
Order-C Secure Multiparty Computation for
Highly Repetitive Circuits

Gabrielle Beck1, Aarushi Goel1, Abhishek Jain1, and Gabriel Kaptchuk2

1 Johns Hopkins University {becgabri,aarushig,abhishek}@cs.jhu.edu
2 Boston University kaptchuk@bu.edu

Abstract. Running secure multiparty computation (MPC) protocols with hundreds or thousands of
players would allow leveraging large volunteer networks (such as blockchains and Tor) and help justify
honest majority assumptions. However, most existing protocols have at least a linear (multiplicative)
dependence on the number of players, making scaling difficult. Known protocols with asymptotic ef-
ficiency independent of the number of parties (excluding additive factors) require expensive circuit
transformations that induce large overheads.

We observe that the circuits used in many important applications of MPC such as training algo-
rithms used to create machine learning models have a highly repetitive structure. We formalize this
class of circuits and propose an MPC protocol that achieves O(|C|) total complexity for this class. We
implement our protocol and show that it is practical and outperforms O(n|C|) protocols for modest
numbers of players.

1 Introduction

Secure Multiparty Computation (MPC) [Yao86,GMW87,CCD88,BGW88] is a technique that allows mutually
distrusting parties to compute an arbitrary function without revealing anything about the parties’ private
inputs, beyond what is revealed by the function output. In this work, we focus on honest-majority MPC,
where a majority of the participants are assumed to be honest.

As public concern over privacy and data sharing grows, MPC’s promise of privacy preserving collabora-
tion becomes increasingly important. In recent years, MPC techniques are being applied to an increasingly
complex class of functionalities such as distributed training of machine learning networks. Most current ap-
plications of MPC, however, focus on using a small number of parties. This is largely because most known
(and all implemented) protocols incur a linear multiplicative overhead in the number of players in the com-
munication and computation complexity, i.e. have complexity O(n|C|)3, where n is the number of players
and |C| is the size of the circuit [HN06,DN07,LN17,CGH+18,NV18,FL19].

The Need for Large-Scale MPC. Yet, the most exciting MPC applications are at their best when a
large number of players can participate in the protocol. These include crowd-sourced machine learning and
large scale data collection, where widespread participation would result in richer data sets and more robust
conclusions. Moreover, when the number of participating players is large, the honest majority assumption –
which allows for the most efficient known protocols till date – becomes significantly more believable. Indeed,
the honest majority of resources assumptions (a different but closely related set of assumptions) in Bitcoin
[Nak08] and TOR [RSG98,DMS04] appear to hold up in practice when there are many protocol participants.

Furthermore, large-scale volunteer networks have recently emerged, like Bitcoin and TOR, that regularly
perform incredibly large distributed computations. In the case of cryptocurrencies, it would be beneficial
to apply the computational power to more interesting applications than mining, including executions of
MPC protocols. Replicating a fraction of the success of these networks could enable massive, crowd-sourced
applications that still respect privacy. In fact, attempts to run MPC on such large networks have already
started [WJS+19], enabling novel measurements.

3 For sake of simplicity, throughout the introduction, we omit a linear multiplicative factor of the security parameter
in all asymptotic notations.



Our Goal: Order-C MPC. It would be highly advantageous to go beyond the limitation of current
protocols and have access to an MPC protocol with total computational and communication complexity
O(|C|).

Such a protocol can support division of the total computation among players which means that using
large numbers of players can significantly reduce the burden on each individual participant. In particular,
when considering complex functions, with circuit representations containing tens or hundreds of millions of
gates, decreasing the workload of each individual party can have a significant impact. Ideally, it would be
possible for the data providers themselves, possibly using low power or bandwidth devices, to participate in
the computation.

An O(|C|) MPC protocol can also offer benefits in the design of other cryptographic protocols. In
[IKOS07], Ishai et al. showed that zero-knowledge (ZK) proofs [GMR85] can be constructed using an “MPC-
in-the-head” approach, where the prover simulates an MPC protocol in their mind and the verifier selects
a subset of the players views to check for correctness. The efficiency of these proofs is inherited from the
complexity of the underlying MPC protocols, and the soundness error is a function of the number of views
opened and the number of players for which a malicious prover must have to “cheat” in order to control the
protocol’s output. This creates a tension: higher number of players can be used to increase the soundness of
the ZK proof, but simulating additional players increases the complexity of the protocol. Access to an O(|C|)
MPC protocol would ease this tension, as a large numbers of players could be used to simulate the MPC
without incurring additional cost.

Despite numerous motivations and significant effort, there are no known O(|C|) MPC protocols for “non-
SIMD” functionalities.4 We therefore ask the following:

Is it possible to design an MPC protocol with O(|C|) total computation (supporting division of labor) and
O(|C|) total communication?

Prior Work: Achieving Õ(|C|)-MPC. A significant amount of effort has been devoted towards reduc-
ing the asymptotic complexity of (honest-majority) MPC protocols, since the initial O(n2|C|) protocols
[BGW88,CCD88].

Over the years, two primary techniques have been developed for reducing protocol complexity. The first
is an efficient multiplication protocol combined with batched correlated randomness generation introduced in
[DN07]. Using this multiplication protocol reduces the (amortized) complexity of a multiplication gate from
O(n2) to O(n), effectively shaving a factor of n from the protocol complexity. The second technique is packed
secret sharing (PSS) [FY92], a vectorized, single-instruction-multiple-data (SIMD) version of traditional
threshold secret sharing. By packing Θ(n) elements into a single vector, Θ(n) operations can be performed
at once, reducing the protocol complexity by a factor of n when the circuit structure is accommodating
to SIMD operations. Using these techniques separately, O(n|C|) protocols were constructed in [DI06] and
[DN07].

While it might seem as though combining these two techniques would result in an O(|C|) protocol, the
structural requirements of SIMD operations make it unclear on how to do so. The works of [DIK+08] and
[DIK10] demonstrate two different approaches to combine these techniques, either by relying on randomizing
polynomials or using circuit transformations that involve embedding routing networks within the circuits.
These approaches yield Õ(|C|) protocols with large multiplicative constants and additive terms that depend
on the circuit depth. (The additive terms were further reduced in the recent work of [GIP15].)

In summary, while both PSS and efficient multiplication techniques have been known for over a
decade, no O(|C|) MPC protocols are known. The best known asymptotic efficiency is Õ(|C|) achieved by
[DIK+08,DIK10,GIP15]; however, these protocols have never been implemented for reasons discussed above.
Instead, the state-of-the-art implemented protocols achieve O(n|C|) computational and communication effi-
ciency [CGH+18,NV18,FL19].

4 SIMD circuits are arithmetic circuits that simultaneously evaluate ` copies of the same arithmetic circuit on different
inputs. Genkin et al. [GIP15] showed that it is possible to design an O(|C|) MPC protocol for SIMD circuits, where
` = Θ(n).
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1.1 Our Contributions

In this work, we identify a meaningful class of circuits, called (A,B)-repetitive circuits, parameterized by
variables A and B. We show that for (Ω(n), Ω(n))-repetitive circuits, efficient multiplication and PSS tech-
niques can indeed be combined, using new ideas, to achieve O(|C|) MPC for n parties. To the best of our
knowledge, this is the first such construction for a larger class of circuits than SIMD circuits.

We test the practical efficiency of our protocol by means of a preliminary implementation and show via
experimental results that for computations involving large number of parties, our protocol outperforms the
state-of-the-art implemented MPC protocols. We now discuss our contributions in more detail.

Highly Repetitive Circuits. The class of (A,B)-repetitive circuits are circuits that are composed of an
arbitrary number of blocks (sets of gates at the same depth) of width at least A, that recur at least B times
throughout the circuit. Loosely speaking, we say that an (A,B)-repetitive circuit is highly repetitive w.r.t. n
parties, if A ∈ Ω(n) and B ∈ Ω(n).

The most obvious example of this class includes the sequential composition of some (possibly multi-layer)
functionality, i.e. f(f(f(f(. . .)))) for some arbitrary f with sufficient width. However, this class also includes
many other types of circuits and important functionalities. For example, as we discuss in Section 4.3, machine
learning model training algorithms (many iterations of gradient descent) are highly repetitive even for large
numbers of parties. We also identify block ciphers and collision resistant hash functions as having many
iterated rounds; as such functions are likely to be run many times in a large-scale, private computation,
they naturally result in highly repetitive circuits for larger numbers of parties. We give formal definition of
(A,B)-repetitive circuits in Section 4.

Semi-Honest Order-C MPC. Our primary contribution is a semi-honest, honest-majority MPC protocol
for highly repetitive circuits with total computation and communication complexity O(|C|). Our protocol only
requires communication over point-to-point channels and works in the plain model (i.e., without trusted
setup). It achieves unconditional security against t < n

(
1
2 −

2
ε

)
corruptions, where ε is a tunable parameter

as in prior works based on PSS.
Our key insight is that the repetitive nature of the circuit can be leveraged to efficiently generate correlated

randomness in a way that helps overcome the limitations of PSS. We elaborate on our techniques in Section
2.

Malicious Security Compiler. We next consider the case of malicious adversaries. In recent years, signifi-
cant work [GIP+14,GIP15,LN17,CGH+18,NV18,FL19,GSZ20] has been done on designing efficient malicious
security compilers for honest majority MPC. With the exception of [GIP15], all of these works design com-
pilers for protocols based on regular secret sharing (SS) as opposed to PSS. The most recent of these works
[CGH+18,NV18,FL19,GSZ20] achieve very small constant multiplicative overhead, and ideally one would
like to achieve similar efficiency in the case of PSS-based protocols.

Since our semi-honest protocol is based on PSS, the compilers of [CGH+18,NV18,FL19,GSZ20] are not
directly applicable to our protocols. Nevertheless, borrowing upon the insights from [GIP15], we demonstrate
that the techniques developed in [CGH+18] can in fact be used to design an efficient malicious security
compiler for our PSS-based semi-honest protocol. Specifically, our compiler incurs a multiplicative overhead
of approximately 1.6–2.3, depending on the choice of ε, over our semi-honest protocol for circuits over large
fields (where the field size is exponential in the security parameter).5 For circuits over smaller fields, the
multiplicative overhead incurred is O(k/ log |F|), where k is the security parameter and |F| is the field size.

Efficiency. We demonstrate that our protocol is not merely of theoretical interest but is also concretely
efficient for various choices of parameters. We give a detailed complexity calculation of our protocols in
Sections 7 and 8.5.

For n = 125 parties and t < n/3, our malicious secure protocol only requires each party to, on aver-
age, communicate approximately 2 3

4 field elements per gate of a highly repetitive circuit. In contrast, the

5 We note that for more commonly used corruption thresholds n/2 > t > n/4, the overhead incurred by our compiler
is approximately 2.3.
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state-of-the-art [FL19] (an information-theoretic O(n|C|) protocol for t < n/3) requires each party to com-
municate approximately 4 2

3 field elements per multiplication gate. Thus, (in theory) we expect our protocol
to outperform [FL19] for circuits with around 65% multiplication gates with just 125 parties. Since the per-
party communication in our protocol decreases as the number of parties increase, our protocol is expected
to perform better as the number of parties increase.

We confirm our conjecture via a preliminary implementation of our malicious secure protocol and give
concrete measurements of running it for up to 300 parties, across multiple network settings. Since state-
of-the-art honest-majority MPC protocol have only been tested with smaller numbers of parties, we show
that our protocol is comparably efficient even for fewer number of parties. Moreover, our numbers suggest
that our protocol would outperform these existing protocols when executed with hundreds or thousands of
players at equivalent circuit depths.

Application to Zero-Knowledge Proofs. The MPC-in-the-head paradigm of Ishai et al. [IKOS07] is
a well-known technique for constructing efficient three-round public-coin honest-verifier zero-knowledge
proof systems (aka sigma protocols) from (honest-majority) MPC protocols. Such proof systems can be
made non-interactive, in the random oracle model [BR93] via the Fiat-Shamir paradigm [FS87]. Recent
works have demonstrated the practical viability of this approach by constructing zero-knowledge proofs
[GMO16,CDG+17,KKW18,AHIV17] where the proof size has linear or sub-linear dependence on the size of
the relation circuit.

Our malicious-secure MPC protocol can be used to instantiate the MPC-in-the-head paradigm when the
relation circuit has highly repetitive form. The size of the resulting proofs will be comparable to the best-
known linear-sized proof system constructed via this approach [KKW18]. Importantly, however, it can have
more efficient prover and verifier computation time. This is because [KKW18] requires parallel repetition to
get negligible soundness, and have computation time linear in the number of simulated players. Our protocol
(by virtue of being an Order-C and honest majority protocol), on the other hand, can accommodate massive
numbers of (simulated) parties without increasing the protocol simulation time and achieve small soundness
error without requiring additional parallel repetition. Finally, we note that sublinear-sized proofs [AHIV17]
typically require super-linear prover time, in which case simulating our protocol may be more computationally
efficient for the prover. We leave further exploration of this direction for future work.

Concurrent Work and Future Directions. Our protocols achieve O(|C|) complexity for a large class
of non-SIMD circuits, namely, highly repetitive circuits. A natural open question is whether it is possible to
extend our work to handle other classes of circuits.

Concurrent to our work, [GSY21] also study the problem of scalable MPC protocols. They make use of
packed secret sharing to generate Beaver triples for every multiplication gate in the pre-processing phase
with O(|C|) total communication. In the online phase, the parties “unpack” these shares and use them
individually for each multiplication. While a naive implementation of the online phase would require O(n|C|)
communication, their protocol reduces communication by electing small committees who run different parts
of the online phase. However, this approach falls short of achieving O(|C|) communication in the online
phase since the number and sizes of the committees are not constant. Unlike our work, they consider general
circuits but rely on computation assumptions.

Another important direction for future work is to further improve upon the concrete efficiency of our
semi-honest O(|C|) protocol. The multiplicative constant in our protocol complexity is primarily dictated by
the tunable parameter ε, which is inherent in PSS-based protocols. Thus, achieving improvements on this
front will likely require different techniques.

Our malicious security compiler, which builds on ideas from [CGH+18], incurs a multiplicative overhead
of of approximately 2.3, over the semi-honest protocol. Recent works of [FL19,GSZ20] achieve even lower
overheads than the compiler of [CGH+18]. Another useful direction would be to integrate our ideas with the
techniques in [FL19,GSZ20] (possibly for a lower corruption threshold) to obtain more efficient compilers for
PSS-based protocols. We leave this for future work.
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2 Technical Overview

We begin our technical overview by recalling the key techniques developed in prior works for reducing
dependence on the number of parties. We then proceed to describe our main ideas in Section 2.2.

2.1 Background

Classical MPC protocols have communication and computation complexity O(n2|C|). These protocols, ex-
emplified by [BGW88], leverage Shamir’s secret sharing [Sha79a] to facilitate distributed computation and
require communication for each multiplication gate to enable degree reduction. Typical multiplication sub-
protocols require that each party send a message to every other party for every multiplication gate, resulting
in total communication complexity O(n2|C|). As mentioned earlier, two different techniques have been de-
veloped to reduce the asymptotic complexity of MPC protocols down to O(n|C|): efficient multiplication
techniques and packed secret sharing.

Efficient Multiplication. In [DN07], Damg̊ard and Nielsen develop a randomness generation technique
that allows for a more efficient multiplication subprotocol. At the beginning of the protocol, the parties
generate shares of random values, planning to use one of these values for each multiplication gate. These
shares are generated in batches, using a subprotocol requiring O(n2) communication that outputs Θ(n) shares
of random values. This batched randomness generation subprotocol can be used to compute O(|C|) shared
values with total complexity O(n|C|). After locally evaluating a multiplication gate, the players use one of
these shared random values to mask the gate output. Players then send the masked gate output to a leader,
who reconstructs and broadcasts the result back to all players.6 Finally, players locally remove the mask to
get a shared value of the appropriate degree. This multiplication subprotocol has complexity O(n).

Packed Secret Sharing. In [FY92], Franklin and Yung proposed a vectorized version of Shamir secret
sharing called packed secret sharing that trades a lower corruption threshold for more efficient representation
of secrets. More specifically, their scheme allows a dealer to share a vector of Θ(n) secrets such that each of
the n players still only hold a single field element. Importantly, the resulting shares preserve a SIMD version
of the homomorphisms required to run MPC. Specifically, if X = (x1, x2, x3) and Y = (y1, y2, y3) are the
vectors that are shared and added or multiplied, the result is a sharing of X+Y = (x1 + y1, x2 + y2, x3 + y3)
or XY = (x1y1, x2y2, x3y3) respectively. Like traditional Shamir secret sharing, the degree of the polynomial
corresponding to XY is twice that of original packed sharings of X and Y . This allows players to compute
over O(n) gates simultaneously, provided two properties are satisfied: (1) all of the gates perform the same
operation and (2) the inputs to each gate are in identical positions in the respective vectors. In particular, it
is not possible to compute x1y2 in the previous example, as x1 and y2 are not aligned. However, if the circuit
has the correct structure, packed secret sharing reduces MPC complexity from O(n2|C|) to O(n|C|).

2.2 Our Approach: Semi-Honest Security

A Strawman Protocol. A natural idea towards achieving O(|C|) MPC is to design a protocol that can
take advantage of both efficient multiplications and packed secret sharing. As each technique asymptotically
shaves off a factor of n, we can expect the resulting protocol to have complexity O(|C|). A näıve (strawman)
protocol combining these techniques might proceed as follows:

— Players engage in a first phase to generate packed shares of random vectors using the batching technique
discussed earlier. This subprotocol requires O(n2) messages to generate Θ(n) shares of packed random
values, each containing Θ(n) elements. As we need a single random value per multiplication gate, O(|C|)
total messages are sent.

— During the input sharing phase, players generate packed shares of their inputs, distributing shares to all
players.

6 The choice of the leader can be rotated amongst the players to divide the total computation.
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— Players proceed to evaluate the circuit over these packed shares, using a single leader to run the effi-
cient multiplication protocol to reduce the degrees of sharings after multiplication. This multiplication
subprotocol requires O(n) communication to evaluate Θ(n) gates, so the total complexity is O(|C|).

— Once the outputs have been computed, players broadcast their output shares and reconstruct the output.

While natural, this template falls short because the circuit may not satisfy the requirements to perform
SIMD computation over packed shares. As mentioned before, packed secret sharing only offers savings if
all the simultaneously evaluated gates are the same and all gate inputs are properly aligned. However, this
is an unreasonable restriction to impose on the circuits. Indeed, running into this problem, [DIK10,GIP15]
show that any circuit can be modified to overcome these limitations, at the cost of a significant blowup in
the circuit size, which adversely affects their computation and communication efficiency. (We discuss their
approach in more detail later in this section.)

Our Ideas. Without such a circuit transformation, however, it is not immediately clear how to take ad-
vantage of packed secret sharing (other than for SIMD circuits). To address this challenge, we devise two
conceptual tools, each of which we will “simulate” using existing primitives, as described below:

1. Differing-operation packed secret sharing, a variant of packet secret sharing in which different operations
can be evaluated for each position in the vector. For example, players holding shares of (x1, x2, x3) and
(y1, y2, y3) are unable to compute (x1y1, x2 + y2, x3y3). With differing-operation packed secret sharing,
we imagine the players can generate an operation vector (e.g. (×,+,×)) and apply the corresponding
operation to each pair of inputs. Given such a primitive, there would be no need to modify a circuit to
ensure that shares are evaluated on the same kind of gate.

2. A realignment procedure that allows pre-existing packed secret shares to be modified so previously un-
aligned vector entries can be moved and aligned properly for continued computation without requiring
circuit modification.

We note that highly repetitive circuits are layered circuits (that is the inputs to layer i + 1 of a circuit
are all output wires from layer i). For the remainder of this section, we will make the simplifying assumption
that circuits contain only multiplication and addition gates and that the circuit is layered. We expand our
analysis to cover other gates (e.g. relay gates) in the technical sections.

Simulating Differing-operation Packed Secret Sharing. To realize differing-operation packed secret sharing,
we require the parties to compute both operations over their input vectors. For instance, if the player hold
share of (x1, x2, x3) and (y1, y2, y3) and wish to compute the operation vector (×,+,×), they begin by
computing both (x1 + y1, x2 + y2, x3 + y3) and (x1y1, x2y2, x3y3). Note that all the entries required for the
final result are contained in these vectors, and the players just need to “select” which of the aligned entries
will be included in the final result.

Recall that in the multiplication procedure described earlier, the leader reconstructs all masked outputs
before resharing them. We modify this procedure to have the leader reconstruct both the sum and product of
the input vectors, i.e. the unpacked values x1+y1, x2+y2, x3+y3, x1y1, x2y2, x3y3 (while masked). The leader
then performs this “selection” process, and packs only the required values to get a vector (x1y1, x2+y2, x3y3),
and discards the unused values x1+y1, x2y2, x3+y3. Shares of this vector are then distributed to the rest of the
players, who unmask their shares. Note that this procedure only has an overhead of 2, as both multiplication
and addition must be computed.7

Simulating the Realignment Procedure. First note that realigning packed shares may require not only internal
permutations of the shares, but also swapping values across vectors. For example, consider the circuit snippet
depicted in Figure 1. The outputs of the green (bottom) layer are not structured correctly to enable computing
the purple (top) layer, and require this cross-vector swapping. As such, we require a realignment procedure
that takes in all the vectors output by computing a particular circuit layer and outputs multiple properly
aligned vectors.

7 In this toy example only one vector is distributed back to the parties. If layers are approximately of the same size,
an approximately equal number of vectors will be returned.
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+ + +× × ×

y1x1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6

(x1, x2, x3) (y1, y2, y3) ← Green Inputs → (x4, x5, x6) (y4, y5, y6)

(z1, z2, z3) (z4, z5, z6)← Green Outputs →

z1 z2 z3 z4 z5 z6

(z1, z3, z1) (z2, z5, z4) ← Required Purple Inputs → (z2, z4, z5) (z5, z6, z6)

Fig. 1: A simple example pair of circuit layers illustrating the need for differing-operation
packed secret sharing and our realignment procedure. Players begin by evaluating both addi-
tion and multiplication on each pair of input vectors. However, the resulting vectors are not
properly aligned to compute the purple layer. To get properly aligned packings, the vectors
(zadd1 , zadd2 , zadd3 ), (zmult

1 , zmult
2 , zmult

3 ) and (zadd4 , zadd5 , zadd6 ), (zmult
4 , zmult

5 , zmult
6 ) are masked and opened

to the leader. The leader repacks these values such that the resulting vectors will be properly
aligned for computing the purple layer. For instance, in this case the leader would deal shares of
(zadd1 , zmult3 , zadd1 ), (zadd2 , zadd5 , zmult4 ), (zadd2 , zmult4 , zadd5 ), and (zadd5 , zmult6 , zmult6 )

Our realignment procedure builds on the ideas used to realize differing-operation packed secret sharing.
Recall that the leader is responsible for reconstructing the masked result values from all gates in the previous
layer. With access to all these masked values, the leader is not only able to select between a pair of values
for each element of a vector (as before), but instead can arbitrarily select the values required from across
all outputs. For instance, in the circuit snippet in Figure 1, the leader has masked, reconstructed values
zaddi , zmulti for i ∈ [6]. Proceeding from left to right of the purple layer, the leader puts the value corresponding
to the left input wire of a gate into a vector and the right input wire value into the correctly aligned slot of
a corresponding vector. Using this procedure, the input vectors for the first three gates of the purple layer
will be (zadd1 , zmult3 , zadd1 ) (left wires) and (zadd2 , zadd5 , zmult4 ) (right wires).

Putting it Together. We are now able to refine the strawman protocol into a functional protocol. When
evaluating a circuit layer, the players run a protocol to simulate differing-operation packed secret sharing, by
evaluating each gate as both an addition gate and multiplication gate. Then, the leader runs the realignment
procedure to prepare vectors that are appropriate for the next layer of computation. Finally, the leader secret
shares these new vectors, distributing them to all players, and computing the next layer can commence.
Conceptually, the protocol uses the leader to “unpack” and “repack” the shares to simultaneously satisfy
both requirements of SIMD computation.

Leveraging Circuits with Highly Repetitive Structure. Until this point, we have been using the
masking primitive imprecisely, assuming that it could accommodate the procedural changes discussed above
without modification. This however, is not the case. Because we need to mask and unmask values while they
are in a packed form, the masks themselves must be generated and handled in packed form.

Consider the example vectors used to describe differing-operation packed secret sharing, trying to compute
(x1y1, x2 + y2, x3y3) given (x1, x2, x3) and (y1, y2, y3). If the same mask (r1, r2, r3) is used to mask both
the sum and product of these vectors, privacy will not hold; for example, the leader will open the values
x1 + y1 + r1 and x1y1 + r1, and thus learn something about x1 and y1. If (r1, r2, r3) is used to mask addition
and (r′1, r

′
2, r
′
3) is used for multiplication, there is privacy, but it is unclear how to unmask the result. The

shared vector distributed by the leader will correspond to (x1y1 + r1, x2 +y2 + r′2, x3y3 + r3) and the random
values cannot be removed with only access to (r1, r2, r3) and (r′1, r

′
2, r
′
3). To run the realignment procedure,
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the same problem arises: the unmasking vectors must have a different structure than the masking vectors,
with their relationship determined by the structure of the next circuit layer.

We overcome this problem by making modifications to the batched randomness generation procedure. In-
stead of generating structurally identical masking and unmasking shares, we instead use the circuit structure
to permute the random inputs used during randomness generation so we get outputs of the right form. In the
example above, the players will collectively generate the masking vectors (r1, r2, r3) and (r′1, r

′
2, r
′
3), where

each entry is sampled independently at random. The players then generate the unmasking vector (r1, r
′
2, r3)

by permuting their inputs to the generation algorithm. For a more complete description of this subprotocol,
see Section C.

However, recall that it is critical for efficiency that we generate all randomness in batches. By permuting
the inputs to the randomness generation algorithm, we get Θ(n) masks that are correctly structured for a
particular part of the circuit structure. If this particular structure occurs only once in the circuit, only one of
the Θ(n) shares can actually be used during circuit evaluation. In the worst case, if each circuit substructure
is unique, the resulting randomness generation phase requires O(n|C|) communication complexity.

This is where the requirement for highly repetitive circuits becomes relevant. This class of circuits guaran-
tees that (1) the circuit layers are wide enough that using packed secret sharing with vectors containing Θ(n)
elements is appropriate, and (2) all Θ(n) shares of random values generated during the batched randomness
generation phase can be used during circuit evaluation. We note that this is a rather simplified version of
the definition, we give a formal definition of such circuits in Section 4.2.

Non-interactive packed secret sharing from traditional secret shares. Another limitation of the
strawman protocol presented above is that the circuit must ensure that all inputs from a single party can
be packed into a single packed secret sharing at the beginning of the protocol. We devise a novel strategy
that allows parties to secret share each of their inputs individually using regular secret sharing. Parties can
then non-interactively pack the appropriate inputs according to the circuit structure. This strategy can also
be used to efficiently switch to protocols O(n|C|) protocols when parts of the circuit lack highly repetitive
structure; the leader omits the repacking step, and the parties compute on traditional secret share until
the circuits becomes highly repetitive, at which point they non-interactively re-packing any wire values (see
Section 4.4).

Existing O(|C|) protocols like [DIK10] do not explicitly discuss how their protocol handles this input
scenario. We posit that this is because there are generic transformations like embedding switching networks
at the bottom of the circuit that allow any circuit to be transformed into a circuit in which a player’s
inputs can be packed together. Unsurprisingly, these transformations significantly increase the size of the
circuit. Since [DIK10] is primarily concerned with asymptotic efficiency, such circuit modification strategies
are sufficient for their work.

Comparison with [DIK10]. We briefly recall the strategy used in [DIK10], in order to overcome the limita-
tions of working with packed secret sharing that we discussed earlier. They present a generic transformation
that transforms any circuit into a circuit that satisfies the following properties:

1. The transformed circuit is layered and each layer only consists of one type of gates.
2. The transformed circuit is such that, when evaluating it over packed secret shares, there is never a need

to permute values across different vectors/blocks that are secret shared. While the values within a vector
might need to be permuted during circuit evaluation, the transformed circuit has a nice property that
only log ` (where ` is the size of the block) such permutations are needed throughout the circuit.

It is clear that the first property already gets around the first limitation of packed secret sharing. The second
property partly resolves the realignment requirement from a packed secret sharing scheme by only requiring
permutations within a given vector. This is handled in their protocol by generating permuted random blocks
that are used for masking and unmasking in the multiplication sub-protocol. Since only log ` different permu-
tations are required throughout the protocol, they are able to get significant savings by generating random
pairs corresponding to the same permutation in batches. Our “unpacking” and “repacking” approach can be
viewed as a generalization of their technique, in the sense that we enable permutation and duplication of
values across different vectors by evaluating the entire layer in one shot.
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As noted earlier, this transformation introduces significant overhead to the size of the circuit, and is the
primary reason for the large multiplicative and additive terms in the overall complexity of their protocol. As
such, it is unclear how to directly use their protocol to compute circuits with highly repetitive structures,
while skipping this circuit transformation step. This is primarily because these circuits might not satisfy the
first property of the transformed circuit. Moreover, while it is true that the number of possible permutations
required in such circuits are very few, they might require permuting values across different vectors, which
cannot be handled in their protocol.

2.3 Malicious Security

Significant work has been done in recent years to build compilers that take semi-honest protocols that
satisfy common structures and produce efficient malicious protocols, most notably in the “additive attack
paradigm” described in [GIP+14]. These semi-honest protocols are secure up to additive attacks, that is any
adversarial strategy is only limited to injecting additive errors onto each of the wires in the circuit that
are independent of the “actual”wire values. The current generation of compilers for this class of semi-honest
protocols, exemplified by [CGH+18,NV18,FL19,GSZ20], introduce only a small multiplicative overhead (e.g.,
2 in the case of [CGH+18]) and require only a constant number of additional rounds to perform a single,
consolidated check

Genkin et al. showed in [GIP15] (with additional technical details in [Gen16]) that protocols leveraging
packed secret sharing schemes do not satisfy the structure required to leverage the compilers designed in
the “additive attack paradigm.” Instead, they show that most semi-honest protocols that use packed secret
sharing are secure up to linear errors, that is the adversary can inject errors onto the output wires of
multiplication gates that are linear functions of the values contained in the packed sharing of input wires
to this gate. We observe that this also holds true for our semi-honest protocol. They present a malicious
security compiler for such protocols that introduces a small multiplicative overhead.

To achieve malicious security, we add a new consolidated check onto our semi-honest protocol, reminiscent
of the check for circuits over small-fields presented in Section 5 of [CGH+18]. The resulting maliciously secure
protocol has approximately 2.3 times the complexity of our semi-honest protocol (depending on the choice
of ε), plus a constant sized, consolidated check at the end – for the first time matching the efficiency of the
compilers designed for protocols secure up to additive attacks.

As in [CGH+18], we run two parallel executions of the circuit, maintaining the invariant that for each
packed set of wires z = (z1, z2, . . . , z`) in C the parties also compute z′ = rz = (rz1, rz2, . . . , rz`) for a
global, secret scalar value r. Once the players have shares of both z and z′ for each wire in the circuit, we
generate shares of random vectors α = (α1, α2, . . . , α`) (one for each packed sharing vector in the protocol)
using a malicious secure sub-protocol and reconstruct the value r. The parties then interactively verify that
r ∗α∗z = α∗z′. Importantly, this check can be carried out simultaneously for all packed wires in the circuit,
i.e.

r ∗
∑
i∈C

αi ∗ zi =
∑
i∈C

αi ∗ z′i

This simplified check relies heavily on the malicious security of the randomness generation sub-protocol.
Because of the structure of linear attacks and the fact that α was honestly secret-shared, multiplying z and
z′ with α injects linear errors chosen by the adversary that are monomials in α only. That is, the equation
becomes

r ∗
∑
i∈C

(αi ∗ zi + E(α)) =
∑
i∈C

(αi ∗ z′i + E′(α))

for adversarially chosen linear functions E and E′. Because α is independent of r and r is applied to the left
hand side of this equation only at the end, this check will only pass if r ∗ E(α) = E′(α). For any functions
E(·), E′(·) this only happen if either (1) both are the zero function (in which case there are no errors), or
(2) with probability 1

|F| . Hence, this technique can also be used with packed secret sharing to get an efficient

malicious security compiler.
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3 Preliminaries

Model and Notation. We consider a set of parties P = {P1, . . . , Pn} in which each party provides inputs
to the functionality, participates in the evaluation protocol, and receives an output. We denote an arbitrarily
chosen special party Pleader for each layer (of the circuit) who will have a special role in the protocol; we note
that the choice of Pleader may change in each layer to better distribute computation and communication.
Each pair of parties are able to communicate over point-to-point private channels.

We consider a functionality that is represented as an arithmetic circuit C over a field F, with maximum
width w and total total depth d. We visualize the circuits in a bottom-up setting (like in Merkle trees),
where the input gates are at the bottom of the circuit and the output gates are at the top. As we will see
later in the definition of highly repetitive circuits, we work with layered circuits, which comprise of layers
such that the output of layer i are only used as input for the gates in layer i+ 1.

We consider security against a static adversary Adv that corrupts t ≤ n( 1
2 −

2
ε ) players, where ε is a

tunable parameter of the system. As we will be working with both a packed secret sharing scheme (see
Section A.3) and a slightly modified version of regular threshold secret sharing scheme (see Section A.2),
we require additional notation. We denote the packing constant for our protocol as ` = n

ε . Additionally, we
will denote the threshold of our packed secret sharing scheme as D = t + 2` − 1. We will denote vectors of
packed values with bold alphabets, for instance x. Packed secret shares of a vector x with respect to degree
D are denoted [x] and with respect to degree n − 1 as 〈x〉. We let e1, . . . , e` be the fixed x-coordinates on
the polynomial used for packed secret sharing, where the ` secrets will be stored, and α1, . . . αn be the fixed
x-coordinates corresponding to the shares of the parties. For regular threshold secret sharing, we will only
require shares w.r.t. degree t+ `. We use the square bracket notation to denote a secret sharing w.r.t. degree
t+ `. We note that we work with a slightly modified sharing algorithm of the Shamir’s secret sharing scheme
(see Section A.2 for details). We denote the Vandermonde matrix Vn,(n−t) ∈ Fn×(n−t). which is defined as
follows: 

1 γ1 . . . γ
n−t−1
1

1 γ2 . . . γ
n−t−1
2

· · . . . ·
· · . . . ·
1 γn . . . γ

n−t−1
n


where γ1, . . . , γn ∈ F are n distinct non-zero elements. In some cases, we also use a hyper-invertible matrix
as defined in [BTH08] and denote it by Hn,n ∈ Fn×n.

Paper Organization In Section 4 we define the class of highly repetitive circuits and give some natural
examples of such circuits. Section 5.3, we describe our non-interactive protocol for packing regular shares.
Section 8 gives a construction of our semi-honest and maliciously secure protocols. In Section 9, we give
details of our implementation and present an extensive comparison with prior work.

4 Highly Repetitive Circuits

In this section, we formalize the class of highly repetitive circuits and discuss some examples of naturally
occurring highly repetitive circuits.

4.1 Wire Configuration

We start by formally defining a gate block, which is the minimum unit over which we will reason.

Definition 1 (Gate Block). We call a set of j gates that are all on the same layer, a gate block. We say
the size of a gate block is j.
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An additional non-standard functionality we require is an explicit wire mapping function. Recall from
the technical overview that the leader must repack values according to the structure of the next layer. To
reason formally over this procedure, we define the function WireConfiguration, which takes in two blocks of
gates blockm+1 and blockm, such that the output wires of the gates in blockm feed as input to the gates in
blockm+1. WireConfiguration outputs two ordered arrays LeftInputs and RightInputs that contain the indices
corresponding to the left input and right input of each gate in blockm+1 respectively. In general, we can say
that WireConfiguration(blockm+1, blockm) will output a correct alignment for blockm+1. This is because for
all values j ∈ [|blockm+1|], if the values corresponding to the wire LeftInputs[j] and RightInputs[j] are aligned,
then computing blockm+1 is possible. We describe the functionality for WireConfiguration in Figure 2. It is
easy to see that the blocks blockm+1, blockm must lie on consecutive layers in the circuit. We say that a pair
of gate blocks is equivalent to another pair of gate blocks, if the outcome of WireConfiguration on both pairs
is identical.

The Function WireConfiguration(blockm+1, blockm)

1. Initialize two ordered arrays LeftInputs = [ ] and RightInputs = [ ], each with capacity |blockm+1|.
2. For a gate g, let l(g) = (j, type) denote the index j and type of the gate in block blockm that feeds

the left input of g. Similarly, let r(g) = (j, type) denote the right input gate index and type of g. For
gates with fan-in one, i.e. relay gates, r(g) = 0. For each gate gj in blockm+1, we set
— LeftInputs[j] = l(gj)
— RightInputs[j] = r(gj)

3. Output LeftInputs,RightInputs.

Fig. 2: The function WireConfiguration(blockm+1, blockm) that computes a proper alignment for computing
blockm+1

4.2 (A,B)-Repetitive Circuits

With notation firmly in hand, we can now formalize the class of (A,B)-repetitive circuits, where A,B are the
parameters that we explain next. Highly repetitive circuits are a subset of (A,B)-repetitive circuits, which
we will define later.

We define an (A,B)-repetitive circuit using a partition function part that decomposes the circuit into
blocks of gates, where a block consists of gates on the same layer. Let {blockm,j} be the output of this
partition function, where m indicates the layer of the circuit corresponding to the block and j is its index
within layer m. Informally speaking, an (A,B)-repetitive circuit is one that satisfies the following properties:

1. Each block blockm,j consist of at least A gates.
2. For each pair (blockm,j , blockm+1,j), all the gates in blockm+1,j only take in wires that are output wires

of gates in blockm,j . And the output wires of all the gates in blockm,j only go an input to the gates in
blockm+1,j .

3. For each pair (blockm,j , blockm+1,j), there exist at least B other pairs with identical wiring between the
two blocks.

We now give a formal definition.

Definition 2 ((A,B)-Repetitive Circuits). We say that a layered circuit C with depth d is called an
(A,B)-repetitive circuit if there exists a value σ ≥ 1 and a partition function part which on input layerm (mth

layer in C), outputs disjoint blocks of the form
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{blockm,j}j∈[σ] ← part(m, layerm),

such that the following holds, for each m ∈ [d], j ∈ [σ]:

1. Minimum Width: Each blockm,j consists of at least A gates.
2. Bijective Mapping: All the gates in blockm,j only take inputs from the gates in blockm−1,j and only

give outputs to gates in blockm+1,j.
3. Minimum Repetition: For each (blockm+1,j , blockm,j), there exist pairs (m1, j1) 6= (m2, j2) 6=

. . . 6= (mB , jB) 6= (m, j) such that for each i ∈ [B], WireConfiguration(blockmi+1,ji , blockmi,ji) =
WireConfiguration(blockm+1,j , blockm,j).

Intuitively, this says that a circuit is built from an arbitrary number of gate blocks with sufficient size, and that
all blocks are repeated often throughout the circuit. Unlike the layer focused example in the introduction, this
definition allows layers to comprise of multiple blocks. In fact, these blocks can even interact by sharing input
values. The limitation of this interaction, captured by the WireConfiguration check, is that the interacting
inputs must come from predictable indices in the previous layer and must have the same gate type.

We also consider a relaxed variant of (A,B)-repetitive circuits, which we call (A,B,C,D)-repetitive
circuits. These circuits differ from (A,B)-repetitive circuits in that they allow for a relaxation of the minimum
width and repetition requirement. In particular, in an (A,B,C,D)-repetitive circuit, it suffices for all but
C blocks to satisfy the minimum width requirement and similarly, all but D blocks are required to satisfy
the minimum repetition requirement. In this work, we focus on the following kind of (A,B,C,D)-repetitive
circuits.

Definition 3 (Highly Repetitive Circuits). We say that (A,B,C,D)-repetitive circuits are highly repet-
itive w.r.t. n parties, if A,B ∈ Ω(n) and C,D are some constants.

We note that defining a class of circuits w.r.t. to the number of parties that will evaluate the circuit
might a priori seem unusual. However, this is common throughout the literature attempting to achieve O(|C|)
MPC that use packed secret sharing. For example, the protocols in [DIK+08,DIK10,GIP15] achieve Õ(|C|)
communication for circuits that are Ω(n) gates wide. Similarly, our work achieves O(|C|) communication and
computation for circuits that are (Ω(n), Ω(n), C,D)-repetitive, where C and D are constants. Alternatively,
if the number of input wires are equal to the number of participating parties, we can re-phrase the above
definition w.r.t. the number of input wires in a circuit.

It might be useful to see the above definition as putting a limit on the number of parties for which a
circuit is highly repetitive: any (A,B,C,D)-repetitive circuit, is highly repetitive for upto min(O(A), O(B))
parties. While our MPC protocol can work for any (A,B,C,D)-repetitive circuit, it has O(|C|) complexity
only for highly repetitive circuits. In the next subsection we give examples of such circuits that are highly
repetitive for a reasonable range of parties.

For the remainder of this paper, we will use w denote the maximum width of the circuit C, wm to denote
the width of the mth layer and wm,j to denote the width of blockm,j .

4.3 Examples of Highly Repetitive Circuits

We highlight 3 functionalities with circuit representations that are part of the highly repetitive circuit class.
First, we describe machine learning circuits, focusing on training algorithms that leverage gradient decent.
Then, we discuss cryptographic hash functions like SHA256 and block ciphers like AES.

Machine Learning. Machine learning algorithms extract trends from large datasets to facilitate accurate
prediction in new, unknown circumstances. Training can been viewed as an optimization problem, in which
the model attempts to find internal parameters that minimizes the error between its predictions and ground
truth. A common family of algorithms for minimizing this error is called “gradient decent.” Starting with
random internal parameters, the algorithm iteratively reduces the error by making a small, greedy changes.
When run without privacy, the algorithm terminates when it converges (i.e. the marginal decrease in error
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Table 1: Size of the highly repetitive circuits we consider in this work. We compile these functions into F2

circuits using Frigate [MGC+16] (containerized by [HHNZ19]). The 64 iterations of the compression function
for SHA256 comprise 77% of the gates and the round function of AES comprises 88% of the gates. Both of
these metrics are computed for a single block on input.

Circuit Gates (F2) Iterative Loops Gates per Loop Percent Repeated Structure

SHA256 (1 Block) 119591 64 1437 77%
AES128 (1 Block) 7458 10 656 88%
Gradient Descent — ≥ 10000 — ∼ 100%

is zero). However, because MPC computation must be data oblivious, the number of iterations must be
selected before execution and must cover the worst case scenario. Different versions of this algorithm are used
to train simple models, like linear regression, or more complex and powerful models, like neural networks.
For a more complete description of gradient decent training algorithms, and their adaptation to MPC, see
[MR18].

The exact number of gates in the circuit representation of privacy-preserving model training is difficult
to calculate from prior work. In one of the few concrete estimates, Gascón et al. [GSB+16] realize coordinate
gradient decent training algorithms with approximately 1011 gates. As noted in [MZ17], the storage require-
ment for this circuit would be 3000GB. Subsequent work stopped estimating gate counts altogether, instead
building a library of sub-circuits that can be loaded as needed. As the amount of data used to train models
continues to grow, circuits sizes will continue to increase. While we are not able to accurately estimate the
number of gates for this kind of circuit, we can still establish that their structure is highly repetitive. For
instance, the gradient decent algorithm consists of nothing but iterations of the same functionality. In the
implementation of Mohassel et al. [MR18], the default configuration for training is 10000 iterations, clearly
enough repeated depth to accommodate massive number of players. Indeed, in the worst case the depth of
a gradient decent algorithm must be linear in the input size. This is because gradient decent usually uses
a batching technique, in which only a subset of the data is used for any given iteration. However, as all the
algorithm wants is to accommodate as much new data as possible, the number of batches should be linear
in the input size.

The width of gradient decent training algorithms is usually roughly proportional to the dimension of the
dataset. For most interesting applications of machine learning, high dimensional data is normal. If a particular
application does not have high enough dimension to allow massive number of parties to participate in the
protocol, we note that parallelism can be leveraged. Specifically, gradient decent training algorithms usually
use a random restart strategy to avoid getting trapped at local minima. These independent runs of the
algorithm can be run in parallel, making the circuit quite wide. Some final logic may be added at the end to
select the output from the iterations that produced optimal internal parameters.

Cryptographic Hash Functions. All currently deployed cryptographic hash functions rely on iterating
over a round function. This round function typically has a diffusion property such that, after many invoca-
tions, it is widely considered impossible to invert. Importantly for our purposes, each iteration of the round
function is (typically) structurally identical. Moreover, the vast majority of the gates in the circuit represen-
tation of a hash function are contained within the iterations of the round function. As a concrete study of
such a cryptographic hash function, we consider SHA256 [NIS02]. SHA256 is one of the most widely deployed
hash functions; given its common use in applications like Bitcoin [Nak08] and ECDSA [GFD09], SHA256
is an important building block of MPC applications. SHA256 contains 64 rounds of its inner function, with
other versions that use larger block size containing 80 rounds.

To measure the proportion of the SHA256 circuit that is contained within the iterated round function,
we implement a Frigate [MGC+16] compatible SHA256 description for hashing a single block of input. While
our protocol is intended for arithmetic circuits, but there are no well tested arithmetic circuit compilers and
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our protocol can be adapted to binary field. As can be seen in Table 1, 77% of all the gates in the compiled
SHA256 are repeated structure, that structure repeating at least 64 times.

We note that these results were for hashing only a single block of input. When hashing a single block of
input, there are gates to handle initialization and output, comprising the remaining 23% of gates. However, it
is unlikely that an MPC with hundreds or thousands of players will compute only a single block of SHA256; it
is more plausible that each participating player will contribute additional data, for O(n) total blocks. These
additional blocks of input do not contain the overhead, so all the additional gates will comprise repeated
structure. For instance, if there are as few as 10 blocks of input, the circuit is already 97% repeated structure.

If we consider the case where the number of blocks of input is proportional to the number of player, all
that remains to argue is that the width of the circuit is sufficient that each gate block is sufficiently large.
As mentioned, there are no good arithmetic compilers available, so it is difficult to argue about the width of
the arithmetic circuit computing the functionality SHA256. We note that the width of a block is 512 bits. If
width is proportional to this, it is very plausible to say hundreds of players could compute this functionality.
However, when computing over a larger field, there may not be enough gates in each layer. As such, we
note that there are many common applications which require many parallel iterations of hash functions. For
instance, if players wish to compute a Merkle tree over their inputs, the resulting circuit will naturally satisfy
our requirements.

Block Ciphers. Modern block ciphers, similar to cryptographic functions, are iterative by nature. Advanced
Encryption Standard, the block cipher on which we focus, uses either 10, 12, or 14 iterations of its round
function, depending on the key length used. The round function is comprised of a substitution step, a shifting
step, a mixing step, with all but one iteration containing all of these steps. Again, this repeated structure
allows the pre-processing phase of our protocol to be run very efficiently. Performing a similar analysis as with
SHA256, we identified that 88% of the gates in AES128 are part of this repeated structure when encrypting a
single block of input. Just as with hash functions, more blocks of input lead to increased percentage repeated
structure. With 10 blocks of input, 98% of the gates are repeated structure.

As with hash functions, we note that width may be a concern for applying our protocol. However,
computing many parallel encryptions is also a common task. For instance, if players wish to encrypt or
decrypt a disk image, encrypting under multiple keys is common. These different sectors can be evaluated
in parallel, giving sufficient structure.

4.4 Protocol Switching for Circuits with Partially Repeated Structure

Hash functions and symmetric key cryptography are not comprised of 100% repeated structure. When
structure is not repeated, the batched randomness generation step cannot be run efficiently. In the worst
case, if a particular piece of structure is only present once in the circuit, O(n2) messages will be used to
generate only a single packet secret share of size O(n). If 0 ≤ p ≤ 1 is the fraction of the circuit that is
repeated, our protocol has efficiency O(p|C|+ (1− p)n|C|).

We note that our protocol has worse constants than [CGH+18] and [FL19] when run on the non-repeated
portion of the circuit. Specifically, our protocol requires communication for all gates, rather than just multi-
plication gates. As we are trying to push the constants as low as possible, it would be ideal to run the most
efficient known protocols for the portions of the circuit that are linear in the number of players. To do this,
we note that our protocol can support mid-evaluation protocol switching.

Recall our simple non-interactive technique to transform normal secret shares into packed secret shares,
presented in Section 5.3. This technique can be used in the middle of protocol execution to switch between
a traditional, efficient, O(n|C|) protocol and our protocol. Once the portion of the circuit without repeated
structure is computed using another efficient protocol, the players can pause to properly structure their
secret shares and non-interactively pack them. The players can then evaluate the circuit using our protocol.
If another patch of non-repeated structure is encountered, the players can use the leader to reconstruct and
re-share normal shares as necessary. Importantly, because all of these protocols are linear, it is still possible
to use the malicious security compiler of [CGH+18].
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5 Input Sharing Phase

In this section, we present the sub-protocols/functionalities that will be used for secret sharing inputs in our
main protocols. We begin by describing the functionality for generating (regular) shares for random values in
Section 5.1. Then in Section 5.2, we show how the parties can use the previous functionality for computing
(regular) shares of their inputs. Then in Section 5.3, we describe a non-interactive transformation that allows
a set of parties holding shares corresponding to ` secrets, to compute a single packed secret sharing of the
vector containing those ` secrets. Finally, in Section 5.4, we show how the above protocols can be combined
to enable parties to obtain packed secret sharings of their inputs.

5.1 Generating Shares of Random Values

In this section, we describe a protocol πrand for generating (regular) shares of a batch of random and inde-
pendently chosen values (this is identical to the protocol proposed in [DN07]). In our main protocol, πrand
will help us robustly share inputs.

This protocol either outputs honestly computed (regular) shares of random values or it outputs ⊥. It
makes use of the regular Shamir’s secret sharing scheme along with an n× n hyper-invertible matrix. First,
each party samples a random value and (regular) secret shares it among the other parties. The parties
compute n linear combinations of these shares using the Vandermonde matrix. The parties then open t sets
of resulting shares to all the parties, who locally verify the correctness of these shares. If all n parties are
happy with their checks, the remaining n− t shares are output by the protocol. If the check succeeds, then
the hyper-invertability property of guarantees that the remaining n − t shares are random and honestly
generated. We now proceed to formally define the frand functionality and then describe a protocol that
securely computes n − t instantiations of frand with abort. As discussed earlier, here we will work with a
slightly modified sharing algorithm of the Shamir’s secret sharing scheme (see Section A.2 for details).

The ideal functionality realized by this protocol is described in Figure 3. Since the adversary can choose
its own shares in the protocol, similar to Chida et. all [CGH+18], we let adversary send shares of the
corrupted parties to the ideal functionality. A formal description of the protocol πrand that securely realizes
this functionality appears in Section B.1.

The functionality frand({P1, . . . , Pn})

The n-party functionality frand, running with parties {P1, . . . , Pn} and the ideal adversary Sim proceeds
as follows:

— The ideal simulator Sim sends ui for each corrupt party i ∈ A.
— The functionality frand chooses a random value r ∈ F, sets [r]A = {ui}i∈A. It runs share(r,A, [r]A, t+`)

to receive a share ri for each party Pi.
— It hands each honest party Pj its share rj .

Fig. 3: Random share generation functionality

5.2 Secret Sharing of Inputs

In this section, we describe a well known protocol πinput for generating honest shares of each parties’ inputs.
We borrow much of the language from Chida et. al in [CGH+18] for this description. This sub-protocol will
be used in our protocol to give robust sharings of inputs. Note that because we operate on packed secret
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shares, this protocol alone is not sufficient to prepare inputs for evaluation. We describe a non-interactive
way of transforming these robust shares into (robust) packed secret shares in the next section.

For each input xi belonging to party Pi, the parties invoke frand to generate a random sharing [ri]. They
open the value of r to the designated owner Pi of xi. Pi reconstructs ri, computes xi − ri and sends xi − ri
to all the parties. Each party then adds this value to its respective share of ri. Since frand ensures that [r] is
an honest sharing of r, this in turn ensures the sharing of xi is also honest. The ideal functionality realized
by this protocol is described in Figure 4. A formal description of the protocol appears in Section B.2.

The functionality finput(P := {P1, . . . , Pn}, )

The functionality finput, running with parties {P1, . . . , Pn} and the ideal adversary Sim proceeds as follows:

— It receives inputs x1, . . . , xM ∈ F from the respective parties.
— For every i ∈ [M ], finput also receives from Sim the shares [xi]A of the corrupted parties for the ith

input.
— For every i ∈ [M ], finput computes all shares (xi,1, . . . , xi,n) = share(xi,A, [xi]A, t+ `).
— For every j ∈ [n], finput sends Pj its output shares (x1,j , . . . , xM,j).

Fig. 4: Secret sharing of inputs functionality

5.3 A Non-Interactive Protocol for Packing Regular Secret Shares

We now describe a novel, non-interactive transformation that allows a set of parties holding shares corre-
sponding to ` secrets [s1], . . . , [s`] to compute a single packed secret sharing of the vector v = (s1, . . . , s`).
This protocol makes a non-black-box use of Shamir secret sharing to accomplish this packing without interac-
tion. As discussed in the technical overview, to achieve efficiency, our protocol computes over packed shares.
But, if each player follows the näıve strategy of just packing all their own inputs into a single vector, the
values may not be properly aligned for computation. This non-interactive functionality lets players simply
share their inputs using finput, which is a simple input sharing functionality based on Shamir secret sharing
(see Section B.2), and then locally pack the values in a way that guarantees alignment.

Let p1, . . . , p` be the degree t+` polynomials that were used for secret sharing secrets s1 . . . , s` respectively
such that each pi(z) (for i ∈ [`]) is of the form si + qi(z)

∏`
j=1(z − ej), where qi is a degree t polynomial.

Then each party Pj (for j ∈ [n]) holds shares p1(αj), . . . , p`(αj).

Given these shares, each party Pj computes a packed secret share of the vector (s1, . . . , s`) as follows:

FSS−to−PSS({pi(αj)}i∈[`]) =
∑̀
i=1

pi(αj)Li(αj) = p(αj)

where Li(αj) =
∏`
j=1,j 6=i

(αi−ej)
(ei−ej) is the Lagrange interpolation constant and p corresponds to a new degree

D = t+ 2`− 1 polynomial for the packed secret sharing of vector v = (s1, . . . , s`).

Lemma 1. For each i ∈ [`], let sa ∈ F be secret shared using a degree t + ` polynomial pi of the form

si+qi(z)
∏`
j=1(z−ej), where qi is a degree t polynomial and e1, . . . , e` are some pre-determined field elements.

Then for each j ∈ [n], FSS−to−PSS({pi(αj)}i∈[`]) outputs the jth share corresponding to a valid packed secret
sharing of the vector v = (s1, . . . , s`), w.r.t. a degree-D = t+ 2`− 1 polynomial.

16



Proof. For each i ∈ [`], let pi(z) be the polynomial used for secret sharing the secret si. We know that pi(z)
is of the form

pi(z) = si + qi(z)
∏̀
j=1

(z − ej),

where qi is a degree t polynomial. Let p′i(z) = qi(z)
∏`
j=1(z − ej) and let p(z) be the new polynomial

corresponding to the packed secret sharing. From the description of FSS−to−PSS, it follows that:

p(z) =
∑̀
i=1

pi(z)Li(z) =
∑̀
i=1

p′i(z)Li(z) + siLi(z)

=
∑̀
i=1

p′i(z)
∏̀

j=1,j 6=i

(z − ej)
(ei − ej)

+
∑̀
i=1

siLi(z)

=
∑̀
i=1

qi(z)
∏̀

j=1,j 6=i

(z − ej)
(ei − ej)

∏̀
j=1

(z − ej) +
∑̀
i=1

siLi(z)

Let q′i(z) = qi(z)
∏̀

j=1,j 6=i

(z − ej)
(ei − ej)

p(z) =(q′1(z) + . . .+ q′`(z))
∏̀
j=1

(z − ej) +
∑̀
i=1

siLi(z)

=q(z)
∏̀
j=1

(z − ej) +
∑̀
i=1

siLi(z)

where q(z) = q′1(z) + . . .+ q′`(z) is a degree t+ `− 1 polynomial and hence p(z) is a degree D = t+ 2`− 1
polynomial. It is now easy to see that for each i ∈ [`], p(ei) = si. Hence FSS−to−PSS computes a valid packed
secret sharing of the vector v = (s1, . . . , s`).

5.4 Packed Secret Sharing of Inputs

We now arrive at a subprotocol that will be invoked directly in our protocol execution. This functionality
takes in the individual inputs of the players and outputs a packed secret sharing of these inputs. Using the
circuit information, players can run WireConfiguration(block0,j , block1,j) for each j ∈ [σ] to determine the
alignment of vectors required to compute the first layer of the circuit. Because each block1,j in the circuit
contains w1,j/` gates, the protocol outputs 2w1/` =

∑
j∈[σ] w1,j properly aligned packed secret shares, each

containing ` values. This functionality makes use of our non-interactive packing protocol described in Section
5.3.

A formal description of the ideal functionality for this subprotocol appears in Figure 5. A detailed
description of the subprotocol appears in Section B.3.

6 Circuit Evaluation Phase

In this section, we present the sub-protocols that will be used in the online evaluation of the circuit. In
Section 6.1, we present our randomness generation sub-protocol that outputs packed shares of correlated
random values, where the correlation is dictated by the configuration of the circuit. Then in Section 6.2,
we present our main circuit evaluation subprotocol, that takes the random shares generated by the previous
protocol and packed shares of input vectors output by the subprotocol from Section 5.4 to evaluate the
circuit layer-wise.
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The functionality fpack−input(P := {P1, . . . , Pn}, )

The functionality fpack−input, running with parties {P1, . . . , Pn} and the ideal adversary Sim proceeds as
follows:

— It receives inputs x1, . . . , xM ∈ F from the respective parties and the layers layer0, layer1 from all
parties.

— It computes {block0,j}j∈[σ] ← part(0, layer0) and {block1,j}j∈[σ] ← part(1, layer1).
— For each j ∈ [σ], it computes LeftInputsj ,RightInputsj = WireConfiguration(block1,j , block0,j).
— For each j ∈ [σ] and q ∈ [w1,j/`],

• Set xj,q = (xLeftInputsj [i])i∈{(q−1)`+1,...,q`} and yj,q = (xRightInputsj [i])i∈{(q−1)`+1,...,q`}.

• Receives from Sim, the shares [xj,q]A, [y
j,q]A of the corrupted parties for the input vectors

xj,q,yj,q.
• It computes shares xj,q ← pshare(xj,q,A, [xj,q]A, D) and yj,q ← pshare(yj,q,A, [yj,q]A, D) and

sends them to the parties.

Fig. 5: Packed Secret sharing of all inputs functionality

6.1 Generating Correlated Random Packed Sharings

We now turn to the randomness generation protocol for our main construction. Recall from the techni-
cal overview that the packed secret sharings of random values must be generated according to the circuit
structure. More specifically, the unmasking values (degree D shares) for some blockm+1,j must be aligned
according to the output of WireConfiguration(blockm+1,j , blockm,j).

Before describing the protocol, we quickly note the number of shares that it generates, as it is somewhat
non-standard. Let wm,j be the number of gates in blockm,j and wm+1,j be the number of gates in blockm+1,j .
As noted in the technical overview, our protocol treats each gate as though it performs all operations (relay,
addition and multiplication). This lets the players evaluate different operations on each value over packed
secret shares. Each of these operations must be masked with different randomness to ensure privacy. As such,
the protocol generates 3wm,j/` shares of uniform random vectors. To facilitate unmasking after the leader
has run the realignment procedure, the protocol must generate shares of vectors with values selected from
these 3wm,j/` random vectors. This selection is governed by WireConfiguration(blockm+1,j , blockm,j). Since
there are wm+1,j gates in blockm+1,j , the functionality will output 2wm+1,j/` of these unmasking shares
(with degree D). In total, these are (3wm,j + 2wm+1,j)/` packed secret sharings.

To summarize, this protocol has the following main steps:

1. The parties generate 3wm,j/` uniform random vectors, corresponding to the values that will be used to
mask the outputs of blockm,j .

2. Parties compute LeftInputsj ,RightInputsj = WireConfiguration(blockm+1,j , blockm,j) to determine the re-
quired alignment of the correlated random vectors.

3. Parties use LeftInputsj ,RightInputsj and the gate information of blockm,j to select the appropriate values
from step 1 for unmasking shares. This results in 2wm+1,j/` vectors

4. Parties share these (3wm,j+2wm+1,j)/` vectors using packed secret sharing and deal the resulting shares
to all parties.

5. Parties use the Vandermonde matrix Vn,(n−t) to compute linear combinations of the shares they have
received, and output the result.

We give a formal description of this subprotocol πcorr−rand in Section C.
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The protocol πeval({P1, . . . , Pn})

Input: The parties {Pi}i∈[n] hold packed secret sharings
{

[xj,q1 ], [yj,q1 ], [xj,q2 ], [yj,q2 ]
}
j∈[σ],q∈[w1,j/`]

and

for each m ∈ [d], they hold configuration of layers layerm and layerm+1. For each m ∈ [d], let
{blockm,j}j∈[σ] ← part(m, layerm) and {blockm+1,j}j∈[σ] ← part(m + 1, layerm+1). Let Unique ⊆
{(blockm+1,j , blockm,j)}d∈[m],j∈[σ] be such that for every pair (blocka+1, blocka), (blockb+1,b, blockb) ∈
Unique, it holds that WireConfiguration(blocka+1, blocka) 6= WireConfiguration(blockb+1, blockb).
Protocol: The parties proceed as follows:

— Generating Correlated Randomness: For each (blocka+1, blocka) ∈ Unique, the parties run πcorr−rand

to obtain packed secret shares {{[rq,lefti ], [rq,righti ]}q∈[wa+1/`], {〈r
q,mult
i 〉, 〈rq,addi 〉, 〈rq,relayi 〉}q∈[wa/`]}i∈[n−t],

where wa and wa+1 are the lengths of blocks blocka and blocka+1 respectively. The parties then assign
these shares to different blocks in the circuit based on the configuration of each block. In other words,
we assume that at the end of this step for each m ∈ [d], j ∈ [σ], the parties have the following shares:

{[rj,q,leftm+1 ], [rj,q,rightm+1 ]}j,q∈[wm+1,j/`], {〈r
j,q,mult
m 〉, 〈rj,q,addm 〉, 〈rj,q,relaym 〉}q∈[wm,j/`]

— Layer-wise Evaluation: Circuit evaluation proceeds layer-wise, where for each m ∈ [d], j ∈ [σ], the
parties proceed as follows:
• For each q ∈ [wm,j/`], the parties locally compute the following:
〈xj,q1 · y

j,q
2 + rj,q,mult

m 〉 = [xj,q1 ] · [yj,q2 ] + 〈rj,q,mult
m 〉

〈xj,q1 + yj,q1 + rj,q,addm 〉 = [xj,q1 ] + [yj,q1 ] + 〈rj,q,addm 〉
〈xj,q1 + rj,q,relaym 〉 = [xj,q1 ] + 〈rj,q,relaym 〉

• All the parties send their shares to the designated party Pleader for that layer.
• Party Pleader proceeds as follows:

1. It reconstructs all the shares to get individual values {zj,mult
i , zj,addi , zj,relayi }j∈[σ],i∈[wm,j ]. It

then computes the values zj,1i , . . . , zj,wmi on the outgoing wires from the gates in layer m as
follows: For each j ∈ [σ], i ∈ [wm,j ]:

∗ If gate gj,im is a multiplication gate, it sets zj,i = zj,mult
i .

∗ If gate gj,im is an addition gate, it sets zj,i = zj,addi .
∗ If gate gj,im is a relay gate, it sets zj,i = zj,relayi .

2. It then computes LeftInputsj ,RightInputsj = WireConfiguration(blockm+1,j , blockm,j).
3. For each j ∈ [σ] and q ∈ [wm+1,j/`] each i ∈ [`], let eleft = LeftInputs[` · (j − 1) + i] and

eright = RightInputs[` · (j − 1) + i], it sets zj,q,left[i] = zj,eleft and zj,q,right[i] = zj,eright .
4. For each j ∈ [σ], q ∈ [wm+1,j/`], it then runs pshare(zj,q,left, D) and pshare(zj,q,right, D) to

obtain shares [zj,q,left] and [zj,q,right] respectively. It also sends the respective shares to all
parties.

• For each j ∈ [σ], q ∈ [wm+1,j/`], all parties locally subtract the randomness from these packed
secret sharings as follows— [zj,q,left] = [zj,q,left]− [rj,q,leftm+1 ] and [zj,q,right] = [zj,q,right]− [rj,q,rightm+1 ].

Output: The parties output their shares in [zj,q,left] and [zj,q,right], for each m ∈ [d], j ∈ [σ] and q ∈
[wm+1,j/`].

Fig. 6: A Protocol for Layer-wise Circuit Evaluation

6.2 Secure Layer-Wise Circuit Evaluation

This sub-protocol evaluates the circuit in a layer-wise fashion, i.e., it evaluate all gates in a given layer

simultaneously. It takes properly aligned input vectors
{

[xj,q1 ], [yj,q1 ]
}
j∈[σ],q∈[w1,j/`]

held by a set of parties,

and computes packed shares [zj,q,left] and [zj,q,right], for each m ∈ [d + 1], j ∈ [σ] and q ∈ [wm+1,j/`]. We

note that for notational convenience, this sub-protocol takes as input
{

[xj,q1 ], [yj,q1 ], [xj,q2 ], [yj,q2 ]
}
j∈[σ],q∈[wm,j/`]
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instead of just
{

[xj,q1 ], [yj,q1 ]
}
j∈[σ],q∈[wm,j/`]

. This is because in our maliciously secure protocol, we invoke this

sub-protocol for evaluating the circuit on actual inputs as well as on randomized inputs. When computing
on actual inputs, we set xj,q1 = xj,q2 and yj,q1 = yj,q2 and when computing on randomized inputs, we set

xj,q2 = rxj,q1 and yj,q2 = ryj,q1 . A detailed description of this sub-protocol appears in Figure 6.

7 Our Order-C Semi-Honest Protocol

In this section, we describe our semi-honest protocol. All parties get a finite field F and a layered arithmetic
circuit C (of width w and no. of gates |C|) over F that computes the function f on inputs of length n as
auxiliary inputs.8

Protocol: For each i ∈ [n], party Pi holds input xi ∈ F and the protocol proceeds as follows:

1. Input Sharing Phase: All the parties {P1, . . . , Pn} collectively invoke fpack−input as follows – every party
Pi for i ∈ [n], sends each of its inputs to the functionality fpack−input and records its vector of packed

shares
{

[xj,q], [yj,q]
}
j∈[σ],q∈[w1,j/`]

of the inputs as received from fpack−input. They set [zj,q,left1 ] = [xj,q]

and [zj,q,right1 ] = [yj,q] for each j ∈ [σ] and q ∈ [w1,j/`].
2. Circuit Evaluation: The parties collectively run sub-protocol πeval on input shares{

[zj,q,left1 ], [zj,q,right1 ], [zj,q,left1 ], [zj,q,right1 ]
}
j∈[σ],q∈[w1,j/`]

.

3. Output Reconstruction: For each
{

[zj,q,leftd+1 ], [zj,q,rightd+1 ]
}
j∈[σ],q∈[wd+1,j/`]

, the parties run the reconstruc-

tion algorithm of packed secret sharing to learn the ouput.

We prove semi-honest security of this protocol in Section D. Next we calculate the complexity of this protocol.

Complexity of Our Semi-Honest Protocol. For each layer in the protocol, we generate 5 ×
(width of the layer/`) packed shares, where ` = n/ε. We have t = n

(
1
2 −

2
ε

)
. In the semi-honest setting,

n − t = n( 1
2 + 2

ε ) of these can be computed with n2 communication. Therefore, overall the total communi-
cation required to generate all the correlated random packed shares is 5× |C|2ε2/(4 + ε) = 10|C|ε2/(4 + ε).

Additional communication required to evaluate each layer of the circuit is 5n × (width of the layer/`).
Therefore, overall the total communication to generate correlated randomness and to evaluate the circuit is

10|C|ε2/(4 + ε) + 5|C|ε = 5|C|ε(3ε+4)
4+ε . An additional overhead to generate packed input shares for all inputs

is at most 4n|I|, where |I| is the number of inputs to the protocol. Therefore, the total communication

complexity is 5|C|ε(3ε+4)
4+ε + 4n|I|.

8 Our Order-C Maliciously Secure Protocol

In this section, we present our maliciously secure Order-C MPC protocols. In addition to the sub pro-
tocols/functionalities from Sections 5 and 6, this construction also depends on some additional sub-
protocols/functionalities. In this section, we first present those additional sub-protocols and then proceed to
describe our maliciously secure order C MPC protocol.

8.1 Generating Random Packed Shares

In this section we describe a natural extension to πrand that allows for generation of random packed shares. In
our malicious secure protocol, these random values will allow us to efficiently check for linear errors injected
by the adversary. We actually require two slightly different functionalities that we will represent in a single
ideal functionality, as they are deeply related. The first functionality will generate packed sharings of vectors

8 For simplicity we assume that each party has only one input. But our protocol can be trivially extended to
accommodate scenarios where each party has multiple inputs.
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in which each element is independent. The second functionality will generate packed sharing of vectors in
which each element is the same random value. The ideal functionality fpack−rand is described in Figure 7.
Since the adversary can choose its own shares in the protocol, similar to Chida et. all [CGH+18], we let
adversary send shares of the corrupted parties to the ideal functionality. The protocol realizing this ideal
functionality is given in Section E.1.

The functionality fpack−rand({P1, . . . , Pn})

The n-party functionality fpack−rand, running with parties {P1, . . . , Pn} and the ideal adversary Sim pro-
ceeds as follows:

— Each honest party sends mode ∈ {independent, uniform} to the ideal functionality. If the honest players
do not agree, the ideal functionality outputs ⊥ and aborts.

— The ideal simulator Sim sends Ui for each corrupt party i ∈ A.
— If mode = independant, the functionality fpack−rand chooses a random vector R ∈ F` such that each

value in r ∈ R is sampled independently from the field.
— If mode = uniform, the functionality fpack−rand chooses a random value r ∈ F and sets R ∈ F` to be r

repeated ` times.
— The functionality fpack−rand sets [R]A = {Ui}i∈A. It runs pshare(R,A, [R]A, T ) to receive a share Ri

for each party Pi.
— It hands each honest party Pj its share Rj .

Fig. 7: Packed random share generation functionality

8.2 Checking Equality to Zero

In this section, we discuss the protocol of Chida et.al [CGH+18] to check whether a given sharing is a sharing
of the value 0, without revealing any further information on the shared value. We extend this protocol to
consider packed secret shares with the natural definition. We describe the protocol in Section E.2 and
functionality realized by this protocol in Figure 8.

The functionality fcheckZero({P1, . . . , Pn})

The n-party functionality fcheckZero, running with parties {P1, . . . , Pn} and the ideal adversary Sim receives
[v]H from the honest parties and uses them to compute v.

— If v = 0`, then fcheckZero sends 0 to the ideal adversary Sim. If Sim responds with reject (resp., accept),
then fcheckZero sends reject (resp., accept) to the honest parties.

— If v 6= 0`, then fcheckZero proceeds as follows:
• With probability 1

|F| it sends accept to the honest parties and ideal adversary Sim.

• With probability 1− 1
|F| it sends reject to the honest parties and ideal adversary Sim.

Fig. 8: Random share generation functionality
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8.3 Secure Dual Evaluation upto Linear Attacks

Next, we define a subprotocol, which takes packed shares of the actual inputs of the parties and packed shares
of the randomized inputs and performs a dual evaluation of the circuit on these sets of inputs. Looking ahead,
in our main protocol, this sub-protocol will be directly used for circuit evaluation and for maintaining the
invariant that for each intermediate packed shared vector z, the parties also compute shares of both rz.

In [GIP15], Genkin et al. had shown that most packed secret sharing based semi-honest protocols satisfy
the following property – when run in the presence of a malicious adversary, any attack strategy of the
adversary is limited to simply injecting linear attacks on the outputs of multiplication gates. More precisely,
a linear attack on multiplication gates is defined by an arbitrary linear combination of the vectors input to
the set of gates.

Definition 4 (Linear Attack). When multiplying two vectors a,b of length ` each, a linear attack L =
(Lleft,Lright) specifies linear functions fleft : F` → F` and fright : F` → F`, such that the output vector c is
equal to c = a� b + fleft(a) + fright(b), where � denotes the point-wise multiplication of two vectors.

An important point to note about these attacks is that the linear attack Lleft is determined based on how
b was secret shared and linear attack Lright is determined based on how a was secret shared.

We observe that similar to most semi-honest protocols based on packed secret sharing, our sub-protocol
for dual circuit evaluation also has the property that in the presence of a malicious adversary, any attack
strategy of the adversary is limited to simply injecting linear attacks on to the outputs of each gate. We now
give a description of this sub-protocol πdual−eval and later give a proof sketch for this protocol in Section E.4.

Inputs: The parties {Pi}i∈[n] hold packed secret sharings
{

[zj,q,left1 ], [yj,q,right1 ], [rzj,q,left1 ], [rzj,q,right1 ]
}
j∈[σ],q∈[w1,j/`]

.

Dual Circuit Evaluation: The parties collectively run 2 executions of a trun-

cated version of πeval on inputs
{

[zj,q,left1 ], [zj,q,right1 ], [zj,q,left1 ], [zj,q,right1 ]
}
j∈[σ],q∈[w1,j/`]

, and{
[zj,q,left1 ], [zj,q,right1 ], [rzj,q,left1 ], [rzj,q,right1 ]

}
j∈[σ],q∈[w1,j/`]

respectively, where in the layer m = d, the

leader locally computes the masked output vectors, but does not secret share it among the other parties.
Output: The parties output their shares in [zj,q,left] and [zj,q,right], for each m ∈ [d − 1], j ∈ [σ] and
q ∈ [wm+1,j/`]. Pleader outputs {zj,q,left, zj,q,right}j∈[σ],q∈[wd+1,j ].

8.4 Secure Multiplication upto Linear Attacks

In this section we describe a semi-honest secure multiplication protocol for packed secret shares that is secure
up to linear attacks. We require this functionality to realize fcheckZero for packed secret sharing and setting
up the randomized protocol execution for malicious security. The ideal functionality for fpack−mult is given in
Figure 9 and the protocol is given in Section E.3.

8.5 Maliciously Secure Protocol

We now describe a protocol that achieves security with abort against malicious corruptions.
Auxiliary Inputs: A finite field F and a layered arithmetic circuit C (of width w and |C| gates) over F that
computes the function f on inputs of length n.
Inputs: For each i ∈ [n], party Pi holds input xi ∈ F.
Protocol: (Throughout the protocol, if any party receives ⊥ as output from a call to a sub-functionality,
then it sends ⊥ to all other parties, outputs ⊥ and halts):

1. Secret-Sharing Inputs: All the parties {P1, . . . , Pn} collectively invoke fpack−input as follows — every
party Pi for i ∈ [n], sends each of its input xi to functionality fpack−input. and records its vector of packed

shares
{

[xj,q], [yj,q]
}
j∈[σ],q∈[w1,j/`]

of the inputs as received from fpack−input. They set [zj,q,left1 ] = [xj,q]

and [zj,q,right1 ] = [yj,q] for each j ∈ [σ] and q ∈ [w1,j/`].
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The functionality fpack−mult({P1, . . . , Pn})

The functionality fpack−mult, running with a set of parties {P1, . . . , Pn} and the ideal adversary Sim proceeds
as follows:

— Upon receiving [x]H and [y]H from the honest parties, the ideal functionality fpack−mult reconstructs
computes x = {xi}i∈[`],y = {yi}i∈[`]. The simulator also computes shares [x]A and [y]A and sends
them to the adversary.

— Upon receiving Linear error L : F2` → F` and {ui}i∈A from the ideal adversary Sim, functionality
fpack−mult defines z = x · y + L(x,y) and [z]A = {ui}i∈A . It then runs pshare(z,A, [z]A , D) to obtain
a share zj for each party Pj .

— The ideal functionality fpack−mult hands each honest party Pj its share zj .

Fig. 9: Secure Multiplication Up to Linear Attack functionality

2. Pre-processing:
— Random Input Generation: The parties invoke fpack−rand on mode uniform to receive packed sharings

[r] of a vector r, of the form r = (r, . . . , r).
— The parties also invoke fpack−rand on mode independent to receive packed sharings
{[αj,q,leftm ], [αj,q,rightm ]}m∈[d],j∈[σ],q∈[wm,j/`] of random vectors αj,q,leftm ,αj,q,rightm .

— Randomizing Inputs: For each packed input sharing [zj,q,left1 ], [zj,q,right1 ] (for j ∈ [σ], q ∈ [w1,j/`]),

the parties invoke fmult, on [zj,q,right1 ] and [r] to receive [rzj,q,left1 ] and on [zj,q,right1 ] and [r] to receive

[rzj,q,right1 ].
3. Dual Circuit Evaluation: The parties run πdual−eval on in-

puts
{

[zj,q,left1 ], [yj,q,right1 ], [rzj,q,left1 ], [rzj,q,right1 ]
}
j∈[σ],q∈[w1,j/`]

to obtain shares{
[zj,q,leftm+1 ], [zj,q,rightm+1 ]

}
j∈[σ],q∈[wm,j/`]

and
{

[rzj,q,leftm+1 ], [rzj,q,rightm+1 ]
}
j∈[σ],q∈[wm,j/`]

for each m ∈ [d − 1]

and the leader party additionally receives the masked output vectors for the last layer. The parties
then compute the last two-steps of πeval for the last layer. i.e., the leader party then pack secret
shares these vectors among the other parties and all the parties subtract their shares of the ran-

dom masks from these packed secret shares to obtain shares
{

[zj,q,leftd+1 ], [zj,q,rightd+1 ]
}
j∈[σ],q∈[wd,j/`]

and{
[rzj,q,leftd+1 ], [rzj,q,rightd+1 ]

}
j∈[σ],q∈[wd,j/`]

.

4. Verification Step: Each party does the following:
(a) For each m ∈ [d + 1], j ∈ [σ],q ∈ [wm,j/`], the parties invoke fmult on their packed shares ([zj,q,leftm ],

[αj,q,leftm ]), ([rzj,q,leftm ], [αj,q,leftm ]), ([zj,q,rightm ], [αj,q,rightm ]) and ([rzj,q,rightm ], [αj,q,rightm ]), and locally com-
pute. 9

[v] =
∑

m∈[d+1]

∑
j∈[σ],q∈[wm,j/`]

[αj,q,leftm ][rzj,q,leftm ] + [αj,q,rightm ][rzj,q,rightm ]

[u] =
∑

m∈[d+1]

∑
j∈[σ],q∈[wm,j/`]

[αj,q,leftm ][zj,q,leftm ] + [αj,q,rightm ][zj,q,rightm ]

(b) The parties open shares [r] to reconstruct r = (r, . . . , r).

9 We remark that for notational convinience we describe this step as consisting of 4|C|/` multiplications (and hence
these many degree reduction steps), it can be done with just two degree reduction step, where the parties first
locally multiply and add their respective shares to compute 〈v〉 and 〈u〉 and then communicate to obtain shares
of [v] and [u] respectively.
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(c) Each party then locally computes [t] = [v]− r[u]
(d) The parties invoke fcheckZero on [t]. If fcheckZero outputs reject, the output of the parties is ⊥. Else, if

it outputs accept, then the parties proceed.

5. Output Reconstruction: For each output vector, the parties run the reconstruction algorithm of
packed secret sharing to learn the output. If the reconstruction algorithm outputs ⊥, then the honest
parties output ⊥ and halt.

The proof of security for this protocol is given in Section F. We note that the above protocol only works
for circuits over large arithmetic fields. In Section F, we also present an extension to a protocol that works
for circuits over smaller fields.

Complexity Calculation for our Maliciously Secure Protocol over Large Fields. For each layer in
the protocol, we generate 5× (width of the layer/`), where ` = n/ε. We have t = n

(
1
2 −

2
ε

)
. In the malicious

setting, n−t ≈ n( 1
2 + 2

ε ) of these packed shares can be computed with 5n2 communication. Therefore, overall
the total communication required to generate all the randomness is the following:

— Correlated randomness for evaluating the circuit on actual inputs: |C|
n
ε×n(

1
2+

2
ε )

5n2 = 10ε2|C|
ε+4 .

— Correlated randomness for evaluating the circuit on randomized inputs: 10ε2|C|
ε+4 .

— Shares of random α vectors: 2ε|C|(3ε−4)ε+4

Additional communication required for dual execution of the circuit is 2× 5×n× (width of the layer/`).
Therefore, overall the total communication to generate correlated randomness and for the dual evaluate

the circuit is (26ε2−8ε)|C|
ε+4 + 10|C|ε = 36ε2|C|+32ε|C|

ε+4 . An additional overhead to generate packed input shares

for all inputs is n2|I|, where |I| is the number of inputs to the protocol. The communication required to
generate shares of randomized inputs is n2|I|. Finally, the verfication step only requires 2n2 communication.

Therefore, the total communication complexity is 36ε2|C|+32ε|C|
ε+4 + 2n2|I|.

9 Implementation and Evaluation

In this section, we present the details of our implementation and do a detailed comparison with prior work.

9.1 Comparison

We start by comparing the concrete efficiency of our protocol based on the calculations from Section 8.5,

where we show that the total communication complexity of our maliciously secure protocol is 36ε2|C|+32ε|C|
ε+4 +

2n2|I|. Recall that our protocol achieves security against t < n
(
1
2 −

2
ε

)
corruptions; we do our comparison

with the state-of-the-art using the same corruption threshold as they consider.
The state-of-the-art in this regime is the O(n|C|) protocol of [FL19] for t < n/3 corruptions, that requires

each party to communicate approximately 4 2
3 field elements per multiplication gate. In contrast, for n = 125

parties and t < n/3 corruptions, our protocol requires each party to send approximately 2 3
4 field elements

per gate, in expectation. Notice that while we require parties to communicate for every gate in the circuit,
[FL19] only requires communication per multiplication gate. However, it is easy to see that for circuits with
approximately 65% multiplication gates, our protocol is expected (in theory) to outperform [FL19] for 125
parties.

As discussed earlier, a nice advantage of O(|C|) protocols is that the per-party communication in these
protocols goes down as the number of parties increases. For instance, for the same corruption threshold of
t < n/3, and n = 150 parties, our protocol would (on paper) only require each party to communicate 2 1

3 field
elements per gate. In this case, our protocol is already expected to perform better than [FL19] for circuits
that have more that 55% multiplication gates. In fact, as the number of parties increase, the percentage of
the circuit that must be multiplication gates in order to show improvements reduces.

24



Table 2: Comparing the runtime of our protocol and that of related work. Results are reported for the average
protocol execution time over five randomized circuits each with 1,000,000 gates for WAN. LAN results are
for a single execution with 1,000,000 gates. All times are in milliseconds and n is the number of parties.
Asterisk denote estimated runtimes where data was missing (see text).
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Network Config LAN WAN

t n/4 n/3 n/2 n/3 n/4 n/3 n/2 n/2 n/2

Depth 1,000 1,000 1,000 20 1,000 1,000 20 100 1,000

n = 30 28,709 29,014 12,144 1,241 261,029 298,520 87,355 34,860 376,464*
n = 50 36,544 40,537 26,310 1,891 206,475 285,074 128,366 197,321 815,610*
n = 70 48,729 54,692 33,294 2,585 186,535 214,575 164,145* 251,286* 1,032,114*
n = 90 52,563 54,477 48,927 3,689 278,038 260,995 204,166* 355,167* 1,516,737*
n = 110 60,281 62,871 79,728 > 3, 999 270,558 305,071 256,711* 478,361* 2,471,568*

n = 150 - - - - 282,381 315,182 - - -
n = 200 - - - - 262,621 279,111 - - -
n = 250 - - - - 301,555 320,477 - - -
n = 300 - - - - 335,588 378,262 - - -

Since the communication complexity of our protocol is dependent on the tunable parameter ε (that
is directly proportional to the corruption threshold t), the efficiency of our protocol is expected to increase
further even for fewer parties, if we allow for lower corruption threshold. For instance, for t < n/4 corruptions
and n = 100 parties, we require per-party communication of 2 1

7 field elements per gate.
Finally, we remark that, the above is only a theoretical comparison. Indeed the complexity calculation in

Section 8.5 was done assuming the “best-case scenario”, e.g., where the circuit is such that it has exactly n−t
repetitions of the same kinds of blocks, and that each block has an exact multiple of n/ε gates and n is exactly
divisible by ε etc. In practice, this may not be the case. When the circuit is not perfectly divisible, there may
be some “waste,” meaning either more randomness will be generated than is needed or some packed secret
sharings will not be completely filled. The effects of this waste can be seen in our implementation below,
where the runtime may even decrease slightly (see t = n/3 for 70 and 90 parties) as the number of parties
increases because the division is more efficient.

To make our comparison more concrete, we implement our protocol and evaluate it on different network
settings. While we do not get the exact same improvements as derived above (likely due to waste), we clearly
demonstrate that our protocol is practical for even small numbers of parties, and becomes more efficient
than state-of-the-art for large numbers of parties.

9.2 Implementation

We implemented our maliciously secure protocol from Section 8.5. Our implementation is in C++ and uses
libscapi [Cry19] to provide communication and circuit parsing. Since this library does not support packed
secret sharing or the non-interactive packing of traditional secret shares (Section 5.3), we implement them
within the context of the library. Our protocol implementation automatically generates batches of correlated
randomness on the fly as needed. During circuit evaluation, gates within each block are divided into packs
according to the number of players and the packing constant. Randomness is then retrieved from a pool; if
no suitable randomness is available from a previous execution of the randomness generation subprotocol, the
players pause to generate a fresh batch of randomness and verify that it is correct. This reduces the need to
set aside large amounts of memory at the beginning of computation.

To evaluate our implementation, we generate layered circuits that satisfy the highly repetitive structural
requirements. Specifically, we generate a fixed number of layers of constant depth, each containing addition
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and multiplication gates that are randomly wired together. These layers are then repeated as a group some
fixed number of times. Benchmarking on random circuits is common, accepted practice for honest majority
protocols [CGH+18,FL19]. We modify the circuit format from a standard one used by libscapi [Cry19] to
help make this representation more succinct. Specifically, because our protocol only operates over layered
circuits, we have gates take in wires indexed relatively from the previous layer, instead of using global indices.
Additionally, because layers are repeated many times, we just indicate the order of layers, rather than writing
out the layers explicitly.

We ran tests in two network deployments, the first to measure the performance independent of network
delay and the second to measure the effect of network communication. In our first deployment, we ran all
of the parties on a single, large server with two Intel(R) Xeon(R) CPU E5-2695 @ 2.10 GHz. In our second
deployment, parties were split evenly across three different AWS regions: us-east-1, us-east-2, and us-west-2.
Each party was a separate c4.xlarge instance with 7.5 GB of RAM and a 2.9 GHz Intel Xeon E5-2666 v3
Processor.

We compare our work to the most efficient O(n|C|) work, as there is no comparable work which has been
run for a large number of parties.10 These works only run their protocol for up to 110 parties. Therefore our
emphasis is not on direct time result comparisons, but instead on relative efficiency even with small numbers
of players. We note that the protocols against which we compare do not require highly repetitive circuits;
while this might make it seem like we are performing an apple-to-oranges comparison, there is no efficiency
gain for running these O(n|C|) protocols over highly repetitive circuits. As such, the timing results that these
works present would hold true for highly repetitive circuits as well, and our comparison is apples-to-apples
for highly repetitive circuits (up to the percentage of addition gates, which we discussed above.)

We compare the runtime of our protocol in both our LAN deployment and WAN deployment to
[CGH+18,FL19] in Table 2. Because of differences between our protocol and intended applications, there
are several important things to note in this comparison. First, we run all our tests on circuits with depth
1,000 to ensure there is sufficient repetition in the circuit. Furukawa et al. use only a depth 20 circuit in
their LAN tests, meaning more parallelism can be leveraged. We note that when Chida et al. increase the
depth of their circuits from 20 to 1,000 in their LAN deployment, the runtime for large numbers of parties
increases 5-10x [CGH+18]. If we assume [FL19] will act similarly, we see that their runtime is approximately
half of ours, when run with small number of parties. This is consistent with their finding that their protocol
is about twice as fast as [CGH+18]. We emphasise that for larger numbers of parties our protocol is expected
to perform better.

Because Chida et al. only run their protocol for up to 30 players and up to circuit depth 100 in their WAN
deployment, there is missing data for our comparison. We note that their WAN runtimes are consistently just
over 30x higher than their LAN deployment. Using this observation, we extrapolate estimated runtimes for
their protocol under different configurations, denoted with an asterisk. We emphasise that this estimation is
rough, and all these measurements should be interpreted with a degree of skepticism; we include them only
to attempt a more consistent comparison to illustrate the general trends of our preliminary implementation.

Our results show that our protocol, even using an un-optimized implementation, is comparable to these
works for small numbers of parties (see Table 2). For larger numbers of parties (see Table 2), where we
have no comparable results, there is an upward trend in protocol execution time. This could be a result of
networking overhead or varying levels of network congestion when each of the experiments was performed.
For example, when executing with 250 parties and a corruption threshold of n/4 the difference between the
fastest and slowest execution time was over 60,000 ms, whereas in other deployments the difference is as
low as 1,000 ms. In general, an increase is also expected as asymptotic complexity has an additive quadratic
dependency on n with the input size of the circuit. Overall our experiments demonstrate that our protocol
does not introduce an impractical overhead in its effort to achieve O(|C|) MPC. As the number of parties
continues to grow (e.g. hundreds or thousands), the benefits of our protocol will become even more apparent.

10 The only protocol to be run on large numbers of parties rests on incomparable assumptions like CRS [WJS+19].
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A Preliminaries (contd.)

In this section, we present standard definitions of secure multiparty computation, regular threshold secret
sharing (with a special requirement) and packed secret sharing.

A.1 Secure Multiparty Computation

A secure multi-party computation protocol (MPC) is a protocol executed by n parties P = {P1, · · · , Pn} for
a functionality F . We allow for parties to exchange messages simultaneously. In every round, every party is
allowed to exchange messages with other parties using different communication channels, depending on the
model. A protocol is said to have k rounds if it proceeds in k distinct and interactive rounds.

Adversarial Behavior One of the primary goals in MPC is to protect the honest parties against dishonest
behavior of the corrupted parties. This is usually modeled using a central adversarial entity, that controls the
set of corrupted parties and instructs them on how to operate. That is, the adversary obtains the views of the
corrupted parties, consisting of their inputs, random tapes and incoming messages, and provides them with
the messages that they are to send in the execution of the protocol. In our protocols we only consider the
case where the adversary can only control a minority of the parties in the protocol. We discuss the following
adversarial models in detail:

1. Semi-Honest Adversaries: A semi-honest adversary always follows the instructions of the protocol.
This is an ”honest but curious” adversarial model, where the adversary might try to learn extra infor-
mation by analyzing the transcript of the protocol later.

2. Malicious Adversaries: A malicious adversary can deviate from the protocol and instruct the corrupted
parties to follow any arbitrary strategy.

We provide the basic definitions for secure multiparty computation according to the real/ideal paradigm
[Gol04]. Informally, a protocol is considered secure if whatever an adversary can do in the real execution
of protocol, can be done also in an ideal computation, in which an uncorrupted trusted party assists the
computation.

Security Definitions Real World. The real world execution of a protocol Π = (P1, . . . , Pn) begins by
an adversary A selecting any arbitrary subset of parties I ⊂ [n] to corrupt. The parties then engage in an
execution of a real n-party protocol Π. Throughout the execution of Π, the adversary A sends all messages
on behalf of the corrupted parties, and may follow an arbitrary polynomial-time strategy. In contrast, the
honest parties follow the instructions of Π. At the conclusion of the protocol, each honest party outputs all
the outputs it obtained in the computations. Malicious parties may output an arbitrary PPT function of
the view of A. This joint execution of Π under (A, I) in the real model, on input vector x = (x1, . . . , xn),

auxiliary input z and security parameter λ, denoted by REALΠ,I,A(z)

(
1λ,x

)
, is defined as the output vector

of P1, . . . , Pn and A(z) resulting from this protocol interaction.

Ideal World. We now present standard definitions of ideal-model computations that are used to define
security with abort. We start by presenting the ideal-model computation for security with abort, where the
adversary may abort the computation either before or after it has learned the output; other ideal-model
computations are defined either by allowing the adversary to selectively abort to some parties but not to
others or by restricting the power of the adversary either by forcing the adversary to identify a corrupted
party in case of abort, or no abort (guaranteed output delivery).

Ideal Computation with Abort. An ideal computation with abort of an n-party functionality F on
input x = (x1, . . . , xn) for parties (P1, . . . , Pn) in the presence of an ideal-model adversary A controlling the
parties indexed by I ⊂ [n], proceeds via the following steps.
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Sending inputs to trusted party: For each i /∈ I, Pi sends its input xi to the trusted party. If i ∈ I, the
adversary may send to the trusted party any arbitrary input for the corrupted party Pi. Let x′i be the
value actually sent as the ith party’s input.

Early abort: The adversary A can abort the computation by sending an abort message to the trusted party.
In case of such an abort, the trusted party sends ⊥ to all parties and halts.

Trusted party answers adversary: The trusted party computes (y1, . . . , yn) = F(x′1, . . . , x
′
n) and sends yi to

party Pi for every i ∈ I.
Late abort: The adversary A can abort the computation (after seeing the outputs of corrupted parties) by

sending an abort message to the trusted party. In case of such abort, the trusted party sends ⊥ to all
honest parties and halts. Otherwise, the adversary sends a continue message to the trusted party.

Trusted party answers remaining parties: The trusted party sends yi to Pi for every i /∈ I.
Outputs: Honest parties always output the message received from the trusted party and the corrupted parties

output nothing. The adversary A outputs an arbitrary function of the initial inputs xi s.t. i ∈ I, the
messages received by the corrupted parties from the trusted party and its auxiliary input.

Definition 5 (Ideal-model computation). Let F : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality.
let I ⊂ [n] be the set of indices of the corrupted parties, and let λ be the security parameter. Then, the joint
execution of F under (A, I) in the ideal model, on input vector x = (x1, . . . , xn), auxiliary input z to A
and security parameter λ, denoted IDEALF,I,A(z)(1

λ,x), is defined as the output vector of P1, . . . , Pn and A
resulting from the above described ideal process.

Security Having defined the real and ideal models, we can now define security of protocols according to
the real/ideal paradigm. Since we work in the information-theoretic setting, we only give a definition for
statistically secure protocols.

Definition 6. Let F : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality and let Π be a probabilistic
polynomial-time protocol computing F . The protocol Π computes F with statistical security against at most
t corruptions with abort, if for every unbounded real-model adversary A, there exists a simulator S for the
ideal model, who’s running time is polynomial in the running time of A, such that for every I ⊂ [n] of size
at most t, it holds that{

REALΠ,I,A(z)

(
1λ,x

)}
(x,z)∈({0,1}∗)n+1,λ∈N

≈s
{

IDEALF,I,S(z)(1
λ,x)

}
(x,z)∈({0,1}∗)n+1,λ∈N

A.2 Threshold Secret Sharing

A t-out-of-n secret sharing scheme enables n parties to share as secret v ∈ F so that no subset of t parties
can learn any information about it, while any subset of t + 1 parties can reconstruct it. We use Shamir’s
secret sharing scheme [Sha79b] in our protocols that supports the following procedures:

— share(v, t+ `): In this procedure, a dealer shares a value v ∈ F as follows:
1. Set p0 = v and sample a random polynomial q(z) of degree t such that q(v) = 0.

2. Set p(z) = p0 + q(z)
∏`
i=1(z − ei), where e1, . . . , en are preselected elements in F.

3. For each i ∈ [n], set vi = p(i).
Each output share vi (for i ∈ [n]) is the share intended for party Pi. We denote the t+ `-out-of-n sharing
of a value v by [v]. We use the notation [v]J to denote the shares held by a subset of parties J ⊂ [n].
We stress that if the dealer is corrupted, then the shares received by the parties may not be correct.
Nevertheless, we abuse notation and say that the parties hold shares [v] even if these are not correct.

— share(v, J, [v]J , t + `): This procedure is similar to the previous procedure, except that here the shares
of a subset J of parties with |J | ≤ t are fixed in advance. Given the value v to be shared, let p(z) =
v+ p1z+ p2z

2 + . . .+ ptz
t+` be the polynomial used for secret sharing. Now given |J | shares, we get the

following system of equations:

∀i ∈ J, vi = v + p1i+ p2i
2 + . . .+ pti

t

This a system of |J | equations in t variables {p1, . . . , pt} and can be easily solved using Gaussian elimi-
nation. Finally, given the polynomial p(z) the shares of all other parties i ∈ [n] \ J is vi = p(i).
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A.3 Threshold Packed Secret Sharing

A packed secret sharing scheme enables n parties to share a block of ` secrets v = (s1, . . . , s`) ∈ F` so that
no subset of at most t− `+ 1 parties can learn any information about it, while any subset of D + 1 parties
can reconstruct it. We use the multi-secret generalization of Shamir’s secret sharing scheme as introduced
by Franklin et. al [FY92]. Let α1, . . . , αn and e1, . . . , e` be n+ ` preselected elements in F that are known to
all parties. This packed secret sharing scheme supports the following procedures:

— pshare(s,D): In this procedure, a dealer shares a block of ` secrets s = (s1, . . . , s`) ∈ F` using a random
polynomial p(z) of degree D over F, subject to the constraint p(ei) = si for each 1 ≤ i ≤ `. This is done
as follows:
1. Pick a random polynomial q(z) of degree D − `.
2. Set

p(z) = q(z)
∏̀
i=1

(x− ei) +
∑̀
i=1

siLi(z),

where Li(z) is the Lagrange polynomial
Πj 6=i(x−ej)
Πj 6=i(ei−ej) .

3. For each i ∈ [n], send p(αi) to party Pi.
— pshare(v, J, [v]J , D): This procedure is similar to the packed secret sharing procedure using a univariate

polynomial, except that here the shares of a subset J of parties with |J | ≤ D are fixed in advance.
Given a block of ρ values v = (s1, . . . , sρ) to be shared, let p(z) = p0 + p1z + p2z

2 + . . . + pt+ρz
t+ρ be

the polynomial used for secret sharing. Now given |J | shares and ρ secret values (s1, . . . , sρ), we get the
following system of equations:

∀i ∈ J, vi = p0 + p1i+ p2i
2 + . . .+ pt+ρi

t+ρ

∀i ∈ [ρ], vi = p0 + p1µi + p2µ
2
i + . . .+ pt+ρµ

t+ρ
i

This a system of |J | + ρ equations in t + ρ + 1 variables {p0, . . . , pt+ρ} and can be easily solved using
Gaussian elimination. Finally, given the polynomial p(z) the shares of all other parties i ∈ [n] \ J is
vi = p(i).

B Input Sharing Phase

In this section, we present the sub-protocols that are used in the input sharing phase of our main protocol.

B.1 A Protocol for Generating Random Shares

In this section, we describe the protocol πrand that securely realizes the functionality frand (Figure 3). The
protocol proceeds as follows:
Auxiliary Inputs Hyper-invertible matrix Hn,n

Inputs: The parties do not have any inputs.
Protocol πrand: The parties proceed as follows:

— Each party {Pi} (for i ∈ [n]) chooses a random element ui ∈ F. It runs share(ui, t+ `) to receive shares
[ui]. For each j ∈ [n], it party Pj , its share in [uj ].

— Given shares ([u1], . . . [un]), the parties compute

([r1], . . . , [rn]) = HT
n,n · ([u1], . . . , [un])

— Each party sends its shares in [rn−t+1], . . . , [rn] to all other parties. The parties locally run
open([rn−t+1]), . . . , open([rn]) to check if all the shares lie on the same degree t + ` polynomial and

moreover that the polynomial is of the form rt+` + q(z)
∏`
j=1(z − ej), where q(z) is a degree t polyno-

mial. If this check succeeds, then the parties send “pass” to all other parties, else they send “fail”.
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— If all n parties output pass, then the parties output their shares in [r1], . . . , [rn−t], else they output ⊥
and halt.

Output: The parties output [r1], . . . [rn−t] or ⊥.

Lemma 2. This protocol securely computes n−t instantiations of frand with abort in the presence of malicious
adversaries who controls t parties.

The proof of this Lemma follows from [BTH08], hence we omit it here.

B.2 A Protocol for Secret Sharing of Inputs

In this section, we describe the protocol πinput that securely realizes the functionality finput (Figure 4). The
protocol proceeds as follows:
Inputs: Let x1, . . . , xM ∈ F be the series of inputs, each xi is held by some party Pj .
Protocol πinput: The parties proceed as follows:

— The parties {P1, . . . , Pn} invoke frand M times to obtain sharings [r1], . . . , [rM ].
— For each i ∈ [M ], all the parties send their shares in [ri] to party Pj , who owns the input. Party Pj runs

open([ri]). If it receives ⊥, then it sends ⊥ to all parties, outputs abort and halts.
— For each i ∈ [M ], party Pj (who owns input xi) sends vi = xi − ri to all other parties.
— All parties send −→v = (v2, . . . , vM ) to all other parties. If any party receives a different vector to its own,

then it outputs ⊥ and halts.
— For each i ∈ [M ], the parties compute [xi] = [ri] + vi.

Output: The parties output [x1], . . . , [xM ]

Lemma 3. This protocol securely computes finput with abort in the frand-hybrid model in the presence of a
malicious adversary who controls at most t parties.

Proof. Let A be the real adversary. We construct a simulator Sim as follows. Sim receives [ri]A for each
i ∈ [M ] that A, sends to frand in the protocol. For each i ∈ [M ], it samples random ri ∈ F and computes
[ri]← share(ri,A, [ri]A , t+`). Sim then simulates the honest parties in all reconstruct executions. If an honest
party Pj receives ⊥ in the reconstruction, then Sim simulates it sending ⊥ to all parties. Sim simulates the
remainder of the execution, obtaining all vi values from A associated with the corrupted parties’ inputs, and
sending random vj values for inputs associated with honest parties. For every i for which the ith input is that
of a corrupted party Pi, Sim sends xi = vi + ri to the ideal functionality finput. For every i ∈ [n], Sim defines
the corrupted parties’ shares [xi]A to be [ri+vi]A . Then Sim sends [xi]A , . . . , [xn]A to the ideal functionality
finput. For every honest party, if it aborted in the simulation, then Sim sends abort to the ideal functionality
finput, else, it sends continue. Finally Sim outputs whatever A outputs. While indistinguishability of the
honest parties output follows trivially, indistinguishability of the corrupt parties’ view in the real and ideal
worlds follows from the fact that the adversary only gets to see t shares of the honest parties’ inputs. From
the privacy property of secret sharing, we know that t shares are not sufficient for reconstructing shares
corresponding to a t+ ` degree polynomial.

B.3 A Protocol for Packed Secret Sharing of Inputs

In this section, we describe the protocol πpack−input that securely realizes the functionality fpack−input (Figure
5). The protocol proceeds as follows:
Inputs: Let x1, . . . , xM ∈ F be the series of inputs, each xi is held by some party Pj .
Protocol πpack−input: The parties proceed as follows:

1. For each i ∈ [M ], the parties invoke finput on xi to obtain regular shares [xi].
2. The parties locally compute {block0,j}j∈[σ] ← part(0, layer0) and {block1,j}j∈[σ] ← part(1, layer1).
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3. For each j ∈ [σ], the parties compute LeftInputsj ,RightInputsj = WireConfiguration(block1,j , block0,j).

4. For each j ∈ [σ] and q ∈ [w1,j/`], they compute packed secret sharing of vectors xj,q and yj,q as follows:

[xj,q] = FSS−to−PSS(([xLeftInputsj [i]])i∈{(q−1)`+1,...,q`})

[yj,q] = FSS−to−PSS([yRightInputsj [i]])i∈{(q−1)`+1,...,q`}

Output: Each party outputs its shares in
{

[xj,q], [yj,q]
}
j∈[σ],q∈[w1,j/`]

.

Lemma 4. This protocol securely computes fpack−input with abort in the finput-hybrid model in the presence
of malicious adversaries who control at most t parties.

Proof. The proof of this lemma follows trivially from the correctness of the non-interative transformation
from regular secret sharing to packed secret sharing (Lemma 1).

C A Protocol for Generating Correlated Random Packed Sharings

In this section, we describe the protocol πcorr−rand. The protocol proceeds as follows:
Auxiliary Inputs Vandermonde matrix Vn,(n−t) ∈ Fn×(n−t).
Inputs: All parties get a configuration block pair (blockm+1,j , blockm,j) as input.
Protocol πcorr−rand: The parties proceed as follows:

— Each party Pi (for i ∈ [n]) chooses 3wm,j/` random vectors ({sq,mult
i , sq,addi , sq,relayi }q∈[3wm,j/`]) ∈ F`×wm,j/`

of length ` each.
— The parties compute LeftInputsj ,RightInputsj = WireConfiguration(blockm+1,j , blockm,j).
— For each q ∈ [wm+1,j/`] and for each k ∈ [`], let eleft = LeftInputsj [(q−1)`+i] and eright = RightInputsj [(q−

1)`+ i] and the parties set:

sq,lefti [k] = s
beleft/`c,GateTypek
i [eleft − beleft/`c]

sq,righti [k] = s
beright/`c,GateTypek
i [eright − beright/`c]

where GateTypek = mult if gate k in block m, j is a multiplication gate, else if it is an addition gate then
GateTypek = add and for relay gates, GateTypek = relay.

— For each q ∈ [wm,j/`] and GateType ∈ {add, relay,mult}, the parties compute

〈sq,GateTypei 〉 = pshare(sq,GateTypei , n− 1)

and for each q ∈ [wm+1,j/`], the parties compute

[sq,lefti ] = pshare(sq,lefti , D), [sq,righti ] = pshare(sq,righti , D)

and sends the respective shares to each party.
— Given these shares, for each q ∈ [wm,j/`] and GateType ∈ {add, relay,mult}, the parties compute the

following:
(〈rq,GateType1 〉, . . . , 〈rq,GateTypen−t 〉) = Vn,(n−t) · (〈sq,GateType1 〉, . . . , 〈sq,GateTypen 〉)

and for each q ∈ [wm+1,j/`], they compute

([rq,left1 ], . . . , [rq,leftn−t ]) = Vn,(n−t) · ([sq,left1 ], . . . , [sq,leftn ])

([rq,right1 ], . . . , [rq,rightn−t ]) = Vn,(n−t) · ([sq,right1 ], . . . , [sq,rightn ])

— The parties output their shares in {{[rq,lefti ], [rq,righti ]}q∈[wm+1,j/`], {〈r
q,mult
i 〉, 〈rq,addi 〉, 〈rq,relayi 〉}q∈[wm,j/`]}i∈[n−t].
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D Proof of our Semi-Honest Protocol

Lemma 5. The protocol in Section 7 is private against a semi-honest adversary that corrupts upto t parties.

Proof. Let A be the real adversary. We slightly abuse notation and let A also denote the set of corrupt
parties. Let H denote the set of honest parties. We construct the simulator Sim as follows. For each m ∈ [d],
let {blockm,j}j∈[σ] ← part(m, layerm) and {blockm+1,j}j∈[σ] ← part(m+1, layerm+1). Let Unique be as defined
in Figure 6. Given the output of the protocol and inputs of the honest parties, for each j ∈ [σ], the simulator
proceeds as follows:

— Input Sharing Phase: It receives the shares {[xj,q]A, [yj,q]A}j∈[σ],q∈[wq,j/`] that the adversary sends
to fpack−input.

— Circuit Evaluation:
• Correlated Randomness Generation: For each (blocka+1, blocka) ∈ Unique:

∗ For each i ∈ H, the simulator sends the following random shares

{[sq,lefti ]A, [s
q,right
i ]A}q∈[wa+1/`], {〈s

q,mult
i 〉A, 〈sq,addi 〉A, 〈sq,relayi 〉A}q∈[wa/`]

to the adversary and receives the following shares from the adversary, for each i ∈ A.

{[sq,lefti ]H, [s
q,right
i ]H}q∈[wa+1/`], {〈s

q,mult
i 〉H, 〈sq,addi 〉H, 〈sq,relayi 〉H}q∈[wa/`].

∗ For each i ∈ A, it uses the above shares to compute the following shares
{{[rq,lefti ]A, [r

q,right
i ]A}q∈[wa+1/`], {〈r

q,mult
i 〉A, 〈rq,addi 〉A, 〈rq,relayi 〉A}q∈[wa/`]}i∈[n−t], where wa and

wa+1 are the lengths of blocks blocka and blocka+1 respectively. It then assigns these shares
to different blocks in the circuit based on the configuration of each block. At the end of this step
for each m ∈ [d], j ∈ [σ], the simulator has the following shares:

{[rj,q,leftm+1 ]A, [r
j,q,right
m+1 ]A}j,q∈[wm+1,j/`], {〈r

j,q,mult
m 〉A, 〈rj,q,addm 〉A, 〈rj,q,relaym 〉A}q∈[wm,j/`].

• Layer-wise Circuit Evaluation: For each m ∈ [d], j ∈ [σ]:

∗ If Pleader ∈ H, the simulator simulates sending random shares
{

[zj,q,leftm+1 ]A, [z
j,q,right
m+1 ]A

}
q∈[wm+1,j/`]

to the adversary. It also uses
{

[rj,q,leftm+1 ]A, [r
j,q,right
m+1 ]A

}
q∈[wm+1,j/`]

to compute shares{
[zj,q,leftm+1 ]A, [z

j,q,right
m+1 ]A

}
q∈[wm+1,j/`]

.

∗ Else if Pleader ∈ A, the simulator simulates sending random shares
{〈zj,q,mult

m 〉H, 〈zj,q,addm 〉H, 〈zj,q,relaym 〉H}q∈[wm,j/`] on behalf of the honest parties to the adver-

sary. Based on the shares
{

[zj,q,leftm+1 ]H, [z
j,q,right
m+1 ]H

}
q∈[wm+1,j/`]

sent by the adversary and{
[rj,q,leftm+1 ]A, [r

j,q,right
m+1 ]A

}
q∈[wm+1,j/`]

, the simulator computes
{

[zj,q,leftm+1 ]A, [z
j,q,right
m+1 ]A

}
q∈[wm+1,j/`]

.

— Output Reconstruction: For each j ∈ [σ], using the output and previously com-

puted shares
{

[zj,q,leftd+1 ]A, [z
j,q,right
d+1 ]A

}
q∈[wd+1,j/`]

, the simulator computes consistent shares{
[zj,q,leftd+1 ]H, [z

j,q,right
d+1 ]H

}
q∈[wd+1,j/`]

and sends them to the adversary.

View of the adversary generated by the simulator in the correlated randomness generation step is identically
distributed to that in the real protocol. Moreover, as shown in [DN07], from super-invertibility property of
the Vandermonde matrix, it follows that the ri vectors generated by the parties at the end of the this step
are random values that are unknown to any individual party or the adversary. Indistinguishability between
the view of an adversary in the real protocol and the transcript generated by the simulator in the circuit
evaluation step now follows from the privacy of packed secret sharing and the from the fact that the shares
sent to the leader are of values that are masked by random values unknown to any party and hence appear
completely random to the adversary.
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E Additional Protocols for Malicious Security Compiler

In this section, we describe a few more sub-protocols that are needed for our maliciously secure protocol.

E.1 A Protocol for Generating Random Packed Shares

In this section, we describe the protocol πpack−rand that securely realizes the functionality fpack−rand (Figure
7). The protocol proceeds as follows:

Auxiliary Inputs Hyper-invertible matrix Hn,n

Inputs: The parties do not have any inputs.

Protocol πpack−rand: The parties proceed as follows:

— If the parties wish to realize the independent mode of fpack−rand, each party Pi (for i ∈ [n]) chooses a
random vector ui ∈ F`. It runs pshare(ui, D) to receive shares [ui]. For each j ∈ [n], it party Pj , its share
in [uj ].

— If the parties wish to realize the uniform mode of fpack−rand, each party Pi (for i ∈ [n]) chooses a random
element ui ∈ F and computes the vector ui ∈ F` such that each element is ui. It runs pshare(Ui, T ) to
receive shares [ui]. For each j ∈ [n], it party Pj , its share in [uj ].

— Given shares ([u1], . . . [un]), the parties compute

([r1], . . . , [rn]) = Hn,n · ([u1], . . . , [un])

— Each party broadcasts its share in [rn−t+1], . . . , [rn] to the first t+ 1 parties. Those parties locally runs
open([rn−t+1]), . . . , open([rn]) to check if all the shares lie on the same degree D polynomial.

— If the parties wish to realize the uniform mode of fpack−rand, they additionally check that all p(ei)i∈[`] are
the same If these checks succeed, then the parties send “pass” to all other parties, else they send “fail”.

— If each of the first t+ 1 parties output “pass”, then the parties output their shares in [r1], . . . , [rn−t].

Output: The parties output [r1], . . . [rn−t].

Lemma 6. This protocol securely computes n − t instantiations of fpack−rand with abort in the presence of
malicious adversaries who controls t parties.

The proof of this lemma follows from [DN07].

E.2 A Protocol for Checking Equality to Zero

In this section, we describe the protocol πcheckZero that securely realizes the functionality fcheckZero (Figure
8). The protocol proceeds as follows:

Inputs: The parties {Pi}i∈[n] hold shares [v].

Protocol πcheckZero: The parties proceed as follows:

— The parties {P1, . . . , Pn} invoke frand to obtain sharings [r].

— The parties {P1, . . . , Pn} invoke fmult on [r] and [v] to obtain [t] = [r · v].

— Each party Pi (for i ∈ [n]) send ti to all other parties.

— Each party locally runs open([t]) on the revealed shares and checks if t = 0`. If so it outputs accept, else,
it outputs reject.

We note that the proof of security for this protocol follows similarly to [CGH+18] and hence we omit it here.
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E.3 A Protocol for Secure Packed Multiplication up to Linear Attacks

In this section, we describe the protocol πpack−mult that securely realizes the functionality fpack−mult (Figure
9). The protocol proceeds as follows:

Inputs: The parties {Pi}i∈[n] hold shares [x], [y].

Protocol πpack−mult: The parties proceed as follows:

— The parties {P1, . . . , Pn} locally compute 〈x · y〉 = [x] · [y]

— the parties invoke fpack−rand in independent mode to obtain packed secret shares [r] and 〈r〉 for a random,
independent vector r.

— The parties the locally compute 〈x ·y〉−〈r〉 and send the resulting shares to the designated party Pleader.

— Party Pleader reconstructs all the values x · y − r. Party Pleader then generates a degree D sharing of this
vector [x · y − r] and send the resulting shares to all players

— Players locally compute [z] = [x · y − r] + [r]

Output: The parties output [x · y]

Lemma 7. This protocol securely computes fpack−mult up to linear attacks in the fpack−rand-hybrid model, in
the presence of malicious adversaries who controls t parties.

Since this protocol is identical to the multiplication protocol of [DIK10], the proof of this lemma follows
from the security proof given in [GIP15].

E.4 Protocol for Secure Dual Evaluation upto Linear Attacks

Lemma 8. The protocol in Section 8.3 securely evaluates the circuit C on inputs x, rx up to linear attacks
in the presence of a malicious adversary who controls up to t parties.

Proof (Sketch). [GIP15] show that any packed secret sharing based semi-honest protocol that satisfies the
following properties, we know that any packed secret sharing based semi-honest protocol that satisfies the
following three properties is secure against an adversary upto linear attacks:

— T-randomization: The messages sent by the honest parties to the corrupt parties (except in the last
round), only depend on the randomness of the parties and not on their actual inputs.

— Structure of the Last Round : During the last round, only one party computes the output vector z, as
follows: let FH and FA be two linear functions, such that z = FH(lmsgH) + FA(lmsgA), where lmsgH
are the messages sent by the honest parties in the last round and lmsgA are the messages sent by the
corrupt parties in the last round.

— Privacy of the last round : The distribution of the messages lmsgH sent by the honest parties in the last
round are uniform, conditioned on FH(lmsgH) = z− FA(lmsgA).

The first property is trivially satisfied by our sub-protocol — indeed, Genkin’s thesis [Gen16] already shows
that semi-honest [DIK10] satisfies the first property, and those arguments generalize to our sub-protocol in a
straightforward way. The second property is also easy to verify, indeed the masked output vector is computed
by Pleader in our subprotocol, by running the reconstruction algorithm of packed secret sharing, which is a
linear function. The third property is also satisfied by our protocol, since the shares sent by the parties in
the last round to Pleader correspond to shares for a degree n− 1 polynomial, the shares of the honest parties
are uniformly distributed given the output and the shares of the corrupt parties. As a result, our protocol
securely evaluates C on inputs x, rx up to linear attacks.
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F Security Proof for our Maliciously Secure Protocol

Lemma 9. If A sends a non-zero linear attack value in any of the calls to fmult or fdual−eval in the execution
of the protocol given in Section 8.5, then the vector t in the verification stage equals a 0-vector with probability
less that 2/|F|.

Proof. A malicious adversary can carry out linear attacks on fmult and πdual−eval, meaning that the adversary
can add an arbitrary linear combination of the input wires of a gate to the value on its outgoing wire.
We show that the technique used by Chida et al., for detecting addditive errors can be used in the packed
secret sharing setting to detect linear attacks. Since we perform a check on packed shares as opposed to
regular shares, our check can be viewed as ` parallel checks at the end. We essentially end up comput-
ing ` different linear combinations of approximately 2|C|/` values. Given our description of fcheckZero, it
is clear that if any of these checks fail, fcheckZero will output ⊥. Therefore, for exact probability calcula-
tion, we bound the probability of the adversary injecting errors and getting away in any one of the linear
combinations. More specifically, we consider the linear combination over the first elements in each packed
sharing output. For each m ∈ [d+ 1] in the circuit, our protocol generates 4wm/` packed shares of the form{

[zj,q,leftm ], [zj,q,rightm ], [zj,q,leftm ], [rzj,q,rightm ]
}
j∈[σ],q∈[wd,j/`]

. We simplify the notation and let the set of packed

shares on each layer m, be of the form {[zqm], [rzqm]}q∈[wm/`]. Similarly, we use αqm to denote the α vectors
corresponding to these packed secret sharings.

Finally, we slightly abuse notation and let zqm denote the first element in the vector zqm and αqm to denote
the first element in the vector αqm.

We use different variables to denote the additive errors that the adversary can inject on each of these
computations.

— Let Fqm : F` → F be the linear error function induced as a result of operating on incorrectly computed
shares of zqm. For instance, when the vectors zqm and αqm are multiplied, a linear error of the form Fqm(αqm)
is induced on the first element of the output vector. We note that since αqm in our protocol is guaranteed
to be honestly secret shared, no error of the form L(zqm) is induced when multiplying αqm and zqm.

— Similarly, let Gq
m : F` → F be the linear error function induced as a result of operating on incorrectly

computed shares of rzqm.
— We let fqm be the resultant linear error on zqm and gqm be the resultant linear error on rzqm. We note that

these errors are not arbitrary values but a linear combination of the input values to the gates in layer m.

Recall that if every party behaves honestly, then

u =
∑

m∈[d+1]

∑
q∈[wm/`]

αqmz
q
m and v =

∑
m∈[d+1]

∑
m∈[wm/`]

αq(rz
q
m)

We would like to check if ru = v, ie.

r
∑

m∈[d+1]

∑
q∈[wm/`]

αqmz
q
m =

∑
m∈[d+1]

∑
q∈[wm/`]

αq(rz
q
m)

This is trivially true, if no errors were introduced by the adversary at any step. Accounting for all the linear
errors that the adversary might introduce, we get

ru = r

 ∑
m∈[d+1]

∑
q∈[wm/`]

αqm(zqm + fqm) + Fqm(αqm)


v =

 ∑
m∈[d+1]

∑
q∈[wm/`]

αqm(rzqm + gqm) + Gq
m(αqm)


We want to calculate the probability that the following equation holds, i.e.,
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r

 ∑
m∈[d+1]

∑
q∈[wm/`]

αqm(zqm + fqm) + Fqm(αqm)

 =

 ∑
m∈[d+1]

∑
q∈[wm/`]

αqm(rzqm + gqm) + Gq
m(αqm)


In other words, ∑

m∈[d+1]

∑
q∈[wm/`]

αqm(rfqm − gqm) =
∑

m∈[d+1]

∑
q∈[wm/`]

Gq
m(αqm)− rFqm(αqm)

We now consider the following cases:

— Case 1: All the inputs, intermediate wire computations and α′s were honestly secret shared and
computed. And the errors were only introduced during the verification step. Since the verification
step in this case corresponds to multiplying honestly secret shared vectors, the only kind of errors
that the adversary can introduce in the case are arbitrary additive errors, that are not correlated
to any of the input values. Let du be the cumulative additive error on the computation of u, ans
dv be the cumulative additive error on the computaiton of v. We can re-write the above equation as
0 =

∑
m∈[d+1]

∑
q∈[wm/`] G

q
m(αqm)− rFqm(αqm) = du − rdv.

Since r is sampled uniformly, the probability that du − rdv = 0 is 1/|F|, if either du 6= 0 or dv 6= 0.
— Case 2: ∃m ∈ [d],∃q ∈ [wm/`], such that the output zqm was not correctly secret shared. Let m0 be the

smallest such m and q0 be the smallest such q. We want to calculate the probability that the following
equation holds, i.e.,

Gq0
m0

(αq0m0
)−rFq0m0

(αqm) = αq0m0
(rfq0m0

−gq0m0
)+

∑
m∈[d+1],m6=m0

∑
q∈[wm/`]

rαqm(fqm−gqm)−Gq
m(αqm)+rFqm(αqm)

• If Gq0
m0

(αq0m0
) − rFq0m0

(αqm) 6= 0: Since all the α′s (including αq0m0
) are generated honestly and are

unknown to the adversary, the above equality holds only with probability 1/|F|.
• If Gq0

m0
(αq0m0

) − rFq0m0
(αqm) = 0: Since r is sampled uniformly at random, this only happens with

probability 1/|F|.
Hence, overall the probability that that the view generated by the simulator in Case 2 is distinguishable
from the view in the real execution is at most

1

|F|
+

(
1− 1

|F|

)
1

|F|
<

2

|F|

In both cases, the probability of distinguishability is upper bounded by 2
|F| .

Operating over Smaller fields. This protocol works for fields that are large enough such that 2
|F| is an

acceptable probability of an adversary cheating. In cases where it might be desirable to instead work in a
smaller field, we can use the same approach as used by Chida et al. [CGH+18]. In particular, instead of having
a single randomized evaluation of the circuit w.r.t. r, we can generate shares for δ random values r1, . . . , rδ
(such that ( 2

|F| )
δ is negligible) and run multiple randomized evaluations of the circuit and verification steps

for each ri. Since each r is independently sampled and their corresponding verification procedures are also
independent, this will yield a cheating probability of at most ( 2

|F| )
δ, as required.

Given this lemma, we now prove the following Theorem.

Theorem 1. Let k be a statistical security parameter, and let F be a finite field such that (3/|F|)δ ≤
2−k, for some δ ≥ 1. Let f be an n-party functionality over F. Then, there exists a protocol in the
(fpack−input, fpack−rand, fdual−eval, fmult, fcheckZero)-hybrid model with statistical error 2−k, in the presence of a
malicious adversary controlling t parties.
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Proof. For each m ∈ [d], let {blockm,j}j∈[σ] ← part(m, layerm) and {blockm+1,j}j∈[σ] ← part(m+1, layerm+1).
Let A be an adversary in the real world. As before we use A to also denote the set of corrupted parties. The
simulator Sim in the ideal world initializes a variable flag = 0 and proceeds as follows:

1. Input Sharing: Sim receives from A the set of corrupted inputs and the shares of corrupted parties{
[zj,q,left]A, [z

j,q,right]A
}
j∈[σ],q∈[w1,j/`]

that the adversary sends to the fpack−input functionality. It recon-

structs these inputs and saves them.
2. Preprocessing: The simulator receives the shares [r]A and {[αj,q,leftm ]A, [α

j,q,right
m ]A}m∈[d],j∈[σ],q∈[wm,j/`]

of the corrupted parties that the adversary sends to fpack−rand.
3. Randomization of inputs: For each j ∈ [σ], q ∈ [2w1,j/`], the simulator Sim plays the role of fmult in the

multiplication of vectors zj,q,left and zj,q,right with [r]. Specifically, Sim hands the corrupted parties shares
in [r], zj,q,left and zj,q,left to the adversary. Upon receiving the linear error function and the corrupted
parties shares of the resulting vector, the simulator stores all the corrupted parties’ shares. If any linear
error function was received, it sets flag = 1.

4. Dual Circuit Evaluation: As discussed in the main protocol, dual circuit evaluation requires the parties
to run πeval twice – on actual inputs and on randomized inputs. Here we describe how the transcript for
evaluation on actual inputs it simulated. The transcript on randomized inputs is simulated in almost
exactly the same way, and hence we omit it here.
— Correlated Randomness Generation for circuit evaluation on actual inputs: For each

(blocka+1, blocka) ∈ Unique:
• For each i ∈ H, the simulator sends the following random shares

{[sq,lefti ]A, [s
q,right
i ]A}q∈[wa+1/`], {〈s

q,mult
i 〉A, 〈sq,addi 〉A, 〈sq,relayi 〉A}q∈[wa/`]

to the adversary and receives the following shares from the adversary, for each i ∈ A.

{[sq,lefti ]H, [s
q,right
i ]H}q∈[wa+1/`], {〈s

q,mult
i 〉H, 〈sq,addi 〉H, 〈sq,relayi 〉H}q∈[wa/`].

• The simulator computes LeftInputs,RightInputs = WireConfiguration(blocka+1, blocka). For each
q ∈ [wa+1/`] and for each k ∈ [`], it sets eleft = LeftInputs[(q−1)`+ i] and eright = RightInputs[(q−
1)`+ i]. For each i ∈ A, the simulator checks if

sq,lefti [k] = s
beleft/`c,GateTypek
i [eleft − beleft/`c]

sq,righti [k] = s
beright/`c,GateTypek
i [eright − beright/`c]

where GateTypek = mult if gate k in block a is a multiplication gate, else if it is an addition gate
then GateTypek = add and for relay gates, GateTypek = relay. If any of these checks fail for any
i ∈ A, the simulator sets flag = 1.

• For each i ∈ A, it uses the above shares to compute the following shares
{{[rq,lefti ]A, [r

q,right
i ]A}q∈[wa+1/`], {〈r

q,mult
i 〉A, 〈rq,addi 〉A, 〈rq,relayi 〉A}q∈[wa/`]}i∈[n−t], where wa and

wa+1 are the lengths of blocks blocka and blocka+1 respectively.
• It then assigns these shares to different blocks in the circuit based on the configuration of each

block. At the end of this step for each m ∈ [d], j ∈ [σ], the simulator has the following shares:

{[rj,q,leftm+1 ]A, [r
j,q,right
m+1 ]A}j,q∈[wm+1,j/`], {〈r

j,q,mult
m 〉A, 〈rj,q,addm 〉A, 〈rj,q,relaym 〉A}q∈[wm,j/`].

— Circuit evaluation on actual inputs: The simulator computes LeftInputsj ,RightInputsj =
WireConfiguration(blockm+1,j , blockm,j). For each q ∈ [wm+1,j/`] and for each k ∈ [`], it sets
eleft = LeftInputs[(q − 1)` + i] and eright = RightInputs[(q − 1)` + i]. For each i ∈ A, the simula-
tor check if

sq,lefti [k] = s
beleft/`c,GateTypek
i [eleft − beleft/`c]

sq,righti [k] = s
beright/`c,GateTypek
i [eright − beright/`c]

where GateTypek = mult if gate k on layer m is a multiplication gate, else if it is an addition gate
then GateTypek = add and for relay gates, GateTypek = relay. If any of these checks fail for any i ∈ A,
the simulator sets flag = 1.
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— For each i ∈ A, it uses the above shares to compute the following shares

{[rj,q,leftm+1 ]A, [r
j,q,right
m+1 ]A}j,q∈[wm+1,j/`], {〈r

j,q,mult
m 〉A, 〈rj,q,addm 〉A, 〈rj,q,relaym 〉A}q∈[wm,j/`].

— If Pleader ∈ H:
(a) The simulator receives shares {〈zj,q,mult

m 〉A, 〈zj,q,addm 〉A, 〈zj,q,relaym 〉A}q∈[wm,j/`] from the adversary.

(b) For each i ∈ A, the simulator checks if 〈zj,q,mult
m 〉i = [zj,q,leftm ]i · [zj,q,rightm ]i + 〈rj,q,mult

m 〉i and
〈zj,q,addm 〉i = [zj,q,leftm ]i + [yj,q,rightm ]i + 〈rj,q,add〉i and 〈zj,q,relaym 〉i = [zj,q,leftm ]i + 〈rj,q,relaym 〉i. If any
of these checks fail, the simulator sets flag = 1.

(c) The simulator simulates sending random shares
{

[zj,q,leftm+1 ]A, [z
j,q,right
m+1 ]A

}
q∈[wm+1,j/`]

to the adver-

sary.

(d) The simulator uses
{

[rj,q,leftm+1 ]A, [r
j,q,right
m+1 ]A

}
q∈[wm+1,j/`]

to compute shares{
[zj,q,leftm+1 ]A, [z

j,q,right
m+1 ]A

}
q∈[wm+1,j/`]

.

— Else if Pleader ∈ A:
(a) The simulator simulates sending random shares {〈zj,q,mult

m 〉H, 〈zj,q,addm 〉H, 〈zj,q,relaym 〉H}q∈[wm,j/`] on
behalf of the honest parties to the adversary.

(b) The simulator uses the shares
{

[zj,q,leftm+1 ]H, [z
j,q,right
m+1 ]H

}
q∈[wm+1,j/`]

sent by the adversary to re-

construct zj,q,leftm+1 and zj,q,rightm+1 and checks if these are consistent with the previously sent and
computed shares. If not, it sets flag = 1.

(c) Finally, the simulator uses zj,q,leftm+1 , zj,q,rightm+1 and
{

[rj,q,leftm+1 ]A, [r
j,q,right
m+1 ]A

}
q∈[wm+1,j/`]

, to compute{
[zj,q,leftm+1 ]A, [z

j,q,right
m+1 ]A

}
q∈[wm+1,j/`]

.

5. Verification Step: The simulator simulates the honest parties sending their shares in the opening of
[r] to the adversary and receives the shares that the adversary sends to the honest parties in this open.
If any honest party would abort, then the simulator simulates it by sending ⊥ to all parties, and to the
trusted functionality and halts. Finally, Sim simulates fcheckZero as follows, If flag = 1, then Sim simulates
fcheckZero by sending reject and then all honest parties sending ⊥. Otherwise, Sim proceeds to the next
step.

6. Output Reconstruction: If no abort had occurred, Sim sends the inputs of the adversary that it had
extracted from the input sharing phase to the ideal functionality computing f . It receives back the output
from the ideal functionality. The simulator then computes the shares of the honest parties using this
output and the shares of the corrupt parties (that it can compute based on the information it has). It
sends these shares to the adversary as part of the output reconstruction phase.
It then receives messages from the adversary. It uses these messages to reconstruct the output for the
honest party. If for any honest party, this reconstruction fails, it sends ⊥ along with the identity of the
honest party to the ideal functionality, signaling it to send ⊥ to that party.

Overall, the view of the adversary in the ideal world is identical to its view in the real world, except with
3/|F| probability. Up until the correlated randomness generation step of the dual circuit evaluation phase,
the view of the adversary generated by the simulator is identically distributed to that in the real world. From
super-invertibility property [DN07] of Vandermonde matrices, it follows that the ri vectors generated by the
parties at the end of this step are random and unknown to the adversary. However, since the adversary
is malicious, these vectors may not have the right correlation. Nevertheless, indistinguishability between
the view of an adversary in the real protocol and the transcript generated by the simulator up until the
verification step now follows from the privacy of packed secret sharing and the from the fact that the shares
sent to the leader are of values that are masked by random values unknown to any party and hence appear
completely random to the adversary.

In case no errors are introduced in the protocol before and during the verification step, then the only
difference between the real and ideal executions is that the input shares of the honest parties are set to
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0 in the simulated transcript. However, by the perfect secrecy of packed secret sharing, this has the same
distribution as in a real execution.

In case, some errors were introduced, then the simulator always simulates fcheckZero outputting reject.
However, in the real execution, the probability that vector sent to fcheckZero is a non-zero vector is at most
2/|F| and if indeed a non-zero vector is sent to fcheckZero, it will get detected except with probability 1/|F|.
Thus overall, in this case the adversary can avoid detection with probability at most 3/|F|. Since this is the
only difference between the real execution and the ideal simulation, we have that the statistical difference
between these distributions is less than 3/|F|.
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