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Abstract. In an electronic voting procedure, mixing networks are used
to ensure anonymity of the casted votes. Each node of the network re-
encrypts the input list of ciphertexts and randomly permutes it in a
process named shuffle, and must prove (in zero-knowledge) that the pro-
cess was applied honestly. To maintain security of such a process in a
post-quantum scenario, new proofs are based on different mathemati-
cal assumptions, such as lattice-based problems. Nonetheless, the best
lattice-based protocols to ensure verifiable shuffling have linear commu-
nication complexity on N , the number of shuffled ciphertexts.
In this paper we propose the first sub-linear (on N) post-quantum zero-
knowledge argument for the correctness of a shuffle, for which we have
mainly used two ideas: arithmetic circuit satisfiability results from [6]
and Beneš networks to model a permutation of N elements. The achieved
communication complexity of our protocol with respect to N is O(

√
N log2(N)),

but we will also highlight its dependency on other important parameters
of the underlying lattice ingredients.

Keywords: electronic voting, verifiable shuffle, lattice-based cryptography, zero-
knowledge

1 Introduction

E-voting has already been used in real political elections in Norway, Estonia,
Switzerland and Australia, among other countries. It could provide voters with
the ability to cast votes from anywhere, aid voters with disabilities to cast their
votes autonomously, reduce the logistic costs of an election, obtain accurate
vote counts faster and in general improve the flexibility of democratic processes.
However we can only take advantage of these benefits if the election system is
publicly trusted, for which it has to satisfy strong security requirements.

Two key requirements of e-voting are privacy and verifiability. On the one
hand each individual voting option has to remain secret, and only the final tally
should be revealed. This is usually addressed encrypting votes with an election
public key, whose associated secret key is only known by the electoral board and
used for the tally. On the other hand, verifiability ensures the integrity of the



election. It should be guaranteed that the final result has not been manipulated
and corresponds to the options chosen by eligible voters. Whenever a voter wants
to remotely cast an encrypted vote she digitally signs it before sending it to the
voting server, that verifies the electronic signature before adding it to a virtual
ballot box that will be published in a so called Bulletin Board, enabling everyone
to verify that tallied votes come, with a one to one correspondence, from eligible
voters. Systems that allow anyone to verify the integrity of the election using only
public information without requiring additional interaction are called universally
verifiable.

At this point we have an apparent contradiction, as the link established by
the signature between the voter and its encrypted vote seems to prevent the
desired level of privacy. A solution called mixing networks (or mix-nets) was
presented by Chaum in its seminal paper [16] and is currently adopted by all
previously mentioned actual elections. A mix-net is composed of a set of mixing
nodes (or mix-nodes) that consecutively permute and re-encrypt/decrypt the
output of the previous mix-node. This operation is called a shuffle. As long
as one of these nodes is honest and keeps its permutation secret it should be
infeasible to link the identity of the voter that signed one of the input encrypted
votes with its value decrypted from the output of the mix-net, thus achieving
privacy again. Verifiability can be enforced asking the mix-nodes to publish a
zero-knowledge proof of well behaviour, in this case proving that they know a
permutation and the randomness used such that their respective output is just a
permuted re-encryption of its input, without leaking any additional information.

Since the first universally verifiable mix-net was presented by Sako and Kilian
in 1995 [32] many proposals have been published with different kind of improve-
ments, that will be discussed in detail in the following subsection 1.1. However
there is still one important issue that has to be addressed, all schemes that guar-
antee universal verifiability publishing proofs of a shuffle in a Bulletin Board need
to ensure the long term security of the information that is being published. This
is particularly important as many constructions base their privacy on hardness
assumptions about problems such as the Discrete Logarithm problem, that is
known to be efficiently solvable by a quantum computer using Shor’s algorithm
[33]. Even if powerful enough quantum computers are not available now, an ad-
versary could keep this public information until he has the ability to break the
security with a quantum computer in the near future. Voting data is specially
sensitive information that should remain secret in the long term, while it might
still have political and personal implications. Therefore post-quantum hardness
assumptions that are believed to hold even against a quantum computer should
be used, such as the ones employed by lattice-based, code-based, multivariate
polynomials or hash-based cryptography.

The main goal of this article is to present the first post-quantum proof of a
shuffle with sub-linear size in the number of inputs, that could be used to build
secure mix-nets, guaranteeing long term privacy even in a quantum computing
era.



1.1 State of the Art

The structure of a proof of a shuffle heavily depends on the choice of a way
of representing a permutation. A great variety of approaches appear in the lit-
erature, from applying permutation matrices [22, 21, 26, 37, 35], permutation
networks [2, 3], showing two sets are equal if they are both roots of the same
polynomial [31, 24, 7, 25] or using general arithmetic circuits [13]. Most of the
work, from the very beginning [1, 30], focuses on reducing the size of the proofs
for different scenarios. A comprehensive study of mix-nets and proofs of shuffles
can be found in [27].

However only a handful of post-quantum e-voting proposals have been re-
cently published. Del Pino et al. presented EVOLVE in [19], which uses a some-
what homomorphic encryption scheme to add together several ballots before
decrypting them. This alternative can only work with elections where the result
can be represented as the addition of individual votes, but it can not implement
write-ins, that are easily handled by mix-nets. The same limitation applies to
the recent work [11], which proposes an elegant way of solving some security
issues in [19]. Gjøsteen and Strand also propose the use of fully homomorphic
encryption to construct a decryption circuit in [23], but while theoretically in-
teresting it is still far from efficient. The recent work in [5] proposes a practical
post-quantum e-voting protocol, but under a very strong trust (perhaps unreal-
istic) assumption: the shuffle entity has no access to the channels used by voters
to cast their bots in the ballot box.

Regarding post-quantum mixnets, the universally verifiable mix-nets of Costa
et al. and Strand [17, 34, 18] are both quite impractical, either because of the use
of fully homomorphic encryption or because correctness proofs have linear (in N)
size, with large constants. The only quantum-safe practical mix-net we are aware
of is [10] by Boyen et al., based on a different model that only allows verification
by a (temporarily trusted) auditor, making it not universally verifiable.

The construction of an efficient post-quantum universally verifiable mix-net
is still an open problem. In this paper we provide a significant step presenting
the first such protocol, to shuffle N ciphertexts, with proofs of sub-linear size in
N .

A key ingredient for our protocol is the zero-knowledge proof of satisfiability
of an arithmetic circuit presented in [6] (and recently improved/generalized in
[9]). These proofs achieve post-quantum security properties by using techniques
from lattice-based cryptography, and the size of the proofs is sub-linear in the
number of gates M of the arithmetic circuit, since it is O(

√
M log3(M)) (in the

protocol in [6]). When the soundness property of a zero-knowledge system is sat-
isfied computationally (assuming the hardness of some underlying mathematical
problem) then people often refer to such proofs as arguments of knowledge. The
proofs in [6, 9] and consequently the proof for the correctness of a shuffle that
we present in this paper are indeed arguments of knowledge, but we use both
proofs and arguments to refer to them.



1.2 Arithmetic Circuits for Shuffles

The idea is to use the powerful result of [6], to prove in zero-knowledge that
a shuffle (re-encryption and permutation) has been correctly performed. Let
L = {C1, . . . , CN} be the input list of N ciphertexts for the shuffling node; he is
assumed to re-encrypt each ciphertexts, which leads to L′ = {C ′1, . . . , C ′N} and
then to apply a permutation ρ to the list L′, which leads to L′′ = {D1, . . . , DN},
where Di = C ′ρ(i), for each i = 1, . . . , N . The list L′′ is made public, so the
two lists L and L′′ are available to the verifier of the zero-knowledge proof of a
correct shuffle.

In the case of RLWE-based ciphertexts, the re-encryption step L → L′ can
be easily expressed as an arithmetic circuit, where some secret input wires cor-
respond to the (small) random elements used to re-encrypt each ciphertext. The
number of gates of this first sub-circuit is O(N). The challenge is now to express
the permutation step, that is the statement that list L′′ is a permutation of list
L′, as an arithmetic circuit with a small enough number of gates. Our solution is
to consider the Beneš network that corresponds to that permutation; the circuit
that expresses such Beneš network takes as input the N ciphertexts in L′ along
with a bit b ∈ {0, 1} for each internal 2-in 2-out gate of the Beneš network,
indicating if the two input wires must be switched or not, in the output of that
gate. The final output of the circuit must be the list of N ciphertexts in L′′. The
number of gates of such a circuit is O(N log(N)).

1.3 Our Results

We detail how RLWE ciphertexts must be produced and re-encrypted so that
shuffling nodes must prove, in particular, that the noise introduced when re-
encrypting each ciphertext is small enough (and thus, in the tally phase, there
will not be errors in the decryption of the final ciphertexts). This fact, along with
the correct execution of the re-encryption algorithm and the correct execution of
a permutation expressed by a Beneš network, constitute the arithmetic circuit
to which we apply the results in [6, 9]. Since the number of gates of the circuit
is M ∈ O(N log(N)), the result is a zero-knowledge proof that a shuffle of N
ciphertexts has been correctly applied, with post-quantum security based on the
hardness of well-known lattice problems, and with size sub-linear on N .

1.4 Organization

In Section 2 we review some ingredients of our protocol: RLWE encryption,
lattice-based zero-knowledge proofs of satisfiability of arithmetic circuits and
Beneš networks. Then in Section 3 we propose our protocol, by first describing
the arithmetic circuit that represents a shuffle of N RLWE ciphertexts, and then
by applying to this circuit the construction in [6]. We analyze our protocol in
Section 4, in terms of efficiency and security.



2 Preliminaries

2.1 Ideal Lattices: RLWE Problems and Public Key Encryption

Ideal lattices can be seen as ideals in the polynomial ring R = Z[X]/ 〈f(X)〉,
where the polynomial f(X) = Xn+fnXn−1 +· · ·+f2X+f1 ∈ Z[X]. Usually, for
real cryptographic applications, we will set n a power of 2 and f(X) = Xn + 1
and we will consider the quotient ring Rq = R/qR = Zq[X]/ 〈Xn + 1〉 since this
setting provides several advantages from an implementation point of view.

Let n and q be integers, R = Z[X]/ 〈f(X)〉 with deg(f) = n and Rq =
R/qR. Let χσ be a discrete probability distribution over R (usually a Gaussian
distribution) with parameter σ and a secret polynomial s ∈ Rq.

Definition 1 (Ring Learning With Errors Distribution). The RLWE dis-
tribution Ls,χ over Rq ×Rq is sampled by choosing a R← Rq, e

R← χσ and out-
putting (a, b = a · s+ emod q).

Definition 2 (Search-RLWE Problem). Given m independent samples (ai, bi)
R←

Ls,χ for a fixed uniformly random s, find s.

Definition 3 (Decision-RLWE Problem). Given m independent samples
(ai, bi), decide whether this samples are distributed according to Ls,χσ for a fixed
uniformly random s; or according to a uniform distribution over Rq ×Rq.

Hardness of RLWE comes for large enough choices of q. Solving certain in-
stantiations of Search-RLWE is as hard as quantumly solving an approximate
Shortest Vector Problem on an ideal lattice.

The problem remains to be hard when the secret s is chosen from the error
distribution instead of uniformly at random (see [4] for the reduction).

RLWE encryption scheme. This scheme, first proposed by Lyubashevsky,
Peikert and Regev in [29], works as follows:

Definition 4 (RLWE encryption scheme). We consider the ring Rq =
Zq[X]/ 〈Xn + 1〉 with n a power of 2 and q a prime. Messages are strings of
n bits encoded as a polynomial in Rq. An error distribution χ must be chosen,
producing “small” elements of Rq.

– Gen(1λ): Compute suitable n and q according to λ. Choose a
R← Rq and

small s, e R← χ. Output sk = s and pk = (a, b = a · s+ e) ∈ Rq ×Rq.
– Enc(pk, z, r, e1, e2): To encrypt a message z ∈ {0, 1}n we view it as an

element in Rq by using its bits as the 0-1 coefficients of a polynomial. Then
we choose small elements r, e1, e2

R← χ and output (u, v) = (r · a+ e1, b · r +
e2 +

⌊
q
2
⌉
z) ∈ Rq ×Rq



– Dec(sk, (u, v)): Compute:

v − u · s = b · r + e2 +
⌊q

2

⌉
z − (r · a+ e1) · s

= (a · s+ e) · r + e2 +
⌊q

2

⌉
z − r · a · s− e1 · s

= a · s · r + e · r + e2 +
⌊q

2

⌉
z − r · a · s− e1 · s

= (e · r − e1 · s+ e2) +
⌊q

2

⌉
z

≈
⌊q

2

⌉
z

It has been proved that the RLWE encryption scheme is IND-CPA secure,
assuming the hardness of RLWE problems [29]. The usual choice for the error
distribution χ consists in running n independent instances (one for each com-
ponent, if we see elements of Rq as vectors in (Zq)n) of a discrete Gaussian
distribution, centered at 0 and with parameter σ, in Zq.

In this paper we consider truncated Gaussian distributions: we fix a posi-
tive integer k̂ and we check that the output of the Gaussian falls in the set
{−k̂σ, . . . ,−1, 0, 1, . . . , k̂σ}; if this is not the case, we reject this sample and do
a new one. The statistical distance between the resulting truncated distribution
overRq and the non-truncated Gaussian distribution overRq can be bounded by
n·e−k̂2/2 (see for instance [28]). If we take n, k̂ such that this value is negligible in
the security parameter, then we can safely use truncated Gaussian distributions
with the same parameters (q, n, σ) which are considered secure when discrete
Gaussian are employed.

The choices of q and σ determine if the encryption scheme works properly:
they must be chosen to ensure that all the coefficients of e · r − e1 · s + e2 can
be upper-bounded by less than q

4 , in this way the message z is recovered by
rounding each coefficient of v − u · s to 0 or

⌊
q
2
⌉
, whichever is closest modulo

q. Also, this scheme allows to define a new algorithm Re-Enc to re-encrypt
previously encrypted data. This algorithm works as follows:

– Re-Enc(pk, (u, v), r′, e′1, e′2): To re-encrypt a message z encrypted as (u, v)
we choose small r′, e′1, e′2

R← χσ and output the pair

(u′, v′) = (u, v) + Enc(pk, 0, r′, e′1, e′2) ∈ Rq ×Rq.

Notice that every time we re-encrypt a ciphertext the norm of its noise might
grow, and therefore only a limited number of re-encryptions are allowed. Param-
eters have to be chosen so that the encryption scheme supports at least as many
re-encryptions as the number of mix-nodes of the mix-net (which is known in
advance). Given that this number is typically a fixed small quantity this re-
quirement is usually already satisfied and has no real impact on the parameter
selection.



2.2 Zero-Knowledge Arguments for the Satisfiability of Arithmetic
Circuits

An arithmetic circuit over a field Zq is a directed acyclic graph whose vertices
are called gates and edges are called wires. Gates of in-degree 0 are called input
gates and usually are associated to variables or constants. The remaining gates
are either multiplication gates or addition gates.

The general idea of the protocol presented by Baum et al. [6] to prove the
satisfiability of an arithmetic circuit over Zq is summarized below:

1. the first idea is to arrange the O(M) wire values of the circuit into a (more
or less square) matrix with O(

√
M) rows and O(

√
M) columns;

2. using an appropriate lattice-based homomorphic commitment scheme (with
outputs being vectors of elements in ZQ for some prime number Q >> q),
one commit to each row of the above-mentioned matrix;

3. using techniques from [8], one reduces the satisfiability of the arithmetic cir-
cuit to the satisfiability of linear-algebraic statements over committed ma-
trices;

4. the last step consists in using a new zero-knowledge proof, designed by them-
selves, to prove the satisfiability of such algebraic statements (products and
additions of matrices) in an efficient way, with the proofs being as short as
possible.

Authors of [6] show a possible way of choosing the parameters of the lat-
tice, the commitment scheme and the dimensions of the matrix so that the
global protocol to prove satisfiability of the arithmetic circuit has communi-
cation complexity O(

√
M log3(M) log(Q)). The protocol involves 9 rounds of

interaction between the prover and the verifier. The security (including compu-
tational soundness) is based on the hardness of both the Short Integer Solution
(SIS) and the Learning With Errors (LWE) problems. For the security proof to
be valid, they need Q ≈ q5.

2.3 Beneš Networks

We will use as a model a permutation network called Beneš network proposed
by Abraham Waksman in [36]. The use of Beneš networks is not new in cryp-
tography, as early results from Masayuki Abe [2] already considered these con-
structions to apply them to mix-nets. Nevertheless, the asymptotic cost of these
solutions were usually worse than others, and they were considered inefficient.
In this paper we see that the recent advances in the area of zero-knowledge
proofs/arguments for satisfiability of arithmetic circuits may give a new oppor-
tunity to this kind of constructions.

Formally, a permutation network is an acyclic graph with N inputs and N
outputs where vertices have in-degree and out-degree equal to 2. These vertices
are called switch gates and each of them has a special input b ∈ {0, 1}, which
indicates if the two inputs are switched or if they remain in the same order (see
figure 1).



Fig. 1. Switch gate

Beneš networks are constructed recursively. A 2 × 2 Beneš network is just
a switch gate, and it is trivial that a switch gate models every permutation of
2 elements, namely the identity if b = 0 and a switch if b = 1. Now we can
construct a 2k × 2k network using two 2k−1 × 2k−1 Beneš sub-networks and 2k
switch gates, that will be able to perform whichever permutation of 2k elements.

An easy induction yields that for N = 2k, to craft a N ×N network we will
need 2 log2(N) − 1 stages of N/2 switch gates each, therefore an O(N log(N))
amount of switch gates. Beneš networks easily model any of the N ! permutations
without deadlocks (i.e. for each wire only travels one value). Besides, Beneš
networks can be extended to arbitrary sizes, and not just powers of 2 [15].

One could imagine that to perform the permutation the prover could just
choose the switch bit of each gate uniformly at random from {0, 1}, and let
the circuit apply the resulting permutation. This will not be correct, since in
a shuffle every permutation of N elements must have the same probability to
appear. The random choosing of the bits implies that some permutation will
appear more often than others, so the choice is not uniform, as shown in [3].
Therefore, if we denote by SN the set of permutations of N elements, the prover
must first choose π R← SN , and then run an algorithm to set the bits accordingly.
These algorithms are called routing algorithms and have a best known complexity
of O(N log(N)), such as [14], so it does not affect the asymptotic complexity of
the prover.

3 The Proposed Protocol

3.1 The Circuit that Encodes a Shuffle

A shuffling node receives as input a list of N ciphertexts L = {C1, . . . , CN}.
He first re-encrypts each ciphertext Ci = (ui, vi) using the protocol C ′i =
(u′i, v′i) ← Re-Enc(pk, (ui, vi), r′i, e′1,i, e′2,i), which leads to an intermediate list
L′ = {C ′1, . . . , C ′N}, and then he applies a random permutation ρ ∈ SN to L′,
which leads to L′′ = {D1, . . . , DN}, where Di = C ′ρ(i), for each i = 1, . . . , N . The
list L′′ is the output of the whole shuffling process (along with the correctness
proof that we will describe in this section).

The shuffling node computes the Beneš network that represents the secret
permutation ρ, that is, an assignment b1, b2, . . . , bK of bits for each of the K
switch gates of the network, where b` ∈ {0, 1}, for all ` = 1, . . . ,K.



Note that we separate the shuffling in two well-differentiated parts / circuits,
one for the re-encryption and one for the permutation. An alternative solution
(used for instance in [12]) would be to add a re-randomization step in each
switch gate of the Beneš network. However, the size of the global circuit for
the shuffle is smaller with our solution: it contains less re-randomization / re-
encryption gates, O(N) than the O(N logN) re-randomization gates that would
be required in this alternative solution.

All the elements involved in the encryption scheme are polynomials in the
ring Rq of degree at most n−1, so we see each element as a tuple of n elements in
the field Zq underlying the arithmetic circuit that we will consider. For instance,
ui ↔ (ui,0, . . . , ui,n−1).

The public inputs of the arithmetic circuit are (the Zq components of) the N
ciphertexts in L = {C1, . . . , CN} and the N ciphertexts in L′′ = {D1, . . . , DN}.
So, counting elements in the field Zq of the circuit, we have 4nN public inputs.

The secret inputs of the arithmetic circuit are:

(i) (The Zq components of) theN triples of noise (r′i, e′1,i, e′2,i) used to re-encrypt
each ciphertext Ci, which means 3nN elements in Zq,

(ii) The K bits b1, . . . , bK for the K switching gates of the Beneš network; we
recall that K ∈ O(N log(N)).

What does our circuit Cshuffle do? Essentially, three different things:

1. Check that the components of the noise are small; for instance, if r′i ↔
(r′i,0, . . . , r′i,n−1), then the circuit needs to check that r′i,j ∈ {−k̂σ, . . . ,−1, 0, 1, . . . , k̂σ} ⊂
Zq, for all j = 0, . . . , n−1. This checking is encoded as the arithmetic circuit
equality (r′i,j + k̂σ) · . . . · (r′i,j + 1) · r′i,j · (r′i,j − 1) · . . . · (r′i,j − k̂σ) = 0, in
Zq. Since this has to be done for each i = 1, . . . , N , each j = 0, . . . , n − 1
and each element in the noise triple, we have a circuit with 6k̂σnN gates. If
some checking fails, the arithmetic circuit is not satisfied.

2. Check that each secret input b` is a bit, that is, check that b` · (1− b`) = 0 in
Zq, for all ` = 1, . . . ,K. These circuits consist of 2K ∈ O(N log(N)) gates.
If some checking fails, the arithmetic circuit is not satisfied.

3. Check that the Beneš network, when applied to the result of re-encrypting
the ciphertexts in L, produces the ciphertexts in L′′. This consists in two
phases, one for re-encryption and one for permutation:
(a) re-encryption circuit: each re-encryption C ′i = (u′i, v′i) ← Re-Enc(pk,

(ui, vi), r′i, e′1,i, e′2,i) essentially consists in doing two polynomial multi-
plications and two polynomial additions, in the ring Rq. If we implement
these operations with the classical method, this means O(n2) gates for
each re-encryption, as an arithmetic circuit over Zq. The complexity of
this circuit can be slightly improved when multiplying polynomials if
we use Karatsuba’s algorithm. Notice that this would imply that the
output is the product of the polynomials over Zq[X], which has (at
most) 2n − 1 monomials. We can reduce this resulting polynomial into
Rq = Zq[X]/ 〈Xn + 1〉 again with n − 1 subtractions, since Xn = −1.



In this case, if the polynomials have degree a power of 2, the number of
integer multiplications becomes O(nlog2 3).

(b) permutation circuit: the same permutation must be applied to all the
n components of each of the two elements (u′i, v′i) of a re-encrypted ci-
phertext C ′i. Inside the Beneš network, each switch gate, with bit in-
put b ∈ {0, 1}, couple of inputs (u1, u2) ∈ (Zq)2 and couple of outputs
(v1, v2) ∈ (Zq)2, just consists in applying the following operation

v1 = (1− b) · u1 + b · u2 mod q
v2 = (1− b) · u2 + b · u1 mod q

Therefore, the number of gates of the arithmetic circuit for the global
Beneš network is 12nK ∈ O(nN log(N)).

The outputs of these two phases are then compared with the list L′′. If all
the elements are equal, then the arithmetic circuit is satisfied.

The number M of gates of the complete arithmetic circuit Cshuffle is thus

M ∈ O
(
N ·

(
nk̂σ + nlog2 3 + n log(N)

) )
3.2 Non-Interactive Proof of Circuit Satisfiability, with Fiat-Shamir

The proof of satisfiability of an arithmetic circuit in [6] is an interactive protocol
between the prover (the shuffling node, in our case) and a verifier. The protocol
consists in 9 rounds of communication. The amount of information exchanged
between the prover and the verifier is O(

√
M log(M)) elements of ZQ, where

Q ≈ q5, for an arithmetic circuit with M gates operating in the field Zq.
In our setting of producing a publicly verifiable proof of correctness of a

shuffle, interaction is not permitted: the shuffling node must produce a proof π
without interacting with the (possibly unknown, yet) verifier.

The standard way of transforming such an interactive protocol into a non-
interactive one is to use the Fiat-Shamir paradigm: the challenges sent from the
verifier to the prover are replaced with values that are computed by the own
prover, applying a secure hash function to the statement of the proof and the
values exchanged in the previous rounds of communication. The length of the
resulting proof π is thus equivalent to the amount of information exchanged in
the interactive version; in our case, π contains O(

√
M log(M)) elements of ZQ.

We emphasize here that relaying in the Fiat-Shamir transformation makes
the protocol secure in the ROM, but not in the QROM (that allows oracle queries
to be in quantum superposition). This is a common choice in the literature as, at
the moment, there has been no natural scheme proven secure in the ROM based
on a quantum-safe problem that has later been proven insecure in the QROM.
Very recent results have shown how, provided some additional constrains are
satisfied, some generic schemes proven secure in the ROM are also secure in the
QROM (see [20] and references therein).



3.3 The Resulting Protocol

All in all, our proposed protocol to prove the correctness of a shuffle works as
follows. The public input of the shuffling node is a list L = {(ui, vi)} of N
ciphertexts. The node then

1. Chooses noise elements (r′i, e′1,i, e′2,i) using the truncated Gaussian distribu-
tion overRq, and computes re-encryptions C ′i = (u′i, v′i)← Re-Enc(pk, (ui, vi), r′i, e′1,i, e′2,i),
for i = 1, . . . , N ,

2. Chooses at random a permutation ρ for the set {1, 2, . . . , N} and defines
Di = C ′ρ(i), for each i = 1, . . . , N ,

3. Finds the bit assignment, {b`}1≤`≤K , for the switch gates of the Beneš net-
work that correspond to permutation ρ,

4. Uses the non-interactive (Fiat-Shamir) version of the satisfiability proof of
an arithmetic circuit to compute a proof π for circuit Cshuffle.

The shuffling node publishes the list L′′ = {D1, . . . , DN} of shuffled cipher-
texts along with the proof π. Any verifier can take the lists L and L′′ and verify
the correctness of the non-interactive zero-knowledge proof π.

4 Analysis: Efficiency, Security and Possible
Improvements

4.1 Complexity Analysis and Possible Choices of Parameters

The goal of this paper was to design a protocol to prove the correctness of a
shuffle of N ciphertexts, with post-quantum security and communication com-
plexity lower than O(N). The protocol proposed in the previous section achieves
this goal.

Regarding communication complexity, the size of the resulting proofs is
O(
√
M log3(M) log(Q)), whereQ is a prime number for the commitments needed

in the construction of [6], roughly Q ≈ q5 and M is the number of gates of the
shuffle circuit:

M ∈ O
(
N ·

(
nk̂σ + nlog2 3 + n log(N)

) )
Therefore, the dependency of the size of a proof on the number N of shuffled

ciphertexts is sub-linear, in the order O(log2(N)
√
N). On the other hand, there

are other parameters to be taken into account: the dimension n of the underlying
ideal lattice and also the values k̂ and σ related to the truncated Gaussian
distribution used to produce the (re-encrypted) ciphertexts have an impact on
the size of a proof π.

Two possible configurations for these parameters, for a security level of 128
bits, could be:

– n = 128 = 27, q = 4099 ≈ 212 (and thus Q ≈ 260), k̂ = 14, σ = 27



– n = 512 = 29, q = 1048583 ≈ 220 (and thus Q ≈ 2100), k̂ = 14, σ = 6

The length of the proofs in the new protocol starts improving over previous
proposals (with linear dependency on N) once N gets big numbers, e.g. one
million ciphertexts. For smaller numbers of ciphertexts, i.e. in small elections, the
result of our new protocol does not significantly improve over existing solutions.

Possible Improvements. The results in [6] for the zero-knowledge argument
of satisfiability of an arithmetic circuit have been improved and generalized in [9].
Authors of this last work give a protocol, for each positive integer d ≥ 1, where
the communication complexity is essentiallyO

(
logQ ·M

1
d+1 · (d3λ log2(M)dλ2)

)
.

The result in [6] can be seen as the particular case d = 1 of the result in [9].
The improvement on the communication complexity with respect to M comes

at the cost of a worse (bigger) value needed for the big prime number Q. Roughly
speaking, Q = O(q4+d) is required.

Our protocol for the proof of a shuffle can be instantiated by using this zero-
knowledge argument, to prove the satisfiability of the shuffle circuit described in
Section 3.1. The result are shorter proofs: each time we increase d by one unit,
we increase the size of the proof by a factor of log(q), but we decrease the size of
the proof by a more significant factor: from d = 1 to d = 2, by a factor O(M1/6),
from d = 1 to d = 3 by a factor O(M1/4), etc.

The idea is thus to take the number of votes in the election (i.e. the number
N of ciphertexts to be shuffled) and then find a secure configuration for the
lattice parameters (q, n, σ, k̂) and a suitable value for d in order to minimize the
size of the produced proofs of a correct shuffle.

4.2 Security Analysis

The security of our proof of correctness of a shuffle follows from the security
properties of the zero-knowledge proof systems for arithmetic circuits in [6, 9]. On
the one hand, the zero-knowledge property of the proof systems implies that an
execution of the proof of a shuffle protocol does not leak any information about
the secret witness, that is about the randomness employed to re-encrypt each
input ciphertext and about the permutation that has been applied (through the
corresponding Beneš network) to the list of re-encrypted ciphertexts. Therefore,
the proof of a shuffle enjoys privacy.

On the other hand, the (computational) soundness property of the proof
systems implies that each accepted execution of the proof of a shuffle protocol
must have been produced by a prover (a shuffling node) who knows a valid
witness for the considered circuit. In the circuit that we have considered in our
protocol, this ensures that:

(i) The noise used for re-encryption is small enough, satisfying the same bound
as the truncated Gaussian distribution, because each coefficient of the noise
polynomials belongs to the set {−k̂σ, . . . ,−1, 0, 1, . . . , k̂σ};



(ii) The bits for the Beneš network are actually bits, bi ∈ {0, 1}, and so a per-
mutation is applied to the list of re-encrypted ciphertexts.

Therefore, if a dishonest shuffling node wants to fool the election by including
false ciphertexts (not coming from a real shuffling of the input ciphertexts) or by
adding too much noise to the ciphertexts (in such a way that the final decryption
of the encrypted votes, in the tally phase, leads to decryption errors), the proof of
correctness of his shuffling will not be accepted, and so this dishonest behaviour
will be detected.

Of course, a dishonest shuffling node can use a non-random permutation
(for instance, the identity) and can impose all the re-encryption noise to be 0,
in such a way that his input list of ciphertexts is exactly equal to the output
list of ciphertexts. Such a behaviour can never be avoided, but once again, we
insist that the general assumption is that at least one of the shuffling nodes is
honest and performs a correct shuffling (re-encryption and permutation), which
is enough to provide anonymity to the election.

Putting together the assumptions for the security of the encryption scheme
and the assumptions for the security of the proof systems in [6, 9], we conclude
that our proposed protocol to prove the correctness of a shuffle is secure under
the assumption that the SIS and the RLWE problems are hard.
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