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Abstract. Fully homomorphic encryption (FHE) allows us to perfor-
m computations directly over encrypted data and can be widely used
in some highly regulated industries. Gentry’s bootstrapping procedure
is used to refresh noisy ciphertexts and is the only way to achieve the
goal of FHE up to now. In this paper, we optimize the LWE-based GSW-
type bootstrapping procedure. Our optimization decreases the lattice ap-
proximation factor for the underlying worst-case lattice assumption from
Õ(N2.5) to Õ(N2), and is time-efficient by a O(λ) factor. Our scheme can
also achieve the best factor in prior works on bootstrapping of standard
lattice-based FHE by taking a larger lattice dimension, which makes our
scheme as secure as the standard lattice-based PKE. Furthermore, in this
work we present a technique to perform more operations per bootstrap-
ping in the LWE-based FHE scheme. Although there have been studies
to evaluate large FHE gates using schemes over ideal lattices, (i.e. using
FHEW or TFHE), we are the first to study how to perform complex
functions homomorphically over standard lattices.

Keywords: Fully homomorphic encryption · GSW-FHE · LWE-based ·
Large FHE gates

1 Introduction

Fully homomorphic encryption (FHE) allows us to evaluate arbitrary computa-
tions over encrypted data by only using public information. In 2009, Gentry [22]
proposed the first construction for a FHE scheme. A lot of effort has been made
(e.g. [10,11,7,9,23,12,1,20,15], etc.) to push FHE toward practicality following
Gentrys blueprint. Among those FHE schemes, there are LWE-based schemes,
e.g. the scheme in [10,7,23,12,1,24]. One advantage of such schemes is the high-
security strength. LWE can be reduced to some worst-case lattice problems on
general lattices (algebraically unstructured lattices), and the research focus of
this kind of schemes is not only on the efficiency improvement but also on the
security strength of the scheme, that is, the improvement of the approxima-
tion parameters of the underlying worst-case lattice assumption. For example,
in the existing LWE-based schemes, some schemes can achieve the same security
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strength as the standard PKE schemes (i.e. the approximate factor can be small
polynomial), e.g. the scheme in [12,1,24]. Meanwhile, RLWE can be reduced to
some worst-case lattice problems on ideal lattices (algebraically structured lat-
tices), and RLWE-based FHE such as [9,21,14,20,15] has been widely studied
because of its advantages in terms of efficiency.

Compared with the Boolean gates, some complex operations (referred to as
large FHE gates) such as the Look Up Table (LUT) function or max/min func-
tions are harder to perform in FHE. In order to efficiently evaluate those large
FHE gates, some special algebraic structures are needed. In the RLWE setting,
the technologies to evaluate large FHE gates is gradually mature [3,16,5,13,17],
but there are no similar technical researches on the LWE-based bootstrapping
scheme. Without a doubt, the LWE-based FHE scheme is difficult to implement
in the real-world (with enormous storage consumption and slow efficiency), and
it is often used as a frontier theoretical research. But the research on LWE-based
FHE scheme is essential, as the researches on LWE-based schemes often stimulate
follow-up research. For example, some LWE-based FHE scheme, like Brakerski
et al.’s schemes [10,9] and Gentry et al.’s scheme [23] are very important works
in the field of FHE. Furthermore, the algebraically unstructured lattice seems
to be essentially different from the structured lattice in quantum computing.
Some recent works [4,18,19] have given a quantum polynomial-time algorith-

m for very large but subexponential 2Õ(
√
n) approximations to the worst-case

Shortest Vector Problem on ideal lattices, (in contrast to just slightly subexpo-
nential 2O(nloglogn/logn) factors obtainable for algebraically unstructured lattice
[25]). So the motivation of our work is to optimize the LWE-based FHE scheme
and to study how to evaluate large FHE gates in the LWE setting.

Up to now, one of the fastest and simplest LWE-based FHE arose from the
GSW scheme by Gentry, Sahai and Water [23] (referred to as GSW-FHE). Gen-
try, Sahai and Water’s construction avoids the expensive “relinearization” step
in homomorphic multiplication [10,9], which makes the GSW scheme supports a
different class of functions. Brakerski and Vaikuntanathan [12] showed that the
GSW scheme supports branching programs and it is sufficient to bootstrap the
GSW to FHE by using Barringtons theorem [2]. The approximation factor of
Brakerski and Vaikuntanathans FHE decreases from super-polynomial to poly-
nomial (i.e. Õ(N1.5+ε) for ε > 0, but at a great cost in runtime and space),
hence obtained an FHE scheme as secure as the standard lattice-based PKE.
Alperin-Sheriff and Peikert [1] introduced a new method of constructing FHE
that can avoid the costly use of Barrington’s transformation in Brakerski and
Vaikuntanathan’s construction. They found that one can view the decryption as
an arithmetic circuit and the inner product in the decryption can be comput-
ed using a group of cyclic permutations. By this property, Alperin-Sheriff and
Peikert constructed a bootstrapping procedure that can refresh ciphertexts faster
than Brakerski and Vaikuntanathan’s scheme, with a slightly stronger underlying
security assumption (the approximate factor is Õ(N3), but a great improvemen-
t of the runtime). Hiromasa, Abe and Okamoto [24] presented a technique to
encrypt matrices in GSW encryption and showed how to homomorphically oper-
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ate matrices addition and multiplication. They used this technique to optimize
Alperin-Sheriff and Peikert’s bootstrapping scheme. Their optimization scheme
is time and space-efficient and the lattice approximation factor is decreased to
Õ(N2.5). Then the latter works about the GSW-FHE are mainly RLWE-based
schemes, including Ducas and Micciancio’s scheme FHEW [20] and Chillotti et
al.’s scheme TFHE [15,16]. In this paper, we aim to optimize the GSW-type
LWE-based bootstrapping scheme. In terms of safety and efficiency, the opti-
mal LWE-based GSW-FHE scheme is Hiromasa, Abe and Okamoto’s scheme.
Their scheme supports homomorphic matrix multiplication, and this property
can be used to evaluate the linear operation in the homomorphic decryption.
But homomorphic matrix multiplication is not optimal for bootstrapping.

1.1 Our Works

We have two contributions in this work:

– We propose a new homomorphic matrix-vector multiplication operation. Al-
though the GSW encryption packing technology for matrix[24] and LWE
encryption packing technology for vector [29,8] have been proposed before,
no one has done further researches about the relation of these two encryption
structures. Here we find that these two kinds of encryption can be combined
to construct a homomorphic matrix-vector multiplication operation, which
is more efficient than the homomorphic matrix multiplication by Hiromasa,
Abe and Okamoto. We use this operation to construct the linear operation
in the bootstrapping technique and proposed a new LWE-based GSW-type
bootstrapping scheme that performs better than Hiromasa, Abe and Okamo-
to’s work in safety and efficiency.

– We are the first to study how to perform more operates per bootstrapping for
the LWE-based bootstrapping scheme. Bootstrapping technology originally
was used for homomorphic decryption[22], but later it was found that boot-
strapping can be used to perform some Boolean gates in the RLWE-based
schems[20,16]. The key to the realization of this technology is to use the nega-
cyclic function property on the ring structure. Furthermore, in [3,16,5,13,17],
there are works to use the special structure of the ring to evaluate some com-
plex operations, such as LUT functions and max/min operations. But there
are no similar researches on LWE-based bootstrapping schemes before, and
it is unknown whether similar functions (i.e. Boolean gates and large FHE
gates) can be realized in the LWE setting. In this work, we give an exact
answer. By using the matrix-vector multiplication and a “cyclic rotation”
property of the vector, our scheme can evaluate Boolean gates and some
large FHE gates. We say “functional bootstrapping”[6], it means that to e-
valuate a function during bootstrapping. We show how to homomorphically
compute a r-to-v LUT function with v functional bootstrapping; homomor-
phically compute a max/min function or a comparison function for two small
integers with only one functional bootstrapping.
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Finally, we propose an LWE-based GSW-type bootstrapping scheme that can
evaluate large FHE gates, at the same time our scheme is secure assuming the
hardness of approximating the standard lattice problem to within the factor
Õ(Nλ) on any N dimensional lattices. When choosing N = Θ(λ) for 2λ hardness,
this yields an approximation factor of Õ(N2) for the underlying worst-case lattice
assumption. Compared to Hiromasa et al’s work [24], our scheme decreases the
lattice approximation factor from Õ(N2.5) to Õ(N2), and is time-efficient by a
O(λ). By choosing the dimension to be N = λ1/ε for ε > 0, we obtain a factor as
small as Õ(N1.5+ε/2) (i.e. the same factor as in Brakerski and Vaikuntanathan’s
scheme, but with a much smaller runtime and space). Since the standard lattice-
based public-key encryption can be based on the hardness of approximating
the problem to Õ(N1.5) [30], our bootstrapping scheme can be as secure as the
standard lattice-based PKE.

1.2 Our Techniques

The goal of bootstrapping is to decrypt an LWE ciphertext (a, b) ∈ Zn+1
q homo-

morphically. There are two processes for decryption. One is the linear operation,
i.e. b−〈a, s〉 ∈ Zq, where s is the secret key (usually sampled from Gauss distri-
bution), the other is the non-linear operation, i.e. the rounding operation b·e2,
which output 1 if the input is close to q/2 and 0 otherwise. For the linear opera-
tion, we need to compute additions in Zq homomorphically. The additive group
Zq is isomorphic to a group of cyclic permutation. For any x in Zq, it corre-
sponds to a cyclic permutation which can be represented by an indicator vector
with 1 in the x + 1-th position. The permutation matrix can be obtained from
the cyclic rotation of the indicator vector, and the addition in Zq leads to the
multiplication of the corresponding permutation matrices. Note that there is an
efficient way to multiply two permutation matrices by multiplying one permu-
tation matrix with the first column of the other matrix, and our first technique
is an efficient method to homomorphically compute the matrix-vector product.
We show that the GSW-type matrix packing ciphertext [24] and the LWE-type
vector packing ciphertext [29,8] can fit together to construct a homomorphic
matrix-vector multiplication.

Homomorphic matrix-vector multiplication. We first recall the matrix
packing techniques by Hiromasa, Abe and Okamoto [24] and vector packing
techniques by Peikert et al.[29,8].

– GSW-type Matrix Packing[24]. Given a secret key matrix S ∈ Zr×NQ and

a fixed “gadget” matrix G ∈ Z(N+r)×(N+r)·l
Q where l = dlog2Qe, a matrix

packing GSW encryption for message matrix M ∈ {0, 1}r×r is:

MatGSWS(M) =

(
A

SA + E

)
+

(
0

−MS||M

)
·G ∈ Z(N+r)×(N+r)·l

Q

where A ∈ ZN×(N+r)·l
Q is uniformly sampled and E ∈ Zr×(N+r)·l is a noise

matrix. Let SK = [−S||Ir] ∈ Zr×(N+r)
Q , where Ir is the r×r identity matrix.

For any C = MatGSWS(M), there is SK ·C = E + M · SK ·G.
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– LWE-type vector packing [29,8]. Given a secret key matrix S ∈ Zr×NQ , for a
message vector m ∈ ZrQ, a vector packing LWE encryption:

V ecLWES(m) =

(
a

Sa + e + m

)
∈ ZN+r

Q

where a ∈ ZNQ is uniformly sampled and e ∈ Zr is a small noise vector. Let

SK = [−S||Ir] ∈ Zr×(N+r)
Q . For any c = V ecLWES(m), there is SK · c =

e + m.

In this paper we show an operation that combine above two packing tech-
niques. For a given vector c ∈ ZN+r

q , let G−1(c) be the “decomposition” function

that output an “entries small” vector x ∈ Z(N+r)l
Q such that Gx ≡ c(mod Q).

For a C = MatGSWS(M0 ∈ {0, 1}r×r) with small noise matrix E, and a
c = V ecLWES(m1 ∈ ZrQ) with small noise vector e, by above definitions about

MatGSW encryption and VecLWE encryption, a ciphertext cmult = C ·G−1(c)
satisfies

SK · cmult = SK ·C ·G−1(c)

= (E + M0 · SK ·G) ·G−1(c)

= E ·G−1(c) + M0 · SK · c
= (E ·G−1(c) + M0 · e) + M0 ·m1

where (E ·G−1(c)+M0 ·e) is small, and this means that the cmult is a VecLWE
encryption of message vector M0 ·m1 ∈ ZrQ. Therefore we have a homomorphic
matrix-vector multiplication operation:

MatGSW (M0)× V ecLWE(m1)→ V ecLWE(M0 ·m1). (1)

We will use operation (1) to construct our bootstrapping procedure, which speeds
up the homomorphic matrix multiplication by a factor (N + r) · l compared with
using the operation (a homomorphic matrix-matrix multiplication operation) in
scheme [24].

Computing non-linear function. Our second technique is a new way to
homomorphically compute the non-linear function. In previous work [1,24], one
can compute the rounding function by summing the entries of the indicator
vector corresponding to those values in Zq. In this work we compute the non-
linear function in a completely different way.

Our work is inspired by the calculation of nonlinear operation in FHEW
and TFHE scheme. In their schemes, the underly ring is Rq = Zq[X]/〈XN +
1〉, where N is a power of 2. First, notice that the roots of unity 〈X〉 =
{1, X, . . . ,XN−1,−1, . . . , −XN−1} form a cyclic group, and when setting q =
2N , the message space Zq ' 〈X〉. So to evaluate a non-linear function F : Zq →
Zt, one can initialize a polynomial

acc = ∆ · (F (b) + F (b− 1)X + . . .+ F (b−N + 1) ·XN−1),
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where ∆ is an encoding constant. To compute the linear operation, for a sample
example, to compute F (b+ 2), one can homomorphically compute

acc ·X2 =∆ · (F (b) ·X2 + F (b− 1) ·X3 + . . .+ F (b−N + 1) ·XN+1)

=∆ · (−F (b−N + 2)− F (b−N + 1) ·X + F (b) ·X2

+ . . .+ F (b−N + 3) ·XN−1).

(X2 is encrypted, so this step is executed homomorphically). Then if F satisfy
F (x+N) = −F (x), i.e. a negacyclic property, one can derive the first coefficient
to obtain result F (b+ 2) in their schemes.

We found there are similar property in the LWE setting. In our scheme, note
that in operation (1), if M0 is a cyclic permutation matrix, M0 ·m1 is a “cyclic
rotation” of m1, so we can set m1 as a special vector and use the rotation
property to compute the the non-linear function. More detailed, we initialize
m1 to be

m1 := ∆ · (F ([b]q), F ([b− 1]q), . . . , F ([b− q + 1]q))

where F is a known function and ∆ is an encoding constant. Assume that M0 is
the permutation corresponds to φ(−ai · si) ∈ Sq where −ai · si ∈ Zq and φ is the
isomorphism of an element in Zq into the cyclic permutation (see Section 2.3 for
a better understanding of φ), then after operation (1), the result is a VecLWE
ciphertext that encrypts

M0 ·m1 = ∆ · (F ([b− ai · si]q), . . . , F ([b− q + 1− ai · si]q)).

Then for every i ∈ {1, . . . , n}, by iteratively computing operation (1) for every
permutation matrix corresponding to −ai · si, we can obtain an LWE ciphertext
that decrypts to the message F ([b − 〈a, s〉]q), which is a decryption for (a, b)
when we set F as the rounding function (this LWE ciphertext can be extracted
from the first LWE element of the final VecLWE ciphertext).

Note that the function that can be evaluated in our scheme didn’t need to
be “negacyclic” (i.e. F (x + N) = −F (x)), so we can set F := func ◦ f where
f : Zq → Zt is the rounding function (f is b·e2 when t = 2) and func : Zt → Zh
is an arbitrarily given function to evaluate large FHE gates. Except for some
Boolean gates, we also show how to evaluate LUT function, max/min function
and comparison in this paper3.

1.3 Related Works

Some studies focus on evaluating large FHE gates in the existed works. In 2015,
Biasse and Song [3] studied how to evaluate arbitrary gates for only one call to

3 The correctness can be verified at https://github.com/LiuChaoCrypto/MatGSWscheme.
This implementation can perform decryption and some Boolean gates homomorphi-
cally. Because of the huge storage and time consumption of this kind of LWE-based
FHE, we use a very small parameter to verify the correctness. Also for this reason,
it is only for the correctness verification, but not for the performance testing.
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the bootstrapping procedure. Their technique is to set a special test function
for a given arbitrary function in the original FHEW scheme [20], and this al-
lows the evaluation of more general gates involving several inputs and outputs
(e.g. the full adder gate). A Look Up Table (LUT) is an array that replaces
runtime computation with a simpler array indexing operation. A boolean LUT
is defined as fLUT : Zr2 → Zv2, and for the i-bit output function we can define
it to be fi : Zr2 → Z2. Chillotti et al. [16] applied a special packing technique
to construct the CMux tree for the LUT function fi, and they also constructed
a weighted automata to evaluate arithmetic operations such as max function
and multiplication. Compared with Chillotti et al. [16]’s strategy, our method to
evaluate LUT function is more sample. Since the func in our scheme can be set
as an arbitrary function, we can set the LUT function fi as the bootstrapping
function func, and for max/min, it just needs to set func specifically. Bon-
noron et al. [5] improved the FHEW scheme [20] and introduced to perform the
linear-step in a CRT fashion to evaluate large FHE gates. Thanks to the special
structure of ring Z[x]/〈XN−1〉, the function func be bootstrapped in Bonnoron
et al.’s scheme can also be arbitrary. This is the same with the function func
in our scheme, but since we construct the bootstrapping in the LWE setting,
the underly algebraic structure is totally different (no special structure of rings
Z[x]/〈XN −1〉). Carpov et al. [13] optimized the TFHE scheme [15] and showed
how to homomorphically perform operations on multi-value inputs. Carpov et
al.’s strategy is to set a special test polynomial in the TFHE scheme for a given
operation like LUT, so this strategy is also different from the method in our
scheme. In [17], Chillotti et al. presented a new technique called programmable
bootstrapping, which enables the homomorphic evaluation of any function of a
ciphertext. Compared with Carpov et al.’s work, Chillotti et al. encoded a LUT
function in a test polynomial in a different way. The above existed works re-
ly heavily on the ring structure in the RLWE-based scheme, but for the LWE
setting, there are no works before.

1.4 Organization

In Section 2, we describe some preliminaries about subgaussian distribution and
the symmetric groups. In Section 3, we present the matrix/vector packing tech-
niques and then describe how to homomorphically operate matrix-vector multi-
plication. We present our optimized FHE scheme in Section 4, and then give the
analysis of our scheme. In the final we conclude and discuss in Section 6.

2 Preliminaries

Let [N ] = {1, . . . , N}, where N is a nonnegative integer. We denote ZQ =
Z/QZ as the quotient ring of integers modulo Q, and (ZQ,+) its additive group.
Sometimes we write x mod Q as [x]Q.

In this paper, we assume that vectors are in lower-case letters and matri-
ces are in bold capital letters, unless otherwise noted. Usually, We assume that
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the vector v = (v1, v2, . . . , vN ) is in column form, and denote its transpose as
vT = [v1, v2, . . . , vN ]. For vectors (matrices) m1,m2, . . . ,mN , we denote the
horizon concatenation of those vectors as M = [m1,m2, . . . ,mN ], and the ver-
tical concatenation as MT = (mT

1 ,m
T
2 , . . . ,m

T
N ). We denote the l2 norm of

vector v by ||v||2 and the l∞ by ||v||∞. We denote IN as the N × N identity

matrix. Suppose χ is a probability distribution, x
$←− χ means the sampling of x

according to χ, and x
$←− U(ZQ) means that sample x from ZQ uniformly.

2.1 Learning with Errors

The learning with errors (LWE) assumption was introduced by Regev [30], and
we state its definition (decision version) in the following:

Definition 1 (DLWE). For a security parameter λ, let N = N(λ) be an integer
dimension, Q = Q(λ) ≥ 2 be an integer modulus, and χ = χ(λ) be an error
distribution over Z. Given two distribution: In the first distribution, one draws

s
$←− U(ZNQ ), samples a

$←− U(ZNQ ) and ei
$←− χ, then a tuple (ai, bi) is sampled,

where bi = 〈ai, s〉+ei. In the second distribution, one samples (ai, bi) uniformly
from ZN+1

Q . The DLWEN,Q,χ problem is to distinguish those two distribution,
and the DLWEN,Q,χ assumption is that DLWEN,Q,χ problem is infeasible.

Given a lattice dimension parameter N and a number b, the GapSVPγ

problem is that to distinguish whether a N -dimensional lattice has a vector
shorter than b or no vector shorter than γ(N) · b. The SIVPγ problem is to find
the set of short linearly independent vectors in a lattice.

The DLWEN,Q,χ problem has reductions to standard lattice assumptions as
follows. The reductions take χ as a discrete Gaussian distribution DZ,αQ, which
is centered around 0 and has parameter αQ for some α < 1.

Theorem 1 ([26,27,28,30]). Let Q = Q(N) ≥ 2 be a power of prime Q =
pr or a product of distinct prime numbers Q = Πiqi(qi = poly(N)), and let
α ≥

√
N/Q. If there exists an efficient algorithm that solves (average-case)

DLWEN,Q,DZ,αQ , then:

– there exists an efficient quantum algorithm that can solve GapSVPÕ(N/α)

and SIVPÕ(N/α) in the worst-case for any N -dimensional lattices.

– if Q ≥ Õ(2N/2), there exists an efficient classical algorithm that can solve
GapSVPÕ(N/α) in the worst-case for any N -dimensional lattices.

2.2 Subgaussian Random Variables

A real random variable X is subgaussian with parameter s if for all x ∈ R, its
(scaled) moment-generating function satisfies E[exp(2πxX)] ≤ exp(πs2x2). Any
B-bounded centered random variable X is subgaussian with parameter B ·

√
2π.

There are two useful properties for subgaussian random variables:
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– Homogeneity: if X is subgaussian with parameter s, then t ·X is subgaussian
with parameter t · s.

– Pythagorean additivity: if X1 is subgaussian with parameter s1, and X2 is
subgaussian with parameter s2, then X1 +X2 is subgaussian with parameter√
s21 + s22.

For a real random vector v, we say it is subgaussian with parameter s if for all
real unit vectors u, their marginal 〈u,v〉 is subgaussian with parameter s. If one
vector is the concatenation of subgaussian variables or vectors, each of which has
a parameter s and is independent of the prior one, then it is also subgaussian
with parameter s. The two properties homogeneity and Pythagorean additivity
also hold from the linearity of vectors. There is also a useful lemma for the
Euclidean norm of the subgaussian random vector.

Lemma 1 ([31]). Let v ∈ RN be a random vector with independent coordinates
which are subgaussian with parameter s. Then we have Pr[||v||2 > C · s

√
N ] ≤

2−Ω(N) where C is some universal constant.

Alperin-Sheriff and Peikert [1] introduced to apply the randomized “decom-
position” function G−1 instead of the decomposition procedure and we make
a sample description here. For a module Q, let g = (1, 2, . . . , 2l−1) where l =
dlog2Qe, and G = gT ⊗ IN is the block matrix with N copies of (1, 2, . . . , 2l−1)T

as diagonal blocks, and zeros elsewhere. Define a randomized “decomposition”
function g−1 : ZQ → Zl2 for c ∈ ZQ such that g−1(c) is subgaussian with pa-
rameter O(1) and 〈g−1(c), g〉 = c. Note that for c =

∑
i∈[l] ci2

i−1, g−1(c) can be

(c1, . . . , cl). Similarly, for vectors and matrices, we can by applying g indepen-
dently to each entry and define the randomized function G−1 : ZN×mQ → ZN ·l×m2

such that G ·G−1(A) = A where A ∈ ZN×mQ .

Lemma 2 ([1]). There is a randomized efficiently computable function G−1 :

ZNQ → ZN ·dlogQe2 such that for any v ∈ ZNQ , x ← G−1(v) is subgaussian with
parameter O(1) and Gx = v.

2.3 Symmetric Groups and Zq-Embeddings

Alperin-Sheriff and Peikert [1] observed that the additive group Zq can embed
(i.e., has an injective homomorphism) into the symmetric group Sq, and they use
this property to introduce their efficient bootstrapping algorithm. We describe
this property here. Denote Sq as the symmetric group of order q, i.e., the group
of permutations (bijections) π : {1, . . . , q} → {1, . . . , q} with function compo-
sition as the group operation. By the injective homomorphism that sends the
generator 1 ∈ Zq to the “cyclic shift” permutation π in Sq, where π(i) = i + 1
for 0 < i < q and π(q) = 1, the additive cyclic group (Zq,+) can embed into the
symmetric group Sq. Besides, for the multiplicative group of q-by-q permutation
matrix, there is a map that associates the element π in Sq with the permutation
matrix Pπ = [uπ(1), . . . ,uπ(q)], where ui is the i-th standard basis vector, and
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this means that Sq is isomorphic to the multiplicative group of q-by-q permuta-
tion matrices. In the final, the addition in Zq leads to the multiplication of the
corresponding permutation matrices.

Zq 0 1 · · · q − 1

Corresponding
permutation

matrices


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




0 · · · 0 1
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 · · ·


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
1 0 · · · 0



3 Homomorphic Matrix-vector Multiplication

In this section, we give some definitions for LWE encryption and the vector/matrix
packing encryption. Then we introduce the homomorphic matrix-vector multi-
plication which will be used in our bootstrapping scheme.

3.1 Definitions

We give definitions for LWE, VecLWE and MatGSW encryptions.

– LWE type encryption [30].

Encryption. Define

LWEs(m) = (a, [〈a, s〉+ e+m]Q) ∈ ZN+1
Q

as an LWE encryption of a message encoding m = ∆ ·m̃ ∈ ZQ under key s ∈
ZNQ , where explicit random vector a

$←− U(ZNQ ), error e
$←− χ, ∆ = bQ/tc and

m̃ ∈ Zt. When we want to emphasize the error term we write LWEs(m; e).

Decryption. A ciphertext (a, b) ∈ ZN+1
Q is decrypted by computing

LWE−1s (a, b) = f([b− 〈a, s〉]Q)

where f : ZQ → Zt is an appropriate decoding function to correct the
error e and recover the message. Then assuming the error distribution χ is
concentrated with bounded by ∆/2 in absolute value, message m̃ can be
decoded using function

f(x) = b t
Q
· xe mod t.

We can easily check the correctness. Assume b − 〈a, s〉 = ∆ · m̃ + e + Q · r
for some integer r, then if we divide by Q and multiply by t, we have m̃ +
t
Q · (e− (Qt −∆) · m̃) + t · r. We also have t

Q · (e− (Qt −∆) · m̃) < 1/2 by the

fact e < ∆/2, which means that the decryption is correct.
– VecLWE type encryption [29,8].
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Encryption. Define

V ecLWES(m) = (a, b) ∈ ZN+r
Q

as a VecLWE encryption of a message m = (m1, . . . ,mr) = ∆·(m̃1, · · · , m̃r) ∈
ZrQ under key S ∈ Zr×NQ , where a

$←− U(ZNQ ), b = [Sa + e + m]Q =

(b1, b2, . . . , br) ∈ ZrQ, the small noise vector term e
$←− χr, ∆ = bQt c and

(m̃1, . . . , m̃r) ∈ Zrt . When we want to emphasize the error term we write
V ecLWES(m; e).

Decryption. The decryption is same with LWE encryption. For (a, b) ∈
ZN+r
Q , one needs to compute

V ecLWE−1S (a, b) = f([b− S · a]Q)

where for a vector x = (x1, . . . , xr), f(x) := (f(x1), . . . , f(xr)) and function
f is defined in above LWE decryption. The decryption is correct if ||e||∞ <
∆/2.

– MatGSW type encryption [24].

Encryption. Define

MatGSWS(M) =

[(
A

SA + E

)
+

(
0

−MS||M

)
·G
]
Q

∈ Z(N+r)×(N+r)·l
Q

as a MatGSW encryption of message matrix M ∈ {0, 1}r×r under key S ∈
Zr×NQ , where l = dlog2Qe, A

$←− U(ZN×(N+r)·l
Q ), small noise matrix E

$←−
χr×(N+r)·l and G = gT ⊗IN+r ∈ Z(N+r)×(N+r)·l

Q . Since this is an encryption
of secret key information, the security of this scheme is based on the circular
security [22,24] of the LWE encryption. When we want to emphasize the
error term we write MatGSWS(M; E).

Decryption. For a ciphertext C = MatGSWS(M), note that the (Nl+jl−1)-
th column of C is

cNl+jl−1 = (aNl+jl−1,S · aNl+jl−1 + eNl+jl−1 + mj · 2l−2) ∈ ZN+r
Q

where aNl+jl−1 and eNl+jl−1 is the (Nl + jl − 1)-th column of A and E,
respectively, and mj is the j-th column of M. One can obtain the i, j-th
element of M by computing

Mi,j = b〈(−si,ui), cNl+jl−1〉e2 ∈ {0, 1},

where i, j ∈ [r], si is the i-th row of S, ui is the i-th standard basis vector and
bxe2 outputs 1 if x is close to Q/4, and 0 otherwise. If ||eNl+jl−1||∞ < Q/8,
the decryption is correct.
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3.2 Operations

We first show the general homomorphic matrix-vector multiplication by a lem-
ma. Then we give a special homomorphic matrix-vector multiplication when the
matrix is a cyclic permutation matrix (described in Section 2.3).

Our general homomorphic matrix-vector multiplication is stated by the fol-
lowing lemma.

Lemma 3. For any C = MatGSWS(M0 ∈ {0, 1}r×r; E) ∈ Z(N+r)×(N+r)·l
Q and

any (a, b) = V ecLWES(m1 ∈ ZrQ;ve) ∈ ZN+r
Q , if ei is the i-th row of E, the

computation result of operation

(�) : MatGSW × V ecLWE → V ecLWE

(C, (a, b)) 7→ C � (a, b) = [C ·G−1(a, b)]Q
(2)

is a VecLWE encryption of message [M0 ·m1]Q ∈ ZrQ with small noise vector

e = (e1, . . . , er), where ei is subgaussian with parameter O(
√
||ei||22 + ||ve||22).

To proof the correctness of Lemma 3, we first introduce a new type encryp-
tion. Define

̂MatLWES(M) =

[(
A

SA + E

)
+

(
0

M

)
·G
]
Q

∈ Z(N+r)×v·l
Q

as a ̂MatLWE encryption of M ∈ Zr×vQ under key S ∈ Zr×NQ , where l = dlog2Qe,

A
$←− U(ZN×v·lQ ), small noise matrix E

$←− χr×v·l and G = gT ⊗ Iv ∈ Zv×vlQ .

Note that for MatGSW and ̂MatLWE, we have

MatGSWS(M) = ̂MatLWES([−MS,M]).

In order to simplify the proof of Lemma 3, we introduce the following lemma for

the ̂MatLWE encryption.

Lemma 4. For any C = ̂MatLWES(M ∈ Zr×vQ ; E) ∈ Z(N+r)×v·l
Q and d ∈ ZvQ,

if ei is the i-th row of E, the computation result of operation

̂MatLWES(M)� d = [C ·G−1(d)]Q, (3)

is a VecLWE encryption of message [M · d]Q ∈ ZrQ with small noise vector
e = (e1, . . . , er), where ei is subgaussian with parameter O(||ei||2).

Proof. Let x = G−1(d) ∈ Zv·l2 , and assume C = [(A,B) + (0,M) ·G]Q where
B = SA + E, then one can compute

̂MatLWES(M)� d =[((A,B) + (0,M) ·G) · x]Q

=[(A,SA + E) · x + (0,M · d)]Q

=[(Ax,S ·Ax + Ex + M · d)]Q.
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Since x is the subgaussian with parameter O(1), Ex is a small vector. So the
final result is a VecLWE encryption

[(a,S · a + e + m)]Q ∈ ZN+r
Q

where a = A · x, e = E · x and m = M · d.
Assume e = (e1, . . . , er), then there is ei = 〈ei,x〉 where ei is the i-th row

of E. By the Pythagorean additivity, the error ei = 〈ei,x〉 is subgaussian with
parameter O(||ei||2) ut

Specially, in operation (2), when M0 is a permutation matrix for a cyclic
permutation π ∈ Sr, i.e. M0 = [uπ(1),uπ(2), . . . ,uπ(r)] ∈ {0, 1}r×r, where ui is
the i-th standard basis vector, we have lemma:

Lemma 5. For any C = MatGSWS(M0; E) ∈ Z(N+r)×(N+r)·l
Q where the mes-

sage matrix is a permutation matrix M0 ∈ {0, 1}r×r for a cyclic permutation
π ∈ Sr, and any (a, b) = V ecLWES(m1 ∈ Zrq;ve) ∈ ZN+r

Q where ve =
(ve1, . . . , ver), if ei is the i-th row of E, the computation result of operation

C � (a, b) = [C ·G−1(a, b)]Q

is a VecLWE encryption of message [M0 ·m1]Q ∈ ZrQ with small noise vector

e = (e1, . . . , er), where ei is subgaussian with parameter O(
√
||ei||22 + ve2π(r−2+i)).

Proof. The proof of Lemma 5 is similar with Lemma 3. The only different in
this case is that M0 · ve is a cyclic permutation of ve, i.e. a “cyclic rotation”
vector of ve. We can rewrite

M0 = [uπ(1),uπ(2), . . . ,uπ(r)] = (uTπ(r−1),u
T
π(r), . . . ,u

T
π(r−2)) ∈ {0, 1}

r×r

where ui is the i-th standard basis vector. Then the i-th element of M0 · ve
is vei = 〈uπ(r−2+i),ve〉 = veπ(r−2+i). So the i-th element of the total error is

subgaussian with parameter O(
√
||ei||22 + ve2π(r−2+i)). ut

So given a permutation matrix and a vector, we present an operation to
homomorphically compute the matrix-vector product of them of two. In scheme
[24], they present a homomorphic matrix-matrix multiplication and use it to
construct the bootstrapping scheme, and in the following section we show how
to use homomorphic matrix-vector multiplication to construct the bootstrapping
procedure.

4 Our Bootstrapping Procedure

We describe our bootstrapping procedure in this section. In the first part, we
present some background about bootstrapping. We give the details of our boot-
strapping scheme in the second part. In the final, we analyze our scheme.
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4.1 Bootstrapping

The goal of bootstrapping is to decrypt a ciphertext homomorphically. An LWE
ciphertext (a, b) ∈ Zn+1

q under key s ∈ Znq is decrypted. by computing

m̃ = LWE−1s (a, b) = f([b− 〈a, s〉]q) = [b t
q
· [b− 〈a, s〉]qe]t.

A new ciphertext with smaller noise can be obtained by homomorphically de-
crypting a ciphertext with large noise. Since there needs the information of secret
key s to decrypt the ciphertext, a bootstrapping key Enc(s) needs to be gener-
ated using an encryption Enc(). In the final, the noise of the output ciphertext
depends on the noise of Enc(s), but not on the noise of the ciphertext (a, b). In
our scheme, such a scheme Enc() is the MatGSW encryption.

There are two processes for homomorphic decryption. One is linear operation,
i.e. b− 〈a, s〉 = b−

∑
i aisi, the other is non-linear operation, i.e. the rounding

operation f : Zq → Zt. For the linear operation, as mentioned before in section
2.3, the addition in Zq leads to the multiplication of the corresponding permu-
tation matrices. Since we can multiply two permutation matrices by multiplying
one permutation matrix with the first column of the other matrix, the linear
operation can be computed by iteratively operating the homomorphic matrix-
vector multiplication described by Lemma 5. For the non-linear operation, it is
automatically executed by the “cyclic rotation” property of the message vector
as described in Section 1.2. Actually, we can further evaluate a known arbitrary
function (mapping) func : Zt → Zh on m̃ ∈ Zt, so in generally, we can define
F = func ◦ f as the final non-linear step. In Section 5, we present how to set
func to evaluate some complex functions.

So the bootstrapping procedure includes two steps:

– BootKeyGen(SK, s): takes as input a secret key SK for MatGSW encryp-
tion, and a secret key vector s ∈ Znq of the ciphertext to be bootstrapped. It
outputs a bootstrapping key BootKey that appropriately encrypts s under
SK.

– Bootstrap(BootKey, c): takes as input the bootstrapping key BootKey
and a ciphertext vector c = (a, b) ∈ Zn+1

q , which is decrypted to m̃ ∈ Zt
under key s. It outputs an LWE ciphertext which decrypts to F (m̃) ∈ Zh
under key sk1 (with a smaller noise), where sk1 is the first row of SK.

For the ciphertext (a, b = 〈a, s〉 + e + ∆ · m̃), where a = (a1, . . . , an) and
s = (s1, . . . , sn), let ai =

∑
k∈[w] ai,k2k−1, w = dlog2qe and ai,k ∈ {0, 1} is an

integer. To decrypt the ciphertext, the linear term b− 〈a, s〉 can be write as

b−
∑
i∈[n]

aisi = b−
∑
i∈[n]

(
∑
k∈[w]

ai,k2k−1si).

So in the bootstrapping key generation algorithm, the secret key information
[2k−1si]q will be embedded into a matrix Mφ([2k−1si]q) ∈ {0, 1}q×q and then en-
crypted into a MatGSW ciphertexts. By the relationship between (Zq,+) and
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matrix in Section 2.3, addition operations −
∑
i∈[n](

∑
k∈[w] ai,k2k−1si) can be

computed using the homomorphic matrix-vector multiplication, i.e. the opera-
tion given in Lemma 5. So we only need to initialize a VecLWE ciphertext, and
then iteratively operate the homomorphic matrix-vector multiplication on the
result VecLWE ciphertext.

4.2 Procedures

In our scheme, Q is a module and l = dlog2Qe. N is the dimension of the
explicit random vector of the MatGSW encryption and the message dimension

is q × q, i.e., a ciphertext MatGSW ∈ Z(N+q)×(N+q)·l
Q . Let w = dlog2qe and

φ : Zq → Sq be the isomorphism of an element in Zq into the cyclic permutation
that corresponds to this element. We follows a procedure structure of RLWE-
based scheme FHEW [20] and TFHE [15], i.e., a bootstrapping scheme includes
two algorithms: BootKeyGen and Bootstrap; and in Bootstrap there are
three steps: in Initialize, b is set into a message vector m; in Increment, the
linear operation b − 〈a, s〉 is executed; in the final step, an LWE ciphertext is
derived.

– BootKeyGen(SK, s): given the secret key s ∈ Znq for ciphertext to be

bootsrapped and a secret key SK ∈ Zq×NQ for MatGSW encryption, outputs
a bootstrapping key.
For every i ∈ [n], k ∈ [w], let Mφ([2k−1si]q) ∈ {0, 1}q×q be the matrix corre-

sponding to φ([2k−1si]q), and compute

BKi,k = MatGSWSK(Mφ([2k−1si]q)) ∈ Z(N+q)×(N+q)·l
Q .

Let BootKey = {BKi,k}i∈[n],k∈[w] and return BootKey.
– Bootstrap(BootKey, c): given a ciphertext c = (a, b) ∈ Zn+1

q and a boot-

strapping key BootKey, outputs the refreshed LWE ciphertext c′ ∈ ZN+1
Q .

• Initialize: For every i ∈ [q], set

mi = ∆′ · F ([b− i+ 1]q) = ∆′ · func(f([b− i+ 1]q)) ∈ ZQ

where f : Zq → Zt is the rounding function, func : Zt → Zh is a known

arbitrary function and ∆′ = bQh c. Set acc := (0,m) ∈ ZN+q
Q where

m = (m1, . . . ,mq).
• Increment: For every i ∈ [n] and k ∈ [w], let a′i = −ai mod q and

set zi,k = b a′i
2k−1 c mod 2. Then for every i ∈ [n], k ∈ [w], if zi,k > 0,

iteratively compute
acc← BKi,k � acc.

• Extract: If the final ciphertext is acc = (a′, b′ = (b′1, . . . , b
′
q)), return

(a′, b′1).

For the final ciphertext, one can use Module-Switch to reduce the module
from Q back to q and use Key-Switch to turn the output into an LWE encryption
under s [10,9]. Then one can perform additional operations on this ciphertext.
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4.3 Correctness

For the correctness of our procedure, we have the following lemma.

Lemma 6 (Correctness). Let SK be the secret key for our scheme and sk1

be the first row of SK. Let c and s be a ciphertext and secret key described
in our scheme. Assume c decrypts to m̃ ∈ Zt under key s. For BootKey ←
BootKeyGen(SK, s), the refreshed ciphertext c′ ← Bootstrap(BootKey, c)
decrypts to func(m̃) ∈ Zh under secret key sk1, where func : Zt → Zh is a
known arbitrary function.

Proof. Note that (0,m) ∈ ZN+q
Q can be seen as a VecLWE encryption of message

m under key SK, i.e., (0,m = SK · 0 + m) = V ecLWESK(m; 0). In addition,
BKi,k is a MatGSW encryption of Mφ([2k−1si]q). By Lemma 5, acc← BKi,k �
V ecLWESK(m) is a VecLWE encryption of message Mφ([2k−1si]q) ·m. Then in
our scheme, by iteratively computing acc ← BKi,k � acc for every i ∈ [n] and
k ∈ [w], the final VecLWE ciphertext acc encrypts message vector

Mφ([zn,w2w−1sn]q) · (· · · (Mφ([z1,120s1]q) ·m)). (4)

Besides, if Mφ(p) ∈ {0, 1}q×q is the permutation matrix corresponding to
φ(p), for vector

m = ∆′ · (F ([b]q), F ([b− 1]q), . . . , F ([b− q + 1]q))

which is the message vector in the Initialize step, we have that

Mφ(p) ·m = ∆′ · (F [b+ p]q), . . . , F ([b− q + 1 + p]q)). (5)

So applies equation (5) for the vector (4), the final ciphertext acc is a Ve-
cLWE encryption of message vector

m =Mφ([zn,w2w−1sn]q) · (· · · (Mφ([z1,120s1]q) ·m))

=∆′ · (F ([b+
∑

i∈[n],k∈[w]

zi,k2k−1si]q), . . . , F ([b− q + 1 +
∑

i∈[n],k∈[w]

zi,k2k−1si]q))

=∆′ · (F ([b− 〈a, s〉]q), . . . , F ([b− q + 1− 〈a, s〉]q)).

Assume the final ciphertext is acc = (a′, b′ = (b′1, . . . , b
′
q)), then the returned

ciphertext (a′, b′1) is an LWE encryption of message encoding

∆′ · F ([b− 〈a, s〉]q) = ∆′ · func(f([b− 〈a, s〉]q)) = ∆′ · func(m̃),

e.g., (a′, b′1 = 〈a′, sk1〉+e+∆′ ·func(m̃)), where sk1 is the first row of secret SK
and e is the error. Hence the refreshed ciphertext c′ decrypts to func(m̃) ∈ Zh
under secret key sk1. ut

We further quantify the error in the ciphertext output by Bootstrap. We
assume the error distribution χ over Z of MatGSW in our scheme is subgaussian
with parameter s.
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Lemma 7. For any c ∈ Zn+1
q , the error of the refreshed ciphertext c′ ← Bootst-

rap(BootKey, c) is subgaussian with parameter O(s
√

(N + q) · nwl), excep-
t with probability 2−Ω((N+q)·nwl) over the random choices of BootKey and
Bootstrap.

Proof. In our scheme, acc is initialized to be a VecLWE ciphertext (0,m) with

noise vector 0. Then if the noise matrix of BKi,k is Ei,k
$←− χq×(N+q)·l and

ei,k,j ∈ Z(N+q)·l is the j-th row of Ei,k, by Lemma 5, the ciphertext after oper-
ation BKi,k � acc = BKi,k � (0,m) has a noise vector e′ = (e′1, . . . , e

′
q) ∈ Zq,

where e′j is subgaussian with parameter O(||ei,k,j ||2) (note that the noise vector
of (0,m) is 0).

Then by iteratively computing acc ← BKi,k � acc for every i ∈ [n] and
k ∈ [w], for the noise vector (e1, . . . , eq) of the final VecLWE ciphertext, its entry

ej is subgaussian with parameter
√∑

i∈[n],k∈[w] ||ei,k,ci,k,j ||22 by Pythagorean

additivity and Lemma 5, where j ∈ [q] and ei,k,ci,k,j is the ci,k,j-th row of Ei,k

(here the value of ci,k,j depends on the the permutation φ([2k−1si]q) and j by
Lemma 5). More concisely, let

erj = (e1,1,c1,1,j , . . . , ei,k,ci,k,j , . . . , en,w,cn,k,j ) ∈ Z(N+q)·nwl

to be the concatenation of the individual noise vectors ei,k,ci,k,j , then the final
result acc has a noise vector (e1, . . . , eq) whose entry ej is subgaussian with
parameter O(||erj ||2).

By Lemma 1, the l2 norm of erj is within O(s
√

(N + q) · nwl) except with
probability 2−Ω((N+q)·nwl), which means that the final ciphertext error is sub-
gaussian with parameter O(||er1||2) = O(s

√
(N + q) · nwl), except with proba-

bility 2−Ω((N+q)·nwl). ut

By above lemma, we can see that the error growth factor isO(
√

(N + q) · nwl).
By setting the modulus such that ∆′/2 is larger than the final noise, we can e-
valuate a function func ◦LWE−1s () on the ciphertext c, where func is a known
arbitrary function (mapping) and LWE−1s () is the decryption function.

4.4 Security

Given a security parameter λ, we analyze the security of our scheme. Firstly, it
is easy to see that our bootstrapping procedure can be secure under the security
of the DLWE assumption and circular security. Recall that for the MatGSW

encryption ciphertext, MatGSWSK(M ∈ {0, 1}q×q) ∈ Z(N+q)×(N+q)·l
Q where

l = dlog2Qe, and the error distribution χ over Z is subgaussian with parameter
s. For the LWE ciphertext c ∈ Zn+1

q to be bootstrapped, by [10], we can set

q = Õ(λ) and d = n · w = Õ(λ), where w = dlog2qe. For the output message
space parameter h, we set h = O(1) (this parameter can be set larger at the
expense of security strength).
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Theorem 2. Our bootstrapping scheme can be instantiated to be correct and se-
cure assuming the quantum worst-case hardness of approximating GapSVPÕ(Nλ)

and SIVPÕ(Nλ), or the classical worst-case hardness of approximating GapSV-
PÕ(N1.5λ) on any N dimensional lattice.

Proof. To rely on the quantum worst-case hardness of LWE, we need to set s =
Θ(
√
N) by [30]. If we choose N < q, by Lemma 7, for the correct of the scheme

we need to take a large Q = Ω̃(λ
√
N logQ), and some Q = Õ(λ

√
N) suffices.

Therefore the LWE inverse error rate is 1/α = Q/s = Õ(λ), and by Theorem 1
the security of our scheme is reduced to GapSVPÕ(Nλ) and SIVPÕ(Nλ). For the

classical security, recall that Q = Ω̃(λ
√
NlogQ), and we need to set Q = 2N/2,

then the inverse error rate is 1/α = Q/s = Õ(λ
√
N). So by Theorem 1 the

security of our scheme is reduced to the classical hardness of GapSVPÕ(N1.5λ).
ut

For poly(N)-factor approximations to GapSVP and SIVP onN -dimensional
lattices, it take 2Ω(N) times for all known algorithms. We need to choose N =
Θ(λ) for 2λ hardness, and this yields a approximation factor of Õ(N2) in the
quantum case and Õ(N2.5) in the classical case. Those approximation factor are
smaller than the result given by Hiromasa, Abe and Okamoto [24], which are
Õ(N2.5) in the quantum case and Õ(N3) in the classical case.

At the expense of efficiency, we can further set N > q to optimize the ap-
proximation factor. In the case N > q, by Lemma 7, for the correctness of the
scheme we need to select Q = Ω̃(N

√
λlogQ); some Q = Õ(N

√
λ) suffices. Sim-

ilar with above analysis, for any const ε > 0, by choosing the dimension to be
N = λ1/ε, we obtain a factor as small as Õ(N1.5+ε/2) in the quantum case, and
Õ(N2+ε/2) in the classical case. Note that this result achieves the best factor in
prior works on bootstrapping of standard lattice-based FHE, i.e. Brakerski and
Vaikuntanathan’s work [12]. Since the standard lattice-based public-key encryp-
tion can be based on the hardness of approximating the problem to Õ(N1.5)
using the quantum reduction [30] and Õ(N2) using the classical reduction [28],
our bootstrapping scheme can be as secure as the standard lattice-based PKE.

4.5 Time and Space Complexity

For the time and space complexity, let d = nw, then the time complexity of our
scheme is O(dl ·(N+q)2) and the space complexity for the bootstrapping keys is
about dl2 · (N + q)2. We can make a comparison with the bootstrapping scheme
of Hiromasa, Abe and Okamoto [24]. The time complexity of their scheme is
about O(tl2 · (d + q)(N + r)3) and the space complexity for the bootstrapping
keys is about (3td+ qt+ 1)l2 · (N + r)2, where parameters N, q, l, d is same with
our scheme, and t = O(log λ/ log log λ), r = O(log λ) are parameters for the Chi-
nese Reminder Theorem. When setting q = Õ(λ), d = Õ(λ) (by [11]), N = Θ(λ),
Q = Õ(λ

√
N) for our scheme and Q = Õ(λN) for Hiromasa, Abe and Okamoto’s

scheme, our scheme is time-efficient by about a O(λ logQ/ log λ log log λ) = O(λ)
factor and a slightly space growth with a factor O(log λ log log λ). For a stronger
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assumption parameter N = Õ(λ), our scheme is time-efficient by about a Õ(λ)
factor and space-reduced by a O(t) = O(log λ/ log log λ) factor. A detailed com-
parison for N = Θ(λ) is given in Table 1.

Table 1. Comparison among LWE-based GSW-type bootstrapping schemes, including
Alperin-Sheriff and Peikert’s work [1], Hiromasa, Abe and Okamoto’s work [24] and this
work. For the parameters N, q, l, t, d,Q, see Section 4.5. λ is the security parameter.
Here N is set to be Θ(λ). In the “Approximation Factor” column, it is the lattice
approximation factor in the quantum security, and in the “Large Gates?” column, it
means that whether the scheme is allowed to evaluate large FHE gates within once
bootstrapping.

Scheme Time Complexity Storage
Approximation Large

Factor Gates?

[1]
O(trN3l2 · (dr + q)) dtrl2 · (N + 1)2

Õ(N3) ×
= O(λ4 log6 λ log log λ) = O(λ3 log5 λ log log λ)

[24]
O(tl2 · (d+ q)(N + r)3) l2 · (3td+ qt+ 1)(N + r)2

Õ(N2.5) ×
= O(λ4 log4 λ log log λ) = O(λ3 log4 λ log log λ)

This work
O(dl · (N + q)2) dl2 · (N + q)2

Õ(N2) X
= O(λ3 log4 λ log log λ) = O(λ3 log5 λ log log2 λ)

5 Determining the Function func

Note that by Lemma 6, using an LWE ciphertext c which decrypts to a message
m̃ ∈ Zt, we can evaluate a known function func : Zt → Zh on m̃. So for a certain
gate, like Boolean gates, LUT function, max/min function or comparison, we just
need to make clear func : Zt → Zh. Note that similar functions has studied in
related works [20,5,13,17], so the related technology here is a simple promotion.
We present how to evaluate Boolean gates and complex functions in our scheme
in the following.

5.1 Boolean Gates

Here we describe how to homomorphically compute Boolean gates for ciphertexts
c0 = LWEs(m̃0 · b q4c) and c1 = LWEs(m̃1 · b q4c), where m̃0, m̃1 ∈ {0, 1}. The
input message space is Zt = Z4, and we set the output message space to be
Zh = Z4. We specify the function (mapping) func : Zt → Zh for some Boolean
gates such as OR,AND,XOR, etc, in Table 2.

We take the OR gate as an example. For our scheme, first set the func
in our Bootstrap scheme as follow: func assigns {0} → 0 and {1, 2} → 1.
Then given tow ciphertexts c0 = LWEs(m̃0 · b q4c) and c1 = LWEs(m̃1 · b q4c),
where m̃0, m̃1 ∈ {0, 1}, after generating the bootstrapping keys BootKey ←
BootKeyGen(SK, s), computes

c′ ← Bootstrap(BootKey, c1 + c2).
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Note that the addition induces only a small error, so the input ciphertext of
our scheme is set to be c0 + c1, which is an encryption of (m̃0 + m̃1) · b q4c. So if
m̃0 = 0 and m̃1 = 0, c0+c1 encrypts 0, and by func definition (i.e. func assigns
{0} → 0) and Lemma 6, the final output of our scheme c′ is an encryption of
func(0) = 0. For other cases (i.e. m̃0 + m̃1 > 0), the output is an encryption
of 1. By this way, we realize to evaluate the OR gate. The correctness of other
operations can also be easily checked. For the NOT gate, by the definition of
LWE encryption, i.e.

c0 = (a, [〈a, s〉+ e+ m̃0 · q/4]q) ∈ Zn+1
q ,

it is only need to set (0, q/4) − c0 to evaluate NOT gate, and this operation
don’t induce additional errors.

The majority gate can also be easily evaluated in our scheme. On input 3
bits m̃0, m̃1, m̃2 ∈ {0, 1}, a majority gate outputs 1 if at least two of the inputs
are 1, and 0 if at least two of the inputs are zero. For the majority gate, the
function func just needs to assign {0, 1} → 0, {2, 3} → 1.

Table 2. Function func for some Boolean gates

Gate Input c func func(LWE−1
s (c))

OR c0 + c1 {0} → 0; {1, 2} → 1 OR(m̃0, m̃1)

XOR c0 + c1 {0, 2} → 0; {1} → 1 XOR(m̃0, m̃1)

AND c0 + c1 {0, 1} → 0; {2} → 1 AND(m̃0, m̃1)

NOR c0 + c1 {1, 2} → 0; {0} → 1 NOR(m̃0, m̃1)

XNOR c0 + c1 {1} → 0; {0, 2} → 1 XNOR(m̃0, m̃1)

NAND c0 + c1 {2} → 0; {0, 1} → 1 NAND(m̃0, m̃1)

NOT (0, q/4)− c0 no bootstrapping NOT (m̃0)

5.2 Large FHE gates

Our scheme can be used to compute more complex operations on large module
plaintexts efficiently. Firstly note that since we need set ∆′/2 = bQ/hc to be
bigger than the final error, for a large output message space Zh, the security
strength of our scheme is reduced. For example if we set h = Θ(

√
N), the ap-

proximate factor in Theorem 2 will amplifies to Õ(N1.5λ) in the quantum case
and Õ(N2λ) in the classical case.

LUT function. A Look Up Table (LUT) is an array that replaces runtime
computation with a simpler array indexing operation. We show how to evaluate
LUT functions over encrypted data. A boolean LUT is defined as fLUT : Zr2 →
Zv2. For ciphertexts {c1, . . . , cr} where ci = LWEs(∆ · m̃i), m̃i ∈ {0, 1} and
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∆ = b q2r c, the goal is to compute the encryptions of a set of bits {z1, . . . , zv} ←
fLUT ({m̃1, . . . , m̃r}), where z1, . . . , zv ∈ {0, 1}.

We can follow the strategy in [13]. One can first compute
∑
i∈[r] 2i−1 · ci,

which is an encryption of m̃ =
∑
i∈[r] 2i−1 · m̃i. Obviously for every i ∈ [v], there

is a mapping funci(m̃) → zi that can compute every bit zi from m̃, so we can
evaluate every funci separately to obtain the encryption for every zi. For every
output bit of LUT functions, there needs one bootstrapping operation, and in
every bootstrapping, set the mapping func as funci : Z2r → Z2, which outputs
the i-th bit of the LUT function. Then after generating the bootstrapping keys
BootKey← BootKeyGen(SK, s), computes

c′ ← Bootstrap(BootKey,
∑
i∈[r]

2i−1 · ci).

By Lemma 6, c′ is an encryption of funci(
∑
i∈[r] 2i−1 · m̃i). To evaluate a LUT

function with v output bits, it costs v functional bootstrappings.
Our scheme can evaluate some special functions more efficiently. Firstly note

that one can evaluate the max/min function and comparison using the LUT
function described above. To homomorphically compute the max/min function
of two r bits numbers, it needs to evaluate a 2r-to-r LUT function, which costs
r functional bootstrappings and the input message space needs set to be Z22r .
At the same time, to homomorphically compare two r bits numbers, it needs
to evaluate a 2r-to-1 LUT function, which costs one functional bootstrapping,
and the input message space needs to be Z22r . Here we described a method that
can homomorphically compute max/min function and comparison using just one
functional bootstrapping and the input message space just needs set to be Z2r+1 .

Max/Min function. We show how to homomorphically compute max/min
function for two numbers. Firstly, we give an operation MaxCon(c, x, y) that
can homomorphically compute an encryption of m̃ if m̃ > x, and an encryption
of y otherwise, where c = LWEs(∆ · m̃), m̃ ∈ Zt, ∆ = b qt c and x, y ∈ Zt are
two const numbers. In our Bootstrap procedure, the input and output message
space are both Zt; the input ciphertext is c and for the function func, we set it
to be m̃← func(m̃) if m̃ > x, and y ← func(m̃) otherwise. Note that if we set
x = y, we can homomorphically compute the smaller value between elements m̃
and y. Similarly, we can define MinCon(c, x, y) to homomorphically compute
an encryption of m̃ if m̃ ≤ x, and an encryption of y otherwise.

Then for c0 = LWEs(∆ · m̃0) and c1 = LWEs(∆ · m̃0) where m̃0, m̃1 ∈ Zb t2 c
and ∆ = b qt c, we can obtain an encryption for the smaller one between m̃0 and
m̃1 by computing

MIN(c0, c1) = MaxCon(c0 − c1, b
t

2
c, 0) + c1.

If m̃0 < m̃1, we have [m̃0 − m̃1]t > b t2c, then MaxCon(c0 − c1, b t2c, 0) + c1 is
an encryption of [m̃0− m̃1 + m̃1]t = m̃0; if m̃0 ≥ m̃1, we have [m̃0− m̃1]t < b t2c,
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then the result is an encryption of m̃1. Similarly, we can define

MAX(c0, c1) = MinCon(c0 − c1, b
t

2
c, 0) + c1

to homomorphically compute the bigger one between elements m̃0 ∈ Zb t2 c and
m̃1 ∈ Zb t2 c.

Comparison. Next we show how to homomorphically compare two numbers.
For c0 = LWEs(∆ ·m̃0) and c1 = LWEs(∆ ·m̃0) where m̃0, m̃1 ∈ Zb t2 c and ∆ =

b qt c, we define the comparison function as Compare(c0, c1), which outputs an
encryption of 1 if m̃0 ≥ m̃1 and an encryption of 0 otherwise. In the Bootstrap
procedure, the input ciphertext of our bootstrapping scheme is set to be c0−c1;
the output message space is set to be Z2. For function func, set 1← func(m̃) if
m̃ ≤ b t2c, and 0← func(m̃) otherwise. Note that the input of our bootstrapping
function is an encryption of [m̃0 − m̃1]t. Then if m̃0 ≥ m̃1, we have that [m̃0 −
m̃1]t ≤ b t2c and the output ciphertext is an encryption of message 1; if m̃0 < m̃1,
there is [m̃0 − m̃1]t > b t2c and the output ciphertext decrypts to 0.

Note that to evaluate max/min function and comparison, we just need one
functional bootstrapping, and the input message space just needs set to be Z2r+1

where r is the bit size of the input numbers.

Arbitrary Functions. Another sample example is to homomorphically com-
pute an function

yi ← map(x) when x ∈ Ai
where x ∈ Zt =

⋃
Ai and yi ∈ Zh. In the Bootstrap procedure, we just need

to set the input message space and the output message space as Zt and Zh,
respectively, and then let yi ← func(x) if x ∈ Ai. We need just one function-
al bootstrapping to evaluate this function, compared with dlog2he functional
bootstrappings if applying the LUT to realized this function.

6 Discussion and Conclusion

In this paper, we propose an optimized bootstrapping homomorphic encryption
from LWE. We decrease the approximation factor of the underlying worst-case
lattice factor assumption from Õ(N2.5) to Õ(N2). We are the first to present
how to perform more operations per bootstrapping in the LWE setting.

Discussions. It is an inherent problem for the implementation of an LWE-based
bootstrapping scheme (with a huge storage space consumption). Although we
have implemented the scheme for a small parameter, it is only used to verify
the correctness of the scheme. There is still a long way to realize the practical
application of the LWE-based bootstrapping scheme.

Note that our scheme uses the homomorphic matrix-vector multiplication
instead of homomorphic matrix-matrix multiplication, which improves the ef-
ficiency of the scheme, but with a large dimension of the matrix/vector, the
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ciphertext expansion ratio is also very large. When the calculation of complex
functions is not considered, similar to the scheme in [1,24], we can further use the
Chinese Remainder Theorem (CRT) to improve the efficiency. That is, set q as
the product of some primes, and then encrypt the matrix under each small prime
dimension separately, which can reduce the ciphertext expansion ratio and im-
prove the efficiency. However, to evaluate large FHE gates, our scheme requires
that the values in the vector are some special encoding values, and we need the
vector to have the “cyclic rotation” property when the permutation matrix is
multiplied with the vector. After using the CRT, these special properties of the
vector will be destroyed. So there is a trade-off, that is, if we want to further
use the CRT to improve the efficiency and storage, we can not evaluate large
FHE gates, and if we want our scheme to have a function of computing complex
functions, we can not use the CRT. In Table 1, the reason why our scheme is
relatively poor in storage is that we don’t use CRT for optimization. However, it
is because we don’t use CRT, we can apply our new method to operate the non-
linear part of the decryption and hence the extra error accumulation is avoided
(compared with [1,24]), which leads to the best lattice SVP approximate factor
in Table 1. An open problem is how to use the Chinese Remainder Theorem to
further optimizing the scheme while making the scheme can evaluate large FHE
gates.
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