series of hybrid
games that will be used to prove the indistinguishability of the real and ideal worlds. The output
of each game is the output of the environment.

The Game REALΠ,A,Z This is exactly the execution of the protocol Π in the real-model with
environment Z and adversary A (and ideal functionalities (FBoard, F1:M

ZK , FZK)).
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The Game Hyb1Π,A,Z In this game, we modify the real-model experiment in the setup and input
distribution steps. The keys of honest players published in FBoard are replaced by honestly generated
keys. Moreover, the secret keys and plaintext inputs of corrupt players are now extracted from the
non-interactive ZK proofs through F1:M

ZK .

Claim. REALΠ,A,Z ≡ Hyb1
Π,A,Z

Proof. In both cases, the distribution of t + 1 keys the adversary receives is chosen uniformly at
random in pK. Moreover for the adversary, the outputs of F1:M

ZK are the same in both games.

From this point, the shares of corrupt players will be infered by using the extracted keys.

The Game Hyb2Π,A,Z This game is just like an execution of Hyb1
Π,A,Z except for the computation of

the decryption shares of c
(k)
y from honest players during the computation, which are now simulated.

Specifically, the decryption shares of corrupt players of the result are infered thanks to the corrupt
secret keys extracted from F1:M

ZK , then we deduce the output y from the ideal functionality FC ,
then use ShReco with input the corrupt shares and y, which outputs compatible honest decryption
shares of y.

Claim. Hyb1
Π,A,Z ≡ Hyb2

Π,A,Z

Proof. We replace the decryption shares of c
(k)
y of honest players by simulated decryption shares

obtained from ShReco. By the definition of ShReco detailed in §3.2.4, their are identical to what
honest players output.

Recall that to multiply two ciphertexts X and X ′, we use Beaver triples [Bea91] A, B and C
and publicly decrypt intermediary values F = X�A and G = X ′�B. Moreover, remember that, in
order to reduce interactions, we use a Resize protocol that follows the same a similar technique with
Y = X �M . Finally, recall from Guarantee 3 presented in §B.2.1, that honest players {Pj}j∈IH
might respectively accept valid triples (A(j), B(j), C(j))j (resp masks {M (j)}j) that differ from

(δ
(j)
a , δ

(j)
b , δ

(j)
c )j (resp δ

(j)
m ). Thus, because it involves partial decryptions, we introduce the following

sub-games, Hyb3
Π,A,Z and Hyb4

Π,A,Z .

The Game Hyb3Π,A,Z This game is just like an execution of Hyb2
Π,A,Z except for the computation

of the decryption shares of F (j) and G(j) (resp Y (j) for Resize) from honest players during a
multiplication (resp Resize) where we do a simulated decryption F (j) and G(j) (resp Y (j)) to the
public decryption of F (j) and G(j) (resp Y (j)) instead of the real ones.

Claim. Hyb2
Π,A,Z ≡ Hyb3

Π,A,Z

Proof. Recall that we are using the correct inputs F (j) (resp G(j), Y (j)). Therefore, except with
negligible probability, F (j) (resp G(j), Y (j)) contains the value f (j) (resp g(j), y(j)) returned by the
ideal functionality and the simulated output is indistinguishable from the honest decryption of F (j)

(resp G(j), Y (j)).
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The Game Hyb4Π,A,Z This game is just like an execution of Hyb3
Π,A,Z except for for the computation

of the decryption shares of F (j) and G(j) (resp Y (j)) from honest players during a multiplication
(resp Resize) where we do a simulated decryption of F (j) and G(j) (resp Y (j)) to two random
elements f (j), g(j) ∈ Fp (resp y(j) ∈ Fp).

Claim. Hyb3
Π,A,Z ≡ Hyb4

Π,A,Z

Proof. This follows from lemma 3 (resp Lemma 5) in which we argued that the multiplication
protocol (resp Resize) leaks no information to the adversary.

The Game Hyb5Π,A,Z This game is just like an execution of Hyb4
Π,A,Z except in the input distri-

bution stage. The ciphertexts from every honest player Pi contain encryptions of 0 rather than
xi.

Claim. Hyb4
Π,A,Z ≡ Hyb5

Π,A,Z

Proof. This follows from the IND-CPA security of TAE.

Note that up to this point, in all the previous games that we described, we still have i) all
corrupt share inferences are done thanks to the corrupt secret keys extracted from F1:M

ZK and ii)
the corrupt plaintexts are recovered thanks to F1:M

ZK .

The Game Hyb6Π,A,Z This game is just like an execution of Hyb5
Π,A,Z except that i) now to make

the corrupt share inference, we do not use the extracted key for corrupt players but instead we
apply the technique detailed in (4).(a) (ShInfer) to infer the decryption shares from corrupt players
by using the t+ 1 decryption shares of simulated honest players.

Claim. Hyb5
Π,A,Z ≡ Hyb6

Π,A,Z

Proof. The view of the adversary A does not change regardless of the (equivalent) technique used
to (deterministically) infer the corrupt decryption shares.

Claim. Hyb6
Π,A,Z = IDEALf,A,Z

Proof. This follows since the behaviour of ideal functionalities (FBoard, F1:M
ZK ), the behaviour of

the simulated ideal functionality FZK (which we recall differs from the actual FZK only at the final
opening stage, where it provides a false proof of correct decryption share) and the behaviour of the
honest parties in Hyb6

Π,A,Z is identical to the simulation done by S im.

B.7 Moving Theorem 1 to a global setup

The proof of our protocol in §3.4 leverages the fact that FBoard is initialized at the beginning of
the execution, and thus that it can be simulated by S im. This is what enables S im to generates
fake keys on behalf of honest players, and thus decrypt the ciphertexts encrypted by the adversary
with these keys (just as in [BHN08, B]). It is possible to remove this assumption, but at the price
of allowing the simulator to “rewind” the adversary. Concretely, we allow S im to use the inputs
that corrupt players give to the functionalities that S im simulates. Namely, the witnesses given by
the adversary to FZK , and also the plaintext inputs broadcast along with a NIZK. Notice that,
more precisely, S im needs to extract all decryption shares. It is indeed able to do it, since these
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shares can be deduced from the witnesses in the the explicit relations that we specify above. So
this makes non black box use of our implementation of TAE. Alternatively, we could have specified
in the protocol that decryption shares should be extractable from the ZK proofs sent.

Of independent interest, one could possibly also like to implement FZK with a global setup.
Concretely, instead of obtaining the random string by a call to a random beacon, have it instead as
a fixed public parameter, known a priori by the Environment. For instance, the decimals of Pi, or
a 2009 NYT cover (as in Bitcoin). [Pas03, p18-19] achieves it in two rounds, provided a simulator
with access to the RO queries of the adversary. [CDPW07] achieves it from a key registration that
requires players to prove knowledge of a secret key (the “FKRK”). However, strong impossibility
results for ZK under global setup are stated by [Pas03; CDPW07]. Fortunately, lighter primitives
than FZK are sufficient for MPC (as the ones of [CKS11]).

C Detailed ingredients of theorem 2

C.1 New Constant time triple generation

C.1.1 The Preprocessing phase protocol We first present the almost-asynchronous prepro-
cessing phase protocol PreProc, which is given in Figure 7. We then formalize the properties of
the protocol in lemma 6. We later prove it in §C.1.3, thanks to two subprotocols, TripExt that we
details in §C.1.2 and EncBeaver, detailed in §B.4.

Protocol PreProc

First synchronous broadcast round

1. Triple distribution - For i ∈ [n], every player Pi executes the following code:
– Act as a dealer D and broadcast a random multiplication triples {(X(i), Y (i), Z(i)}.

The remaining asynchronous protocol

2. Triple verification - For i ∈ [n], every player Pi executes the following code:
– The players verify Rtrip for all triples ({(X(i), Y (i), Z(i)}i∈[n]) and output a set U consisting

of t+ 1 + t′ players who broadcast correct triples.
3. Triple extraction and termination- The players execute the following code:

– The players execute TripExt({(X(j), Y (j), Z(j))}j∈U ), output t+t′

2
+ 1 − t′ triples {(Ai, Bi,

C)i } for i ∈ [ t+t′

2
+ 1− t′] and terminate.

Fig. 7: Preprocessing overview

Lemma 6. For every possible A and every possible scheduler, protocol PreProc achieves: (1)

Termination: All honest players terminate the protocol. (2) Correctness: The t+t′

2 + 1 − t′ output

triples will be multiplication triples. (3) Privacy: The t+t′

2 + 1 − t′ output triples are random and
unknown to A
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C.1.2 Triples Extraction The idea is to interpolate three polynomials x(.), y(.) and z(.) from
the broadcasted triples and use them to produce new values. Our protocol is adapted from the
protocol for the transformation of t-shared triples proposed in [CHP13]. The main difference is
that we don’t consider shares, but we work instead on values encrypted using a threshold additive
homomorphic encryption scheme. This enables all players in an instance led by a king Pk to run
the same protocol with the same inputs and produce the same outputs.

In greater detail, protocol TripExt takes as input t+1+t′ correct triples, say {(A(j), B(j), C(j))}j∈[t+1+t′],

where A(j) = E(a(j)), B(j) = E(b(j)) and C(j) = E(c(j)) and where, for all j, it holds that
c(j) = a(j).b(j). Note the here t′ denotes the number of correct triples broadcasted by A. TripExt
then produces t+ 1 + t′ triples, say {(X(j), Y (j), Z(j))}j∈[t+1+t′]

5, such that the following holds:

(1) there exist polynomials x(.), y(.) and z(.) of degree at most t+t′

2 , t+t
′

2 and t+ t′ respectively,

such that x(i) = x(i), y(i) = y(i) and z(i) = z(i) holds for i ∈ [t+ 1 + t′].
(2) The ith output triple (X(i), Y (i), Z(i)) is a multiplication triple iif the ith input triple

(A(i), B(i), C(i)) is a multiplication triple.

(3) If A knows t′ input triples and if t′ ≤ t+t′

2 , then he learns t′ distinct values of x(.), y(.) and

z(.), implying t+t′

2 + 1− t′ degrees of freedom, i.e remaining independent distinct values of x(.), y(.)
and z(.) that would be needed to uniquely determine these polynomials.

The core functionality of this protocol that enables to build the three polynomials x(.), y(.) and
z(.) is inherited from the verification of the multiplication triples from [BFO12]. Specifically, the
two polynomials x and y are entirely defined by the first and second components (a(i), b(i)) of the

first t+t′

2 + 1 triples. The construction of z(.) is not as straightforward due to the difference in

degree. We use x(.) and y(.) to compute t+t′

2 ”new points” and use the remaining t+t′

2 available

triples (A(i), B(i), C(i))
i∈[ t+t′

2 +2,t+1+t′]
to compute their products . Ultimately, z(.) is both defined

by the last components of the first t+t′

2 + 1 triples and by the t+t′

2 computed products.

Finally, the random outputs, unknown to A, are then extracted as
{(X(βj),Y(βj),Z(βj))}j∈[ t+t′

2 +1−t′].

Lemma 7. Let {(A(j), B(j), C(j))}j∈[t+1+t′] be a set of t+ 1 + t′ broadcast triples. Then for every
possible adversary A and every possible scheduler, protocol TripExt achieves: (1) Termination: All

the honest players eventually terminate the protocol (2) Correctness: The protocol outputs t+t′

2 +

1− t′ triples (Ai = X(βi),Bi = Y(βi) and Ci = Z(βi)) for i ∈ [ t+t
′

2 + 1− t′] such that the following

holds (a) There exist polynomials x(.), y(.) and z(.) of degree t+t′

2 , t+t′

2 and t+ t′ respectively. With

X(i) = E(x(i) for i ∈ [t+ 1 + t′] (resp Y,Z), it holds: X(i) = X(i),Y(i) = Y (i) and Z(i) = Z(i). (b)
E(z(.)) = E(x(.)y(.)) holds iff all the input triples are multiplication triples. (3) Privacy: The view
of A in the protocol is distributed independently of the output multiplication triples {(Ai = X(βi),

Bi = Y(βi), Ci = Z(βi))} for i ∈ [ t+t
′

2 + 1− t′].

Proof. Termination: This property follows from the termination property of EncBeaver (see Lemma
2).

Correctness: By construction, it is ensured that the polynomials x, y and z are of degree t+t′

2 , t+t
′

2

and t + t′ respectively and X(i) = X(i),Y(i) = Y (i) and Z(i) = Z(i) holds for i ∈ [t + 1 + t′]. To

5Following our notations, X(j) = E(x(j)), Y (j) = E(y(j)) and Z(j) = E(z(j))
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Protocol TripExt({(A(j), B(j), C(j))}j∈[t+1+t′])

1. For each j ∈ [ t+t′

2
+ 1], the players locally set X(j) = A(j), Y (j) = B(j), and Z(j) = C(j).

2. Let the points {j, x(j)}
j∈∈[ t+t′

2
+1]

and the points {j, y(j)}
j∈∈[ t+t′

2
+1]

define the polynomials x(.)

and y(.) respectively of degree at most ( t+t′

2
).

3. The players compute X(j) = X(αj) and Y (j) = y(αj) for each j ∈ [ t+t′

2
+ 2, t+ 1 + t′]. Computing

a new point on a polynomial of degree t+t′

2
is a linear function of t+t′

2
+ 1 given unique points on

the same polynomial.
4. The players execute EncBeaver({X(j), Y (j), A(j), B(j), C(j)}

j∈[ t+t′
2

+2,t+1+t′]
to compute t+t′

2
val-

ues {Z(j)}
j∈[ t+t′

2
+2,t+1+t′]

. Let the points {j, z(j)}j∈∈[t+1+t′] define the polynomial z(.) of degree

at most t+ t′.
5. The players compute Ai = X(βi),Bi = Y(βi) and Ci = Z(βi) for i ∈ [ t+t′

2
+ 1− t′] and terminate.

Fig. 8: Triple extraction

argue the second statement in the correctness property, we first show that if the input triples are
multiplication triple then E(z(.)) = E(x(.)y(.)) holds. For this, it is enough to show the multi-

plicative relation E(z(i)) = E(x(i)y(i)) holds for i ∈ [t + 1 + t′]. For i ∈ [ t+t
′

2 + 1], the relation

holds since we have X(i) = A(i), Y (i) = B(i), Z(i) = C(i) and the triple (A(i), B(i), C(i)) is a

multiplication triple by assumption. For i ∈ [ t+t
′

2 + 2, t + t′ + 1], we have E(z(i)) = E(x(i)y(i))
due to the correctness of the protocol EncBeaver and the assumption that the triples used in
EncBeaver, namely {(A(i), B(i), C(i))}

i∈[ t+t′
2 +2,t+1+t′]

are multiplication triples. Proving the other

way, that is, if E(z(.)) = E(x(.)y(.)) is true then all the input triples are multiplication triples is
easy. Since E(z(.)) = E(x(.)y(.)) , it implies that E(z(i)) = E(x(i)y(i)) for i ∈ [t + 1 + t′]. This
trivially implies {(A(i), B(i), C(i))}

i∈[ t+t′
2 ]

are multiplication triples. On the other hand, if some

triple in {(A(i), B(i), C(i))}
i∈[ t+t′

2 +1,t+1+t′]
, say (A(j), B(j), C(j)) is not a multiplication triple, then

(X(j), Y (j), Z(j)) is not a multiplication triple as well (by the correctness of the Beaver’s technique),
which is a contradiction.

Thus, the triples (Ai, Bi, Ci), defined as (Ai = X(βi),Bi = Y(βi) and Ci = Z(βi)), are valid

multiplication triples for i ∈ [ t+t
′

2 + 1− t′].

Privacy: We show that the view of the adversary A in the protocol TripExt is distributed inde-
pendently of the multiplication triples (Ai, Bi, Ci). In other words, for A all possible multiplication
triples output by TripExt are equiprobable.

We first note that, A learns at most t′ ≤ t+t′

2 points on the polynomials x(.), y(.) and z(.).

To assert this, we first show that if A knows more than t+t′

2 input triples, then it knows all the
three polynomials completely. Second, we show that if A knows the un-encrypted input triple
(a(i), b(i), c(i)), then it also knows the un-encrypted output triple (x(i), y(i), z(i)). If i ∈ [ t+t

′

2 + 1],

this follows trivially since (x(i), y(i), z(i)) is the same as (a(i), b(i), c(i)). Else if i ∈ [ t+t
′

2 +2, t+1+ t′],

then A knows the triple (a(i), b(i), c(i)) which is used to compute Z(i) from X(i) and Y (i). Since the
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values (x(i) + a(i)) and (y(i) + b(i)) are disclosed during the computation of Z(i), A knows x(i), y(i)

and hence z(i)6.

Second, we note that, since degree of x is at most t+t′

2 , for all choice of {Aj}j∈[ t−t′
2 +1]

there

exist a unique polynomial x(.) of degree at most t+t′

2 which will be consistent with these points
(X(γj) = Aj)j∈[ t−t′

2 +1]
and with the prior knowledge ofA. Thus, X(βi) = Ai varies uniformly across

the space of polynomials passing through the t′ points known by A for i ∈ [ t+t
′

2 + 1− t′]. The same
argument allows us to claim that Bi and Ci will be random toA subject to E(z(βi)) = E(x(βi)y(βi)).
The security property of the encryption scheme allows us to claim that (ai, bi, ci) are unknown to
A.

C.1.3 Proof of lemma 6 To end this section, we now prove lemma 6 using the subprotocols
introduced in §C.1.2 and §B.4.

Proof. Termination: The sharing instances will terminate following the assumption of an initial
synchronous round of broadcast. The termination of TripExt ensure that all honest players will
terminate the protocol PreProc

Correctness This property follows from the correctness property of the PoPM (see below) and
TripExt.

Privacy: Given that there will be at least t+ 1 honest players in set U and that the multiplica-
tion triples broadcast by the honest players are random and unknown to A, the privacy property
of TripExt ensures that the output triple in PreProc is random and unknown to A.

Proof of plaintext multiplication (PoPM)

RPoPM =
{
ca ∈ C , cb ∈ C , cd ∈ C ;

A(X) :=
∑
i

aiX
i ∈ Fp[X]≤t ,

B(X) :=
∑
i

biX
i ∈ Fp[X]≤t ,

D(X) :=
∑
i

diX
i ∈ Fp[X]≤t :::

RPoPK(a) ∧ RPoPK(b) ∧ RPoPK(d) ∧ a.b = d
}

6We recall that Z(j) = E(f (j)g(j)) � (−f (j) � B(j)) � (−g(j) � A(j)) � C(j), where F (j) = X(j) � A(j)

and G(j) = Y (j) �B(j)
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C.2 On-the-fly Encrypted Random Value Generation

We propose a linear threshold construction to produce an encrypted random value without setup
that we introduce in §C.2.1. We then detail in §C.2.3, an implementation in our setting. Finally, we
show in §C.2.5 that this construction makes possible the generation of pairs of public/private keys.

Let first define Fkg : Sk → K that goes from a private key space Sk to a a public key space K,
as a generic function that derives a public key in K from a private key in Sk. Depending on the
type of keys, different circuits can be computed in Fkg. For instance, we assume a black-box access
to a Pseudorandom function (PRF) with private key space SkPRF .

C.2.1 Specification of Encrypted Randomness Generator We define an algorithm, denoted
TAE.Rand, which has a specification close to a Threshold Coin, as introduced in [CKS05, §4.3.].
Each TAE.Rand is parametrized by a public coin number, and takes as public inputs a vector pk
of public keys. It outputs a TAE.ciphertext cr of a value r ∈ Fp, that enjoys the following properties

1. Robustness: two distinct calls to TAE.Rand with the same coin number, output a TAE.ciphertext
of the same r.

2. Unpredictability : consider that the Adversary A, which maliciously controls t players, can ask
a polynomial number of executions of TAE.Rand on coin numbers Ci of his choice, and asks
to TAE.PubDec for any of the outputs previously produced by these executions. Then, upon
choosing a coin number Ci of its choice which was not previously publicly decrypted, A has a
negligible advantage in distinguishing whether it is given a value r′ sampled at random in Fp,
or, the actual TAE.PubDec output r of TAE.Rand executed on the coin number Ci.

Notice in particular that robustness implies that, two different Kings executing TAE.Rand on the
same coin number, output a ciphertext of the same value r.

C.2.2 First implementation following [BHN10], using broadcast TAE.Rand can be eas-
ily implemented provided an initial synchronous broadcast. The TAE.Rand.Contrib then simply
consists in every player sample a random plaintext in Fp then verifiably broadcast a ciphertext
of it. The sum of the ciphertexts will be common and random to every player. Our goal is to
go beyond this naive idea and to propose a randomness generator that works with asynchronous
communications.

C.2.3 Implementing TAE.Rand We are now describing a broadcast-free implementation of
TAE.Rand that leverages Pseudorandom Secret Sharing (PRSS) that we recall below.

Reminder of Pseudorandom Secret Sharing (PRSS) PRSS enables each players to produce the
Shamir share of a random value. The public parameters of a PRSS over Fp, are public sets denoted
sKPRSS : the space of secret keys, and S the space of seeds, a pseudorandom function (PRF)
ψ : sK × S → Fp. The initialization of a PRSS assumes that a trusted dealer gives, to each
player, several secret keys as follows. For each subset A ⊂ {1, . . . , n} of cardinality n − t, sample
rA ∈ sKPRSS at random, and give it to exactly the players in A. Now, when they need to generate
shares of a new random value, then players deterministically select a new seed a ∈ S which was not
used before, then each player Pl locally outputs

(7) PRSS(l, a) :=
∑

|A|=n−t, l∈A

ψrA(a) · fA(l)
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Where fA is a fixed public polynomial that we do not specify. Then, PRSS(a) is linearly recon-
structible from any t+ 1 shares.

Construction TAE.Rand comes as two consecutive steps. The first one takes no input. The second
one outputs a TAE.ciphertext, cs such that the plaintext s ∈ Fp is unpredictable for an adversary
corrupting at most t players.

The first step takes as parameters a fresh seed a. To be concrete, notice that, in the imple-
mentation sketched above in §C.2.1, then a comes as a set of n fresh distinct seeds (ai)i ∈ S. Its
contribution function is as follows: each player outputs Encrypt(PRSS(j, a)), along with a proof
of correctness, as specfied in C.2.1. Its combination function simply takes as input a set of contri-
butions issued by any set L ⊂ {1, . . . , n} of t + 1 distinct players:

{
(cl, πl), l ∈ L

}
, such that the

proofs of correctness πl are verified, and outputs the concatenation of them along with the proofs.
The second step takes as input such a set of t + 1 contributions {(cl, πl), l ∈ L}. Let λl∈L be

the Lagrange linear reconstruction coefficients associated to the subset L. Then, the output of this
second stage is the linear combination

(8) cs(a) := Λ(λl)l∈L

(
{cl}l∈L

)
.

Proposition 12. The output of these two consecutive steps has the unpredictability property defined
as in the game below.

A proof of proposition 12 is given in C.2.6.

Efficiency consideration We note that the main limitation of the PRSS [CDI05] is that the size of
the keys is in

(
n
t

)
; however in most practical applications of threshold cryptography, the number of

players n is indeed expected to be small.

C.2.4 PRSS Implementation The initial step is to implement the trusted dealer of PRSS
keys, by the distributed key generation protocol of §C.2.5. The calls to TAE.Rand required in this
initial step, can either be implemented with the broadcast, or, recursively, from previous calls to
TAE.Rand with the broadcast-free implementation that we are describing.

In this implementation, the new space of seeds is Sn. Consider a player l, with inputs its set of
secret keys (rA)l∈A, a seed a and pk1, . . . , pkn the set of public keys. Pl computes bli,j := PRSS(l, ai)

on n fixed public distinct seeds: ai ∈ S, they are the n coefficients of a polynomial Bl(X) ∈ Fp[X]t.
Second, it computes the the array of its evaluations, on the αi for i ∈ [n], then encrypts the jth
entry with j’s public key. Third, it produces a proof πRand,j of correct computation of the whole.
Namely, of simultaneously: correct evaluation of the PRSS(l, ai), evaluation at the (αi), followed
by correct encryption.

C.2.5 On-the-fly encrypted randomness generator without broadcast We now enrich
PRSS, simultaneously: encryption of the output and public verifiability, as follows. First, we enrich
the secret keys with public keys, namely, we consider: an algorithm Fkg : ∅ → (sKPRSS , pKPRSS).
Second, we consider a TAE, with plaintext space Fp and ciphertext space denoted as C, and consider
any fixed set of n public keys pk1, . . . , pkn. In what follows, the TAE encryption will be implicitely
performed relatively to this set of public keys. We enrich PRSS with a proof algorithm that, on
input the set of secret keys (rA)l∈A of some player l and some seed a ∈ S, issues a proof that the
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(encrypted) output of Encrypt(PRSS(l, a)) is correctly computed. This proof is checked against
the set of public keys of player l: (pkA)l∈A. It is validly checked as soon as all key pairs (rA, pkA)
are correctly generated with Fkg. For sake of concreteness,we illustrate in C.2.4 an implementation
of the previous ingredients, based on the one of our TAE in §3.3, and we detail an implementation
of the stage in §C.2.3.

Distributed Key Generation We define KeyGenj,Fkg
as a set of stages. Informally, it produces

a ciphertext Ej(sk′j) of a private key sk′j ∈ sK and the public key pk′j ∈ K derived from sk′j .

This simple idea needs to be carried out on the p-adic decomposition of the sk′j , since the output
of TAE.Rand belongs to Fp, and not to Sk. We denote logp |sK| the number of elements of Fp
necessary to encode an element of sK. We define KeyGenj,Fkg

as the four followings steps:

1. cskj ← TAE.Rand.value: use TAE.Rand to produces a vector of TAE.ciphertext denoted as
(csklj )l∈1,...,logp |Sk|

2. Invocation of TAE.PrivDecj on the (csklj )l∈1,...,logp |sK|. From the output, Pj can deduce his

private key sk′j
3. Evaluation of the circuit which implements Fkg applied on the vector

(cskj,l)l∈1,...,logp |sK| to produce (cpklj )l∈1,...,logp |sK|.

4. Invocation of TAE.PubDec to open them, and obtain pkj by p-adic summation

C.2.6 Proof of proposition 12 The challenging oracle initializes n public/secret key pairs,
and samples

(
n
t

)
PRSS keys rA at random. On each corruption request for an index j ∈ [n], for a

total of at most t indices, the oracle reveals to the adversary the secret key and the (rA)A3j . Upon
request of a seed a, the oracle returns the n− t correctly computed contributions of uncorrupt keys,
then, returns the output cs(a) of the linear reconstruction of the ciphertext coin, as in (8). The
guessing advantage of the adversary is the difference between the probability of guessing the value
of the plaintext coin s(a), and 1/p.

Correctness Let us briefly justify that the output of the two stages is indeed a TAE.ciphertext of the
shared coin produced by the PRSS on seed a. This is because that (8) applies linear reconstruction
homomorphically on TAE-encrypted Shamir shares, and therefore, produces a TAE.ciphertext of the
(linear) reconstruction of the Shamir-shared PRSS coin.

Unpredictability Suppose by contradiction that there exists an adversary A who has nonnegligible
advantage in the following predictability game. We are going to show how such a A can be used
to construct an adversary A′ who has nonnegligible advantage against the challenging IND-CPA
oracle O′ of TAE, which is a contradiction. A′ initiates the adversary A, and samples

(
n
t

)
PRSS keys

rA at random. From now on, A′ plays the role of the challenging unpredictability oracle towards
A. A′ forwards to A the public keys initialized by O′. On every corruption request for an index j
from A, A′ forwards it to O′. Then on response of O′ the secret key skj , A′ forwards it to A, along
with the ROj . We assume for simplicity that A makes exactly t distinct corruption requests, and
denote J ⊂ [n] their indices. After the corruption phase, A gives to A′ a challenge seed a. Using
the PRSS keys rA of the t+1 uncorrupt players, A′ computes their PRSS shares PRSS(j, a)j∈[n]\J
and deduces the plaintext value s(a). A′ then gives to O′ two challenge plaintexts: m0 := a, and
any m1 ∈ Fp distinct from m0.
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Then O′ returns one challenge ciphertext cb to A′. Now, let us recall that, since s(a) and the
t corrupt PRSS shares PRSS(j, a)j∈J are t + 1 evaluations of the degree t + 1 polynomial of the
PRSS Shamir sharing, then the uncorrupt PRSS shares are linear combination of them. Let us
denote as “Lagrange” the coefficients involved. A′ computes TAE.ciphertext of the t corrupt PRSS
shares: Encrypt(PRSS(j, a))j∈J , and queries a linear combination on cb and these t ciphertexts,
with the Lagrange coefficients, to deduce t+ 1 prospective uncorrupt encryptions of PRSS shares:

˜PRSS(j, a)j∈[n]\J , which he forwards to A as the challenge. Recall that, by construction, if cb
is a TAE.ciphertext of s(a), then these prospective uncorrupt encryptions are exactly TAE.Rand
contributions of uncorrupt players indices. Therefore, if we are in this case, then A has nonnegligible
distinguishing advantage.

Finally, on output a value m from A: if m = s(a), then A′ outputs b := 0 to O′, and otherwise
he outputs b := 1 to O′.

D New computation structure for proactive security

D.1 Phases description

D.1.1 Contribution phase This phase contains two distinct aspects. On one side each player
Pi evaluates a function contribsid at stage SID, produces partial proof πi and sends a contribution
message (noted CONTRIBMSG) to the king. On the other side, upon receiving t+1 valid contribu-
tions messages associated to a unique SID, the king processes them with the function combinesid
in order to compute a Combine Proof 7 and multicasts the result in a COMBMSG message.
Recall that any player can verify a proof using the function Πsid.V erify.

D.1.2 Verification phase Upon receiving a COMBMSG Z from a king, each player verifies it
using a verif() function and, if successful, signs the value contained in the message and sends the
result in a VERIFCONTRIB message. This marks the transitions from one stage SID to SID′.
When the king received t + 1 VERIFCONTRIB messages on the same Z.value, he concatenates
them into a Quorum Verification Certificate 7. Then, it appends it to the output of the stage,
which is Z.value, to form a verified stage outputs, which he multicasts to the players. The
function realized by the king that produces a VerifOut is denoted verifOutput. We recall that a
player Pi can use its private key to sign a message m, as σi ← signi(m). Any player can verify any
signature using the public keys and the function SigV erify.

D.2 Data Structures

Messages. A message m in the protocol has a fixed set of fields that are populated using the MSG()
utility shown in algorithm 10. Each messagem is automatically stamped with kingNb, the king num-
ber that leads the computation. Each message has a type m.type ∈ {CONTRIBMSG,COMBMSG,
VERIFCONTRIB,VERIFIED-OUTPUT}. m.sid contains the Stage Identification number that
contains information about the circuit to compute. Finally, m.value contains the material used
throughout the computation. There are two optional fields m.sig and m.proof . The king uses them
to carry respectively the QVC and the CP for the different stages while the slaves used them to
carry a partial signature and a ZK proof. We recall that the function to be computed in a stage is
embedded in sid.function. In summary, players can send four types of messages:

7See D for more details
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– VERIFIED-OUTPUT: message sent by a king that contains a VerifOut build from verifOutput.
– CONTRIBMSG: message sent by a slave that contains its partial contribution from contribsid.
– COMBMSG: message sent by a king that contains the concatenated contributions and a CP

from combinesid
– VERIFCONTRIB: message send by a slave that contains a partial signature of concatenated

contributions from sign.

Combine Proof. A Combine Proof for a stage SID is a data type that contains the concate-
nation of individual ZK proofs of correct slave’s contributions. Given a Combine Proof cp, we use
cp.kingNb, cp.sid, cp.value, cp.proof to refer respectively to the king number, to the stage in which
the computation was carried out, to the concatenated result of this computation, and finally to the
concatenated proof of correct computation. We note sid.concat the concatenation function. This
proof ensures the correctness of the computation.
Quorum Verification Certificates. A Quorum Verification Certificate (QVC) over a tuple
〈kingNb, SID, value, cp〉 is a data type that concatenates a collection of signatures for the same
tuple signed by t + 1 slaves. Given a QVC qvc, we use qvc.kingNb, qvc.sid, qvc.value, qvc.cp to
refer to the matching fields of the original tuple. A tuple associated with a valid QVC is said to be
a verified stage output.

D.3 Computation structure figure

We show in figure 9 how a stage is carried out for a party Pj . Specifically, we highlight the two
phases: first the contribution and then the verification.

D.4 Pseudocode of the structure of computation

The protocols are given in Algorithms 12 and 13. Every party performs a set of instruction based
on its role, described as a succession of ”as” blocks. Note that a party can have more than one
role simultaneously and, therefore, the execution of as blocks can be proceeded concurrently across
roles. Algorithm 10 gives utilities functions used by all players to execute the protocol and algorithm
11 describes specific functions used by the king.

Lemma 8. (Verification Phase) For Every possible A and for every possible scheduler, the Verifica-
tion Phase achieves: (1) Termination: All honest players will eventually terminate. (2) Correctness:
For an honest king, the phase outputs a Quorum Verification Certificate.

Proof. Termination: The honest player Pis will terminate the protocol trivially after sending their
contributions to the king. We now argue that an honest king will terminate the protocol as well.
Let A corrupts C players, where C ≤ t, and let further assume C1 corrupted players send wrong
contributions, C2 corrupted players send nothing ever and C3 corrupted players send valid contri-
butions, subject to C1 +C2 +C3 = C. Since C2 players never send any value, the king will receive
t+ 1 +C1 +C3 distinct contributions, of which C1 are incorrect. Since t+ 1 +C1 +C3 ≥ t+ 1, the
king will terminate.
Correctness : This property directly follows the termination property. We have shown above that an
honest king is guaranteed to receive at least t+1 correct contributions. Thus it is assured to produce
a Quorum Verification Certificate and to send it to all players. Eventually, all honest players will
receive a Quorum Verification Certificate.

55



Fig. 9: Computation stage for a party Pj . It first receives two verified stage outputs X1 and X2

from stages SID1 and SID2 and uses its secret material sj to compute its partial contribution
using contribsid. The king collects t+ 1 CONTRIBMSG messages with valid proofs, combines the
contributions, and sends everything in a COMBMSG message. Finally Pj verifies the proofs and
signs the combined contributions and the king concatenates t+ 1 signatures to form a valid output
message.

Lemma 9. (Contribution Phase) For Every possible A and for every possible scheduler, the Con-
tribution Phase achieves (1) Termination: All honest players will eventually terminate. (2) Cor-
rectness phase outputs a Combine Proof

Proof. The proofs for the Contribution Phase are similar to the proofs used for the Verification
Phase

E Proactive Security

E.1 Comparison of proactive model with related works

E.1.1 Similarities with [BELO14] The model of [BELO14], is defined under a synchrony
assumption where the time is divided into rounds of synchronous communications. The similarity
of our corruption model with theirs, is that they also consider separately the specific time periods in
which players refresh their shared secrets. They denote these time periods as “refreshment phases”,
divided between two parts denoted as “opening” and “closing”. While in our model above, we denote
them simply as “refresh window”. The common point with [BELO14], is that a player corrupted
while performing a refresh of some epoch e, counts as both corrupt in epoch e and in epoch e+ 1.
Anticipating, the rationale for this is that such a player has simultaneously in memory: his plaintexts
in clear of all ciphertexts relative to epoch e, and also has his secret decryption key relatively to
epoch e+ 1.
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Utilities

Function 1 MSG(type, sid, party, value, sig, proof)

1. m.type← type
2. m.sid← sid
3. m.value← value
4. m.sig ← sig
5. m.proof ← proof
6. return m

Function 2 verify(m)

1. if m.type == ”VERIFCONTRIB” or m.type == ”VERIFIED-OUTPUT” :
2. return SigV erify(m.sig)
3. if m.type == ”CONTRIBMSG” or m.type == ”COMBMSG”:
4. return Πsid.V erify(m.value,m.proof)

Function 3 contribsid({mi}i∈sid.prev, secretMaterial)

1. V = {}
2. for i in sid.prev:
3. if verify(mi) is True:
4. V.insert(mi)
5. m←MSG(CONTRIBMSG, sid,⊥, {mi.sig}mi∈V ,⊥)
6. m.value← m.sid.function(V, secretMaterial)
7. m.proof ← Πsid.P rove(V, secretMaterial)
8. return m

Function 4 sign(value, sj)

1. m←MSG(VERIFCONTRIB, m.sid.number, m.value, ⊥ , ⊥)
2. m.sig ← signj(m.kingNb, m.type, m.sid.number, ,m.value, ,m.proof)
3. return m

Fig. 10: Utilities
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king utilities

Function 5 verifOutput(V )

1. qvc.sid← m.sid.next : m ∈ V
2. qvc.value← m.value : m ∈ V
3. qvc.sig ← {m.sig | m ∈ V })
4. return qvc.value, qvc

Function 6 combinesid(V )

1. cp.sid← m.sid : m ∈ V
2. (cp.value, cp.proof)← m.sid.concat({(m.value,m.proof) | m ∈ V })
3. return cp

Fig. 11: King Utilities

Verification Phase

1. as a king:
2. V = {}
3. Upon receiving a VERIFCONTRIB message m:
4. if verify(m) is True:
5. V.insert(m)
6. Wait for t+ 1 successful verification:
7. out, qvc← verifOutput(V )
8. Multicasts MSG(VERIFIED-OUTPUT,m.sid, out, qvc.sig,⊥)
9. as a slave:

10. Upon receiving a COMBMSG message m:
11. if verify(m) is True:
12. Send to king sign(m, sj)

Fig. 12: Verification Phase
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Contribution Phase

1. as a king:
2. V = {}
3. Upon receiving a CONTRIBMSG message m:
4. if verify(m) is True:
5. V.insert(m)
6. Wait for t+ 1 successful verification:
7. cp← combinesid(V )
8. Multicast MSG(COMBMSG, sid, cp.value,m.qvc, cp.proof)
9. as a slave:

10. Send to king contribsid({m}, sj)

Fig. 13: Contribution Phase

E.1.2 Differences with [SLL10]

The first difference is that [SLL10] assumes that players have access to a public-key encryption
scheme E which is forward secure. Recall that a forward secure scheme provides local algorithms to
update both the public and private keys. However, [SLL10] do not specify how a freshly decorrupted
player, who lost all his memory including his decryption key, proceeds to inform all other players
of a new public key. Hence, solving this issue would probably require assuming anyway, like we
did in §4.5.1, that freshly decorrupted players have access to a public bulletin board of keys at the
beginning of each epoch.

This allows us not to make the forward-security assumption. The advantage of not making
this assumption, is that we have access to the encryption schemes of Paillier and ElGamal-in-the-
exponent, which are both semi homomorphic (§2.4.2), as required by our implementation of 3.3,
and also suitable for efficient ZK proofs (§B.1).

The second difference is that in [SLL10], the closing operation of an epoch is not guaranteed
to take a predetermined finite number of consecutive exchanges. Indeed, the closing of an epoch
succeeds only if a designated player, which they denote “primary”, is honest, and benefits from
a fast enough network (also known as “partial synchrony” condition). Indeed, they explain in (6)
of §5 that, if this primary is not able to have players refresh their shares of secrets in a timely
delay, then “the group will carry out a view change, elect a new primary, and rerun the [refresh]
protocol.” Beyond the issue of performance, this extra delay also brings a safety issue. Indeed, recall
that, while they are performing a refresh, players hold both secret shares of the previous epoch and
sensitive information about the new epoch. Therefore, a player corrupted during a refresh counts in
the corruption budget of both epochs By contrast, our specification the “refresh”, which includes
the implementation §4.5.2, enables players to erase their keys immediately after the incompressible
minimal delay of δRefresh.

E.1.3 Differences with Cachin-Kursawe-Lysyanskaya-Strobl [CKLS02] The first differ-
ence is that they assume that encryption and decryption are performed locally at each player by
a trusted hardware. They furthermore assume that each pair of players creates a new session key
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at each epoch, but that the public keys remain unchanged8. So this is orthogonal with our compu-
tation model without private channels, in which all threshold ciphertexts sent on the network are
seen by the adversary. There is also a practical reason for which such a hardware assumption is
incompatible with our protocol. It is that our MPC protocol requires players to produce ZK proofs
of correct computation on TAE ciphertexts, including decryptions. Players would not be able to
produce such ZK proofs if the secret witness, which is their secret decryption key, was concealed in
a hardware.

The second limitation is that they assume that all messages sent to a player relatively to epoch
e, are delivered to this player while it is in epoch e (page 18 : “Note that this definition guarantees
that the servers complete the refresh only when the adversary delivers messages within [epochs]”).
Without this constraint, they stress that secrets may be lost during the refresh (“Otherwise, the
model allows the adversary to cause the secret to be lost, in order to preserve privacy.”). To be
sure, we do make this assumption in our simplified model §4.5.1. But then we remove it in §4.5.3

E.2 Details about ReSharek

The following 2-steps threshold construction, denoted ReSharek takes as public inputs: a vector
of public keys pk (the ones of the finishing epoch) and pk′ (the ones of the next epoch), and a
TAE.ciphertext c under pk. Then, out of any t + 1 correct outputs of ReSharek.contrib, there is a
public algorithm ReSharek.Combine, e.g. run by the king, which outputs a c′ under pk of the same
plaintext, such that the adversary’s knowledge from the finishing epoch is rendered useless.

Then, correctness and unicity of c′ is achieved by using the new computation structure §4.4. Let
us recall how the verification phase operates on this example, for simplicity we will then omit it from
the remaining description. The king forwards c′ along with t+ 1 signed outputs of ReSharek.contrib
from which it is formed, appended with NIZK proofs of correct computation provided by the
contributors. Upon collecting t+ 1 signatures on c′, the king appends these signatures to c′, which
attest unicity and correctness of c′. Such a signed ciphertext is what we denoted as a TAE.ciphertext
verified TAE.ciphertext.

We recall that a well formed ciphertext comes as a vector of size n, whose entries decrypt to evalu-
ations B(i) of a polynomial B ∈ Fp[X]t, the plaintext being defined as m := B(0). ReSharek.contrib
is defined as:

ReSharek.contrib for player Pi: Decrypt the i-th entry of c intomi, then output TAE.Encrypt(mi,pk′).
Concretely, with our implementation: sample a random polynomial B′i ∈ Fp[Y ]t evaluating to mi

at 0, and output the n sized vector of encryptions
[
c
(j)
i := Encrypt(B′i(j), pk′j , j ∈ [n]

]
. We do

not detail the NIZK of correctness, which can be seen as a combination of the proofs of plaintext
knowledge and the proof of correct re-encryption detailed in §B.1.1 and §B.1.3.

ReSharek.Combine: On input a set of any (t + 1) contributions from a (t + 1)-subset I ⊂ [n] of

players:
[
c
(j)
i , j ∈ [n]

]
for i ∈ I, let λi be the Lagrange reconstruction coefficients associated to

I. Then, output the vector c′ equal to the additively homomorphic linear combination

(9) c′ := �i∈I
(
λj �

[
c
(j)
i , j ∈ [n]

] )
.

8“The communication link between every pair of servers is encrypted and authenticated using a phase
session key that is stored in secure hardware. A fresh session key is established in the co-processor as soon
as both enter a new phase, with authentication based on data stored in secure hardware (if a public-key
infrastructure is used, this may be a single root certificate). Thus, even if the adversary corrupts a server,
she gains access to the phase session key only through calls to the co-processor.”
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Proposition 13 (Correctness). The output of ReSharek.Combine from any set of correct t + 1
ReSharek.contrib applied on the same well formed ciphertext c of m, is a well formed ciphertext, under
pk′, of the same plaintext m.

Proof. The proof is a straightforward adaptation of the correctness of [CKLS02], as recalled in
§4.5.2. The plaintexts of c′ are evaluations at j of the polynomial

∑
i∈I λiB

′
i(Y ), whose value at

zero is equal to
∑
i∈I λimi = m.

E.3 Privacy: proof of proposition 9 for TAE.ReSharek

We prove the Proposition in the strongest sense, i.e., we give more power to the adversary in
that we provide it with a complete view of all secret informations held by players in epoch e
before the Refresh. We are going to show that the view of the adversary of Refresh, is nevertheless
computationally independent from its complete view of epoch e. Recall that the total number of
corrupt players during both the Refresh and the next epoch e + 1 cannot exceed t. For simplicity,
in the game and in the proof, we consider only one corruption pattern. Namely: the extreme case
where the adversary waits to see the new keys pk′i published, and all the ciphertexts produced by
ReShare, before choosing an arbitrary set I ′A of t players to corrupt in the next epoch e+ 1. As we
are going to see in the proof, this “adaptive” pattern incurs an exponential loss in the reduction
argument. All other corruption patterns for epoch e + 1 are easier to handle. [ For example, at
the other extreme, we have the adversary corrupting in epoch e + 1 as soon as the clock ticks
Refresh. Notice that, in this case, if t players were already corrupt in epoch e, then the adversary
must corrupt the same t ones, since we recall that corrupt players during a Refresh count in both
corruption budgets. Notice that, in this case, the adversary can choose which new keys the corrupt
players publish, but before seing the challenge ciphertexts, so there is no exponential loss in the
reduction in this case. ] Also, for simplicity, we consider only one instance of TAE.ReSharek. The
general case of n instances in parallel (one for each king) adds no difficulty, since honest players
have independent behaviors in each instance.

We formalize the proposition, for simplicity in the aforementionned specific corruption pattern,
as the following game. In short, A can request an oracle, denoted OR with a plaintext m, then OR
provides A with the full view of an Encrypt(m) in some epoch e, followed by all the messages sent
during a Refresh operation, followed by t corruptions of A in epoch e+ 1.

1. A chooses a set of t indices IA and a set of strings of same format as public keys: (pki)i∈IA
which it gives to OR.

2. OR runs KeyGen() to generate the remaining t+ 1 key pairs: (ski, pki)i∈[n]\IA and gives them,
both private and public keys, to A;

3. A chooses a message m, and gives to OR a correctly generated encryption Encrypt(m);
4. OR runs KeyGen() to generate n new key pairs (sk′i, pk′i)i∈[n]. It tosses β ∈ {0, 1}, then:

(a) if β = 1, then for each i ∈ [n], OR correctly generates a ReSharek.contrib c′(1,i) of c, which
we recall is a n-sized vector of ciphertexts;

(b) if β = 0, then for each i ∈ [n], OR generates a n-sized vector c′(0,i) of ciphertexts under the
(pk′j)j∈[n], of uniform independent random plaintexts in Fp.

5. in both cases, OR gives to A all the new public keys pk′i∈[n] to A, along with the n vectors;
6. A gives to OR a subset of t indices I ′A, which returns to A the secret keys (ski)i∈I′A ;
7. A outputs a bit.

61



The claim which are going to show, which implies Proposition 9 by the previous discussion, is
then that A has a negligible advantage in guessing β.

Proof. We will show that if A exists for the game presented above, then we can construct an
adversary A′ that has a non-negligible advantage in the (n − t)n messages IND-CPA game for E
encryption, as presented in §A.1.3 (there, in the case of (n− t) messages). Let us denote again OE
the oracle of this (n−t)n messages IND-CPA game. For simplicity, we actually consider the variation
to this (n− t)n game (which we could also have done in §A.1.3), in which, when OE behaves as the
dummy oracle, instead of encryptions of 0, it returns encryptions of uniform independent random
plaintexts (in Fp).

The overall strategy of A′ consists in initiating a copy of A, then playing the role of the chal-
lenging oracle OR towards A, in a way that gives A′ a distinguishing advantage in the (n − t)n
messages IND-CPA game.

The (n− t)n messages IND-CPA game game starts by having OE generate (n− t) key pairs for
E, and give the public keys (pk′i) to A′. Then, A′ behaves towards A as OR until step (3). Denote
(mi)i∈[n] the plaintext shares of m which are encrypted in c. Recall that they are known to A and
A′ (since the latter can decrypt t+ 1 coordinates, then interpolate the remaining ones).

(4) Then, A′ samples t key pairs and shuffles the indices i ∈ [n]: let us denote (pk′i)i∈[n] the list
of all public keys after shuffling, in which I ′A ⊂ [n] denote the t indices of the ones sampled by A,
i.e., of which it knows the secret keys, and I ′A ⊂ [n] the remaining ones, i.e. which were given by
OE . Then for each i ∈ [n], A′ correctly computes the plaintexts of the ReShare.Contrib of i. Namely,
it samples a polynomial Bi ∈ Fp[X]t evaluating to mi at zero, then computes the n-sized vector of
evaluations [Bi(j), j ∈ [n]]. Then A′ gives to OE , for each of the previous vectors, the challenge
(n − t)-sized vectors of the coordinates in [n]\I ′A. Then OE returns to A′ n vectors each of size
(n− t) (either encryptions of the actual n vectors, or encryptions of n vectors of uniform plaintexts,
in both cases the coordinates of the vectors are encrypted under the (pk′j)j∈[n]\I′A).

(5) Then A′ gives to A all public keys (pk′j)j∈[n] and n vectors of ciphertexts, each consisting
of: the (n − t) coordinates in I ′A equal to the previous challenge (n − t)-sized vectors returned by
OE , and the coordinates in I ′A equal to actual encryptions of the [Bi(j), j ∈ I ′A].

(6) Upon receiving a corruption request of a subset of t indices from A: if the subset is not equal
to I ′A, then A′ outputs a bit at random in the (n− t)n IND-CPA game. Else if the subset is equal
to I ′A, then A′ gives the secret keys sk′I′A to A.

(7) A outputs a bit, then A′ outputs the same bit.
We first claim that the first case in (6) (mismatch of the corrupt set with I ′A) happens

(
n
t

)
times in expectation. Indeed, by n × n messages IND-CPA, we have that, whatever the secret bit
β ∈ {0, 1} tossed by OE , the views of A in both cases, at the point where it decides the t-set to
corrupt, are computationally undistinguishable.

Then, to conclude the argument we have that, in the second case of (6), then:

– When OE tosses β = 1, then the view of A is exactly the same one as if facing OR in the case
where OR samples β = 1;

– When OE tosses β = 0, then the view of A is: the nt-set of the plaintext coordinates in I ′A
of all n vectors, vary uniformly independently in Fntp (by property of Shamir secret sharing,
recalled in Property 11, applied to each secret mi). In addition, the n(n− t)-set of the plaintext

coordinates in [n]\I ′A of all n vectors, vary uniformly independently in Fn(n−t)p , independently
of the previous nt set. Thus, the view of A is the same one as if facing OR in the case where
OR samples β = 1.
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Thus by assumption A has nonnegligible advantage in distinguishing the secret bit β of OE , and
thus also A′ by construction.
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