
A toolbox for verifiable tally-hiding e-voting systems
Véronique Cortier, Pierrick Gaudry, Quentin Yang

Université de Lorraine, Inria, CNRS

August 2022

ABSTRACT
In most verifiable electronic voting schemes, one key step is the tally

phase, where the election result is computed from the encrypted

ballots. A generic technique consists in first applying a verifiable

mixnet to the ballots and then revealing all the votes in the clear.

This however discloses more information than the result of the

election itself (that is, the winners) and may offer the possibility to

coerce voters.

In this paper, we present a collection of building blocks for cre-

ating tally-hiding schemes based on multi-party computations. As

an application, we propose the first efficient tally-hiding schemes

with no leakage for four important counting functions: D’Hondt,

Condorcet, STV, and Majority Judgment. We prove that they can

be used to design a private and verifiable voting scheme. We also

unveil unknown flaws or leakage in several previously proposed

tally-hiding schemes.

1 INTRODUCTION
Electronic voting is used in many countries and various contexts,

from major politically binding elections to small elections among

scientific councils. It allows voters to vote from any place and is

often used as a replacement of postal voting. Moreover, it makes

easier complex tally processes where voters express their preference

by ranking their candidates (preferential voting). In such cases,

the votes are counted using the prescribed procedure (e.g., Single
Transferable Vote or Condorcet), which can be tedious to conduct

by hand but can be easily handled by a computer.

Numerous electronic voting protocols have been proposed such

as Helios [5], Civitas [17], or CHVote [23]. They all intend to guaran-

tee at least two security properties: vote secrecy (no one should know
how I voted) and verifiability. Vote secrecy is typically achieved

through asymmetric encryption: election trustees jointly compute

an election public key that is used to encrypt the votes. The trustees

take part in the tally, to compute the election result. Only a coalition

of dishonest trustees (set to some threshold) can decrypt a ballot

and violate vote secrecy. Verifiability typically guarantees that a

voter can check that her vote has been properly recorded and that

an external auditor can check that the result corresponds to the

received votes. Then, depending on the protocol, additional proper-

ties can be achieved such as coercion-resistance or cast-as-intended.

Various techniques are used to achieve such properties but one

common key step is the tally: from the set of encrypted ballots, it

is necessary to compute the result of the election, in a verifiable

manner.

There are two main approaches for tallying an election in the

context of electronic voting. The first one is the homomorphic tally.
Thanks to the homomorphic property of the encryption scheme

(typically ElGamal), the ballots are combined to compute the (en-

crypted) sum of the votes. Then only the resulting ciphertext needs

to be decrypted to reveal the election result, without leaking the

individual votes. For verifiability, each trustee produces a zero-

knowledge proof of correct (partial) decryption so that anyone

can check that the result indeed corresponds to the encrypted bal-

lots. The second main approach is based on verifiable mixnets. The
encrypted ballots are shuffled and re-randomized such that the

resulting ballots cannot be linked to the original ones [23, 47]. A

zero-knowledge proof of correct mixing is produced to guarantee

that no ballot has been removed nor added. Several mixers are suc-

cessively used and then each (rerandomized) ballot is decrypted,

yielding the original votes in clear, in a random order.

Homomorphic tally can only be applied to simple vote counting

functions, where voters select one or several candidates among

a list and the result of the election is the sum of the votes, for

each candidate. We note that even in this simple case, the tally

reveals more information than just the winner(s) of the election.

Mixnet-based tally can be used for any vote counting function

since it reveals the (multi)set of the initial votes. On the other hand,

they reveal much more information than the result itself and can

be subject to so-called Italian attacks. Indeed, when voters rank

their candidates by order of preference, the number of possible

choices can be higher than the number of voters. Hence a voter

can be coerced to vote in a certain way by first selecting the first

candidates as desired by the coercer and then “signing” her ballot

with some very particular order of candidates, as prescribed by the

coercer. The coercer will check at the end of the election that such

a ballot appears.

Recent work have explored the possibility to design tally-hiding

schemes, that compute the result of the election from a set of en-

crypted ballots, without leaking any other information. This can

be seen as an instance of Multi-Party Computation (MPC), but the

context of voting adds some constraints. First, a voter should only

produce one encrypted ballot that should remain of reasonable

size and be computed with low resources (e.g., in JavaScript). The

trustees can be assumed to have more resources. Yet, it is important

to minimize the number of communications and the computation

cost, whenever possible. In particular, voters should not wait for

weeks before obtaining the result. Moreover, all proofs produced

by the authorities need to be downloaded and verified by external,

independent auditors. Therefore, it is important that verifying an

election remains affordable.

Related work. Even when the winner(s) of the election is the

one(s) that received the most votes, leaking the scores of each

candidate can be embarrassing and even lower vote privacy. This

is discussed in [28] where the authors propose a protocol called

Ordinos that computes the candidate who received the most votes,

without any extra information. In case of preferential voting, where

voters rank candidates, several methods can be applied to determine

the winner(s). Two popular methods are Single Transferable Vote

(STV) and Condorcet. STV is used in politically binding elections

1

A toolbox for verifiable tally-hiding e-voting systems

in several countries like Australia, Ireland, or UK. Condorcet has

several variants and the Schulze variant is popular among several

associations like Ubuntu or GnuGP. These are the countingmethods

offered by the voting platform CIVS [1] and used in many elections.

Literature for tally-hiding schemes includes [24] which shows how

to compute the result in Condorcet, while [45] and [10] provide

several methods for STV. They all leak some partial information,

but much less than the complete set of votes. Ordinos has been

extended [26] to cover various counting functions that include

Borda, Hare-Niemeyer, Condorcet, and Instant-Runoff Voting (IRV,

a particular case of STV, where there is only one seat). This shows

the flexibility of Ordinos, yet at a cost: ballots are of size cubic in

the number of candidates for Condorcet-Schulze and even super-

exponential for IRV. The last system we study, Majority Judgment

(MJ) is a vote system where voters give a grade to each candidate

(typically between 1 and 6). The winner is, roughly, the candidate

with the highest median rating. Since typically several candidates

have the same median, the winner is determined by a complex

algorithm that iteratively compares the highest median, then the

second one and so on (see [6] for the full details). In [14], the

authors show how to compute Majority Judgment in MPC. All

these approaches except [24] rely on Paillier encryption since it is

better suited than ElGamal for the arithmetic comparison of the

content of two ciphertexts.

Our contribution. First, we revisit the existing work, exhibiting
weaknesses and even flaws for some of them. Second, we provide

new algorithms for computing vote counting functions, decreasing

both the complexity and the leakage or proposing other trade-offs

regarding the load for the voters and the trustees. In particular, we

propose the first tally-hiding schemes with no leakage for three

major counting functions: D’Hondt, Majority Judgment, and STV.

For Condorcet-Schulze, we propose the first tally-hiding scheme

that allows candidates to be ranked at equality. We summarize our

main contributions in the following table.

Single vote - Fix shortcoming in [28] in case of equality

- Adaptation to D’Hondt method

Majority

Judgment

- Fix the fact that [14] fails in not-so-rare cases

- Complete leakage-free algorithm, based on ElGamal

Condorcet

- Schulze

- Fix privacy issue in [24]

- Candidates can be ranked at equality (unlike [26])

- Quasi-linear complexity for voters (vs cubic in [26])

- Several efficiency/leakage compromises

- Complete leakage-free algorithm

STV

- Ideal STV has exponential worst-case complexity

- Complete leakage-free algorithm, with fast arithmetic

One of our first findings is that even for complex counting func-

tions, it is possible to use ElGamal encryption instead of Paillier.

This offers several advantages. ElGamal encryption can be imple-

mented on elliptic curves, yielding building blocks of much lower

complexity than Paillier’s encryption for the same security level.

Moreover, in the context of voting, it is important to split the de-

cryption key among several trustees so that no single authority

can break vote privacy. It is easy to set up threshold decryption in

ElGamal, with an arbitrary threshold of trustees needed for decryp-

tion [18]. The situation is more complex in Paillier. The general

threshold key distribution scheme [25] is of high complexity. A

more efficient scheme exists [34], but only with a honest majority.

Another reason for preferring ElGamal could be that the un-

derlying security assumption (Decisional Diffie Hellman) can be

considered as more standard than the one for Paillier (Decisional

𝑛-Residuosity). Finally, from a practical point of view, it is also

easier to find standard software libraries that include support for

ElGamal encryption.

We have considered several families of counting methods, that

include complex ones (e.g. STV, MJ), to demonstrate that it is possi-

ble to build efficient MPC schemes for such vote counting functions,

using standard ElGamal encryption.

Single vote. A first class of counting functions applies to the case

where voters select one (or several) candidate(s). The typical way

to determine the 𝑠 winners is to count the number of votes for

each candidate and select the 𝑠 candidates with the most votes.

This is exactly the case covered by Ordinos [28]. There is however

a shortcoming in case of equalities: the function implemented in

Ordinos may return more winners than the number of seats. We

correct this by providing an algorithm that computes exactly the

winners according to the election rule, without leaking any extra

information. Moreover, we show that it is possible to rely on El-

Gamal with the associated benefits discussed earlier, thanks to an

adapted algorithm. This lowers the size of a ballot for voters at a

higher cost for the authorities, which can be preferred in practice.

Things get more complex when voters select a candidate list

instead of a candidate. The seats need to be shared among the

candidates of the different lists, according to number of votes re-

ceived. One popular technique is the D’Hondt method, that can

be adapted to several variants depending on whether the election

system wishes to favor big or small parties. We extend the approach

initiated by Ordinos to the case of D’Hondt, building on two main

ideas, and we propose two additional solutions that leads to dif-

ferent trade-offs in terms of computation and communication cost.

We study the cost of relying on either Paillier and ElGamal and

in this case, ElGamal is a key ingredient for designing a practical

tally-hiding scheme.

Majority Judgment. The idea of Majority Judgment [6] is that

candidates should not be ranked but instead should each be judged

independently. We found out that [14] actually only implements a

simplified version of theMajority Judgment method, called majority

gauge. When the majority gauge returns a winner, then it is indeed

a MJ winner. Unfortunately, in small elections, there is a rather

high probability that the simplified algorithm does not provide any

result. For example, in an election with 100 voters, [14] would fail

with probability 20%, which not only is inconvenient (imagine an

election that must be canceled because no winner is declared!) but

also leaks some information (there is no winner according to the

majority gauge).

To repair the approach, one issue is that the complexity of the

MJ algorithm depends (linearly) in the number of voters, which

may be large. Hence, [6] devises an alternative (complex) algorithm

that no longer depends on the number of voters. We propose a

variant of this algorithm and use it as a basis to derive a tally-hiding

procedure for MJ. Our resulting algorithm remains of a complexity

similar to [14] while they implement a much simpler algorithm.

Then we show that it is actually possible to adapt our algorithm to

ElGamal encryption. Interestingly, the format remains unchanged

2

A toolbox for verifiable tally-hiding e-voting systems

for the voter (hence the resulting ballot is even easier to compute).

A key idea is to work in the bit-encoding of integers, which allows

to perform all the needed operations (additions, comparisons) on

ElGamal encryptions. The load for the trustees increases (since

comparisons are more complex) but our study shows that it remains

reasonable since the extra operations are more or less compensated

by the fact that computations are faster in ElGamal.

Condorcet. A Condorcet winner is a candidate that would win

against each of her opponents. In some cases, there is no Condorcet

winner, and several variants exist to further determine a winner

in such a case. In [24] a tally-hiding algorithm is proposed for the

Condorcet-Schultze variant. However, we found out that [24] is

subject to a major privacy flaw. Indeed, everyone learns, for each

voter, how many candidates have been placed at equality. Hence

Alice completely loses her vote privacy if she votes blank. This

flaw has been acknowledged by the authors. In [26], placing two

candidates at equality is forbidden, which is too restrictive sibce it is

widely used in Condorcet elections. Moreover, the authors propose

a ballot format whose size is cubic in the number of candidates.

To cover the fact that candidates can be ranked equal, we had

to solve a difficult question: voters need to prove, at a reasonable

cost, that they encrypted a meaningful ballot, that is, a ballot that

corresponds to a ranking. We considered two main ingredients

here. First, we devised a new encoding for ballots. Second, we used

mixnet in an original way: a voter proves that her ballot is valid by

showing that her ballot can be obtained as a permutation of a valid

(public) ballot. Here, the permutation encodes the voter’s choice

and the voter is her own mixer. We then devise several algorithms

(all based on ElGamal) with different compromises in terms of load

balance between the voters and the trustees and in terms of leakage.

STV. In a first round of STV, if a candidate has been ranked in the

first place sufficiently often (more than a quota), then the candidate

obtains a seat. However, if she obtained more votes than the quota,

the exceeding votes should not be lost. Instead, they should be

transferred to the next candidate. Hence a fraction of votes (which

corresponds to the exceeding votes) is transferred to the second

preferred candidate of each voter. The process is repeated until

all the seats are filled. Since it is not easy to compute by hand

the fractions that need to be transferred, many variants of STV

exist where the fractions can be rounded or where the votes can be

transferred to randomly selected ballots.

Our first goal was to implement a tally-hiding algorithm for the

ideal STV. However, we discovered that even without any cryptog-

raphy, the pure STV algorithm is exponential with respect to the

number of selection, and unpractical in some cases. This theoritical

finding was confirmed by an experimentation made on the real data

elections from the South New Wales election in Australia [3].

Given that ideal STV cannot be efficiently computed even in the

clear, we considered a variant with rounding. In [10, 45], there are

in total three techniques to compute the STVwinners, all with some

leakage (for example, the current score of the selected candidate).

Note that [45] computes the ideal STV (with no rounding) but

probably because the authors did not realize that it was impractical.

[26, 38] cover a particular case of STV where only one candidate is

elected (IRV). Note that [26] uses a naive encoding of the possible

choices: if there are 𝑐 candidates, they view the 𝑐! possible orders

as 𝑐! possible “candidates” from which a voter makes a selection,

yielding a ballot of super-exponential size, while the ballot size is

𝑂 (𝑐2) in [38]. We propose a fully tally-hiding algorithm for STV,

with no leakage, at a cost similar to [10, 45]. To keep the cost

reasonable, we re-used techniques of hardware circuits (e.g., to
reduce the length of the carry-chains in additions).

Security proof and implementation. The Paillier setting of our tool-
box builds upon the same low-level primitive as previous works.

However, in the ElGamal setting that we found to be highly rele-

vant, the core ingredient is a different primitive called CGate (that

conditionally sets a component to 0). An important contribution

of our work is to formally prove that it is UC-secure and verifi-

able. Concentrating on this ElGamal setting, this allows us to prove

vote secrecy and verifiability of a voting scheme that embeds our

tally-hiding protocol.

With the same goal of validating our ElGamal approach, we have

implemented our building blocks in a library in this setting. As a

proof of concept, we have combined them to form the tally-hiding

scheme that corresponds to Condorcet-Schulze. Our experiments

show a reasonable execution time. Authorities need a couple of

minutes to perform the tally for 5 candidates, and about 9 hours for

20 candidates (and 1024 voters). In contrast, the code [26] developed

in the Paillier setting, needed more than 9 days for 20 candidates

(and was almost insensitive to the number of voters).

Finally, we emphasize that our toolbox should be suitable to

implement any realistic counting method, in addition to the ones we

have explicitly studied. For completeness, a rather long Appendix

gives fully detailed algorithms and security proofs, and our source

code for the implementation is available [4].

2 BUILDING BLOCKS
We focus on the tally phase, common to most voting schemes.

We assume a public ballot box that contains the list of encrypted

ballots where all the traditional issues up to here have been handled:

eligibility, validity of ballots, revoting policy if applicable, and so

on. We concentrate on the counted-as-recorded property. We do

not assume that the encrypted ballots are anonymous: for example,

they could be signed by voters.

Our goal is to compute the winners of the election, while preserv-

ing the privacy of the voters, namely with no additional leakage of

information about the tally. The decryption key is assumed to be

shared among 𝑎 trustees, with a threshold scheme, and we wish the

procedure to produce a transcript such that: 1) if at least a threshold

of 𝑡 trustees is honest, the result will be obtained and only the

result is known (no side-information); 2) even if all the 𝑎 trustees

are dishonest, the result is guaranteed to be correct.

This does not come for free and usually involve heavy computa-

tions and communications between trustees.

2.1 MPC toolbox
The MPC implementation of counting functions relies on several

common building blocks that we define below, such as addition,

multiplication, comparison. For each of them, we study their cost.

All these costs are summarized in Figure 5 in Appendix. Regarding

the computation cost, we count the number of exponentiations. For

the communications, sometimes all the trustees need to broadcast

3

A toolbox for verifiable tally-hiding e-voting systems

their share of the computations, and sometimes they need to per-

form a round of communications, where one trustee contributes

to the data they receive from the previous one in the loop. We will

count these two types of communications separately. An important

information is also the size of the transcript that is created during

the process and that should be checked, for example by auditors, to

guarantee that the result is correct.

Beyond defining our needed building blocks, we believe that

this study is of independent interest since it could be used in other

contexts than voting. It has required to study a rich literature, first

on zero-knowledge proofs [13, 30, 37, 47] and MPC [7, 31, 40–42]

but also on hardware circuits [12]. Interestingly, we distinguish

between the functionality (e.g. addition) and the algorithm that

realizes it since different algorithms may be considered, leading to

different trade-offs in terms of communications and computations.

For a few building blocks, we even propose our own algorithms,

that improve existing propositions.

Homomorphic property. Both Paillier and ElGamal are homo-

morphic encryption schemes. This means that multiplication or

division of ciphertexts correspond to addition or subtraction of the

corresponding cleartexts. We denote these functions Add and Sub;
they cost no communications nor exponentiations. This allows re-

randomization, by multiplying with Enc(0). If the encrypted value

is a bit, by dividing Enc(1) by it, this allows to flip the encrypted

bit. We denote Not(𝐵) this function that is essentially for free.

Encoding of encrypted integers. An integer can be directly en-

crypted. This is simple andwe call this natural encoding in this paper.
It allows to directly add and subtract encrypted values. However,

in the ElGamal setting, most of the other operations (comparison,

multiplication, . . .) are more difficult, or even impossible.

The alternative is to encrypt each bit of the integer separately;

we call this the bit-encoding of an encrypted integer and we denote

it 𝑋 bits = (𝑋0, . . . , 𝑋𝑚−1), where 2
𝑚

is a bound on the integer

represented by 𝑋 , and 𝑋𝑖 is the encryption of the 𝑖-th bit of the

binary expansion (index 0 for the least significant bit). Converting

an integer in bit-encoding to natural encoding is easily done using

the homomorphic property and the Horner scheme. The other

direction is harder (in the Paillier setting) or impossible (in the

ElGamal setting).

Branch-free tools. In MPC, the algorithms must be implemented

in a branch-free setting, because the result of a test cannot be

revealed (unless we allow a partial leakage). The classical building-

blocks for this are conditional operations.

• CondSetZero(𝑋, 𝐵), CondSetZerobits (𝑋 bits, 𝐵): conditionally set
to zero. This function returns (a re-encryption of) 𝑋 if 𝐵 is an

encryption of 1, or Enc(0) if 𝐵 is an encryption of 0. In the bit-

encoding setting, each bit of 𝑋 is re-encrypted or set to zero.

• If(𝐵,𝑋,𝑌), If(𝐵,𝑋 bits, 𝑌 bits): returns (a re-encryption of) 𝑋 if

𝐵 is an encryption of 1 and of 𝑌 if 𝐵 is an encryption of 0.

• Select([𝑋𝑖], [𝐵𝑖]): select in array according to bits. This func-

tion returns (a re-encryption of) 𝑋𝑖 such that 𝐵𝑖 is an encryption

of 1. This requires that the encrypted bit array [𝐵𝑖] is such that

that there is only one index 𝑖 for which 𝐵𝑖 is 1.

The CondSetZero function is the main primitive from which all

the others can be easily derived using the homomorphic property.

For instance, Select(𝑋,𝑌, 𝐵) can be implemented as

Add(CondSetZero(Sub(𝑌,𝑋), 𝐵), 𝑋). In the context of ElGamal en-

cryption, it costs one round of communication at each use.

Arithmetic. As already said, by homomorphy, addition and sub-

traction of encrypted values are built-in functionalities when the

natural encoding is used. However the same operations with the bit-

encoding becomemore involved. Several variants can be considered,

the most classical being to have all the operations defined modulo

2
𝑚

where𝑚 is the number of encrypted bits. Sometimes it is useful

to return the final carry / borrow bits. Comparison of two integers

is denoted by LT. In bit-encoding, it can be seen as a subtraction

where only the final borrow is needed, but in the natural-encoding,

the borrow is not available, and a dedicated algorithm must be

designed, only available in the Paillier scheme. Similarly we define

the Mul function that can be applied to integers in both encoding,

with the exception that the natural-encoding multiplication is avail-

able only in the Paillier scheme. Finally, a frequent operation is to

compute the sum of many encrypted values each containing a bit,

typically to get the total number of votes for a given option. We

call this operation Aggreg. Again with homomorphic encryption,

this is very cheap. However, especially in the ElGamal setting, it

could be that the result is wanted in the bit-encoding format. Then

a dedicated tree-based algorithm, with variable bit-precision can

be designed to improve the complexity compared to naively using

the Add function with the maximum precision.

• Add(𝑋,𝑌), Addbits (𝑋 bits, 𝑌 bits): addition of 𝑋 and 𝑌 , in any en-

coding. In the bit-encoding, the result is taken modulo 2
𝑚
.

Sub(𝑋,𝑌), Subbits (𝑋 bits, 𝑌 bits): subtraction of 𝑋 and 𝑌 .

• Aggreg([𝑋𝑖]), Aggregbits ([𝑋𝑖]): sum of 𝑛 binary values 𝑋𝑖 . In

the bit-encoding, the output contains log𝑛 encrypted bits.

• LT(𝑋,𝑌), LTbits (𝑋 bits, 𝑌 bits): comparison of 𝑋 and 𝑌 in any en-

coding. Only in the Paillier setting for the natural-encoding.

• EQ(𝑋,𝑌), EQbits (𝑋 bits, 𝑌 bits): equality test of 𝑋 and 𝑌 in any en-

coding. Only in the Paillier setting for the natural-encoding.

• BinExpand(𝑋): binary expansion of 𝑋 . This function returns

𝑋 bits
. This is available only in the Paillier setting.

• Mul(𝑋,𝑌), Mulbits (𝑋 bits, 𝑌 bits): multiplication of 𝑋 and 𝑌 . Only

in the Paillier setting for the natural-encoding.

Since CondSetZero(𝑋, 𝐵) can be seen as an And gate when 𝑋

is just a bit, with the additional homomorphic operations (Add

and Not), this allows to build any arithmetic circuit with bits as

input and output. Building all the arithmetic functions with the

bit-encoding is therefore a matter of optimizing the circuit design

with respect to the number of exponentiations and communications.

We discuss more thoroughly these optimizations in Section 6.

In the ElGamal setting, we use the CGate protocol (adapted

from [40]) to achieve the CondSetZero functionality. During this
protocol, each authority produces a Zero Knowledge Proof (ZKP)

that guarantees that the correct computations were performed. The

ZKP of all authorities can later form a transcript which can be used

to verify the output of the protocol. Since all our arithmetic and

4

A toolbox for verifiable tally-hiding e-voting systems

logic protocols are based on CondSetZero, a transcript for verifia-
bility can be obtained for all our MPC protocols. The Appendix C.1

contains more detains on the CGate protocol.

Algorithm 1: CGate
Require: 𝐺 , a group of prime order 𝑞 and public coin generator

𝑔

pk of the form (𝑔, ℎ), an exponential ElGamal public

key,

whose shares are distributed among the 𝑎 participants
˜ℎ ∈ 𝐺 , a public element independent from pk
𝑋 , an encryption of some 𝑥 ∈ Z𝑞
𝑌 , an encryption of 𝑦 ∈ {0, 1}

Ensure: 𝑍 , a random encryption of 𝑥𝑦

1 𝑌0 ←− 𝐸−1𝑌 2
; 𝑋0 ←− 𝑋

2 for 𝑖 = 1 to 𝑎, for the authority 𝑖 , do
3 (𝑢, 𝑣) ←− 𝑋𝑖−1
4 𝑟1, 𝑟2 ∈𝑟 Z𝑞 ; 𝑠 ∈𝑟 {−1, 1}
5 𝑋𝑖 ←− (𝑢𝑠𝑔𝑟1 , 𝑣𝑠ℎ𝑟1); 𝑒 ←− ˜ℎ𝑟1

6 𝑌𝑖 ←− ReEncpk (𝑌 𝑠𝑖−1, 𝑟2)
7 Broadcast 𝑋𝑖 , 𝑒, 𝑌𝑖 and a ZKP 𝜋𝑖 that they are well formed

8 Each authority verifies the proof of the other authorities

9 They collectively rerandomize 𝑋𝑎 and 𝑌𝑎 into 𝑋 ′ and 𝑌 ′

10 They collectively decrypt 𝑌 ′ into 𝑦𝑎
11 They output 𝑍 = (𝑋𝑋 ′𝑦𝑎)

1

2

In the natural-encoding, the strategy is different and available

only in the Paillier setting, where it is possible to extract the bits of

naturally-encoded integers with an MPC procedure based on mask-

ing [41]. This gives an algorithm for BinExpand. Hence, using this

conversion, it is possible to compute all the arithmetic operations

even if the input are in natural-encoding.

Shuffle and mixnet. A tool that is of great use in our context is

verifiable shuffling, leading to mixnets. In electronic voting, the

typical use of a verifiable mixnet is during the tally phase, just

before decrypting all the ballots, one by one. However, we also

consider the use of verifiable shuffles on the voter’s side, as shown

in Section 5.

The first building block is Shuffle([𝑋𝑖]). It takes as input an
array of encrypted values and output the same (re-encrypted) val-

ues in another order that remains secret, together with a zero-

knowledge proof that everything was done correctly. As such, this

is not an MPC primitive: this is an operation done by just one entity.

Chaining a sequence of applications of this procedure by all the

trustees, in turn, leads to the Mixnet([𝑋𝑖]) protocol, that outputs
an array of the same re-encrypted values in an order that is secret

as soon as at least one trustee is honest.

A variant is to shuffle ballots containing a pairwise comparison

matrix. Then, the (secret) permutation used to shuffle the columns

should be the same as the one used to shuffle the rows. This leads

to the ShuffleMatrix([𝑀𝑖, 𝑗]) and the MixnetMatrix([𝑀𝑖, 𝑗]) pro-
cedures, and their variants in the bit-encoding.

2.2 UC security
We consider the well-known UC-framework [15] to prove security.

A composable framework is particularly suitable to analyze the se-

curity of our MPC protocols since we provide building blocks that

we combine together. We actually use the composition framework

from [16], which is a Simpler version of the Universally Compos-

able framework (SUC), shown to imply UC-security. Participants

of a protocol 𝑃 are modeled as Polynomial Probabilistic Turing

Machines (PPT). Each of the 𝑎 participants has a single input and

output communication tape, and interacts with a router, which in

turn interacts with an adversary A. The adversary interacts with

the router and the environment Z. The adversary can corrupt a

subset 𝐶 of participants of size at most 𝑡 , where 𝑡 ≤ 𝑎 is some

threshold. Non-corrupted participants are honest and follow the

protocol, while corrupted participants are fully impersonated by the

adversary and give away any secret they have. The process termi-

nates whenZ writes on its output tape. We denote REAL𝑃,A,Z (𝜅, 𝑧)
the output, where 𝜅 is a security parameter and 𝑧 is an arbitrary

auxiliary input.

The security of the process is guaranteed by a comparison with

an ideal process, in which each party hands over their inputs to a

trusted party 𝑇 which honestly performs the desired computation.

Corrupted parties may send arbitrary inputs as instructed by the

adversary, and the adversary can block or delay communications

with the trusted party. Intuitively, 𝑇 computes some ideal function

𝑓 , such as the addition. However,𝑇 additionally takes care of failure

cases (for example, when too many parties return inconsistent data).

We denote IDEAL𝑇,S,Z (𝜅, 𝑧) the output of the environment in the

ideal process, when it interacts with the adversary S. Intuitively,
a protocol is SUC-secure if, for all adversary A in the real process,

there exists a simulator S in the ideal process such that no PPT

environment Z can tell whether they are interacting with the

adversary in the real process or with the simulator in the ideal

process.

Definition 2.1 (Secure computation [16]). Let 𝑃 be a protocol, 𝑇

some trusted party. We say that 𝑃 securely computes 𝑇 if, for all

PPT A, there exists a PPT S such that, for all PPTZ, there exists a

negligible function 𝜇 such that for all 𝜅 and all 𝑧 polynomial in 𝜅,

| Pr(IDEAL𝑇,S,Z (𝜅, 𝑧) = 1) − Pr(REAL𝑃,A,Z (𝜅, 𝑧) = 1) | ≤ 𝜇 (𝜅) .

All our building blocks (except shuffle and mixnets, that are han-

dled separately) rely on a single primitive, namely CondSetZero in

the sense that they can all be derived as composition of this protocol,

possibly with intermediate operations that do not require any inter-

action between the participants. To compute CondSetZero, we con-
sider an MPC protocol CGate [40] based on ElGamal, and we adapt

it in order to prove, in the SUC framework, that CGate securely

computes the trusted party 𝑇CGate, that behaves as CondSetZero
except when parties do not answer, in which case it returns an error.

The CGate protocol also produces a transcript which acts as a proof

that the protocol was performed correctly. The SUC security of

the other building blocks then follows by composition. As detailed

in [16], this composability requires to use some intermediary hybrid

models, where the participants have an access to some ideal trusted

parties.

5

A toolbox for verifiable tally-hiding e-voting systems

Using the SUC framework, we were able to prove the security

of our tally-hiding schemes in the context of electronic voting (i.e.
to prove verifiability and privacy). All the precise definitions and

proofs are provided in appendix (Part II).

2.3 Paillier vs elliptic ElGamal
As discussed in introduction, when ElGamal encryption can be

used, it offers several avantages over Paillier. First, popular ellip-

tic curves like NIST P-256 or Curve25519 are now ubiquitous in

cryptographic libraries, while there is in general no support for

Paillier. Moreover, threshold key generation is much simpler in

ElGamal. Also, ElGamal relies on a well understood security as-

sumption (DDH). In general, an algorithm based on the Paillier

scheme requires less exponentiations that when based on ElGamal;

however, exponentiations are more costly. In this paper, we will

provide the complexity of our algorithm measured by the number

of exponentiations. These figures should be compared having in

mind the respective cost in ElGamal and in Paillier, that we estimate

in this section.

Parameter sizes and cost of operations. For a voting system,

a 128-bit level of security seems to be a reasonable choice. While

112-bit level is probably acceptable for the next decade, many certi-

fication bodies will ask for 128 bits or more. In the case of an elliptic

ElGamal this translates readily into a curve over a base field of 256

bits. Furthermore, base fields that are prime finite fields are usually

preferred.

For the Paillier scheme, the security relies on a supposedly hard

problem that it not harder than integer factorization of an RSA

number 𝑛. The complexity of the best known factoring algorithm,

the Number Field Sieve, being hard to evaluate, there is no strict

consensus about the size of 𝑛 giving a 128-bit security level, but

generally this goes around 3072 bits. We provide below estimates

based on a medium level of optimization, for a native implementa-

tion on a modern processor (based on OpenSSL and using RSA for

Paillier emulation), and for a Javascript implementation running in

a modern web browser (based on libsodium.js and JS BigInt).

Paillier Elliptic ElGamal Ratio

Native (server-side) 200 10,000 50

In browser (voter-side) 2 5,000 2,500

3 SINGLE-CHOICE VOTING
Context. Voters give their choice among a list of 𝑘 possibilities.

The choices that get the more votes get the seats. Sometimes voters

can select more than one choice, specially when the number 𝑠 of

seats is large. The basic situation is when choices are precisely the

candidates. Another frequent situation is when the voter’s choices

are lists of candidates. Then one needs a rule to decide how to

assign the seats according to the number of votes obtained by each

list. For this later case, we studied the D’Hondt method since it is

widely used in practice for politically binding elections.

Basic counting. The 𝑠 winners are the 𝑠 candidates who obtained

the most votes. This is the situation covered by Ordinos [28], but in

case of equality between several candidates, more than 𝑠 candidates

can be elected by Ordinos. Assume for example that there are 10

seats but that the 10th and 11th candidates have received exactly

the same number of votes. The toolkit of Ordinos will either outputs

all the 11 candidates, with no information on who are the two last

ones, or outputs the ordered list of the candidates, which leaks more

information than needed.

Breaking ties. To force the scores of the candidates to be distinct,

even if two candidates received the same number of voices, the

election administrators must agree on an arbitrary ordering of

the candidates, which allows to break ties. For instance, it can be

decided that, in case of a tie, candidate 𝑖 wins over candidates 𝑗

if 𝑖 > 𝑗 . To put this into act, we can modify the scores 𝑠𝑖 of each

candidate to turn it into 𝑠′
𝑖
= 2

ℓ𝑠𝑖 + 𝑖 , where ℓ = ⌈log(𝑘 + 1)⌉,
assuming the candidates are labeled from 0 to 𝑘 − 1. This can be

done with a very limitted extra cost, which comes from the fact

that the number of bits increased in every procedure. Therefore,

if𝑚 is the number of bits required to encode the scores (typically,

𝑚 is logarithmic in the number of voters), the overall process is

𝑚+log𝑘
𝑚 more expensive in terms of computations, while the impact

on communication is smaller. In general, the impact is less than a

factor 2 as the number of candidates is smaller than the number of

voters. Note that the modification of the scores itself is free, and

can be performed as follows.

• In natural encoding, 𝑆 ′
𝑖
= (𝑆𝑖)2

ℓ
Enc(𝑖).

• In bit-encoding, 𝑆 ′
𝑖
= 𝑖bits | |𝑆𝑖 , where 𝑖bits is a bit-encoding

of 𝑖 and | | stands for the concatenation.
Note that if the agreed ordering of the candidates has to be kept

secret, the authorities can first run a reencryption mixnet to shuffle

Enc(0), · · · , Enc(𝑘 − 1) (in either bit- or natural encoding) to obtain

(𝑝0, · · · , 𝑝𝑘−1). Afterwards, 𝑝𝑖 can be used instead of 𝐸𝑖 in natural

encoding (resp. 𝑖bits in bit-encoding).

List-voting. The method of D’Hondt, parametrized by a sequence

of distinct weights,𝑤1, . . . ,𝑤𝑠 proceeds as follows. Each voter votes

for one list among 𝑘 lists. At the end of the election, for each list 𝑖 ,

let 𝑐𝑖 be the number of votes received. Then the coefficients (𝑐𝑖/𝑤 𝑗)
for 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑠 are computed and the 𝑠 largest values

are selected so that the seats can be assigned accordingly: a list 𝑖

gets one seat for each selected coefficient of the form (𝑐𝑖/𝑤 𝑗). A
ballot contains an encrypted bit for each choice (and a proof that

the number of set bits follows the rules of the election). Then the

ballots are aggregated to get the encrypted values of 𝑐1, . . . , 𝑐𝑘 .

The question of how to handle fractions in the D’Hondt method

must be addressed. A textbook approach using pairs of integers

to store the numerators and the denominators would require to

compute products each time we want to make a comparison. One

option to avoid this additional cost is to compute the (𝑠′
𝑖, 𝑗

= 𝑐𝑖𝑤 𝑗)’s
instead of (𝑠𝑖, 𝑗 = 𝑐𝑖/𝑤 𝑗)’s. Then, the boolean 𝑠𝑖𝑖 , 𝑗𝑖 < 𝑠𝑖2, 𝑗2 is exactly
𝑠′
𝑖𝑖 , 𝑗2

< 𝑠′
𝑖2, 𝑗1

. In a quadratic setting where all the comparisons are

made, this is a nice solution. Otherwise, this would require to keep

track of the indexes to be compared and would leak information.

To design a sub-quadratic algorithm, we multiply all the 𝑠𝑖, 𝑗 by

the least common multiple (lcm) of the weights 𝑤 𝑗 , to have only

integers. In the case where the weights are just 1, 2, 3, . . . , 𝑠 , this lcm

grows like exp(𝑠 (1 + 𝑜 (1))), so this adds 𝑂 (𝑠) bits to the integers

to manipulate. If 𝑠 is of a size comparable to the logarithm of the

number of voters, this is probably faster than to deal with the

numerators and denominators separately.

6

A toolbox for verifiable tally-hiding e-voting systems

Various MPC algorithms. Comparing two encrypted integers

can be done with various algorithms, depending on the ElGamal

or Paillier setting, and whether the inputs are in the bit-encoding

format or not. In Appendix D, we present several solutions with

different computation and communication trade-offs.

Summary. The choices of the algorithms to use depend on many

practical questions and it is impossible to propose a universally best

solution. A first element to consider is the choice between ElGamal

and Paillier. If many voters are involved, then, with ElGamal, the

aggregation of the ballots become very costly for the trustees both

in computations and in communications, and Paillier might be

the only realistic solution. Otherwise, ElGamal is very attractive

for the reasons mentioned in Section 2.3 and the much easier key

generation step (DKG).

In Table 1 we present the cost of three solutions for basic count-

ing, all based on ElGamal: the first one is an adaptation of the

solution from Ordinos [28], the second one relies on an approach

based on selection-sort and the last one relies on the OddEven

merge sort algorithm [8]. (see Appendix D for more details). In

order to compare the efficiency of our solutions compared to that

of [28], we also include its cost at the first line. Recall that the solu-

tion of Ordinos relies on the Paillier setting, where the operations

are more expensive. Similarly, we present the cost of three different

solutions for the D’Hondt method, all based on ElGamal, in Table 2.

In any case, the cost of the DKG is not included (even if it can be

expensive in the Paillier setting), and we assume that the number

of candidates is small enough, so that the quadratic algorithm for

selecting the 𝑠 best is appropriate. For this table as well as all the

following ones, we only count the leading terms of the cost. For
example, we neglect 𝑎𝑘2 if there is a term of the form 𝑎2𝑘2. The

unit of the transcript size is the key length, typically 3072 bits in

Paillier and 256 bits in ElGamal.

Next, we propose three options for computing a D’Hondt tally

with weights 1, 2, . . . , 𝑠 . The first option is an adaptation of the

solution of Ordinos and uses the Paillier encryption, with the ob-

jective of reducing the amount of communications. The second

option is a simple adaptation to the ElGamal setting, which use a

communication-efficient integer-comparison primitive. Finally, the

third option also uses ElGamal, but uses a less naive algorithm to

compute the winners. For comparing the fractions, we use the idea

of crossing the indexes for the first two options, while in the third

we multiply by the lcm.

4 MAJORITY JUDGMENT
In the Majority Judgment (MJ) approach [6], voters give a grade to

each candidate, such as Excellent, Very Good, Poor, etc. Each grade

is translated into a numerical value, typically from 1 to 6, where 1

is the highest grade. At the end of the election, each candidate 𝑐

has received a list 𝐿𝑐 of grades. The list of medians med(𝑐) asso-
ciated to candidate 𝑐 is the sequence formed by first the median

grade𝑚 of 𝐿𝑐 , i.e. the highest grade𝑚 such that at least half of the

grades are greater or equal to𝑚, then the median of 𝐿𝑐\{𝑚} and
so on. For example, if Alice received 1, 2, 2, 4, 4, 5, her list of medi-

ans is 2, 4, 2, 4, 1, 5. Then candidate 𝑐1 is ranked above candidate

𝑐2 if med(𝑐1) < med(𝑐2) in the lexicographical order. Intuitively,

𝑐1 wins over 𝑐2 if she has a lower median, or, in case of a draw, a

lower second median, etc. This defines a strict order, and therefore

a winner: two candidates are ranked equal only if they received

exactly the same grades.

A simplified algorithm.While the algorithm to determine the MJ

winner(s) is simple, its naive implementation yields a complexity

that depends on the number of voters, which could be very costly

when done in MPC. Hence, the authors of [14] propose an MPC

implementation of a simplification of the MJ algorithm, where

whenever two candidates have the same median, only their number

of grades higher and smaller than the median are compared. It has

been shown that this technique is sound [6]: if a winner can be

determined with this approach, it is indeed aMJ winner. However, it

may also fail to conclude. In case the number of candidates is small

and if the distribution of votes is uniform, then the probability of

failure raises up to 22%, as shown in the table below. In any case, the

approach of [14] leaks more information about the ballots than just

the result, with non negligible probability, since it reveals whether

the result can be determined with the simplified algorithm.

Number of voters 10 100 1000

uniform distribution

over 5 candidates

0.384 0.220 0.080

political distribution [6] N/A 0.001 N/A

Failure probabilities in [14].

MPC with Paillier. Our first contribution is an algorithm that

computes MJ winner(s) on the clear votes, with a complexity that

does not depend on the number of voters. Another algorithm was

also proposed in [6] but our algorithm is easier to adapt in MPC

and we prove it to correctly implement the MJ definition.

We assume that each voter produces a ballot formed of a matrix

of encrypted 0 and 1, that encodes her choice, together with a zero-

knowledge proof that each line contains exactly one 1. Thanks to

the homomorphic property of Paillier encryption, the (encrypted)

aggregated matrix, that is the sum of all the votes, can easily be

obtained from the encrypted ballots. Then our algorithm essentially

consists of comparisons, selections, additions or subtractions, and

has been written in order to ease the conversion to an MPC algo-

rithm, using the building blocks described in Section 2. Interestingly,

the cost is similar to the (leaky) MPC implementation of [14], except

for the number of communications that increases (see Figure 1).

MPC with ElGamal. The encoding of ballots remains unchanged

for voters: each voter produces the matrix of her encrypted choices.

Hence the cost is even lower for the voter since ElGamal encryption

is cheaper. Then we compute the bit-encoding of the aggregated

matrix using Addbits. This part is linear in the number of voters

but could be done on-the-fly during the election. Then the same

algorithm can be used, on the bit-encoding, yielding a similar com-

plexity than the Paillier’s version, with the advantages of ElGamal

as discussed in Section 2.3. Hence not only it remains practical to

implement the full MJ function in MPC but surprisingly, the simple

ElGamal encryption is well suited in this case.

5 CONDORCET-SCHULZE
The Condorcet approach is one popular technique to determine a

winner when voters rank candidates by order of preference, possibly

with equalities. A Condorcet winner is a candidate that is preferred

7

A toolbox for verifiable tally-hiding e-voting systems

Table 1: Leading terms of the cost of different MPC solutions for single choice voting; 𝑛 is the number of voters, 𝑘 the number
of candidates, 𝑠 the number of seats, 𝑎 the number of talliers

Version # exp. # synch. steps transcript

[28] (fixed)

precomp. precomp.

9𝑛𝑘+
79.5𝑘2 log(𝑛𝑘)𝑎

41𝑘2 log(𝑛𝑘)𝑎 𝑂 (𝑎)
comp. comp.
4𝑛𝑘+

14 log log(𝑛𝑘)
25𝑘2 log(𝑛𝑘)𝑎

EG (adaptation)

99𝑛𝑘𝑎+
33𝑘2 log(𝑛𝑘)𝑎

1

2
(log(𝑛)2 + log(𝑘)2)𝑎 102𝑛𝑘𝑎+

34𝑘2 log(𝑛𝑘)𝑎

EG (𝑠Select)
99𝑛𝑘𝑎+

33𝑘𝑠 (3 log𝑛 + log𝑘)𝑎
1

2
log(𝑛)2𝑎+

2𝑠 log𝑛 log𝑘𝑎

102𝑛𝑘𝑎+
34𝑘𝑠 (3 log𝑛 + log𝑘)𝑎

EG (OddEven)

99𝑛𝑘𝑎+
25𝑘 log(𝑘)2 log𝑛𝑎

1

2
log(𝑛)2𝑎+

log𝑛 log(𝑘)2𝑎
102𝑛𝑘𝑎+

25.5𝑘 log(𝑘)2 log𝑛𝑎

Table 2: Leading terms of the cost of the different MPC solutions for the D’Hondt method; 𝑛 is the number of voters, 𝑘 is the
number of lists of candidates, 𝑠 is the number of seats,𝑚 = lcm(1, · · · , 𝑠), 𝑎 is the number of talliers and all the logarithms are in
base 2

Version # exp. # synch. steps transcript

Adaptation

of [28]

99𝑛𝑘𝑎+
+33𝑘2𝑠2 log(𝑛𝑘𝑠)𝑎

1

2
(log(𝑛)2 + log(𝑘)2)𝑎
+2 log 𝑠 log𝑛𝑎

102𝑛𝑘𝑎

+34𝑘2𝑠2 log(𝑛𝑘𝑠)𝑎

𝑠Select
99𝑛𝑘𝑎+

33𝑘𝑠2 log(𝑚3𝑛6𝑘𝑠)𝑎
1

2
log(𝑛)2𝑎+

2𝑠 log(𝑚𝑛) log(𝑘𝑠)𝑎
102𝑛𝑘𝑎+

34𝑘𝑠2 log(𝑚3𝑛6𝑘𝑠)𝑎

OddEven

99𝑛𝑘𝑎+
99𝑘𝑠2 log𝑛𝑎+

25𝑘𝑠 log(𝑘𝑠)2 log(𝑚𝑛)𝑎

1

2
log(𝑛)2𝑎+

2 log𝑛 log𝑚

log(𝑚𝑛) log(𝑘𝑠)2𝑎

102𝑛𝑘𝑎+
102𝑘𝑠2 log𝑛𝑎+

25.5𝑘𝑠 log(𝑘𝑠)2 log(𝑚𝑛)𝑎

Version

Leak-

age

Voters

exp.

Authorities

exp. # comm.

Transcript

size

[14] [i] 5𝑘𝑑 4𝑛𝑘𝑑 + 𝑘𝑚𝑎(224𝑘 + 58𝑑) (4𝑚 + 𝑑)𝑅 6𝑛𝑘𝑑 + 𝑘𝑚𝑎(280𝑘 + 62𝑑)
ours (P) ∅ 5𝑘𝑑 4𝑛𝑘𝑑 + 𝑘𝑑𝑎(75𝑚 + 146 log𝑚 + 20𝑑) 𝑑 (2𝑅 + 13𝐵) log𝑚 log𝑘 6𝑛𝑘𝑑 + 𝑘𝑑𝑎(78𝑚 + 50 log𝑚 + 22𝑑)
ours (EG) ∅ 6𝑘𝑑 99𝑛𝑘𝑑𝑎+ 66𝑘𝑚𝑑𝑎(10 + 𝑑) 𝑚2 + 𝑑 (6𝑚 + 2 log𝑘 log𝑚) 34𝑘𝑑𝑎(3𝑛 + (20 + 2𝑑)𝑚)
i
[14] leaks whether the winner can be determined with the simplified algorithm.

Figure 1: Leading terms of the cost of MPC implementations of Majority Judgment. 𝑛: number of voters,𝑚 = ⌈log(𝑛 + 1)⌉, 𝑘:
number of candidates, 𝑑: number of grades, 𝑎: number of authorities.

to every other candidate by a majority of voters. More formally,

we consider the matrix of pairwise preferences 𝑑 where 𝑑𝑖, 𝑗 is the

number of voters that prefer (strictly) candidate 𝑖 over 𝑗 . Then

a Condorcet winner is a candidate 𝑖 such that 𝑑𝑖, 𝑗 > 𝑑 𝑗,𝑖 for all

𝑗 ≠ 𝑖 . Such a Condorcet winner may not exist. In that case, several

variants can be applied to compute the winner. We focus here on

the Schulze method, used for example for Ubuntu elections [2]. It

first considers by “how much” a candidate is preferred, which can

be reflected into the adjacency matrix 𝑎 defined as

𝑎𝑖, 𝑗 =

{
𝑑𝑖, 𝑗 − 𝑑 𝑗,𝑖 if 𝑑𝑖, 𝑗 > 𝑑 𝑗,𝑖 ,

0 otherwise.

Then a weighted directed graph is derived from the adjacency

matrix, where each candidate 𝑖 is associated to a node and there is

an edge from 𝑖 to 𝑗 with weight 𝑎𝑖, 𝑗 . This itself induces an order

relation between the candidates by comparing the “strength” of the

paths between 𝑖 and 𝑗 . The exact algorithm can be found in [43].

Note that there may be several winners according to Condorcet--

Schulze. We denote by 𝑓Cond the function that returns the winners.

We propose several MPC implementations of Condorcet-Schulze,

depending on the accepted leakage and on the load balance between

the voters and the authorities. The different approaches are sum-

marized in Figure 2.

8

A toolbox for verifiable tally-hiding e-voting systems

Version

Voters

exp.

Authorities

exp. # synch. locks

Transcript size

[24] 6𝑘2[1] 14𝑛𝑘2𝑎 2𝑎 3𝑛𝑘2𝑎

[26]

(Paillier setting)

5𝑘3[2]

precomp. precomp.

9𝑛𝑘3+
178𝑘3𝑎 log𝑛

78𝑘3𝑎 log𝑛 𝑂 (𝑎)
comp. comp.
6𝑛𝑘3 [3]

14𝑘 log log𝑛+66𝑘3𝑎
Homomorphic

solution[4]

17.5𝑘2 15.5𝑛𝑘2 1 8.5𝑛𝑘2

Partial MPC[4]

(ours)

6𝑘 log𝑘 49.5𝑛𝑘2𝑎 log𝑘 2𝑎 log𝑘 50𝑛𝑘2𝑎 log𝑘

Full MPC

(ours)

6𝑘 log𝑘
49.5𝑛𝑘2𝑎 log𝑘

+198𝑘3𝑎 log𝑛 4𝑘𝑎 log𝑛
50𝑛𝑘2𝑎 log𝑘

+204𝑘3𝑎 log𝑛
[1] [24] leaks the adjacency matrix. In addition, for each ballot, the number of candidates ranked

at equality is public. In particular, who voted blank is known to everyone.

[2] [26] does not allow voters to give the same rank to several candidates.

[3] [26] originally does not take into account the cost of verifying the ZKP provided by the

voters.

[4] Leaks the adjacency matrix.

Figure 2: Leading terms of the cost of various solutions for Condorcet-Schulze. 𝑛 is the number of voters, 𝑘 is the number of
candidates, 𝑎 is the number of talliers. The unit of the transcript size is the key size, which is 256 bits in the ElGamal setting
and 3072 bits in the Paillier setting.

Ballots as matrices. For each candidate 𝑖 , let 𝑐𝑖 be an integer that

represents the order of preference, possibly with equality. A first

approach is to encode the vote as a preference matrix 𝑚 where

𝑚𝑖, 𝑗 =


1 if 𝑐𝑖 < 𝑐 𝑗
0 if 𝑐𝑖 = 𝑐 𝑗
−1 otherwise

The voters then simply encode their ballot as an encrypted prefer-

ence matrix𝑀 . Note that this requires 𝑘2 encryptions (one encryp-

tion for each coefficient of the matrix). Voters also need to prove

that their (encrypted) matrix is well-formed, that is, corresponds to

a total order (with equalities). This requires e.g. to prove that if the

voter prefers 𝑖 over 𝑗 and 𝑗 over 𝑘 then she prefers 𝑖 over 𝑘 :

(𝑚𝑖, 𝑗 = 1) ∧ (𝑚 𝑗,𝑘 = 1) ⇒ (𝑚𝑖,𝑘 = 1)
and similar relations when 𝑚𝑖, 𝑗 and 𝑚 𝑗,𝑘 are equal to 0 or −1,
yielding 𝑂 (𝑘3) statements.

Previous work. To discharge the voter from such a proof effort,

in [24] the authorities shuffle each preference matrix in blocks

(using ShuffleMatrix([𝑀𝑖, 𝑗])) and then decrypt it to check that

it was indeed well formed. However, this yields a privacy breach,

unnoticed by the authors, as explained in introduction: for each

voter, everyone learns the number of candidates placed at equality.

In particular, everyone learns who voted blank since in that case all

candidates are placed at equality. A costly way to repair [24] is to let

the voters prove the relations with zero-knowledge proofs, yielding

a cost of 𝑂 (𝑘3) exponentiations to build and to check a ballot. This

is roughly the approach of [26], that also assumes that voters do

not place candidates at equality (the case 𝑐𝑖 = 𝑐 𝑗 is forbidden).

Our approach. We propose an alternative approach in 𝑂 (𝑘2).
Assume first that a voter prefers candidate 1 over candidate 2, that

is preferred over candidate 3 and so on. Then the corresponding

preference matrix is:

𝑚init =

©­­­­­­«

0 1 · · · 1

−1 0

. . .
.
.
.

.

.

.
. . .

. . . 1

−1 · · · −1 0

ª®®®®®®¬
.

We consider a fixed encryption𝑀 init
of this matrix:

𝑀 init
𝑖, 𝑗 =


𝐸1 if 𝑖 < 𝑗

𝐸0 if 𝑖 = 𝑗

𝐸−1 otherwise

where 𝐸𝛼 is the ElGamal encryption of 𝛼 with “randomness” 0.

Everyone can check that𝑀 init
is formed as prescribed, at no cost,

since we use a constant “randomness”.

Assume now that a voter wishes to rank the candidates in some

order, which is a permutation 𝜎 of 1, 2, . . . , 𝑘 . Then our core idea is

that the voter can simply shuffle𝑀 init
(using ShuffleMatrix) using

permutation 𝜎 . The associated zero-knowledge proof guarantees

that the resulting matrix is indeed a permutation of𝑀 init
, hence is

well formed. Interestingly the secret vote 𝜎 is not encoded in the

initial matrix but in the permutation used to shuffle it. Applying [47],

this requires 𝑂 (𝑘2) exponentiations for the voter. To account for

candidates that have an equal rank, the voter still shuffles 𝑀 init

according to a permutation 𝜎 , consistent with her preference order,

that is such that 𝜎 (𝑖) < 𝜎 (𝑗) implies that 𝑐𝑖 ≤ 𝑐 𝑗 . But beforehand,
she sends an additional vector 𝐵 of encrypted bits (𝑏𝑖), where
𝑏𝑖 = 1 if candidates 𝜎−1 (𝑖) and 𝜎−1 (𝑖 + 1) have equal rank and

𝑏𝑖 = 0 otherwise. The voter will then modify the matrix 𝑀 init

into a transformed matrix𝑀′, using 𝐵, so that𝑀′ corresponds to
her preference matrix. The resulting cost is still in 𝑂 (𝑘2) (since 𝑘2

9

A toolbox for verifiable tally-hiding e-voting systems

coefficients need to be updated) instead of 𝑂 (𝑘3) for [26] (that, yet,
does not consider equalities).

Then the (encrypted) adjacency matrix can be computed by sim-

ply multiplying all ballots. This matrix is then (provably) decrypted

by the authorities and Condorcet-Schulze as well as many variants

can be applied. The main cost for the authorities lies in the verifica-

tion of the proofs for each ballot. We could also avoid leaking the

adjacency matrix by computing the Condorcet-Schulze winner(s)

in MPC. However, the cost for the authorities would be in𝑂 (𝑘3). If
this is considered as affordable, then we can further alleviate the

charge of the voters, as we shall explain now.

Ballots as list of integers. To minimize computations on the

voter’s side, we can ask them to simply encrypt the list of integers

(𝑐𝑖) representing their preference. To allow for ElGamal encryp-

tion, we will directly use the bit representation of each integer and

encrypt each bit separately. If there are 𝑘 candidates, we need log𝑘

bits to encode each candidate, hence a ballot will contain 𝑘 log𝑘 ci-

phertexts, together with zero-knowledge proofs that the ciphertexts

encrypt only 0 or 1. This is to be compared with the 𝑘2 encryptions

when ballots are encoded as a preference matrix.

Our first goal is to transform back each ballot into a preference

matrix. We consider the positive preference matrix, obtained from

the preference matrix by setting negative coefficients to 0. If 𝐶𝑖
denotes the bitwise encryption of 𝑐𝑖 then the encrypted positive

preference matrix𝑀 can be computed by the authorities as:

𝑀𝑖, 𝑗 = LTbits (𝐶𝑖 ,𝐶 𝑗) .

Summing up the (encrypted) matrix 𝑀𝑣 for each voter 𝑣 , we im-

mediately obtain the (encrypted) pairwise preferences matrix 𝐷 .

This matrix can be decrypted, or the authorities may apply the

Schulze method in MPC from 𝐷 . Despite the fact that the Schulze

method is a complex algorithm on graphs, it can be implemented

with an algorithm from Floyd-Warshall [22, 44], that mostly con-

sists in computations of min/max. This can be translated into an

MPC algorithm using the building blocks presented in Section 2.

We denote by 𝑃Cond the corresponding MPC protocol.

The advantage of this solution is that the load for voters remains

very reasonable, with𝑂 (𝑘 log𝑘) exponentiations in total. However,

transforming each ballot into the (encrypted) preference matrix𝑀𝑣

is of cost 𝑂 (𝑘2 log𝑘) per voter, for each authority.

To summarize, when the number of candidates and voters remain

reasonable, it is actually possible to compute the Condorcet winners

with no leakage. Interestingly, the costly operations performed by

the trustees can be done on-the-fly, while voters submit their ballots.

Note that unless the number of candidates is really large w.r.t. the

number of voters, a fully-hiding tally scheme is not really more

expensive than schemes leaking the adjacency matrix.

6 SINGLE TRANSFERABLE VOTE
Choosing one version of STV. Many flavors of STV election

methods exist. In all of them, a ballot cast by a voter contains an

ordered list of candidates, starting with the most preferred one.

Along the counting process, if the candidate in the first line has

been selected to get a seat or eliminated, then it should be erased

from the ballot, so that the candidate on the second line becomes

the most preferred at this stage. However, when a candidate gets a

seat, this must “consume” some of the ballots who voted for him.

From this comes the notion of quota and the transfer mechanism.

In our case, we used the so-called Droop quota, which sets the

value of a seat at 𝑞 = ⌈𝑛/(𝑠 + 1)⌉ + 1. Here 𝑠 is the number of

seats, and 𝑛 is the number of valid ballots. If a candidate is in the

first line of a (weighted) number of ballots that is larger than 𝑞,

then she gets elected. Otherwise, we take the candidate that gets

the least votes and we eliminate her. In case of equality, we use

a predefined arbitrary ordering (as in Section 3). The transfer is

implemented as follows: each ballot starts with a weight set to one.

When a candidate is elected, the surplus of votes is transferred to

the next candidates. Namely, all the ballots where this candidate

was listed first have their weight multiplied by a transfer coefficient

𝑡 = (𝑐 − 𝑞)/𝑐 where 𝑐 is the sum of the weights of such ballots.

Fractions vs approximations. All along the STV algorithm, the

weights of the ballots and the transfer coefficient are rational num-

bers that can be stored as pairs of integers. While this looks as

the cleanest approach, we noticed that this leads to an exponential

worse-case complexity. Indeed, the transfer coefficient 𝑡𝑖 at a round

𝑖 is a fraction whose height typically doubles at each round where

a candidate is selected, and we get a complexity that is exponential

in the number of seats.

This observation is a major problem in an MPC setting where

the worst complexity must always be done, in order to hide every

side-information. However, we realized that this is also a problem

outside any cryptographic consideration. For instance, we ran the

ideal STV algorithm on the publicly available ballots of the 2019

Legislative Council of New South Wales in Australia [3]. There are

21 seats, 346 candidates and 3.5 millions of ballots were cast. Our

basic implementation using Sagemath shows that indeed, the size

of the fractions roughly doubles at each selection, so that one would

require about 30 GB of central memory for storing all of them. In real

elections, and due to the fact that elections were initially counted

by hand, approximations of fractions are used instead. We therefore

represent fractions with a fix-point arithmetic, allowing 𝑟 binary

digits after the radix point. We denote by 𝑓STV the corresponding

function that returns the STV winners.

To leak or not to leak. The two main approaches toward a tally-

hiding STV algorithm in the literature are [45] and [10]. In [45],

mixnets are applied between each round of the algorithm, so that

some information can be decrypted and revealed, without disclos-

ing the list of the complete original ballots. The information that is

leaked is whether the round was a selection or an elimination, and

in the latter case, the score of the selected candidates. We remark

also that their technique involves a very sequential first phase with

a number of communications that is proportional to the number

of ballots. In [10], some information is also revealed between each

round of the STV algorithm, in particular the score of all the candi-

dates, which is muchmore than in [45]. It is however highly efficient.

The authors acknowledge that revealing the intermediates scores

might be too much; in particular, they propose realistic scenarios

where a coercer could successfully use this information. In [10], a

variant is proposed where the most crucial information is leaked

only to the trustees. For external observers, their approach leaks

essentially the same information as [45], and also an approximation

of the transfer coefficient at each round.

10

A toolbox for verifiable tally-hiding e-voting systems

Version Leakage P/EG

Voters

exp.

Authorities

exp. # comm.

Transcript

size

[10, Sec. II]
[i]

EG 10𝑘2 62𝑛𝑎𝑘2 9𝑘𝑅 19𝑛𝑎𝑘2

[45]
[ii]

P 5𝑘2 22𝑛𝑘2𝑎𝑚 2𝑛𝑘𝑚𝑅 11𝑛𝑎𝑘2𝑚

[10, Sec. III.B]
[iii]

EG 10𝑘2 62𝑛𝑎𝑘2 9𝑘𝑅 N/A

ours
(naive arith.)

∅ EG 4𝑘 log𝑘 33𝑛𝑎𝑘2 (4 log𝑘 + 3𝑚′) 𝑘 (2𝑚′ (𝑚 + 2𝑟 + log𝑘)
+𝑘 log log𝑘))𝑅 34𝑛𝑎𝑘2 (4 log𝑘 + 3𝑚′)

ours
(optimized arith.)

∅ EG 4𝑘 log𝑘
33

2
𝑛𝑎𝑘2 (7 log𝑘
+3𝑚′ log𝑚′)

2𝑘 (𝑚 log(𝑚′)
+(𝑟 + log𝑘) log(𝑟 + log𝑘)
+𝑟 log(𝑟 +𝑚))𝑅

34

2
𝑛𝑎𝑘2 (7 log𝑘
+3𝑚′ log𝑚′)

i
Score of all candidates at each turn

ii
Score of selected candidates at each turn

iii
Selected or eliminated candidates and approximation of transfer coefficient at each turn. Trustees learn the score of all candidates at each turn

Figure 3: Leading terms of the cost ofMPC implementations of STV.𝑛: number of voters, 𝑘 : number of candidates,𝑚 = ⌈log(𝑛+1)⌉,
𝑎: number of authorities, 𝑟 : precision in power of 2,𝑚′ =𝑚 + 𝑟 , 𝑘′ = 𝑘 + 𝑟 .

Thanks to our toolbox, we can simply follow the standard STV

algorithm (with rounding) and derive a leakage-free tally scheme.

Arithmetic optimizations. To improve the complexity of the

resulting scheme, we had to carefully implement bit-wise addition

and multiplication. Let 𝑟 be the number of binary digits after the

radix point, so that all our computations are done with a fix-point

precision of 2
−𝑟
. A bound on the real numbers manipulated during

the algorithm is given by the number of voters 𝑛, so that we need

𝑚 = ⌈log(𝑛+1)⌉ bits for the mantissa. Hence, the operations reduce

to integer arithmetic with𝑚′ =𝑚 + 𝑟 bits. While this looks small (a

few dozens of bits), using textbook algorithms with a naive carry-

propagation would lead to a number of rounds of communications

that grow linearly with𝑚′ for additions and quadratically with𝑚′

for multiplications.

For carry-propagation during additions, this is a classical prob-

lem in hardware arithmetic circuits. The depth of the circuit trans-

lates more or less immediately into the number of communications

in our MPC setting. An important difference with hardware con-

siderations is that bounding the fan-in / fan-out of the gates is

not relevant for us. The general idea is to rewrite the addition (or

subtraction, or comparison) with the help of an associative operator

acting on bits, so that a tree of height log(𝑚′) can be constructed.

The Appendix contains the details of how, following this strategy,

we managed to strongly reduce the communication rounds at cost

of a moderate increase in terms of exponentiations. This also yields

big savings for multiplications and divisions, since they are built

upon additions.

Efficiency considerations. In Figure 3, we give a summary of

the various costs for our algorithm and the ones from the litera-

ture. Comparing the two last lines demonstrates the advantages of

optimizing the arithmetic, since the last one is a very good compro-

mise. While it is difficult to draw conclusions without knowing the

context, we consider that with our algorithm, requiring a perfectly

tally-hiding is not the criterion that will make the solution turns

from practical to impractical. In fact, from the voter’s side, our

scheme is more efficient than existing solutions, with a quasi-linear

number of exponentiations instead of quadratic. The costs for the

authorities is certainly terribly high and is not yet realistic for a

large scale election, but we consider that this is not much more

than the previous solutions which leak partial information.

7 APPLICATION TO E-VOTING SECURITY
We show that our tally-hiding schemes can be used for e-voting,

preserving vote secrecy and verifiability. We consider a mini-voting

scheme, TH-voting, where we assume that voters have an authen-

ticated channel with the voting server. Similarly to Ordinos [28],

voters simply encrypt their vote following the expected format and

the MPC protocol is used for tallying.

Definitions. A voting scheme consists of several algorithms and

MPC protocols (Setup, Register, Vote, isValid, Check, 𝑃tally,
Verify), where:

- Setup(𝜅, 𝑎, 𝑡) takes as input the security parameter 𝜅 , the num-

ber of authorities𝑎 and a threshold 𝑡 . It returns 𝑠𝑘, 𝑝𝑘, 𝑠1, ℎ1, · · · , 𝑠𝑎, ℎ𝑎
respectively a key pair 𝑠𝑘, 𝑝𝑘 and the corresponding private and

public shares 𝑠𝑖 , ℎ𝑖 for the authorities.

- Register(pk, 𝑛) takes a security parameter and the number

of voters as input and give to each voter 𝑖 a secret crendential 𝑐𝑖 .

For each credential, a public part 𝜋𝑖 may be published in the public

board.

- Votepk (𝑣, 𝑐) takes a public key 𝑝𝑘 , a vote 𝑣 , and a credential 𝑐 .

It returns an encrypted ballot.

- isValid(𝐵, PB) takes as input a ballot 𝐵 and a ballot box PB
and returns a boolean that states whether 𝐵 is valid w.r.t. PB.

- Check(𝐵, PB) is an algorithm that allows a voter to check that

their ballot 𝐵 was successfully added to the public board.

- 𝑃tally (PB, {𝑠𝑖 }) is an MPC protocol run by the authorities to

compute the tally from the public board PB and the shares {𝑠𝑖 } of
the secret key.

- Verify(PB, 𝑟 ,Π) takes as input a result 𝑟 , a transcript Π and a

ballot box PB and returns a boolean that states whether 𝑟 is correct

w.r.t. PB and Π. This check is typically run by external auditors.

In [29], a quantitative definition of privacy is proposed, where a

voting system is said 𝛿-private for some 𝛿 . This definition can be

turned into a qualitative one when 𝛿 is shown to be minimal, in a

sense that an ideal protocol achieves 𝛿 ′-privacy with a negligible

|𝛿 − 𝛿 ′ |. Hence, a natural definition of privacy is to compare the

11

A toolbox for verifiable tally-hiding e-voting systems

probability of success of the adversary in a real and in an ideal

protocol, and to show that the difference is negligible. Just as in [29],

we consider a definition where the adversary tries to guess the vote

of a single voter, the observed voter. For simplicity, we consider that

this voter is the voter number 1. We consider a fixed set 𝑉 of valid

voting options and the games defined respectively in Algorithms 2

and 3. In both games, the honest voters other than the observed one

vote independently from each other, according to a distribution D
over 𝑉 . In the real game, we use the notation 𝑃Atally to express the

fact that the adversary is active during the tally, since some talliers

may be corrupted.

Definition 7.1 (vote privacy). We say that a voting protocol

(Setup, Register, Vote, isValid, 𝑃tally, Verify) guarantees vote
privacy w.r.t a result function tally if, for all parameters 𝑡, 𝑎, 𝑛, 𝑛𝑐
with 𝑡 < 𝑎 and 𝑛𝑐 < 𝑛, for all 𝐶 ⊂ [1, 𝑎] of size at most 𝑡 , for all

adversary A, there exists an adversary B and a negligible function

𝜇 such that for all distribution D,

|𝑃𝑟 (RealPrivA,𝑃tally
(𝜅, 𝑛, 𝑛𝑐 , 𝑎, 𝑡,𝐶,𝑉 ,D) = 1)

− Pr(IdealPrivB,tally (𝜅, 𝑛, 𝑛𝑐 , 𝑎, 𝑡,𝐶,𝑉 ,D) = 1) | ≤ 𝜇 (𝜅).

Algorithm 2: RealPriv
A,𝑃𝑡𝑎𝑙𝑙𝑦

(𝜅, 𝑛, 𝑛𝑐 , 𝑎, 𝑡,𝐶,𝑉 ,D)

1 𝑠𝑘, 𝑝𝑘, 𝑠1, ℎ1, · · · , 𝑠𝑎, ℎ𝑎 := Setup(𝜅, 𝑎, 𝑡)
2 𝑐1, 𝜋1, · · · , 𝑐𝑛, 𝜋𝑛 := Register(pk, 𝑛)
3 𝑝𝑎𝑟 := D, 𝑝𝑘, ℎ1, · · · , ℎ𝑎, 𝜋1, · · · , 𝜋𝑛
4 𝑎1, · · · , 𝑎𝑛𝑐 := A(𝜅, 𝑝𝑎𝑟, (𝑠𝑖)𝑖∈𝐶); 𝐴 := {𝑎1, · · · , 𝑎𝑛𝑐 }
5 if 1 ∈ 𝐴 then Return 0

6 𝑣0, 𝑣1 := A((𝑐𝑖)𝑖∈𝐴)
7 𝑏 ∈𝑟 {0, 1}
8 𝐵𝐵 := (Votepk (𝑣𝑏 , 𝑐1))
9 for 𝑖 ∈ [1, 𝑛]\(𝐴⋃{1}) do
10 𝑣𝑖 ← D
11 𝐵𝐵 := 𝐵𝐵 | |Votepk (𝑣𝑖 , 𝑐𝑖)
12 𝑴 := A(𝐵𝐵)
13 for 𝑋 ∈ 𝑴 do
14 if isValid(𝑋, 𝐵𝐵) then 𝐵𝐵 := 𝐵𝐵 | |𝑋
15 𝑟,Π := 𝑃Atally (𝐵𝐵, {𝑠𝑖 })
16 𝑏′ := A(𝑟,Π)
17 Return 1 if (𝑏 == 𝑏′) ∧ (𝑣0, 𝑣1 ∈ 𝑉) and 0 otherwise

TH-voting. We define a voting protocol 𝑉tally for each tally func-

tion tally covered in our paper (D’Hondt, Majority Judgment,

Condorcet-Schulze, and STV), with 𝑃tally the corresponding tally-

hiding protocol, in the ElGamal setting. The algorithm Votetally
returns an encrypted ballot following the encoding devised in the

corresponding section, and a ZKP that the ballot is correctly formed.

The algorithm isValidtally checks the ZKP and additionally en-

sures that the ballot is not already on the board. As explained in

Section 2, the CGate protocol produces a transcript which acts as a

ZKP that the protocol was performed correctly. By concatenating

Algorithm 3: IdealPriv
B,tally (𝜅, 𝑛, 𝑛𝑐 , 𝑎, 𝑡,𝐶,𝑉 ,D)

1 𝑎1, · · · , 𝑎𝑛𝑐 := B(𝜅,D); 𝐴 := {𝑎1, · · · , 𝑎𝑛𝑐 }
2 if 1 ∈ 𝐴 then Return 0

3 𝑣0, 𝑣1 := B(𝜅, 𝑝𝑎𝑟, (𝑠𝑖)𝑖∈𝐶)
4 𝑏 ∈𝑟 {0, 1} 𝐵 := (𝑣𝑏)
5 for 𝑖 ∈ [1, 𝑛]\(𝐴⋃{1}) do
6 𝑣𝑖 ← D
7 𝐵 := 𝐵 | |𝑣𝑖
8 (𝑣𝑖)𝑖∈𝐴 := B()
9 𝐵 := 𝐵 | | (𝑣𝑖)𝑖∈𝐴

10 𝑟 := tally(𝐵)
11 𝑏′ := B(𝑟)
12 Return 1 if (𝑏 == 𝑏′) ∧ (𝑣0, 𝑣1 ∈ 𝑉) and 0 otherwise

the transcripts of all CGate and the transcript of the threshold de-

cryption, the participants produce a ZKPΠ that 𝑃tally has been per-

formed correctly. This also defines a Verifytally algorithm which

consists of verifying all the ZKP. We consider an ideal Setup(𝜅, 𝑎, 𝑡)
that picks a group 𝐺 corresponding to the security parameter 𝜅,

picks randomly a generator 𝑔 and returns 𝑠𝑘, 𝑝𝑘, 𝑠1, ℎ1, · · · , 𝑠𝑎, ℎ𝑎
where the (𝑠𝑖 , ℎ𝑖) are distributed following Shamir’s scheme with 𝑎

authorities and a threshold 𝑡 ; 𝑠𝑘 is the corresponding secret key and

𝑝𝑘 = (𝑔,𝑔𝑠𝑘). The setup can be further refined with a UC-secure

DKG (see e.g. [46]). Finally, we also consider an ideal registration

where the credential 𝑐𝑖 is a secret signature key while 𝜋𝑖 is the

public verification key.

Theorem 7.2. Let tally be one of the previously defined tally
functions (D’Hondt, Majority Judgment, Condorcet-Schulze, and STV).
Under the DDH assumption, in the ROM and if the signature scheme
is strongly unforgeable, 𝑉tally is private w.r.t. tally.

The proof can be found in Appendix J. We also prove that𝑉tally
is verifiable for a notion of verifiability similar to [19]. Note that

the key step is the fact that our tally-hiding schemes guarantees

universal verifiability: auditors can check the result is valid. Individ-

ual verifiability is straightforward in our setting since we implicitly

assume that all voters verify their vote. How to achieve individual

verifiability in practice is beyond the scope of this work.

8 IMPLEMENTATION
In order to validate our approach, we have written a prototype

implementation. In the literature, most of such prototypes are based

on Paillier encryption. Here, we concentrate on the ElGamal-based

setting, in order to evaluate its practical feasibility. The libsodium
library is used for randomness and all elliptic curve and hashing

operations. The rest is implemented as a standalone C++ program. It

is available as a companion artefact of this paper [4] and is published

as free software. Most of the primitives of our toolbox have been

implemented, and as a proof of concept, we havewritten a fully tally-

hiding protocol for Condorcet-Schulze (ballots as list of integers,

and no leakage, in Figure 2).

We ran our software on various sets of parameters. In order to

compare to [26], we also consider 3 trustees (and no threshold).

Our experimental setting is a single server hosting two 16-core

12

A toolbox for verifiable tally-hiding e-voting systems

voters 5 candidates 10 candidates 20 candidates

64 1m50s / 49 MB 8m30s / 0.30 GB 45m / 1.8 GB

128 2m40s / 87 MB 12m / 0.51 GB 1h27m / 2.9 GB

256 4m35s / 160 MB 20m / 0.88 GB 2h37m / 4.8 GB

512 8m10s / 305 MB 34m / 1.6 GB 4h43m / 8.6 GB

1024 15m / 595 MB 1h05m / 3.1 GB 8h50m / 16 GB

Figure 4: Benchmark (wall-clock time and transcript size) of
fully tally-hiding Condorcet-Schulze MPC computation.

AMD EPYC 7282 processors and 128 GB or RAM. Each of the 3

trustees runs 4 computing threads and a few scheduling and I/O

threads. The communication between the trustees is emulated via

the loopback network interface. Thus, all the network system calls

are indeed performed by the program, even though this is just a

simulation. The verification of the validity of the ballots is a non-

MPC computation that takes a negligible time, compared to the

tally. In Figure 4, we summarize the cost in terms of wall-clock time

and the size of the transcript, measured by the program.

This experiment demonstrates that the approach is sound and

in the realm of practicability, for moderate-sized elections. With

this choice of ballot representation, which is very cheap from the

voter’s point of view, the agglomeration of the preference matrices

has to be done in MPC, and therefore the cost for the trustees grows

quasi-linearly in the number of voters. Therefore, at some point,

the approach of [26] using Paillier encryption becomes preferable,

since the aggregation is for free, and the MPC cost is essentially

independent of the number of voters. Still, their benchmark gives

more than 9 days of MPC computation for tallying a 20-candidates

Condorcet-Schulze election, which is more than what we provide

for 1024 voters. This is mostly due to the efficiency of elliptic-curve

based ElGamal encryption.

9 LESSONS LEARNED
Our study shows that it is possible to compute the result of an

election without leaking any additional information on the original

ballots, often at a realistic cost. This requires however to carefully

design the corresponding algorithm for each different tally function.

We have provided in this paper several techniques that can reduce

the cost. This was applied to several well-known complex voting

systems, and we developed a toolbox that can be re-used in other

contexts. We list here the main questions that a designer should

consider when implementing another counting function.

Think ElGamal. While Paillier is the Swiss-Army knife for MPC

implementations, our study has shown that ElGamal can often

suffice, even when encrypted integers need to be compared or

multiplied. This can be a big advantage in terms of efficiency and

availability of software libraries.

Rethink the encoding of ballots. The encoding of a ballot can have

a huge impact on the cost of the rest of the procedure. For example,

encoding integers in their bit representation adds an initial cost

that can later save a lot of computation. It can allow to use ElGamal

rather than Paillier. The encoding of ballots also typically offers

different tradeoffs in terms of load balance between voters and

authorities, as seen for example for the Condorcet voting function

where a more complex ballot can alleviate the authorities task.

Verifiable mixnets are a versatile tool. The typical use of a mixnet

is to mix and re-randomize encrypted ballots before decryption

and application of a counting function on the cleartexts. However,

verifiable mixnets are also useful to discharge some computations

(e.g. verifications) on the cleartexts. More advanced mixing can be

used to ensure for example that the same permutation is applied to

several components. We have proposed an original usage of mixnet

in the context of Condorcet, where each voter uses a verifiable

shuffle to encode their vote as a (secret) permutation of a fixed

public matrix, proving well-formedness.

Consider the full algorithmic toolbox.When designing an MPC

algorithm, the constraints are rather non standard. The worst case

always needs to be considered, and all branches need to be always

visited, like in the circuit complexity model. In fact, this circuit

point of view is highly relevant, and we borrowed some algorithms

from the hardware literature. The depth of the circuit is related to

the number of communication rounds; but limits on the fan-in or

fan-out of a gate are irrelevant.

Some rather advanced algorithms like the MJ counting functions

or the Floyd-Warshall shortest path algorithm can be translated

rather easily. On the other hand, some basic tasks can be way too

costly if one chooses the wrong algorithm for them. For instance,

sorting a list of integers becomes quadratic for more than a few

quasi-linear classical algorithms when converted to MPC. Indeed,

many classical algorithms assume that accessing the 𝑖th value of an

array 𝑇 [𝑖] takes constant time, even when 𝑖 is a computed value,

while in MPC this requires a linear time to pass through all the

values and hide the value of 𝑖 . Another typical example is addition of

encrypted integers, where carry propagation can generate a chain of

dependencies that translates into a linear number of communication

rounds. Breaking the chain of carries as done in hardware circuits

allows to reduce this to a logarithmic number of rounds.

REFERENCES
[1] 2003. Condorcet Internet Voting Service (CIVS). https://civs.cs.cornell.edu/.

(2003). Accessed: 04/01/2022.

[2] 2012. Ubuntu IRC Council Position. https://lists.ubuntu.com/archives/

ubuntu-irc/2012-May/001538.html. (2012). Accessed: 04/01/2022.

[3] 2019. NSWEC – Election Results. NSW Electoral Commision, https://pastvtr.

elections.nsw.gov.au/SG1901/LC/State/preferences. (2019). Accessed: 2020-08-05.

[4] 2022. Source code of prototype implementation of Section 8. Available at

https://gitlab.inria.fr/gaudry/THproto. (2022).

[5] Ben Adida. 2008. Helios: Web-based Open-Audit Voting. In 17th USENIX Security
Symposium (Usenix’08).

[6] Michel Balinski and Rida Laraki. 2010. Majority Judgment: Measuring Ranking
and Electing. MIT Press. https://hal.archives-ouvertes.fr/hal-01533476

[7] J. Bar-Ilan and D. Beaver. 1989. Non-Cryptographic Fault-Tolerant Computing

in Constant Number of Rounds of Interaction. In Annual ACM Symposium on
Principles of Distributed Computing (PODC’89). 9. https://doi.org/10.1145/72981.
72995

[8] Kenneth E. Batcher. 1968. Sorting Networks and Their Applications. In Spring
Joint Computer Conference (American Federation of Information Processing Soci-
eties - AFIPS’68). ACM. https://doi.org/10.1145/1468075.1468121

[9] Mihir Bellare and Amit Sahai. 1999. Non-malleable Encryption: Equivalence

between Two Notions, and an Indistinguishability-Based Characterization. In Ad-
vances in Cryptology - CRYPTO ’99 (Lecture Notes in Computer Science), Michael J.

Wiener (Ed.), Vol. 1666. Springer, 519–536.

[10] Josh Benaloh, Tal Moran, Lee Naish, Kim Ramchen, and Vanessa Teague. 2010.

Shuffle-Sum: Coercion-Resistant Verifiable Tallying for STV Voting. IEEE Trans-
actions on Information Forensics and Security (2010). https://doi.org/10.1109/TIFS.

2009.2033757

13

https://civs.cs.cornell.edu/
https://lists.ubuntu.com/archives/ubuntu-irc/2012-May/001538.html
https://lists.ubuntu.com/archives/ubuntu-irc/2012-May/001538.html
https://pastvtr.elections.nsw.gov.au/SG1901/LC/State/preferences
https://pastvtr.elections.nsw.gov.au/SG1901/LC/State/preferences
https://gitlab.inria.fr/gaudry/THproto
https://hal.archives-ouvertes.fr/hal-01533476
https://doi.org/10.1145/72981.72995
https://doi.org/10.1145/72981.72995
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1109/TIFS.2009.2033757
https://doi.org/10.1109/TIFS.2009.2033757

A toolbox for verifiable tally-hiding e-voting systems

[11] David Bernhard, Olivier Pereira, and Bogdan Warinschi. 2012. How Not to Prove

Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In

Advances in Cryptology - ASIACRYPT 2012 (Lecture Notes in Computer Science),
Vol. 7658. Springer, 626–643.

[12] Brent and Kung. 1982. A Regular Layout for Parallel Adders. IEEE Trans. Comput.
C-31, 3 (1982).

[13] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. 2018. Bullet-

proofs: Short Proofs for Confidential Transactions and More. In IEEE Symposium
on Security and Privacy (S&P’18). https://doi.org/10.1109/SP.2018.00020

[14] Sébastien Canard, David Pointcheval, Quentin Santos, and Jacques Traoré. 2018.

Practical Strategy-Resistant Privacy-Preserving Elections. In European Sympo-
sium on Research in Computer Security (ESORICS’18). Springer.

[15] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001. IEEE Computer Society, 136–145.

[16] Ran Canetti, Asaf Cohen, and Yehuda Lindell. 2015. A Simpler Variant of Univer-

sally Composable Security for Standard Multiparty Computation. In Advances in
Cryptology - CRYPTO 2015 (Lecture Notes in Computer Science), Vol. 9216. Springer,
3–22.

[17] M. R. Clarkson, S. Chong, and A. C. Myers. 2008. Civitas: Toward a Secure Voting

System. In IEEE Symposium on Security and Privacy (S&P’08).
[18] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachene.

2013. Distributed ElGamal à la Pedersen - Application to Helios. In Workshop on
Privacy in the Electronic Society (WPES’13).

[19] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachene.

2014. Election Verifiability for Helios under Weaker Trust Assumptions. In

Proceedings of the 19th European Symposium on Research in Computer Security
(ESORICS’14) (LNCS), Vol. 8713. Springer, Wroclaw, Poland, 327–344.

[20] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. 1994. Proofs of Partial

Knowledge and Simplified Design of Witness Hiding Protocols. In CRYPTO’94.
Springer.

[21] Ivan Damgård and Mads Jurik. 2001. A Generalisation, a Simplification and

Some Applications of Paillier’s Probabilistic Public-Key System. In Public Key
Cryptography (PKC’01). Springer.

[22] Robert W. Floyd. 1962. Algorithm 97: Shortest Path. Commun. ACM 5, 6 (1962).

[23] Rolf Haenni, Reto E. Koenig, Philipp Locher, and Eric Dubuis. 2017. CHVote

System Specification. Cryptology ePrint Archive, Report 2017/325. (2017).

[24] Thomas Haines, Dirk Pattinson, and Mukesh Tiwari. 2019. Verifiable Homo-

morphic Tallying for the Schulze Vote Counting Scheme. In Verified Software.
Theories, Tools, and Experiments (VSTTE’19). Springer.

[25] Carmit Hazay, Gert Mikkelsen, Tal Rabin, and Tomas Toft. 2019. Efficient RSA

Key Generation and Threshold Paillier in the Two-Party Setting. Journal of
Cryptology (2019).

[26] Fabian Hertel, Nicolas Huber, Jonas Kittelberger, Ralf Kuesters, Julian Liedtke,

and Daniel Rausch. 2021. Extending the Tally-Hiding Ordinos System: Imple-

mentations for Borda, Hare-Niemeyer, Condorcet, and Instant-Runoff Voting. In

Proceedings E-Vote-ID 2021. University of Tartu Press, 269–284.

[27] Donald Knuth. 1973. The Art Of Computer Programming, vol. 3: Sorting And
Searching. Addison-Wesley.

[28] Ralf Kuesters, Julian Liedtke, Johannes Mueller, Daniel Rausch, and Andreas

Vogt. 2020. Ordinos: A Verifiable Tally-Hiding E-Voting System. In IEEE European
Symposium on Security and Privacy (EuroS&P’20).

[29] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. 2011. Verifiability, Pri-

vacy, and Coercion-Resistance: New Insights from a Case Study. In 32nd IEEE
Symposium on Security and Privacy, S&P 2011. IEEE Computer Society, 538–553.

[30] Helger Lipmaa. 2003. On Diophantine Complexity and Statistical Zero-

Knowledge Arguments. In ASIACRYPT’03. Springer.
[31] Helger Lipmaa and Tomas Toft. 2013. Secure Equality and Greater-Than Tests

with Sublinear Online Complexity. In Automata, Languages, and Programming
(ICALP’13). Springer.

[32] B. L. Meek. 1969. Une nouvelle approche du scrutin transférable. Mathématiques
et Sciences humaines 25 (1969). http://www.numdam.org/item/MSH_1969__25_

_13_0

[33] Jesper Buus Nielsen. 2003. On Protocol Security in the Cryptographic Model. Ph.D.
Dissertation. University of Aarhus.

[34] Takashi Nishide and Kouichi Sakurai. 2010. Distributed Paillier Cryptosys-

tem without Trusted Dealer. In Information Security Applications (WISA 2010).
Springer.

[35] Torben Pryds Pedersen. 1991. A Threshold Cryptosystem without a Trusted

Party. In EUROCRYPT’91. Springer.
[36] Maurice Pollack. 1960. The Maximum Capacity through a Network. Operations

Research 8, 5 (1960). http://www.jstor.org/stable/167387

[37] Guillaume Poupard and Jacques Stern. 1998. Security analysis of a practical “on

the fly” authentication and signature generation. In EUROCRYPT’98. Springer.
[38] Kim Ramchen, Chris Culnane, Olivier Pereira, and Vanessa Teague. 2019. Uni-

versally Verifiable MPC and IRV Ballot Counting. In Financial Cryptography and
Data Security - 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and

Nevis, February 18-22, 2019, Revised Selected Papers (Lecture Notes in Computer
Science), Ian Goldberg and Tyler Moore (Eds.), Vol. 11598. Springer, 301–319.

https://doi.org/10.1007/978-3-030-32101-7_19

[39] J Barkley Rosser and Lowell Schoenfeld. 1962. Approximate formulas for some

functions of prime numbers. Illinois Journal of Mathematics 6, 1 (1962), 64–94.
[40] Berry Schoenmakers and Pim Tuyls. 2004. Practical Two-Party Computation

Based on the Conditional Gate. In ASIACRYPT’04. Springer.
[41] Berry Schoenmakers and Pim Tuyls. 2006. Efficient Binary Conversion for Paillier

Encrypted Values. In EUROCRYPT’06. Springer.
[42] Berry Schoenmakers and Meilof Veeningen. 2015. Universally Verifiable Multi-

party Computation from Threshold Homomorphic Cryptosystems. In Applied
Cryptography and Network Security (ACNS’15). Springer.

[43] Markus Schulze. 2011. A New Monotonic, Clone-independent, Reversal Sym-

metric, and Condorcet-consistent Single-winner Election Method. Social Choice
and Welfare 36 (2011). https://doi.org/10.1007/s00355-010-0475-4

[44] Stephen Warshall. 1962. A Theorem on Boolean Matrices. J. ACM 9, 1 (1962), 2.

https://doi.org/10.1145/321105.321107

[45] Roland Wen and Richard Buckland. 2008. Mix and Test Counting in Preferential
Electoral Systems. Technical Report. University of New South Wales.

[46] Douglas Wikström. 2004. Universally Composable DKG with Linear Number

of Exponentiations. In Security in Communication Networks, 4th International
Conference, SCN 2004 (Lecture Notes in Computer Science), Carlo Blundo and

Stelvio Cimato (Eds.), Vol. 3352. Springer, 263–277.

[47] Douglas Wikström. 2009. A Commitment-Consistent Proof of a Shuffle. In

Information Security and Privacy (ACISP’09). Springer.

14

https://doi.org/10.1109/SP.2018.00020
http://www.numdam.org/item/MSH_1969__25__13_0
http://www.numdam.org/item/MSH_1969__25__13_0
http://www.jstor.org/stable/167387
https://doi.org/10.1007/978-3-030-32101-7_19
https://doi.org/10.1007/s00355-010-0475-4
https://doi.org/10.1145/321105.321107

A toolbox for verifiable tally-hiding e-voting systems

Appendices

Part I: Building blocks.

Functionality Option Algorithm Exp per trustee Comm. cost Transcript size

Dec P/EG Dec 5𝑎 𝐵 4𝑎

RandBit P/EG RandBit 3𝑎 + 2 𝑅 6𝑎

CSZ
EG CGate [40] 33𝑎 𝑅 + 4𝐵 34𝑎

P Mul [42] 10𝑎 2𝐵 11𝑎

If P/EG If CSZ CSZ CSZ

Select P/EG Select 𝑛CSZ CSZ 𝑛CSZ

Negbits P/EG Negbits (𝑚 − 1)CSZ (𝑚 − 1)CSZ (𝑚 − 1)CSZ

Addbits
P/EG Addbits [40] (2𝑚 − 1)CSZ (2𝑚 − 1)CSZ (2𝑚 − 1)CSZ

Sublinear

P/EG

UFCAddbits 𝑚(3
2
log𝑚 + 2)CSZ 2(log𝑚 + 1)CSZ 𝑚(3

2
log𝑚 + 2)CSZ

Subbits

P/EG Subbits (2𝑚 − 1)CSZ (2𝑚 − 1)CSZ (2𝑚 − 1)CSZ
LT

P/EG

SubLTbits (2𝑚 − 1)CSZ (2𝑚 − 1)CSZ (2𝑚 − 1)CSZ

LT+EQ

P/EG

SubLTbits (3𝑚 − 2)CSZ (2𝑚 + log𝑚)CSZ (3𝑚 − 2)CSZ

Sublinear

P/EG

UFCSubbits 𝑚(3
2
log𝑚 + 2)CSZ 2(log𝑚 + 1)CSZ 𝑚(3

2
log𝑚 + 2)CSZ

LTbits

LT

P/EG

SubLTbits (2𝑚 − 1)CSZ (2𝑚 − 1)CSZ (2𝑚 − 1)CSZ

LT+EQ

P/EG

SubLTbits (3𝑚 − 2)CSZ (2𝑚 + log𝑚)CSZ (3𝑚 − 2)CSZ

Sublinear

P/EG

CLTbits (4𝑚 − 3)CSZ 2(log𝑚 + 1)CSZ (4𝑚 − 3)CSZ

Sublinear+EQ

P/EG

CLTbits (5𝑚 − 4)CSZ 2(log𝑚 + 1)CSZ (5𝑚 − 4)CSZ

EQbits P/EG EQbits (2𝑚 − 1)CSZ (log𝑚 + 1)CSZ (2𝑚 − 1)CSZ

EQ
Precomp

P

EQH [31]
21𝑚𝑎 + 75𝑎
+4(𝑚 + 1) 𝑅 + 8𝐵 (22𝑚 + 28)𝑎

GT
Precomp

P

GTH [31]
(27𝑚 + 146 log𝑚)𝑎
+8𝑚 + 9𝑎 + 5 log𝑚 (2𝑅 + 13𝐵) log𝑚 (28𝑚 + 50 log𝑚)𝑎

+6𝑎
BinExpand P BinExpand [41] 12𝑚𝑎 + 53𝑎 + 3𝑚 𝑅 + 2𝑚𝐵 (17𝑚 + 21)𝑎
Aggregbits EG Aggregbits 3𝑛CSZ (log𝑛 + 1) log𝑛CSZ 3𝑛CSZ

Mulbits P/EG Mulbits 3𝑚2CSZ 2𝑚2CSZ 3𝑚2CSZ

Divbits P/EG Divbits (3𝑚 − 1)𝑟CSZ 2𝑚𝑟CSZ (3𝑚 − 1)𝑟CSZ

MinMaxbits
naive

P/EG

MinMaxbits (8𝑚 − 2)𝑛CSZ 2𝑚 log𝑛CSZ (8𝑚 − 2)𝑛CSZ

sublinear

P/EG

MinMaxbits (12𝑚 − 6)𝑛CSZ 2 log𝑛(log𝑚 + 2)CSZ (12𝑚 − 6)𝑛CSZ

Mixnet
EG [47] 9𝑛𝑎 𝑅 5𝑛𝑎

P [47] 8𝑛𝑎 𝑅 4𝑛𝑎

Figure 5: Cost of various MPC primitives: basic functionalities for logic, integer arithmetic, and a few advanced functions.
The Option column includes whether this is available in Paillier (P) or ElGamal (EG). The notations are 𝑎 for the number
of authorities,𝑚 for the bit-length of the operands, 𝑛 for the number of operands, 𝑟 for the precision (in the division). All
logarithms are in base 2. The communication costs are expressed in terms of broadcast (denoted 𝐵) and full-rounds (denoted 𝑅).
The unit of the transcript size is the key length. This corresponds to half the size of a ciphertext in both Paillier (typically 3072
bits) and ElGamal (typically 256 bits) settings.

15

A toolbox for verifiable tally-hiding e-voting systems

In this Appendix, we give details about our cryptographic primitives. This includes the MPC building blocks that we present in Appendix C

and which are summed up in Figure 5, but also more basic recalls about the ElGamal and Paillier cryptosystems in Appendix A and the

Zero Knowledge Proofs (ZKP) in Appendix B. Afterwards, we explain how we use our MPC toolbox to perform the tally for single choice

voting (in Appendix D), Majority Judgment (in Appendix E), the Condorcet methods (in Appendix F) and Single Transferable Choice (in

Appendix G). All the security aspects are addressed in the second part of the Appendix, which begins with Appendix J.

A ELGAMAL AND PAILLIER CRYPTOSYSTEMS
In this section, we recall the encryption and decryption algorithms in the Paillier and ElGamal cryptosystems. Both are additively homomor-

phic. This allows efficient addition, subtraction, negation (flipping an encrypted bit) and re-encryption, without resorting to MPC. These are

extremely useful for various uses. We sum up their complexity in Figure 6.

A.1 ElGamal and Paillier encryptions

ElGamal encryption.
In the ElGamal setting,𝐺 is a group of prime order 𝑞 and public generators 𝑔 and ℎ. The public encryption key is (𝑔, ℎ), while the discrete

logarithm of ℎ in base 𝑔 is the corresponding decryption key. To encrypt a message𝑚 ∈ Z𝑞 under ℎ, one chooses 𝑟 ∈𝑟 Z𝑞 and compute

Enc(𝑚, 𝑟) = (𝑔𝑟 , 𝑔𝑚ℎ𝑟) .

Note that this is different from the textbook ElGamal cryptosystem, since we encrypt 𝑔𝑚 instead of𝑚. Therefore, decrypting will require to

solve a discrete logarithm problem and only small values of𝑚 can be efficiently decrypted. Hence we assume that computing 𝑔𝑚 has a

negligible complexity compared to that of the two other exponentiations. This modification grants the ElGamal cryptosystem the desired

homomorphic property.

Consequently, Add and Sub are simply point-wise multiplication and division of ciphertexts, and we will often just use the multiplication

or division symbols in our algorithms, without explicitly mentioning that they encode Add or Sub. We also have an almost free Not operation
(divide an encryption of 1 by the operand) and a cheap ReEnc primitive (multiply the operand by an encryption of 0). Note that Not can use

a fixed (trivial) encryption of 1, while ReEnc needs a fresh encryption of 0. Therefore Add, Sub and Not are essentially for free, while ReEnc
costs two exponentiations.

Paillier encryption.
In the Paillier setting, 𝑛 is a RSA integer, coprime with it’s Euler’s totient value 𝜙 (𝑛). In addition, 𝑔 ∈ Z𝑛2 is an element of order 𝑛, for

instance 𝑔 = 1 + 𝑛. To encrypt a message𝑚 ∈ Z𝑛 under the public key (𝑛,𝑔), one chooses 𝑟 ∈ Z×𝑛 and computes

Enc(𝑚, 𝑟) = 𝑔𝑚𝑟𝑛 mod 𝑛2 .

This encryption scheme is naturally homomorphic, which allows to derive the Add, Sub, Not and ReEnc primitives as above. Note that when

𝑚 is small, computing an encryption of𝑚 only costs 1 exponentiation, as the other is either negligible or precomputable.

Functionality Option Exponentiations

Enc
P 1 or 2

EG 2

Not P/EG 0

Add/Sub P/EG 0

ReEnc
P 1

EG 2

Figure 6: Cost of non-MPC homomorphic operations. In the first line, when the plaintext is a small integer, the cost is only 1

exponentiation as the other is either precomputable or negligible.

A.2 Threshold decryption
We recall the distributed algorithms for threshold decryption in the Paillier and ElGamal setting. While threshold ElGamal is standard, there

are several algorithms for threshold decryption in Paillier, and it is not straightforward to decide which one is the best. In the following, we

consider the work of [21]. In both cases, the overall cost of the Dec decryption function is 5𝑎 exponentiations per authority (where 𝑎 is the

number of authorities), and it requires a single broadcast per authority.

ElGamal decryption.
In the ElGamal setting, the secret 𝑠 such that ℎ = 𝑔𝑠 is shared between the authorities using a Shamir secret sharing scheme, such as

Pedersen’s distribution scheme [35]. More precisely, there exists a polynomial 𝑃 of degree 𝑡 (where 𝑡 is the threshold) such that 𝑃 (0) = 𝑠 ,
16

A toolbox for verifiable tally-hiding e-voting systems

while authority 𝑖’s share is 𝑠𝑖 = 𝑃 (𝑖). Each authority has a public commitment ℎ𝑖 = 𝑔
𝑠𝑖
to their share, which allows to provide proofs of

correct decryption.

In order to decrypt a ciphertext (𝑥,𝑦), each authority computes𝑤𝑖 = 𝑥
𝑠𝑖
and provides a Zero Knowledge proof that log𝑥 (𝑤𝑖) = log𝑔 (ℎ𝑖).

The𝑤𝑖 are referred to as the partial decryptions. From any 𝑡 + 1 valid partial decryptions, the value 𝑥𝑠 can be recovered using Lagrange’s

interpolation. Finally, the plaintext is𝑚 = 𝑙𝑜𝑔𝑔 (𝑦/𝑥𝑠). The operations performed by authority 𝑖 are described in Algorithm 4, which assumes

that at least 𝑡 + 1 valid partial decryptions are available after the for loop.

Algorithm 4: Decryption algorithm for authority 𝑖 in the ElGamal setting

Require: (𝑔, ℎ), (ℎ1, · · · , ℎ𝑎), hash, 𝑠𝑖 , (𝑥,𝑦)
Ensure:𝑚, a decryption of (𝑥,𝑦)

1 𝑤𝑖 = 𝑥
𝑠𝑖

2 𝛼𝑖 ∈𝑟 Z𝑞
3 𝑒1,𝑖 = 𝑔

𝛼𝑖
, 𝑒2,𝑖 = 𝑥

𝛼𝑖

4 𝑑𝑖 = hash(𝑔| |ℎ | |ℎ1 | | · · · | |ℎ𝑎 | |𝑥 | |𝑦 | |𝑤𝑖 | |𝑒1,𝑖 | |𝑒2,𝑖)
5 𝑟𝑖 = 𝛼𝑖 + 𝑠𝑖𝑑𝑖
6 for 𝑗 = 1 to 𝑎 (𝑗 ≠ 𝑖) do
7 𝑑 𝑗 = hash(𝑔, ℎ, ℎ1, · · · , ℎ𝑎, 𝑥,𝑦,𝑤 𝑗 , 𝑒1, 𝑗 , 𝑒2, 𝑗)
8 𝑏 𝑗 = (𝑔𝑟 𝑗ℎ

−𝑑 𝑗

𝑗
== 𝑒1, 𝑗)

9 𝑏 𝑗 = 𝑏 𝑗 ∧ (𝑔𝑟 𝑗𝑤
−𝑑 𝑗

𝑗
== 𝑒2, 𝑗)

10 𝑆 = {𝑖}⋃{ 𝑗 ∈ [1, 𝑎] | 𝑏 𝑗 = 1}
11 Compute Lagrange coefficients 𝜅𝑘 for set 𝑆 = { 𝑗1, · · · , 𝑗𝑡+1} (* keep only the first elements of 𝑆 if it’s larger *)

12 Return log𝑔

(
𝑦

(∏𝑡+1
𝑘=1

𝑤
−𝜅𝑘
𝑗𝑘

))
Paillier decryption.

In the Paillier setting, we use the approach from [21] as it provides a decryption algorithm which is similar to that of the ElGamal setting.

In what follows, 𝑔 = (1 + 𝑛). Recall that 𝑛 and 𝜙 (𝑛) are coprime, so there exists a unique integer 𝑠 in Z𝑛𝜙 (𝑛) such that 𝑠 is congruent to

1 modulo 𝑛 and 0 modulo 𝜙 (𝑛). This integer 𝑠 is shared among the authorities using a Shamir secret sharing scheme, for instance using

the work of [25], which can be generalized for an arbitrary number of authorities. Finally, we assume that a public random group element

𝑔′ ∈𝑟 Z𝑛2 has been chosen, and that each authority has a public commitment ℎ𝑖 = (𝑔′)𝑠𝑖 to their share.

To decrypt a ciphertext 𝐶 , each authority computes 𝑤𝑖 = 𝐶
𝑠𝑖
and provides a Zero Knowledge proof that 𝑤𝑖 is well-formed (using the

proof from [37]). Let Δ = 𝑎!, where 𝑎 is the number of authorities. For any 𝑡 + 1 valid partial tallies, the value 𝐷 = 𝐶Δ𝑠
can be recovered

using Lagrange’s interpolation. Note that the Lagrange coefficients are multiplied by Δ because inverting an integer is infeasible modulo

𝑛𝜙 (𝑛), as 𝜙 (𝑛) is unknown. Since Δ and 𝑛 are coprime, Δ is invertible modulo 𝑛 and we denote 𝑢 = Δ−1 mod 𝑛. We compute 𝐷′ = 𝐷𝑢
mod

𝑛2 and cast 𝐷′ into Z in order to derive𝑚 = (𝐷′ − 1)/𝑛. The resulting𝑚 is the desired plaintext.

Note that another threshold scheme for the Paillier cryptosystem can be found in [34]. It is less similar to the ElGamal threshold scheme,

and it requires an honest majority of authorities.

B ZERO KNOWLEDGE PROOFS
Zero Knowledge proofs are ubiquitous in our algorithms. Already, the decryption algorithms we have just mentioned include proofs of

correct decryption for the partial tallies. Not trying to be exhaustive, we recall two standard zero knowledge proofs, and give their complexity

in terms of exponentiations for the prover, the verifier, as well as the size of the transcript. All our Zero Knowledge proofs are made

non-interactive with the Fiat-Shamir transformation, which requires a hash function hash. We decided to incorporate this function as an

argument of the algorithms as some specific prefixes should be incorporated into the hash depending on the context (typically any public

parameter). The precise specification of how the hashes should be prefixed to provide the correct level of security is out of the scope of our

work, but still needs to be mentioned.

Standard encryption of 0.
Proving that a ciphertext is an encryption of 0 is useful to prove that two ciphertexts encrypt the same plaintext and, ultimately, to prove

that a ciphertext has been correctly reencrypted. We give Algorithm 5, which is a standard way to obtain such a ZKP. To verify a ZKP

obtained with this algorithm, simply compute 𝑑 = hash(𝑋 | |𝑒) and check that 𝑒 = Enc(0, 𝑎)𝑋 −𝑑 .
Standard 0/1 encryption.

In all our algorithms, in particular on the voter side, it is extremely common to prove that some encryption is an encryption of either 0 or

1. We give Algorithm 6 which allows to produce such a proof given a bit 𝑏, a randomness 𝑟 and an encryption 𝑋 = Enc(𝑏, 𝑟). This proof
17

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 5: ZKP0
Require: 𝑅, hash, 𝑋, 𝑟 such that 𝑋 = Enc(0, 𝑟)
(* 𝑅 is Z𝑞 for ElGamal encryption, Z×𝑛 for Paillier encryption *)

Ensure: 𝜋0, a ZKP that 𝑋 is a encryption of 0.

1 𝑤 ∈𝑟 𝑅
2 𝑒 = Enc(0,𝑤)
3 𝑑 = hash(𝑋 | |𝑒)
4 𝑎 = 𝑤 + 𝑟𝑑
5 Return 𝜋0 = (𝑒, 𝑎)

ZKP P/EG Exp. for Prover Exp. for Verifier Transcript size

𝜋0
EG 2 4 3

P 1 2 3

𝜋0/1
EG 6 8 8

P 4 4 8

𝜋Shuffle
EG 10𝑛 + 5 9𝑛 + 11 10𝑛 + 10
P 8𝑛 + 4 8𝑛 + 10 10𝑛 + 10

Figure 7: Cost of the Zero Knowledge Proofs for 0/1 encryptions and shuffles.

has the form 𝜋0/1 = (𝑒1, 𝑒2, 𝜎1, 𝜌1, 𝜎2, 𝜌2). To verify such a proof, one can simply compute 𝑑 = hash(𝑋 | |𝑒1 | |𝑒2) and check that the following

equations are verified:

𝜎1 + 𝜎2 = 𝑑
Enc(0, 𝜌1) (𝑋/𝐸1)−𝜎1 = 𝑒1
Enc(0, 𝜌0) (𝑋/𝐸0)−𝜎0 = 𝑒0 .

Algorithm 6: ZKP01
Require: 𝑅, hash, 𝑋, 𝑟, 𝑏 ∈ {0, 1} such that 𝑋 = Enc(𝑏, 𝑟)
(* 𝑅 is Z𝑞 for ElGamal encryption, Z×𝑛 for Paillier encryption *)

Ensure: 𝜋0/1, a Zero Knowledge proof that 𝑋 is an encryption of 0 or 1

1 𝑤 ∈𝑟 𝑅
2 𝑒𝑏 = Enc(0,𝑤)
3 𝜎

1−𝑏 , 𝜌1−𝑏 ∈𝑟 𝑅
4 𝑒

1−𝑏 = Enc(0, 𝜌
1−𝑏) (𝑋/𝐸1−𝑏)−𝜎1−𝑏

5 𝑑 = hash(𝑋 | |𝑒1 | |𝑒2)
6 𝜎𝑏 = 𝑑 − 𝜎

1−𝑏
7 𝜌𝑏 = 𝑤 + 𝑟𝜎𝑏
8 Return 𝜋0/1 = (𝑒1, 𝑒2, 𝜎1, 𝜌1, 𝜎2, 𝜌2)

Proof of a shuffle.
We consider a prover 𝑃 which is given a list of ciphertexts 𝐶1, · · · ,𝐶𝑛 . The prover wants to shuffle the ciphertexts and output 𝐶′

1
, · · · ,𝐶′𝑛 ,

while providing a proof 𝜋Shuffle that there exists a permutation 𝜎 such that for all 𝑖 , 𝐶′
𝑖
= ReEnc(𝐶𝜎 (𝑖)). To do so, one can for instance

apply the protocol from [47], which is a very standard approach in the ElGamal setting. This approach can be adapted in the Paillier setting.

Note that a mixnet procedure can be derived from a proof of a shuffle, using a round of communication.

C OUR MPC TOOLBOX FOR EFFICIENT TALLY-HIDING
From now, we go on with proper MPC primitives and sum up their complexities in Figure 5. We will explain thoroughly how they can be

obtained.

We stress that each functionality can be implemented in several manners, depending on the context. Choosing the implementation that best

suits their need is left to the readers, and may imply implementations which are not presented in this section, as a more efficient replacement

18

A toolbox for verifiable tally-hiding e-voting systems

could exist in some specific context. For instance, we give a generic algorithm for adding two bit-wise encrypted integers (Algorithm 21). But

when one of the operand is known in the clear, another implementation is available, which is twice as efficient (Algorithm 34). Such an

optimisation is often possible for a very specific use, but we cannot anticipate every single specific situation.

A fundamental choice is however to decide how to encode integers. As explained in the main body of the article, in the ElGamal setting it

is not possible to perform advanced arithmetic (in particular multiplication or comparison) if the integer is encrypted in the natural way (𝑚

is directly the integer to be dealt with). The bitwise encryption means that each bit of the integer𝑚 is encrypted individually. We recall

that everything with an exponent
bits

means that this method is used. In the Paillier setting, the BinExpand function allows to convert an

encrypted integer into its bitwise encryption. We postpone the description of this conversion; we will discuss it with other Paillier-specific

algorithms (see Appendix C.6).

C.1 CondSetZero (abbreviated as CSZ)
The CondSetZero functionality is the basis of many other MPC primitives. Given two ciphertexts𝑋 and𝑌 which encrypt 𝑥 and𝑦 respectively,

where 𝑦 ∈ {0, 1}, it returns an encryption of 𝑥𝑦. This algorithm is the basis of virtually all of our MPC algorithm in the ElGamal setting, but

could be used in the Paillier setting as well. We present two algorithms for it. Algorithm 1, that is presented in Section 2.1 and reproduced

below for convenience, is adapted from [40], where it is referred to as the conditional gate. In the Paillier case, there exists a more efficient

and more general algorithm [42], that we present as Algorithm 11: this is a general multiplication algorithm that does not require 𝑦 to be a

bit. The costs of these two variants are given in Figure 5.

We remark that the CGate algorithm requires raising the ciphertext to the power 1/2. This can be done by raising to the power (𝑞 + 1)/2
in ElGamal, or (𝑛 + 1)/2 in Paillier. In the latter case, this works because while the full-group order is unknown, the cleartexts belong to Z𝑛 .
Therefore, even though Mul is a faster implementation of CSZ in the Paillier setting, CGate could be used as well.

Algorithm 7: CSZ
Require: 𝐺 , a group of prime order 𝑞 and public generator 𝑔

pk = (𝑔, ℎ), an exponential ElGamal public key,

whose shares are distributed among the 𝑎 participants
˜ℎ ∈ 𝐺 , a public element independent from pk
𝑋 , an encryption of some 𝑥 ∈ Z𝑞
𝑌 , an encryption of 𝑦 ∈ {0, 1}

Ensure: 𝑍 , a random encryption of 𝑥𝑦

1 𝑌0 ←− 𝐸−1𝑌 2
; 𝑋0 ←− 𝑋 ;

2 for 𝑖 = 1 to 𝑎, for the authority 𝑖 , do
3 (𝑢, 𝑣) ←− 𝑋𝑖−1 ;
4 𝑟1, 𝑟2 ∈𝑟 Z𝑞 ; 𝑠 ∈𝑟 {−1, 1};
5 𝑋𝑖 ←− (𝑢𝑠𝑔𝑟1 , 𝑣𝑠ℎ𝑟1); 𝑒 ←− ˜ℎ𝑟1 ;

6 𝑌𝑖 ←− ReEncpk (𝑌 𝑠𝑖−1, 𝑟2);
7 Broadcast 𝑋𝑖 , 𝑒, 𝑌𝑖 and a ZKP 𝜋𝑖 that they are well formed (see Algorithm 9) ;

8 Each authority verifies the proof of the other authorities (see Algorithm 10) ;

9 They collectively rerandomize 𝑋𝑎 and 𝑌𝑎 into 𝑋 ′ and 𝑌 ′ (see Algorithm 8) ;

10 They collectively decrypt 𝑌 ′ into 𝑦𝑎 ;

11 They output 𝑍 = (𝑋𝑋 ′𝑦𝑎)
1

2 ;

Algorithm 7 consists of three interactive steps. To begin with, as 𝑌 is supposed to be an encryption of 𝑦 ∈ {0, 1}, we use the homomorphic

property to turn it into an encryption 𝑌0 of 2𝑦 − 1 ∈ {−1, 1} at line 1. This operation is essentially free, and does not require any interaction.

Then, the first real step is a round of communications (lines 1 to 8). During this step, the authorities collectively generate a random and implicit

𝑠 ∈ {−1, 1} and compute a reencryption 𝑋𝑎 (resp. 𝑌𝑎) of 𝑋
𝑠
(resp. 𝑌 𝑠

0
). This way, 𝑌𝑎 is an encryption of a random 𝑦′ = 𝑠 (2𝑦 − 1) ∈ {−1, 1}, so

that decrypting it does not reveal anything about the initial value of 𝑦. The second step is a rerandomization phase (line 9) which we added

to obtain SUC-security. Finally, the last step is a threshold decryption protocol (line 10), during which the authorities decrypt 𝑌 ′ to obtain 𝑦′.
Then, by computing 𝑋 ′𝑦

′
, they can form an encryption of 𝑥 (2𝑦 − 1) (indeed, 𝑋 ′ is an encryption of 𝑠𝑥 so that the sign 𝑠 is simplified in the

exponent). To derive the desired encryption of 𝑥𝑦, they can locally multiply by 𝑋 (to obtain an encryption of 2𝑥𝑦) then raise to the power of

(𝑞 + 1)/2, which cancels the factor 2 in the exponent. In what follows, we comment on the modifications that we made compared to the

original version of [40].

Public coin 𝒈. For a technical reason, we require that 𝑔 is obtained with a public coin protocol. For this purpose, we consider that 𝑔 is

derived from a hash of "Conditional gate". This is useful for an explicit reduction to DDH, since it prevents the environment of the SUC

19

A toolbox for verifiable tally-hiding e-voting systems

framework to choose 𝑔 freely. Note that there exists other versions of the DDH game, where the adversary is allowed to choose the generator

𝑔. If such a computational assumption is made, we no longer need 𝑔 to be public coin.

Round of communications. Compared to the original conditional gate protocol, we added the following modifications:

(1) We use an ElGamal commitment (𝑢𝑠𝑔𝑟1 , ˜ℎ𝑟1) instead of a Pedersen commitment 𝑔𝑠 ˜ℎ𝑟 ;

(2) In addition, we require that the ElGamal commitment and the reencryption use the same randomness 𝑟1;

(3) Finally, we also demand that the participants prove that 𝑠 ∈ {−1, 1}, while it was originally only required to prove the knowledge of

some 𝑠 ∈ Z𝑞 .
The two first modifications were made to obtain the extractability of𝑢𝑠 à la Shoup (without rewinding). Combined with the third modification,

they allow the simulator to extract the value 𝑠1 ∈ {−1, 1} used by the adversary, which is required in the proof of SUC-security. (Since 𝑢

may be chosen by the adversary, this also requires to check that 𝑢 ≠ 1.) To prevent the adversary from exploiting the trapdoor log
˜ℎ
(𝑔)

(which allows to extract 𝑢𝑠) not the trapdoor log
˜ℎ
(ℎ) (which allows to extract 𝑣𝑠), we can derive

˜ℎ from a hash of pk. In addition to provide

extractability, the third modification prevents the adversary from choosing 𝑠1 ∉ {−1, 1}. This means that, after the round of communications,

𝑌𝑎 is an encryption of 𝑦′ = 𝑠1𝑠2 (2𝑦 − 1) ∈ {−1, 1}, where 𝑠2 ∈ {−1, 1} is a random element determined by the choices of the honest

participants. Hence, by computing 𝑋
𝑦′
𝑎 , the sign 𝑠1𝑠2 is simplified in the exponent, as expected. To obtain the PoK required at line 7, one can

use a standard disjunctive PoK (see Algorithm 9).

Rerandomization.We also added a second step, which is a reencryption phase (see line 9). This is necessary for the SUC framework;

indeed, consider an attacker that corrupts the last participant. Then it can choose many random 𝑠, 𝑟1, 𝑟2 until 𝑋𝑎 meets a particular pattern

that occurs with non-negligible probability (for instance, the 7 first bits in its bitwise representation are 0). The consequence of such an “attack”

is that 𝑍 will not be an uniformly random encryption of 𝑥𝑦 as desired, so that SUC-security would be lost. To perform the rerandomization,

we can use a synchronous broadcast of random encryptions of 0, along with the corresponding ZKP. For the rerandomization phase, we

consider the protocol described in Algorithm 8.

Algorithm 8: Rerandomization

Require: 𝐺 , a group of prime order 𝑞

pk, an ElGamal public key

𝑋 , a ciphertext

Ensure: 𝑋 ′, a rerandomization of 𝑋

1 for 𝑖 = 1 to 𝑎, participant 𝑖 do
2 𝑟𝑖 ∈𝑟 Z𝑞 ;
3 𝐴𝑖 ←− Encpk (0, 𝑟𝑖);
4 𝜋𝑖 ←−PoK0 (pk, 𝐴𝑖 , 𝑟𝑖);
5 (* ZKP that 𝐴𝑖 is well-formed *)

6 𝑐𝑖 ←− hash(𝐴𝑖 , 𝜋𝑖);
7 Broadcast the commitment 𝑐𝑖 ;

8 Once a commitment has been received from all the other authorities, broadcast 𝐴𝑖 , 𝜋𝑖 ;

9 Verify that the broadcast 𝐴 𝑗 , 𝜋 𝑗 are consistent with the corresponding commitments;

10 return 𝑋
∏𝑎

𝑖=1𝐴𝑖 ;

Computing the PoK. At line 7, we need a PoK that 𝑋𝑖 , 𝑐𝑠 , 𝑌𝑖 is well formed. This proof guarantees that there exists 𝑠 ∈ {−1, 1} and
𝑟1, 𝑟2 ∈ Z𝑞 such that 𝑋𝑖 = ReEncpk (𝑋𝑖−1, 𝑟1), 𝑒 = ˜ℎ𝑟1 and 𝑌𝑖 = ReEncpk (𝑌 𝑠𝑖−1, 𝑟2). We use the following standard disjunctive proof:

𝑋𝑖 = ReEncpk (𝑋𝑖−1, 𝑟1) and 𝑌𝑖 = ReEncpk (𝑌𝑖−1, 𝑟2) and 𝑒 = ˜ℎ𝑟1

or

𝑋𝑖 = ReEncpk (𝑋 −1𝑖−1, 𝑟1) and 𝑌𝑖 = ReEncpk (𝑌 −1𝑖−1, 𝑟2) and 𝑒 = ˜ℎ𝑟1 .

To verify the proof, one can use Algorithm 10.

Since each authority has to check all the other authorities’ proofs, this algorithm costs approximately 33𝑎 exponentiations per authority,

where 𝑎 is the number of authorities. The real value depends on the threshold, but 33𝑎 is a reasonable upper-bound. The communication cost

is one round of communication and a few broadcasts.

In Algorithm 11, there is also a Zero Knowledge proof required for the well-formedness of 𝑌𝑖 , 𝑆𝑖 . The authority 𝑖 can proceed as follows.

• Choose 𝛼, 𝛽 ∈𝑟 Z𝑛 and compute 𝑒1 = Enc(𝛼, 𝛽) and 𝑒2 = 𝑌𝛼
• Compute 𝑑 = hash(𝑔, 𝑛,𝑌 ,𝑌𝑖 , 𝑆𝑖 , 𝑒1, 𝑒2), 𝑎1 = 𝛼 + 𝑑𝑠𝑖 and 𝑎2 = 𝛽𝑟𝑑𝑖
• Return (𝑒1, 𝑒2, 𝑎1, 𝑎2)

20

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 9: PoK-CSZ
Require: A group 𝐺 of prime order 𝑞

An exponential ElGamal public key pk
Some ciphertexts 𝑋𝑖 , 𝑌𝑖 , 𝑋𝑖−1, 𝑌𝑖−1 and 𝑒 ∈ 𝐺
𝑟1, 𝑟2 ∈ Z𝑞 and 𝑠 ∈ {−1, 1} such that

𝑋𝑖 = ReEncpk (𝑋𝑠
𝑖−1, 𝑟1), 𝑌𝑖 = ReEncpk (𝑌 𝑠𝑖−1, 𝑟2) and 𝑒 = ˜ℎ𝑟1

1 𝛼, 𝛽 ∈𝑟 Z𝑞 ;
2 𝑐𝑠,𝑋 ←− Encpk (0, 𝛼); 𝑐𝑠,𝑌 ←− Encpk (0, 𝛽); 𝑐𝑠,𝑒 ←− ˜ℎ𝛼 ;

3 𝑑−𝑠 , 𝑎−𝑠,𝑋 , 𝑎−𝑠,𝑌 ∈𝑟 Z𝑞 ;
4 𝑐−𝑠,𝑋 ←− Encpk (0, 𝑎−𝑠,𝑋) (𝑋𝑖𝑋𝑠

𝑖−1)
−𝑑−𝑠

;

5 𝑐−𝑠,𝑌 ←− Encpk (0, 𝑎−𝑠,𝑌) (𝑌𝑖𝑌 𝑠𝑖−1)
−𝑑−𝑠

;

6 𝑐−𝑠,𝑒 ←− ˜ℎ𝑎−𝑠,𝑋 𝑒−𝑑−𝑠 ;
7 𝑑 ←− hash(pk| |𝑋𝑖−1 | |𝑌𝑖−1 | |𝑋𝑖 | |𝑌𝑖 | |𝑐1,𝑋 | |𝑐1,𝑌 | |𝑐−1,𝑋 | |𝑐−1,𝑌 | |𝑐1,𝑒 | |𝑐−1,𝑒);
8 𝑑𝑠 ←− 𝑑 − 𝑑−𝑠 ;
9 𝑎𝑠,𝑋 ←− 𝛼 + 𝑟1𝑑𝑠 ; 𝑎𝑠,𝑌 ←− 𝛽 + 𝑟2𝑑𝑠 ;

10 Return (𝑐1,𝑋 , 𝑐1,𝑌 , 𝑐−1,𝑋 , 𝑐−1,𝑌 , 𝑐1,𝑒 , 𝑐−1,𝑒 , 𝑑1, 𝑑−1, 𝑎1,𝑋 , 𝑎1,𝑌 , 𝑎−1,𝑋 , 𝑎−1,𝑌);

Algorithm 10: Ver-CSZ
Require: A group 𝐺 of prime order 𝑞

An exponential ElGamal public key pk
Some ciphertexts 𝑋𝑖 , 𝑌𝑖 , 𝑋𝑖−1, 𝑌𝑖−1 and 𝑒 ∈ 𝐺
𝜋 = (𝑐1,𝑋 , 𝑐1,𝑌 , 𝑐−1,𝑋 , 𝑐−1,𝑌 , 𝑐1,𝑒 , 𝑐−1,𝑒 , 𝑑1, 𝑑−1, 𝑎1,𝑋 , 𝑎1,𝑌 , 𝑎−1,𝑋 , 𝑎−1,𝑌)

1 if 𝑋𝑖 is of the form (1𝑔, ∗) then return 0;

2 𝑑 ←− hash(pk| |𝑋𝑖−1 | |𝑌𝑖−1 | |𝑋𝑖 | |𝑌𝑖 | |𝑐1,𝑋 | |𝑐1,𝑌 | |𝑐−1,𝑋 | |𝑐−1,𝑌 | |𝑐1,𝑒 | |𝑐−1,𝑒);
3 Check that the following equalities hold:

4 𝑑1 + 𝑑−1
?

= 𝑑 ;

5 Enc(0, 𝑎1,𝑋) (𝑋𝑖/𝑋𝑖−1)−𝑑1
?

= 𝑐1,𝑋 ;

6 Enc(0, 𝑎1,𝑌) (𝑌𝑖/𝑌𝑖−1)−𝑑1
?

= 𝑐1,𝑌 ;

7 ˜ℎ𝑎1,𝑋 𝑒−𝑑1
?

= 𝑐1,𝑒 ;

8 ˜ℎ𝑎−1,𝑋 𝑒−𝑑−1
?

= 𝑐−1,𝑒 ;

9 Enc(0, 𝑎−1,𝑋) (𝑋𝑖𝑋𝑖−1)−𝑑−1
?

= 𝑐−1,𝑋 ;

10 Enc(0, 𝑎−1,𝑌) (𝑌𝑖𝑌𝑖−1)−𝑑−1
?

= 𝑐−1,𝑌 ;
11 if so then return 1 else return 0;

Algorithm 11: Mul (Paillier only)

Require: 𝑋,𝑌 , Paillier encryptions of 𝑥,𝑦 ∈ Z𝑛
Ensure: 𝑍 , an encryption of 𝑥𝑦

1 Authority 𝑖 chooses 𝑠𝑖 ∈𝑟 Z𝑛 and 𝑟𝑖 ∈𝑟 Z𝑛
2 The authorities simultaneously reveal 𝑆𝑖 = Enc(𝑠𝑖 , 𝑟𝑖), 𝑌𝑖 = 𝑌 𝑠𝑖 as well as a Zero Knowledge proof that 𝑆𝑖 and 𝑌𝑖 are well formed

3 Each authority check the proof of the other authorities

4 𝑥 ′ = Dec(𝑋 ∏
𝑖 𝑆𝑖) (* 𝑥 ′ = 𝑥 +

∑
𝑖 𝑠𝑖 *)

5 They compute 𝑍 ′ = 𝑌𝑥
′
, then 𝑍 = 𝑍 ′/∏𝑖 𝑌𝑖

To verify the proof, one can simply compute 𝑑 = hash(𝑔, 𝑛,𝑌 ,𝑌𝑖 , 𝑆𝑖 , 𝑒1, 𝑒2) and check that

Enc(𝑎1, 𝑎2)𝑆−𝑑𝑖 = 𝑒1

𝑌𝑎1𝑌 −𝑑𝑖 = 𝑒2 .

21

A toolbox for verifiable tally-hiding e-voting systems

Since each authority has to check all the other authorities’ proofs, the overall cost of the procedure is approximately 9𝑎 + 3 exponentiation,
where 𝑎 is the number of authorities. The communication is also lower than in Algorithm 1 since it only requires broadcasts.

Universal verifiability for the CSZ protocol
Both algorithms CGate and Mul have the nice property that the participants are able to produce a transcript𝑇 which can be verified by an

external auditor. For instance, in CGate,𝑇 = 𝑇1 | |𝑇2 | |𝑇3, where𝑇1 = (𝑋𝑖 , 𝑌𝑖 , 𝜋𝑖)1≤𝑖≤𝑎 , with 𝜋𝑖 is a ZKP that 𝑋𝑖 , 𝑌𝑖 are well-formed with respect

to 𝑋𝑖−1, 𝑌𝑖−1. For 𝑇2, we have 𝑇2 = (𝐴𝑖 , 𝐵𝑖 , 𝜋0𝐴𝑖
, 𝜋0

𝐵𝑖
)𝑖 , where, for all 𝑖 , 𝜋0𝐴𝑖

(resp. 𝜋0
𝐵𝑖
) is a ZKP that 𝐴𝑖 (resp. 𝐵𝑖) is an encryption of 0. Finally,

𝑇3 = (𝑤𝑖 , 𝜋
Dec
𝑖
)𝑖 where, for all 𝑖 , 𝜋Dec,𝑖 is a ZKP that 𝑤𝑖 is a correct partial decryption of 𝑌 ′. Note that since 𝑇 only consists of ZKP, this

transcript is Zero Knowledge (i.e. it does not leak any information about the initial inputs).

To verify a transcript 𝑇 , an auditor first gets the public elements 𝑝𝑘, ℎ1, · · · , ℎ𝑎 , the input 𝑋,𝑌 of the protocol and its output 𝑍 . Finally,

the auditor computes 𝑋0 = 𝑋 , 𝑌0 = 𝐸−1𝑌 2
, verifies the ZKP 𝜋𝑖 for all 𝑖 , verify the ZKP 𝜋0

𝐴𝑖
and 𝜋0

𝐵𝑖
for all 𝑖 , computes 𝑋 ′ = 𝑋𝑎

∏
𝑖 𝐴𝑖 and

𝑌 ′ = 𝑌𝑎
∏

𝑖 𝐵𝑖 , verifies the ZKP 𝜋
Dec
𝑖

for all 𝑖 , computes 𝑦𝑎 from 𝑌 ′ and the𝑤𝑖 ’s, and checks that 𝑍 = (𝑋𝑋 ′𝑦𝑎)
1

2 .

If all the checks are successful, the auditor is guaranteed that, except with negligible probability, 𝑍 is an encryption of 𝑥𝑦, where 𝑥 (resp.

𝑦) is the plaintext for 𝑋 (resp. 𝑌). In this sense, the CGate protocol is universally verifiable. A similar result holds for the Mul protocol.

C.2 Logical operations on encrypted data
Thanks to the conditional gate protocol and the homomorphic property of the exponential ElGamal encryption scheme, it is possible to

derive a protocol for the most common logical operations.

Basic boolean operations.Recall that the logical negation can be evaluated “for free” thanks to the homomorphic property: Not(𝐵) = 𝐸1/𝐵.
In addition, remark that the CSZ protocol readily allows to compute the And algorithm, which is a specific case where 𝑋 is also supposed to be

an encryption of 𝑥 ∈ {0, 1}. Thanks to the homomorphic property, it is easy to derive a protocol to evaluate the logical or and the logical xor.

Algorithm 12: Xor
Require: 𝑋,𝑌 , encryptions of 𝑥,𝑦 ∈ {0, 1}
Outputs: 𝑍 , an encryption of 𝑥 ⊕ 𝑦

1 return 𝑋𝑌/CSZ(𝑋,𝑌)2;

Algorithm 13: Or
Require: 𝑋,𝑌 , encryptions of 𝑥,𝑦 ∈ {0, 1}
Outputs: 𝑍 , an encryption of 𝑥 ∨ 𝑦

1 return 𝑋𝑌/CSZ(𝑋,𝑌);

Since the basic binary boolean operations (i.e. and, xor, or) are associative, it is possible to compute And(𝑋0, · · · , 𝑋𝑚−1) (resp. Or(𝑋0, · · · , 𝑋𝑚−1)
and Xor(𝑋0, · · · , 𝑋𝑚−1)) using a logarithmic number of synchronization steps, thanks to a boolean circuit that has a tree structure. See for

instance Algorithm 14 for the case of the logical and.

Algorithm 14: And
Require: (𝑋1, · · · , 𝑋𝑁), encryptions of 𝑥1, · · · , 𝑥𝑁 ∈ {0, 1}
Outputs: 𝑍 , an encryption of 𝑥1 ∧ · · · ∧ 𝑥𝑁

1 𝑚 ←− ⌈log𝑁 ⌉;
2 for 𝑗 = 0 to 𝑁 − 1 do 𝑋1, 𝑗 ←− 𝑋 𝑗+1;
3 for 𝑖 = 1 to𝑚 do
4 for 𝑗 = 0 to ⌊𝑁 /2⌋ − 1 (in parallel) do
5 𝑋𝑖+1, 𝑗 ←− And(𝑋𝑖,2𝑗 , 𝑋𝑖,2𝑗+1);
6 if 𝑁 is odd then 𝑋𝑖+1,⌊𝑁 /2⌋ ←− 𝑋𝑖,𝑁−1;
7 𝑁 ←− ⌈𝑁 /2⌉;
8 return 𝑋𝑚+1,0;

Conditional branching. In addition to providing a way to realize the basic boolean operations, the conditionally set to zero functionality

can also be used to evaluate a branching condition. In generic MPC, we want to avoid branching as much as possible since we do not want to

reveal which branch is being evaluated: this could constitute a side-channel information. Therefore, the main strategy is to evaluate both

branches and use a protocol to (obliviously) keep the relevant one. A classical solution is to use the ternary operator If, which takes as input

a boolean 𝑏, two expressions 𝑥 and 𝑦 and returns either 𝑥 when 𝑏 = 1 or 𝑦 when 𝑏 = 0. This operator can be evaluated with a single call to

CSZ; the same goes for the conditional swap. Note that in some cases, such as in Algorithm 14 (line 6), the branching condition depends on a

public parameter, so that there is no need to hide which branch is computed.

Note that those operators can be used for many bits in parallel. For instance, assume that 𝑿 = 𝑋0, · · · , 𝑋ℓ−1, that 𝒀 = 𝑋0, · · · , 𝑌ℓ−1, and
that 𝐵 is an encryption of a bit 𝑏 ∈ {0, 1}. Then we can define If(𝐵,𝑿 , 𝒀) as If(𝐵,𝑋0, 𝑌0), · · · , If(𝐵,𝑋ℓ−1, 𝑌ℓ−1). Similarly, if (𝑋 ′

𝑖
, 𝑌 ′

𝑖
) =

CSwap(𝐵,𝑋𝑖 , 𝑌𝑖) for all 𝑖 , CSwap(𝐵,𝑿 , 𝒀) can also be defined as (𝑋 ′
0
, · · · , 𝑋 ′

ℓ−1), (𝑌
′
0
, · · · , 𝑌 ′

ℓ−1).
22

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 15: CSwap
Require: 𝐵, a cipher of 𝑏 ∈ {0, 1}

𝑋,𝑌 , encryptions of 𝑥,𝑦

Outputs: 𝑋 ′, 𝑌 ′, s.t. 𝑋 ′ (resp. 𝑌 ′) is a reenc. of 𝑌 (𝑋) if 𝑏 = 1, of

𝑋 (resp. 𝑌) otherwise

1 𝑍 ←− If(𝐵,𝑌, 𝑋);
2 return 𝑍,𝑋𝑌/𝑍 ;

Algorithm 16: If
Require: 𝐵, a cipher of 𝑏 ∈ {0, 1}

𝑋,𝑌 , encryptions of 𝑥,𝑦

Outputs: 𝑍 , an encryption of 𝑥 if 𝑏 = 1, of 𝑦 otherwise

1 return 𝑌CSZ(𝑋/𝑌, 𝐵);

Selection of an element in a list. The CSZ protocol can also be used to select an element inside a list. For this purpose, we suppose that

[𝑋𝑖] (resp. [𝑿 𝒊]) is a list of𝑚 ciphertexts (resp. of𝑚 lists of ℓ encryptions of bits) and that [𝐵𝑖] is a list of𝑚 encryptions of the bits 𝑏𝑖 , such

that one of them is 1 while the others are 0. Then we can recover a reencryption of 𝑋𝑖 (resp. ℓ reencryptions of 𝑿 𝒊) where 𝑖 is the index such

that 𝑏𝑖 = 1. By abuse of notation, we denote this procedure Select in both cases.

Algorithm 17: Select
Require: [(𝑋𝑖,0, · · · , 𝑋𝑖,ℓ−1)], [𝐵𝑖]
Outputs: 𝒁 , a rencryption of 𝑿 𝒊 s.t. 𝐵𝑖 is an encryption of 1

1 for all 𝑖, 𝑗 do 𝐴𝑖, 𝑗 ←− CSZ(𝑋𝑖, 𝑗 , 𝐵𝑖);
2 for all 𝑗 do 𝑍 𝑗 ←−

∏
𝑖 𝐴𝑖, 𝑗 ;

3 return (𝑍0, · · · , 𝑍ℓ−1)

Algorithm 18: Select
Require: [𝑋𝑖], [𝐵𝑖]
Outputs: 𝑍 , a rencryption of 𝑋𝑖 s.t. 𝐵𝑖 is an encryption of 1

1 return
∏

𝑖 CSZ(𝑋𝑖 , 𝐵𝑖);

Integer shift. Finally, consider an integer 𝑥 and its binary representation 𝑥0, · · · , 𝑥ℓ−1, such that 𝑥 =
∑ℓ−1
𝑖=0 𝑥𝑖2

𝑖
. A common operation is

to shift the binary representation: the right shift corresponds to 0, 𝑥0, · · · , 𝑥ℓ−2 and the left shift corresponds to 𝑥1, · · · , 𝑥ℓ−1, 0. In an MPC

setting where 𝑥 is encrypted bit-by-bit, we can perform the shift operations on the encrypted data for free, by using a trivial encryption 𝐸0 of

0. We denoted the corresponding processes RS and LS. However, it may be useful to perform those operations conditionally to an encrypted

boolean 𝑏. For this purpose, we can use the If protocol in parallel, which gives the conditional left shift and conditional right shift protocols.

Algorithm 19: CLS
Require: (𝑉0, · · · ,𝑉ℓ−1), ciphertexts

𝐵, an encryption of 0 or 1

Outputs: 𝑽 ′
, a reencrypted left shift of 𝑽 if 𝑏 = 1, a

reencryption of 𝑽 otherwise.

1 𝑉ℓ ←− 𝐸0;
2 for 𝑗 = 0 to ℓ − 1 (in parallel) do
3 𝑉 ′

𝑗
←− If(𝐵,𝑉𝑗+1,𝑉𝑗);

4 Return 𝑽 ′
;

Algorithm 20: CRS
Require: (𝑉0, · · · ,𝑉ℓ−1), ciphertexts

𝐵, an encryption of 0 or 1

Outputs: 𝑽 ′
, a reencrypted right shift of 𝑽 if 𝑏 = 1, a

reencryption of 𝑽 otherwise.

1 𝑉−1 ←− 𝐸0;
2 for 𝑗 = 0 to ℓ − 1 (in parallel) do
3 𝑉 ′

𝑗
←− If(𝐵,𝑉𝑗−1,𝑉𝑗);

4 Return 𝑽 ′
;

C.3 Basic integer arithmetic: addition, subtraction, comparison
Due to the homomorphic property, Add and Sub can be simply implemented by multiplication and division of the ciphertexts, when we

want to work in the natural encoding. In bit-encoding, however, we need to build appropriate algorithms for these. We remark readily that

comparing integers can be done with a subtraction, where we return the final borrow bit.

Linear addition and subtraction.
Suppose that we have as input the (encrypted) bits 𝑋 bits

and 𝑌 bits
of 𝑥 and 𝑦, where 𝑥 and 𝑦 are the𝑚-bit plaintexts associated with

𝑋 bits
and 𝑌 bits

respectively. For addition, i.e. computing 𝑍bits
, an encryption of 𝑥 + 𝑦 modulo 2

𝑚
, we reproduce in Algorithm 21 the method

found in [40]. The idea is to reproduce the schoolbook algorithm for the addition, with four variables 𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 and 𝑅 which represent

(encryptions of) the 𝑖th bit of 𝑋 and 𝑌 , the 𝑖th bit of the sum and the current value of the carry. The value of 𝑧𝑖 , the plaintext associated with

𝑍𝑖 , is 𝑥𝑖 ⊕ 𝑦𝑖 ⊕ 𝑟𝑖 , and the new value of 𝑅 can be obtained with a truth table from the three other variables.

A first approach for writing a subtraction algorithm that returns an encryption of 𝑥 − 𝑦 mod 2
𝑚

is to modify Algorithm 21 as follows.

Computing 𝑥 − 𝑦 mod 2
𝑚

is the same as computing 𝑥 + (−𝑦) mod 2
𝑚
. Turning 𝑦 to −𝑦 mod 2

𝑚
is performed by flipping each bit (replacing

𝑦𝑖 by 1 − 𝑦𝑖) then adding 1. This gives Algorithm 22.

Algorithm 22 is interesting for its similarity with Algorithm 21, but another way to perform the subtraction is also to use the schoolbook

algorithm, just as for Algorithm 21. The advantage is that the carry is then the classical borrow of the subtraction, and not an artificial carry

23

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 21: Addbits

Require: (𝑋0, · · · , 𝑋𝑚−1), (𝑌0, · · · , 𝑌𝑚−1) bit-wise encryptions of 𝑥 and 𝑦

Ensure: 𝑍0, · · · , 𝑍𝑚−1, bitwise encryption of 𝑥 + 𝑦 modulo 2
𝑚

1 𝑅 = CSZ(𝑋0, 𝑌0)
2 𝑍0 = 𝑋0𝑌0/𝑅2 (* 𝑥0 ⊕ 𝑦0 *)
3 for 𝑖 = 1 to𝑚 − 1 do
4 𝐴 = 𝑋𝑖𝑌𝑖/CSZ(𝑋𝑖 , 𝑌𝑖)2 (* 𝑥𝑖 ⊕ 𝑦𝑖 *)
5 𝑍𝑖 = 𝐴𝑅/CSZ(𝐴, 𝑅)2 (* 𝑥𝑖 ⊕ 𝑦𝑖 ⊕ 𝑟 *)
6 𝑅 = (𝑋𝑖𝑌𝑖𝑅/𝑍𝑖)

1

2

7 Return 𝑍0, · · · , 𝑍𝑚−1

Algorithm 22: Subbits

Require: (𝑋0, · · · , 𝑋𝑚−1), (𝑌0, · · · , 𝑌𝑚−1), bit-wise encryptions of 𝑥 and 𝑦.

Ensure: (𝑍0, · · · , 𝑍𝑚−1), bit-wise encryption of 𝑥 − 𝑦 modulo 2
𝑚
.

1 𝐴 = CSZ(𝑋0, 𝑌0)
2 𝑍0 = (𝑋0𝑌0)/𝐴2

(* 𝑥0 ⊕ (1 − 𝑦0) ⊕ 1 *)

3 𝑅 = 𝐴 Not(𝑌0) (* 𝑥0 ∨ ¬𝑦0 *)
4 for 𝑘 = 1 to𝑚 − 1 do
5 𝐴 = 𝑋𝑘 Not(𝑌𝑘)/CSZ(𝑋𝑘 , Not(𝑌𝑘))2
6 𝑍𝑘 = 𝐴𝑅/CSZ(𝐴, 𝑅)2

7 𝑅 = (𝑋𝑘Not(𝑌𝑖)𝑅 /𝑍𝑘)
1

2

8 Return 𝑍0, · · · , 𝑍𝑚−1

in an equivalent addition modulo 2
𝑚
. Hence, if the last borrow bit is required in order to get a comparison algorithm from the subtraction,

Algorithm 23 must be preferred.

Algorithm 23: SubLTbits

Require: (𝑋0, · · · , 𝑋𝑚−1), (𝑌0, · · · , 𝑌𝑚−1), bit-wise encryption of 𝑥 and 𝑦.

Ensure: (𝑍0, · · · , 𝑍𝑚−1), 𝑅 where 𝑍𝑖 are bit-wise encryption of 𝑥 − 𝑦 modulo 2
𝑚

and 𝑅 = Enc(𝑥 < 𝑦).
1 𝐴 = CSZ(𝑋0, 𝑌0)
2 𝑍0 = 𝑋0𝑌0/𝐴2

(* 𝑥0 ⊕ 𝑦0 *)
3 𝑅 = 𝑌0/𝐴 (* 𝑦0 ∧ ¬𝑥0 *)
4 for 𝑘 = 1 to𝑚 − 1 do
5 𝐴 = CSZ(𝑌𝑘 , 𝑅)
6 𝐵 = 𝑌𝑘𝑅/𝐴2

(* 𝑦𝑘 ⊕ 𝑟 *)
7 𝐶 = CSZ(𝑋𝑘 , 𝐵)
8 𝑍𝑘 = 𝑋𝑘𝐵/𝐶2

(* 𝑥𝑘 ⊕ 𝑦𝑘 ⊕ 𝑟 *)
9 𝑅 = 𝑌𝑘𝑅/(𝐴𝐶) (* (𝑦𝑘 ∧ 𝑟) ∨ [(𝑦𝑘 ∨ 𝑟) ∧ ¬𝑥𝑘] *)

10 Return (𝑍0, · · · , 𝑍𝑚−1), 𝑅

When the required comparison is an equality test, there is a simpler approach, which leads to a better communication complexity. Indeed,

testing whether two integers are equal is the same as testing whether all of their bits are equal, therefore the associativity of the logical ∧
operator can be exploited to parallelize the procedure. This gives Algorithm 24, the cost of which is (2𝑚 − 1)CSZ in term of transcript size

and exponentiations per authority, but only (1 + log𝑚)CSZ in term of communication cost, using a tree structure.

Therefore, adding, subtracting or comparing two𝑚-bit integers have roughly the same cost of (2𝑚 − 1)CSZ. The similarity between these

algorithms can be exploited to build specialized algorithms which do several operations altogether.

For instance, if one needs to compute both the subtraction and the full comparison as a ternary value (1 if 𝑥 > 𝑦, 0 if 𝑥 = 𝑦 or −1 if 𝑥 < 𝑦),

we can combine these operations by first calling Algorithm 23, then using a ∨ composition to test whether all the bits of the output are 0.

This leads to a cost of about 3𝑚CSZ instead of 4𝑚CSZ if done separately.

24

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 24: EQbits

Require: 𝑋0, · · · , 𝑋𝑚 , 𝑌0, · · · , 𝑌𝑚 bit-wise encryptions of 𝑥 and 𝑦.

Ensure: 𝑍 = Enc(𝑥 == 𝑦), an encryption of 1 if 𝑥 = 𝑦, of 0 otherwise.

1 For all 𝑖 (in parallel), compute 𝐴𝑖 = CSZ(𝑋𝑖 , 𝑌𝑖).
2 For all 𝑖 (in parallel), compute 𝐵𝑖 = 𝐸1𝐴

2

𝑖
/(𝑋𝑖𝑌𝑖) (* 1 − 𝑥𝑖 ⊕ 𝑦𝑖 *)

3 Return 𝑍 = CSZ(𝐵0, · · · , 𝐵𝑚−1)

Finally, we remark that computing the opposite −𝑥 of an integer 𝑥 modulo 2
𝑚

can be done faster than using the subtraction algorithm

between 0 and 𝑥 . Algorithm 25 flips all bits and then add 1; this is a special case of Algorithm 34 which be introduced later on.

Algorithm 25: Negbits

Require: (𝑋0, · · · , 𝑋𝑚−1), a bit-wise encryption of 𝑥

Ensure: (𝑍0, · · · , 𝑍𝑚−1), a bit-wise encryption of −𝑥 mod 2
𝑚

1 𝑍0 = 𝑋0

2 𝑅0 = Not(𝑋0)
3 for 𝑖 = 1 to𝑚 − 1 do
4 𝑅𝑖 = CSZ(Not(𝑋𝑖), 𝑅𝑖−1)
5 𝑍𝑖 = Not(𝑋𝑖)𝑅𝑖−1/𝑅2𝑖
6 Return 𝑍0, · · · , 𝑍𝑚−1

C.4 Arithmetic with sublinear communication complexity
Apart from the equality test, all the previous arithmetic algorithms in the bit-encoding require a number of communication rounds that is

proportional to the bit-size of the input integers. This is mostly due to carry and borrow propagations. In order to reduce the number of

communication rounds, our idea is to use more sophisticated adder circuits, following the (now classical) approach of Brent and Kung [12].

We do not reproduce their full algorithm here but we sketch the key idea and give the resulting algorithms and their complexity (summarized

in Figure 5).

Recall that the 𝑖th bit of 𝑥 + 𝑦 is simply 𝑧𝑖 = 𝑥𝑖 ⊕ 𝑦𝑖 ⊕ 𝑟𝑖 , where 𝑟𝑖 is the 𝑖th carry bit. The idea is to first compute all the 𝑥𝑖 ⊕ 𝑦𝑖 in parallel,

then to compute all the 𝑟𝑖 in parallel, so as to deduce the result. To perform the second step efficiently, Brent and Kung’s approach consists of

computing the variables (𝑝𝑖 , 𝑔𝑖) where 𝑝𝑖 = 𝑥𝑖 ∨𝑦𝑖 and 𝑔𝑖 = 𝑥𝑖 ∧𝑦𝑖 . Those variable are used to encode elements of a set Σ = {𝑃,𝐺, 𝐾}, where
𝑃 is encoded by (1, 0), 𝐾 by (0, 0) and 𝐺 by (0, 1) and (1, 1). They represent the fact that the carry bit will be propagated, generated of killed

in the 𝑖th position. They define an operation ◦ as follows (which we slightly modify into an equivalent operation for the sake of presentation).

𝑃 ◦ 𝑃 = 𝑃

𝐺 ◦ 𝑃 = 𝐺

𝐾 ◦ 𝑃 = 𝐾

𝑥 ◦𝐺 = 𝐺

𝑥 ◦ 𝐾 = 𝐾.

In the boolean representation, the ◦ law can be computed with the following formula:

(𝑝,𝑔) ◦ (𝑝′, 𝑔′) = (𝑝 ∧ 𝑝′, 𝑔′ ∨ (𝑝′ ∧ 𝑔)).
It is easy to show that ◦ is associative [12], which enables tree-based parallelism for computing all the prefixes of (𝑝0, 𝑔0)◦· · ·◦(𝑝𝑚−1, 𝑔𝑚−1),

which gives essentially the 𝑖th carry bit for all 𝑖 . From here onward, we diverge from [12]’s work since we are not interested in designing

hardware, so the unbounded fan-in is not an issue. We deduce the Unbounded Fan-in Composition algorithm, which can be instantiated to

compute the addition (Algorithm 26). Algorithm 26 is highly efficient in term of communication since it only requires about log(𝑚) times

more round communications than the one required for ◦. However, this comes with an increase in term of computation as the number of

calls to ◦ is about 1

2
𝑚 log(𝑚), so the linear approach could be preferable in some cases. To evaluate the complexity, note that the worst-case

scenario in term of computational cost is when𝑚 is a power of 2, in which case the number of calls to CSZ is easy to derive.

The same algorithm can be used for computing subtraction; it only requires to change the initialization of the 𝑝𝑖 and 𝑔𝑖 . Indeed, we have

initially 𝑝𝑖 = 𝑥𝑖 ⊕𝑦𝑖 and 𝑔𝑖 = 𝑦𝑖 ∧¬𝑥𝑖 , so to obtain UFCSubbits, one can just replace line 4 by 𝑃𝑖 = 𝐵𝑖 and line 5 by𝐺𝑖 = 𝑌𝑖/𝐴𝑖 in Algorithm 26.

25

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 26: UFCAddbits

Require: (𝑋0, · · · , 𝑋𝑚−1), (𝑌0, · · · , 𝑌𝑚−1), bit-wise encryptions of 𝑥 and 𝑦.

Ensure: (𝑍0, · · · , 𝑍𝑚−1), bit-wise encryption of 𝑥 + 𝑦 mod 2
𝑚

1 for 𝑖 = 0 to𝑚 − 1 (* in parallel *) do
2 𝐴𝑖 = CSZ(𝑋𝑖 , 𝑌𝑖)
3 𝐵𝑖 = 𝑋𝑖𝑌𝑖/𝐴2

𝑖
(* 𝑥𝑖 ⊕ 𝑦𝑖 *)

4 𝑃𝑖 = 𝑋𝑖𝑌𝑖/𝐴𝑖 (* 𝑥𝑖 ∨ 𝑦𝑖 *)
5 𝐺𝑖 = 𝐴𝑖 (* 𝑥𝑖 ∧ 𝑦𝑖 *)
6 𝐶𝑖, 𝑗 = (𝑃 𝑗 ,𝐺 𝑗) for all 1 ≤ 𝑖 ≤ ⌈log𝑚⌉ and 0 ≤ 𝑗 ≤ 𝑚 − 1
7 for 𝑖 = 1 to ⌈log𝑚⌉ do
8 for 𝑗 = 0 to ⌈𝑚/2𝑖 ⌉ − 1 (in parallel) do
9 for 𝑘 = 1 to 2𝑖−1 (in parallel) do
10 (𝑃,𝐺) = 𝐶𝑖−1, 𝑗2𝑖+2𝑖−1
11 (𝑃 ′,𝐺 ′) = 𝐶𝑖−1, 𝑗2𝑖+2𝑖−1+𝑘 (* do not proceed for this 𝑘 if 𝑗2𝑖 + 2𝑖−1 + 𝑘 ≥ 𝑚 *)

12 𝑇 = CSZ(𝑃 ′,𝐺)
13 𝐶𝑖, 𝑗2𝑖+2𝑖−1+𝑘 = (CSZ(𝑃, 𝑃 ′),𝑇𝐺 ′/CSZ(𝑇,𝐺 ′))

14 𝑍0 = 𝐵0

15 for 𝑖 = 1 to𝑚 − 1 (in parallel) do
16 (_,𝐺𝑖) = 𝐶⌈log(𝑖+1) ⌉,𝑖+1
17 𝑍𝑖 = 𝐵𝑖𝐺𝑖/CSZ(𝐵𝑖 ,𝐺𝑖)2

18 Return 𝑍0, · · · , 𝑍𝑚−1

When it comes to comparing two integers, only the last carry bit is of interest so we do not need to compute all the prefixes. In this case, a

much simpler algorithm exists and allows to compute the comparison with𝑚 − 1 calls to ◦ but a communication cost which remains of the

order of log(𝑚). We call this algorithm Chained Lesser-Than (see Algorithm 27). Note that this algorithm returns an additional bit 𝑅 which

tells whether the two inputs are equal. If this bit is not needed, some computations can be saved (remove lines 11 and 20).

C.5 Solving ordering related problems
Voting consists of finding the “most preferred” option. Consequently, it is common to encounter an algorithmic problem related to ordering.

This subsection is reproduced from the third author’s thesis.

Maximum and minimum. The most obvious problem is to find the largest or the smallest element of a list. A natural solution would be

to linearly scan the list, using a comparison algorithm. However, the min and max operators are associative and as such, allow tree-based

parallelization as we did in Algorithm 14. This gives Algorithm 28, which finds the maximum, the minimum and their respective position,

using a logarithmic number of rounds of communications. In this algorithm, we denote 𝑗bits the trivial bitwise encryption of the integer

𝑗 , with a fixed number of bits. We denote Min (resp. Max) the protocol that only returns a bitwise encryption of the minimum (resp. the

maximum) as well as its position in the list.

Finding the s largest elements. A related problem is to find the 𝑠 largest values of a list. For this purpose, we propose two different

approaches: the selection approach and the insertion approach, base on insertion sort and selection sort. The insertion approach consists

of first sorting the 𝑠 first elements of the list so that we have the list of the 𝑠 largest elements of the 𝑠 first elements of the list. Then, we

iteratively update this small list by inserting the remaining elements of the large list, so that at the 𝑘th iteration, the small list consists of the

𝑠 largest elements of the 𝑠 + 𝑘 first elements of the list. This approach imitates what the selection sort would do, but avoids the quadratic cost

by maintaining a small list of size 𝑠 . However, the drawback is that it is expensive communication-wise, since the process is mostly iterative.

For this reason, we propose another approach, based on selection sort. It consists of using the Max protocol to get the maximum value in a

logarithmic number of rounds, as well as its respective index in the list. Then, using the index, the equality test and the CSZ protocol, we can

“remove” this maximum from the list (actually, we replace it by a 0 value) without leaking its position. This way, we can iteratively get the 𝑠

largest elements, using only 𝑠 iterations.

Sorting. Finally, another recurrent problem is to sort a list. Using LT and CSwap, it is possible to sort encrypted data without revealing

any side information. For this purpose, we need a data-oblivious sorting algorithm, that is an algorithm whose control flow does not depend

on the result of the comparisons. The popular fast sorting algorithms, such as Quicksort, Mergesort or Heapsort, do not verify this property.

Consequently, we use the OddEvenMergeSort by Batcher [8], which has a quasi-linear complexity and is used in practice for sorting networks

in GPU. This gives Algorithm 31, adapted from [27, Section 5.2.2, Algorithm M]). This sorting algorithm requires approximately
1

4
𝑁 log(𝑁)2

comparisons and conditional swaps, in approximately
1

2
log(𝑁)2 rounds of communications, where 𝑁 is the number of elements to be sorted.

26

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 27: CLTbits

Require: (𝑋0, · · · , 𝑋𝑚−1), (𝑌0, · · · , 𝑌𝑚−1) bit-wise encryption of 𝑥 and 𝑦.

Ensure: 𝑍, 𝑅 such that 𝑍 = Enc(𝑥 < 𝑦) and 𝑅 = Enc(𝑥 = 𝑦)

1 Let (𝑚 𝑗)𝑙−1𝑗=0
be the binary representation of𝑚, such that𝑚 =

𝑙−1∑
𝑗=0

𝑚 𝑗2
𝑗

2 for 𝑖 = 0 to𝑚 − 1 (in parallel) do
3 𝐴𝑖 = CSZ(𝑋𝑖 , 𝑌𝑖)
4 𝑃𝑖 = 𝑋𝑖𝑌𝑖/𝐴2

𝑖

5 𝐺𝑖 = 𝑌𝑖/𝐴𝑖
6 𝐵𝑖,0 = (𝑃𝑖 ,𝐺𝑖), 𝐴𝑖,0 = 𝑃𝑖 .
7 𝑟 = 0 (* A boolean which tells whether there is a remainder *)

8 𝑅𝐵 = (𝐸1, 𝐸0), 𝑅𝐴 = 𝐸1 (* initialize the remainders as neutral element *)

9 for 𝑗 = 1 to 𝑙 do
10 for 𝑖 = 0 to ⌊𝑙/2𝑗 ⌋ − 1 (in parallel) do
11 𝐴𝑖, 𝑗 = CSZ(𝐴2𝑖, 𝑗−1, 𝐴2𝑖+1, 𝑗−1)
12 (𝑃,𝐺) = 𝐵2𝑖, 𝑗−1
13 (𝑃 ′,𝐺 ′) = 𝐵2𝑖+1, 𝑗−1
14 𝑇 = CSZ(𝑃 ′,𝐺)
15 𝐵𝑖, 𝑗 = (CSZ(𝑃, 𝑃 ′),𝑇𝐺 ′/CSZ(𝑇,𝐺 ′))
16 if 𝑚 𝑗−1 ∧ ¬𝑟 (in parallel) then
17 𝑅𝐵 = 𝐵

2⌊𝑙/2𝑗 ⌋, 𝑗−1, 𝑅𝐴 = 𝐴
2⌊𝑙/2𝑗 ⌋, 𝑗−1

18 𝑟 = 1

19 if 𝑚 𝑗−1 ∧ 𝑟 (in parallel) then
20 𝐴

2⌊𝑙/2𝑗 ⌋, 𝑗−1 = CSZ(𝐴
2⌊𝑙/2𝑗 ⌋, 𝑗−1, 𝑅𝐴)

21 (𝑃,𝐺) = 𝐵
2⌊𝑙/2𝑗 ⌋, 𝑗−1

22 (𝑃 ′,𝐺 ′) = 𝑅𝐵
23 𝑇 = CSZ(𝑃 ′,𝐺)
24 𝐵

2⌊𝑙/2𝑗 ⌋, 𝑗 = (CSZ(𝑃, 𝑃 ′),𝑇𝐺 ′/CSZ(𝑇,𝐺 ′))
25 𝑟 = 0, 𝑅𝐵 = (Enc(1), Enc(0)), 𝑅𝐴 = Enc(1)

26 (_,𝐺) = 𝐵
0,𝑙

27 Return 𝐺,𝐴
0,𝑙

Remark that in Algorithm 31, we consider that we want to sort some values (for instance, the index of the candidate) with respect to a

corresponding key. It is possible to adapt this algorithm for a setting where we just want to sort bitwise encrypted integers, which are not

linked to a specific value, or to have the values be bitwise encrypted.

Another usual solution for sorting in an MPC setting is to first shuffle the data, then use a more efficient algorithm such as Mergesort, but

which requires to leak the result of all the comparisons. This usually leads to a better computational efficiency, but a far worse communication

efficiency (typically, Mergesort would require a linear number of synchronization steps compared to the number of elements to sort). In

addition, the security of the resulting protocol would not be guaranteed by the SUC framework since there is currently no known SUC-secure

reencryption mixnet.

C.6 Paillier-specific algorithms
Conversion from natural to bit-encoding (Paillier only)

We recall here the work from [41] which allows to get the bit-encoding representation from a Paillier-encrypted integer. While the

homomorphic property of the Paillier cryptosystem allows extremely efficient solutions for the addition and the subtraction, the comparison

is not so easy to perform. Therefore, it is important to provide an algorithm which converts to the bit-encoding.

The idea is to use the mask-and-decrypt paradigm, which consists of applying a random mask 𝑟 to the encrypted value 𝑥 , which gives

an encryption of 𝑥 − 𝑟 , to decrypt 𝑦 = 𝑥 − 𝑟 then to perform the relevant operation (here, an addition with 𝑟) to deduce the (encrypted)

result. The overall process that we call BinExpand is described by Algorithm 35. To create a mask, we use Algorithm 33 from [41] which

requires Zero Knowledge Ranged proofs, such as the ones from [30] or more recently [13]. We do not dig too deep into the details as the

security, correction and complexity is fully discussed in [41]. We emphasize that these Paillier-specific algorithms use a RandBit function

27

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 28: MinMax
Require: (𝑿1, · · · ,𝑿𝑵) bitwise encryptions of 𝑥1, · · · , 𝑥𝑁

ℓ , the common bitsize of the 𝑥𝑖 ’s

Outputs: 𝒁 , a bitwise encryption of min
𝑁
𝑖=1
(𝑥𝑖)

𝑰 , a bitwise encryption of its index in the input list

𝑻 , a bitwise encryption of max
𝑁
𝑖=1
(𝑥𝑖)

𝑱 , a bitwise encryption of its index in the input list

1 𝑚 ←− ⌈log𝑁 ⌉;
2 for 𝑗 = 0 to 𝑁 − 1 do
3 𝒁1,𝒋 ←− 𝑿𝒋+1;

4 𝑰1,𝒋 ←− 𝑗 + 1bits;
5 𝑻1,𝒋 ←− 𝑿𝒋+1;

6 𝑱1,𝒋 ←− 𝑗 + 1bits;
7 for 𝑖 = 1 to𝑚 do
8 for 𝑗 = 0 to ⌊𝑁 /2⌋ − 1 (in parallel) do
9 (* The two following operations can be done in parallel *)

10 𝐵𝑍 ←− LT(𝒁𝒊,2𝒋 ,𝒁𝒊,2𝒋+1);
11 𝐵𝑇 ←− LT(𝑻𝒊,2𝒋 , 𝑻𝒊,2𝒋+1);
12 (* The four following operations can be done in parallel *)

13 𝒁𝒊+1,𝒋 ←− If(𝐵𝑍 ,𝒁𝒊,2𝒋 ,𝒁𝒊,2𝒋+1);
14 𝑰𝒊+1,𝒋 ←− If(𝐵𝑍 , 𝑰𝒊,2𝒋 , 𝑰𝒊,2𝒋+1);
15 𝑻𝒊+1,𝒋 ←− If(𝐵𝑇 , 𝑻𝒊,2𝒋+1,𝒁𝒊,2𝒋);
16 𝑱𝒊+1,𝒋 ←− If(𝐵𝑇 , 𝑱𝒊,2𝒋+1, 𝑱𝒊,2𝒋);
17 if 𝑁 is odd then
18 𝒁𝒊+1,⌊𝑵 /2⌋ ←− 𝒁𝒊,𝑵−1;

19 𝑰𝒊+1,⌊𝑵 /2⌋ ←− 𝑰𝒊,𝑵−1;

20 𝑻𝒊+1,⌊𝑵 /2⌋ ←− 𝑻𝒊,𝑵−1;

21 𝑱𝒊+1,⌊𝑵 /2⌋ ←− 𝑱𝒊,𝑵−1;

22 𝑁 ←− ⌈𝑁 /2⌉;
23 return 𝒁𝒎+1,0, 𝑰𝒎+1,0, 𝑻𝒎+1,0, 𝑱𝒎+1,0;

Algorithm 31: OddEvenMergeSort

Require: (𝑉𝑖 ,𝑲𝒊)𝑁−1𝑖=0
, where, for all 𝑖 , 𝑉𝑖 is a ciphertext and

𝑲𝒊 is a bitwise encryption of an integer 𝑘𝑖
Outputs: (𝑉 ′

𝑖
,𝑲 ′

𝒊)
𝑁−1
𝑖=0

, reencryptions of the same values, but sorted with increasing 𝑘𝑖

1 𝑡 ←− ⌈log𝑁 ⌉; 𝑝 ←− 2
𝑡−1

2 while 𝑝 > 0 do
3 𝑞 ←− 2

𝑡−1
; 𝑟 ←− 0; 𝑑 ←− 𝑝

4 while 𝑑 > 0 do
5 for 𝑖 = 0 to 𝑛 − 𝑑 − 1 (in parallel) do
6 if BitwiseAnd(𝑖, 𝑝) = 𝑟 then
7 𝐵 ←− LT(𝑲𝒊+𝒅 ,𝑲𝒊)
8 𝑉𝑖 ,𝑉𝑖+𝑑 ←− CSwap(𝐵,𝑉𝑖 ,𝑉𝑖+𝑑)
9 𝑲𝒊,𝑲𝒊+𝒅 ←− CSwap(𝐵,𝑲𝒊,𝑲𝒊+𝒅)

10 𝑑 ←− 𝑞 − 𝑝; 𝑞 ←− ⌊𝑞/2⌋; 𝑟 ←− 𝑝
11 𝑝 ←− ⌊𝑝/2⌋
12 return (𝑉𝑖 ,𝑲𝒊)𝑛−1𝑖=0

28

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 29: sInsert
Require: 𝑿0, · · · ,𝑿𝑵−1, bitwise encryptions of 𝑥0, · · · , 𝑥𝑁−1

𝑠 , a positive integer

Outputs: 𝒁1, · · · ,𝒁𝒔 , bitwise enc. of the 𝑠 largest values

𝑰1, · · · , 𝑰𝒔 , bitwise encryptions of their indexes
1 for 𝑖 = 1 to 𝑠 do
2 𝒁𝒊 ←− 𝑿 𝒊−1;

3 𝑰𝒊 ←− 𝑖 − 1bits;
4 for 𝑗 = 𝑖 − 1 down to 1 do
5 𝐵 ←− LT(𝒁𝒋 ,𝒁𝒋+1);
6 𝒁𝒋 ,𝒁𝒋+1 ←− CSwap(𝐵,𝒁𝒋 ,𝒁𝒋+1);
7 𝑰𝒋 , 𝑰𝒋+1 ←− CSwap(𝐵, 𝑰𝒋 , 𝑰𝒋+1);

8 for 𝑖 = 𝑠 + 1 to 𝑁 do
9 𝐵 ←− LT(𝒁𝒔 ,𝑿 𝒊−1);

10 𝒁𝒔 ←− If(𝐵,𝑿 𝒊−1,𝒁𝒔);
11 𝑰𝒔 ←− If(𝐵, 𝒊 − 1bits, 𝑰𝒔);
12 for 𝑗 = 𝑠 − 1 down to 1 do
13 𝐵 ←− LT(𝒁𝒋 ,𝒁𝒋+1);
14 𝒁𝒋 ,𝒁𝒋+1 ←− CSwap(𝐵,𝒁𝒋 ,𝒁𝒋+1);
15 𝑰𝒋 , 𝑰𝒋+1 ←− CSwap(𝐵, 𝑰𝒋 , 𝑰𝒋+1);

16 return (𝒁1, · · · ,𝒁𝒔), (𝑰1, · · · , 𝑰𝒔);

Algorithm 30: sSelect
Require: 𝑿0, · · · ,𝑿𝑵−1, bitwise encryptions of 𝑥0, · · · , 𝑥𝑁−1

𝑠 , a positive integer

Outputs: 𝒁1, · · · ,𝒁𝒔 , bitwise enc. of the 𝑠 largest values

𝑰1, · · · , 𝑰𝒔 , bitwise encryptions of their indexes
1 for 𝑖 = 1 to 𝑠 do
2 𝒁𝒊, 𝑰𝒊 ←− Max(𝑿0, · · · ,𝑿𝑵−1);
3 for 𝑗 = 0 to 𝑁 − 1 (in parallel) do
4 Writes 𝑗 in base 2:

5 𝑗 =
∑ℓ
𝑘=0

𝑚𝑘2
𝑘
;

6 for 𝑘 = 0 to ℓ do
7 𝐽𝑘 ←− 𝐸1−𝑚𝑘

𝐼
2𝑚𝑘−1
𝑖,𝑘

;

8 (* EQ(𝐼𝑖,𝑘 ,𝑚𝑘) *)
9 𝐵 ←− And(𝐽0, · · · , 𝐽ℓ);

10 𝑿𝒋 ←− CSZ(𝑿𝒋 , 𝐵);

11 return (𝒁1, · · · ,𝒁𝒔), (𝑰1, · · · , 𝑰𝒔);

given by Algorithm 32 which is also available in ElGamal. The same holds for the AddKnownbits function of Algorithm 34 which is a variant

of Addbits where one operand is a cleartext. While we did not need them for the tally function that we studied, they might prove useful in

other contexts.

Algorithm 32: RandBit
Ensure: 𝑍 , an encryption of 𝑏 ∈𝑟 {0, 1}

1 𝑍0 = Enc(1)
2 for 𝑖 = 1 to 𝑎 do
3 Authority 𝑖 chooses 𝑠𝑖 ∈𝑟 {−1, 1} and 𝑟 ∈𝑟 Z𝑛
4 She reveals 𝑍𝑖 = 𝑍

𝑠𝑖
𝑖−1Enc(0, 𝑟), as well as a Zero Knowledge proof of well-formedness

5 The authorities check each others’ proofs

6 Return (𝐸1𝑍𝑎)
1

2

Integer comparison with precomputation and sublinear online complexity (Paillier only)
We mention here a work from [31], which is only exploitable in the Paillier setting. They present some algorithms for the equality test and

the comparison which are mostly precomputable. We do not go into all the details here and refer to [31] for a more complete description. To

compare two𝑚 bits integers 𝑥 and 𝑦, Lipmaa and Toft suggest to create the unique polynomial 𝑃𝑚 such that 𝑃𝑚 (1) = 1 and 𝑃𝑚 (𝑘) = 0 for

𝑘 ∈ {2, · · · ,𝑚 + 1}. Their strategy is to first compute the Hamming weight ℎ of 𝑥 − 𝑦, then to evaluate 𝑃𝑚 on 1 + ℎ, from which they derive

the result. To do so, they use some classical primitives in MPC (Algorithms 32, 36 and 37). The overall process is presented in Algorithm 38.

The advantage of this approach is that the procedure can be precomputed so that only a small part has to be done online, after the operands
are known. Compared to Algorithm 24, Algorithm 38 does not require the costly binary expansion as the inputs do not have to be bit-wise

encrypted. The complexity of the procedure is less dependent in𝑚, the bit size of the integers to compare, but is of the same order. When𝑚

is small, which might be the case in an e-voting setting, the complexity is much higher due to some constant overloads. However, since most

of the procedure can be precomputed, the approach is of interest even when𝑚 is small.

The RandInv Algorithm 36 (adapted from [7]) allows to (collectively) generate two ciphertexts 𝑅, 𝑅′, which encrypt respectively 𝑟 and 𝑟 ′.
The plaintext 𝑟 is a random invertible integer (modulo 𝑛, the Paillier public key), while 𝑟 ′ = 𝑟−1.

The Prefixes Algorithm 37 (adapted from [7]) takes as input𝑚 ciphertexts 𝑀1, · · · , 𝑀𝑚 which are encryptions of𝑚1, · · · ,𝑚𝑚 . This

algorithm returns ciphertexts 𝑍1, · · · , 𝑍𝑚 such that 𝑍𝑖 is an encryption of

∏
1≤ 𝑗≤𝑖𝑚 𝑗 .

29

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 33: RandBits (Paillier only)
Require:𝑚, a number of bits

Ensure: 𝑅, (𝑅0, · · · , 𝑅𝑚−1) such that 𝑅 is an encryption of 𝑟 ∈𝑟 Z𝑛 , while (𝑅0, · · · , 𝑅𝑚−1) are encryptions of the𝑚 first (least significant)

bits of 𝑟

1 for 𝑖 = 0 to𝑚 − 1 do
2 𝑅𝑖 = RandBit()
3 Each authority 𝑖 chooses 𝑟∗,𝑖 ∈𝑟 [0, 2𝑚+𝜅−1 − 1] and publishes 𝑅∗,𝑖 = Enc(𝑟∗,𝑖), along with a Zero Knowledge Ranged Proof

4 𝑅 =
𝑎∏
𝑖=1

𝑅∗,𝑖

5 for 𝑖 =𝑚 − 1 to 0 do
6 𝑅 = 𝑅2

7 𝑅 = 𝑅𝑅𝑖

8 Return 𝑅, (𝑅0, · · · , 𝑅𝑚−1)

Algorithm 34: AddKnownbits

Require: (𝑋0, · · · , 𝑋𝑚−1) bit-wise encryptions of 𝑥 and bits (𝑦0, · · · , 𝑦𝑚−1)
Ensure: 𝑍0, · · · , 𝑍𝑚−1, bitwise encryption of 𝑥 + 𝑦 modulo 2

𝑚

1 𝑅 = 𝑋
𝑦0
0

2 𝑍0 = 𝑋0Enc(𝑦0, 1)/𝑅2 (* 𝑥0 ⊕ 𝑦0 *)
3 for 𝑖 = 1 to𝑚 − 1 do
4 𝐴 = 𝑋𝑖Enc(𝑦𝑖 , 1)/(𝑋 𝑦𝑖

𝑖
)2 (* 𝑥𝑖 ⊕ 𝑦𝑖 *)

5 𝑍𝑖 = 𝐴𝑅/CSZ(𝐴, 𝑅)2 (* 𝑥𝑖 ⊕ 𝑦𝑖 ⊕ 𝑟 *)
6 𝑅 = (𝑋𝑖Enc(𝑦𝑖 , 1)𝑅/𝑍𝑖)

1

2

7 Return 𝑍0, · · · , 𝑍𝑚−1

Algorithm 35: BinExpand (Paillier only)

Require: 𝑋 , an encryption of 𝑥 < 2
𝑚

Ensure: 𝑋0, · · · , 𝑋𝑚−1, the bit-wise encryption of 𝑥

1 𝑅, (𝑅0, · · · , 𝑅𝑚−1) = RandBits(𝑚)
2 𝑌 = 𝑋/𝑅
3 𝑦′ = Dec(𝑌) (* 𝑦′ = 𝑥 − 𝑟 modulo 𝑛 *)

4 Let 𝑦 = 𝑦′ − 𝑛 modulo 2
𝑚

and (𝑦0, · · · , 𝑦𝑚−1) the bits of 𝑦
5 Return AddKnownbits ((𝑅0, · · · , 𝑅𝑚−1), (𝑦0, · · · , 𝑦𝑚−1))

Algorithm 36: RandInv (Paillier only)

Ensure: 𝑅, 𝑅′, encryptions of 𝑟 ∈𝑟 Z𝑥𝑛 and 𝑟 ′ ∈ Z𝑛 such that 𝑟 ′ = 𝑟−1

1 The authorities (simultaneously) display two ciphertexts 𝐴𝑖 , 𝐵𝑖

2 𝐴 =
∏

𝑖 𝐴𝑖 , 𝐵 =
∏

𝑖 𝐵𝑖 , 𝐶 = Mul(𝐴, 𝐵)
3 𝑐 = Dec(𝐶)
4 𝑅 = 𝐴, 𝑅′ = 𝐵𝑐

−1
.

5 Return 𝑅, 𝑅′.

From these, in [31], the authors present two algorithms for the inequality test in the Paillier setting, but we will only present one of them.

The idea is to use a recursive algorithm which first tests the equality of the most significant halves of 𝑥 and 𝑦, using Algorithm 38. If they are

equals, we recursively compare the integers represented by the other halves. If not, we recursively compare the integers represented by the

most significant halves. The main process is given in Algorithm 39. Note that at line 3, we took the liberty to denote 𝑅⊤, 𝑅⊥ the result of

RandBits while RandBits returns encryptions of the form 𝑅, (𝑅0, · · · , 𝑅𝑙−1). We can derive 𝑅⊥ as

∏
𝑖<𝑙/2 (𝑅𝑖)2

𝑖
and 𝑅⊤ in a similar manner.

30

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 37: Prefixes (Paillier only)
Require:𝑀1, · · · , 𝑀𝑚 encryptions of𝑚1, · · · ,𝑚𝑚 , each coprime with 𝑛

Ensure: 𝑍1, · · · , 𝑍𝑚 , encryptions of𝑚1,𝑚1𝑚2, · · · ,
∏

𝑖𝑚𝑖

1 for 𝑖 = 1 to𝑚 (in parallel) do
2 𝑅𝑖 , 𝑅

′
𝑖
= RandInv()

3 𝑆𝑖 = Mul(𝑅𝑖−1, 𝑀𝑖) (* with 𝑅0 = 1 *)

4 𝑆𝑖 = Mul(𝑆𝑖 , 𝑅′𝑖) (* 𝑠𝑖 = 𝑟𝑖−1𝑚𝑖𝑟
−1
𝑖

*)

5 The authority decrypt 𝑆𝑖 to get 𝑠𝑖 .

6 for 𝑖 = 2 to𝑚 (in parallel) do

7 𝑎𝑖 =
𝑖∏
𝑗=1

𝑠 𝑗

8 𝑍𝑖 = 𝑅
𝑎𝑖
𝑖

9 Return 𝑍1, · · · , 𝑍𝑚 (* with 𝑍1 = 𝑀1 *)

Algorithm 38: EQH (Paillier only)

Require: 𝑋,𝑚, 𝑃𝑚 , where 𝑋 is an encryption of an integer 𝑥 << 𝑛 and 𝑃𝑚 the unique polynomial of degree𝑚 such that 𝑃𝑚 (1) = 1 and

𝑃𝑚 (𝑘) = 0 for 𝑘 ∈ {2, · · · ,𝑚 + 1}
Ensure: 𝑍 , an encryption of 1 if 𝑥 = 0 mod 2

𝑚
, of 0 otherwise

1 𝑅, 𝑅𝑚−1, · · · , 𝑅0 = RandBits(𝑚)
2 𝑀,𝑀′ = RandInv()
3 𝑀1, · · · , 𝑀𝑚 = Prefixes(𝑀, · · · , 𝑀)
4 𝐴 = 𝑋/𝑅
5 𝑎 = Dec(𝐴)
6 Let 𝑎0, · · · , 𝑎𝑚−1 be the bit representation of 𝑎 − 𝑛 modulo 2

𝑚

7 𝐻 = Enc(1)
𝑚−1∏
𝑖=0

Enc(𝑎𝑖)𝑅1−2𝑎𝑖𝑖
(* ℎ = 1 +

𝑚−1∑
𝑖=0

𝑎𝑖 ⊕ 𝑟𝑖 *)

8 𝑀𝐻 = Mul(𝑀′, 𝐻)
9 𝑚𝐻 = Dec(𝑀𝐻)

10 for 𝑖 = 0 to𝑚 (in parallel) do
11 𝐻𝑖 = 𝑀

(𝑚𝐻)𝑖
𝑖

12 Return 𝑍 =
∏𝑚

𝑖=0 𝐻
𝛼𝑖
𝑖

(* where the 𝛼𝑖 are the coefficients of 𝑃𝑚 *)

Algorithm 39: GTH (Paillier only)

Require: 𝑋,𝑌, 𝑙 , two encryptions of 𝑙-bit integers 𝑥 and 𝑦

Ensure: 𝑍 , an encryption of (𝑥 ≥ 𝑦)
1 if 𝑙 = 1 then
2 Return 𝐸1/𝑌Mul(𝑋,𝑌)
3 𝑅, 𝑅⊤, 𝑅⊥ = RandBits(𝑙)
4 𝑊 = Enc(2𝑙)𝑋/𝑌
5 𝑀 =𝑊𝑅

6 𝑚 = Dec(𝑀)
7 𝑚⊤ =𝑚 mod 2

𝑙/2
,𝑚⊥ = ⌊𝑚/2𝑙/2⌋ mod 2

𝑙/2

8 𝐵 = EQH(Enc(𝑚⊤), 𝑅⊤) (* 𝑥⊤ = 𝑦⊤ *)

9 𝐶 = 𝐵𝑚⊥−𝑚⊤Enc(𝑚⊤) (*𝑚⊥ if 𝑏 = 1,𝑚⊤ otherwise *)

10 𝐷 = Mul(𝐵, 𝑅⊥/𝑅⊤)𝑅⊤ (* 𝑟⊥ if 𝑏 = 1, 𝑟⊤ otherwise *)

11 𝐹 = Enc(1)/GTH(𝐶, 𝐷)
12 𝑊 ′ = 𝐹 2

𝑙
Enc(𝑚 mod 2

𝑙)/(𝑅2𝑙/2⊤ 𝑅⊥) (*𝑤 mod 2
𝑙
*)

13 Return 𝑍 = (𝑊 /𝑊 ′)1/2𝑙

31

A toolbox for verifiable tally-hiding e-voting systems

C.7 Advanced arithmetic: aggregation, multiplication and division
In the Paillier setting, integers can be represented in the natural encoding, and we already gave a multiplication algorithm Mul as a way to

implement the CSZ functionality. We now come to the more difficult question of doing multiplication and other arithmetic operations in the

bit-encoding, in order to have them available in the ElGamal setting.

Aggregation of several encrypted bits
This Aggregbits operation is ubiquitous in e-voting. More often than not, the ballots of the voters are encoded as a sequence of encrypted

bits and the first step of the tally is to aggregate some of them, i.e. counting all the bits that are set at a given position. The resulting encrypted

integers should be in the bit-encoding format, so as to be able to perform comparisons (for instance). The algorithm for that is pretty simple:

we just use repeatedly the addition algorithm 21, each time with the minimal value of𝑚, the bit length of the operands.

For simplicity in Algorithm 40, we give the process when the number of bits to aggregate (denoted 𝑛) is a power of 2. In this algorithm,

we took the liberty to denote Addbits an addition algorithm which returns𝑚 + 1 encrypted bits when the operands’ bitsize is𝑚 (the last bit is

the carry bit, so we just add 𝑍𝑚 = 𝑅 in Algorithm 21). Note that at line 4, the 𝑛/2𝑖 calls to Addbits are made with inputs of length 𝑖 , so that

the cost is exactly (2𝑖 − 1)CSZ. Therefore the cost of the procedure is
log𝑛∑︁
𝑖=1

𝑛

2
𝑖
(2𝑖 − 1)CSZ ≤

∞∑︁
𝑖=1

2𝑖 − 1
2
𝑖
𝑛CSZ

≤ 3𝑛CSZ

As for the communication cost, the process can be parallelized with a classical tree-based approach, since the addition is an associative

operation.

Algorithm 40: Aggregbits

Require: 𝐵1, · · · , 𝐵𝑛 such that for all 𝑖 , 𝐵𝑖 = 𝐸 (𝑏𝑖) with 𝑏𝑖 ∈ {0, 1}.
Ensure: 𝑆0, · · · , 𝑆log𝑛−1 such that for all 𝑖 , 𝑆𝑖 = 𝐸 (𝑠𝑖) with 𝑠𝑖 ∈ {0, 1} and

∑log𝑛−1
𝑖=0

𝑠𝑖2
𝑖 =

∑
𝑖 𝑏𝑖

1 𝐵0,1, · · · , 𝐵0,𝑛 = 𝐵1, · · · , 𝐵𝑛
2 for 𝑖 = 1 to log𝑛 do
3 for 𝑘 = 1 to 𝑛/2𝑖 (in parallel) do
4 𝐵𝑖,𝑘 = Addbits (𝐵𝑖−1,2𝑘−1, 𝐵𝑖−1,2𝑘)

5 Return 𝐵
log𝑛,1

Multiplication of integers in the bit-encoding.
In Algorithm 41, we detail the schoolbook algorithm for multiplication. This procedure is quite costly, as it requires about 3𝑚2CSZ for the

computation cost and transcript size, and 2𝑚2CSZ for the communication cost, where𝑚 is the bitsize of the input integers.

Algorithm 41: Mulbits

Require: (𝑋0, · · · , 𝑋𝑚𝑥−1), (𝑌0, · · · , 𝑌𝑚𝑦−1), bitwise encryptions of 𝑥 and 𝑦

Ensure: 𝑍0, · · · , 𝑍𝑚𝑥+𝑚𝑦−1, bitwise encryption of 𝑥𝑦

1 for 𝑖 ∈ [0,𝑚𝑥 − 1], 𝑗 ∈ [0,𝑚𝑦 − 1] (in parallel) do
2 𝐴𝑖, 𝑗 = CSZ(𝑋𝑖 , 𝑌𝑗)
3 𝑍0 = 𝐴0,0

4 (𝑇0, · · · ,𝑇𝑚𝑦−1) = (𝐴0,1, · · · , 𝐴0,𝑚𝑦−1, 𝐸0)
5 for 𝑖 = 1 to𝑚𝑥 − 1 do
6 (𝑇0, · · · ,𝑇𝑚𝑦

) = Addbits ((𝑇0, · · · ,𝑇𝑚𝑦−1), (𝐴𝑖,0, · · · , 𝐴𝑖,𝑚𝑦−1))
7 𝑍𝑖 = 𝑇0

8 for 𝑗 = 0 to𝑚𝑦 − 1 do
9 𝑇𝑗 = 𝑇𝑗+1

10 for 𝑖 =𝑚𝑥 to𝑚𝑥 +𝑚𝑦 − 1 do
11 𝑍𝑖 = 𝑇𝑖−𝑚𝑥

12 Return 𝑍0, · · · , 𝑍𝑚𝑥+𝑚𝑦−1

Schoolbook division algorithm.
32

A toolbox for verifiable tally-hiding e-voting systems

For the Single Transferable Vote (see Section 6), we chose to represent fractions with a fixed number of binary places so that a fraction is

encoded and encrypted as an integer. This allows to re-use most of the primitives from this section, while providing a certain degree of

precision and generality. From the schoolbook division algorithm, we derive Algorithm 42, which takes as inputs bit-wise encryptions of 𝑥

and 𝑦 with 𝑦 > 𝑥 and return the 𝑟 first binary places of 𝑥/𝑦. This algorithm could be generalised for any pair (𝑥,𝑦) (i.e. the condition 𝑦 > 𝑥

is not necessary), but the restriction is useful in the special case of STV, and gives a simpler description.

Algorithm 42: Divbits

Require: (𝑋0, · · · , 𝑋𝑚−1), (𝑌0, · · · , 𝑌𝑚−1), 𝑟 , bit-wise encryptions of integers 0 ≤ 𝑥 < 𝑦, and a precision 𝑟

Ensure: 𝑍0, · · · , 𝑍𝑟−1, encryptions of the first 𝑟 binary places of 𝑥/𝑦 (in reverse order: 𝑧0 is the least significant bit)

1 𝐴bits = 𝑋 bits

2 for 𝑖 = 0 to 𝑟 − 1 do
3 𝐵bits, 𝑅𝑖 = SubLT(𝐴bits, 𝑌 bits)
4 𝐴bits = If(𝑅𝑖 , 𝐴bits, 𝐵bits)
5 𝑍𝑖 = Not(𝑅𝑖)
6 Return 𝑍0, · · · , 𝑍𝑟−1

D SINGLE CHOICE VOTING
In single choice voting, the voters can only pick one choice between several possibilities. The choice can be a candidate (basic voting) or a

list of candidates (list voting). In any case, single choice voting can be handled by a homomorphic tally: although the resulting voting system

would leak more than just the result (i.e. the name of the winners), the risk for an Italian attack is arguably very low. Despite from that, the

first iteration of [28] proposed a solution for single choice voting, which was designed to reveal the 𝑠 choices (candidate or list of candidates)

who received the most votes, where 𝑠 is the number of seats. Unfortunately, their approach suffers from a shortcoming where more than 𝑠

candidates may be output in case of a tie between two candidates. To solve this, it is possible to encode a tie-breaking mechanism in the least

significant bits of the score of each candidate, as explained in Section 3.

The solution of Ordinos, once fixed, can be interesting when a choice corresponds to a single candidate. However, when it comes to list

voting, revealing which lists received the most votes is not enough: often, a rule is applied to distribute the 𝑠 seats among the different lists,

depending on the number of votes they each received. One popular approach for this is the D’Hondt method, which is notably used in

Belgium for politically binding elections.

If 𝑐1, · · · , 𝑐𝑘 is the number of votes received by each list and 𝑠 the number of seats, the D’Hondt method defines the parameters𝑤1, · · · ,𝑤𝑠

with𝑤1 < 𝑤2 < · · · < 𝑤𝑠 , and constructs the values 𝑐𝑖/𝑤 𝑗 for all 𝑖, 𝑗 . The 𝑠 greatest values from those coefficients each come from a list 𝑖 (i.e.,
they are of the form 𝑐𝑖/𝑤 𝑗 for some 𝑗), and therefore grants a seat to the list 𝑖 . The way that the list distributes the granted seats among its

candidates is up to the political party (alternatively, it can be encoded in the ordering of the candidates in the list). Generally, it is common

to take 𝑤 𝑗 = 𝑗 for all 𝑗 , so that we only considered this possibility. In this thesis, we fix the shortcoming of Ordinos, where more than 𝑠

candidates may be output in case of a tie, we propose an adaptation of Ordinos for the D’Hondt method and provide an equivalent in the

ElGamal setting, using our toolbox. In addition, we propose two additional computation-communication trade-offs in the ElGamal setting.

D.1 Basic single choice voting
To find the 𝑠 largest values in a list of 𝑁 ciphertexts 𝑐1, · · · , 𝑐𝑁 , the strategy of Ordinos consists of first building the (encrypted) matrix

𝑀
rank

of the pairwise comparisons 𝑐𝑖 ≥ 𝑐 𝑗 for all 𝑖, 𝑗 . Then, to decide whether a candidate 𝑖 is a winner, they compute an encryption of

the sum 𝑆𝑖 =
∑𝑁

𝑗=1 1𝑐𝑖≥𝑐 𝑗 , using the homomorphic property of the Paillier encryption scheme. Finally, they produce an encryption of 1 if

𝑆𝑖 ≥ 𝑁 − 𝑠 + 1, of 0 otherwise, and decrypt the result of the test. Hence, the candidate 𝑖 is a winner if there are at most 𝑠 − 1 candidates
which have strictly more votes than 𝑖 . As mentioned above, this can lead to more than 𝑠 candidates being elected in case of a tie. To fix this,

we propose to encode the tie-beak function in the least significant bits of the score of each candidates. More precisely, if 𝐶𝑖 is the encryption

of the number of votes received by 𝑖 and 𝑟𝑖 ∈ [1, 𝑁] is a number which encodes the tie break rule for 𝑖 (i.e. if there is a tie between 𝑖 and 𝑗 ,
then the one with the largest 𝑟 is preferred), then we replace 𝐶𝑖 by 𝐶

2
ℓ

𝑖
𝐸𝑟𝑖 , where ℓ = ⌈log(𝑁 + 1)⌉ is the number of bits required to encode

each 𝑟 , and 𝐸𝑟𝑖 is a trivial encryption of 𝑟𝑖 . Hence, a tie can no longer occur and the strategy of Ordinos can be applied. The impact of this fix

in the overall performances of Ordinos is low: we only increase the size of the integers to compare by ℓ , which means that we lose less than

a factor 2.

Adaptation to the ElGamal setting. Thanks to our toolbox, it is easy to compute the winner of a basic single-choice voting election,

using Aggreg and 𝑠Select or OddEvenMergeSort. However, we can also adapt Ordinos strategy using pairwise comparisons. This leads to

different computation/communication trade-offs; each can be interesting depending on the ratio between 𝑠 and 𝑘 . In Table 1, we give the

approximate costs of all approaches, which includes the fixed solution of Ordinos. Once again, we conclude that our toolbox is more efficient

computation-wise, but less efficient communication-wise. However, in this particular case, the additional synchronization steps that are

33

A toolbox for verifiable tally-hiding e-voting systems

Table 3: Leading terms of the cost of different MPC solutions for single choice voting; 𝑛 is the number of voters, 𝑘 the number
of candidates, 𝑠 the number of seats, 𝑎 the number of talliers

Version # exp. # synch. steps transcript

[28] (fixed)

precomp. precomp.

9𝑛𝑘+
79.5𝑘2 log(𝑛𝑘)𝑎

41𝑘2 log(𝑛𝑘)𝑎 𝑂 (𝑎)
comp. comp.
4𝑛𝑘+

14 log log(𝑛𝑘)
25𝑘2 log(𝑛𝑘)𝑎

EG (adaptation)

99𝑛𝑘𝑎+
33𝑘2 log(𝑛𝑘)𝑎

1

2
(log(𝑛)2 + log(𝑘)2)𝑎 102𝑛𝑘𝑎+

34𝑘2 log(𝑛𝑘)𝑎

EG (𝑠Select)
99𝑛𝑘𝑎+

33𝑘𝑠 (3 log𝑛 + log𝑘)𝑎
1

2
log(𝑛)2𝑎+

2𝑠 log𝑛 log𝑘𝑎

102𝑛𝑘𝑎+
34𝑘𝑠 (3 log𝑛 + log𝑘)𝑎

EG (OddEven)

99𝑛𝑘𝑎+
25𝑘 log(𝑘)2 log𝑛𝑎

1

2
log(𝑛)2𝑎+

log𝑛 log(𝑘)2𝑎
102𝑛𝑘𝑎+

25.5𝑘 log(𝑘)2 log𝑛𝑎

Table 4: Leading terms of the cost of the different MPC solutions for the D’Hondt method; 𝑛 is the number of voters, 𝑘 is the
number of lists of candidates, 𝑠 is the number of seats,𝑚 = lcm(1, · · · , 𝑠), 𝑎 is the number of talliers and all the logarithms are in
base 2

Version # exp. # synch. steps transcript

Adaptation

of [28]

99𝑛𝑘𝑎+
+33𝑘2𝑠2 log(𝑛𝑘𝑠)𝑎

1

2
(log(𝑛)2 + log(𝑘)2)𝑎
+2 log 𝑠 log𝑛𝑎

102𝑛𝑘𝑎

+34𝑘2𝑠2 log(𝑛𝑘𝑠)𝑎

𝑠Select
99𝑛𝑘𝑎+

33𝑘𝑠2 log(𝑚3𝑛6𝑘𝑠)𝑎
1

2
log(𝑛)2𝑎+

2𝑠 log(𝑚𝑛) log(𝑘𝑠)𝑎
102𝑛𝑘𝑎+

34𝑘𝑠2 log(𝑚3𝑛6𝑘𝑠)𝑎

OddEven

99𝑛𝑘𝑎+
99𝑘𝑠2 log𝑛𝑎+

25𝑘𝑠 log(𝑘𝑠)2 log(𝑚𝑛)𝑎

1

2
log(𝑛)2𝑎+

2 log𝑛 log𝑚

log(𝑚𝑛) log(𝑘𝑠)2𝑎

102𝑛𝑘𝑎+
102𝑘𝑠2 log𝑛𝑎+

25.5𝑘𝑠 log(𝑘𝑠)2 log(𝑚𝑛)𝑎

required in the ElGamal setting are affordable, and it is still possible to switch to more communication-efficient protocols such as CLT ar
UFCAdd if needed.

D.2 List voting: computing the D’Hondt method in MPC
We now explain how to adapt the strategies from the previous section to compute a D’Hondt tally in MPC. Although the D’Hondt method

can be computed with a homomorphic tally, this is a good opportunity to evaluate the performances of our toolbox for a more complex

counting function. First, the strategy of Ordinos can be adapted by computing the pairwise comparisons 𝑐𝑖/𝑤 𝑗 ≥ 𝑐𝑖′/𝑤 𝑗 ′ . Sice comparing

two fractions may be expensive, it is more efficient to precompute all the product 𝑐𝑖𝑤 𝑗 ′ beforehand. For this purpose, one can use the efficient

UFC algorithm (see Algorithm 26), which, given 𝑠 (dupicated) bitwise encryptions of 𝑐𝑖 , returns the bitwise encryptions 𝑺𝒊,1, · · · , 𝑺𝒊,𝒔 of
𝑐𝑖 , 2𝑐𝑖 , · · · , 𝑠𝑐𝑖 . The cost of this protocol is negligible compared to the remaining of the process. Then, we can add the tie-breaking mechanism

in the least significant bits and apply Ordinos’ strategy. This leads to a solution which is efficient communication-wise, but requires Ω(𝑘2𝑠2)
operations, where 𝑘 is the number of candidates and 𝑠 is the number of voters. Hence, it may be preferable to also adapt the other solutions

for computing the 𝑠 largest values, namely 𝑠Select and OddEvenMergeSort. For those solution, however, precomputing all the 𝑺𝒊,𝒋 does not
help much. Indeed, while 𝑐𝑖/𝑤 𝑗 ≥ 𝑐𝑖′/𝑤 𝑗 ′ is indeed equivalent to 𝑐𝑖𝑤 𝑗 ′ ≥ 𝑐𝑖′𝑤 𝑗 , 𝑠Select and OddEvenMergeSort imply a lot of conditional

swaps, which means that the index 𝑖, 𝑗 and 𝑖′, 𝑗 ′ are not known. Consequently, we propose to multiply by the least common multiple

𝑚 = lcm(1, · · · , 𝑠) to get an encryption of the integers 𝑑𝑖, 𝑗 = 𝑐𝑖
𝑚
𝑗 for all 𝑖, 𝑗 . Since one of the operands is known, a slightly optimized version

of Mult can be use, where a third of the computation is saved. To simplify the complexity analysis, we consider 𝑒 = exp(1) and we note

that, by [39, Theorem 12], log𝑚 < 1.039𝑠 log 𝑒 . Hence, the cost of computing the 𝑘𝑠 multiplications in parallel is approximately that of

2𝑘𝑠2 log𝑛 log 𝑒CSZ < 3𝑘𝑠2 log𝑛CSZ, and this approximation is valid for all 𝑠 . This means that the cost of the multiplications is reasonnable

compared to the rest of the protocol. However, by multiplying the values to compare by𝑚, we make the comparisons more expensive since

there are 𝑠 log 𝑒 additional bits to process.

34

A toolbox for verifiable tally-hiding e-voting systems

Number of voters 10 100 1000

uniform distribution

over 5 candidates

0.384 0.220 0.080

political distribution [6] N/A 0.001 N/A

Figure 8: Estimated probability that the algorithm of [14] fails to determine the MJ winner(s).

E MAJORITY JUDGEMENT
In this appendix, we will give the details of what is sketched in Section 4: we start with a precise definition of Majority Judgement (MJ), then

we discuss the contribution of citeCPST-Esorics08 and explain why it is not acceptable. We then present our algorithm for computing the

winners and give a complete proof of its correctness. Finally we explain how to adapt it for MPC for both Paillier and ElGamal settings.

E.1 Definition
In a MJ protocol, there are 𝑘 candidates and a set of 𝑑 grades, which is totally ordered. For instance, the set could be {Excellent, Good,

Medium, Bad, Reject}. For the computations, we represent grades with integers and the tradition in MJ is to use a reversed ordering (i.e. 1 is a
better / higher grade than 2). Each voter has to grade each candidate with a single grade. Hence, if 𝑛 is the number of voters (who did not

abstain or vote blank), each candidate has a list of 𝑛 grades. For simplicity, we assume that the lists are sorted in decreasing order (highest

grades first). Thus, we consider that each candidate has a sorted 𝑛-tuple. Note that two 𝑛-tuples are equal if and only if the candidates

received exactly the same number of each grade. Given a sorted 𝑛-tuple 𝑢1, · · · , 𝑢𝑛 the median of 𝑢 is simply med(𝑢) = 𝑢⌈𝑛/2⌉ . We denote 𝑢

the (𝑛 − 1)-tuple 𝑢1, · · · , 𝑢⌈𝑛/2⌉−1, 𝑢⌈𝑛/2⌉+1, · · · , 𝑢𝑛 ; that is, the tuple 𝑢 in which the median element has been removed. Finally, we define

the ≤𝑚𝑎𝑗 relation as follows, where < stands for the grade-wise comparison (which is the opposite of the natural comparison of integers).

Definition E.1 (The relation ≤𝑚𝑎𝑗). Let 𝑢 and 𝑣 be grade 𝑛-tuples sorted in decreasing order. If 𝑛 = 1, 𝑢 <𝑚𝑎𝑗 𝑣 if 𝑢1 < 𝑣1. Else, 𝑢 <𝑚𝑎𝑗 𝑣 if

one of the following conditions holds:

• med(𝑢) < med(𝑣),
• med(𝑢) = med(𝑣) and 𝑢 <𝑚𝑎𝑗 𝑣 .

Finally, 𝑢 ≤𝑚𝑎𝑗 𝑣 if 𝑢 = 𝑣 or 𝑢 <𝑚𝑎𝑗 𝑣 .

It is straightforward to show that ≤𝑚𝑎𝑗 is a total order. The majority judgement declares as winner any candidate whose grades form a

maximal 𝑛-tuple (once sorted) according to ≤𝑚𝑎𝑗 .

E.2 The approach of [14]
While the algorithm to determine the MJ winner(s) is simple, its naive implementation yields a complexity that depends on the number of

voters, which could be very costly when done in MPC. Hence, the authors of [14] propose an MPC implementation of a simplification of the

MJ algorithm, where whenever two candidates have the same median, only their number of grades higher and smaller than the median are

compared. It has been shown that this technique is sound [6]: if a winner can be determined with this approach, it is indeed a MJ winner.

However, it may also fail to conclude.

An experiment run in [6] on real ballots of a political election with 12 candidates is reassuring: the simplified approach fails only with

probability 0,001 for an election of 100 voters. However, this is due to the fact that in this political election, there was a high correlation

between candidates (if a voter likes a candidate, he is likely to also like other candidates from similar political parties).

In case the number of candidates is smaller and if the distribution of votes is uniform, then the probability of failure raises up to 22%,

as shown in Figure 8. In any case, the approach of [14] leaks more information about the ballots than just the result, with non negligible

probability, since it reveals whether the result can be determined with the simplified algorithm.

E.3 Our simplified algorithm for MJ
First, we give Algorithm 43, our simplified algorithm for Majority Judgment. It takes as input the aggregated matrix 𝑎 such that, for all

candidate 𝑖 and grade 𝑗 , 𝑎𝑖, 𝑗 is the number of 𝑗 received by 𝑖 . It outputs the set of the winners according to the Majority Judgement. To

prove its correctness, we first give Definition E.2. From this definition and Definition E.1, it is straightforward to show that ≤𝑚𝑎𝑗 is the

lexicographic order for the median sequences. Hence, it is important to describe the behavior of the median sequence, which is done in

Lemma E.3.

Definition E.2 (The median sequence). The median sequence of a sorted 𝑛-tuple𝑢, denoted𝑚(𝑢) is the sequence formed bymed(𝑢) followed
by𝑚(𝑢).

Lemma E.3. Let 𝑢 a sorted 𝑛-tuple. The 𝑘𝑡ℎ element of the median sequence of 𝑢 is the element of index𝑚 + (−1)𝑘+𝑛 ⌊𝑘/2⌋, where𝑚 =
⌈
𝑛
2

⌉
.

Proof. We distinguish the cases where 𝑛 is even or odd and give a recurrence in 𝑘 .

35

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 43:Majority Judgement

Require: 𝑎 the aggregated matrix, 𝑑 the number of grades, 𝑛 the number of voters

Ensure: 𝐶 the set of MJ winner(s)

1 Let𝑚 = max{𝑚𝑖 | 𝑚𝑖 is the median of candidate 𝑖}
2 Let 𝐶 be the set of candidates with𝑚 as median grade.

3 Let 𝐼− = 1 and 𝐼+ = 1 be counters.

4 Let 𝑠 = 1.

5 for 𝑖 ∈ 𝐶 do

6 𝑝𝑖 =
𝑚−1∑
𝑗=1

𝑎𝑖, 𝑗 , 𝑞𝑖 =
𝑑∑

𝑗=𝑚+1
𝑎𝑖, 𝑗 ,

7 𝑚−
𝑖
=
⌊
𝑛
2

⌋
− 𝑝𝑖 ,𝑚+𝑖 =

⌊
𝑛
2

⌋
− 𝑞𝑖

8 while (| 𝐶 |> 1) ∧ (𝑠 ≠ 0) do
9 for 𝑖 ∈ 𝐶 do
10 if 𝑚−

𝑖
≤ 𝑚+

𝑖
then

11 𝑠𝑖 = 𝑝𝑖

12 else
13 𝑠𝑖 = −𝑞𝑖

14 𝑠 = max{𝑠𝑖 | 𝑖 ∈ 𝐶}
15 𝐶 = {𝑖 ∈ 𝐶 | 𝑠𝑖 = 𝑠}.
16 if 𝑠 ≥ 0 then
17 for 𝑖 ∈ 𝐶 do
18 𝑚+

𝑖
=𝑚+

𝑖
−𝑚−

𝑖
,𝑚−

𝑖
= 𝑎𝑖,𝑚−𝐼 −

19 𝑝𝑖 = 𝑝𝑖 − 𝑎𝑖,𝑚−𝐼 −
20 𝐼− = 𝐼− + 1
21 else
22 for 𝑖 ∈ 𝐶 do
23 𝑚−

𝑖
=𝑚−

𝑖
−𝑚+

𝑖
,𝑚+

𝑖
= 𝑎𝑖,𝑚+𝐼+

24 𝑞𝑖 = 𝑞𝑖 − 𝑎𝑖,𝑚+𝐼+
25 𝐼+ = 𝐼+ + 1

26 Return 𝐶 .

Case 1: 𝑛 is even. The first element of the median sequence is 𝑢𝑚 by definition. Let 𝑘 ≥ 1. Suppose that for 𝑖 ∈ [1, 𝑘], the 𝑖𝑡ℎ element of

the median sequence is 𝑢𝑚+(−1)𝑖 ⌊𝑖/2⌋ . By definition, the (𝑘 + 1)𝑡ℎ element of the median sequence is the element of index

⌈
𝑛−𝑘
2

⌉
of some

(𝑛 − 𝑘)-tuple, obtained by removing the first 𝑘 elements of the median sequence of 𝑢.

If 𝑘 is even, by recurrence hypothesis, the removed elements have indexes𝑚,𝑚 + 1,𝑚 − 1, · · · ,𝑚 − (𝑘/2 − 1),𝑚 + 𝑘/2 thus the remaining

elements are

(𝑢1, · · · , 𝑢𝑚−𝑘/2, 𝑢𝑚+𝑘/2+1, · · · , 𝑢𝑛) .

As 𝑛 and 𝑘 are even,

⌈
𝑛−𝑘
2

⌉
=𝑚 − 𝑘/2. Therefore, the (𝑘 + 1)𝑡ℎ element of the median sequence is 𝑢𝑚−𝑘/2, and since 𝑘 is even,𝑚 − 𝑘/2 =

𝑚 + (−1)𝑘+1
⌊
𝑘+1
2

⌋
.

If 𝑘 is odd, by recurrence hypothesis, the removed elements have indexes𝑚,𝑚 + 1,𝑚 − 1, · · · ,𝑚 + (𝑘 − 1)/2,𝑚 − (𝑘 − 1)/2 so the remaining

elements are

(𝑢1, · · · , 𝑢𝑚−(𝑘+1)/2, 𝑢𝑚+(𝑘+1)/2, · · · , 𝑢𝑛).

Since 𝑛 is even while 𝑘 odd,

⌈
𝑛−𝑘
2

⌉
=𝑚 − (𝑘 − 1)/2, so the (𝑘 + 1)𝑡ℎ element of the median sequence is the one following 𝑢𝑚−(𝑘+1)/2 in the

above list, namely 𝑢𝑚+(𝑘+1)/2, with𝑚 + (𝑘 + 1)/2 =𝑚 + (−1)𝑘+1
⌊
𝑘+1
2

⌋
.

Case 2: 𝑛 is odd. The first element of the median sequence is 𝑢𝑚 by definition. Let 𝑘 ≥ 1. Suppose that for 𝑖 ∈ [1, 𝑘], the 𝑖𝑡ℎ element of

the median sequence is 𝑢𝑚−(−1)𝑖 ⌊𝑖/2⌋ . By definition, the (𝑘 + 1)𝑡ℎ element of the median sequence is the element of index

⌈
𝑛−𝑘
2

⌉
of some

(𝑛 − 𝑘)-tuple, obtained by removing the first 𝑘 elements of the median sequence of 𝑢.

36

A toolbox for verifiable tally-hiding e-voting systems

If 𝑘 is even, by recurrence hypothesis, the removed elements have indexes𝑚,𝑚 − 1,𝑚 + 1, · · · ,𝑚 + (𝑘/2 − 1),𝑚 − 𝑘/2 so the remaining

elements are

(𝑢1, · · · , 𝑢𝑚−𝑘/2−1, 𝑢𝑚+𝑘/2, · · · , 𝑢𝑛) .

As 𝑛 is odd and 𝑘 even,

⌈
𝑛−𝑘
2

⌉
= 𝑚 − 𝑘/2. Therefore the (𝑘 + 1)𝑡ℎ element of the median sequence is the one following 𝑢𝑚−𝑘/2−1 in the

above list, namely 𝑢𝑚+𝑘/2 with𝑚 + 𝑘/2 =𝑚 − (−1)𝑘+1
⌊
𝑘+1
2

⌋
.

If 𝑘 is odd, by recurrence hypothesis, the removed elements have indexes𝑚,𝑚 − 1,𝑚 + 1, · · · ,𝑚 − (𝑘 − 1)/2,𝑚 + (𝑘 − 1)/2 so the remaining

elements are

(𝑢1, · · · , 𝑢𝑚−(𝑘+1)/2, 𝑢𝑚+(𝑘+1)/2, · · · , 𝑢𝑛).

As 𝑛 and 𝑘 are odds,

⌈
𝑛−𝑘
2

⌉
= 𝑚 − (𝑘 + 1)/2. Hence the (𝑘 + 1)𝑡ℎ element of the median sequence is 𝑢𝑚−(𝑘+1)/2, with𝑚 − (𝑘 + 1)/2 =

𝑚 − (−1)𝑘+1
⌊
𝑘+1
2

⌋
.

□

In order to prove the correctness of Algorithm 43, we exhibit the following loop invariants, where a sum indexed with the empty set is 0

and 𝑔𝑖,1, · · · , 𝑔𝑖,𝑛 denote the list of grades received by candidate 𝑖 , sorted in decreasing order. Note that𝑚 is used to denote the best median

(line 1), and not

⌈
𝑛
2

⌉
as in the previous lemma.

Lemma E.4. In Algorithm 43, the following loop invariants hold at the beginning of the loop (line 8) and at the end of the loop (line 25).

(1) For all 𝑖 ∈ 𝐶 , 𝑝𝑖 +𝑚−𝑖 =𝑚+
𝑖
+ 𝑞𝑖 , and this value is the same for all 𝑖 .

(2) For all 𝑖 ∈ 𝐶 ,𝑚+
𝑖
≥ 0 and𝑚−

𝑖
≥ 0.

(3) For all 𝑖 ∈ 𝐶 , 𝑝𝑖 =
𝑚−𝐼 −∑
𝑗=1

𝑎𝑖, 𝑗 . Hence 𝑝𝑖 ≥ 0.

(4) For all 𝑖 ∈ 𝐶 , 𝑞𝑖 =
𝑑∑

𝑗=𝑚+𝐼+
𝑎𝑖, 𝑗 . Hence, 𝑞𝑖 ≥ 0.

(5) Let 𝐿 + 𝑝𝑖 +𝑚−𝑖 +𝑚
+
𝑖
+ 𝑞𝑖 . The 𝑛 − 𝐿 first elements of the median sequence are identical for all 𝑖 ∈ 𝐶 .

(6) For all 𝑖 ∈ 𝐶 , for all 𝑗 ∈ [1,𝑚−
𝑖
], 𝑔𝑖,𝑝𝑖+𝑗 =𝑚 − 𝐼− + 1 and, for all 𝑗 ∈ [1,𝑚+𝑖], 𝑔𝑖,𝑛−𝑞𝑖− 𝑗+1 =𝑚 + 𝐼

+ − 1.
(7) 𝐶 contains all the MJ winners.

Proof. Initialization. First of all, we verify that the loop invariants are true after line 7.

Invariants 1 to 4:
We have 𝑝𝑖 +𝑚−𝑖 = ⌊𝑛/2⌋ =𝑚+

𝑖
+ 𝑞𝑖 .

Moreover 𝑝𝑖 is the number of grades strictly greater than the median, so by definition of the median, 𝑝𝑖 ≤ ⌊𝑛/2⌋ hence𝑚−𝑖 = ⌊𝑛/2⌋−𝑝𝑖 ≥ 0.

Similarly, 𝑞𝑖 is the number of grades strictly worse than the median, so by definition of the median, 𝑞𝑖 ≤ ⌊𝑛/2⌋ hence𝑚+𝑖 = ⌊𝑛/2⌋ − 𝑞𝑖 ≥ 0.

Finally, Equalities 3 and 4 are true with 𝐼− = 𝐼+ = 1.

Invariant 5:
Initially, 𝐿 = 𝑝𝑖 +𝑚−𝑖 +𝑚

+
𝑖
+ 𝑞𝑖 = 2⌊𝑛/2⌋ so if 𝑛 is even, 𝑛 − 𝐿 = 0. Else, 𝑛 − 𝐿 = 1. As the first element of the median sequence is the

median, the 𝑛 − 𝐿 first elements are the same for all candidates in 𝐶 after line 7.

Invariant 6:
After line 7, 𝑝𝑖 is the number of grades strictly greater than the median for candidate 𝑖 so, for all 𝑗 ≥ 1, 𝑔𝑖,𝑝𝑖+𝑗 ≥ 𝑚. Moreover𝑚−

𝑖
is lower

than the number of grades equal to the median received by 𝑖 . So for all 𝑗 ≤ 𝑚−
𝑖
, 𝑔𝑖,𝑝𝑖+𝑗 ≤ 𝑚. Hence, for all 𝑗 ∈ [1,𝑚−

𝑖
], 𝑔𝑖,𝑝𝑖+𝑗 =𝑚. Similarly,

for all 𝑗 ∈ [1,𝑚+
𝑖
], 𝑔𝑖,𝑛−𝑞𝑖− 𝑗+1 =𝑚.

Invariant 7:
After line 7, 𝐶 contains the candidates who have the best median, thus contains the winners.

Heredity. Assume that the loop invariants are verified at the beginning of the loop, we show that they are preserved at the end of the

loop.

We first show the following result, which is a consequence of loop invariants 1 to 4.

Sub-lemma. For all candidates 𝑖 , 𝑠𝑖 ≥ 0 if and only if𝑚−
𝑖
≤ 𝑚+

𝑖
.

Let 𝑖 be a candidate. Suppose 𝑠𝑖 ≥ 0 and𝑚−
𝑖
> 𝑚+

𝑖
. Then 0 ≤ 𝑠𝑖 = −𝑞𝑖 ≤ 0 so 𝑞𝑖 = 0 and as 𝑝𝑖 +𝑚−𝑖 = 𝑚+

𝑖
+ 𝑞𝑖 , we have 𝑝𝑖 +𝑚−𝑖 = 𝑚+

𝑖
,

which contradicts 𝑝𝑖 ≥ 0. Conversely, if𝑚−
𝑖
≤ 𝑚+

𝑖
, 𝑠𝑖 = 𝑝𝑖 ≥ 0.

To show that the loop invariants are preserved, we denote𝐶1 the set𝐶 at the beginning of the loop and𝐶2 the set𝐶 at the end of the loop.

Let 𝑖 ∈ 𝐶2. Let 𝑖 ∈ 𝐶2, then 𝑖 ∈ 𝐶1 so the loop invariants hold at the beginning of the loop, for all 𝑖 ∈ 𝐶2. We denote 𝑝1 the value of 𝑝𝑖 at the

beginning of the loop and 𝑝2 at the end, and the same for all other variable𝑚−
𝑖
,𝑚+

𝑖
, 𝑞𝑖 , 𝐼

−
, 𝐼+ and 𝐿.

Invariants 1 to 4: Let 𝑠 = max{𝑠𝑖 | 𝑖 ∈ 𝐶}. 𝐶2 = {𝑖 | 𝑠𝑖 = 𝑠}.
If 𝑠 ≥ 0, then 𝑠𝑖 = 𝑠 ≥ 0 so𝑚−

1
≤ 𝑚+

1
by the sub-lemma. Hence𝑚+

2
=𝑚+

1
−𝑚−

1
≥ 0,𝑚−

2
= 𝑎𝑖,𝑚−𝐼 −

1

≥ 0.

37

A toolbox for verifiable tally-hiding e-voting systems

In addition, 𝑝2 = 𝑝1−𝑎𝑖,𝑚−𝐼 −
1

and 𝑞2 = 𝑞1. Therefore 𝑝2 +𝑚−
2
= 𝑝1 = 𝑠𝑖 = 𝑠 , which is the same for all 𝑖 . Moreover𝑚+

2
+𝑞2 =𝑚+

1
−𝑚−

1
+𝑞1 =

𝑝1 +𝑚−
1
−𝑚−

1
= 𝑝1 = 𝑆 .

Finally, line 20 together with line 21 and loop invariant 3 give 𝑝2 =
𝑚−𝐼 −

2∑
𝑗=1

𝑎𝑖, 𝑗 , which shows that invariant 3 is preserved. (Invariant 4 is

also preserved because 𝑞2 = 𝑞1 and 𝐼
+
2
= 𝐼+

1
.)

If 𝑠 < 0, then 𝑠𝑖 = 𝑠 < 0 so𝑚−
1
> 𝑚+

1
by the sub-lemma. Hence𝑚−

2
= 𝑚−

1
−𝑚+

1
≥ 0,𝑚+

2
= 𝑎𝑖,𝑚+𝐼+

1

≥ 0, 𝑞2 = 𝑞1 − 𝑎𝑖,𝑚+𝐼+
1

et 𝑝2 = 𝑝1. So

𝑚+
2
+𝑞2 = 𝑞1 = −𝑆𝑖 = −𝑆 , which is the same for all 𝑖 . In addition 𝑝2 +𝑚−

2
= 𝑝1 +𝑚−

1
−𝑚+

1
=𝑚+

1
+𝑞1 −𝑚+

1
= 𝑞1 = −𝑆 . Finally line 26 together

with line 27 and loop invariant 4 give 𝑞2 =
𝑐∑

𝑗=𝑚+𝐼+
2

𝑎𝑖, 𝑗 , so that invariant 4 is preserved. (Invariant 3 is also preserved because 𝑝2 = 𝑝1 and

𝐼−
2
= 𝐼−

1
.)

Invariant 5:
If 𝑠 ≥ 0,𝑚−

1
≤ 𝑚+

1
. Consequently, 𝑝1 = 𝑠𝑖 = 𝑠 and since 𝑝1 +𝑚−

1
is the same for all 𝑖 , we deduce that𝑚−

1
is the same for all 𝑖 . In addition

we have 𝑝2 +𝑚−
2
= 𝑝1 (lines 19 and 20),𝑚+

2
=𝑚+

1
−𝑚−

1
(line 18) and 𝑞2 = 𝑞1, so

𝐿2 = 𝑝2 +𝑚−2 +𝑚
+
2
+ 𝑞2

= 𝑝1 +𝑚+1 −𝑚
−
1
+ 𝑞1

= 𝑝1 +𝑚−1 +𝑚
+
1
+ 𝑞1 − 2𝑚−1 = 𝐿1 − 2𝑚−1 ,

and since the 𝑛 − 𝐿1 first elements of the median sequence are the same for all candidates in 𝐶1, we only have to show that the 2𝑚−
1
next

elements are the same for all candidates in 𝐶2. For this purpose, we remark that loop invariant 1 implies that 𝐿1 is even and we suppose

𝑚−
1
> 0. (If𝑚−

1
= 0, our job is already done.)

By Lemma E.3, the elements of indexes 𝑛 − 𝐿1 + 1, · · · , 𝑛 − 𝐿1 + 2𝑚−
1
of the median sequence are the elements

𝑔𝑖,⌈𝑛/2⌉+(−1)2𝑛−𝐿1+1 ⌊ (𝑛−𝐿1+1)/2⌋ , 𝑔𝑖,⌈𝑛/2⌉+(−1)2𝑛−𝐿1+2 ⌊ (𝑛−𝐿1+2)/2⌋ , · · · , 𝑔𝑖,⌈𝑛/2⌉+(−1)2𝑛−𝐿1+2𝑚−1 ⌊ (𝑛−𝐿1+2𝑚−
1
)/2⌋ ;

which are also

𝑔𝑖,⌈𝑛/2⌉−⌊ (𝑛+1)/2⌋+𝐿1/2, 𝑔𝑖,⌈𝑛/2⌉+⌊𝑛/2⌋−𝐿1/2+1, · · · , 𝑔𝑖,⌈𝑛/2⌉−⌊ (𝑛−1)/2⌋+𝐿1/2−𝑚−
1

, 𝑔𝑖,⌈𝑛/2⌉+⌊𝑛/2⌋−𝐿1/2+𝑚−
1

.

But 𝐿1 = 𝑝1 +𝑚−
1
+𝑚+

1
+ 𝑞1 so, by invariant 1, 𝐿1/2 = 𝑝1 +𝑚−

1
=𝑚+

1
+ 𝑞1. Since ⌈𝑛/2⌉ = ⌊(𝑛 + 1)/2⌋ and ⌈𝑛/2⌉ + ⌊𝑛/2⌋ = 𝑛 for all 𝑛, we can

rewrite them as

𝑔𝑖,𝑝1+𝑚−
1

, 𝑔𝑖,𝑛−𝑞1−𝑚+
1
+1, · · · , 𝑔𝑖,𝑝1+1, 𝑔𝑖,𝑛−𝑞1−𝑚+

1
+𝑚−

1

.

In what follow, we prove that for all 𝑗 ∈ [1,𝑚−
𝑖
], 𝑔𝑖,𝑛−𝑞1−𝑚+

1
+𝑗 =𝑚 + 𝐼+1 − 1. Indeed, 𝑛 − 𝑞1 −𝑚

+
1
+ 𝑗 = 𝑛 − 𝑞1 − (𝑚+

1
− 𝑗 + 1) + 1 and since

𝑚+
1
≥ 𝑚−

1
> 0,𝑚+

1
− 𝑗 + 1 ∈ [1,𝑚+

1
] for all 𝑗 ∈ [1,𝑚−

1
], which allows to prove our claim by invariant 6.

In addition, 𝑔𝑖,𝑝1+𝑗 =𝑚 − 𝐼−1 + 1 for all 𝑗 ∈ [1,𝑚
−
1
] by invariant 6, so the elements listed above are equal to𝑚 − 𝐼−

1
+ 1,𝑚 + 𝐼+

1
− 1, · · · ,𝑚 −

𝐼−
1
+ 1,𝑚 + 𝐼+

1
− 1 and therefore are the same for all 𝑖 ∈ 𝐶2, which shows that invariant 5 is preserved.

If 𝑠 < 0,𝑚−
1
> 𝑚+

1
. Consequently, 𝑞1 = −𝑠𝑖 = −𝑠 and since𝑚+

1
+ 𝑞1 is the same for all 𝑖 , so is𝑚+

1
. Moreover𝑚+

2
+ 𝑞2 = 𝑞1 (lines 25 and 26),

𝑚−
2
=𝑚−

1
−𝑚+

1
(line 24) and 𝑝2 = 𝑝1 so

𝐿2 = 𝑝2 +𝑚−2 +𝑚
+
2
+ 𝑞2

= 𝑝1 +𝑚−1 −𝑚
+
1
+ 𝑞1

= 𝑝1 +𝑚−1 +𝑚
+
1
+ 𝑞1 − 2𝑚+1 = 𝐿1 − 2𝑚+1 ,

and since the 𝑛 − 𝐿1 first elements of the median sequence are the same for all candidates in 𝐶1, we only have to show that the 2𝑚+
1
next

elements are the same for all candidates in 𝐶2. For this purpose, we remark that invariant 1 implies that 𝐿1 is even and we suppose that

𝑚+
1
> 0. (If𝑚+

1
= 0, our job is done.)

By Lemma E.3, the elements of indexes 𝑛 − 𝐿1 + 1, · · · , 𝑛 − 𝐿1 + 2𝑚+
1
of the median sequence are

𝑔𝑖,⌈𝑛/2⌉+(−1)2𝑛−𝐿1+1 ⌊ (𝑛−𝐿1+1)/2⌋ , 𝑔𝑖,⌈𝑛/2⌉+(−1)2𝑛−𝐿1+2 ⌊ (𝑛−𝐿1+2)/2⌋ , · · · , 𝑔𝑖,⌈𝑛/2⌉+(−1)2𝑛−𝐿1+2𝑚+1 ⌊ (𝑛−𝐿1+2𝑚+
1
)/2⌋ ;

which are also

𝑔𝑖,⌈𝑛/2⌉−⌊ (𝑛+1)/2⌋+𝐿1/2, 𝑔𝑖,⌈𝑛/2⌉+⌊𝑛/2⌋−𝐿1/2+1, · · · , 𝑔𝑖,⌈𝑛/2⌉−⌊ (𝑛−1)/2⌋+𝐿1/2−𝑚+
1

, 𝑔𝑖,⌈𝑛/2⌉+⌊𝑛/2⌋−𝐿1/2+𝑚+
1

.

But 𝐿1 = 𝑝1 +𝑚−
1
+𝑚+

1
+ 𝑞1 so, by invariant 1, 𝐿1/2 = 𝑝1 +𝑚−

1
=𝑚+

1
+ 𝑞1. Since ⌈𝑛/2⌉ = ⌊(𝑛 + 1)/2⌋ et ⌈𝑛/2⌉ + ⌊𝑛/2⌋ = 𝑛 for all 𝑛, we can

rewrite them as

𝑔𝑖,𝑝1+𝑚−
1

, 𝑔𝑛−𝑞1−𝑚+
1
+1, · · · , 𝑔𝑖,𝑝1+𝑚−

1
−𝑚+

1
+1, 𝑔𝑖,𝑛−𝑞1 .

We now show that for all 𝑗 ∈ [1,𝑚+
𝑖
], 𝑔𝑖,𝑝1+𝑚−

1
− 𝑗+1 = 𝑚 − 𝐼−

1
+ 1. Indeed, 𝑝1 +𝑚−

1
− 𝑗 + 1 = 𝑝1 + (𝑚−

1
− 𝑗 + 1) and since𝑚−

1
> 𝑚+

1
> 0,

(𝑚−
1
− 𝑗 + 1) ∈ [1,𝑚−

1
] for all 𝑗 ∈ [1,𝑚+

1
], which allows to prove our claim by invariant 6.

38

A toolbox for verifiable tally-hiding e-voting systems

In addition, 𝑔𝑖,𝑛−𝑞1− 𝑗+1 = 𝑚 + 𝐼+
1
− 1 for all 𝑗 ∈ [1,𝑚+

1
] by invariant 6, so the elements listed above are equal to𝑚 − 𝐼−

1
+ 1,𝑚 + 𝐼+

1
−

1, · · · ,𝑚 − 𝐼−
1
+ 1,𝑚 + 𝐼+

1
− 1 and therefore are the same for all 𝑖 ∈ 𝐶2, which shows that invariant 5 is preserved.

Invariant 6:

If 𝑠 ≥ 0,𝑚−
1
≤ 𝑚+

1
so 𝑝2 = 𝑝1 − 𝑎𝑖,𝑚−𝐼 −

1

and𝑚−
2
= 𝑎𝑖,𝑚−𝐼 −

1

. But 𝑝1 =
𝑚−𝐼 −

1∑
𝑗=1

𝑎𝑖, 𝑗 , which is exactly the number of grades strictly greater

than𝑚 − 𝐼−
1
+ 1 received by 𝑖 so by definition of 𝑎𝑖,𝑚−𝐼 −

1

, 𝑝2 is the number of grades strictly greater than𝑚 − 𝐼−
1
. Therefore 𝑔𝑖,𝑝2+1 is lower

than𝑚 − 𝐼−
1
and as there are 𝑎𝑖,𝑚−𝐼 −

1

=𝑚−
2
grades equal to𝑚 − 𝐼−

1
, we deduce that 𝑔𝑖,𝑝2+𝑗 =𝑚 − 𝐼−1 =𝑚 − (𝐼− + 1) + 1 =𝑚 − 𝐼−

2
+ 1 for all

𝑗 ∈ [1,𝑚−
2
]. In addition, for all 𝑗 ∈ [1,𝑚+

1
], 𝑔𝑖,𝑛−𝑞1− 𝑗+1 =𝑚 + 𝐼+1 − 1 so, a fortiori, for all 𝑗 ∈ [1,𝑚

+
1
−𝑚−

1
], 𝑔𝑖,𝑛−𝑞1− 𝑗+1 =𝑚 + 𝐼+2 − 1.

If 𝑠 < 0,𝑚−
1
> 𝑚+

1
so 𝑞2 = 𝑞1 − 𝑎𝑖,𝑚+𝐼+

1

and𝑚+
2
= 𝑎𝑖,𝑚+𝐼+

1

. But 𝑞1 =
𝑐∑

𝑗=𝑚+𝐼+
1

𝑎𝑖, 𝑗 , which is exactly the number of grades strictly worse than

𝑚 + 𝐼+
1
− 1 so by definition of 𝑎𝑖,𝑚+𝐼+

1

, 𝑞2 is the number of grades strictly worse than𝑚 + 𝐼+
1
. Therefore 𝑔𝑖,𝑛−𝑞2 is greater than𝑚 + 𝐼+1 and as

there are 𝑎𝑖,𝑚+𝐼+
1

=𝑚+
2
grades equal to𝑚 + 𝐼+

1
, we deduce that 𝑔𝑖,𝑛−𝑞2− 𝑗+1 =𝑚 + 𝐼+

1
=𝑚 + (𝐼+ + 1) − 1 =𝑚 + 𝐼+

2
− 1 for all 𝑗 ∈ [1,𝑚+

2
]. In

addition, for all 𝑗 ∈ [1,𝑚−
1
], 𝑔𝑖,𝑝1+𝑗 =𝑚 − 𝐼−1 + 1 so, a fortiori, for all 𝑗 ∈ [1,𝑚

+
1
−𝑚−

1
], 𝑔𝑖,𝑝1+𝑗 =𝑚 − 𝐼−2 + 1.

Invariant 7:
Let 𝑏 ∈ 𝐶2, (namely 𝑏 ∈ 𝐶1 such that 𝑠𝑏 = 𝑠). We show that for all 𝑎 ∈ 𝐶1\𝐶2, (namely for all 𝑎 ∈ 𝐶1 such that 𝑠𝑎 < 𝑠), 𝑎 <𝑚𝑎𝑗 𝑏.

Positive case. Suppose that 𝑠 ≥ 0. Let 𝑎 ∈ 𝐶1 such that 𝑠𝑎 < 𝑠 .

Positive-negative case.We first assume that 𝑠𝑎 < 0. Therefore 𝑠𝑎 < 0 ≤ 𝑠 = 𝑠𝑏 . By the sub-lemma, we have𝑚−𝑎 > 𝑚+𝑎 and𝑚−
𝑏
≤ 𝑚+

𝑏
.

Suppose that𝑚+𝑎 < 𝑚−
𝑏
. With the same reasoning as in the proof of invariant 6, we show that the elements of indexes 1 to 𝑛 − 𝐿 + 2𝑚+𝑎 of

the median sequence of 𝑎 and 𝑏 are the same. Since𝑚−𝑎 > 𝑚+𝑎 , by Lemma E.3 and loop invariant 1 and 6, the 𝑛 − 𝐿 + 2𝑚+𝑎 + 1 th elements of

the median sequence of 𝑎 and 𝑏 are respectively

𝑔𝑎,𝑝𝑎+𝑚−𝑎 −𝑚+𝑎 =𝑚 − 𝐼− + 1 and
𝑔𝑏,𝑝𝑎+𝑚−𝑎 −𝑚+𝑎 = 𝑔𝑏,𝑝𝑏+𝑚−𝑏 −𝑚

+
𝑎
=𝑚 − 𝐼− + 1.

However, the 𝑛 − 𝐿 + 2𝑚+𝑎 + 2 th element of the median sequence of 𝑎 is

𝑔𝑎,𝑛−𝑞𝑎+1 < 𝑔𝑎,𝑛−𝑞𝑎 =𝑚 + 𝐼+ − 1,
while 𝑏’s is

𝑔𝑏,𝑛−𝑞𝑎−𝑚+𝑎+𝑚+𝑎+1 = 𝑔𝑏,𝑛−𝑞𝑏−(𝑚+𝑏−𝑚
+
𝑎)+1 =𝑚 + 𝐼

+ − 1.
Therefore 𝑏 >𝑚𝑎𝑗 𝑎.

Now suppose that𝑚+𝑎 ≥ 𝑚−𝑏 . As above, the 𝑛 − 𝐿 + 2𝑚
−
𝑏
first elements of the median sequence of 𝑎 and 𝑏 are the same. The elements of

index 𝑛 − 𝐿 + 2𝑚−
𝑏
+ 1 are respectively

𝑔𝑎,𝑝𝑎+𝑚−𝑎 −𝑚−𝑏 = 𝑔𝑎,𝑝𝑎+(𝑚−𝑎 −𝑚+𝑎)+(𝑚+𝑎−𝑚−𝑏) =𝑚 − 𝐼
− + 1− and

𝑔𝑏,𝑝𝑎+𝑚−𝑎 −𝑚−𝑏 = 𝑔𝑏,𝑝𝑏 > 𝑚 − 𝐼− + 1.

Therefore 𝑏 >𝑚𝑎𝑗 𝑎.

Positive-positive case. Now suppose that 0 ≤ 𝑠𝑎 . By the sub-lemma,𝑚−
𝑏
≤ 𝑚+

𝑏
,𝑚−𝑎 ≤ 𝑚+𝑎 . Consequently 𝑠𝑎 = 𝑝𝑎 and 𝑠𝑏 = 𝑝𝑏 and since

𝑠𝑎 < 𝑠𝑏 , by invariant 1, we have𝑚−𝑎 > 𝑚−
𝑏
. Then again, we deduce that the 𝑛 − 𝐿 + 2𝑚−

𝑏
first elements of the median sequence are the same

and that 𝑏 wins over 𝑎 thanks to the next element.

Negative case. Finally, suppose that 𝑠 < 0. Then 𝑠𝑎 < 𝑠𝑏 = 𝑠 < 0 so, by the sub-lemma,𝑚−𝑎 > 𝑚+𝑎 and𝑚−
𝑏
> 𝑚+

𝑏
. Consequently 𝑠𝑎 = −𝑞𝑎

and 𝑠𝑏 = −𝑞𝑏 and since 𝑠𝑎 < 𝑠𝑏 , by invariant 1, we have𝑚+
𝑏
> 𝑚+𝑎 . Then again, we deduce that the 𝑛 − 𝐿 + 2𝑚+𝑎 first elements of the median

sequence are the same. In addition𝑚−𝑎 > 𝑚+𝑎 , so by Lemma E.3 and invariants 1 and 6, the 𝑛−𝐿 + 2𝑚+𝑎 + 1 th elements of the median sequence

of 𝑎 and 𝑏 are

𝑔𝑎,𝑝𝑎+𝑚−𝑎 −𝑚+𝑎 =𝑚 − 𝐼− + 1 and
𝑔𝑏,𝑝𝑎+𝑚−𝑎 −𝑚+𝑎 = 𝑔𝑏,𝑝𝑏+𝑚−𝑏 −𝑚

+
𝑎
=𝑚 − 𝐼− + 1.

However, the 𝑛 − 𝐿 + 2𝑚+𝑎 + 2 th element for 𝑎 is

𝑔𝑎,𝑛−𝑞𝑎+1 > 𝑔𝑎,𝑛−𝑞𝑎 =𝑚 + 𝐼+ − 1,
while 𝑏’s is

𝑔𝑏,𝑛−𝑞𝑎−𝑚+𝑎+𝑚+𝑎+1 = 𝑔𝑏,𝑛−𝑞𝑏−(𝑚+𝑏−𝑚
+
𝑎)+1 =𝑚 + 𝐼

+ − 1.
Therefore 𝑏 >𝑚𝑎𝑗 𝑎. □

Once the loop invariants are established, it is straightforward to show the correctness of our algorithm (Theorem E.5).

Theorem E.5. Algorithm 43 returns the set of maxima according to ≤𝑚𝑎𝑗 in 𝑂 (𝑘𝑑) comparisons between grades.
39

A toolbox for verifiable tally-hiding e-voting systems

Proof. Complexity. By Lemma E.4, 𝑝𝑖 =
𝑚−𝐼 −∑
𝑗=1

𝑎𝑖, 𝑗 and 𝑞𝑖 =
𝑐∑

𝑗=𝑚+𝐼+
𝑎𝑖, 𝑗 . But at each iteration, we subtract 𝑎𝑖,𝑚−𝐼 − to 𝑝𝑖 or 𝑎𝑖,𝑚+𝐼+ to 𝑞𝑖

so there cannot be more than 𝑑 iterations before both are equal to 0. When 𝑝𝑖 = 𝑞𝑖 = 0 for all 𝑖 , 𝑠 = 0, which terminates the loop. Hence the

Algorithm terminates en 𝑂 (𝑘𝑑) comparisons.

Correctness. If the algorithm terminates because | 𝐶 |= 1, 𝐶 contains only one element and since 𝐶 contains the winners, 𝐶 is the set of

winners. Otherwise, 𝑠 = 0. Recall that 𝑠 is the maximum of 𝑠𝑖 and let 𝑖 such that 𝑠𝑖 = 𝑠 . If𝑚
−
𝑖
> 𝑚+

𝑖
, we have 𝑠𝑖 = −𝑞𝑖 thus 𝑞𝑖 = 0, which

contradicts 𝑝𝑖 +𝑚−𝑖 =𝑚+
𝑖
+ 𝑞𝑖 and 𝑝𝑖 ≥ 0 so𝑚−

𝑖
≤ 𝑚+

𝑖
and 𝑝𝑖 = 𝑠𝑖 = 𝑠 = 0. But𝑚−

𝑖
≤ 𝑚+

𝑖
and 𝑝𝑖 +𝑚−𝑖 =𝑚+

𝑖
+ 𝑞𝑖 . Since 𝑞𝑖 ≥ 0, 𝑞𝑖 = 0 thus

𝑚−
𝑖
=𝑚+

𝑖
. Hence, by invariants 6 and 7, each candidate in 𝐶 are equal with respect to ≤𝑚𝑎𝑗 . Since 𝐶 contains the winners, 𝐶 is the set of

winners. □

E.4 An adaptation in MPC in the Paillier setting
In this section, we show how to adapt Algorithm 43 in MPC in the Paillier setting. Since we only focus on the tallying phase and since

obtaining (an element-wise encryption of) the aggregated matrix from the ballots is easy in the Paillier setting, we consider that (an

element-wise encryption of) the aggregated matrix is available. We first rewrite the algorithm into Algorithm 46 and prove that the new

algorithm is equivalent to Algorithm 43. Using the building blocks from Section 2.1, it is easy to implement Algorithm 46 in MPC (see

Algorithm 50).

We first provide Algorithm 44 which returns the grade vector as defined in [14]. The grade vector is a (term-by-term) encryption of 𝑔 such

that 𝑔 𝑗 = 1 if 𝑗 is strictly greater than the best median𝑚, and 𝑔 𝑗 = 0 otherwise. It will be useful to initialize 𝑝𝑖 ,𝑚
−
𝑖
,𝑚+

𝑖
, 𝑞𝑖 ,𝑚 − 𝐼− and𝑚 + 𝐼+.

Algorithm 44: Grade (Paillier setting)
Require: 𝐴 such that, for all (𝑖, 𝑗), 𝐴𝑖, 𝑗 is an encryption of the number of grades 𝑗 given to candidate 𝑖

Ensure: 𝐺 , such that for all 𝑗 , 𝐺 𝑗 is an encryption of 1 if 𝑗 is strictly greater than the best median, of 0 otherwise.

1 𝑉 =
𝑑∏
𝑗=1

𝐴1𝑗

2 for 𝑖 = 1 to 𝑘 (in parallel) do
3 for 𝑗 = 1 to 𝑑 (in parallel) do

4 𝐵 =

(
𝑗∏

𝑙=1

𝐴𝑖𝑙

)2
5 𝐶𝑖 𝑗 = Not(GTH(𝐵,𝑉))

6 for 𝑗 = 1 to 𝑑 (in parallel) do
7 𝐺 𝑗 = 𝐶1𝑗

8 for 𝑖 = 2 to 𝑘 (tree-based parallelisation is possible) do
9 𝐺 𝑗 = Mul(𝐺 𝑗 ,𝐶𝑖 𝑗)

10 Return 𝐺

The idea of this algorithm is that, for all candidate 𝑖 and grade 𝑗 , 𝑗 is strictly greater than the best median if and only if the number

of grades greater than 𝑗 is strictly lower than half the number of grades. This translates into the formula 2

𝑗∑
𝑙=1

𝑎𝑖,𝑙 < 𝑛 =
𝑑∑
𝑙=1

𝑎𝑖,𝑙 , which

allows to compute 𝑐𝑖, 𝑗 for all (𝑖, 𝑗), where 𝑐𝑖, 𝑗 = 1 if 𝑗 is strictly greater than 𝑖’s median. To deduce the grade vector, we compute the logical

conjunction column by column.

Once the grade vector is computed, we can initialize 𝑝𝑖 , 𝑚
−
𝑖
, 𝑚+

𝑖
and 𝑞𝑖 with Algorithm 45, which is adapted from [14].

The idea is that 𝑝𝑖 can be obtained from 𝐺 thanks to 𝑝𝑖 =
∑𝑑

𝑗=1 𝑎𝑖, 𝑗𝑔 𝑗 while 𝑞𝑖 can be obtained similarly with a right shift of 𝐺 ’s negation.

Indeed, Not(𝐺) is the vector of encryptions of 1 if 𝑗 is worse than the best median, of 0 otherwise. Its right shift is therefore encryptions of 1

if 𝑗 is strictly worse than the best median, of 0 otherwise.

At this point, we remark that we can replace 𝐶 as defined in line 2 of Algorithm 43 by the whole set of candidates, this without affecting

the result, (see Lemma E.6). In what follows, we call Algorithm 43.E.6 the Algorithm 43 in which this transformation has been done.

Lemma E.6. In Algorithm 43, replacing line 2 by "Let 𝐶 be the set of all candidates" will not alter the output.

Proof. We show that after the first iteration of the loop, the 𝐶 sets of both algorithms are the same, which shows that invariants from

Lemma E.4 are verified at the beginning of the second iteration of the loop, if any (if not the output is correct as well since the sets are the

same).

Let𝑚 be the best median, and 𝑎 and 𝑏 be two candidates such thatmed(𝑏) < med(𝑎) =𝑚. For all 𝑖 , after line 7 in both algorithms, 𝑝𝑖 is the

number of grades strictly better than𝑚 received by candidate 𝑖 while 𝑞𝑖 is the number of grades strictly worse than𝑚 received by candidate

40

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 45: InitD (Paillier setting)

Require: (𝐴𝑖 𝑗),𝐺, 𝑛 such that 𝐴𝑖, 𝑗 is an encryption of the number of 𝑗 grades given to candidate 𝑖 , while 𝐺 is the grade vector and 𝑛 the

number of voters.

Ensure: 𝑃,𝑀−, 𝑀+, 𝑄 where, for all 𝑖 ,

- 𝑃𝑖 is an encryption of 𝑝𝑖 , the number of grades received by 𝑖 which are strictly greater than the best median,

- 𝑀−
𝑖
is an encryption of ⌊𝑛/2⌋ − 𝑝𝑖 ,

- 𝑄𝑖 is an encryption of the number 𝑞𝑖 of grades received by 𝑖 which are strictly worse than the best median,

- 𝑀+
𝑖
is an encryption of ⌊𝑛/2⌋ − 𝑞𝑖 .

1 for 𝑖 = 1 to 𝑘 do

2 𝑃𝑖 =
𝑑∏
𝑗=1

Mul(𝐴𝑖 𝑗 ,𝐺 𝑗)

3 𝑀−
𝑖

= Enc(⌊𝑛/2⌋)/𝑃𝑖

4 𝑄𝑖 =
𝑑∏
𝑗=2

Mul(𝐴𝑖 𝑗 , Not(𝐺 𝑗−1))

5 𝑀+
𝑖
= Enc(⌊𝑛/2⌋)/𝑄𝑖

𝑖 . By definition of the median, we have 𝑞𝑎 ≤ ⌊𝑛/2⌋. On the other hand, 𝑝𝑏 ≤ ⌊𝑛/2⌋ < 𝑞𝑏 . But after line 7, we have𝑚−𝑖 + 𝑝𝑖 =𝑚
+
𝑖
+𝑞𝑖 = ⌊𝑛/2⌋

for all 𝑖 so𝑚−
𝑏

> 𝑚+
𝑏
and 𝑆𝑏 = −𝑞𝑏 after line 13. As 𝑆𝑎 ∈ {𝑝𝑎,−𝑞𝑎} with 𝑝𝑎 ≥ −𝑞𝑎 ≥ −⌊𝑛/2⌋ > −𝑞𝑏 , we have 𝑆𝑏 < 𝑆𝑎 . Therefore 𝑏 is

discarded from 𝐶 at line 15. □

Lemma E.6 allows to initialize 𝑝𝑖 ,𝑚
−
𝑖
,𝑚+

𝑖
and 𝑞𝑖 for all candidate 𝑖 with no care of whether 𝑖’s median is𝑚 or not. Now we explain how

to run the while loop in MPC without revealing the number of iterations, nor the number of candidates which remain at any given point (see

Lemma E.7).

Lemma E.7. In Algorithm 43.E.6, we can replace line 8 by a for loop on 𝑑 iterations, without affecting the result. Moreover, invariants from
Lemma E.4 are still preserved.

Proof. Following the proof of Lemma E.4, we remark that the proof does not depend on the number of iterations, so the loop invariants

are preserved even if additional iterations are performed. Since the number of iterations is at most 𝑑 as explained in the proof of Theorem E.5,

this concludes the proof. □

In what follows, we denote Algorithm 43.E.7 the Algorithm 43.E.6 in which line 8 is replaced by "for 𝑗 = 1 to 𝑑 do".

To encode 𝐶 , we use its indicator (which we also denote 𝐶). To show the implied modification, we explicitly give Algorithm 46, where the

transformations induced by Lemmas E.6 and E.7 have been made. To prove its correctness, we give the following lemma.

Lemma E.8. In Algorithm 46, 𝑐 is the indicator of 𝐶 from Algorithm 43.E.7.

Proof. We verify that this property holds as a loop invariant.

Initialisation. Before the first loop iteration, we have 𝑐𝑖 = 1 for all 𝑖 ∈ [1, 𝑘] and 𝐶 = [1, 𝑘] so 𝑐 is 𝐶’s indicator.
Heredity. Suppose that before the 𝑗𝑡ℎ iteration in Algorithm 46, 𝑐 is the indicator of the set 𝐶 such as before the 𝑗𝑡ℎ iteration in

Algorithm 43.E.7. Then for 𝑖 ∈ 𝐶 , 𝑐𝑖 = 1 so 𝑠𝑖 is the same in both algorithms. On the other hand, for 𝑖 ∉ 𝐶 , 𝑐𝑖 = 0 so 𝑠𝑖 = −𝑛 in Algorithm 46.

By Lemma E.6, after the first loop iteration in Algorithm 43.E.6,𝐶 only contains candidates of median𝑚. They therefore have at least a grade

equal to𝑚, so for all 𝑖 ∈ 𝐶 , 𝑞𝑖 ≤ 𝑛 − 1 < 𝑛 after the first iteration. Since 𝑞𝑖 can only decrease, we always have 𝑝𝑖 ≥ −𝑞𝑖 > −𝑛 for 𝑖 ∈ 𝐶 , hence
𝑠𝑖 > −𝑛. Therefore, for 𝑖 ∈ 𝐶 and 𝑗 ∉ 𝐶 , 𝑠𝑖 > 𝑠 𝑗 . This is also true in Algorithm 43.E.7, so 𝑠 is the same in both algorithms after line 15. □

Now we explain how to get 𝑎𝑖,𝑚−𝐼 − and 𝑎𝑖,𝑚+𝐼+ without revealing𝑚 − 𝐼− et𝑚 + 𝐼+. We use two vectors 𝐿 and 𝑅 of size 𝑑 such that 𝐿𝑗 is

an encryption of 1 if 𝑗 =𝑚 − 𝐼− , of 0 otherwise, while 𝑅 𝑗 is an encryption of 1 if 𝑗 =𝑚 + 𝐼+, of 0 otherwise. This way 𝑎𝑖,𝑚−𝐼 − and 𝑎𝑖,𝑚+𝐼+
can be obtained with Select. To initialize 𝐿 and 𝑅, we use Algorithm 47 which uses the grade matrix 𝑔 such that 𝑔 𝑗 = 1 if 𝑗 < 𝑚, where

𝑚 is the best median, and 𝑔 𝑗 = 0 otherwise. The idea is that𝑚 − 1 is the last index for which 𝑔 𝑗 = 1, so that 𝑙 𝑗 = 𝑔 𝑗 − 𝑔 𝑗+1. Note that an
initialization of 𝑅 is obtained from 𝐿, with two right shifts. The only difficulty is when the best median is equal to the best possible grade, in

which case 𝑔 and 𝑙 are null, while 𝑟2 = 1. In any other case, 𝑔0 = 1 and 𝑟2 = 0, so we have 𝑟2 = 1 − 𝑔0.
In order to increment 𝐼− and 𝐼+, we use the simple Algorithms 48 and 49. Note that we always have 𝐿𝑑 = Enc(0) while 𝑅𝑑 = Enc(0), so 𝐿

and 𝑅 can be processed as vectors of 𝑑 − 1 ciphertexts.
The complete procedure is given in Algorithm 50, whose correctness is the claim of Theorem E.9. In this Algorithm, we add the constant

𝑛 (the number of voters) to the candidates’ scores at line 15, so that each integers to be compared are non-negative. The comparison requires

therefore one additional bit but only for the first loop iteration. In the remaining iterations, we have 𝑞𝑖 ≤ ⌊𝑛/2⌋ so that we can add ⌊𝑛/2⌋
instead of 𝑛. Since 𝑝𝑖 ≤ ⌊𝑛/2⌋, we no longer need an extra bit. For simplicity, we did not explicitly write this optimization in Algorithm 50.

41

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 46:MJ; version with a fixed number of loops, and an array of bits (indicator) instead of a set.

Require: 𝑎, the aggregated matrix.

Ensure: 𝑐 , the indicator of the set of MJ winners.

1 Let𝑚 be the best median among all candidates

2 Let 𝑐 such that for 𝑖 ∈ [1, 𝑘], 𝑐𝑖 = 1

3 Let 𝐼− = 1 and 𝐼+ = 1 be counters

4 for 𝑖 = 1 to 𝑘 do

5 𝑝𝑖 =
𝑚−1∑
𝑗=1

𝑎𝑖, 𝑗 , 𝑞𝑖 =
𝑑∑

𝑗=𝑚+1
𝑎𝑖, 𝑗

6 𝑚−
𝑖
=
⌊
𝑛
2

⌋
− 𝑝𝑖 ,𝑚+𝑖 =

⌊
𝑛
2

⌋
− 𝑞𝑖

7 for 𝑗 = 1 to 𝑑 do
8 for 𝑖 = 1 to 𝑘 do
9 if 𝑚−

𝑖
≤ 𝑚+

𝑖
then

10 𝑠𝑖 = 𝑝𝑖

11 else
12 𝑠𝑖 = −𝑞𝑖

13 if 𝑐𝑖 = 0 then
14 𝑠𝑖 = −𝑛 (* Already eliminated candidates are given a fake score *)

15 Let 𝑠 = max{𝑠𝑖 | 𝑖 ∈ [1, 𝑘]}
16 for 𝑖 = 1 to 𝑘 do
17 𝑐𝑖 = 𝑐𝑖 ∧ (𝑠𝑖 == 𝑠)
18 if 𝑠 ≥ 0 then
19 for 𝑖 = 1 to 𝑘 do
20 𝑚+

𝑖
=𝑚+

𝑖
−𝑚−

𝑖

21 𝑚−
𝑖
= 𝑎𝑖,𝑚−𝐼 −

22 𝑝𝑖 = 𝑝𝑖 − 𝑎𝑖,𝑚−𝐼 −
23 𝐼− = 𝐼− + 1
24 else
25 for 𝑖 = 1 to 𝑘 do
26 𝑚−

𝑖
=𝑚−

𝑖
−𝑚+

𝑖

27 𝑚+
𝑖
= 𝑎𝑖,𝑚+𝐼+

28 𝑞𝑖 = 𝑞𝑖 − 𝑎𝑖,𝑚+𝐼+
29 𝐼+ = 𝐼+ + 1

30 Return 𝑐 .

Algorithm 47: InitP (Paillier setting)

Require: 𝐺 , the grade matrix

Ensure: 𝐿, 𝑅, two vectors such that, for all 𝑖 ,

- 𝐿𝑖 is an encryption of 𝑖 ==𝑚 − 1,
- 𝑅𝑖 is an encryption of 𝑖 ==𝑚 + 1.

1 for 𝑖 = 1 to 𝑑 − 1 do
2 𝐿𝑖 = 𝐺𝑖/𝐺𝑖+1

3 𝐿𝑑 = Enc(0)
4 for 𝑖 = 3 to 𝑑 do
5 𝑅𝑖 = 𝐿𝑖−2

6 𝑅1 = Enc(0), 𝑅2 = Not(𝐺0)
7 Return 𝐿, 𝑅

42

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 48: ConditionalLeftShift (CLS)
Require: 𝑉 , 𝐵 where 𝑉 is a vector of 𝑛 − 1 ciphertexts and 𝐵 an encryption of a bit 𝑏.

Ensure: Return a (reencrypted) left shift of 𝑉 if 𝑏 = 1, a reencryption of 𝑉 otherwise.

1 for 𝑗 = 1 to 𝑛 − 1 (in parallel) do
2 𝑉 ′

𝑗
= If(𝐵,𝑉𝑗+1,𝑉𝑗) (* 𝑉𝑛 = Enc(0) *)

3 Return 𝑉 ′

Algorithm 49: ConditionalRightShift (CRS)
Require: 𝑉 , 𝐵 where 𝑉 is a vector of 𝑛 − 1 ciphertexts and 𝐵 an encryption of a bit 𝑏.

Ensure: Return a (reencrypted) right shift of 𝑉 if 𝑏 = 1, a reencryption of 𝑉 otherwise.

1 for 𝑗 = 2 to 𝑛 − 1 (in parallel) do
2 𝑉𝑗 = If(𝐵,𝑉𝑗−1,𝑉𝑗) (* 𝑉1 = Enc(0) *)
3 Return 𝑉

Algorithm 50:MJ: MPC version (Paillier setting)

Require: 𝐴,𝑛, the (encrypted) aggregated matrix and the number of voters.

Ensure: 𝑐 , the indicator of the set of winners.
1 for 𝑖 = 1 to 𝑘 do
2 𝐶𝑖 = Enc(1)
3 𝐺 = Grade(𝐴)
4 𝑃,𝑀−, 𝑀+, 𝑄 = InitD(𝐴,𝐺, 𝑛)
5 𝐿, 𝑅 = InitP(𝐺)
6 for 𝑗 = 1 to 𝑑 do
7 (* scores computation *)

8 for 𝑖 = 1 to 𝑘 (in parallel) do
9 𝐵1 = GTH(𝑃𝑖 , 𝑄𝑖) (* 𝑝𝑖 ≥ 𝑞𝑖 *)

10 𝑆𝑖 = If(𝐵1, 𝑃𝑖 , 1/𝑄𝑖) (* 𝑝𝑖 if 𝑝𝑖 ≥ 𝑞𝑖 , −𝑞𝑖 otherwise *)
11 𝑆𝑖 = If(𝐶𝑖 , 𝑆𝑖 , Enc(−𝑛)) (* eliminated candidates get the fake −𝑛 score*)

12 𝑆𝑖 = Enc(𝑛)𝑆𝑖 (* 𝑠𝑖 = 𝑠𝑖 + 𝑛 *)

13 𝑆 = 𝑆1 (* research of the best score *)

14 for 𝑖 = 2 to 𝑘 (tree-based parallelisation is possible) do
15 𝐵2 = GTH(𝑆𝑖 , 𝑆)
16 𝑆 = If(𝐵2, 𝑆𝑖 , 𝑆) (* 𝑠𝑖 is 𝑠𝑖 ≥ 𝑠 , 𝑠 otherwise *)
17 for 𝑖 = 1 to 𝑘 (in parallel) do
18 𝐵3 = EQH(𝑆, 𝑆𝑖)
19 𝐶𝑖 = Mul(𝐶𝑖 , 𝐵3) (* elimination of candidates who do not have the best score*)

20 𝐵4 = GTH(𝑆, Enc(𝑛))
21 for 𝑖 = 1 to 𝑘 (in parallel) do
22 𝐴′

𝑖,𝑚−𝐼 − = Select((𝐴𝑖,1, · · · , 𝐴𝑖,𝑑−1), 𝐿)
23 𝐴′

𝑖,𝑚+𝐼+ = Select((𝐴𝑖,2, · · · , 𝐴𝑖,𝑑), 𝑅)
24 𝑇 + = If(𝐵4, 𝑀+𝑖 /𝑀

−
𝑖
, 𝐴′

𝑖,𝑚+𝐼+) (*𝑚
+
𝑖
−𝑚−

𝑖
if 𝑏4 = 1, 𝑎𝑖,𝑚+𝐼+ otherwise *)

25 𝑇 − = If(𝐵4, 𝐴′𝑖,𝑚−𝐼 − , 𝑀
−
𝑖
/𝑀+

𝑖
) (* 𝑎𝑖,𝑚+−𝐼 − if 𝑏4 = 1,𝑚−

𝑖
−𝑚+

𝑖
otherwise *)

26 𝑃𝑖 = If(𝐵4, 𝑃𝑖/𝐴′𝑖,𝑚−𝐼 − , 𝑃𝑖) (* 𝑝𝑖 − 𝑎𝑖,𝑚−𝐼 − if 𝑏4 = 1, 𝑝𝑖 otherwise *)

27 𝑀−
𝑖

= 𝑇 −

28 𝑀+
𝑖
= 𝑇 +

29 𝑄𝑖 = If(𝐵4, 𝑄𝑖 , 𝑄𝑖/𝐴′𝑖,𝑚+𝐼+) (* 𝑞𝑖 if 𝑏4 = 1, 𝑞𝑖 − 𝑎𝑖,𝑚+𝐼+ otherwise *)
30 𝐿 = CLS(𝐿, 𝐵4), 𝑅 = CRS(𝑅, Not(𝐵4))
31 𝑐 = Dec(𝐶) (* bit-wise decryption *)

32 Return 𝑐

43

A toolbox for verifiable tally-hiding e-voting systems

Another notable difference compared to Algorithm 46 is that instead of computing𝑚−
𝑖
≤ 𝑚+

𝑖
, we compute 𝑝𝑖 ≥ 𝑞𝑖 (which is equivalent by

invariant 1 from Lemma E.4) since 𝑝𝑖 and 𝑞𝑖 are non-negative, while𝑚
+
𝑖
and𝑚−

𝑖
could be negative during the first loop iteration.

Theorem E.9. Algorithm 50 is correct.

Proof. See Lemmas E.6, E.7, E.8 and E.4, as well as Lemma E.10 below. □

Lemma E.10. In Algorithm 50, after the 𝑖𝑡ℎ loop iteration, 𝐿 and 𝑅 are such that 𝐿𝑗 is an encryption of 𝑗 ==𝑚 − 𝐼− , while 𝑅 𝑗 is an encryption
𝑗 ==𝑚 + 𝐼+.

Algorithm 51: InitALL (ElGamal setting)

Require: 𝑨bits
, such that, for all (𝑖, 𝑗), 𝐴𝑖, 𝑗 bits is a bit-encdoded encryption of 𝑎𝑖, 𝑗 from the aggregated matrix.

Ensure: 𝑷bits,𝑴−bits,𝑴+bits,𝑸bits, 𝐿, 𝑅,𝐶 where, for all 𝑖 ∈ [1, 𝑘],
- 𝑃𝑖

bits
is a bit-wise encryption of 𝑝𝑖 , the number of grades received by candidate 𝑖 which are strictly greater than the best median,

- 𝑀−
𝑖
bits

is a bit-wise encryption of ⌊𝑛/2⌋ − 𝑝𝑖 ,
- 𝑄𝑖

bits
is a bit-wise encryption of 𝑞𝑖 , the number of grades received by candidate 𝑖 which are strictly worse than the best median,

- 𝑀+
𝑖
bits

is a bit-wise encryption of ⌊𝑛/2⌋ − 𝑞𝑖 ,
- 𝐿𝑗 is an encryption of 𝑗 == 𝑁 − 1 for all 𝑗 , where 𝑁 is the best median,

- 𝑅 𝑗 is an encryption of 𝑗 == 𝑁 + 1 for all 𝑗 , where 𝑁 is the best median,

- 𝐶𝑖 is an encryption of 1 if 𝑖’s median is 𝑁 , of 0 otherwise.

1 for 𝑖 = 1 to 𝑘 (in parallel) do
2 𝑆𝑖,1

bits = 𝐴𝑖,1
bits

3 for 𝑗 = 1 to 𝑑 − 2 do
4 𝐷𝑖, 𝑗 = LT(𝑆𝑖, 𝑗 bits, ⌈𝑛/2⌉)

5 𝑆𝑖, 𝑗+1bits = Addbits (𝑆𝑖, 𝑗 bits, 𝐴𝑖, 𝑗+1bits) (* 𝑠𝑖, 𝑗 =
𝑗∑

𝑘=1

𝑎𝑖, 𝑗 *)

6 𝐷𝑖,𝑑−1 = LT(𝑆𝑖,𝑑−1bits, ⌈𝑛/2⌉)
7 𝑆𝑖 , 𝑑

bits = 𝑛

8 for 𝑗 = 1 to 𝑑 − 1(in parallel) do
9 𝐺 𝑗 = 𝐷1, 𝑗

10 for 𝑖 = 2 to 𝑘 (tree-based parallelisation is possible) do
11 𝐺 𝑗 = CGate(𝐺 𝑗 , 𝐷𝑖, 𝑗)

12 for 𝑖 = 1 to 𝑘 (in parallel) do
13 𝑋 = 𝐺1𝐷𝑖,1/CGate(𝐺1, 𝐷𝑖,1)2 (* 𝑔1 ⊕ 𝑑𝑖,1 *)
14 𝐶𝑖 = Not(𝑋) (* 𝑔1 == 𝑑𝑖,1 *)
15 for 𝑗 = 2 to 𝑑 − 1 (tree-based parallelisation is possible) do
16 𝑋 = 𝐺 𝑗𝐷𝑖, 𝑗/CGate(𝐺 𝑗 , 𝐷𝑖, 𝑗)2, 𝐶𝑖 = CGate(𝐶𝑖 , Not(𝑋)) (* 𝑔 𝑗 = 𝑑𝑖, 𝑗 for all 𝑗 *)

17 𝐿, 𝑅 = InitP(𝐺)
18 for 𝑖 = 1 to 𝑘 (in parallel) do

19 𝑃𝑖
bits =

𝑑−1∏
𝑗=1

CGate(𝑆𝑖, 𝑗 bits, 𝐿𝑗) (* Bit-wise product and CGate, as in Selectbits *)

20 𝑄𝑖
bits =

𝑑∏
𝑗=2

CGate(𝑆𝑖, 𝑗 bits, 𝐿𝑗−1) (* same as above *)

21 𝑄𝑖
bits = Subbits (𝑛,𝑄𝑖

bits)
22 𝑀−

𝑖
bits = Subbits (⌊𝑛/2⌋, 𝑃𝑖bits),𝑀+𝑖

bits
= Subbits (⌊𝑛/2⌋, 𝑄𝑖

bits)

23 Return (𝑷bits,𝑴−bits,𝑴+bits,𝑸bits, 𝐿, 𝑅,𝐶)

E.5 An adaptation in MPC in the ElGamal setting
In the previous section, we gave an adaptation in MPC of the MJ tally function in the Paillier setting. As explained in Section 2.3, it is

interesting to consider ElGamal encryptions to obtain a better computational complexity, especially at the voter-side. Note that most of

44

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 50 is easy to adapt in the ElGamal setting thanks to the toolbox we provide. In this setting, the (encrypted) aggregated matrix

must be encrypted in bit-encoding, so that obtaining the aggregated matrix from the list of encrypted ballots is no longer straightforward,

but requires 𝑘𝑑 parallel calls to Aggregbits, which is the main drawback of this approach. Even if those computations can be made on the fly

while the voters submit their ballot, if 𝑛𝑘𝑑 is too large, the Paillier setting might be preferable as this phase would be too expensive.

Algorithm 52:MJ: MPC version (ElGamal setting)

Require: 𝑩, the 𝑛 encrypted ballots

Ensure: 𝑐 , the indicator of the set of winners.
1 for 𝑖 = 1 to 𝑘 (in parallel) do
2 for 𝑗 = 1 to 𝑑 (in parallel) do
3 𝐴𝑖, 𝑗

bits = Aggregbits (𝐵𝑖, 𝑗,1, · · · , 𝐵𝑖, 𝑗,𝑛)

4 𝑷bits,𝑴−bits,𝑴+bits,𝑸bits, 𝐿, 𝑅,𝐶 = InitALL(𝑨bits)
5 for 𝑗 = 1 to 𝑑 do
6 for 𝑖 = 1 to 𝑘 (in parallel) do
7 𝐵1 = Not(LT(𝑃𝑖bits, 𝑄𝑖

bits))
8 𝑃+bits = 𝑃𝑖,0, · · · , 𝑃𝑖,𝑚−2, 𝐸 (1) (* 2𝑚−1 + 𝑝𝑖 *)
9 𝑄+bits = Neg(𝑄𝑖

bits) (* 2𝑚−1 − 𝑞𝑖 *)
10 𝑆𝑖

bits = If(𝐵1, 𝑃+bits, 𝑄+bits)
11 𝑆𝑖

bits = CGate(𝑆𝑖,0,𝐶𝑖), · · · , CGate(𝑆𝑖,𝑚−1,𝐶𝑖) (* give the fake score 0 to already eliminated candidates *)

12 𝑆bits = 𝑆1
bits

13 for 𝑖 = 2 to 𝑘 (tree-base parallelisation is possible) do
14 𝐵2 = LT(𝑆bits, 𝑆𝑖bits)
15 𝑆bits = If(𝐵2, 𝑆𝑖bits, 𝑆bits)
16 for 𝑖 = 1 to 𝑘 (in parallel) do
17 𝐵3 = EQbits (𝑆bits, 𝑆𝑖bits)
18 𝐶𝑖 = CGate(𝐶𝑖 , 𝐵3)
19 𝐵4 = 𝑆𝑚−1 (* the most significant bit of 𝑠 tells whether 𝑠 ≥ 2

𝑚−1
*)

20 for 𝑖 = 1 to 𝑘 (in parallel) do

21 𝐴′
𝑖,𝑚−𝐼 −

bits =
𝑑−1∏
𝑗=1

CGate(𝐴𝑖, 𝑗 bits, 𝐿𝑗) (* bit-wise product and CGate *)

22 𝐴′
𝑖,𝑚+𝐼+

bits =
𝑑∏
𝑗=2

CGate(𝐴𝑖, 𝑗 bits, 𝑅 𝑗) (* same as above *)

23 𝑀+−bits = Subbits (𝑀+
𝑖
bits
, 𝑀−

𝑖
bits)

24 𝑀−+bits = Neg(𝑀+−bits)
25 𝑇 +bits = If(𝐵4, 𝑀+−bits, 𝐴′𝑖,𝑚+𝐼+

bits)
26 𝑇 −bits = If(𝐵4, 𝐴′𝑖,𝑚−𝐼 −

bits, 𝑀−+bits)

27 𝑃𝑖
bits = If(𝐵4, Subbits (𝑃𝑖bits, 𝐴′𝑖,𝑚−𝐼 −

bits
bits), 𝑃𝑖bits)

28 𝑀−
𝑖
bits = 𝑇 −bits

29 𝑀+
𝑖
bits

= 𝑇 +bits

30 𝑄𝑖
bits = If(𝐵4, 𝑄𝑖

bits, Subbits (𝑄𝑖
bits, 𝐴′

𝑖,𝑚+𝐼+
bits))

31 CLS(𝐿, 𝐵4), CRS(𝑅, Not(𝐵4))
32 𝑐 = Dec(𝐶) (* bit-wise decryption *) Return 𝑐

Another difference is that in the Paillier setting, some procedures were performed thanks to the homomorphic property while they need

the Addbits algorithm in the ElGamal setting. As replacing each multiplication of two ciphertexts in Algorithm 50 by a call to Algorithm 21

might deteriorate the complexity too much, we made a few modifications listed below.

First, we give Algorithm 51 which allows to initialize 𝑝𝑖 ,𝑚
−
𝑖
,𝑚+

𝑖
and 𝑞𝑖 , just as Algorithm 45, but also initialize 𝐿 and 𝑅 as in Algorithm 47.

Finally Algorithm 51 also initializes 𝐶 as the indicator of the candidates whose median is the best median. In what follows, we use bold

45

A toolbox for verifiable tally-hiding e-voting systems

• Let 𝑝𝑘 be the public encryption key and 𝑣 the chosen voting option.

• Encode 𝑣 as a matrix 𝑎 of 𝑘𝑑 bits, where 𝑘 is the number of candidates and 𝑑 is the number of grades. The bit 𝑎𝑖, 𝑗 is set if and only if

the grade 𝑗 is given to candidate 𝑖 .

• Encrypt the matrix into (𝐴𝑖, 𝑗)𝑖, 𝑗 , using 𝑝𝑘 .
• For all 𝑖, 𝑗 , produce a ZKP 𝜋

0/1
𝑖, 𝑗

that 𝐴𝑖, 𝑗 is an encryption of 0 or 1.

• For all 𝑖 , produce a ZKP 𝜋
0/1
𝑖

that the product 𝐴𝑖,1 · · ·𝐴𝑖,𝑑 is an encryption of 0 or 1.

• Produce a ZKP 𝜋0/𝑘 that the product

∏
𝑖, 𝑗 𝐴𝑖, 𝑗 is an encryption of 0 or 𝑘 .

• Return 𝐴, (𝜋0/1
𝑖, 𝑗
)𝑖, 𝑗 , (𝜋0/1𝑖

)𝑖 , 𝜋0/𝑘 .

Figure 9: vote procedure for the Majority Judgment

characters to denote a matrix of elements. For instance, 𝑨bits
stands for a matrix of size 𝑘𝑑 , whose elements are bit-encoded encrypted

integers. By abuse of notation, we use ⌊𝑛/2⌋ or 𝑛 instead of bit-encoded encryption of the said integer.

Algorithm 51 is a merger of Algorithms 44, 45 and 47. Merging all three algorithms together allows to exploit common intermediate

computations. Note that at line 4, we compute ⌈𝑛/2⌉ > 𝑠𝑖, 𝑗 instead of 𝑛 > 2𝑠𝑖, 𝑗 , so as to use one bit fewer. (See Lemma E.11 which states that

the two comparisons are equivalent.)

Lemma E.11. For all 𝑛, 𝑠 ∈ Z, we have 𝑛 > 2𝑠 if and only if ⌈𝑛/2⌉ > 𝑠 .

Proof. Let 𝑛, 𝑠 be integers. If 𝑛 > 2𝑠 , ⌈𝑛/2⌉ ≥ 𝑛/2 > 𝑠 . Conversely, suppose that ⌈𝑛/2⌉ > 𝑠 . We first consider the case where 𝑛 is even.

Then 𝑛/2 = ⌈𝑛/2⌉ so 𝑛 = 2⌈𝑛/2⌉ > 2𝑠 . If 𝑛 is odd, we have ⌈𝑛/2⌉ = (𝑛 + 1)/2 so 𝑛 + 1 > 2𝑠 , therefore 𝑛 + 1 ≥ 2𝑠 + 1, hence 𝑛 ≥ 2𝑠 . Since 𝑛 is

odd, 𝑛 ≠ 2𝑠 , thus 𝑛 > 2𝑠 . □

In Algorithm 50, we did not have to initialize𝐶 (see Lemma E.6). However, as the variables could be negative, we decided to add a constant.

This would not be that easy in the ElGamal setting since adding a constant to a bit-encoded encrypted integers would require a non-trivial

operations. In this case, eliminating the candidates who do not have the best median right away so as to initialize 𝐶 consistently with

Algorithm 43 has approximately the same computational cost. Afterwards, for all 𝑖 , we have | 𝑠𝑖 |≤ ⌊𝑛/2⌋ so we can add the constant 2
𝑚−1

instead, where𝑚 is the bit length of the integers. Indeed, 2
𝑚−1 > ⌊𝑛/2⌋ ≥ 𝑞𝑖 and 2𝑚−1 + 𝑝𝑖 ≤ 2

𝑚−1 + ⌊𝑛/2⌋ < 2
𝑚
. This is of interest because

computing 2
𝑚−1 + 𝑝𝑖 is completely free (just add Enc(1) as the most significant bit); so we just have to call Neg once (to compute 2

𝑚−1 − 𝑞𝑖)
instead of calling twice Addbits.

Finally, we obtain Algorithm 52 for our ElGamal version of a fully-hiding tallying of MJ.

E.6 Majority Judgment, the bottom-line
To improve readability, we give again the details that are necessary to use our tally-hiding protocol inside of a voting protocol. First, to

submit a ballot, a voter can simply use the vote procedure, which is summed up in Figure 9. This allows the voter to either give a grade to

each candidate, either vote blank. Finally, to proceed with the tally, the authorities use the protocol 𝑃MJ, defined in Algorithm 52.

F CONDORCET METHODS, SCHULZE AND RANKED-PAIRS VARIANTS
In this Section, we give details about our approach to handle the Condorcet tally function that was only sketched in Section 5. While only

the Condorcet-Schulze variant is mentioned in the main body of the article, we also cover here the ranked-pairs method. We refer to [1] for a

discussion and a comparison of the many Condorcet variants, Schulze and ranked pairs being only two of them.

After recalling the notion of adjacency matrix, we define with more details the Schulze and ranked pairs variants and explain how they

can be processed in MPC once the adjacency matrix is known. We then focus on how to compute this matrix from the encrypted ballots.

F.1 Schulze and ranked pairs from the adjacency matrix
In the Condorcet methods, voters are asked to rank each candidate, potentially with ties (several candidates may have the same rank). The

Condorcet winner is the candidate which is preferred to every other candidate by a majority of voters. Schulze and ranked pairs differ when

there is no Condorcet winner. Like in many versions of Condorcet, only the adjacency matrix, which is defined in Definition F.1, is needed to

compute the winners. In all what follows, we denote 𝑑𝑖, 𝑗 the number of voters who prefers (strictly) candidate 𝑖 over candidate 𝑗 .

Definition F.1 (Adjacency matrix). The adjacency matrix is the matrix (𝑎𝑖, 𝑗) defined by

𝑎𝑖, 𝑗 =

{
𝑑𝑖, 𝑗 − 𝑑 𝑗,𝑖 if 𝑑𝑖, 𝑗 ≥ 𝑑 𝑗,𝑖
0 otherwise.

The Schulze variant.
46

A toolbox for verifiable tally-hiding e-voting systems

The Schulze variant consists of several steps. First, compute 𝑑𝑖, 𝑗 for all (𝑖, 𝑗). Second, compute 𝑏𝑖, 𝑗 = 𝑑𝑖, 𝑗 − 𝑑 𝑗,𝑖 for all (𝑖, 𝑗). For all pair of
candidates (𝑢, 𝑣), a path 𝑝 of length 𝑙 from 𝑢 to 𝑣 is a finite sequence of 𝑙 + 1 candidates such that 𝑢 = 𝑝0 and 𝑣 = 𝑝𝑙 . We say that (𝑖, 𝑗) ∈ 𝑝 if

there exists an index 0 ≤ 𝑘 < 𝑙 such that 𝑖 = 𝑝𝑘 and 𝑗 = 𝑝𝑘+1. The strength of a path 𝑝 is defined as 𝑠 (𝑝) = min(𝑖, 𝑗) ∈𝑝 𝑏𝑖, 𝑗 . The third step of

the Schulze method is to compute 𝑓𝑖, 𝑗 = max𝜎∈[𝑖{ 𝑗] 𝑠 (𝜎), where [𝑖 { 𝑗] denotes the set of all paths from 𝑖 to 𝑗 . Finally, 𝑖 is a winner by the

Schulze method if 𝑓𝑖, 𝑗 ≥ 𝑓𝑗,𝑖 for all 𝑗 .
If 𝑎 is the adjacency matrix, a Schulze tally can be derived from 𝑎 (see Lemma F.2). When 𝑎 is seen as the adjacency matrix of a graph, the

Schulze method is well known to be equivalent to the shortest path problem [36], that can be solved with standard algorithms [22, 44].

Lemma F.2. A Schulze tally can be performed from the adjacency matrix, by using 𝑎𝑖, 𝑗 = max{0, 𝑏𝑖, 𝑗 } instead of 𝑏𝑖, 𝑗 = 𝑑𝑖, 𝑗 −𝑑 𝑗,𝑖 , where 𝑑𝑖, 𝑗 is
the number of voters who prefers 𝑖 over 𝑗 .

Proof. For all path 𝑝 , we denote 𝑠 (𝑝) = min(𝑖, 𝑗) ∈𝑝 𝑏𝑖, 𝑗 and 𝑠
′ (𝑝) = min(𝑖, 𝑗) ∈𝑝 𝑎𝑖, 𝑗 . For all (𝑖, 𝑗), we denote

𝑓𝑖, 𝑗 = max

𝜎∈[𝑖{ 𝑗]
min

(𝑢,𝑣) ∈𝜎
𝑏𝑖, 𝑗

𝑓 ′𝑖, 𝑗 = max

𝜎∈[𝑖{ 𝑗]
min

(𝑢,𝑣) ∈𝜎
𝑎𝑖, 𝑗 .

With these notations, the statement of the lemma becomes

∀𝑖, (∀𝑗, 𝑓𝑖, 𝑗 ≥ 𝑓𝑗,𝑖) ⇐⇒ (∀𝑗, 𝑓 ′𝑖, 𝑗 ≥ 𝑓
′
𝑗,𝑖) .

Let 𝑖 be a candidate, suppose that for all 𝑗 , 𝑓𝑖, 𝑗 ≥ 𝑓𝑗,𝑖 (i.e. 𝑖 is a Schulze winner). Let 𝑗 be any candidate. If 𝑗 = 𝑖 , clearly 𝑓 ′
𝑖, 𝑗
≥ 𝑓 ′

𝑗,𝑖
, so we

assume that 𝑗 ≠ 𝑖 . Since 𝑗 ≠ 𝑖 , there is no path from 𝑖 to 𝑗 (nor from 𝑗 to 𝑖) of length 0. As 𝑓𝑖, 𝑗 ≥ 𝑓𝑗,𝑖 , there exists a path 𝑝 from 𝑖 to 𝑗 (of

length 𝑛 > 0) such that for all path 𝑝′ from 𝑗 to 𝑖 (of length 𝑛′ > 0), there exists 𝑘′ < 𝑛′ such that for all 𝑘 < 𝑛, 𝑏𝑝′
𝑘′ ,𝑝

′
𝑘′+1
≤ 𝑏𝑝𝑘 ,𝑝𝑘+1 . We

consider two cases.

First, if 𝑏𝑝𝑘 ,𝑝𝑘+1 < 0 for some 𝑘 , then for all 𝑝′, 𝑏𝑝′
𝑘′ ,𝑝

′
𝑘′+1

< 0 for all 𝑘′, hence 𝑎𝑝′
𝑘′ ,𝑝

′
𝑘′+1

= 0 for all 𝑘′, thus 𝑠′ (𝑝′) = 0 ≤ 𝑠′ (𝑝). Since this is
holds for all 𝑝′, 𝑓 ′

𝑗,𝑖
= 0 ≤ 𝑓 ′

𝑖, 𝑗
.

Second, if 𝑏𝑝𝑘 ,𝑝𝑘+1 ≥ 0 for all 𝑘 , then for all 𝑘 , 𝑎𝑝𝑘 ,𝑝𝑘+1 = 𝑏𝑝𝑘 ,𝑝𝑘+1 . Now consider any path 𝑝′ (of length 𝑛′ > 0) from 𝑗 to 𝑖 . If 𝑏𝑝′
𝑘′ ,𝑝

′
𝑘′+1
≥ 0

for all 𝑘′, then 𝑠′ (𝑝′) = 𝑠 (𝑝′) ≤ 𝑓𝑗,𝑖 ≤ 𝑓𝑖, 𝑗 = 𝑠 (𝑝) = 𝑠′ (𝑝) ≤ 𝑓 ′𝑖, 𝑗 . If there exists 𝑘
′
such that 𝑏𝑝′

𝑘′ ,𝑝
′
𝑘′+1

< 0, then 𝑠′ (𝑝′) = 0 ≤ 𝑓 ′
𝑖, 𝑗
. Therefore

𝑓 ′
𝑗,𝑖
≤ 𝑓 ′

𝑖, 𝑗
.

Conversely, let 𝑖 such that 𝑓 ′
𝑗,𝑖
≤ 𝑓 ′

𝑖, 𝑗
for all 𝑗 . Let 𝑗 be any candidate (as above, w.l.o.g. we assume that 𝑖 ≠ 𝑗). We consider three cases.

First, suppose that 𝑓𝑖, 𝑗 < 0. Then for all path 𝑝 from 𝑖 to 𝑗 , there exists (𝑢, 𝑣) ∈ 𝑝 such that 𝑏𝑢,𝑣 < 0 (we call this proposition ∗). In particular,

𝑏𝑖, 𝑗 < 0, so 𝑏 𝑗,𝑖 = −𝑏𝑖, 𝑗 > 0, hence 𝑏 𝑗,𝑖 = 𝑎 𝑗,𝑖 and 𝑓
′
𝑗,𝑖
≥ 𝑠′

𝑗,𝑖
= 𝑎 𝑗,𝑖 = 𝑏 𝑗,𝑖 . In addition, 𝑠 𝑗,𝑖 = 𝑏 𝑗,𝑖 > 0, so 𝑓 ′

𝑗,𝑖
≥ 𝑠 𝑗,𝑖 > 0. On the other hand, by ∗

we have 𝑓 ′
𝑖, 𝑗

= 0, which contradicts 𝑓 ′
𝑗,𝑖
≤ 𝑓 ′

𝑖, 𝑗
< 0. Therefore 𝑓𝑖, 𝑗 ≥ 0.

Second, suppose that 𝑓𝑖, 𝑗 = 0. Then for all path 𝑝 from 𝑖 to 𝑗 , there exists (𝑢, 𝑣) ∈ 𝑝 such that 𝑏𝑢,𝑣 ≤ 0, hence 𝑓 ′
𝑖, 𝑗

= 0. Let 𝑝′ be a path from

𝑗 to 𝑖 (of length 𝑛′ > 0). Suppose that for all (𝑢, 𝑣) ∈ 𝑝′, 𝑏𝑢,𝑣 > 0. Then 0 < 𝑠′ (𝑝) ≤ 𝑓 ′
𝑗,𝑖
, which contradicts 𝑓 ′

𝑗,𝑖
≤ 𝑓 ′

𝑖, 𝑗
. Consequently, there

exists (𝑢, 𝑣) ∈ 𝑝′ such that 𝑏𝑢,𝑣 ≤ 0, therefore 𝑠 (𝑝′) ≤ 0 = 𝑓𝑖, 𝑗 . This holds for all 𝑝
′
so 𝑓 𝑗, 𝑖 ≤ 𝑓𝑖, 𝑗 .

Finally, suppose that 𝑓𝑖, 𝑗 > 0. Let 𝑝′ be a path from 𝑗 to 𝑖 . If there exists (𝑢, 𝑣) ∈ 𝑝′ such that 𝑏𝑢,𝑣 ≤ 0, then 𝑠 (𝑝′) ≤ 0 < 𝑓𝑖, 𝑗 . Otherwise, for

all (𝑢, 𝑣) ∈ 𝑝′, 𝑏𝑢,𝑣 > 0 so 𝑠 (𝑝′) = 𝑠′ (𝑝′) ≤ 𝑓 ′
𝑗,𝑖
≤ 𝑓 ′

𝑖, 𝑗
, so we just have to show that 𝑓𝑖, 𝑗 ≥ 𝑓 ′𝑖, 𝑗 .

Let 𝑝 be a path from 𝑖 to 𝑗 . If there exists (𝑢, 𝑣) ∈ 𝑝 such that 𝑏𝑢,𝑣 ≤ 0, 𝑠′ (𝑝) = 0 < 𝑓𝑖, 𝑗 . Otherwise, for all (𝑢, 𝑣) ∈ 𝑝 , 𝑏𝑢,𝑣 > 0 so

𝑠′ (𝑝) = 𝑠 (𝑝) ≤ 𝑓𝑖, 𝑗 , which concludes the proof. □

From this lemma, the Schulze tally can be derived by a simple Floyd-Warshall algorithm and we give it in Algorithm 54 for completeness.

This has a cost that is cubic in the number of candidates (here, this number is denoted 𝑛).

The ranked pairs variant.
The ranked pairs is another algorithm which allows to break ties when there is no Condorcet winner. In this method, the adjacency matrix

is seen as the adjacency matrix of a graph 𝐺 . The Ranked Pairs protocol consists of three steps. First, sort the edges of 𝐺 in decreasing order

of weights. Let𝐺 ′ be the graph which consists of 𝑘 vertices (where 𝑘 is the number of candidates) and no edge. Second, for all edge of 𝐺

taken in decreasing order, if this edge does not create a cycle in𝐺 ′, add this edge in𝐺 ′. Finally, as 𝐺 ′ is an oriented graph without cycle, 𝐺 ′

is the graph of a partial order over the candidates. The sources of the graph are the winners according to the Ranked Pairs protocol.

Assuming the adjacency matrix is known, an MPC version of the ranked pairs method goes as follows. First, to shuffle the edges, we can

use the bubble-sort algorithm. The edges can be encoded with three ciphertexts, one for the source, one for the destination and one for the

weight. Then, the main procedure is to update a matrix 𝐵𝑖, 𝑗 = Enc(𝑏𝑖, 𝑗), where 𝑏𝑖, 𝑗 = 1 if there is a path from 𝑖 to 𝑗 , and 0 otherwise. Initially,

𝐵 is simply an encryption of the identity matrix. To add the edge (𝑖, 𝑗) simply compute 𝑏′𝑠,𝑡 for all (𝑠, 𝑡), as follows:
𝑏′𝑠,𝑡 = 𝑏𝑠,𝑡 ∨ (𝑏𝑠,𝑖 ∧ 𝑏 𝑗,𝑡).

The edge will create a cycle if and only 𝑏′𝑠,𝑡 = 𝑏
′
𝑡,𝑠 = 1 for some (𝑠, 𝑡), hence we compute the encryption of the boolean

𝑐 = ∨𝑠≠𝑡 (𝑏′𝑠,𝑡 ∧ 𝑏′𝑡,𝑠) .
47

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 53: FW (Floyd-Warshall algorithm)

Require: 𝑃 , the encrypted adjacency matrix

Ensure: 𝑆 , such that 𝑆𝑖, 𝑗 is an encryption of the strength of the strongest path from 𝑖 to 𝑗

(* 𝑛 is the number of candidates *)

1 𝑆 = 𝑃

2 for 𝑘 = 1 to 𝑛 do
3 for 𝑖 = 1 to 𝑛 (in parallel) do
4 for 𝑗 = 1 to 𝑛 (in parallel) do
5 (* proceed only if (𝑖 ≠ 𝑗) *)
6 𝐴𝑖, 𝑗 = If(LT(𝑆𝑖,𝑘 , 𝑆𝑘,𝑗), 𝑆𝑖,𝑘 , 𝑆𝑘,𝑗)
7 𝐵𝑖, 𝑗 = If(LT(𝑆𝑖, 𝑗 , 𝐴𝑖, 𝑗), 𝑆𝑖, 𝑗 , 𝐴𝑖, 𝑗)

8 𝑆𝑖, 𝑗 = 𝐵𝑖, 𝑗 for all (𝑖 ≠ 𝑗)
9 Return 𝑆

Algorithm 54: Schulze (from adjacency matrix)

Require: 𝐴, the encrypted adjacency matrix

Ensure: 𝑐 , the indicator of the Schulze winners
(* 𝑛 is the number of candidates *)

1 𝑆 = FW(𝐴)
2 for 𝑖 = 1 to 𝑛 (in parallel) do
3 for 𝑗 ≠ 𝑖 (in parallel) do
4 𝑏 𝑗 = Not(LT(𝑆𝑖, 𝑗 , 𝑆 𝑗,𝑖))
5 𝐶𝑖 = CSZ𝑗≠𝑖 (𝑏 𝑗) (* use tree-based parallelization to compute the conjunction of all 𝑏 𝑗 *)

6 Return 𝑐 = Dec(𝐶)

Finally, we can update 𝑏𝑖, 𝑗 using If and 𝑐 .

The problem that remains is that (𝑖, 𝑗) is unknown, since the edges are encrypted. A simple solution is to perform the test 𝑢 == 𝑖 and

𝑣 == 𝑗 for all (𝑢, 𝑣), using the known (𝑢, 𝑣) and the encryptions of (𝑖, 𝑗), and to update each 𝑏𝑢,𝑣 using If, so as to hide the results of both

tests (only one 𝑏𝑢,𝑣 will be modified, while the others will be re-encrypted). This leads to an additional 𝑂 (𝑘2 log𝑘)CGate, as EQ requires
𝑂 (log𝑘)CSZ. Finally, finding the source of the graph can be done by exhaustive search on the final 𝐵, which cost 𝑂 (𝑘2CSZ). The whole
process can be performed in 𝑂 (𝑘4 log𝑘)CSZ in terms of computation, communication and transcript size.

F.2 How to obtain the adjacency matrix from the voters’ ballots
The preference matrices.

The choice of a voter can be modelled by a preference matrix. We consider two types of such matrices (see Figure 10). The𝑚𝑎 preference

matrix format is antisymmetric, therefore only 𝑘 (𝑘 − 1)/2 elements need to be considered. The𝑚𝑝 preference matrix has only non-negative

integers, which can also be an advantage.

𝑚𝑎 [𝑖, 𝑗] =


1 if 𝑖 is preferred over 𝑗

−1 if 𝑗 is preferred over 𝑖

0 otherwise.

𝑚𝑝 [𝑖, 𝑗] =
{

1 if 𝑖 is preferred over 𝑗

0 otherwise.

Figure 10: Two types of preference matrix

Deducing the adjacency matrix from the set of preference matrices of each voter boils down to aggregating with a bit more details as

explained below. Using the homomorphic property, this is straightforward from the𝑚𝑎 type, but this requires either to be in the Paillier

setting or to reveal the adjacency matrix. Otherwise, the bitwise encryption is required, and then the𝑚𝑝 matrix format is better suited.

Ballots encoded as list of integers.
We assume here that each ballot consists of 𝑘 ⌈log(𝑘 + 1)⌉ ciphertexts, along with zero knowledge proofs that they are encryptions of 0 or

1. Those ciphertexts are interpreted as 𝑘 bit-encoded integers, which encrypt integers in [0, 2𝐿 − 1], where 2𝐿 is the first power of 2 greater

than 𝑘 . This way the voter can give each candidate a rank (which is not necessarily between 0 and 𝑘 − 1), and can give the same rank to

several candidates without any restriction.

48

A toolbox for verifiable tally-hiding e-voting systems

First, we consider the easy case where only the𝑚𝑎 preference matrix in the natural encoding is needed, because the adjacency matrix will

be revealed. In that case, we simply use a variant of LT which returns an additional bit for the equality test (see Section C.3). Let 𝐶𝑖
bits

and

𝐶 𝑗
bits

be the bitwise encrypted rank of candidates 𝑖 and 𝑗 for some ballot. Let 𝑍,𝑇 = LT(𝐶𝑖bits,𝐶 𝑗
bits). Then𝑀𝑎 [𝑖, 𝑗] = 𝑍 2𝑇 /Enc(−1), and

𝑀𝑎 [𝑗, 𝑖] = 1/𝑀𝑎 [𝑖, 𝑗]. Therefore the preference matrix𝑚𝑎 can be obtained in 𝑘 (𝑘 − 1)/2 calls of LT, which accounts for
3

2
𝑘 (𝑘 − 1) log𝑘 CSZ

in computation and transcript size, and 2 log𝑘 CSZ in communication since all𝑚𝑎 [𝑖, 𝑗] can be computed in parallel.

For a full tally-hiding procedure, we need the result to be bitwise encrypted and the𝑚𝑝 preference matrix is better suited. Similarly, we

use a variant of LT which returns an additional bit. This additional bit allows to derive𝑚𝑝 [𝑗, 𝑖] from𝑚𝑝 [𝑖, 𝑗] using Not and CSZ. Hence the

preference matrix is obtained with
3

2
𝑘 (𝑘 − 1) log𝑘 CSZ in computation and transcript size, and 2 log𝑘 CSZ in communication just as in the

previous case. The aggregation requires to call Aggregbits to obtain a matrix 𝐷 . By construction, 𝐷𝑖, 𝑗 is a bit-wise encryption of the number

𝑑𝑖, 𝑗 of voters who prefers 𝑖 over 𝑗 . For all 𝑖 < 𝑗 , we can then use SubLT to compute (bit-encoded encryptions of) 𝑏𝑖, 𝑗 = 𝑑𝑖, 𝑗 − 𝑑 𝑗,𝑖 , as well as
an additional bit (𝑏𝑖, 𝑗 < 0). This bit allows to derive the adjacency matrix by setting all negative values to zero using CSZ, and by computing

𝑏 𝑗,𝑖 from 𝑏𝑖, 𝑗 using Neg and CSZ.

Ballots encoded as preference matrices (quadratic algorithm).
We explain now how the voters can directly encode their choice as a preference matrix of the𝑚𝑎 type. The difficulty is for the voter to

prove in zero-knowledge that the matrix encoded in their ballot is indeed a preference matrix, i.e. that it corresponds to an ordering of the

candidates. This is of great interest if one is ready to leak the adjacency matrix, because then the tally can be done by the authorities without

any MPC protocol apart from the decryption.

We start by explaining our method in the cleartexts. Suppose that Alice wants to vote the ordering (1, · · · , 𝑘) (i.e. the candidate number 𝑖

is ranked 𝑖𝑡ℎ). Then her preference matrix would be as follows.

𝑚init [𝑖, 𝑗] =


0 if 𝑖 = 𝑗

1 if 𝑖 < 𝑗

−1 otherwise.

Now assume that Alice wants to rank 𝜎 (𝑖)𝑡ℎ the candidate number 𝑖 , for some permutation 𝜎 that encodes her choice. If the candidate

number 𝑖 were numbered 𝜎 (𝑖) instead, Alice could have voted with𝑚init as above. This means that the preference matrix of Alice𝑚𝑎 is

such that𝑚𝑎 [𝜎−1 (𝑖), 𝜎−1 (𝑗)] =𝑚init [𝑖, 𝑗] for all (𝑖, 𝑗). Therefore𝑚𝑎 can be obtained by using the permutation 𝜎 to shuffle𝑚init (using the

permutation on the rows, then on the columns, with the ShuffleMatrix function).
So far, Alice can only choose a strict ordering of the candidates. Assume that she wants to give the same rank to several candidates and

let 𝑟𝑖 be the rank of candidate 𝑖 according to her. Alice first sorts the candidates according to their rank, in increasing order. Let 𝜎 be the

permutation used for sorting. At this point, 𝜎 is an arbitrary permutation such that 𝜎 (𝑖) < 𝜎 (𝑗) =⇒ 𝑟𝑖 ≤ 𝑟 𝑗 . To obtain her preference matrix

𝑚𝑎 from𝑚init, Alice will first transform𝑚init into𝑚𝜎 , such that𝑚𝜎 [𝑖, 𝑗] =𝑚𝑎 [𝜎−1 (𝑖), 𝜎−1 (𝑗)]. For this purpose, she computes a vector 𝑏 of

size 𝑘 − 1 such that for all 𝑖 , 𝑏𝑖 = 1 if 𝑟𝜎−1 (𝑖) = 𝑟𝜎−1 (𝑖+1) , and 0 otherwise. Afterwards, Alice modifies𝑚init diagonal by diagonal, so as to

indicate that some candidates are ranked equal. For the first diagonal, we have𝑚init [𝑖, 𝑖 + 1] = 1 while we would like𝑚𝜎 [𝑖, 𝑖 + 1] = 1 − 𝑏𝑖 .
This can be done easily using the homomorphic property.

For the (𝑗 + 1)𝑡ℎ diagonal (𝑖, 𝑖 + 𝑗 + 1)𝑖 , assume that the previous diagonal is correct. Then, as the candidates are sorted in order of

preference, we have

𝑚𝜎 [𝑖, 𝑖 + 𝑗 + 1] =
{

0 if (𝑚𝜎 [𝑖, 𝑖 + 𝑗] = 0) ∧ (𝑚𝜎 [𝑖 + 1, 𝑖 + 𝑗 + 1] = 0),
1 otherwise.

Therefore, Alice can apply an iterative algorithm, using the following formula:

𝑚𝜎 [𝑖, 𝑖 + 𝑗 + 1] = 1 − (1 −𝑚𝜎 [𝑖, 𝑖 + 𝑗]) (1 −𝑚𝜎 [𝑖 + 1, 𝑖 + 𝑗 + 1])
=𝑚𝜎 [𝑖, 𝑖 + 𝑗] +𝑚𝜎 [𝑖 + 1, 𝑖 + 𝑗 + 1] −𝑚𝜎 [𝑖, 𝑖 + 𝑗]𝑚𝜎 [𝑖 + 1, 𝑖 + 𝑗 + 1] .

Once𝑚𝜎 is obtained, Alice can finally derive𝑚𝑎 by shuffling the rows and the columns, using the permutation 𝜎 and the ShuffleMatrix
function.

The algorithm that we sketched above is interesting because it requires only a quadratic number of steps and it only uses transformations

for which there is a standard zero knowledge proof. Indeed, a public and canonical encryption of𝑚init is available so Alice does not have

to prove that𝑚init is well-formed. For the first diagonal, Alice simply has to provide (𝑘 − 1) ciphertexts and 0/1 zero knowledge proofs.

For the remaining diagonals, Alice has to provide an encryption 𝑍 of𝑚𝜎 [𝑖, 𝑖 + 𝑗]𝑚𝜎 [𝑖 + 1, 𝑖 + 𝑗 + 1], as well as zero knowledge proof of

well-formedness. For this purpose, Alice uses Algorithm 55 which produces a transcript 𝜋𝑚𝑢𝑙 of the form (𝑒1, 𝑒2, 𝑎1, 𝑎2, 𝑎3). To verify the

proof, one computes 𝑑 = hash(𝑋 | |𝑌 | |𝑍 | |𝑒1 | |𝑒2) where 𝑋 is the encryption of𝑚𝜎 [𝑖, 𝑖 + 𝑗] and 𝑌 the encryption of𝑚𝜎 [𝑖 + 1, 𝑖 + 𝑗 + 1], and
checks that the following equations are verified:

𝑌𝑎3Enc(0, 𝑎1)𝑍−𝑑 = 𝑒1

Enc(𝑎3, 𝑎2)𝑋 −𝑑 = 𝑒2 .

Finally, the shuffle can be performed with a standard proof of a shuffle.

49

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 55: ZKmult

Require: hash, 𝑋,𝑌 , 𝑥, 𝑟𝑥 , such that 𝑋 = Enc(𝑥, 𝑟𝑥) and 𝑌 is any ciphertext

Ensure: 𝑍, 𝜋𝑚𝑢𝑙 , such that 𝑍 = ReEnc(𝑌𝑥) and 𝜋𝑚𝑢𝑙 is a zero knowledge proof of well-formedness

1 𝛼, 𝑟1, 𝑟2,𝑤 ∈𝑟 Z𝑞 , 𝑍 = 𝑌𝑥Enc(0, 𝛼)
2 𝑒1 = 𝑌

𝑤Enc(0, 𝑟1), 𝑒2 = Enc(𝑤, 𝑟2)
3 𝑑 = hash(𝑋 | |𝑌 | |𝑍 | |𝑒1 | |𝑒2)
4 𝑎1 = 𝑟1 + 𝛼𝑑 , 𝑎2 = 𝑟2 + 𝑟𝑥𝑑 , 𝑎3 = 𝑤 + 𝑥𝑑
5 𝜋𝑚𝑢𝑙 = (𝑒1, 𝑒2, 𝑎1, 𝑎2, 𝑎3)
6 Return 𝑍, 𝜋𝑚𝑢𝑙

• Let 𝜎 be (any) permutation such that 𝜎 (𝑖) < 𝜎 (𝑗) 𝑟𝑖 ≤ 𝑟 𝑗 .
• For all 1 ≤ 𝑖 < 𝑘 , let 𝑏𝑖 = 1 if 𝑟𝜎−1 (𝑖) = 𝑟𝜎−1 (𝑖+1) , 0 otherwise.

• For all 1 ≤ 𝑖 < 𝑘 , compute 𝐵𝑖 , an encryption of 𝑏𝑖 , and 𝜋
0/1
𝑖

, a ZKP that 𝐵𝑖 is an encryption of either 0 or 1.

• Let𝑀𝜎 [𝑖, 𝑖] = 𝐸0 and𝑀𝜎 [𝑖, 𝑖 + 1] = 𝐸1/𝐵𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 .
• For all 1 ≤ 𝑗 < 𝑘 ,

– For all 1 ≤ 𝑖 ≤ 𝑘 − 𝑗 − 1,
∗ Obtain 𝑍𝑖,𝑖+𝑗+1, 𝜋𝑚𝑢𝑙

𝑖,𝑖+𝑗+1 with algorithm ZKmult,

∗ Compute𝑀𝜎 [𝑖, 𝑖 + 𝑗 + 1] = 𝑀𝜎 [𝑖, 𝑖 + 𝑗]𝑀𝜎 [𝑖 + 1, 𝑖 + 𝑗 + 1]/𝑍𝑖,𝑖+𝑗+1.
• Let𝑀𝜎 [𝑗, 𝑖] = 1/𝑀𝜎 [𝑖, 𝑗] for all 𝑖 < 𝑗 .

• Use ShuffleMatrix to shuffle𝑀𝜎 into𝑀𝑎 , and produce the ZKP of a shuffle 𝜋Shuffle.

• Return𝑀𝑎 , 𝜋
Shuffle

, 𝑍𝑖,𝑖+𝑗+1, 𝜋𝑚𝑢𝑙
𝑖,𝑖+𝑗+1 for 1 ≤ 𝑗 < 𝑘 and 1 ≤ 𝑖 ≤ 𝑘 − 𝑗 − 1, as well as 𝐵𝑖 , 𝜋0/1𝑖

for 1 ≤ 𝑖 < 𝑘 .

Figure 11: Voter’s procedure to vote with the ranks 𝑟1, · · · , 𝑟𝑘

To summarize our construction, we recap the procedure to provide a ballot and prove its well-formedness in Figure 11. The proof can be

verified by first verifying all the ZKP 𝜋
0/1
𝑖

. Then, using the 𝐵𝑖 ’s,𝑀𝑖𝑛𝑖𝑡 and the 𝑍𝑖,𝑖+𝑗+1’s, the verifier computes the matrix𝑀𝜎 . She checks

that it is well-formed by verifying all the ZKP 𝜋𝑚𝑢𝑙
𝑖,𝑖+𝑗+1 using𝑀𝜎 and the 𝑍𝑖,𝑖+𝑗+1’s. Finally, she verifies the proof of a shuffle using 𝜋Shuffle

and𝑀𝑎 . We denote Verify this verification algorithm.

Claim 1. Let Prove be the algorithm defined in Figure 11 and Verify the above verification process. Then Prove,𝑉𝑒𝑟𝑖 𝑓 𝑦 is a Non-Interactive
Zero Knowledge Proof system for the set of valid encrypted ballots𝑀 which verifies the following proposition.

∃𝑟1, · · · , 𝑟𝑘 s.t. ∀(𝑖, 𝑗), Dec(𝑀 [𝑖, 𝑗]) =


1 if 𝑟𝑖 < 𝑟 𝑗
0 if 𝑟𝑖 = 𝑟 𝑗
−1 otherwise.

Proof sketch. Completness. Clearly, an honest voter will always have her ballot accepted by the verifier.

Zero Knowledge. Apart from the encrypted ballot 𝑀𝑎 , only the 𝐵𝑖 ’s, the 𝑍𝑖,𝑖+𝑗+1’s and ZKP are published, hence the proof is Zero

Knowledge.

Soundness. The soundness comes directly from the soundness of the ZKP used. Indeed, the soundness of the 0/1 ZKP guarantees that all

the 𝐵𝑖 ’s are encryption of 0 or 1, and the soundness of the private multiplication ZKP (see Algorithm 55) guarantees that the 𝑍𝑖,𝑖+𝑗+1 are
well-formed, and therefore that𝑀𝜎 is a valid encrypted ballot. Finally, the soundness of the proof of a shuffle 𝜋Shuffle guarantees that𝑀𝑎 is

obtained from𝑀𝜎 using some permutation 𝜎′. Since any of these transformations preserve the set of the valid ballots, it follows that𝑀𝑎 is a

valid encrypted ballot, even if 𝜎′ ≠ 𝜎 . □

Ballots encoded as preference matrices (cubic algorithm).
For comparison, we present a naive approach to prove that an encrypted𝑚𝑎 preference matrix is well-formed. To do so, the voter can

provide two proofs:

• A proof that each element is an encryption of either 0, 1 or −1,
• A proof of transitivity.

The proof of transitivity must prove the following statements, for all (𝑖, 𝑗, 𝑘) and 𝑢 ∈ {−1, 0, 1}

(𝑚𝑎 [𝑖, 𝑘] = 𝑢) ∧ (𝑚𝑎 [𝑘, 𝑗] = 𝑢) =⇒ 𝑚𝑎 [𝑖, 𝑗] = 𝑢.
50

A toolbox for verifiable tally-hiding e-voting systems

• Let 𝑝𝑘 be the public encryption key and 𝑣 the chosen voting option.

• Encode 𝑣 as a vector of 𝑘 integers, where 𝑘 is the number of candidates. The 𝑖th integer is the desired rank for candidate 𝑖 .

• Encrypt the vector into 𝐵1, · · · , 𝐵𝑘 , using 𝑝𝑘 and a bitwise encryption for each integer (hence each 𝐵𝑖 is in fact ⌈log𝑘⌉ encryptions
of either 0 or 1).

• For all 𝑖 , produce ⌈log𝑘⌉ ZKP (𝜋0/1
𝑖, 𝑗
)
1≤ 𝑗≤⌈log𝑘 ⌉ that 𝐵𝑖, 𝑗 is an encryption of 0 or 1.

• Return (𝐵𝑖)1≤𝑖≤𝑘 , (𝜋
0/1
𝑖, 𝑗
)𝑖, 𝑗 .

Figure 12: vote procedure for the D’Hondt method

Since the voter also provides a proof that each𝑚𝑎 [𝑖, 𝑗] is in {−1, 0, 1}, this is equivalent to proving that, for all (𝑖, 𝑗, 𝑘),𝑚𝑎 [𝑖, 𝑘] =𝑚𝑎 [𝑘, 𝑗] =⇒
𝑚𝑎 [𝑖, 𝑗] =𝑚𝑎 [𝑖, 𝑘], which is equivalent to proving that the following statement is true:

(𝑚𝑎 [𝑖, 𝑘] ≠𝑚𝑎 [𝑘, 𝑗]) ∨ (𝑚𝑎 [𝑖, 𝑗] =𝑚𝑎 [𝑖, 𝑘]) .

To prove that𝑚𝑎 [𝑖, 𝑘] ≠𝑚𝑎 [𝑘, 𝑗], one can prove that𝑚𝑎 [𝑖, 𝑘] −𝑚𝑎 [𝑘, 𝑗] ∈ {−2,−1, 1, 2} and to prove that𝑚𝑎 [𝑖, 𝑗] =𝑚𝑎 [𝑖, 𝑘], we prove that
the difference is 0. Overall, the voter has to prove that, for all (𝑖, 𝑗, 𝑘),

(𝑚𝑎 [𝑖, 𝑘] −𝑚𝑎 [𝑘, 𝑗] = −2) ∨ (𝑚𝑎 [𝑖, 𝑘] −𝑚𝑎 [𝑘, 𝑗] = −1) ∨ (𝑚𝑎 [𝑖, 𝑘] −𝑚𝑎 [𝑘, 𝑗] = 1) ∨ (𝑚𝑎 [𝑖, 𝑘] −𝑚𝑎 [𝑘, 𝑗] = 2) ∨ (𝑚𝑎 [𝑖, 𝑗] −𝑚𝑎 [𝑖, 𝑘] = 0) .

The proof of the disjunction can be obtained with the process of [20] (see Algorithm 56 below). To verify such a proof, simply compute

𝑑 = hash(𝐴1 | | · · · | |𝐴5 | |𝑒1 | | · · · | |𝑒5) and check that 𝑒 𝑗 = Enc(0, 𝜌 𝑗) (𝐴 𝑗/Enc(𝑏 𝑗 , 0))−𝜎 𝑗
for all 𝑗 . Overall, the zero knowledge proof requires

about 18𝑘3 for the prover and 20𝑘3 for the verifier.

In [26], the authors use a similar approach, but for the𝑚𝑝 preference matrix. We stress that while their approach is more efficient than

the above naive approach, it does not apply to the case where some candidates have the same rank.

Algorithm 56: ZKP of a 5-disjunction

Require: hash, 𝐴1, · · · , 𝐴5, 𝑎1, · · · , 𝑎5, 𝑟1, · · · , 𝑟5, 𝑏1, · · · , 𝑏5, such that

• for all 𝑖 , 𝐴𝑖 = Enc(𝑎𝑖 , 𝑟𝑖)
• there exists 𝑖 such that 𝑎𝑖 = 𝑏𝑖

Ensure: (𝑒1, · · · , 𝑒5, 𝜎1, · · · , 𝜎5, 𝜌1, · · · , 𝜌5), a Zero Knowledge proof that there exists 𝑖 such that 𝑎𝑖 = 𝑏𝑖 .

1 Let 𝑖 such that 𝑎𝑖 = 𝑏𝑖

2 𝑤 ∈𝑟 Z𝑞 , 𝑒𝑖 = Enc(0,𝑤)
3 for 𝑗 ≠ 𝑖 do
4 𝜎 𝑗 , 𝜌 𝑗 ∈𝑟 Z𝑞
5 𝑒 𝑗 = Enc(0, 𝜌 𝑗) (𝐴 𝑗/Enc(𝑏 𝑗 , 0))−𝜎 𝑗

6 𝑑 = hash(𝐴1 | | · · · | |𝐴5 | |𝑒1 | | · · · | |𝑒5)
7 𝜎𝑖 = 𝑑 −

∑
𝑗≠𝑖 𝜎𝑖

8 𝜌𝑖 = 𝑤 + 𝜎𝑖𝑟𝑖
9 Return (𝑒1, · · · , 𝑒5, 𝜎1, · · · , 𝜎5, 𝜌1, · · · , 𝜌5)

F.3 Condorcet-Schulze method, the bottom-line
To improve readability, we give again the details that are necessary to use our tally-hiding protocol inside of a voting protocol. First, to

submit a ballot, a voter can simply use the vote procedure, which is summed up in Figure 12. This allows the voter to freely give a rank to

each candidate, among the 2
⌈log𝑘 ⌉

possible ranks, where 𝑘 is the number of candidates. Note that only the ordering of the candidate with

the given rank is of interest, so ranking three candidates 1, 1 and 2 is the same as ranking them 0, 0 and 3. Finally, to proceeds with the tally,

the authorities use the protocol 𝑃Cond, defined in Algorithm 57.

G SINGLE TRANSFERABLE VOTE
Section 6 contains a sketch of our results on Single Transferable Vote (STV). We give here more material about this: we recall the general

idea of STV and some variants, then explain in details the algorithms to use for each step of an MPC implementation, and finally explain

how the costs given in table 3 were obtained.

51

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 57: Condorcet-Schulze
Require: 𝐵, the 𝑛 encrypted ballots

Ensure: 𝑐 , the indicator of the set of winners
1 for 𝑝 = 1 to 𝑛 (in parallel) do
2 for 𝑖 = 1 to 𝑘 (in parallel) do
3 for 𝑗 = 𝑖 + 1 to 𝑘 (in parallel) do
4 _,𝑇 ,𝐶 := SubLT(𝐵𝑖 , 𝐵 𝑗) (* use a variant that returns an additional bit for the equality test *);

5 𝑀𝑝 [𝑖, 𝑗] := 𝑇 (* the candidate with the lowest rank is preferred *);

6 𝑀𝑝 [𝑗, 𝑖] := CSZ(Not(𝑇), Not(𝐶))
7 𝑀𝑝 [𝑖, 𝑖] := 𝐸0 (* trivial encryption of 0 *)

8 for 𝑖 = 1 to 𝑘 (in parallel) do
9 for 𝑗 = 1 to 𝑘 (in parallel) do
10 𝑀𝑖, 𝑗

bits
:= Aggreg(𝑀1 [𝑖, 𝑗], · · · , 𝑀𝑛 [𝑖, 𝑗])

11 for 𝑖 = 1 to 𝑘 (in parallel) do
12 for 𝑗 = 𝑖 + 1 to 𝑘 , (in parallel) do
13 𝐷bits, 𝑁 := SubLT(𝑀𝑖, 𝑗 , 𝑀𝑗,𝑖);
14 𝐹 bits := Neg(𝐷);
15 𝐴𝑖, 𝑗

bits
:= CSZ(𝐷, Not(𝑁));

16 𝐴 𝑗,𝑖
bits

:= CSZ(𝐹, 𝑁)
17 𝐴𝑖,𝑖 := 𝐸0

bits

18 𝑆 := FW(𝐴);
19 for 𝑖 = 1 to 𝑘 (in parallel) do
20 for 𝑗 = 1 to 𝑘 (in parallel) do
21 𝑊𝑖, 𝑗 := Not(LT(𝑆𝑖, 𝑗 , 𝑆 𝑗,𝑖))
22 𝐶𝑖 := CSZ𝑗 (𝑊𝑖, 𝑗) (* use tree-base parallelization to compute the conjunction of all𝑤 𝑗 *);

23 𝑐𝑖 := Dec(𝐶𝑖)
24 Return 𝑐

G.1 Overview of STV
STV consists of the following algorithm, where 𝑠 is the number of seats to be attributed. First, each voter chooses a subset of candidates (any

other candidate is not deemed of interest by the voter) and rank them in a strict order. For instance, if there are four candidates, Alice can

vote (1, 3) while Bob can vote (4, 1, 2). Each ballot is attributed a weight, which is initially 1. Once all the ballots are cast, the tallying process

consists of several rounds. During each round, each ballot grants a number of votes (equal to the ballot’s weight) to the first candidate

mentioned in the ballot. If some candidates meet a certain quota 𝑞 (which is fixed during the whole process), the one with the greatest

number of votes is selected. The selected candidates keep 𝑞 votes for themselves and transfer each of their ballot to the next candidate on the

ballot, with a transfer coefficient 𝑡 = (𝑣 − 𝑞)/𝑣 , where 𝑣 is the number of votes of the selected candidate (note that 𝑣 might not be an integer).

In other words, the name of the selected candidate is removed from the ballot and the weight is multiplied by 𝑡 . The eliminated candidates

transfer their ballot to the next candidate in the ballot, but with the same weight. The process terminates when 𝑠 candidates are elected, or

when the number of candidates that remain is equal to the number of (still) available seats.

There are several versions of STV. In the version that we chose to consider, the tallying process consists of several rounds, and in each

round, exactly one candidate is either selected or eliminated. In some other versions, several candidates can be selected or eliminated

simultaneously, if some conditions are met. This comes with two problems. First, for an MPC tally, revealing no more than the result

also means not to reveal the number of candidates which were selected or eliminated in any round, so having a non-constant number of

eliminations or selections is quite difficult. Second, if several candidates are selected simultaneously, the exact way in which the transfer

should occur is not clear. Indeed, suppose that candidates 𝑎 and 𝑏 are selected. For each ballot possessed by 𝑎, 𝑎 has to transfer a certain

proportion 𝑡 of the ballot to the second candidate mentioned in the ballot, but 𝑡 depends on the number of votes possessed by 𝑎. So what if 𝑎

must transfer some votes to 𝑏 while 𝑏 must transfer some votes to 𝑎? Which transfer coefficient should be used? While some variants of STV

choose to ignore the selected candidates in the transfer process (don’t transfer to 𝑏 but to the next candidate that is not already selected),

some other variants require to solve a system of 𝑐 equations of degree 𝑐 , where 𝑐 is the number of candidates selected simultaneously [32].

52

A toolbox for verifiable tally-hiding e-voting systems

G.2 A tally-hiding algorithm for STV
In what follows, we will only consider the ElGamal setting with bit-encoding, but a similar approach could be used in the Paillier setting as

well (some procedures would become easier). Each ballot consists of (𝑘 + 1) bit-wise encrypted integers, which are obtained by shuffling a

public vector which contains bit-encoded encryptions of (0, · · · , 𝑘), where 𝑘 is the number of candidates. The candidate 0 is an artificial

candidate: any candidate ranked after 0 should be ignored. Also, we represent rational numbers with an approximation in the first 𝑟 binary

places, where 𝑟 is fixed by the election administrator.

First, we initialize a data structure as follows (recall that 𝑞 is the quota, 𝑠 the number of seats, 𝑘 the number of candidates and 𝑛 the

number of voters).

• 𝐻 is the hopeful vector. It contains 𝑘 encryptions of bits (initially 𝐸1, the public encryption of 1).

• 𝑊 is the winner vector. It contains 𝑘 encryptions of bits (initially 𝐸0, the public encryption of 0).

• 𝑆 is the score vector. It contains 𝑘 bit-encoded encrypted integers of size𝑚 + 𝑟 , where𝑚 = ⌈log(𝑛 + 1)⌉.
• 𝐵 is the ballots matrix. For all 𝑖 ∈ [1, 𝑛], 𝐵𝑖 consists of a weight𝑉𝑖 (a bit-encoded encrypted integer of size 𝑟 + 1, initially (𝐸0, · · · , 𝐸1),
which stands for the bit-encoded encryption of 1; the 𝑟 less significant bits represent the 𝑟 binary places) and 𝑘 + 1 candidates
𝐵𝑖 [0], · · · , 𝐵𝑖 [𝑘] (candidates are represented as bit-encoded encrypted integers, of size ⌈log(𝑘 + 1)⌉ bits).

In what follows, if 𝑃 is a MPC procedure that requires two (bit-encoded) inputs, we denote 𝑃𝑘 the procedure 𝑃 in which the second input is

known in the clear. If𝑚 is the bitsize of the inputs, 𝑃𝑘 costs generally𝑚 CSZ less than 𝑃 , which often leads to a good improvement (a third or

a half of the computations is saved, see Algorithm 34 for an example). Our 𝑃STV protocol consists of 𝑘 − 1 rounds, which themselves consists

of the following procedures.

(1) Finished? (Algorithm 58.) From the candidate data structure, compute the number of candidates (apart from candidate 0) that got a seat

or are still in the running. If this is equal to the number of available seats 𝑠 , then mark as selected all the candidates that were still in the

running.

(2) Count votes. (Algorithm 59.) For each ballot 𝐵, take the candidate in the first rank, and add the weight of the ballot to the number of

votes 𝑆𝑖 of this candidate. In MPC, this is done with a loop on all candidates 𝑖 , and conditionally adding the weight of the ballot to 𝑆𝑖 ,

depending on whether 𝐵0 is equal to 𝑖 .

(3) Search for min and max. (Algorithm 60.) Compute 𝑖 and 𝑗 the indexes such that 𝑆𝑖 = max(𝑠𝑘) and 𝑆 𝑗 = min(𝑠𝑘). If the candidate 𝑖 gets a
seat, i.e. 𝑆𝑖 ≥ 𝑞, set 𝑒 to 1, 𝑐 to 𝑖 and the transfer ratio 𝑡 to (𝑆𝑖 − 𝑞)/𝑆𝑖 . Otherwise, the candidate 𝑗 will be eliminated and set 𝑒 to 0, 𝑐 to 𝑗 ,

and 𝑡 to 1.

(4) Select, delete, transfer. (Algorithm 61.) Mark the candidate number 𝑐 as selected or eliminated: set 𝐻𝑐 = 0, and if 𝑒 is 1, then set𝑊𝑐 = 1.

Also, for all ballots, remove the candidate 𝑐 . This is done in one pass over the list of preferences of each ballot. At the time, remember for

each ballot if 𝑐 was in first position. For each ballot for which 𝑐 was in first position, multiply its weight by the transfer value 𝑡 .

At the very end, the vector𝑊 is decrypted into𝑤 , and the elected candidates 𝑖 are such that𝑤𝑖 = 1.

Algorithm 58: Finished
Require: 𝑠, 𝑡, 𝐻,𝑊 , where 𝑡 the round index (initially 0)

Ensure: Modify𝑊

1 𝑁 bits = Aggregbits (𝑊1, · · · ,𝑊𝑘) (* bit-wise encryption of the number of selected candidates *)

2 𝐹 = EQ𝑘 (𝑁, 𝑠 − 𝑘 + 𝑡) (* when one of the operand is known in the clear, the procedure is cheaper *)

3 for 𝑖 = 1 to 𝑘 (in parallel) do
4 𝐻𝑖 = CSZ(𝐻𝑖 , 𝐹)
5 𝑊𝑖 = If(𝐹, 𝐻𝑖 ,𝑊𝑖)

In STV, the procedure should stop when 𝑠 candidates have been selected or when the number of candidates that remain is equal to the

number of seats that remain. If 𝑠 candidates are selected, adding some additional rounds will not modify the result as it is not possible for

(𝑠 + 1) or more candidates to reach the quota (i.e. no subsequent selection would occur, therefore𝑊 will no longer be modified). However, if

the number of candidates that remain is equal to the number of seats that remain, adding an additional round may lead to an elimination if

no candidate reach the quota, so it is important to select all candidates right away. Since a candidate is either selected or eliminated each

round, the round index 𝑡 is such that the number of candidates that remain is equal to 𝑘 − 𝑡 . Moreover, the number of seats that remain is

simply 𝑠 minus the number of selected candidates. So we compute the latter (say 𝑛′) and we test if 𝑛′ = 𝑠 − 𝑘 + 𝑡 , which is equivalent to

𝑛′ = 𝑠 − 𝑘 + 𝑡 . Rewriting the test this way allows a slightly more efficient equality test as one operand is known.

Note that we do not want to reveal when the procedure stop so, in MPC, the procedure should actually continue. In what follows, we

explain why the result (the decryption of𝑊) will not be modified if subsequent iterations are run. First, once this test returns true, 𝑛′

becomes 𝑠 and since 𝑡 < 𝑘 (there are 𝑘 − 1 rounds), the test can no longer return true, so this modification will occur only once. Afterwards,

only selection and elimination would occur and since selecting a candidate which is already selected does not change anything, the outcome

is not altered by the subsequent rounds.

53

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 59: CountVotes
Require: 𝐵, 𝑆
Ensure: Modify 𝑆

1 for 𝑖 = 1 to 𝑛 (in parallel) do
2 for 𝑗 = 1 to 𝑘 (in parallel) do
3 𝐶𝑖, 𝑗 = EQ𝑘 (𝐵𝑖 [0], 𝑗)

4 for 𝑗 = 1 to 𝑘 (in parallel) do
5 𝑆 𝑗

bits = 0

6 for 𝑖 = 1 to 𝑛 (tree-based parallelisation is possible) do
7 𝑆 𝑗

bits = If(𝐶𝑖, 𝑗 , Addbits (𝑆 𝑗 ,𝑉𝑖), 𝑆 𝑗)

In the procedure CountVotes, we mention that tree-based parallelisation is possible. Indeed, it is possible to compute all CSZ(𝐶𝑖, 𝑗 ,𝑉𝑖) in
parallel, then to add them together using a tree-based algorithm. Hence the communication cost of this step is 𝑂 (log(𝑛)Add), where Add is

the communication cost of an addition.

The last two procedures, namely SearchMinMax, and SelectDeleteTransfer are self-explanatory.

Algorithm 60: SearchMinMax

Require: 𝑆, 𝑞
Ensure: 𝐷,𝐶bits,𝑇 bits

, where

• 𝐷 is an encryption of a bit 𝑑 (𝑑 = 1 for a selection, 0 for an elimination)

• 𝐶bits
is a bit-wise encryption of the index of some candidate (with ⌈log(𝑘 + 1)⌉ bits)

• 𝑇 bits
, is a bit-wise encryption of the transfer coefficient (with 𝑟 + 1 bits)

1 _, 𝑀bits, 𝐼bits, 𝐽 bits = MinMaxbits (𝑆1bits, · · · , 𝑆𝑘bits)
2 Δbits, 𝐷 = SubLT𝑘 (𝑀bits, 𝑞), D=Not (D)

3 𝑇 bits = Div(Δbits, 𝑀bits)
4 𝑇 bits = If(𝐷,𝑇 bits, 1) (* use a bit-wise encryption of 1 *)

5 𝐶bits = If(𝐷, 𝐽 bits, 𝐼bits)
6 Return 𝐷,𝐶bits,𝑇 bits

Algorithm 61: SelectDeleteTransfer

Require: 𝐷,𝐶bits,𝑇 bits,𝑊 ,𝐻, 𝐵

Ensure: Modify𝑊,𝐻, 𝐵

1 for 𝑖 = 1 to 𝑘 (in parallel) do
2 𝑍 = EQ𝑘 (𝐶bits, 𝑖)
3 𝐻𝑘 = CSZ(𝐻𝑘 , 𝑍)
4 𝑊𝑘 = If(𝑍, Enc(1),𝑊𝑘)
5 for 𝑖 = 1 to 𝑛 (in parallel) do
6 𝐴 = EQ(𝐵𝑖 [0],𝐶bits)
7 𝐹 = 𝐴

8 for 𝑗 = 0 to 𝑘 − 1 do
9 𝐵𝑖 [𝑗] = If(𝐹, 𝐵𝑖 [𝑗 + 1], 𝐵𝑖 [𝑗])

10 𝑍 = EQ(𝐵𝑖 [𝑗 + 1],𝐶bits)
11 𝐹 = 𝐹𝑍/CSZ(𝐹, 𝑍) (* 𝑓 = 1 iff the candidate 𝑐 has been found in the list *)

12 𝐵𝑖 [𝑘] = If(𝐹, 0, 𝐵𝑖 [𝑘]) (* use a bit-wise encryption of 0 *)

13 𝑉𝑖 = If(𝐴, Mulbits (𝑉𝑖 ,𝑇 bits),𝑉𝑖)

54

A toolbox for verifiable tally-hiding e-voting systems

G.3 Complexity analysis

Naive approach
Recall that 𝑘 is the number of candidates, 𝑛 the number of voters, 𝑠 the number of seats,𝑚 = ⌈log(𝑚 + 1)⌉ and 𝑟 the precision in terms of

binary places. First, assume that we use the naive version for each algorithm.

The complexity of Finished can be derived directly from Figure 5. Since we use Aggregbits with 𝑘 operands, one EQ for two operands of

size log𝑘 and 2𝑘CSZ, the complexity of this step is (5𝑘 + log𝑘)CSZ in terms of computation and transcript size, and ((log𝑘)2 + log log𝑘 + 2)
rounds in terms of communications. (For simplicity we will only keep the leading terms, here 5𝑘 and (log𝑘)2.)

The complexity of CountVotes can also be derived from Figure 5. There are 𝑛𝑘 calls to EQ for inputs of size log𝑘 and 𝑛𝑘 calls of Addbits

and If for inputs of size (𝑚 + 𝑟). Therefore the cost is 𝑛𝑘 (log𝑘 + 3(𝑚 + 𝑟))CSZ in terms of computation and transcript size. However, as a

tree-based parallelisation is possible, the communication cost is about 2(𝑚 + 𝑟)𝑚 rounds, as𝑚 ≈ log𝑛.

The complexity of SearchMinMax is also obtained from Figure 5. As there are 𝑘 operands of size𝑚 + 𝑟 , MinMax costs 8𝑘 (𝑚 + 𝑟)CSZ in

terms of computation and transcript size, and 2(𝑚 + 𝑟) log𝑘 rounds of communication. The remaining of the procedure consists (mainly)

of a call to Div and SubLT (the two If cost 𝑂 (log𝑘) and 𝑂 (𝑟) in computations, and 1 round each). Overall, the cost of this step is about

(𝑚 + 𝑟) (3𝑟 + 8𝑘)CSZ in terms of computation and transcript size and 2(𝑚 + 𝑟) (𝑟 + log𝑘) rounds of communication.

In SelectDeleteTransfer, there are 𝑘 calls to EQ𝑘 which costs log𝑘CSZ each (the subsequent CSZ and If use 1CSZ each. This part is

negligible in terms of both computations and communications (𝑂 (log log𝑘) rounds). Afterwards, there are 𝑛𝑘 calls to EQ and If for inputs

of size log𝑘 , which accounts to 3𝑛𝑘 log𝑘CSZ in terms of computation, and 𝑘 log log𝑘 rounds of communication. Finally, we multiply two

inputs of size 𝑟 and𝑚 + 𝑟 and use If for inputs of size (𝑚 + 𝑟), which accounts to 3𝑛𝑟 (𝑚 + 𝑟)CSZ in terms of computation and transcript

size and 2𝑟 (𝑚 + 𝑟) rounds. Overall, the complexity is about 3𝑛(𝑘 log𝑘 + 𝑟 (𝑚 + 𝑟))CSZ in terms of computation and transcript size, and

(𝑘 log log𝑘 + 2𝑟 (𝑚 + 𝑟)) rounds.
Overall, since there are 𝑘 − 1 rounds, the leading terms of the complexity are

• 𝑛𝑘2 (4 log𝑘 + 3(𝑚 + 𝑟) (𝑟 + 1))CSZ in terms of computation and transcript size,

• 𝑘 (2(𝑚 + 𝑟) (𝑚 + 2𝑟 + log𝑘) + 𝑘 log log𝑘) rounds of communications.

Advanced approach
The complexity of our algorithm is satisfying in terms of computations: recall from Section 6 that we aim for 𝑂 (𝑛𝑘2) operations; and the

log𝑘 and (𝑚 + 𝑟) terms seems unavoidable as they are the bitsize of some operands. However, the number of rounds is quadratic in𝑚, 𝑟 and

𝑘 . While𝑚, as the logarithm of 𝑛, is not expected to grow too much, the strong dependency in 𝑘 and 𝑟 can be problematic. In what follows,

we use the arithmetic of Section C.4 to explain how to avoid this quadratic number of rounds. For this purpose, it is crucial to identify which

processes need a quadratic number of rounds. From the analysis above, we identify four terms which contribute to this.

• In CountVotes, we use the associativity of the addition to sketch a tree-based parallelisation of the loop which leads to 2(𝑚 + 𝑟)𝑚
rounds of communications. To mitigate this quadratic cost, we can use Algorithm 26 for the addition instead of Algorithm 21. This

allows to perform the same step in 2𝑚 log(𝑚 + 𝑟) rounds instead, but requires 3

2
𝑛𝑘2 (𝑚 + 𝑟) log(𝑚 + 𝑟)CSZ instead of 2𝑛𝑘2 (𝑚 + 𝑟)CSZ.

• In SearchMinMax, the computation of the transfer coefficient implies a division, which leads to a quadratic number of rounds

2(𝑚 + 𝑟)𝑟 . By replacing SubLT calls by the equivalent Unbounded Fan-in composition (the subtraction can be obtained similarly

with the same complexity), the division can be performed in 2𝑟 log(𝑚 + 𝑟) rounds, but the complexity increases slightly (it becomes

3

2
𝑟 (𝑚 + 𝑟) log(𝑚 + 𝑟)CSZ instead of 3𝑟 (𝑚 + 𝑟)CSZ). Note that the complexity of this phase in terms of computation is still negligible

compared to the rest of the algorithm.

• In SelectDeleteTransfer, the multiplications can all be computed in parallel, but each still requires a quadratic number 2𝑟 (𝑚 + 𝑟)
of rounds. Just as above, using Algorithm 26 instead of the naive Addbits allows to reduce the number of rounds to 2𝑟 log(𝑚 + 𝑟), but
the computation costs increases from 3𝑛𝑟 (𝑚 + 𝑟)CSZ to 3

2
𝑛𝑟 (𝑚 + 𝑟) log(𝑚 + 𝑟)CSZ.

• In SelectDeleteTransfer again, there is a for loop in 𝑘 which imposes a round complexity of 𝑂 (𝑘 log log𝑘) (testing the equality

of two integers of log𝑘 bits takes log log𝑘 rounds). As the procedure is repeated 𝑘 − 1 times, this leads to a quadratic number of

rounds in 𝑘 . Once again, we can use the strategy from Section C.4 to solve this problem. First, compute all equality tests in parallel

(denote the result 𝑏0, 𝑏1, · · · , 𝑏𝑘 . Then use an Unbounded Fan-in circuit to compute all the prefixes 𝑏0, 𝑏0 ∨ 𝑏1, · · · , 𝑏0 ∨ · · · ∨ 𝑏𝑘 .
(Since the operation ∨ is associative, the same technique can be applied.) Finally for all 𝑖 in parallel, compute the updated 𝐵𝑖 [𝑗] as
If(𝑏0 ∨ · · · ∨𝑏 𝑗 , 𝐵𝑖 [𝑗 + 1], 𝐵𝑖 [𝑗]), where 𝐵𝑖 [𝑘 + 1] is a bit-wise encryption of 0 for all 𝑖 . This time the number of rounds decreases to

𝑘 log𝑘 log log𝑘 (from 𝑘2 log log𝑘), while the computation cost increases slightly (from 3𝑛𝑘2 log𝑘CSZ to 7

2
𝑛𝑘2 log𝑘CSZ). Note that

interestingly, the communication cost of this step becomes negligible before the aggregation process in the Finished procedure,
which was negligible in the naive approach.

Using the modifications sketched above, we arrive to a good communication / computation trade-off: the impact on the computation is

minimal, but the number of rounds is no longer quadratic in any variable.

55

A toolbox for verifiable tally-hiding e-voting systems

• Let 𝑘 be the number of candidates and 𝑐0, · · · , 𝑐𝑘 be the 𝑘 + 1 trivial bitwise encryptions of 0, · · · , 𝑘 with ⌈log(𝑘 + 1)⌉ bits.
• Let 𝑢1, · · · , 𝑢𝑏 be the 𝑏 ≤ 𝑘 candidates selected by the voter, in this order.

• The voter chooses a permutation 𝜎 so that 𝜎 (𝑖) = 𝑢𝑖+1 for all 0 ≤ 𝑖 < 𝑏, and 𝜎 (𝑏) = 0.

• She shuffles 𝑐0, · · · , 𝑐𝑘 with 𝜎 to obtain 𝑐′
0
, · · · , 𝑐′

𝑘
and produces a proof of a shuffle 𝜋Shuffle.

• The ballot is (𝑐′
0
, · · · , 𝑐′

𝑘
), 𝜋Shuffle.

Figure 13: The vote procedure in STV

G.4 STV, the bottom-line
Finally, we recap all that is necessary to use our tally-hiding protocol for STV. First, to submit a ballot, a voter can use the vote procedure
that is detailed in Figure 13. It simply consists of shuffling a public representation of the 𝑘 candidates to obtain the desired ordering. Since

the voter may not rank all candidate, a dummy candidate 0 is added and means that the subsequent candidates should not be taken into

account. This way all ballots have the same size, even if they do not rank the same number of candidates.

To verify a ballot, an auditor can simply check the zero knowledge proof of a shuffle. To tally a list of ballots 𝐵, the authorities use the

protocol 𝑃STV described in Section G.2.

56

A toolbox for verifiable tally-hiding e-voting systems

Part II: Security in the SUC-framework.

In this appendix, we give all the notions that are necessary to establish the security of our MPC toolbox as well as our tally-hiding

protocols. This begins with the SUC security framework that we introduce in Appendix H. In Appendix I, we prove that our toolbox is

SUC-secure. In Appendix J, we deduce that the resulting electronic voting system is private and we address verifiability.

H A SECURITY FRAMEWORK FOR OUR MPC PROTOCOLS
H.1 Introduction to the framework
To analyze the security of our MPC protocols, we use the composition framework from [16], which is a Simpler version of the Universally

Composable framework (SUC). Although less expressive than the more general UC framework [15], it is sufficient to analyze standard MPC

protocols, and it is shown that protocols secure in the SUC framework are also secure in the UC framework. In the SUC framework, the

participants of a protocol are modeled as Interactive Turing Machines (ITM) which have input / output tapes, a random tape, a working tape

and some input / output communication tapes. Two ITM 𝐴 and 𝐵 can interact with each other if 𝐴 (resp. 𝐵) has an output communication

tape which share the same name as an input communication tape of 𝐵 (reps. 𝐴). A process is simply a concurrent execution of several

connected participants. It can invoke several sub-processes in parallel, in order to execute some sub-protocols. In the SUC framework, the

participants of the sub-processes are the same as the participants of the main process. To invoke a sub-process, they simply allocate enough

space in their memory and run the corresponding algorithm. They may run several sub-protocols in parallel, using time-sharing.

We analyze the security of such a process against a malicious and static adversary, which can corrupt some parties, but only before the

execution of the process. Corrupted parties can be impersonated by the adversary and give away any secret that they have. In addition,

the adversary has a full control over the communication network. It can read, block and deliver messages at will. However, we consider

ideally authenticated messages, meaning that the adversary cannot forge, change or replay a message sent by an honest party. To model this,

we consider that the participants can interact with a router in a star network. In addition of the adversary, the SUC framework considers

another adversarial PPT, the environmentZ. It serves as an "interactive distinguisher" and interacts with the adversary.

The security of the process is guaranteed by a comparison with an ideal process, in which each party hands over their inputs to a trusted

party which honestly performs the desired computation. However, the corrupted parties may send a different input (resp. output) than their

real input (resp. output), and the adversary can block or delay the communication with the trusted party. Intuitively, a protocol is SUC-secure

if, for all adversary in the real process, there exists a simulator in the ideal process such that no PPT environment can tell whether they are

interacting with the adversary in the real process or with the simulator in the ideal process.

H.2 Secure functionality computation
We now give a more formal description of the framework. For this purpose, we suppose that there is a fixed number 𝑎 of participants defined

by a set of ITM 𝑃 . Each participants has a single input and output communication tape, and interacts with a router, which in turn interacts

with the adversary. The adversary interacts with the router and the environment. The adversary can corrupt a subset 𝐶 of participants of

size at most 𝑡 , where 𝑡 < 𝑎 is some threshold. Non-corrupted participants are honest and follow the protocol, while corrupted participants

are fully impersonated by the adversary and give away any secret that they have. In the real process, the participants, the environment, the

adversary and the router interact as follows.

The environment. Upon activation, the environmentZ can write on the input tapes of each participant, read their outputs and send a

message to the adversary, which is activated next.

Participants. Upon activation, an honest participant reads its input and input communication tapes. It runs an algorithm which is

specified by the protocol and may write on its output tape. It then submits any number of queries send(𝑖, 𝑗,𝑚) to the router, where 𝑖 is the

sender, 𝑗 the receiver and𝑚 the message. The router is activated next.

The adversary. Upon activation, the adversary can read the memory of the router, write a message to the environment, read the tapes of

a corrupted participant or write on their output tape. Finally, it can choose one of the following.

• Send a query deliver(𝑖, 𝑗,𝑚) to the router, which is activated next.

• Activate the environment.

• Activate a participant.

The router. Upon activation, the router look for send queries. For each send query send(𝑖, 𝑗,𝑚), it checks that 𝑖 is consistent with the

sender of the query and that 𝑗 is another participant. If so, it stores (𝑖, 𝑗,𝑚) in memory and the adversary is activated next. If there is no

valid send query, the router looks for a deliver query (𝑖, 𝑗,𝑚) and checks that either 𝑖 is corrupted (in which case the message is delivered to

𝑗) or (𝑖, 𝑗,𝑚) is stored in memory (in which case the message is delivered to 𝑗 and one copy of (𝑖, 𝑗,𝑚) is erased from memory. If a message

is delivered this way, the receiver is activated next). Otherwise, the adversary is activated.

The process terminates when Z writes an output on its output tape. We denote REAL𝑃,A,Z (𝜅, 𝑧) this output, where 𝜅 is a security

parameter and 𝑧 is an arbitrary auxiliary input. For the ideal process, we consider a trusted party 𝑇 which is also modeled as an ITM, and

can interact with the router and the adversary. The trusted party performs an algorithm which is specified by the protocol and which aims

to realize some ideal functionality. The participants, the environment, the adversary, the router and the trusted party interact as follows.

57

A toolbox for verifiable tally-hiding e-voting systems

Participants. Upon activation, an honest participant 𝑖 looks for any new input from 𝑇 on its communication tape and copies it on its

output tape. It also reads any new input 𝐼 on its input tape and sends a query send(𝑖,𝑇 , 𝑠𝑖𝑑 | |𝐼) to the router, where 𝑠𝑖𝑑 is the number of send

query that the honest participant sent before. It serves as a session identifier, so that different queries made by the same participant are

handled independently by 𝑇 . The router is activated next.

The trusted party. The trusted party interacts with both the router and the adversary and hence has two input (and output) communication

tapes. Upon activation, the trusted party looks for a new message (𝑖,𝑇 , 𝐼) in its router (resp. adversary) input communication tape, perform

some local computations and may send any query send(𝑇, 𝑗,𝑂) to the router or answer directly to the adversary. The router is activated next.
The router. The router behaves the same as in the real process, except that is dos not let the adversary read the messages exchanged

between a participant and the trusted party. (The adversary still knows that a message was sent, knows the sender and the receiver, and can

still decide when to deliver it.)

The adversary. Same as in the real process, except that it can write directly on the communication tape of the trusted party.

The environment. Same as in the real process.

We denote IDEAL𝑇,S,Z (𝜅, 𝑧) the output of the environment in the ideal process, when it interacts with the adversary S.

Definition H.1 (Secure computation [16]). Let 𝑃 be a protocol, 𝑇 some trusted party. We say that 𝑃 securely computes 𝑇 if, for all PPT A,
there exists a PPT S such that, for all PPTZ, there exists a negligible function 𝜇 such that for all 𝜅 and all 𝑧 polynomial in 𝜅,

| Pr(IDEAL𝑇,S,Z (𝜅, 𝑧) = 1) − Pr(REAL𝑃,A,Z (𝜅, 𝑧) = 1) | ≤ 𝜇 (𝜅) .

Note that in [15], Canetti defines the hardest adversary to simulate, which is the dummy adversary D. When activated, the dummy

adversary simply forwards its view to the environment and activates it. The dummy adversary can also handle requests of the form

deliver(𝑖, 𝑗,𝑚) from the environment. On such requests, it forwards them to the router. Similarly, it can handle requests of the form

write(𝑖,𝑚) by writing message𝑚 in the output tape of corrupted party 𝑖 . Finally, it can handle activate(𝑖) requests by activating participant
𝑖 . It is shown that if there exists a simulator for the dummy adversary, then there exists a simulator for all adversary.

H.3 The composition theorem
In the previous section, we explained the notion of security from [16]. This notion is very convenient when it comes to MPC protocols because

of its modularity. For example, suppose that we want to evaluate an algorithm 𝑔 which can be expressed as the composition of𝑚 algorithms

𝑓1, · · · , 𝑓𝑚 . Suppose that, for each algorithm 𝑓𝑖 , we have an MPC protocol 𝜌𝑖 that securely computes 𝑓𝑖 . Then it is natural to construct a

protocol 𝑃𝜌1,· · · ,𝜌𝑚 which will in turn invoke the sub-protocols 𝜌1, · · · , 𝜌𝑚 so as to evaluate 𝑔. For convenience, we denote 𝑓 = 𝑓1, · · · , 𝑓𝑚 and

𝜌 = 𝜌1, · · · , 𝜌𝑚 . We restrict ourselves to a fixed number𝑚 of functions and protocols, with a polynomial number of sub-protocol invocations.

Compared to the real protocol, the composed protocol is similar, except that participants can invoke the sub-protocols in addition to the

other actions.

We also define a 𝑓 -hybrid process in which the sub-protocols are replaced by calls to the appropriate trusted party: just as in the ideal

process, the participants can query a trusted party to evaluate a function in 𝑓 , but the query does not necessarily consists of the inputs of the

participant. In addition, the participant proceeds with the output of the trusted party according to the protocol and does not simply copy it

on its output tape. For more details, see [16]. In the hybrid process, the output of the environmentZ interacting with an adversary A for a

protocol 𝑃 with ideal calls to the functions 𝑓 is denoted HYBRID
𝑓

𝑃,A,Z (𝜅, 𝑧).

Definition H.2 (Secure hybrid computation). Let𝑚 ≥ 1, 𝑔 and 𝑓 = 𝑓1, · · · , 𝑓𝑚 be some functions and 𝑃 be a protocol in the 𝑓 -hybrid model.

We say that 𝑃 securely computes 𝑔 in the 𝑓 -hybrid model if, for all PPT A, there exists a PPT S such that, for all PPT Z, there exists a

negligible function 𝜇 such that for all 𝜅 and all 𝑧 ∈ {0, 1}∗ of polynomial length,

| Pr(IDEAL𝑔,S,Z (𝜅, 𝑧) = 1) − Pr(HYBRID𝑓
𝑃,A,Z (𝜅, 𝑧) = 1) | ≤ 𝜇 (𝜅) .

We now formulate the composition theorem as Theorem H.3.

Theorem H.3 (The composition theorem [16]). Let𝑚 ≥ 1 be some fixed integer, 𝜌 = 𝜌1, · · · , 𝜌𝑚 be protocols and 𝑓 = 𝑓1, · · · , 𝑓𝑚 and
𝑔1, · · · , 𝑔𝑚 be some functions. Suppose that for all 𝑖 , 𝜌𝑖 securely computes 𝑓𝑖 in the 𝑔-hybrid model. Then, for all protocol 𝑃 in the 𝑓 -hybrid model,
the composed protocol 𝑃𝜌 obtained by replacing calls to 𝑓 by an invocation of 𝜌 is such that for all PPT A, there exists a PPT S such that for every
PPT environmentZ, there exists a negligible function 𝜇 such that for all 𝜅 and 𝑧 ∈ {0, 1}∗ of polynomial length,

| Pr(HYBRID𝑔
𝑃𝜌 ,S,Z (𝜅, 𝑧) = 1) − Pr(HYBRID𝑓

𝑃,A,Z (𝜅, 𝑧) = 1) | ≤ 𝜇 (𝜅) .

H.4 Restricted I/O behavior
In the SUC framework, security is assured against an environment which can choose the inputs of the participants and read the outputs.

Such an adversary is too strong in the context of electronic voting, where the inputs of the MPC protocols do not come from the wild but are

rather given as the output of another protocol or with a ZKP that they have the correct format. For instance, the CGate protocol expects the

inputs to be encryptions of 0 or 1, so that the SUC-security of the protocol is extremely difficult to prove against an environment which

is able to give inputs which are not encryptions of 0 or 1. In [33] (Section 3.5), Nielsen considers a slightly weakened framework where

58

A toolbox for verifiable tally-hiding e-voting systems

we quantify over environments which respect some I/O restrictions. It is shown that we can restrict our analysis to environments which

chooses the inputs of the party from any decidable language (in our case, the ciphertexts provided as input must be encryptions of 0 or 1),

and proved that the composition theorem still holds for such restricted environments (see Theorem 3.5 of [33]). In what follows, we only

consider environments which choose encryptions of 0 or 1 as inputs, and which give the same inputs to all participants. Such environements

are said restricted.

I THE SUC-SECURITY OF OUR BUILDING BLOCKS
The conditional gate is our main building block for our toolbox. In order to build confidence on the resulting protocols, we use an universally

composable security framework. In this section, we prove the SUC-security of the conditional gate protocol, which is stated in Theorem I.4.

To make the proof as easy to follow as possible, we use a comprehensible proof strategy and use the composition theorem.

I.1 Proof strategy for the conditional gate
To assess the security of any protocol in the SUC framework, a natural strategy is to use the following steps.

1 Definition of the ideal functionality. First, we give F𝐶𝑆𝑍 , the description of the trusted party that realizes the conditional set to
zero functionality in the ideal process. A SUC-secure protocol is not necessarily secure; rather, it is as secure as the ideal protocol. For this
reason, it is important to provide an easy to analyze ideal functionality. We give Algorithm 62, in which the command abort causes the ideal
functionality to erase any local data and send ⊥ to all the participants as well as the adversary. This ideal functionality works as closely as

possible as a trusted party: it collects the inputs of the participants, check their consistency and return the desired output. However, pk is
supposed to be the public key, (ℎ𝑖)𝑎𝑖=1 the public commitments of the shares of the participants and 𝑋 and 𝑌 the two ciphertexts to operate on.

Therefore, whenever a participant communicates with F𝐶𝑆𝑍 , we consider that this part of the message can be read by the adversary (recall

that the adversary can read a public part of the message when a participant communicates with the ideal functionality, but not the totality of

the message). Remark that the ideal functionality can abort even if there is a majority of honest participants, which means that we do not

guarantee fairness. In addition, the abortion message ⊥ does not allow to blame anyone, which means that we do not provide accountability.

Algorithm 62: F𝐶𝑆𝑍
Require: 𝐺 , a group of prime order 𝑞

1 On message (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1, 𝑠, 𝑋,𝑌 from participant 𝑖:
2 Send (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1, 𝑋,𝑌 to S;
3 if 𝑔𝑠 ≠ ℎ𝑖 then abort;
4 𝑋𝑖 ←− 𝑋 ; 𝑌𝑖 ←− 𝑌 ; 𝑠𝑖 ←− 𝑠;
5 if 𝑋 𝑗 ≠ ⊥ for all 𝑗 then
6 Check that the received (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1 are all the same (if not, abort);

7 if there exists 𝑗1, 𝑗2 s.t. 𝑋 𝑗1 ≠ 𝑋 𝑗2 or 𝑌𝑗1 ≠ 𝑌𝑗2 then abort;
8 Using the shares, decrypt 𝑋1 and 𝑌1 into 𝑥 and 𝑦;

9 𝑟 ∈𝑟 Z𝑞 ; 𝑍 ←− Encpk (𝑥𝑦, 𝑟);
10 Send 𝑍 to all participants and S;
11 else wait;

2 Definition of the hybrid process. The second step is to define the hybrid process; which allows to model the protocol in the SUC-

framework. For this purpose, we need to define all the ideal functionalities that we are going to use: they define the main abstractions of the

proof. In our case, we use the F𝑅𝑂 -hybrid model, which models the ROM,as well as the F𝑆𝐵-hybrid model, which models the synchronous

broadcast (the broadcast functionality is denoted F𝐵).
In general, describing the hybrid process also requires to give the exact algorithm of the honest participants in the hybrid model. Since

the conditional gate protocol is rather complex, we are going to decompose it into several sub-protocols and use the composition theorem.

3 Decomposition into several sub-protocols. The conditional gate protocol is divided into three parts: the round of communications

(lines 1 to 8), the rerandomization (line 9) and the threshold decryption (line 10). Then, a natural way to decompose the protocol is to analyze

the three parts separately, which will be done in the remaining on this chapter. Each part has its dedicated sub-section but, for the purpose

of the proof, we do not treat them in the chronological order.

4 Restrictions on the environment. Finally, as we mentioned in Section H.4, it is sometimes necessary to impose a restriction on the

environment. For the conditional gate, the condition is that 𝑦 ∈ {0, 1}. Therefore, we demand that the input of the participants is of the

form (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1, 𝑠𝑖 , 𝑋,𝑌 such that 𝑌 is an exponential ElGamal encryption of 0 or 1 obtained with the public key (𝑔, ℎ) (i.e. an ElGamal

encryption of either 1𝐺 or 𝑔). In addition, we require that (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1, 𝑋,𝑌 , which is supposed to be a public input, is the same for all the

59

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 63: RR (algorithm of 𝑖)

Require: G, a group of prime order 𝑞

Inputs: pk, an exp. ElGamal key

A ciphertext 𝑋

1 On input (𝑔, ℎ), 𝑋 :
2 Start a new independent session;

3 𝑟1 ∈𝑟 Z𝑞 ; 𝛼 ∈𝑟 Z𝑞 ;
4 𝑈𝑖 ←− Encpk (0, 𝑟1);
5 𝑐𝑢 ←− Encpk (0, 𝛼);
6 Query F𝑅𝑂 with (pk| |𝑋 | |𝑈𝑖 | |𝑐𝑢);
7 Wait for the answer 𝑑 ;

8 𝑎𝑢 ←− 𝛼 + 𝑟1𝑑 ;
9 Query F𝑆𝐵 with𝑈𝑖 , 𝑐𝑢 , 𝑎𝑢 ;

10 On message (𝑈 𝑗 , 𝜋 𝑗)𝑎𝑗=1 from F𝑆𝐵 :
11 for 𝑗 = 1 to 𝑎 do
12 𝑐𝑢 𝑗 , 𝑎𝑢 𝑗 ←− 𝜋 𝑗 ;
13 Verify the PoK:

14 Query F𝑅𝑂 with (pk| |𝑋 | |𝑈 𝑗 | |𝑐𝑢 𝑗);
15 Wait for the answer 𝑑 ;

16 if 𝑐𝑢 𝑗 ≠ Encpk (0, 𝑎𝑢 𝑗)𝑈 −𝑑𝑗
17 then Output ⊥;
18 Output 𝑋

∏𝑎
𝑖=1𝑈𝑖 ;

Algorithm 64: F𝑟𝑒𝑟𝑎𝑛𝑑
Require: G, a group of prime order 𝑞

1 On message pk, 𝑋 from 𝑖:
2 pk𝑖 ←− pk; 𝑋𝑖 ←− 𝑋 ;
3 if 𝑋 𝑗 ≠ ⊥ for all 𝑗 then
4 if 𝑋 𝑗 = 𝑋1 and pk𝑗 = pk

1
∀𝑗 then

5 𝛼 ∈𝑟 Z𝑞 ;
6 𝑋 ′ ←− ReEncpk

1
(𝑋1, 𝛼);

7 Send 𝑋 ′ to all 𝑗 and to S;
8 else abort;

9 else wait;
10 On message 𝑖 from S:
11 Send pk𝑖 , 𝑋𝑖 to S;

participants. To simplify the presentation, we also demand that (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1, 𝑠𝑖 is the output of a DKG, i.e. that there exists a polynomial 𝑓

of degree 𝑡 such that 𝑔𝑓 (𝑗) = ℎ 𝑗 for all 𝑗 , with 𝑔𝑓 (0) = ℎ0 and 𝑓 (𝑖) = 𝑠𝑖 . This additional condition is not only decidable, but also efficiently so;

therefore the participants can check it themselves and abort if it is not met. However, those additional checks may distract the reader from

the important ones.

I.2 The rerandomization
We start with the easiest phase, which is the rerandomization phase. We show in Lemma I.1 that it SUC-securely computes the F𝑟𝑒𝑟𝑎𝑛𝑑 ideal

functionality, defined in Algorithm 64. This ideal functionality outputs ⊥ if the participants do not agree on a common public key pk and a

common ciphertexts 𝑋 (since the participants need to rerandomize two ciphertexts, they will need to call the ideal functionality twice). If

they do, it outputs a random rerandomization 𝑋 ′ of 𝑋 . Also, since the inputs of the participants are supposed to be a common public pk, 𝑋 ,
this ideal functionality allows the adversary to learn the input of each participant.

Lemma I.1. Assuming that there is at least one honest participant, the rerandomization sub-protocol described in Algorithm 63 SUC-securely
computes the F𝑟𝑒𝑟𝑎𝑛𝑑 ideal functionality (given in Algorithm 64) in the F𝑅𝑂 , F𝑆𝐵-hybrid model, where F𝑆𝐵 is the synchronous broadcast ideal
functionality.

Proof. We construct the simulator S which interacts with the environment in the ideal process, and simulates the hybrid process.

First, the simulator acts in the ideal process and forwards the messages of all the honest participants, which allows it to learn their inputs

from F𝑟𝑒𝑟𝑎𝑛𝑑 . With this knowledge, it runs a perfect simulation of the RR protocol, up until when it has to reveal the answer of F𝑆𝐵 to a

corrupted participant at line 10. At this moment, the simulator checks that the honest participants all had the same input pk, 𝑋 . To begin
with, suppose that this is not the case, which is Case 1. Then the simulator continues the perfect simulation and, whenever a simulated

honest participant outputs something in the simulated hybrid process, S forwards the answer of F𝑟𝑒𝑟𝑎𝑛𝑑 (which is necessarily ⊥) to the same

participant in the ideal process. This way, the said participant outputs ⊥ in the ideal process. Since the simulator runs a perfect simulation of

the hybrid process, it remains to show that when two participants do not have the same input in the hybrid process, then the output of any

honest participant (if any) is ⊥ with overwhelming probability.

Case 1: no consensus. If two honest participants, say 𝑖 and 𝑗 , have two different inputs pk𝑖 , 𝑋𝑖 and pk𝑗 , 𝑋 𝑗 then, for all honest participant

𝑘 , either the PoK 𝜋𝑖 or the PoK 𝜋 𝑗 will appear invalid (except with negligible probability). Indeed, pk𝑘 , 𝑋𝑘 cannot be simultaneously equal

to pk𝑖 , 𝑋𝑖 and pk𝑗 , 𝑋 𝑗 . Without a loss of generality, assume that (pk𝑘 , 𝑋𝑘) ≠ (pk𝑖 , 𝑋𝑖). Then F𝑅𝑂 , when queried with (pk𝑘 | |𝑋𝑘 | |𝑈𝑖 | |𝑐𝑢𝑖)
60

A toolbox for verifiable tally-hiding e-voting systems

outputs a different answer than when queried with (pk𝑖 | |𝑋𝑖 | |𝑈𝑖 | |𝑐𝑢𝑖), except with a negligible probability. Let 𝑑𝑘 and 𝑑𝑖 be the two different

answers. Since the proofs are generated honestly, we have 𝑐𝑢𝑖 = Encpk𝑖 (0, 𝑎𝑢𝑖)𝑈
−𝑑𝑖
𝑖

. Except with negligible probability, this is different from

Encpk𝑘 (0, 𝑎𝑢𝑖)𝑈
−𝑑𝑘
𝑖

, therefore 𝑘 rejects the proof as invalid and outputs ⊥, except with a negligible probability.

Case 2. Now, suppose that all the honest participants have the same input pk, 𝑋 . Then, for all corrupted participant 𝑗 , the simulator looks

for a query to F𝑅𝑂 of the form (pk| |𝑋 | |𝑈 𝑗 | |𝑐𝑢 𝑗), which was answered by some 𝑑 𝑗 such that 𝑐𝑢 𝑗 = Encpk (0, 𝑎𝑢 𝑗)𝑈
−𝑑 𝑗

𝑗
(i.e. the PoK 𝜋 𝑗 is valid).

If there is no such query for some 𝑗 , then the corresponding proof will look invalid to all the honest participants, except with negligible

probability. In this case, all the honest participants will output ⊥ in the hybrid process. To have the same output in the ideal process, the

simulator makes a query from all the corrupted participants, but with an input (pk′, 𝑋 ′) ≠ (pk, 𝑋). This way, the ideal process answers ⊥ to

all the participants as desired.

If there is such a query for all 𝑗 , the proof will appear valid to all the honest participants, which will therefore output 𝑋
∏𝑎

𝑖=1𝑈𝑖 in

the hybrid process. To have this match the output of the ideal process, the simulator first sends the query (pk, 𝑋) to F𝑟𝑒𝑟𝑎𝑛𝑑 with all the

corrupted participants, so that F𝑟𝑒𝑟𝑎𝑛𝑑 answers with some 𝑋 ′. However, the simulator blocks all the answers towards a honest participant:

it will deliver them one by one, when it will need a honest participant to output 𝑋 ′ in the ideal process. Then, the simulator changes the

contribution of a single honest participant 𝑖 in the simulation, and sets𝑈𝑖 = 𝑋
′/(𝑋 ∏

𝑗≠𝑖 𝑈𝑖). Also, using the control over the random oracle,

it simulates the PoK 𝜋𝑖 so that it appears valid to the adversary. For this purpose, it chooses a challenge 𝑑 at random and the answer 𝑎 ∈ Z𝑞
at random as well. Then, it computes 𝑐𝑢 = Encpk (0, 𝑎)𝑈 −𝑑𝑖

. Since 𝑑 was chosen at random, then (except with a negligible probability) no

query was made to F𝑅𝑂 with the input pk| |𝑋 | |𝑈𝑖 | |𝑐𝑢 , so that the simulator can answer every subsequent such query with 𝑑 . The simulated

proof is then 𝜋 = (𝑐𝑢 , 𝑎). Remark that since 𝜋 𝑗 is valid for all 𝑗 , then, by the computational soundness of the PoK, 𝑈 𝑗 is encryptions of 0 for

all 𝑗 , except with a negligible probability. Consequently,

∏
𝑗≠𝑖 𝑈 𝑗 is an encryption of 0. Also, since 𝑋 ′ is a random reencryption of 𝑋 , 𝑋 ′/𝑋

is a random encryption of 0. Therefore,𝑈𝑖 is also a random encryption of 0. Hence, by the zero knowledge property of the PoK,𝑈𝑖 , 𝜋 follows

the same distribution as in the real hybrid process (except with a negligible probability).

Conclusion. The above simulator gives a perfect simulation of the hybrid process, except with a negligible probability. In addition, the

outputs of the honest participants are the same in the simulated hybrid and in the ideal process. Therefore, the view of the environment is

the same in both the hybrid and the ideal processes, except with a negligible probability. □

I.3 The threshold decryption
We now address the threshold decryption part, whose goal is to evaluate the ideal functionality FDec given in Algorithm 66. Compared to

the “ideal” ideal functionality, this one lives in a setting where each participant 𝑖 has the result pk, (ℎ 𝑗)𝑎𝑗=1, 𝑠𝑖 of a DKG as an input, as well

as a ciphertext 𝑌 to decrypt. In this input, only the secret share 𝑠𝑖 is private so that the ideal functionality allows the adversary to learn

the remaining (public) part. Apart from that, FDec is similar to FCSZ: it collects the inputs of the participants, checks their consistency and

returns the desired output, which is the decryption of the common ciphertext 𝑌 .

A subtle difficulty is that the threshold decryption protocol in the ElGamal setting is not universally composable. This is when our

rerandomization phase comes to the rescue. In Lemma I.2, we show that if the decryption protocol is preceded by a (perfect) rerandomization

phase, then it achieves SUC-security.

Lemma I.2. The threshold decryption protocol described in Algorithm 65 SUC-securely computes FDec (defined in Algorithm 66) in the
F𝑟𝑒𝑟𝑎𝑛𝑑 , F𝑅𝑂 -hybrid model.

Proof. We construct a simulator S which interacts with the environment in the ideal process and simulates the hybrid process by

simulating the honest participants and the F𝑟𝑒𝑟𝑎𝑛𝑑 , F𝑅𝑂 ideal functionalities. First, the simulator acts in the ideal process and forwards all

the messages of the honest participants to FDec in order to get (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1, 𝑌 . If the data of the honest participants are not consistent,
the simulators can run a perfect simulation of the hybrid process, since F𝑟𝑒𝑟𝑎𝑛𝑑 will output ⊥ which will cause all the honest participants

to output ⊥ as in the ideal process. Consequently, we suppose that all the honest participants have the same (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1, 𝑌 . Then the

simulator uses the corrupted participants of the ideal process and forwards their inputs to the ideal functionality, which causes it to send the

plaintext 𝑦 to everyone. However, S blocks this answer to everyone, except for itself: it will deliver the answers one by one, when it will

need a honest participant to output 𝑦 in the ideal process.

Now that S knows the plaintext 𝑦 that corresponds to 𝑌 , it picks 𝑟 ∈ Z𝑞 at random and compute 𝑢 = 𝑔𝑟 as well as 𝑣 = 𝑦ℎ𝑟 , so that

𝑌 ′ = (𝑢, 𝑣) is a random reencryption of 𝑌 . Using this 𝑌 ′, S can run a perfect simulation of F𝑟𝑒𝑟𝑎𝑛𝑑 .
After the rerandomization phase, S has to simulate the actual threshold decryption protocol, except that it does not know the secret share

of the honest participants. Let 𝑖 be a honest participant. When 𝑖 receives 𝑌 ′ from F𝑟𝑒𝑒𝑟𝑎𝑛𝑑 in the simulated hybrid process, S computes

𝑤𝑖 = ℎ
𝑟
𝑖
, chooses 𝑎 ∈ Z𝑞 at random as well as the challenge 𝑑 . Then, S computes 𝑐𝑔 = 𝑔𝑎ℎ−𝑑

𝑖
and 𝑐𝑢 = 𝑢𝑎𝑤−𝑑

𝑖
. Since those two are random,

no query to F𝑅𝑂 was made with the input (𝑔, ℎ) | |𝑌 ′ | |𝑤𝑖 | |𝑐𝑔 | |𝑐𝑢 (except with a negligible probability) so that the simulator can answer all

subsequent such queries with 𝑑 . Now, since (𝑔,𝑢, ℎ𝑖 ,𝑤𝑖) is a DDH tuple, (𝑐𝑔, 𝑐𝑢 , 𝑑, 𝑎) follows the same distribution as in the real hybrid

process (this is the zero knowledge property of the ZKP), therefore the simulation is perfectly indistinguishable from the real process.

Finally, when a (simulated) honest participant 𝑖 receives (𝑤, 𝑐𝑔, 𝑐𝑢 , 𝑎) from some 𝑗 , the simulator runs the algorithm of the participant

to decide whether it should output ⊥, output some value 𝑦′ computed from the received shares or wait. If the participant has to output

61

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 65: TD (algorithm of 𝑖)

Require: 𝐺 , a group of prime order 𝑞

Inputs: (𝑔, ℎ), an ElGamal public key

(ℎ 𝑗)𝑎𝑗=1, the commitments on the shares of the

participants

𝑠𝑖 , the secret share of participant 𝑖

𝑌 , a ciphertext

1 On input:
2 Start a new independent session;

3 Send (𝑔, ℎ), 𝑌 to F𝑟𝑒𝑟𝑎𝑛𝑑 ;
4 On ⊥ from F𝑟𝑒𝑟𝑎𝑛𝑑 : Output ⊥;
5 On message 𝑌 ′ from F𝑟𝑒𝑟𝑎𝑛𝑑 :
6 Parse 𝑌 ′ as (𝑢, 𝑣);
7 𝑤𝑖 ←− 𝑢𝑠𝑖 ;
8 Compute the PoK:

9 𝛼 ∈𝑟 Z𝑞 ;
10 𝑐𝑔 ←− 𝑔𝛼 ; 𝑐𝑢 ←− 𝑢𝛼 ;
11 Query F𝑅𝑂 with ((𝑔, ℎ) | |𝑌 ′ | |𝑤𝑖 | |𝑐𝑔 | |𝑐𝑢);
12 Wait for the answer 𝑑 ;

13 𝑎 ←− 𝛼 + 𝑑𝑠𝑖 ;
14 Send (𝑤𝑖 , 𝑐𝑔, 𝑐𝑢 , 𝑎) to all 𝑗 ;

15 On message (𝑤, 𝑐𝑔, 𝑐𝑢 , 𝑎) from 𝑗 :
16 Query F𝑅𝑂 with ((𝑔, ℎ) | |𝑌 ′ | |𝑤 | |𝑐𝑔 | |𝑐𝑢);
17 Wait for the answer 𝑑 ;

18 if 𝑐𝑔 ≠ 𝑔𝑎ℎ−𝑑
𝑗

or 𝑐𝑢 ≠ 𝑢𝑎𝑤−𝑑

19 then Output ⊥ else𝑤 𝑗 ←− 𝑤 ;

20 if ∃𝑆 ⊂ [1, 𝑎] s.t. |𝑆 | = 𝑡 + 1 and ∀𝑗 ∈ 𝑆,𝑤 𝑗 ≠ ⊥ then
21 for 𝑗 ∈ 𝑆 do 𝜅 𝑗 ←−

∏
𝑘∈𝑆\{ 𝑗 }

𝑘
𝑗−𝑘 ;

22 𝑦 ←− 𝑣∏𝑗∈𝑆 𝑤
𝜅 𝑗

𝑗
;

23 Output 𝑦;

24 else wait;

Algorithm 66: FDec
Require: 𝐺 , a group of prime order 𝑞

1 On (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1, 𝑠, 𝑌 from 𝑖:
2 Send (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1, 𝑌 to S;
3 if 𝑔𝑠 ≠ ℎ𝑖 then abort;
4 𝑌𝑖 ←− 𝑌 ; 𝑠𝑖 ←− 𝑠;
5 if 𝑌𝑗 ≠ ⊥ for all 𝑗 then
6 Check that the received (𝑔, ℎ),
7 (ℎ 𝑗)𝑎𝑗=1 are all the same

8 if not then abort;
9 if there exists 𝑗1, 𝑗2 s.t.

10 𝑌𝑗1 ≠ 𝑌𝑗2 then abort;
11 Decrypt 𝑌1 into 𝑦;

12 Send 𝑦 to all participants and S;
13 else wait;

⊥, it means that 𝑗 was corrupted. Then S uses 𝑗 in the ideal process to send a query to FDec, but with an inconsistent 𝑠 𝑗 . This way FDec
sends ⊥ to all participants and S can block every answer, except for 𝑖 which will therefore output ⊥ in the ideal process. If 𝑖 has to wait,

then S makes it wait. However, if 𝑖 has to output something, it outputs 𝑦′ = 𝑣
∏

𝑗∈𝑆 𝑤
𝜅 𝑗

𝑗
while it can only output 𝑦 in the ideal process.

Fortunately, for all 𝑗 in 𝑆 , the PoK of correct partial decryption is valid. Therefore, by the soundness of the ZKP, (except with a negligible

probability) there exists 𝑠 𝑗 ∈ Z𝑞 such that 𝑔𝑠 𝑗 = ℎ𝑖 and 𝑢
𝑠 𝑗 = 𝑤 𝑗 . Hence, except with a negligible probability, 𝑦′ = 𝑦 (this comes from the

Lagrange interpolation of 𝑓 (0)). □

I.4 The round of communications
The final part is the round of communication. Since we could not find a smart ideal functionality that is realized by this part, we conclude the

proof by giving Lemma I.3, which states the SUC-security of Algorithm 67, which is the conditional gate protocol in the F𝑅𝑂 , FDec-hybrid
process. In this Algorithm, Rnd can be derived from Algorithm 7 (lines 3 to 6) and Algorithm 9, and Ver-CSZ can be derived from Algorithm 10.

Rnd allows a participant to produce 𝑋𝑖 , 𝑌𝑖 , 𝑒 and to prove that they are well-formed; Ver-CSZ allows to verify the ZKP.

Compared to the protocol presented in Algorithm 7, we can see that the participants broadcast (𝑋𝑖−1, 𝑌𝑖−1, 𝑋𝑖 , 𝑌𝑖 , 𝑒, 𝜋) instead of just

(𝑋𝑖 , 𝑌𝑖 , 𝑒, 𝜋). This allows them to synchronize their view “on the fly”, without adding too many synchronization steps at each broadcast. The

price to cost is that at the end of the round of communications, all the participants may not agree on the same 𝑋𝑎, 𝑌𝑎 .

62

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 67: CSZ (algorithm of participant 𝑖)

Require: 𝐺 , a group of prime order 𝑞

Inputs: (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1, 𝑠𝑖 , 𝑋,𝑌
Variables: Two ciphertexts pr

𝑗
𝑥 and pr

𝑗
𝑦 for all 𝑗 ≠ 𝑖 (initially, ⊥)

1 On input:
2 Start a new independent session;

3 Query F𝑅𝑂 with "Conditional Gate";

4 Check that the answer is 𝑔

5 (otherwise, Output ⊥);
6 𝐸−1 ←− (1𝐺 , 𝑔−1);
7 𝑋0 ←− 𝑋 ; 𝑌0 ←− 𝐸−1𝑌 2

;

8 Query F𝑅𝑂 with (𝑔 | |ℎ);
9 Wait for the answer

˜ℎ;

10 if 𝑖 > 1 then change to Waiting 1, wait;
11 else
12 𝑋1, 𝑒, 𝑌1, 𝜋1 ←− Rnd(𝑋0, 𝑌0, ˜ℎ);
13 Change state to Waiting 2;

14 Send (𝑋0, 𝑌0, 𝑋1, 𝑒, 𝑌1, 𝜋1) to all 𝑗 ;

15 StateWaiting 1:
16 On (𝐴, 𝐵,𝐶, 𝑒, 𝐷, 𝜋) from 𝑗 < 𝑖:
17 if 𝑋 𝑗 = ⊥ then
18 𝑋 𝑗 ← 𝐶 , 𝑒 𝑗 ← 𝑒;

19 𝑌𝑗 ← 𝐷 ; 𝜋 𝑗 ← 𝜋 ;

20 pr
𝑗
𝑥 ← 𝐴; pr

𝑗
𝑦 ← 𝐵;

21 Ignore all future messages from 𝑗 ;

22 if 𝑋𝑘 ≠ ⊥ for all 𝑘 < 𝑖 then
23 for 𝑗 = 1 to 𝑖 − 1 do
24 if 𝑋 𝑗−1 ≠ pr

𝑗
𝑥 or 𝑌𝑗−1 ≠ pr

𝑗
𝑦

25 then Output ⊥;
26 𝑋𝑖 , 𝑒, 𝑌𝑖 , 𝜋 ← Rnd(𝑋𝑖−1, 𝑌𝑖−1, ˜ℎ);
27 Change state to Waiting 2;

28 Send (𝑋𝑖−1, 𝑌𝑖−1, 𝑋𝑖 , 𝑒, 𝑌𝑖 , 𝜋) to all;

29 else wait;

30 StateWaiting 2:
31 On 𝐴, 𝐵,𝐶, 𝑒, 𝐷, 𝜋) from 𝑗> 𝑖:
32 if 𝑋 𝑗 = ⊥ then
33 𝑋 𝑗 ← 𝐶 , 𝑒 𝑗 ← 𝑒;

34 𝑌𝑗 ← 𝐷 ; 𝜋 𝑗 ← 𝜋 ;

35 pr
𝑗
𝑥 ← 𝐴; pr

𝑗
𝑦 ← 𝐵;

36 Ignore all future messages from 𝑗 ;

37 if 𝑋𝑘 ≠ ⊥ for all 𝑘> 𝑖 then
38 for 𝑗 = 𝑖 + 1 to 𝑎 do
39 if 𝑋 𝑗−1 ≠ pr

𝑗
𝑥 or 𝑌𝑗−1 ≠ pr

𝑗
𝑦

40 then Output ⊥;
41 Check all the PoK:

for 𝑗 = 1 to 𝑎 do
42 if Ver-CSZ(pk, 𝑋𝑖−1, 𝑌𝑖−1, 𝑋𝑖 , 𝑌𝑖 , 𝑒, 𝜋𝑖) = 0 then

Output ⊥;
43 Change state to Decrypt;

44 Send (𝑔, ℎ), 𝑋 to F𝑟𝑒𝑟𝑎𝑛𝑑 ;
45 else wait;

46 State Decrypt:
47 On ⊥ from F𝑟𝑒𝑟𝑎𝑛𝑑 Output ⊥;
48 On message 𝑋 ′ from F𝑟𝑒𝑟𝑎𝑛𝑑 :
49 Send (𝑔, ℎ), (ℎ𝑘)𝑘 , 𝑠𝑖 , 𝑌𝑎 to FDec;
50 On ⊥ from FDec Output ⊥;
51 On message 𝑔𝑦 from FDec:
52 Output (𝑋𝑋 ′𝑦)1/2;

Another difference is that in Algorithm 7, the participants simultaneously rerandomize 𝑋𝑎 and 𝑌𝑎 into 𝑋 ′ and 𝑌 ′, while the two

rerandomization got somehow separated in Algorithm 67: one is done right away and the other one is consumed by FDec (see Section I.3).

This is purely for the sake of the presentation: since the two rerandomizations are independent, they can actually be done simultaneously.

Finally, in the SUC framework, the environment is allowed to choose freely the inputs of the participants which, for convenience, include

𝑔. Yet, recall that 𝑔 must be public coin (otherwise we would need another version of DDH, which would also be acceptable). Therefore, at

the beginning of the protocol, the participants get 𝑔 from the random oracle and check that it is consistent with their input. Note that, to be

able to write 𝑔 in the input of the participants, the environment must first query it to the random oracle, using the adversary or a corrupted

participant.

Lemma I.3. Assuming that there is at least one honest participant, and under the DDH assumption, the protocol depicted in Algorithm 67
SUC-securely computes FCSZ (defined in Algorithm 62) in the F𝑅𝑂 , F𝑟𝑒𝑟𝑎𝑛𝑑 , FDec-hybrid model.

Proof. We construct a simulator S which interacts with the environment in the ideal process and simulates the hybrid process by

simulating the honest participants and the F𝑅𝑂 , FDec ideal functionalities. First, the simulator chooses a random 𝑔 ∈ 𝐺 and, whenever F𝑅𝑂
is queried with "Conditional Gate", the simulator answers with 𝑔. Also, whenever F𝑅𝑂 is queried with a new input of the form (𝑔| |ℎ), S
chooses a random trapdoor 𝜏 , computes

˜ℎ = 𝑔1/𝜏 and answers with
˜ℎ. This way the simulation is perfectly indistinguishable from the real

hybrid (if 𝜏 = 0, S sets
˜ℎ to 1𝐺). At some point, the environment must activate a honest participant by writing on its input tape, which fixes

(𝑔, ℎ), (ℎ𝑖)𝑎𝑖=1, 𝑋,𝑌 for the session. (If the same participant is activated several times, the simulator runs several independent sessions. This

63

A toolbox for verifiable tally-hiding e-voting systems

assumes, for instance, that a different prefix is used for querying F𝑅𝑂 in each session.) Now that the protocol has really began, we explain

how to simulate the different states.

Simulation until Waiting 2. Let 𝑖 be the last honest participant (i.e. for all 𝑗 > 𝑖 , participant 𝑗 is corrupted). The simulator runs a perfect

simulation of the round of communications, up until when 𝑖 has to change to the state “Waiting 2”. This can happen at line 13 or line 27. In

any case, for all 𝑗 < 𝑖 , participant 𝑗 revealed its contribution 𝑋 𝑗 , 𝑒 𝑗 , 𝑌𝑗 , 𝜋 𝑗 . Before revealing the contribution of 𝑖 , the simulator checks all the

ZKP. If one is invalid, then all the honest participants will output ⊥ at line 25, 40 or 42, therefore the simulator will not have to simulate the

decryption. Hence, the best course of action is to continue the perfect simulation without cheating, until every honest participant outputs ⊥.
If all the proof are valid then the computational soundness guarantees that, except with a negligible probability, there exists 𝑟1, 𝑟2 ∈ Z𝑞

and 𝑠 ∈ {−1, 1} such that 𝑋𝑖−1 = ReEncpk (𝑋𝑠
0
, 𝑟1) and 𝑌𝑖−1 = ReEncpk (𝑌 𝑠0 , 𝑟2). The simulator first acts in the ideal process and forwards all

the messages of the honest participants to the ideal functionality FCSZ. Also, it instructs the corrupted participants to send their inputs to

FCSZ as well, so that F𝐶𝑆𝑍 answers with some ciphertext 𝑍 𝑓 . Note that due to the restrictions on the environment, FCSZ does not abort. As
usual, the simulator blocks the answer towards all the participant except itself: it will deliver them when it will need a honest participant to

output 𝑍 𝑓 in the ideal process.

Since 𝑍 𝑓 is the output of the ideal process, the couple 𝑍 𝑓 , (1𝐺 , 𝑔) is such that 𝑍 𝑓 is a reencryption of 𝑋
𝑦

𝑖−1 and (1𝐺 , 𝑔) is a reencryption of

𝑌
𝑦

𝑖−1, where 𝑦 = Decsk (𝑌𝑖−1) (except with a negligible probability since this comes from the soundness of the ZKP). However, this couple is

not random enough and the environment might notice that a trivial encryption of 1 is used. Therefore the simulator rerandomizes it by

choosing a random 𝑠′ ∈ {−1, 1}, two random 𝛼, 𝛽 ∈ Z𝑞 and computing 𝑋𝑖 = ReEncpk (𝑍𝑠
′

𝑓
, 𝛼) and 𝑌𝑖 = ReEncpk ((1𝐺 , 𝑔𝑠

′), 𝛽). This way, 𝑋𝑖
and 𝑌𝑖 becomes independent from 𝑍 𝑓 and 𝑦, and follow the correct distribution. We denote 𝑋𝑖 = (𝑢𝑥,𝑖 , 𝑣𝑥,𝑖) and 𝑋𝑖−1 = (𝑣𝑥,𝑖−1, 𝑣𝑥,𝑖−1).

At this point, there is a single value of 𝑒𝑖 for which 𝑋𝑖 , 𝑒𝑖 , 𝑌𝑖 is well-formed, but this value depends on 𝑦: 𝑒𝑖 = (𝑢𝑥,𝑖/𝑢𝑦𝑠
′

𝑥,𝑖−1)
𝜏
. However, S

has no way to know 𝑦. Therefore, it cannot produce a perfect simulation and will pick 𝑒 as a uniformly random element instead.

Now, S has to forge a fake ZKP 𝜋𝑖 , which is possible thanks to the control over F𝑅𝑂 . However, since the statement to prove is most likely

false, the forged ZKP does not follow the same distribution as the real one. Since the view of the environment is not the same as in the real

hybrid process, we will need to prove that the simulated view is indistinguishable from the fake one.

Remark that the simulator created a situation where 𝑌𝑖 is an encrypiton of a known plaintext 𝑠′, which will be useful in the remaining of

the proof.

Simulation of Waiting 2. Since there are no honest participant left to simulate, the simulator can perform a perfect simulation of

Waiting 2. Nevertheless, each time a participant 𝑗 > 𝑖 sends a valid 𝑋 𝑗−1, 𝑌𝑗−1, 𝑋 𝑗 , 𝑒 𝑗 , 𝑌𝑗 , 𝜋 𝑗 , then the soundness of the ZKP assures the

existence of 𝑟1, 𝑟2 ∈ Z𝑞 and 𝑠 ∈ {−1, 1} such that (𝑢𝑥,𝑗 , 𝑣𝑥,𝑗) = 𝑋 𝑗 = (𝑔𝑟1𝑢𝑠
𝑥,𝑗−1, ℎ

𝑟1𝑣𝑠
𝑥,𝑗−1), 𝑌𝑗 = ReEncpk (𝑌 𝑠𝑗−1, 𝑟2) and 𝑒 𝑗 = ˜ℎ𝑟1 , where

(𝑢𝑥,𝑗−1, 𝑣𝑥,𝑗−1) = 𝑋 𝑗−1. Hence, by computing 𝑢𝑥,𝑗𝑒
−𝜏
𝑗
, S recovers either 𝑢𝑥,𝑗−1 or 𝑢−1𝑥,𝑗−1 depending on 𝑠 , which enables it to deduce the

value of 𝑠 used by 𝑗 (recall that if the proof 𝜋 𝑗−1 is valid, then 𝑢𝑥,𝑗−1 ≠ 1; 𝑗 − 1 > 0 since 𝑗 > 𝑖 ≥ 1). To avoid the confusion with 𝑗 ’s secret

share, we denote it 𝜎 𝑗 .

Simulation of the rerandomization of X.When a honest participant reaches the Rerandomize state, the simulator knows the value

𝑦 = 𝑠′
∏

𝑗>𝑖 𝜎 𝑗 which is encrypted into 𝑌𝑎 . At this point, except with a negligible probability (if the adversary managed to forge a fake ZKP),

the ciphertext 𝑋 ′ = (𝑍 2

𝑓
/𝑋)𝑦 is a “random” reencryption of 𝑋𝑎 . (Indeed, the environment had no information about 𝑍 𝑓 yet, therefore 𝑋 ′

follows the correct distribution and is independent from the remaining of its view.) Hence the simulator can use his value as the output of

F𝑟𝑒𝑟𝑎𝑛𝑑 instead of a honestly generated reencryption.

Simulation of the decryption. To simulate the decryption, the simulator uses the real plaintext 𝑦. This way the output (𝑋𝑋 ′𝑦)1/2 is
indeed equal to 𝑍 𝑓 .

Indistinguishability.We now prove that the simulation is indistinguishable from the real hybrid game. Before giving the reduction

to DDH, we propose to dream up a bit and construct an imaginary simulator S𝑖 , which can compute a discrete logarithm. This simulator

uses the same simulation as S, except that for the last honest participant 𝑖 , 𝑒𝑖 is not chosen as a random group element. Indeed, since S𝑖
can decrypt 𝑌𝑖−1, it can use the “correct” value of 𝑒𝑖 for which 𝑋𝑖 , 𝑒𝑖 , 𝑌𝑖 is well-formed. In turn, by the zero knowledge property of the ZKP,

the simulated proof 𝜋𝑖 will be perfectly indistinguishable from the real one. In fact, the tuple 𝑋𝑖 , 𝑒𝑖 , 𝑌𝑖 , 𝜋𝑖 computed by S𝑖 follows the same

distribution as in the real hybrid process. Since the remaining of the simulation is perfect (except with a negligible probability), S𝑖 creates a
perfect simulation of the real hybrid process (except with a negligible probability). Hence, the environment can distinguish S’s simulation

from the real hybrid process if and only if it can distinguish the simulation from S’s from S𝑖 ’s.
Now, letZ be an environment and A be an adversary for DDH. (Recall that the “adversary” in the SUC framework is just the dummy

adversary, so that only the environment is relevant.) We denote 𝑝 and 𝑝𝑖 the probability thatZ outputs 1 when interacting with S and S𝑖 .
The adversary A receives a challenge tuple 𝑔1, 𝑔2, 𝑔3, 𝑔4 in the DDH game. To decide whether it is a DDH tuple or not, it interacts withZ by

simulation S as well as the corrupted participants. However, whenZ queries F𝑅𝑂 with "Conditional Gate", A answers with 𝑔 = 𝑔1 (ifZ
creates several independent sessions, A can use a random 𝛼 ∈ Z𝑞 and answer with 𝑔 = 𝑔𝛼

1
instead; in this case, it will also use 𝑔𝛼

3
instead of

𝑔3). In addition, whenever the environment makes a new query of the form (𝑔| |ℎ), A chooses a random 𝜏 ∈ Z𝑞 and computes
˜ℎ = 𝑔𝜏

2
. This

way, except if 𝑔2 = 1𝐺 or 𝑔1 = 1𝐺 (in which case the DDH challenge is trivial), 𝑔, ℎ, ˜ℎ follows the exact same distribution as in S’s simulation.

64

A toolbox for verifiable tally-hiding e-voting systems

At some point, the environment must write on the input tape of a participant, which fixes (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1 for the session. Due to the

restrictions on the environment,Z must write an input of the form (𝑔, ℎ), (ℎ 𝑗)𝑎𝑗=1, 𝑠𝑘 in the input tape of all the participants, which allows A

to learn sk = log𝑔 (ℎ) by combining all the secret shares.

Afterwards, A continues the simulation until it must reveal the contribution (𝑋𝑖 , 𝑒𝑖 , 𝑌𝑖) of the last honest participant. For this purpose,
A parses 𝑋𝑖−1 as (𝑢𝑥,𝑖−1, 𝑣𝑥,𝑖−1), chooses a random 𝑠 ∈ {−1, 1} and computes 𝑢𝑥,𝑖 = 𝑢𝑠

𝑥,𝑖−1𝑔3 as well as 𝑣𝑥,𝑖 = 𝑣𝑠
𝑥,𝑖−1𝑔

sk
3
, which defines

𝑋𝑖 = (𝑢𝑥,𝑖 , 𝑣𝑥,𝑖). As for 𝑌𝑖 , A chooses 𝑟2 at random and compute 𝑌𝑖 = ReEncpk (𝑌 𝑠𝑖−1, 𝑟2). Finally, it sets 𝑒𝑖 as 𝑔
𝜏
4
, so that 𝑋𝑖 , 𝑒𝑖 , 𝑌𝑖 is well-formed

if and only if 𝑔1, 𝑔2, 𝑔3, 𝑔4 is a DDH tuple. Then A continues the simulation normally, except that it cannot use 𝜏 to extract 𝑠 𝑗 for 𝑗 > 𝑖 , since

˜ℎ𝜏 ≠ 𝑔. However, it can extract 𝑠 𝑗 by decrypting 𝑌𝑗 and 𝑌𝑗−1 using sk: if the plaintexts are equal, 𝑠 𝑗 = 1; otherwise, 𝑠 𝑗 = −1.
At the end of the simulation, the environment outputs a bit 𝑏. If 𝑏 = 1, A states that 𝑔1, 𝑔2, 𝑔3, 𝑔4 was a DDH tuple; otherwise, it states that

the challenge tuple was a random tuple. Remark that when the challenge is a DDH tuple, A runs the same simulation as S𝑖 and hence wins

with probability 𝑝𝑖 ; on the other hand, when the challenge is a random tuple, A runs S’s simulation but must output 0 to win, therefore it

wins with probability 1 − 𝑝 . Hence A’s probability to win the DDH game is
1

2
(𝑝′ + 1 − 𝑝), so that A’s advantage is 1

2
|𝑝′ − 𝑝 |. Under the DDH

assumption, A’s advantage is negligible, therefore |𝑝′ − 𝑝 | is negligible, which concludes the proof. □

I.5 The conditional gate protocol is SUC-secure
Now that we proved that all the components of the conditional gate protocol are SUC-secure, the SUC-security of the protocol is a direct

consequence of the composition theorem. Indeed, by Lemma I.3, we have the SUC-security provided that the threshold decryption protocol

and the rerandomization are SUC-secure. In Lemma I.2, we showed that the SUC-security of the threshold decryption can be derived from

that of the rerandomization. Also, in Lemma I.1, we showed that the SUC-security of the rerandomization is a consequence of that of the

synchronous broadcast. When we compile all those results together, this gives Theorem I.4, which is the desired result.

Theorem I.4. Under the DDH assumption, and if at least one participant is honest, the conditional gate protocol given in Algorithm 7
SUC-securely computes the FCSZ ideal functionality given in Algorithm 62, in the F𝑅𝑂 , F𝐵-hybrid model, where F𝑅𝑂 is the programmable
random oracle ideal functionality and F𝐵 is the broadcast ideal functionality.

Proof. This is a direct consequence of Lemma I.3, Lemma I.2, Lemma I.1 and Theorem H.3. □

J SECURITY OF THE TOOLBOX IN THE CONTEXT OF ELECTRONIC VOTING
In the previous section, we proved the SUC-security of the conditional gate. Since our toolbox is only composed of conditional gates, it

means that for every combination of protocols of our toolbox, the resulting protocol is as secure as if it was performed by some honest third

party. Finally, in the context of electronic voting, it is usual that we require the talliers to actually decrypt something at some point; for

instance, in the STV protocol, we decrypt the vector𝑊 of the winners. Since the threshold decryption itself is not SUC-secure, a risk is that

we might lose the SUC-security because of this last step. For this reason, we give Theorem J.1, which gives states that the SUC-security is

not lost in our case. The intuition is that a conditional gate followed by a reencryption phase is the same as just a conditional gate. Hence, by

Lemma I.2, it follows that if the only elements that we decrypt are some outputs of a conditional gate, then the SUC-security is preserved.

Note that the same result apply if we replace the conditional gate by, for instance, If, Or, Xor, And, EQ, LT and their negations using Not.
Indeed, since the CSZ protocol is SUC-secure, it is easy to show that they are also SUC-secure.

In Theorem J.1, we use the following notations:

• We denote CS the counting function defined by the Condorcet-Schulze method and 𝑃CS the protocol that we provide in Appendix F

to compute CS. We denote FCS the trusted party that honestly evaluates 𝑃CS and returns the output of all the conditional gates as

well as the result (i.e. the set of the winners).
• We denote STV the counting function defined by the STV method and 𝑃STV any of the two protocols that we provide in Appendix G

to compute STV. We denote FSTV the trusted party that honestly evaluates 𝑃STV and returns the output of all the conditional gates

as well as the result (i.e. the set of the winners).
• We denote MJ the counting function defined by the Majority Judgment and 𝑃MJ the protocol that we provide in Appendix E to

compute MJ (see Algorithm 52). We denote FMJ the trusted party that honestly evaluates 𝑃MJ and returns the output of all the

conditional gates as well as the result (i.e. the set of the winners).
• We denote DH the counting function defined by the D’Hondt method and 𝑃DH any of the protocols that we provide in Appendix D

to compute DH. We denote FDH the trusted party that honestly evaluates 𝑃DH and returns the output of all the conditional gates as

well as the result (i.e. the set of the winners).

Theorem J.1. Under the DDH assumption and if at least one participant is honest, for tally ∈ {CS, STV,MJ,DH}, 𝑃tally SUC-securely
computes Ftally in the F𝑅𝑂 , F𝐵-hybrid model. (Recall that they model the ROM and the ideal broadcast channel.)

Proof. Let tally ∈ {CS, STV,MJ,DH}. First, by Theorem I.4, the conditional gate protocol SUC-securely realizes FCSZ in the F𝑅𝑂 , F𝐵-
hybrid model. Therefore, we can replace every conditional subprotocol in 𝑃tally by a call to the trusted party FCSZ and show that the

resulting protocol SUC-securely computes Ftally in the FCSZ-hybrid model. This is a consequence of the composition theorem, stated in

Theorem H.3.

65

A toolbox for verifiable tally-hiding e-voting systems

Now, we construct a simulator S which interacts with the environment in the ideal process and simulates the hybrid process by simulating

the honest participants and the FCSZ ideal functionality. First, by interacting with the ideal process, S gets the outputs of all the conditional

gates, as well as the result 𝑟 . Afterwards, S proceeds with the simulation of 𝑃tally.

Remark that for all of our MPC protocols, 𝑃tally is divided into two phases. First, the MPC part feature no communication between the

participants, except during a conditional gate subprotocol. Second, the final step is to decrypt a vector𝑊 of ciphertexts, using the threshold

decryption protocol. Note, in addition, that those ciphertexts consist of outputs of a conditional gate protocol.

Hence, to simulate the hybrid process, S can also proceed into two phases. During the first phase, S only has to simulate the answers of

FCSZ. For this purpose, S first look whether this answer is one of the ciphertexts of𝑊 or not (i.e. if the ciphertext will be decrypted in a

subsequent threshold decryption protocol). If this is not the case, S uses the answer of the ideal functionality Ftally, which includes the

output of all the conditional gates. Otherwise, S uses a random encryption of the corresponding plaintext 𝑧, using a known randomness 𝜌 .

Note that S can deduce 𝑧 from the result 𝑟 output by Ftally. This way, S’s answers are perfectly indistinguishable from that of FCSZ.
Once the first phase has terminated, S must simulate the interactions during the threshold decryption protocols. First, the ZKP of correct

partial decryption can be simulated in the ROM thanks to their zero knowledge property. Therefore, it only remains to explain how the

simulator can generate the partial decryptions. For this purpose, suppose that S needs to simulate the decryption of a ciphertext 𝑍 = (𝑥,𝑦),
which is an output of a conditional gate protocol. Then, we have 𝑥 = 𝑔𝜌 and 𝑦 = 𝑧ℎ𝜌 , where (𝑔, ℎ) is the public encryption key, 𝑧 is the

corresponding plaintext and 𝜌 the randomness chosen by S. As seen in the proof of Lemma I.2, this allows the simulator to compute the

partial decryptions of all the participants, and hence to perfectly simulate the threshold decryption protocol. Indeed, if ℎ𝑖 is the public

commitment of the participant 𝑖 , then the partial decryption of 𝑖 is𝑤𝑖 = ℎ
𝜌

𝑖
.

With the above S, the simulated hybrid process is perfectly indistinguishable from the real one. □

In what follows, we explain how this SUC-security can be used to prove the privacy and the verifiability of a voting system that uses our

toolbox to compute the tally in MPC. For simplicity, we only give the proof in the case of Condorcet-Shulze. For this purpose, we define a

minimal voting system that we call TH-voting; however, since we only considered the tally process, we do not detail how the other phases

are taken care of. Hence, TH-voting is defined as follows:

Setup. We consider an ideal DKG that produces a public key pk, the public commitments (ℎ𝑖)𝑎𝑖=1 and distributes their secret shares 𝑠𝑖 to

the talliers.

Register. We consider an ideal registration where each voter 𝑣 received an ElGamal key pair pk𝑣, sk𝑣 , and where the public key of each

eligible voter is published on the board.

Vote. To vote, a voter produces 𝑘 log𝑘 encryptions of 0 or 1, and give the corresponding PoK that they are all encryptions of 0 or 1. Finally,

they sign the resulting ballot using sk𝑣 . The ballot has the form (pk𝑣, 𝐵, 𝜋, 𝑠), where 𝐵 is the matrix of the encrypted bits, 𝜋 contains the

corresponding PoK and 𝑠 the signature of 𝐵.

Check. The voter checks that the last cast ballot 𝐵 appears on the board PB, and that no subsequent ballot uses the same public signature

key pk𝑣 .
Valid. To verify the validity of a ballot, we verify the signature and the ZKP, and we also verify that no previously cast ballot uses the

same matrix 𝐵.

Tally. To compute the tally, the talliers first keep, for each credential pk𝑣 , the last valid ballot that uses pk𝑣 as a verification key. Then

they use the MPC protocol 𝑃CS.

Verify. To verify the validity of the tally, first verify the valididy of the ballots on the board and, from the list of the valid ballots and the

given transcript, compute the output of all the conditional gates. Then use the transcript of the treshold decryptions to deduce the result and

verify that is it corresponds to te given result. Finally, verify that each conditional gate and each threshold decryption has a corresponding

valid ZKP.

J.1 Universal verifiability
The universal verifiability of our tally process is a direct consequence of the computational soundness of the ZKP and the correctness of the

tally protocol. More formally, we consider the definition of end-to-end verifiability of [19], which combines the individual and the universal

verifiability. Since allowing revoting would require to adapt the definition and is independent from the tally process, we assume that the

adversary can call O𝑣𝑜𝑡𝑒 at most once for all voter. (To improve readability, we describe the verifiability experiment below.) In what follows,

we give a proof sketch that our minimal voting system has end-to-end verifiability.

Definition J.2. A voting scheme is end-to-end verifiable against a malicious server if, for all PPT adversary A, for all 𝑎 and 𝑡 < 𝑎, the

probability Pr(Expverb (𝜅, 𝑎, 𝑡,A) = 1) is negligible in 𝜅.

Theorem J.3. In the ROM and assuming the strong unforgeability of the signature scheme, TH-voting has end-to-end verifiability as of
Definition J.2.

Proof sketch. To win the verifiability experiment, the adversary must give a transcript which contains valid ZKP. Yet, by the soundness

of those ZKP, the result 𝑟 must be the same as the one computed from PB using an instance of the tally protocol. Now, since all the happy

voters verified that their ballot is in PB and that no subsequent ballot uses the same pk𝑣 , it means that their ballots are included in the tally.

66

A toolbox for verifiable tally-hiding e-voting systems

Exp
verb (𝜅, 𝑎, 𝑡,A)

1 pk, sk, (ℎ𝑖 , 𝑠𝑖)𝑎𝑖=1,Π
S ← Setup(𝜅, 𝑎, 𝑡);

2 1
𝑛 ←− A(pk,ΠS);

3 (𝑐𝑖 , 𝜋𝑖)𝑛𝑖=1,Π
R ← Register(pk, 𝑛);

4 CU ←− ∅;
5 for 𝑖 = 1 to 𝑛 do
6 HVote𝑖 ←− ⊥; 𝐿𝑖 ←− ⊥; Checked𝑖 ←− 0;

7 (PB, 𝑟 ,Π) ←− AO𝑐𝑜𝑟𝑟𝑢𝑝𝑡,O𝑣𝑜𝑡𝑒 ;
8 AO𝑐ℎ𝑒𝑐𝑘 ;
9 if Verify(PB,Π, 𝑟) = 0 then return 0;

10 if ∃ L ⊂ {{(𝑖, HVote𝑖) | 𝑖 ∉ CU, Checked𝑖 ≠ 1, HVote𝑖 ≠ ⊥}},
∃𝐶 such that | |𝐶 | ≤ |CU| and
𝑟 = tally({{(𝑖, HVote𝑖) | 𝑖 ∉ CU, Checked𝑖 = 1}}⊎ L

⊎
C)

11 then return 0 else return 1;

O𝑐𝑜𝑟𝑟𝑢𝑝𝑡 (id)
1 CU ←− CU⋃{id};
2 return 𝑐id;

O𝑣𝑜𝑡𝑒 (id, 𝜈)
1 𝐵 ←− Votepk (𝜈, 𝑐id);
2 HVoteid ←− 𝜈 ;
3 𝐿𝑖 ←− 𝐵;
4 Checkedid ←− 0;

5 return 𝐵;

O𝑐ℎ𝑒𝑐𝑘 (id)
1 Checkedid ← Check(𝐿id, PB)

In addition, by the strong unforgeability of the signature, for all valid ballot in the board such that pk𝑣 is not the credential of a honest voter,
pk𝑣 must be the credential of a corrupted voter. Hence, since we keep up to one ballot per credential, the condition |𝐶 | ≤ |CU| is verified.
Finally, the strong unforgeability also guarantees that if a ballot that uses the credential pk𝑣 of a lazy voter is valid, then it must be a ballot

output by O𝑣𝑜𝑡𝑒 . □

J.2 Privacy
Proving the privacy of our voting system is less straightforward than for the verifiability. A first difficulty is that there is no notion of privacy

which is satisfactory for our specific case, where the counting function does not have the partial tally property and where we want to

consider some fully corrupted talliers. For this reason, we introduced Definition 7.1 in Section 7. To improve readability, we reproduce the

corresponding experiments in Fig. 14 and we recall that, to prove privacy, we need to prove that for all PPT adversary A0 for the real game,

there exists an adversary B for the ideal game such that, when interacting with A0, B wins the ideal game with the same probability as A0
wins the real game (with up to a negligible difference). We conclude with a proof of Theorem 7.2.

Theorem 7.2. Let tally be one of the previously defined tally functions (D’Hondt, Majority Judgment, Condorcet-Schulze, and STV). Under
the DDH assumption, in the ROM and if the signature scheme is strongly unforgeable, 𝑉tally is private w.r.t. tally.

Proof. We proceed by game hops and construct a succession of games 𝐺1, · · · ,𝐺4 where 𝐺4 is the ideal game. For each of these games,

we construct an adversary A𝑖 and we denote 𝑆𝑖 the probability that A𝑖 wins 𝐺𝑖 .

Game 1: In this game, the adversary A1 is no longer able to take part in the tally process. Instead, we consider a trusted party FTally
which gets the shares of the participants and computes the result 𝑟 of the tally as well as the output Π𝑍

of each conditional gate, by running

the protocol Tally itself, when all the participants are honest. At line 16, A1 gets 𝑟,Π
𝑍
and must output its guess 𝑏′ from this.

To construct A1, we use Theorem J.1 which states that Tally SUC-securely computes FTally in the F -hybrid model, with F = F𝑅𝑂 , F𝐵 .
Hence, there exists a simulator S such that, for all environmentZ, |RealF

Tally,A0,Z (𝜅, 0) − IdealFTally,S,Z (𝜅, 0) | is negligible. In particular,

we consider the environment Real
Priv

, so that Real
F
Tally,A0,Z = 𝑆0. Then, A1 can interact with A0 by simulating the real game using S, so

that IdealFTally,S,Z (𝜅, 0) = 𝑆1. Hence, |𝑆1 − 𝑆0 | is negligible.
Game 2: In this game, A2 is no longer given Π𝑍

and is only given 𝑟 .

We construct A2 that interacts with A1 by simulating Π𝑍
. For this purpose, A2 uses uniformly random ciphertexts.

To argue the validity of this transition, we construct an adversary B for DDH as follows. First, B gets the challenge tuple (𝑔1, 𝑔2, 𝑔3, 𝑔4)
from the DDH game and sets pk = (𝑔1, 𝑔2). To run the setup, B recovers the set 𝑆 of the corrupted participants from A1, and picks 𝑠𝑖 ∈ Z𝑞 at

random for all 𝑖 ∈ 𝑆 . It the completes 𝑆 into 𝐼 by picking some additional 𝑠𝑖 ∈ Z𝑞 at random for all 𝑖 ∈ 𝐼\𝑆 , where 𝐼 ⊂ [1, 𝑎] is a set of size 𝑡
that contains 𝑆 , and 𝑎 is the number of talliers. For 𝑖 ∈ 𝐼 , it computes ℎ𝑖 = 𝑔

𝑠𝑖
1
and, for 𝑖 ∈ [1, 𝑎]\𝐼 , it deduces ℎ𝑖 with Lagrange interpolation.

It then runs the remaining of Game 2 honestly, but each time A1 casts a ballot, B extracts the corresponding voting option from A1’s
proof of knowledge. In the ROM, this is possible in polynomial time, as a consequence of the forking lemma (see for instance Theorem [11,

Theorem 1]). This way, B can compute the result 𝑟 of the tally without knowing the secret key sk. Finally, since B knows the cleartexts of

the ballots to tally, B can run the tally protocol “on the cleartexts”, i.e. it can compute the cleartext of each of the outputs of each conditional

gate, since it is the product of two cleartexts. To simulate the output of a conditional gate, B “encrypts” the corresponding cleartext 𝑧 by

choosing two random 𝜌1, 𝜌2 ∈ Z𝑞 and computing 𝑍 = (𝑔𝜌1
1
𝑔
𝜌2
3
, 𝑔𝑧

1
𝑔
𝜌1
2
𝑔
𝜌2
4
). Finally, if A1 wins the game, B states that the challenge was a

DDH tuple; otherwise, it states that is was a random tuple. Remark that if (𝑔1, 𝑔2, 𝑔3, 𝑔4) is a DDH tuple, then B played a perfect simulation

67

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 68: RealPriv
A,𝑃𝑡𝑎𝑙𝑙𝑦

(𝜅, 𝑛, 𝑛𝑐 , 𝑎, 𝑡,𝐶,𝑉 ,D)

1 𝑠𝑘, 𝑝𝑘, 𝑠1, ℎ1, · · · , 𝑠𝑎, ℎ𝑎 := Setup(𝜅, 𝑎, 𝑡)
2 𝑐1, 𝜋1, · · · , 𝑐𝑛, 𝜋𝑛 := Register(pk, 𝑛)
3 𝑝𝑎𝑟 := D, 𝑝𝑘, ℎ1, · · · , ℎ𝑎, 𝜋1, · · · , 𝜋𝑛
4 𝑎1, · · · , 𝑎𝑛𝑐 := A(𝜅, 𝑝𝑎𝑟, (𝑠𝑖)𝑖∈𝐶); 𝐴 := {𝑎1, · · · , 𝑎𝑛𝑐 }
5 if 1 ∈ 𝐴 then Return 0

6 𝑣0, 𝑣1 := A((𝑐𝑖)𝑖∈𝐴)
7 𝑏 ∈𝑟 {0, 1}
8 𝐵𝐵 := (Votepk (𝑣𝑏 , 𝑐1))
9 for 𝑖 ∈ [1, 𝑛]\(𝐴⋃{1}) do
10 𝑣𝑖 ← D
11 𝐵𝐵 := 𝐵𝐵 | |Votepk (𝑣𝑖 , 𝑐𝑖)
12 𝑴 := A(𝐵𝐵)
13 for 𝑋 ∈ 𝑴 do
14 if isValid(𝑋, 𝐵𝐵) then 𝐵𝐵 := 𝐵𝐵 | |𝑋
15 𝑟,Π := 𝑃Atally (𝐵𝐵, {𝑠𝑖 })
16 𝑏′ := A(𝑟,Π)
17 Return 1 if (𝑏 == 𝑏′) ∧ (𝑣0, 𝑣1 ∈ 𝑉) and 0 otherwise

Algorithm 69: IdealPriv
B,tally (𝜅, 𝑛, 𝑛𝑐 , 𝑎, 𝑡,𝐶,𝑉 ,D)

1

2

3

4 𝑎1, · · · , 𝑎𝑛𝑐 := B(𝜅,D); 𝐴 := {𝑎1, · · · , 𝑎𝑛𝑐 }
5 if 1 ∈ 𝐴 then Return 0

6 𝑣0, 𝑣1 := B(𝜅, 𝑝𝑎𝑟, (𝑠𝑖)𝑖∈𝐶)
7 𝑏 ∈𝑟 {0, 1}
8 𝐵 := (𝑣𝑏)
9 for 𝑖 ∈ [1, 𝑛]\(𝐴⋃{1}) do
10 𝑣𝑖 ← D
11 𝐵 := 𝐵 | |𝑣𝑖
12 (𝑣𝑖)𝑖∈𝐴 := B()
13 for 𝑖 ∈ 𝐴 do
14 𝐵 := 𝐵 | |𝑣𝑖
15 𝑟 := tally(𝐵)
16 𝑏′ := B(𝑟)
17 Return 1 if (𝑏 == 𝑏′) ∧ (𝑣0, 𝑣1 ∈ 𝑉) and 0 otherwise

Figure 14: Definition of privacy, 𝜅 is the security parameter, 𝑎 the number of talliers, 𝑡 the threshold, 𝐶 the set of the corrupted
talliers, 𝑛 the number of voters, 𝑛𝑎 the number of corrupted voters, 𝑘 the number of voting options (excluding abstention) and
D the distribution.

of Game 1 to A1 and hence wins with probability 𝑆1. On the other hand, if the challenge tuple is a random tuple, B played A2’s simulation

of Game 1 and wins with probability 1 − 𝑆2. Yet, under the DDH assumption, B’s advantage in the DDH game must be negligible, hence

|𝑆1 − 𝑆2 | is negligible.
Game 3: In this game, whenever a honest voter cast a ballots, a random ballot is added to the board instead of a ballot that encrypts the

chosen voting option.

To argue that |𝑆3 − 𝑆2 | is negligible, we use a hybrid argument. Technically, this is not required since the number of voters is not chosen

by the adversary but is a parameter fixed by the experiment. However, giving a hybrid argument shows that the difference in probability

|𝑆3 − 𝑆2 | scales linearly with respect to 𝑛, which is certainly reassuring. For this purpose, we denote Game 2𝐺1 and Game 3𝐺2. We construct

a succession of games hop (𝐻𝑖)N such that, for all 𝑖 , 𝐻𝑖 is game 𝐺2 except that for the first 𝑖 honest voters, the real ballot is added to the

board instead of a random ballot. This way, 𝐺2 = 𝐻0. In addition, for all adversary A, there exists a polynomial 𝑛A = 𝑛 such that 𝐻𝑛A = 𝐺1;

hence, for all 𝜅 ∈ N, Pr(𝐻𝑛A (𝜅,A) = 1) = Pr(𝐺1 (𝜅,A) = 1).
Now, we need a decisional game which is considered hard. For this purpose, we use the IND-PA0 game (see Algorithm 70 below). Indeed,

by [11, Theorem 2], the encryption scheme Gen, Vote, Extract is NM-CPA secure, where Gen is the generation algorithm for the ElGamal

encryption scheme, Vote is the voting algorithm and Extract is the algorithm that verifies the ZKP of the ballot, outputs ⊥ if it is invalid,

decrypts it and outputs the corresponding voting option if it is valid. Also, by [9], the IND-PA0 security is equivalent to the NM-CPA security.

To exhibit a reduction to IND-PA0. We construct the required PPT B for the IND-PA0 game as follows. First, B is given the public key

pk in the IND-PA0 game. Given 𝑖 , it interacts with an adversary A′
𝑖+1 for 𝐻𝑖+1 by simulating 𝐻𝑖+1. For this purpose, B gets the set of the

corrupted talliers and generates their secret shares at random to simulate the setup as in Game 2. Then, it runs a perfect simulation of 𝐻𝑖+1
by picking a random 𝑏 ∈ {0, 1} and sampling the distribution 𝐵 at random from B. However, for the 𝑖 + 1th honest voter, instead of creating

a ballot for the corresponding voting option 𝜈 , it chooses a random voting option 𝜈 ′ and plays the pair 𝜈, 𝜈 ′ in the IND-PA0 game. Finally,

when B needs to output the result of the tally to A′
𝑖+1, B decrypts the valid ballots cast by A′

𝑖+1 by querying them to the IND-PA0 game,

which allows B to compute the result of the tally. If A′
𝑖+1 correctly guesses the bit 𝑏, B states that the IND-PA0 game encrypted 𝜈 ; otherwise,

it states that it encrypted 𝜈 ′. Now, remark that when the IND-PA0 game encrypt 𝜈 , B plays a perfect simulation of 𝐻𝑖+1. However, when the

IND-PA0 game encrypts 𝜈 ′, B plays a perfect simulation of 𝐻𝑖 . By the hybrid lemma, there exists A3 such that |𝑆2 − 𝑆3 | is negligible. In
addition, since we took A′

𝑖+1 = A
′
𝑖
for all 𝑖 , we have A3 = A2.

Game 4: This game is the ideal game.

Finally, we construct A4 that interacts with A3 by simulating Game 3. First, A4 runs the setup honestly by generating a random secret key

sk and acting as the trusted dealer. Then, it also runs the registration honestly and get the set of the corrupted voters 𝐴 from A3, that it

68

A toolbox for verifiable tally-hiding e-voting systems

Algorithm 70: Expind-pa0 (𝜅,A)
1 pk, sk←− Gen(𝜅);
2 𝜈0, 𝜈1 ←− A(pk);
3 𝑏 ∈𝑟 {0, 1};
4 𝐶 ←− Encpk (𝑚𝑏);
5 𝑪 ←− A(𝐶);
6 𝒎 ←− (Decsk (𝑦))𝑦∈𝑪\{𝐶 } ;
7 𝑏′ ←− A(𝒎);
8 if 𝑏 = 𝑏′ then return 1 else return 0;

plays in the ideal game. Then it gives to A3 the credentials of the corrupted voters and gets 𝑣0, 𝑣1 in return, that it plays in the ideal game.

Afterwards, it simulates the voting phase by emulating the public board as follows. For 𝑖 ∈ [1, 𝑛]\(𝐴⋃{1}), A4 adds a random encrypted

ballot in PB. Then, when A3 outputs 𝑴 , by the strong unforgeability of the signature scheme, all the valid ballots must use the credential of a

a corrupted voter 𝑖 ∈ 𝐴. Also, by the computational soundness of the ZKP, the ballot must encrypt some valid voting option. Hence A4 can
decrypt the ballot using sk and sets 𝑣𝑖 as the corresponding voting option. Finally, A4 gets the result 𝑟 in return, that it forwards to A3.
Finally, it outputs A3’s guess.

Clearly, except if A3 forges a valid ZKP for an invalid ballot or forges a signature, A4 plays a perfect simulation of Game 3 to A3, so that

|𝑆3 − 𝑆4 | is negligible.
Conclusion. By the triangular inequality, this shows that for all PPT adversary A for the real game, there exists a PPT adversary B for the

ideal game that wins with the same probability, with up to a negligible difference. □

69

	Abstract
	1 Introduction
	2 Building blocks
	2.1 MPC toolbox
	2.2 UC security
	2.3 Paillier vs elliptic ElGamal

	3 Single-choice voting
	4 Majority Judgment
	5 Condorcet-Schulze
	6 Single Transferable Vote
	7 Application to e-voting security
	8 Implementation
	9 Lessons learned
	References
	A ElGamal and Paillier cryptosystems
	A.1 ElGamal and Paillier encryptions
	A.2 Threshold decryption

	B Zero Knowledge Proofs
	C Our MPC toolbox for efficient tally-hiding
	C.1 CondSetZero (abbreviated as CSZ)
	C.2 Logical operations on encrypted data
	C.3 Basic integer arithmetic: addition, subtraction, comparison
	C.4 Arithmetic with sublinear communication complexity
	C.5 Solving ordering related problems
	C.6 Paillier-specific algorithms
	C.7 Advanced arithmetic: aggregation, multiplication and division

	D Single choice voting
	D.1 Basic single choice voting
	D.2 List voting: computing the D'Hondt method in MPC

	E Majority Judgement
	E.1 Definition
	E.2 The approach of CPST-Esorics08
	E.3 Our simplified algorithm for MJ
	E.4 An adaptation in MPC in the Paillier setting
	E.5 An adaptation in MPC in the ElGamal setting
	E.6 Majority Judgment, the bottom-line

	F Condorcet methods, Schulze and ranked-pairs variants
	F.1 Schulze and ranked pairs from the adjacency matrix
	F.2 How to obtain the adjacency matrix from the voters' ballots
	F.3 Condorcet-Schulze method, the bottom-line

	G Single Transferable Vote
	G.1 Overview of STV
	G.2 A tally-hiding algorithm for STV
	G.3 Complexity analysis
	G.4 STV, the bottom-line

	H A security framework for our MPC protocols
	H.1 Introduction to the framework
	H.2 Secure functionality computation
	H.3 The composition theorem
	H.4 Restricted I/O behavior

	I The SUC-security of our building blocks
	I.1 Proof strategy for the conditional gate
	I.2 The rerandomization
	I.3 The threshold decryption
	I.4 The round of communications
	I.5 The conditional gate protocol is SUC-secure

	J Security of the toolbox in the context of electronic voting
	J.1 Universal verifiability
	J.2 Privacy

