
Optimizing BIKE for the Intel Haswell and ARM
Cortex-M4

Ming-Shing Chen1 , Tung Chou2 and Markus Krausz1

1 Ruhr University Bochum, Bochum, Germany
mschen@crypto.tw, markus.krausz@rub.de

2 Academia Sinica, Taipei, Taiwan
blueprint@crypto.tw

Abstract. BIKE is a key encapsulation mechanism that entered the third round of
the NIST post-quantum cryptography standardization process. This paper presents
two constant-time implementations for BIKE, one tailored for the Intel Haswell and
one tailored for the ARM Cortex-M4. Our Haswell implementation is much faster
than the avx2 implementation written by the BIKE team: for bikel1, the level-1
parameter set, we achieve a 1.39x speedup for decapsulation (which is the slowest
operation) and a 1.33x speedup for the sum of all operations. For bikel3, the level-3
parameter set, we achieve a 1.5x speedup for decapsulation and a 1.46x speedup for
the sum of all operations. Our M4 implementation is more than two times faster than
the non-constant-time implementation portable written by the BIKE team. The
speedups are achieved by both algorithm-level and instruction-level optimizations.
Keywords: constant-time implementations · NIST PQC standardization · Cortex-
M4

1 Introduction
BIKE [4] is a key encapsulation mechanism (KEM) involved in the NIST post-quantum
cryptography standardization process. It can be viewed as a variant of the code-based
cryptosystem introduced in [24], which makes use of so-called “quasi-cyclic moderate-
density parity-check” (QC-MDPC) codes. In July 2020, NIST announced that BIKE has
been selected as one of 15 schemes that advanced to the third round of the process, making
BIKE one of the candidates considered for standardization.

During the standardization process, BIKE holds a nice security record: unlike many
other candidates, the claimed security levels of BIKE haven never been challenged. BIKE
also features small public keys: the public key sizes are around 1.5KB, 3KB, and 5KB for
the level-1, level-3, and level-5 parameter sets, respectively. These features make BIKE a
competitive candidate in the process. In fact, NIST also commented that

“NIST views BIKE as one of the most promising code-based candidates.”

in the status report for the second round candidates [2].
Despite the advantages, there are two factors that arguably make BIKE look weaker

than some other candidates. The first factor is that, although the BIKE team has identified
the conditions on the decoder that would make the scheme CCA-secure, they are not able
to prove that the decoder actually satisfies the conditions. On the other hand, BIKE
can still be used in applications which require only CPA security. The other factor is the
relatively slow speeds of the operations. The speed issue is what this paper aims to deal
with.

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X
mailto:mschen@crypto.tw
mailto:markus.krausz@rub.de
mailto:blueprint@crypto.tw

2 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

1.1 Previous Works
There have been many previous papers on improving the speed of the cryptosystem
introduced in [24] and its variants. In particular, the QcBits paper [12] was the first
one to present a fully constant-time software implementation. Later on, many papers
tried to improve the speed of constant-time software implementations. For the purpose of
this paper, instead of reviewing all related papers, we list some important optimization
techniques adopted by the BIKE team. All the optimization techniques are related to
Rz = Z[y]/(yr − 1) or R = F2[x]/(xr − 1).

• As pointed out in [12], there are many operations that can be viewed as multiplications
in Rz in the decoding algorithm. These multiplications are of the form g(y)f(y),
where each coefficient gi and fi is either 0 or 1, and g(y) is a sparse polynomial. [12]
proposed to consider g(y) as

∑
s y
−s and compute the sum of all y−sf(y) to obtain

g(y)f(y). Each y−sf(y) is computed using a circular shift on the coefficients of f by
s positions. In order to make sure that the circular shift does not leak information
through timing, [12] proposed to make use of the concept of a Barrel shifter to build
a “Barrel rotator”.

• This idea of using a “Barrel rotator” would be very efficient if r was a multiple of the
register size. However, as r is always an odd prime in BIKE, performing the circular
shift directly will introduce some overhead. In order to reduce the overhead, [14]
proposed to represent f in a “duplicated form” such that y−sf(y) can be obtained
by performing a logical shift on the duplicated form. The logical shift is again
implemented using the concept of a Barrel shifter.

• To compute the sum
∑

s(y−sf(y)), [12] proposed to perform the computation in a
bitsliced fashion to make use of the fact that each coefficient of y−sf(y) is either 0
or 1.

• There are many multiplications in R in key generation, encapsulation, and decapsula-
tion. In order to compute the product of two elements f =

∑
i fix

i and g =
∑

j gjx
j

in R, the clmul implementation of [12] represents f and g as
∑

i Fiz
i and

∑
j Gjz

j ,
where z = x64, and uses the pclmulqdq instruction to compute every FiGj . [14]
proposed to use Karatsuba recursively, where the bottom level of recursions is handled
by pclmulqdq.

• The public key is of the form h1·h−1
0 where each hi ∈ R. Computation of h−1

0 ∈ R can
be computed using a multiplication chain as shown in [12]. Inside the multiplication
chain, it is often required to compute the 2kth power of an element f ∈ R for some
constant k. [15] proposed to compute such an exponentiation by permuting the
coefficients in f . When k is large, this is much faster than carrying out k squarings
sequentially.

Unfortunately, even with so many optimizations, the latest software speed of BIKE is
still not very satisfying: the eBACs website [8] reports that, on titan0, a machine with an
Intel Haswell CPU, the level-1 parameter set bikel1 takes more than 138000 cycles and
2650000 cycles to perform encapsulation and decapsulation, respectively. For comparison,
mceliece348864, one of the level-1 parameter sets of a third-round code-based candidate
Classic McEliece [3], takes only 44652 and 132360 cycles, respectively, on the same machine.
Note that this means that the situation of code-based candidates is quite different from
the situation of lattice-based candidates, as structured lattice-based schemes are typically
much faster than non-structured ones.

The BIKE team has some optimized implementations for x86 machines, whose speeds
rely heavily on the usage of instructions for carryless multiplications such as pclmulqdq.

Ming-Shing Chen , Tung Chou and Markus Krausz 3

This raises the question whether BIKE can still run with reasonable speed on embedded
systems where such instructions are not available. To our knowledge, there has not been
any BIKE implementation tailored for embedded systems yet.

1.2 Our Contribution
This paper presents two implementations of BIKE, one optimized for the Intel Haswell
and one optimized for the Cortex-M4. Compared to the avx2 implementation written
by the BIKE team, for bikel1, we achieve a 1.39x speedup for decapsulation and a
1.33x speedup for the sum of all operations on Haswell. For bikel3, we achieve a 1.5x
speedup for decapsulation and a 1.46x speedup for the sum of all operations on Haswell.
Compared to the non-constant-time portable implementation written by the BIKE team,
our implementation is more than two times faster for all the three operations on M4. Both
of our implementations are constant-time: there is no memory access using secret indices,
no branching with secret conditions, and no usage of variable-time instructions.

We believe that our implementations will make BIKE a more interesting option for
standardization. Even though we did not implement the largest parameter set bikel5,
which was introduced in the 3rd-round specification, we expect that our optimization
techniques (see below) will be useful for optimizing bikel5 as well. We also expect
the implementation techniques used for Haswell will be useful for optimizing BIKE for
newer microarchitectures, e.g., those supporting AVX512. In addition, our optimization
techniques for polynomial multiplications in R can be useful for optimizing HQC [1],
another third-round code-based candidate.

1.3 Optimization Techniques
The speed of our implementations is achieved by using the following optimization techniques.

a) When performing a logical shift on the duplicated form of f ∈ Rz, we make use
of matrix transpositions to change the representation of f , so that a Barrel shifter
is no longer required. As far as we can tell, this idea is completely original. This
optimization is only used in our Haswell implementation.

b) We implement the Barrel shifter for shifting the duplicated form of f ∈ Rz using
conditional execution and powerful multiply-and-accumulate instructions supported
by the M4. We consider this as a purely instruction-level optimization.

c) The sum of all y−sf is computed using a sequence of half adders in the BIKE team’s
implementation. We follow an algorithm explained by Boyar and Peralta [9] to use
full adders whenever possible. The algorithm is more complex and requires more

Table 1: Optimization techniques and where they are used: • means that the technique is
used for the corresponding operation on the corresponding platform, and ◦ means that the
technique is not used.

Haswell implementation M4 implementation
technique keygen encap. decap. keygen encap. decap. section

a) ◦ ◦ • ◦ ◦ ◦ 3
b) ◦ ◦ ◦ ◦ ◦ • 4
c) ◦ ◦ • ◦ ◦ • 5
d) • • • ◦ ◦ ◦ 6
e) ◦ ◦ ◦ • • • 7

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

4 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

memory, but it reduces the number of logical operations required to compute the
sum by a factor of more than 2.

d) The BIKE team’s implementations use the Karatsuba algorithm to optimize multipli-
cations in R. The Karatsuba algorithm is used recursively. Instead, we use a five-way
recursive algorithm proposed by Bernstein in [5] for the top level of recursion. This
optimization is only applied in our Haswell implementation.

e) We use a “Frobenius additive FFT” (FAFFT) to optimize multiplications in R on
the M4. We found that FAFFTs fit nicely with bitslicing, such that we are able
to carry out multiplications in R efficiently even without instructions for carryless
multiplications.

To summarize, a), b), and c) are used for multiplications in Rz, while d) and e) are
used for multiplications in R. Table 1 summarizes where each of these techniques is used
in our implementations.

1.4 Availability of Source Code
Our implementations are adapted from the BIKE team’s implementation and hence will
be distributed under the same Apache 2.0 license of the orignal implementations. We
plan to submit our Haswell implementation to the eBACS project [8] so that the source
code can be included in SUPERCOP. The source code of our M4 implementation has
been included in the pqm4 project [20] under the directories crypto_kem/bikel1/m4f and
crypto_kem/bikel3/m4f.

1.5 Organization of the paper
Section 2 reviews the latest specification of BIKE and shows why we need to perform
multiplications in Rz and multiplications in R. Each of the remaining sections introduces
one of our five optimization techniques; See Table 1. Section 8 shows our experimental
results for multiplications in Rz, multiplications in R, and the three KEM operations.

2 BIKE
This section reviews the third-round specification of BIKE [4]. For the sake of completeness,
we repeat some contents from the specification in this section.

2.1 System Parameters.
BIKE uses system parameters r, w, t, and `. The following table shows the values of the
system parameters and the security level for each of the three parameter sets of BIKE,
which we denote as bikel1, bikel3, and bikel5.

r w t ` level
bikel1 12323 142 134 256 1
bikel3 24659 206 199 256 3
bikel5 40973 274 264 256 5

Ming-Shing Chen , Tung Chou and Markus Krausz 5

KeyGen: () 7→ (h0, h1, σ), h
Output: (h0, h1, σ) ∈ Hw ×M, h ∈ R
1: h0, h1

$←− Hw

2: h = h1 · h−1
0

3: σ $←−M

Encaps: h 7→ K, c
Input: h ∈ R
Output: K ∈ K, c ∈ R×M
1: m $←−M
2: e0, e1 ← H(m)
3: c = (e0 +e1 ·h,m⊕L(e0, e1))
4: K ← K(m, c)

Decaps: (h0, h1, σ), c 7→ K
Input: ((h0, h1), σ) ∈ Hw ×M, c = (c0, c1) ∈ R×M
Output: K ∈ K
1: e′ ← decoder(c0h0, h0, h1) B e′ ∈ R2 ∪ {⊥}
2: m′ = c1 ⊕ L(e′) B with the convention ⊥= (0, 0)
3: if e′ = H(m′) then K ← K(m′, c), else K ← K(σ, c)

Figure 1: BIKE’s key generation, encapsulation, and decapsulation.

2.2 Hash Functions.
The BIKE team defines the hash functions H, K, L to have the following domains and
ranges.

• H:M→ Et,

• K:M×R×M→ K,

• L: R2 →M,

where the spacesM, K, and Et are defined as follows.

• M = {0, 1}`.

• K = {0, 1}`.

• Et = {(e0, e1) ∈ R2 | |e0| + |e1| = t}, where |ei| means the number of nonzero
coefficients in ei.

The concrete instantiation of H, K, L can be found in the specification and is beyond the
scope of this paper.

2.3 Key Generation, Encapsulation, and Decapsulation.
BIKE’s key generation, encapsulation, and decapsulation algorithms are depicted in
Figure 1. As shown in the figure, the key generation algorithm generates a secret key
(h0, h1, σ) and a public key h. (h0, h1) is in Hw, which is defined as{

(h0, h1) ∈ R2 | |h0| = |h1| = w/2
}
.

The encapsulation algorithm, on input a public key h, generates a session key K and
a ciphertext c encapsulating the session key. The decapsulation algorithm, on input a
secret key (h0, h1, σ) and a ciphertext c, outputs a session key K or ⊥. There are many
multiplications in R as one can see from the KEM operations and the decoding algorithm
decoder defined in the next subsection,

2.4 The Black-Gray Decoder
The decoding algorithm specified in the third-round specification is the black-gray decoder,
which was introduced in [16]. The algorithm is shown in Algorithm 1 of the specification.

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

6 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

The BIKE team described it as an algorithm that can be used for any code with a low-
weight parity-check matrix. However, as shown in Figure 1, BIKE is a scheme with a
ring structure. To facilitate our discussion in the following sections, we rephrased the
algorithm so that operations in rings are explicitly shown. We emphasize that “rephrased”
means that we do not create a new algorithm but merely write the original algorithm in a
different way. Our version of the black-gray decoder uses the following notations.

• Lift(·), which lifts an element from R to Rz.

• Tr(·), which converts an element
∑r−1

i=0 fix
i ∈ R, into Lift(f0 +

∑r−1
i=1 fr−ix

i).
The black-gray decoder is summarized in Algorithm 1. It should be easy to see where

the operations in R are from with respect to the specification. Note that the multiplications
of the form Tr(hi) ·Lift(s) are in Rz, and |Tr(hi)| is always w/2. These multiplications are
used to compute the numbers of unsatified parity-check equations. It has been explained
in [12] why computation of the numbers of unsatified parity-check equations can be viewed
as multiplications in Rz.

For completeness, we note that the black-gray decoder uses (in addition to r, w, t)
two integers NbIter, τ and a function threshold as its parameters. The third-round
specification defines NbIter = 5 for all parameter sets. How τ and threshold are defined
is irrelevant to the purpose of this paper.

3 Circular Shifts with Matrix Transposition
As mentioned in the Introduction, in order to compute g · f where g, f ∈ Rz, gi, fi ∈ {0, 1}
for all i, we may write g as

∑
s y
−s with 0 ≤ s < r and compute gf as

∑
s(y−sf). For each

s, y−sf can be computed by carrying out a circular shift on (f0, . . . , fr−1) by s positions
due to the structure of Rz. Below we review how such a circular shift can be implemented
using a Barrel shifter and propose a way to avoid the Barrel shifter.

3.1 The Duplicated Form and the Barrel Shifter
In order to compute y−sf , the BIKE team follows [12] to use a Barrel shifter and follows [14]
to use a duplicated form for f . The idea is to

1. lift f to Z[y] and represent it as f ′ = f + (f mod yr−1)yr 1 and

2. compute y−sf as ((f ′ − (f ′ mod ys))/ys) mod yr.
The second step might look complicated, but computationally it simply means performing
a logical shift (toward the direction of f ′0) of s positions on the vector of 2r− 1 coefficients
of f ′ and taking the first r coefficients. Note that making f ′ a longer polynomial will lead
to the same result, as long as f ′i = f(i mod r) for i ∈ {0, . . . , 2r − 2}.

Let b be a power of 2. To implement this idea, f ′ is stored as an array of b-bit words,
where the values of the words are

∑b−1
i=0 f

′
i2i,

∑b−1
i=0 f

′
i+b2i, and so on. Then, f ′ is first

shifted by s(1) = s− (s mod b) positions and then by s(0) = s mod b positions. As s(1)

is a multiple of b, the shift by s(1) =
∑

j s
(1)
j 2j positions is carried out as a sequence of

conditional moves from word i + 2j/b to word i for each j. The shift by s(0) positions
can be carried out by a sequence of logical shifts and ORs on the words, assuming that
corresponding instructions exist.

The avx2 implementation follows the strategy above, where b is set to 256 to fit the
size of YMM registers. Note that there is no general shift instruction for YMM registers,
so the avx2 implementation follows [19] to use AVX intrinsics to carry out the shift by
s(0) positions.

1[14] actually uses (1 + yr)f , which has one more coefficient than f + (f mod yr−1)yr.

Ming-Shing Chen , Tung Chou and Markus Krausz 7

Algorithm 1 The Black-Gray Decoder (rephrased)
Parameters: r, w, t, d = w/2, NbIter, τ , threshold
1: procedure decoder(s, h0, h1)
2: (e0, e1)← (0, 0) ∈ R2

3: for i = 1, . . . ,NbIter do
4: T ← threshold(|s+ e0h0 + e1h1|, i)
5: e0, e1, b0, b1, g0, g1 ← BFIter(s+ e0h0 + e1h1, e0, e1, T, h0, h1)
6: if i = 1 then
7: e0, e1 ← BFMaskedIter(s+ e0h0 + e1h1, e0, e1, b0, b1, (d+ 1)/2 + 1, h0, h1)
8: e0, e1 ← BFMaskedIter(s+ e0h0 + e1h1, e0, e1, g0, g1, (d+ 1)/2 + 1, h0, h1)
9: end if
10: end for
11: if s = e0h0 + e1h1 then
12: return (e0, e1)
13: else
14: return ⊥
15: end if
16: end procedure

17: procedure BFIter(s, e, T, h0, h1)
18: (c0, c1)← (Tr(h0) · Lift(s),Tr(h1) · Lift(s))
19: (b0, b1)← (0, 0) ∈ R2

20: (g0, g1)← (0, 0) ∈ R2

21: for i = 0, 1 do
22: for j = 0, . . . , r − 1 do
23: if cij ≥ T then
24: eij ← eij + 1
25: bij ← 1
26: else if cij ≥ τ then
27: gij ← 1
28: end if
29: end for
30: end for
31: return e0, e1, b0, b1, g0, g1
32: end procedure

33: procedure BFMaskedIter(s, e,m0,m1, T, h0, h1)
34: (c0, c1)← (Tr(h0) · Lift(s),Tr(h1) · Lift(s))
35: for i = 0, 1 do
36: for j = 0, . . . , r − 1 do
37: if cij ≥ T then
38: eij ← eij +mij

39: end if
40: end for
41: end for
42: return e0, e1
43: end procedure

3.2 Avoiding the Barrel Shifter with Matrix Transposition

We do better than the avx implementation by making use of a simple observation. In
short, we observed that shifting f ′ by s(1) positions can be carried out by shifting a set of

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

8 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

1 _INLINE_ void
2 rotate256_big(OUT syndrome_t *out, IN __m256i *in, IN size_t ymm_num)
3 {
4 int i;
5

6 for (i = 0; i < 64; i++)
7 STORE(&out->qw[4*i], SRLI_I64(in[i], ymm_num) |
8 SLLI_I64(in[i+64], 64-ymm_num));
9

10 transpose_64x256_sp_asm(out->qw);
11 }

Figure 2: The source code for computing M (1) from N (0) for bikel1.

b vectors by s(1)/b positions, if f ′ is represented in a different format. The observation is
explained via the following example.

Let r = b2/2. For a concrete number, one can imagine that b = 64. We choose f ′ to
have a length of 2r = b2 instead of 2r − 1. Consider f ′ as a b× b matrix M (0), where the
entry at row i and column j contains the bit f ′b·i+j . The matrix is illustrated below.

M (0) =

f
′
0 f ′1 . . . f ′b−1
f ′b f ′b+1 . . . f ′2b−1
...

...
...

...

 .

Our main observation is that shifting f ′ by s(1) positions, in the matrix view, simply
means updating row i by row i+ s(1)/b (and if row i+ s(1)/b is undefined, row i is set to
0). If we can somehow make each column of M (0) lie in one b-bit word, this can be carried
out easily via b shift operations by s(1)/b positions on the columns.

In order to make use of this observation, given f and s, we perform the following steps
to compute y−sf .

1. Compute f ′, which can be viewed as the matrix M (0), from f .

2. Compute N (0) = (M (0))T . How to perform such a matrix transposition efficiently
given b = 64 has been explained in, say, [13].

3. Perform a shift of s(1)/b positions on each row of N (0) to obtain N (1).

4. Compute M (1) = (N (1))T . Note that we only need d(r + b− 1)/be rows of M (1) for
the next step.

5. Shift the vector of length r + b− 1 represented by the first d(r + b− 1)/be rows of
M (1), by s(0) positions. Then, the first r entries will be y−sf .

Recall that what we actually want to compute is
∑

s y
−sf . In fact, the first two steps above

do not depend on s, so N (0) is the same for any s. Therefore, one can save operations by
computing N (0) with the first two steps, and then for each s perform the last three steps.

3.3 The Haswell Implementation for bikel1

For ease of discussion, we define the following operators that can be applied to any
matrix.

• ⇐j (·), meaning replacing column i by column i+ j for all i.

• ⇒j (·), meaning replacing column i by column i− j for all i.

Ming-Shing Chen , Tung Chou and Markus Krausz 9

• ⇑j (·), meaning replacing row i by row i+ j for all i.

• ⇓j (·), meaning replacing row i by row i− j for all i.

For each operator, the destination row or column is set to 0 if the source is not well-defined.
The parentheses will be omitted whenever it is convenient.

Our Haswell implementation for bikel1 uses b = 256 because it mainly works on YMM
registers. bikel1 has r = 12323, so f ′ consists of at least d(2r − 1)/256e = 97 words and
s(1)/b ≤ 48. For ease of implementation, we let f ′ be of length 32768, so M (0) is a matrix
with 128 rows:

M (0) =
(
M00 M01 M02 M03
M10 M11 M12 M13

)
∈ F128×256

2 ,

where each Mij is a 64× 64 matrix. Following the discussion in Section 3.2, we only need
the first d(12323 + 255)/256e = 50 rows of ⇑s(1)/b (M (0)) to perform the final shift of s(0)

positions. Let s′ = s(1)/b, for ease of implementation, we compute the first 64 rows of
⇑s′ (M (0)), which is simply

M (1) =

 ⇑s′ M00 ⇑s′ M01 ⇑s′ M02 ⇑s′ M03
+ + + +

⇓64−s′ M10 ⇓64−s′ M11 ⇓64−s′ M12 ⇓64−s′ M13

 ∈ F64×256
2 .

Let Nij = MT
ij . Our implementation stores f ′ in a way that the corresponding matrix is

N (0) =
(
N00 N01 N02 N03
N10 N11 N12 N13

)
∈ F128×256

2

instead of M (0). And then for each s, we compute

N (1) =

 ⇐s′ N00 ⇐s′ N01 ⇐s′ N02 ⇐s′ N03
+ + + +

⇒64−s′ N10 ⇒64−s′ N11 ⇒64−s′ N12 ⇒64−s′ N13

 ∈ F64×256
2

and transpose each of the 4 64× 64 submatrices in N (1) to obtain M (1).
We chose the implementation strategy above, because it can be implemented easily

using AVX2 intrinsics/instructions. Our source code for computing M (1) from N (0) is
given in Figure 2. The variable in is a pointer to N (0). The variable ymm_num is set to s′.
SRLI_I64 is defined (by the BIKE team) as _mm256_srli_epi64, and we use it to perform
⇐s′ . SLLI_I64 is defined (by the BIKE team) as _mm256_slli_epi64, and we use it to
perform ⇒64−s′ . The discussion above suggests that we need to compute XOR of the
results of SRLI_I64 and SLLI_I64, but the source code uses OR because it has the same
effect. The function transpose_64x256_sp_asm is an assembly function that computes
the “64× 64-block-wise” matrix transposition for obtaining M (1) from N (1). The assembly
function performs a vectorized version of the 64× 64 matrix transposition mentioned in
Section 3.2. We note that the assembly function is included in the source code of Classic
McEliece. The source code of Classic McEliece, including the function, is in the public
domain. In fact, we also compute N (0) from M (0) by calling the assembly function twice.

3.4 The Haswell Implementation for bikel3

bikel3 has r = 24659, so f ′ consists of at least d(2r − 1)/256e = 193 words and s′ =
s(1)/b ≤ 96. For ease of implementation, we let f ′ be of lenght 65536, which means M (0)

is a matrix with 256 rows:

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

10 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

M (0) =


M00 M01 M02 M03
M10 M11 M12 M13
M20 M21 M22 M23
M30 M31 M32 M33

 ∈ F256×256
2 ,

where each Mij is a 64× 64 matrix. Following the dicussion in Section 3.2, we only need
the first d(24659 + 255)/256e = 98 rows of ⇑s′ (M (0)) to perform the final shift of s(0)

positions. For ease of implementation, we instead compute 128 rows of ⇑s′ (M (0)). Let
M (0k) ∈ F128×256

2 be the first 128 rows of ⇑64k M
(0). We observed that there are two cases

for the first 128 rows of ⇑s′ (M (0)), which we denote as M (1):

M (1) =
{
⇑s′ (M (00))+ ⇓64−s′ (M (01)) if 0 ≤ s′ < 64,
⇑s′−64 (M (01))+ ⇓128−s′ (M (02)) if 64 ≤ s′ < 128.

Let Nij = MT
ij . Our implementation stores f ′ in a way that the corresponding matrix is

N (0) =


N00 N01 N02 N03
N10 N11 N12 N13
N20 N21 N22 N23
N30 N31 N32 N33

 ∈ F256×256
2

If 0 ≤ s′ < 64, we compute

N (1) =


⇐s′

(
N00
N10

)
⇐s′

(
N01
N11

)
⇐s′

(
N02
N12

)
⇐s′

(
N03
N13

)
+ + + +

⇒64−s′

(
N10
N20

)
⇒64−s′

(
N11
N21

)
⇒64−s′

(
N12
N22

)
⇒64−s′

(
N13
N23

)
 ∈ F128×256

2

Otherwise, we compute

N (1) =


⇐s′−64

(
N10
N20

)
⇐s′−64

(
N11
N21

)
⇐s′−64

(
N12
N22

)
⇐s′−64

(
N13
N23

)
+ + + +

⇒128−s′

(
N20
N30

)
⇒128−s′

(
N21
N31

)
⇒128−s′

(
N22
N32

)
⇒128−s′

(
N23
N33

)
 ∈ F128×256

2

In either case, each of the 8 64× 64 submatrices in N (1) is transposed to obtain M (1).
It might seem that the implementation strategy above will result in branching on s′,

and branching on s′ is not allowed for constant-time implementations. However, this can be
avoided with the ability of AVX intrinsics. Our source code for computing M (1) from N (0)

is given in Figure 3. The variable in, again, is a pointer for N (0). The variable ymm_num,
again, is set to s′. When 0 ≤ s′ < 64, the SRLI_I64 and SLLI_I64 in line 12 and 13 will give
all-zero results because their shift amounts are out-of-range. Similarly, when 64 ≤ s′ < 128,
the SRLI_I64 and SLLI_I64 in line 10 and 11 will give all-zero results because their shift
amounts are out-of-range. In this way, we are able to avoid branching on s′. Finally, we
compute M (1) from N (1). by calling the assembly function transpose_64x256_sp_asm
twice. We also compute N (0) from M (0) by calling the assembly function four times.

4 Circular Shifts with Conditional Moves
Following the discussion in Section 3.1, our M4 implementation uses a Barrel shifter to
shift the duplicated form of f by s bits. In the setting of M4, we have s = s(1) + s(0) where
s(0) = s mod 32, and the duplicated form of f is stored as an array of 32-bit words. Our
M4 implementation first performs the shift by s(1) bits and then the shift by s(0) bits.

Ming-Shing Chen , Tung Chou and Markus Krausz 11

1 _INLINE_ void
2 rotate256_big(OUT syndrome_t *out, IN __m256i *in, IN size_t ymm_num)
3 {
4 int j;
5

6 __m256i tmp;
7

8 for (j = 0; j < 128; j++)
9 {

10 tmp = SRLI_I64(in[j], ymm_num)
11 | SLLI_I64(in[j+64], 64 - ymm_num)
12 | SRLI_I64(in[j+64], ymm_num - 64)
13 | SLLI_I64(in[j+128], 128 - ymm_num);
14

15 STORE(&out->qw[4*j], tmp);
16 }
17

18 transpose_64x256_sp_asm(&out->qw[0]);
19 transpose_64x256_sp_asm(&out->qw[64*4]);
20 }

Figure 3: The function for computing M (1) from N (0) for bikel3.

4.1 The Shift by s(1) Bits
In the first phase of the Barrel shifter, each word i is conditionally replaced by word i+2j/32
for several j’s with j ≥ 5 to carry out the shift by s(1) bits. Note that j ∈ {13, 12, . . . , 5}
for bikel1 and j ∈ {14, 13, . . . , 5} for bikel3. To complete the computation for each j, we
can first create a 32-bit mask which is set to 0xFFFFFFFF if the shift of 2j/32 words needs
to be carried out or 0x0 otherwise. Then, for i = 0, 1, 2, . . . , the portable implementation
does

w[i] = (w[i] & ~mask) | (w[i+idx] & mask),

where idx holds the value of 2j/32. This is essentially the code of the portable imple-
mentation, except that it actually works on 64-bit words.

In our implementation, for each k in the first phase, the words are partitioned into
2j/32 sets: each word i with k = i mod 2j/32 is in the kth set. For each set, we use two
general-purpose registers Rx and Ry, where Rx is initialized with word k. Then, we set i to
k and perform the following loop.

1. Load word i+ 2j/32 to Ry.

2. Conditionally move Ry to Rx.

3. Store Rx to word i.

4. If i < min(d(r + 2j − 1)/32e and i + 2j/32 < d(2r − 1)/32e, increase i by 2j/32.
Otherwise, break the loop.

5. Load word i+ 2j/32 to Rx.

6. Conditionally move Rx to Ry.

7. Store Ry to word i.

8. If i < min(d(r + 2j − 1)/32e and i+ 2j/32 < d(2r − 1)/32e, increase i by 2j/32 and
go back to Step 1. Otherwise, break the loop.

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

12 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

In Step 4 and 8, we check if i < min(d(r + 2j − 1)/32e because we only need

d(r +
j−1∑
i=0

2i)/32e = d(r + 2j − 1)/32e

words for the remaining conditional shifts of 2j−1, 2j−2, . . . , 32, s(0) bits. We check if
i+2j/32 < d(2r−1)/32e because there are only d(2r−1)/32e words. In our implementation,
the if statements are simplified to “If i < imax, . . . ”, where imax is a precomputed value
that depends on k and j.

To carry out the conditional moves, our M4 implementation uses the instruction SEL.
As suggested by the name, SEL can move one of its two source registers into its destination
register. Which source register is chosen is determined by the “GE” flags 2. We note that
the SEL instruction always takes 1 cycle.

In order to reduce the average cost of each conditional move, our implementation
actually processes n = min(2j/32, 4) words in one iteration of the loop: we first load n
words to Ry1, . . . , Ryn, use the SEL instruction n times to conditionally move Ry1, . . . ,
Ryn to the corresponding Rx1, . . . , Rxn, store Ry1, . . . , Ryn to the memory of n words. We
also partially unroll the loop so that Step 4 is omitted. A piece of code for a loop of j = 12
is given in Appendix A.

4.2 The Shift by s(0) Bits
In the second phase, the Barret shifter performs the shift of f by s(0) < 32 bits. Suppose
f is stored as an array of 32-bits words w[n]. In the portable implementation of BIKE
team, the shift is carried out by doing

w[i] = (w[i] » s0) | (w[i+1] « (32-s0));

for i = 1, 2, . . . , and so on. This approach takes 2 logic shits and 1 logic OR operations for
each 32-bits word. We note that portable actually works on 64-bit words, but the idea is
the same. In fact, we can also deal with the 32-bit words in the reversed order:

v = 0;
for (i = n-1; i >= 0; i--)
{
tmp = w[i] << (32-s0);
w[i] = (w[i] >> s0) | v;
v = tmp;

}

Note that the logical OR can be replaced by an addition.
Now consider the following C function.

void F(uint32* w, uint32* v, s0)
{
uint32_t tmp = *w << (32-s0);
*w = (*w >> s0) + v;
*v = tmp;

}

The shift by s(0) bits can then be carried out by doing simply
2Actually the selection is done on a byte per byte basis. For example, with the right values in the GE

flags, one can write the lower 8 bits of the first source register to the corresponding bits of the destination
register, and write the upper 24 bits of the second source register to corresponding bits of the destination
register.

Ming-Shing Chen , Tung Chou and Markus Krausz 13

v = 0;
for (i = n-1; i >= 0; i--)
F(w[i], &v, s0);

The interesting thing is that F can be replaced by a single instruction UMLAL. The instruction
operates as

UMLAL Rdlo, Rdhi, Rm, Rn

where Rdlo and Rdhi are the 2 destination registers and Rm and Rn are the 2 source
registers. The instruction multiplies Rm and Rn and adds the 64-bit result into the 64-bit
integer represented by Rdhi (the top 32 bits) and Rdlo (the bottom 32 bits). To carry
out F(w[i], &v, s0) with the UMLAL, the 4 registers Rdlo, Rdhi, Rm, and Rn are set to
w[i], v, (1 « s0)-1, and w[i] respectively. Note that we set Rdlo to w[i] and Rm to (1
« (32-s0))-1 instead of setting Rdlo to 0 and Rm to 1 « (32-s0) to avoid the overflow
of Rm when s(0) = 0. In this way, we are able to replace the 2 logical shifts and 1 logical
OR with only 1 UMAAL.

A previous version of our M4 implementation actually used IT blocks instead of SEL
to carry out conditional moves and use the same way as the portable implementation to
perform the shift by s(0) bits. The ideas of using SEL and replacing shift instructions by
multiplication instructions was suggested by an anonymous reviewer of this paper. In the
current version of our M4 implementation, which uses the ideas, one circular shift is about
5% faster than in the previous version.

5 Hamming Weight Computation with Full Adders
The implementations of the BIKE team follows [12] to compute the sum

∑
s(y−sf) in a

bitsliced fashion to obtain gf . As the result, a sequence of bitwise logical operations are
performed to obtain the sum. Let n be the cardinality for the set of s, and let b1 be the
constant term of the first y−sf , b2 be the constant term of the second y−sf , and so on.
It is easy to see that the problem of computing

∑
s(y−sf) boils down to computing the

Hamming weight of (b1, b2, . . . , bn) ∈ {0, 1}n using a sequence of gates. This sections shows
how previous implementations and our implementation compute the Hamming weight.

5.1 Simple Algorithms for Computing the Hamming Weight
The avx2 implementation of BIKE, following [12], first prepares a counter of blog2 nc+ 1
zero bits. The counter is used to store the Hamming weight. Then, for each i ∈ {1, . . . , n},
bi is added to the counter. For each addition, if n is a power of 2, each of the least
significant blog2 nc bits can be updated using one half adder, and the most significant
bit can be set to the carry-out bit of the last half adder. If n is not a power of 2, each
of the least significant blog2 nc bits can be updated using one half adder, and the most
significant bit can be updated using 1 XOR. Let T (n) be the number of bit operations it
takes to compute the Hamming weight of n bits. We have

T (n) =
{

(2blog2 nc+ 1)n, if n is not a power of 2.
2blog2 ncn, if n is a power of 2.

In [19], the authors suggested a simple way to improve the approach above. The idea
is that, since adding bi only affects the first blog2 ic + 1 bits of the counter, there is no
need to update the remaining bits. In fact, adding bi takes 2blog2 ic+ 1 bit operations
if i is not a power of 2, and adding bi takes 2blog2 ic bit operations if i is a power of 2.
Therefore, we have

T (n) =
n∑

i=1
C(i), C(i) =

{
(2blog2 ic+ 1), if i is not a power of 2.
2blog2 ic, if i is a power of 2.

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

14 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

5.2 The Boyar–Peralta Algorithm
Our implementation uses a much faster algorithm which makes use of full adders. The
algorithm was explained by Boyar and Peralta in [9]. We note that the technique is
probably much older: [17] presents an algorithm that seems equivalent. However, as we are
not able to tell who was the first to propose the algorithm, we simply call the algorithm
the Boyar–Peralta Algorithm. Boyar and Peralta focused on proving that the algorithm
gives the minimal number of ANDs required to compute the Hamming weight. In the
following discussion, we consider the number of XORs as well as the space requirement of
the algorithm.

To explain the idea, consider the case when n = 2k−1. Boyar and Peralta described the
following recursive algorithm: apply the algorithm recursively to compute the Hamming
weight x1 of the first 2k−1 − 1 bits, apply the algorithm recursively to compute the
Hamming weight x2 of the next 2k−1 − 1 bits, and use a standard adder to compute the
sum x1 + x2 + bn, where bn serves as the carry-in bit. Then the sum x1 + x2 + bn−1 can be
computed using k − 1 full adders, resulting in 5(k − 1) bit operations. Therefore, we have

T (2k − 1) = 5(k − 1) + 2T (2k−1 − 1)

for k > 1, and obviously T (0) = T (1) = 0.
In order to handle general n, the Boyar–Peralta algorithm computes k, n1, n2 such

that n = 2k−1 + n2 = n1 + n2 + 1, where 0 ≤ n2 < 2k−1. Then, the algorithm is applied
recursively to compute the Hamming weight x1 of the first n1 bits, and the Hamming
weight x2 of the next n2 bits, and finally a standard adder is used to compute the sum
x1 + x2 + bn−1. Let k′ = blog2 n2c+ 1 if n2 > 0, i.e., k′ is the number of bits required to
represent n2. k′ is set to 0 if n2 = 0. Then, the sum x1 +x2 + bn−1 can be computed using
k′ full adders and k − 1− k′ half adders, resulting in 5k′ + 2(k − 1− k′) bit operations.
Therefore, we have

T (n) = 5k′ + 2(k − 1− k′) + T (2k−1 − 1) + T (n2)

for n ≥ 2, and T (0) = T (1) = 0.
The reason why we need to perform multiplications of the form gf =

∑
s(y−sf) in

the first place is because there are multiplications between Tr(hi) and Lift(s) in the
decoder (see Section 2.4). As each Tr(hi) is always of weight w/2, our goal is actually
to compute the Hamming weight of w/2 bits. Now we can easily compute T (w/2) for
the Boyar–Peralta algorithm and the simple algorithms in the previous subsection. The
numbers are summarized in Table 2.

5.3 Code Generation for the Boyar–Peralta Algorithm
To implement the Boyar–Peralta algorithm, we wrote a code generator to generate the
sequence of additions in the Boyar–Peralta algorithm. The code generator is included in
Appendix B. It assumes that there is a buffer consisting of infinitely many bits that can
be used for storing the results of the additions and the Hamming weight.

Our code generator is written as a Python function named bp. One can simply call
bp(n, 0) to to generate operations for n input bits. Its the second argument, the variable
off in its signature, indicates the index of the first bit in the buffer of the computation.
The function, on input n > 1, computes k, n1, n2 such that n = 2k + n2 = n1 + n2 + 1.
Then, the function first recursively calls

bp(n1, off);
bp(n2, off + nbits(n1));

to generate operations for computing x1 and x2, where nbits(n1) means the number of
bits required to represent n1. Note x1 will be stored in the first nbits(n1) bits starting

Ming-Shing Chen , Tung Chou and Markus Krausz 15

Table 2: The numbers of gates required to compute the Hamming weight for the three
methods.

n = w/2 [12] [19] [9]
bikel1 71 923 676 326
bikel3 103 1339 1092 484
bikel5 137 2055 1553 655

from the buffer bit of index off after the operations generated by the first recursive call
are carried out, and x2 will be stored in the next nbits(n2) bits after the operations
generated by the second recursive call are arried out.

After the recursive calls, the function first outputs
"rotate_right(bn, f, s[{0}]);".format(count)

which means a new s is used to compute y−sf , so that the bit bn is generated. Here count
is a global variable which is always increased by 1 after printing the line of rotate_right.
Then, the function outputs

"adder_size_eq(buf, bn, {0}, {1});".format(off, nbits(n1))

if nbits(n1) is equal to nbits(n2) or
"adder_size_neq(buf, bn, {0}, {1}, {2});".format(off, nbits(n1), nbits(n2))

if they are different. In either case, this means that a standard adder is used to compute
x1 + x2 + bn. The variable buf is a pointer to the buffer, and the offset of x1 is indicated
by off. The difference between the two cases is that adder_size_eq only requires one
argument to indicate the bit length of x1 or x2, while adder_size_neq requires two
arguments. If n = 1, the function outputs the line of rotate_right, increases count by 1,
and outputs

"adder_size_eq(buf, bn, {0}, 0);".format(off)

where the last argument 0 indicates that bn is simply copied into the buffer bit of index
off. If n = 0, the function returns immediately. The only remaining task is to implement
the C functions adder_size_eq and adder_size_neq.

By analysing the output of the function, we found that a buffer of 16, 17, and 22
bits are required for n = 71, n = 103, and n = 137. Note that the simple algorithms
requires a buffer of only 7, 7, and 8 bits respectively. In other words, using the Boyar–
Peralta algorithm to compute the sum

∑
s(y−sf) in a bitsliced fashion takes at least

d16 · 12323/8e = 24646, d17 · 24659/8e = 52401, and d22 · 40973/8e = 112676 bytes for
bikel1, bikel3, and bikel5, respectively.

6 Multiplications in F2[x] with Bernstein’s 5-way Recur-
sive Algorithm

The implementations of the BIKE team use Karatsuba for multiplying polynomials in
F2[x]: given two polynomials F = F0 + F1x

n and G = G0 + G1x
n where F0, F1, G0, G1

are of degree smaller than n, the algorithm computes FG as

F0G0 + F1G1x
2n + ((F0 + F1)(G0 +G1)− F0G0 − F1G1)xn.

This means that Karatsuba is a 3-way recursive algorithm: it reduces the multiplication
into 3 smaller ones, where the smaller multiplications can be handled recursively. The
complexity of Karatsuba is O(nlog2 3).

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

16 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

Recall that bikel1 has r = 12323 and bikel3 has r = 24659. The BIKE team always
picks n to be the smallest possible power of 2, which means at the top level of recursion,
we have n = 8192 for bikel1 and n = 16384 for bikel3. They then apply Karatsuba
recursively. At the bottom level of recursion, the avx2 implementation uses pclmulqdq, and
the portable implementation uses a non-constant-time function to handle multiplications
of polynomials of degree smaller than 64.

As r seems to be large enough to make use of algorithms with lower complexities, our
Haswell implementation uses a 5-way recursive algorithm by Bernstein.

6.1 Bernstein’s 5-way Recursive Algorithm
In [5], Bernstein proposed a 5-way recursive algorithm for multiplying two polynomials
in F2[x] with five multiplications. The complexity of Bernstein’s algorithm is O(nlog3 5).
Given two polynomials F0 + F1z + F2z

2 and G0 +G1z +G2z
2 in F2[x], where Fi’s and

Gi’s are polynomials of degree smaller than n and z = xn. The algorithm reduces the
multiplication into five polynomial multiplications of polynomials of length about n:

H(0) = F0 ·G0,

H(1) = (F0 + F1 + F2) · (G0 +G1 +G2),
H(x) = (F0 + F1x+ F2x

2) · (G0 +G1x+G2x
2),

H(x+ 1) = ((F0 + F1 + F2) + F1x+ F2x
2) · ((G0 +G1 +G2) +G1x+G2x

2),
H(∞) = F2 ·G2.

Bernstein showed that H = F ·G can be constructed by the following formula

H = U +H(∞)(z4 + z) + U + V +H(∞)(x4 + x)
x2 + x

(z2 + z) (1)

where

U = H(0) + (H(0) +H(1))z and V = H(x) + (H(x) +H(x+ 1))(x+ z) .

6.2 Implementing Bernstein’s algorithm
Our Haswell implementation uses Bernstein’s algorithm at the top level of the recursion
and Karatsuba for other levels. At the top level, we pick n = 4096 for bikel1 and n = 8192
for bikel3. Note that 12323−4096 ·3 = 35 and 24659−8192 ·3 = 83. These “leftover bits”
are handle separately, and the costs of handling them is very small. In order to make the
operands of the 5 multiplications fit into n = 4096 or n = 8192 bits, we also handle the top
2 bits of F2 and G2 and the top bit of F1 and G1 separately, together with the “leftover
bits”. At the bottom level of recursion, we also use pclmulqdq to handle multiplications
for polynomials of degree smaller than 64.

Let h(x) =
∑`−1

i=0 hix
i = (U + V +H(∞)(x4 + x)). While most of the operations in

Bernstein’s algorithm are either multiplications or additions, there is one division between
h(x) and (x2 + x) in Eq. 1. We carry out the division by computing

h`−1x
`−3 + (h`−1 + h`−2)x`−4 + . . .+ (Σ`−1

i=2hi).

Note that instead of computing the coefficients sequentially, the computation can be easily
parallelized: let h′ be (h − (h mod x2))/x2, we update h′ to h′ + (h′ − (h′ mod x))/x,
update h′ to h′ + (h′ − (h′ mod x2))/x2, update h′ to h′ + (h′ − (h′ mod x4))/x4, and so
on. This results in a much faster implementation for the division.

Ming-Shing Chen , Tung Chou and Markus Krausz 17

7 Polynomial Multiplications in F2[x] with Frobenius Ad-
ditive FFTs

This section presents how we carry out the polynomial multiplications on the Cortex-M4.
Section 7.1 reviews how the Gao-Mateer additive FFT works. Section 7.2 reviews how to
perform multiplications in F2[x] with the additive FFT in [22, 11]. Section 7.3 shows how
we implement the algorithm for the Cortex-M4.

7.1 The Gao–Mateer Additive FFT
Below we introduce how the Gao–Mateer additive FFT [18], which we denote as AFFT,
can be used for polynomials over F2m , where m is a power of 2.

Cantor Basis An F2-linear basis {v0, v1, . . . , vm−1} of F2m , where m is a power of 2, is
called a Cantor basis [10] if v0 = 1 and vi−1 = v2

i + vi for all i > 0. We define W` ⊆ F2m

as the span of {v0, . . . , v`−1} for any 1 ≤ ` ≤ m and W0 as {0}. When ` is a power of 2,
W` is the subfield of size 2`. In [10], Cantor defined a series of polynomials that are closely
related to vi’s and W`’s:

s0(x) = x, and si(x) = (si−1(x))2 + si−1(x) for i ≥ 1.

In fact, each si satisfies the following properties.
• si(x) is linear in the sense that si(α+ β) = si(α) + si(β).

• si(vk+i) = vk for all i ≥ 0.

Divide and Conquer Given f(x) ∈ F2m [x] of degree smaller than n, where n = 2`,
v ∈ F2m , and ` ≤ m, the AFFT computes S = {f(α) | α ∈ v + W`}. When ` = 0, the
algorithm simply returns f(x) itself. When ` > 0, the algorithm first writes f(x) as

f (0)(s1(x)) + x · f (1)(s1(x)).

This is called “radix conversion” in [7]: the radix is changed from x to s1(x) = x2 + x.
Note that the computation f (0) and f (1) from f requires only field additions, which are
much cheaper than field multiplications, and each f (i) is of degree smaller than 2`−1. If
we have S(0) = {f (0)(s1(α)) | α ∈ v + W`} and S(1) = {f (1)(s1(α)) | α ∈ v + W`}, then
every f(α) can be computed as f(α) = f (0)(α) + αf (1)(α).

Observe that s1(v +W`) = s1(v) +W`−1, which is of size 2`−1. Gao and Mateer make
use of this observation to compute S(0) and S(1) by recursively evaluating f (0) and f (1) at
all elements of s1(v) +W`−1. In addition, as

v +W` = (v + span{v`−1, . . . , v1}) ∪ (v + span{v`−1, . . . , v1}+ 1),

Gao and Mateer suggest to compute S by computing

f(β) = f (0)(s1(β)) + βf (1)(s1(β)), f(β + 1) = f(β) + f (1)(s1(β)),

for all β ∈ v + span{v` − 1, . . . , v1}. Computation of f(β) and f(β + 1) is depicted by the
following figure.

f (0)(s1(β)) // ⊕ //

��

f(β)

f (1)(s1(β)) // •
β

AA

// ⊕ // f(β + 1)

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

18 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 4: The three stages of butterflies in a size-8 AFFT. Each arrow going upwards is
associated with a constant which is not shown, so it actually means “adding the product
of the source and the constant to the destination” instead of “adding the source to the
destination”.

This is one “butterfly” in an AFFT.
To have a clearer picture regarding the pattern of computation in an AFFT, one can

“unroll” the recursion. In this way, it can be seen that an AFFT always consists of two
phases. The first phase consists of a bunch of field additions from radix conversions in
all levels of recursion. The second phase consists of several stages of butterflies, where
the last stage consists of the butterflies in level 0 (i.e., the top level) of the recursion, the
second last stage consists of the butterflies in level 1 of the recursion, and so on. Figure 4
shows the three stages in the second phase of a size-8 (n = 8) AFFT.

7.2 Multiplication in F2[x] with FAFFT
The AFFT allows us to perform multiplications in F2[x]: given polynomials f, g ∈ F2[x]
such that fg is of degree smaller than n = 2`, we can lift f and g to F2m [x] such that m is
a power of 2 and ` ≤ m, perform an AFFT for each of f and g to evaluate them at W`,
perform the pointwise multiplication, and perform the inverse AFFT to obtain fg. Such
an AFFT-based polynomial multiplication always works, but one can reduce the cost of
the AFFT by carefully choosing the evaluation points for f and g.

Reducing the Number of Evaluation Points In [22], Li et al. suggested to pick the set
of evaluation points to be

Σ = W`′ + v`′+m/2

with
`′ +m/2 < m, n′ = |Σ| = n

m
, `′ = logn′

2 <
m

2 . (2)

In this way, the function that maps f to f(Σ) will be invertible, which means we can use
the AFFT and the inverse AFFT to carry out multiplications in F2[x]. As explained by
Li et al., it is the property that Σ can reach n elements in F2m via the Frobenius map
which guarantees that the function is invertible. This is why Li et al. call such an AFFT a
Frobenius AFFT (FAFFT). With the FAFFT, the number of evaluation points is reduced
by a factor of m.

FAFFT by Truncating A Size-n AFFT Consider Σ̂ = W`′+log2 m + v`′+m/2, such that
Σ ⊂ Σ̂ and |Σ̂| = n. The way Li et al. evaluate f as Σ is to perform a size-n AFFT to
evaluate f at Σ̂ but skip all the redundant operations. In other words, the approach of
Li et al. is to carry out a truncated AFFT. The truncated AFFT starts with a usual
radix conversion phase for a size-n AFFT. The second phase consists of the first log2 m

Ming-Shing Chen , Tung Chou and Markus Krausz 19

Algorithm 2 FAFFT-based Polynomial Multiplication
Parameters: n: maximum length of output polynomial
1: procedure FAFFT(f(x) ∈ F2[x]<n,Σ)
2: (f0, f1, . . . , fn−1) ∈ Fn

2 ← RadixConversions(f(x))
3: (f ′0, . . . , f ′n′−1) ∈ Fn′

2m ← Encode((f0, f1, . . . , fn−1),Σ)
4: (f̂0, . . . , f̂n′−1) ∈ Fn′

2m ← Butterflies((f ′0, . . . , f ′n′−1),Σ)
5: return (f̂0, . . . , f̂n′−1)
6: end procedure

7: procedure FAFFT−1((f̂0, . . . , f̂n′−1) ∈ Fn′

2m ,Σ)
8: (f ′0, . . . , f ′n′−1) ∈ Fn′

2m ← Butterflies−1((f̂0, . . . , f̂n′−1),Σ)
9: (f0, . . . , fn′−1) ∈ Fn

2 ← Encode−1((f ′0, f ′1, . . . , f ′n−1),Σ)
10: f(x) ∈ F2[x]<n ← RadixConversions−1(f0, f1, . . . , fn−1)
11: return f(x)
12: end procedure

13: procedure BitPolyMul(a(x) ∈ F2[x]< n
2
, b(x) ∈ F2[x]< n

2
)

14: (â0, . . . , ân′−1) ∈ Fn′

2m ← FAFFT(a(x),Σ)
15: (b̂0, . . . , b̂n′−1) ∈ Fn′

2m ← FAFFT(b(x),Σ)
16: (ĉ0, . . . , ĉn′−1) ∈ Fn′

2m ← (â0 · b̂0, . . . , ân′−1 · b̂n′−1) . pointwise multiplication
17: c(x) ∈ F2[x]<n ← FAFFT−1((ĉ0, . . . , ĉn′−1),Σ)
18: return c(x)
19: end procedure

levels of butterflies in the truncated AFFT. This phase is called encoding, in which the
operations is defined below. The third phase consists of the last `′ stages of butterflies in
the truncated AFFT. The last stage is identical to the butterfly phase in a usual size-n′
AFFT for Σ.

As each of the three phase is invertible, one can carry out the inverse FAFFT by
performing the inverses of the three phases in the reverse order. The FAFFT-based
polynomial multiplication algorithm is shown in Algorithm 2.

Encoding Encoding performs the first log2 m levels of butterflies in the truncated AFFT.
With respect to Σ̂, it is an invertible linear map which maps radix converted coefficients of
f(x), e.g., (f0, f1, . . . , fn−1) ∈ Fn

2 to (f ′0, . . . , f ′n′−1) ∈ Fn′

2m where the f ′i is defined as

f ′i =
m−1∑
j=0

rj · fj·np+i, rj =
log2 m−1∏

k=0
(vm/2−k)jk , (3)

where (j0, j1, . . . , jlog2 m−1) ∈ {0, 1}log2 m is the binary representation of the integer j, i.e.,
j =

∑
k jk · 2k.

7.3 Implementing the FAFFT-based Polynomial Multiplication

Below we show how we implemented the FAFFT-based multiplication for the M4.

Parameter Selection The following table shows our parameters for the algorithm 2.
We pick the parameters to minimize m satisfying Eq. (2). The field F232 is constructed as

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

20 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

r n m n′ `′ Σ
BIKE-1 12323 32768 32 1024 10 v26 +W10
BIKE-3 24659 65536 32 2048 11 v27 +W11

a tower of extension fields of F2 as in [7, 22]:

F22 = F2[x1]/(x2
1 + x1 + 1),

F24 = F22 [x2]/(x2
2 + x2 + x1),

F28 = F24 [x4]/(x2
4 + x4 + x2x1),

F216 = F28 [x8]/(x2
8 + x8 + x4x2x1),

F232 = F216 [x16]/(x2
16 + x16 + x8x4x2x1).

For completeness, we note that our Cantor basis is defined by

v31 =1 + x1x2 + x1x2x4 + x8 + x1x2x8 + x2x4x8 + x1x2x4x8

+ x16 + x1x2x16 + x4x16 + x1x4x16 + x2x4x16 + x1x2x4x16

+ x1x8x16 + x4x8x16 + x1x2x4x8x16.

The Pointwise Multiplication The pointwise multiplication consists of 1024 or 2048
independent multiplications in F232 . To carry out these multiplications, we follow [7, 13]
to represent field elements in a bitsliced format. As the M4 is a 32-bit platform, bitslicing
means that we always perform 32 multiplications in parallel.

To multiply a0 + a1x16 ∈ F232 and b0 + b1x16 ∈ F232 (in parallel with 31 other
multiplications), we use the Karatsuba algorithm to reduce the task into 3 multiplications
a0b0, a1b1, (a0 + b0)(a1 + b1) in F216 and apply the Karatsuba recursively as [7]. We note
that the amount of data for multiplication in F24 fits into the general-purpose registers, so
there is no register spilling in the case. For larger fields, we use floating-point registers as
a pool for register spilling.

The Butterflies Section 7.1 shows that, at level i of recursion (level 0 represents the
top level), multiplications in the butterflies are always of the form β · f (1)(s1(β)), where

Table 3: Cost of multiplying an element in F232 by various field elements. Note that
the cycle counts are for carrying out 32 such multiplications. For the environment of
benchmarking, see Section 8.

mult. by ANDs XORs cycles
F24 12 · 8 18 · 8 465
F28 36 · 4 74 · 4 871
F216 108 · 2 270 · 2 1652
F232 324 930 2849
v17 0 210 760
v18 0 211 742
v19 0 231 800
v20 0 226 798
v21 0 231 795
v22 0 222 795
v23 0 239 836
v24 0 249 854
v25 0 251 881
v26 0 248 861
v27 0 243 847

Ming-Shing Chen , Tung Chou and Markus Krausz 21

β ∈ v`′−i+m/2 +W`′−i. Following [7, 13], we pre-compute all β’s and store them (in the
bitsliced format) in a static table. The multiplications can of course be carried out by
our function for 32 multiplications in F232 . However, our implementation does better by
exploiting the fact that β = v + w, where v ∈ v`−i+m/2 and w ∈ W`′−i. To carry out a
multiplication between β and γ, our implementation multiplies γ by v, multiplies γ by w,
and adds the two results to obtain β · γ.

Observe that w is always in a proper subfield of size 22dlog2(`′−i)e . Due to the tower field
structure, we carry out the multiplication by w as 32/2dlog2(`′−i)e multiplications in the
subfield. To carry out the multiplication by v, we consider the operation as an invertible
linear map and use the circuit generator introduced in the ePrint version of [7] to generate
a sequence of XORs for the multiplication. We note that m = 32 is actually too large for the
circuit generator to handle: it stops making progress usually after several tens of iterations.
When the circuit generator stops to make progress, we generate another sequence of XORs
reaching the state in a naive way. Then, we combine the 2 sequences of XORs to complete
the whole invertible linear operation. We’ve considered Paar’s circuit generator [25], but it
hard to fit everything into available registers since it does not generate in-place code. We
also tried Bernstein’s circuit generator [6], but the results (in terms of numbers of XORs)
are worse than the one from [7].

We show the costs of various multiplications in Table 3 to evaluate our strategy
of performing multiplication by β = v + w. As shown in the table, carrying out 32
multiplications by v takes at most 881 cycles, and carrying out 32 multiplications by 32
w’s takes at most 1652 cycles. Carrying out 32 multiplications in F232 , however, takes
2849 > 881 + 1652 cycles.

Figure 4 shows the stride of the butterflies decreases by a factor of 2 in each stage. For
the first few stages, the strides are always greater than 32, so 32 butterflies can be carried
out in parallel with bitslicing. However, in the last 5 stages, there are stride-16, 8, 4, 2, 1
butterflies, which make it hard to carry out 32 butterflies in parallel. The same issue has
appeared in [13] regarding Beneš networks as Beneš networks have a similar structure as
the butterflies. The author of [13] solve the issue by carrying out matrix transpositions
on the data. We make use of the same idea: one can imagine that our implementation
performs a matrix transposition on the data right before the last 5 stages. The matrix
transposition turns stride-16, 8, 4, 2, 1 butterflies into butterflies with strides greater than
or equal to 32, so that we are able to carry out 32 butterflies in parallel. At the end of
the forward FAFFTs, the order of the field elements is changed because of the matrix
transposition, but this does not affect the pointwise multiplication since the multiplication
can be carried out in any order. Similarly, in the inverse FAFFT, one can imagine that our
implementation performs a matrix transposition on the data right after the first 5 stages.

We note that instead of carrying out the whole matrix transpositions, we actually carry
out only a part of the matrix transposition in each of the 5 stages. The part of the matrix
transposition we carry out in a stage is just enough to makes it possible to carry out 32
butterflies in parallel in that stage. This is a different way of implementing the idea in [13].

Encoding Consider the input f ′ as a matrix M ∈ F32×n′

2 where the Mj,i = cj·n′+i. One
way to understand the encoding is to consider it as multiplying M by a 32× 32 invertible
matrix (from the left), where the invertible matrix is defined by vm/2, . . . , vm/2−4. As
multiplying by the invertible matrix is a linear map, we again make use of the circuit
generator in [13] to optimize it. We also use the circuit generator to optimize the inverse
of encoding, which is used in the inverse FAFFT.

Radix Conversions Our implementation follows the algorithm presented in [23], which
seems to be implicitly shown in [18, Section IV]. As the implementation is quite straight-
forward, we do not describe how we implemented the algorithm in detail.

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

22 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

8 Experiment Results and Discussions
We chose the STM32F407 Discovery board to be the platform for benchmarking. It is a
low-cost development board by STMicroelectronics featuring the STM32F407VG microcon-
troller that can be clocked with up to 168 MHz, and it has 192 KB of SRAM and 1 MB of
flash memory. All implementations for M4 are benchmarked in the pqm4 [21, 20] benchmark-
ing framework on the development board with the compiler arm-none-eabi-gcc-10.2.1.
Note that pqm4 always sets the frequency to 24 MHz so that the CPU can be set to have
zero wait states when fetching instructions from the flash memory.

All the Haswell cycle counts in this section, unless specified otherwise, are measured
on one core of an Intel Xeon E3-1275 v3 CPU, with Turbo Boost and hyper-threading
disabled.

8.1 Multiplications in Rz

The following table shows the cycle counts for carrying out one circular shift in our Haswell
and M4 implementations with the techniques in Section 3 and 4.

Haswell M4
bikel1 1112 24856
bikel3 2547 52722

The following table shows the numbers of cycles on the Haswell core to carry out a
multiplication Tr(hi) · Lift(s) in Rz. Our code uses the techniques in Section 3 and 5.

our code avx2
bikel1 113822 202176
bikel3 369782 629952

The way the avx2 implementation carries out circular shifts is similar to the approach
in Section 4, because it also makes use of conditional moves. The conditional moves are
realized by using the intrinsic _mm256_blendv_epi8.

The following table shows the numbers of cycles on the Cortex-M4 to carry out a
multiplication Tr(hi) · Lift(s) in Rz. Our code uses the techniques in Section 4 and 5.

our code portable
bikel1 2195104 4346484
bikel3 6746105 13981293

We actually tried to use the techniques in Section 3 for our M4 implementation but found
that the approach in Section 4 is still faster. We believe this is due to the fact that the
size of YMM registers on Haswell is much larger than the size of general-purpose registers
on the Cortex-M4, and that there are powerful intrinsics/instructions (as shown in [19])
that can be used to manipulate YMM registers so that even a shift of s(0) ∈ {0, . . . , 255}
bits can be carried out efficiently.

Ming-Shing Chen , Tung Chou and Markus Krausz 23

8.2 Multiplications in R
The following table shows the Haswell cycles for a multiplication between two elements in
R. Our code uses techniques in Section 6. We actually tried to implement the FAFFT-
based multiplication described in Section 7. Instead of bitslicing, our FAFFT-based
implementation uses pclmulqdq for field multiplications. However, as shown in the last
column of the table, this leads to a much slower implementation.

our code avx2 FAFFT
bikel1 22856 29169 66265
bikel3 68912 91641 136194

The following table shows the M4 cycles for a multiplication between two elements in
R with respect to methods in Section 7 and from the BIKE team.

our code portable
bikel1 1320940 2897887
bikel3 2929293 9606051

We can further reduce the cost of FAFFT multiplication by reusing the intermediate data
while multiplying same elements. As shown in Algorithm 1, there are many multiplications
in R of the form eihi in the decoder. Since h0 and h1 do not change during decapsulation,
our implementation computes two forward FAFFTs, one for h0 and one for h1, at the
beginning of decapsulation. Then, each time we need to compute eihi, one forward FFT
can be saved. In this way, about 30% of the 1320940 cycles and 2929293 cycles can be
saved for each eihi.

It is mentioned in [12, Section 5.1] that one can use circular shifts to carry out each
multiplication of eihi: write hi as

∑
s x
−s and compute eihi as

∑
s(x−sei). The numbers

in the first table of Section 8.1 show that the resulting cycle counts are expected to be

• 1112 · 71 = 78952 cycles for bikel1 on Haswell,

• 2547 · 103 = 262341 cycles for bikel3 on Haswell,

• 24856 · 71 = 1764776 cycles for bikel1 on M4,

• 52722 · 103 = 5430366 cycle for bikel3 on M4.

8.3 Key Generation, Encapsulation, and Decapsulation
The Haswell cycles for key generation, encapsulation, and decapsulation are shown in the
following table. The cycle counts of the avx implementation are from [8], and they are
measured on a machine titan0 with a Haswell CPU.

key gen. encap. decap. imple.

bikel1
833968 131276 2636108 avx2
688372 124892 1900908 our code

bikel3
2515016 313976 9040604 avx2
1857256 283932 6010004 our code

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

24 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

The M4 cycles for key generation, encapsulation, and decapsulation are shown in the
following table.

key gen. encap. decap. imple.

bikel1
65414337 4824059 114592442 portable
24935033 3253379 49911673 our code

bikel3
212999628 15041356 374777003 portable
59820502 8376212 139234176 our code

Acknowledgements
The work of Ming-Shing Chen was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972. The work of Tung Chou was supported by Taiwan Ministry of Science and
Technology (MOST) Grant 109-2222-E-001-001-MY3. The work of Markus Krausz was
funded by the German Federal Ministry of Education and Research (BMBF) under the
project “QuantumRISC” (ID 16KIS1038) [26] and project “PQC4MED” (ID 16KIS1044).

References
[1] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,

Jurjen Bos, Jean-Christophe Deneuville, Arnaud Dion, Philippe Gaborit, Jérôme
Lacan, Edoardo Persichetti, Jean-Marc Robert, Pascal Véron, and Gilles Zémor.
Hamming Quasi-Cyclic (HQC), 2017. https://pqc-hqc.org/.

[2] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John
Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela
Robinson, and Daniel Smith-Tone. Status report on the second round of the NIST
post-quantum cryptography standardization process, 2020. https://nvlpubs.nist.
gov/nistpubs/ir/2020/NIST.IR.8309.pdf.

[3] Martin Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja
Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen,
Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas
Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. Classic
McEliece, 2017. https://classic.mceliece.org/.

[4] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Santosh Ghosh, Shay Gueron, Tim
Güneysu, Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas
Sendrier, Jean-Pierre Tillich, Valentin Vasseur, and Gilles Zémor. BIKE – bit flipping
key encapsulation, 2017. https://bikesuite.org/.

[5] Daniel J. Bernstein. Batch binary edwards. In Shai Halevi, editor, Advances in
Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes
in Computer Science, pages 317–336. Springer, 2009. http://binary.cr.yp.to/
bbe-20090604.pdf.

[6] Daniel J. Bernstein. Optimizing linear maps modulo 2, 2009. https://binary.cr.
yp.to/linearmod2-20091005.pdf.

https://pqc-hqc.org/
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://classic.mceliece.org/
https://bikesuite.org/
http://binary.cr.yp.to/bbe-20090604.pdf
http://binary.cr.yp.to/bbe-20090604.pdf
https://binary.cr.yp.to/linearmod2-20091005.pdf
https://binary.cr.yp.to/linearmod2-20091005.pdf

Ming-Shing Chen , Tung Chou and Markus Krausz 25

[7] Daniel J. Bernstein and Tung Chou. Faster binary-field multiplication and faster
binary-field MACs. In Antoine Joux and Amr M. Youssef, editors, Selected Ar-
eas in Cryptography - SAC 2014 - 21st International Conference, Montreal, QC,
Canada, August 14-15, 2014, Revised Selected Papers, volume 8781 of Lecture Notes
in Computer Science, pages 92–111. Springer, 2014. https://doi.org/10.1007/
978-3-319-13051-4_6.

[8] Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT benchmarking of
cryptographic systems. Accessed Dec. 23, 2020. https://bench.cr.yp.to.

[9] Joan Boyar and René Peralta. The exact multiplicative complexity of the ham-
ming weight function. In Electronic Colloquium on Computational Complexity
(ECCC’05),(049), 2005. https://cpsc.yale.edu/sites/default/files/files/
tr1260.pdf.

[10] David G. Cantor. On arithmetical algorithms over finite fields. Journal of Combina-
torial Theory, Series A, 50(2):285–300, March 1989. http://dx.doi.org/10.1016/
0097-3165(89)90020-4.

[11] Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin Yang.
Multiplying boolean polynomials with Frobenius partitions in additive fast Fourier
transform. http://arxiv.org/abs/1803.11301.

[12] Tung Chou. QcBits: constant-time small-key code-based cryptography. In Interna-
tional Conference on Cryptographic Hardware and Embedded Systems, pages 280–300.
Springer, 2016. https://eprint.iacr.org/2019/150.

[13] Tung Chou. Mcbits revisited. In Wieland Fischer and Naofumi Homma, editors,
Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of
Lecture Notes in Computer Science, pages 213–231. Springer, 2017. https://doi.
org/10.1007/978-3-319-66787-4_11.

[14] Nir Drucker and Shay Gueron. A toolbox for software optimization of QC-MDPC
code-based cryptosystems. Journal of Cryptographic Engineering, 9(4):341–357, 2019.
https://eprint.iacr.org/2017/1251.pdf.

[15] Nir Drucker, Shay Gueron, and Dusan Kostic. Fast polynomial inversion for post
quantum QC-MDPC cryptography. IACR Cryptology ePrint Archive, 2020:298, 2020.
https://eprint.iacr.org/2020/298.pdf.

[16] Nir Drucker, Shay Gueron, and Dusan Kostic. QC-MDPC decoders with several
shades of gray. In International Conference on Post-Quantum Cryptography, pages
35–50. Springer, 2020. https://eprint.iacr.org/2019/1423.

[17] Caxton C. Foster and Fred D. Stockton. Counting responders in an associative
memory. IEEE Transactions on Computers, 100(12):1580–1583, 1971.

[18] Shuhong Gao and Todd Mateer. Additive fast Fourier transforms over finite fields.
IEEE Transactions on Information Theory, 56(12):6265–6272, December 2010. http:
//dx.doi.org/10.1109/TIT.2010.2079016.

[19] Antonio Guimarães, Diego F Aranha, and Edson Borin. Optimized implementation of
QC-MDPC code-based cryptography. Concurrency and Computation: Practice and
Experience, 31(18):e5089, 2019.

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X
https://doi.org/10.1007/978-3-319-13051-4_6
https://doi.org/10.1007/978-3-319-13051-4_6
https://bench.cr.yp.to
https://cpsc.yale.edu/sites/default/files/files/tr1260.pdf
https://cpsc.yale.edu/sites/default/files/files/tr1260.pdf
http://dx.doi.org/10.1016/0097-3165(89)90020-4
http://dx.doi.org/10.1016/0097-3165(89)90020-4
http://arxiv.org/abs/1803.11301
https://eprint.iacr.org/2019/150
https://doi.org/10.1007/978-3-319-66787-4_11
https://doi.org/10.1007/978-3-319-66787-4_11
https://eprint.iacr.org/2017/1251.pdf
https://eprint.iacr.org/2020/298.pdf
https://eprint.iacr.org/2019/1423
http://dx.doi.org/10.1109/TIT.2010.2079016
http://dx.doi.org/10.1109/TIT.2010.2079016

26 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

[20] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. PQM4:
Post-quantum crypto library for the ARM Cortex-M4. https://github.com/mupq/
pqm4.

[21] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. pqm4:
Testing and benchmarking NIST PQC on ARM Cortex-M4. IACR Cryptology ePrint
Archive, 2019:844, 2019. https://eprint.iacr.org/2019/844.

[22] Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and Bo-Yin Yang.
Frobenius additive fast fourier transform. In Manuel Kauers, Alexey Ovchinnikov, and
Éric Schost, editors, Proceedings of the 2018 ACM on International Symposium on
Symbolic and Algebraic Computation, ISSAC 2018, New York, NY, USA, July 16-19,
2018, pages 263–270. ACM, 2018. https://doi.org/10.1145/3208976.3208998.

[23] Sian-Jheng Lin, Tareq Y. Al-Naffouri, and Yunghsiang S. Han. FFT algorithm for
binary extension finite fields and its application to Reed–Solomon codes. IEEE
Transactions on Information Theory, 62(10):5343–5358, October 2016. https://doi.
org/10.1109/TIT.2016.2600417.

[24] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo SLM Barreto. MDPC-
McEliece: new McEliece variants from moderate density parity-check codes. In 2013
IEEE international symposium on information theory, pages 2069–2073. IEEE, 2013.
https://eprint.iacr.org/2012/409.pdf.

[25] Christof Paar. Optimized arithmetic for reed-solomon encoders. In Proceedings
of IEEE International Symposium on Information Theory, page 250. IEEE, 1997.
https://www.ei.ruhr-uni-bochum.de/media/crypto/veroeffentlichungen/
2011/01/19/cnst.ps.

[26] QuantumRISC. Quantumrisc — next generation cryptography for embedded systems,
2020.

A A Loop with Conditional Shift in Our M4 Implementa-
tion

Note that the selection instruction SEL depends on the GE flag, which is not affected by
the TEQ instruction that is used to control the loop.

lsr Ry0, s, #13
and Ry0, #1
mov Rx0, #983040
mul Ry0, Rx0
msr APSR_g, Ry0
add ptr, ptr_a, #-16
add ptr_end, ptr, #1024
loop256_a:
ldr Rx0, [ptr, #16]!
ldr Rx1, [ptr, #4]
ldr Rx2, [ptr, #8]
ldr Rx3, [ptr, #12]
ldr Ry0, [ptr, #1024]
ldr Ry1, [ptr, #1028]
ldr Ry2, [ptr, #1032]
ldr Ry3, [ptr, #1036]

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://eprint.iacr.org/2019/844
https://doi.org/10.1145/3208976.3208998
https://doi.org/10.1109/TIT.2016.2600417
https://doi.org/10.1109/TIT.2016.2600417
https://eprint.iacr.org/2012/409.pdf
https://www.ei.ruhr-uni-bochum.de/media/crypto/veroeffentlichungen/2011/01/19/cnst.ps
https://www.ei.ruhr-uni-bochum.de/media/crypto/veroeffentlichungen/2011/01/19/cnst.ps

Ming-Shing Chen , Tung Chou and Markus Krausz 27

sel Rx0, Ry0, Rx0
sel Rx1, Ry1, Rx1
sel Rx2, Ry2, Rx2
sel Rx3, Ry3, Rx3
str Rx0, [ptr, #0]
str Rx1, [ptr, #4]
str Rx2, [ptr, #8]
str Rx3, [ptr, #12]
ldr Rx0, [ptr, #2048]
ldr Rx1, [ptr, #2052]
ldr Rx2, [ptr, #2056]
ldr Rx3, [ptr, #2060]
sel Ry0, Rx0, Ry0
sel Ry1, Rx1, Ry1
sel Ry2, Rx2, Ry2
sel Ry3, Rx3, Ry3
str Ry0, [ptr, #1024]
str Ry1, [ptr, #1028]
str Ry2, [ptr, #1032]
str Ry3, [ptr, #1036]

teq ptr_end, ptr
bne loop256_a

B Python Code for the Boyar–Peralta Algorithm
count = 0
index = []

def nbits(n):

ret = 0;
while n > 0:

ret += 1
n >>= 1

return ret

def find(n):

exp = 0
while True:

if 2**exp-1 > n:
break

exp += 1

return 2**(exp-1)-1

def bp(n, off):

global count
global index

if n == 1:

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
https://orcid.org/0000-0002-1362-423X

28 Optimizing BIKE for the Intel Haswell and ARM Cortex-M4

print ("rotate_right(&bn, f, s[{0}]);".format(count))
count += 1
print ("adder_size_eq(buf, bn, {0}, 0);".format(off))
index.append(off + 0)
return

n1 = find(n-1)
n2 = n-1-n1

if n1 >= 1: bp(n1, off)
if n2 >= 1: bp(n2, off + nbits(n1))

print ("rotate_right(&bn, f, s[{0}]);".format(count))
count += 1
if n1 == n2:

print ("adder_size_eq(buf, bn, {0}, {1});".format(off, nbits(n1)))
index.append(off + 2*nbits(n1) - 1);

else:
print ("adder_size_neq(buf, bn, {0}, {1}, {2});".format(off, nbits(n1), nbits(n2)))
index.append(off + nbits(n1) + nbits(n2) - 1);

	Introduction
	Previous Works
	Our Contribution
	Optimization Techniques
	Availability of Source Code
	Organization of the paper

	BIKE
	System Parameters.
	Hash Functions.
	Key Generation, Encapsulation, and Decapsulation.
	The Black-Gray Decoder

	Circular Shifts with Matrix Transposition
	The Duplicated Form and the Barrel Shifter
	Avoiding the Barrel Shifter with Matrix Transposition
	The Haswell Implementation for bikel1
	The Haswell Implementation for bikel3

	Circular Shifts with Conditional Moves
	The Shift by s(1) Bits
	The Shift by s(0) Bits

	Hamming Weight Computation with Full Adders
	Simple Algorithms for Computing the Hamming Weight
	The Boyar–Peralta Algorithm
	Code Generation for the Boyar–Peralta Algorithm

	Multiplications in F2[x] with Bernstein's 5-way Recursive Algorithm
	Bernstein's 5-way Recursive Algorithm
	Implementing Bernstein's algorithm

	Polynomial Multiplications in F2[x] with Frobenius Additive FFTs
	The Gao–Mateer Additive FFT
	Multiplication in F2[x] with FAFFT
	Implementing the FAFFT-based Polynomial Multiplication

	Experiment Results and Discussions
	Multiplications in Rz
	Multiplications in R
	Key Generation, Encapsulation, and Decapsulation

	A Loop with Conditional Shift in Our M4 Implementation
	Python Code for the Boyar–Peralta Algorithm

