
Masking Kyber:
First- and Higher-Order Implementations

Joppe W. Bos1, Marc Gourjon1,2, Joost Renes1, Tobias Schneider1 and
Christine van Vredendaal1

1 NXP Semiconductors
2 Hamburg University of Technology, Germany

joppe.bos@nxp.com,marc.gourjon@nxp.com,joost.renes@nxp.com,
tobias.schneider@nxp.com,christine.cloostermans@nxp.com

Abstract. In the final phase of the post-quantum cryptography standardization effort,
the focus has been extended to include the side-channel resistance of the candidates.
While some schemes have been already extensively analyzed in this regard, there is
no such study yet of the finalist Kyber.
In this work, we demonstrate the first completely masked implementation of Kyber
which is protected against first- and higher-order attacks. To the best of our knowledge,
this results in the first higher-order masked implementation of any post-quantum
secure key encapsulation mechanism algorithm. This is realized by introducing
two new techniques. First, we propose a higher-order algorithm for the one-bit
compression operation. This is based on a masked bit-sliced binary-search that can
be applied to prime moduli. Second, we propose a technique which enables one to
compare uncompressed masked polynomials with compressed public polynomials.
This avoids the costly masking of the ciphertext compression while being able to be
instantiated at arbitrary orders.
We show performance results for first-, second- and third-order protected implemen-
tations on the Arm Cortex-M0+ and Cortex-M4F. Notably, our implementation of
first-order masked Kyber decapsulation requires 3.1 million cycles on the Cortex-M4F.
This is a factor 3.5 overhead compared to the unprotected optimized implementation
in pqm4. We experimentally show that the first-order implementation of our new
modules on the Cortex-M0+ is hardened against attacks using 100 000 traces and
mechanically verify the security in a fine-grained leakage model using the verification
tool scVerif.
Keywords: Post-Quantum Cryptography · Masking · Kyber

1 Introduction
Public-key cryptography is based on conjectured-to-be-hard mathematical problems. The
most widely used examples are RSA, based on the integer factorization problem, and
elliptic curve cryptography, based on the discrete logarithm problem. Both are vulnerable
to polynomial-time attacks using a quantum computer [Sho94, PZ03].

To defend against this threat, research is directing its attention to post-quantum
cryptography (PQC). To streamline this effort the USA National Institute of Standards
and Technology (NIST) “has initiated a process to solicit, evaluate, and standardize one or
more quantum-resistant public-key cryptographic algorithms” [Nat] in 2016. In total, 69

Marc Gourjon is partially funded by the VeriSec project 16KIS0601K and the Jupiter project
16ME0231K from the Federal Ministry of Education and Research (BMBF).

mailto:joppe.bos@nxp.com, marc.gourjon@nxp.com, joost.renes@nxp.com,
mailto:tobias.schneider@nxp.com ,christine.cloostermans@nxp.com

2 Masking Kyber: First- and Higher-Order Implementations

complete and proper proposals were submitted for the first evaluation round. In October
2020, 15 candidates were announced to have made it through to a third round. It is
expected that towards the end of 2021 the winners will be announced which become the
NIST PQC standard.

One of the current finalists is Kyber [BDK+18, SAB+20]; this scheme belongs to the
lattice-based key encapsulation mechanism (KEM) family. Among the other finalists,
Saber [DKRV18, DKR+20] and NTRU [HPS98, CDH+20] also fall in this category. Ky-
ber’s hardness is based on the module learning-with-errors problem (M-LWE) in module
lattices [LS15]. Unlike prime factorization and the discrete logarithm problem, the M-LWE
problem is conjectured to be hard to solve even by an adversary who has access to a
full-scale quantum computer.

Initially, the main evaluation criteria focused on the mathematical security and al-
gorithmic design of the proposals. With the advance of the selection of the schemes
also other important characteristics become relevant requirements: one of these is the
implementation security. One important and well-known attack family is Side-Channel
Attacks (SCA). First introduced by Kocher [Koc96], SCAs exploit meta-information when
running the implementation to recover secret-key information. This could be obtained
using, for example, timing analysis, static and dynamic power analysis, electromagnetic
analysis or photoemission analysis.

Not surprisingly, works over the recent years have shown that side-channel attacks
also affect post-quantum cryptography [TE15]. Timing attacks were first shown to be
applicable to lattice-based cryptography by Silverman and Whyte [SW07]. Since then,
it has been demonstrated that an adversary can utilize the non-constant time behav-
ior of Gaussian samplers [BHLY16, EFGT17] as well as a generic cache-attack behav-
ior [BBK+17]. Power analysis attacks on lattices have been shown to be able to attack
even masked implementations of lattice-based cryptography by targeting the number
theoretic transform [PPM17, PP19, XPRO20], message encoding [RBRC20, ACLZ20],
polynomial multiplication [HCY19], error correcting codes [DTVV19], decoders [SRSW20]
or CCA-transform [GJN20, RRCB20].

To mitigate the threat of side-channel attacks various types of countermeasures can be
applied. This research area has grown over the past few decades for classical cryptography.
Techniques to offer side-channel attack resistance for both symmetric and asymmetric
primitives are readily available. Applying countermeasures to cryptographic algorithms
against side-channel attacks has an impact on the run-time of those algorithms. This impact
is even more significant when protecting against higher-order attacks: the situation where
an attacker attempts to combine multiple points to overcome the protection mechanisms.
NIST specifically asked the scientific community to assist in the evaluation of the final
round-3 submissions from a side-channel perspective [AASA+20].

Related Work. One of the most well-known countermeasures against side-channel attacks
is masking [CJRR99, PR13]. While block ciphers are typically completely protected
using Boolean masking, PQC schemes often require a mixture of both arithmetic and
Boolean masking in order to be implemented efficiently. Therefore, efficient and secure
conversions, e.g., [CGV14, BBE+18], between these two masking types play an essential
role in protecting such schemes.

The first masked implementation of a ring-LWE (R-LWE) scheme was presented at
CHES’15 [RRVV15]. It uses the linear properties of polynomial arithmetic with arithmetic
masking combined with a table-based masked decoder. However, the target scheme
analyzed considers only a CPA decryption of R-LWE. In practice, CCA2 security is
required which is typically achieved with the Fujisaki-Okamoto transformation [FO99].
Hence, it is necessary to protect most modules of the resulting CCA scheme and not
only the R-LWE core. An initial first-order masking scheme of a complete KEM similar
to NewHope [BCNS15, ADPS16] was presented at CHES’18 [OSPG18]: building on the

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 3

concepts of [RRVV15] but presenting a new decoding algorithm without tables and, in
addition, proposes to mask all other secret-dependent modules. Similar as for the KEM
case, masked signature schemes have been proposed in [BBE+18, MGTF19, GR19].

The modular nature of KEMs makes it easy to focus on one aspect only which
then can be re-used in multiple other schemes. To utilize this flexibility, [SPOG19]
and [BPO+20] propose higher-order efficient masked implementations of a binomial sampler
and a polynomial comparison as used in many schemes. Note, however, that in a recent
paper by Bhasin, D’Anvers, Heinz, Pöppelman and Van Beirendonck an attack was
presented on a masked implementation of R-LWE implementations [BDH+21]. The
authors show that the first-order masked comparison of [OSPG18] and the higher-order
version of [BPO+20] are vulnerable to side-channel attacks.

A challenge when protecting against side-channel attacks is the fact that many popular
schemes, such as Kyber, use a prime modulus. As observed in both [MGTF19] and [GR19],
this results in a significant performance overhead compared to power-of-two moduli, which
allow more efficient bit-operations and conversions. Due to the usage of such prime moduli
in PQC schemes many prior algorithms needed to be adapted to fit this specific use-case.
One of the other NIST finalists Saber [DKR+20] does use a power-of-two moduli for its
operations, and it has been shown how to turn this into an efficient first-order protected
scheme by Beirendonck, D’Anvers, Karmakar, Balasch and Verbauwhede in [BDK+20]. An
attack on this masked Saber implementation was subsequently presented by Ngo, Dubrova,
Guo and Johansson [NDGJ21] who apply deep learning power analysis in combination with
a lattice reductions step to recover the long-term secret key used. Note that this attack
does not invalidate the first-order masking scheme of [BDK+20], but rather efficiently
exploits higher-order leakages. Therefore, generic solutions to thwart it are increasing the
masking order or the noise level of the implementation.
Contributions. To the best of our knowledge, a complete analysis on how to mask
Kyber has not been conducted. Due to its similarity to other schemes, in particular
NewHope, many masked modules can be re-used from previous works. The masking of the
polynomial arithmetic with arithmetic masking, using a prime modulus q, and the masking
of the symmetric components can be straightforwardly reused from prior implementations.
However, there are some Kyber-specific functions for which no concrete masking scheme
has been proposed yet, or previous solutions are limited or sub-optimal.

In this work, we present the first analysis to realize a complete masked Kyber. Notably,
we show techniques how to construct both first- and higher-order masking schemes for
Kyber with formal proofs in the probing model for the newly-proposed masked components.
In addition, we present an implementation of our masked Kyber algorithms on a Cortex-
M0+ with hardening and experimental validation of the security order for the first-order
secure variants. The security of our first-order implementation is mechanically verified
using the verification tool scVerif and the refined Stateful strong Non-Interference security
notions [BGG+21], capturing concrete execution and device-specific leakage behavior. We
also present a Cortex-M4F implementation using the pqm4 [KRSS19] framework including
several assembly-optimized routines and compare performance numbers to the unprotected
implementation of pqm4.

To achieve a complete first- and higher-order masking of Kyber, we propose new masked
algorithms for the following two modules.

• Masked One-Bit Compression. Kyber requires compressing an arithmetically
masked polynomial to a Boolean-masked bit-string. Prior solutions are either limited
to first-order masking (cf. [OSPG18]) or compression using a modulus which is a
power-of-two (cf. [BDK+20]). We propose a new approach based on a bit-sliced
binary search, which overcomes both these limitations.

• Masked Decompressed Comparison. Kyber uses ciphertext compression. While

4 Masking Kyber: First- and Higher-Order Implementations

this can be efficiently masked for power-of-two moduli (cf. [BDK+20]), it introduces
a non-negligible overhead for prime moduli. We introduce a new approach which
compares uncompressed masked polynomials with compressed public polynomials.
This enables us to avoid having to explicitly mask the ciphertext compression.

Previous works include discussions on how one could extend the techniques to higher order
but no further details are provided. To the best of our knowledge, this paper presents the
first higher-order masked implementation of any PQC KEM.

Our target platforms are two of the most popular Arm Internet-of-Things processors
that offer a 32-bit instruction set. Our first target platform is the most energy-efficient
Arm processor available for constrained embedded applications: the Cortex-M0+. A
popular Internet-of-Things processor which offers a 32-bit instruction set. Our first-order
implementation together with the hardened new modules results in a slowdown of a factor
2.2 compared to an unmasked version of Kyber on this target platform. Furthermore,
we present performance figures for second- and third-order masked implementation as
well. The first-order unhardened implementation with optimized assembly routines for
polynomial arithmetic on the second target platform, the Cortex-M4F, leads to a slowdown
of a factor 3.5 compared to the optimized pqm4 version of Kyber.

We conduct experimental verification of the protection order by measuring the power
consumption of the two proposed modules and assessing their leakage using Test Vector
Leakage Assessment (TVLA) [GGJR+11] using 100 000 measurements. The first-order
hardened implementation of our two new modules does not show any detectable leakage.

2 Background
In this section, we first introduce the PQC KEM Kyber. In the description we focus on
the functions that process secret-key-dependent material and therefore will need to be
masked. For the full description of Kyber, we refer to [SAB+20].

After a high-level description of in-scope Kyber concepts, we detail our SCA notation
and concepts. This serves as a basis for the SCA security analysis of Kyber in Section 3.
Notation. We denote the ring of integers modulo q with Zq = Z/qZ. Centered modular
reduction is denoted by r′ = r mod± q, where − q−1

2 < r′ ≤ q−1
2 , and other reductions

by r′ = r mod q where 0 ≤ r′ < q. The rings Z[X]/(Xn + 1) and Zq[X]/(Xn + 1) are
respectively denoted by and R and Rq. Further, note that rounding to the closest integer
is denoted by b·e (with ties rounded up) and rounding up is denoted by d·e.

We denote vectors and matrices by boldfaced variables b and A. As an ingredient of
Kyber we need to define the centered binomial distribution CBDη, for a positive integer η.
Sampling from this distribution is achieved by sampling the 2η elements of {(ai, bi)}η−1

i=0
uniformly from {0, 1} and outputting

∑η−1
i=0 (ai − bi).

Compression, Decompression and Sampling. As a first building block of Kyber, we
define a function Compressq(x, d) that takes an element x ∈ Zq and outputs an integer
in {0, . . . , 2d − 1}, where d < dlog2(q)e. We furthermore define a function Decompressq,
such that x′ = Decompressq(Compressq(x, d), d) is an element close to x, more specifically
|x′− x mod± q| ≤ Bq := d q

2d+1 c. The functions satisfying these requirements are defined as

Compressq(x, d) = d(2d/q) · xc mod 2d and Decompressq(x, d) = d(q/2d) · xc.

When Compressq or Decompressq is used with x ∈ Rq or x ∈ Rkq , the procedure is applied
to each coefficient individually.

As a second ingredient there is the sampling function CBD which converts uniformly
random bytes into polynomials whose coefficients are distributed as CBDη. This algorithm
is summarized in Algorithm 4 in the Appendix.

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 5

Kyber PKE. Kyber is a module-LWE scheme [BGV12, LS15]. Given a parameter k its
hardness relies on the hardness of distinguishing samples (ai, bi) ∈ Rkq × Rq, where all
elements are uniformly drawn from Rq, from those where the elements of ai are drawn
from a uniform distribution and bi = aTi s+ ei, for a secret s ∈ βkη , and ei ∈ βη is refreshed
for each sample.

The IND-CPA-secure Kyber public-key encryption (PKE) scheme consists of three
algorithms; key generation, encryption (Algorithm 5) and decryption (Algorithm 6).
Kyber.CPAPKE is parameterized by n, k, q, η1, η2, du and dv. The recommended parameter
sets are listed in Table 3 where δ is the failure probability of the decryption. Since the
key generation only processes the secret key once, and masking is commonly aimed at
mitigating multi-trace attacks, we omit its description here.
Kyber KEM. An IND-CCA2-secure KEM Kyber.CCAKEM can be constructed from the
Kyber.CPAPKE scheme by applying a version of the Fujisaki–Okamoto transform [FO99,
HHK17]. The resulting scheme consists of key generation, encapsulation and decapsulation
schemes. The high-level decapsulation Kyber.CCAKEM.Dec is of main interest in this
work since this is the only part affected by our masking techniques: its description is given
in Algorithm 7. Again, we refer to [SAB+20] for details on G,H and KDF.
Side-Channel Notation and Notions. The core concept of masking is to split the
sensitive variables into multiple shares and transform the underlying circuit to process these
shared variables securely. To formally argue about the security provided by these shared
implementations, Ishai, Sahai and Wagner introduced the t-probing model in [ISW03],
which models an adversary that can probe up to t intermediate variables. If every possible
t-tuple of a given masked circuit is independent of the secret, it is considered to be secure
against t-order SCA attacks.

In the following, a sensitive variable x is split into ns secret shares and the resulting
ns-tuple is denoted as x(·). Where applicable, we denote an arithmetic encoding of a
variable x ∈ Zq as x(·)A consisting of ns arithmetic shares x(i)A ∈ Zq, 0 ≤ i < ns such that
x(0)A + . . .+ x(ns−1)A ≡ x mod q. Where applicable, we denote a Boolean encoding of a
variable x ∈ Zk2 as x(·)B consisting of ns Boolean shares x(i)B ∈ Zk2 , 0 ≤ i < ns such that
x(0)B ⊕ . . .⊕ x(ns−1)B = x.

Given a polynomial f ∈ Rq, the i-th coefficient of f is denoted as fi. Given a bitstring
b ∈ Zk2 , the i-th bit of b is denoted as bi.

While proving probing security alone is sufficient for single functions (gadgets in the
following), it does not easily allow arguing about compositions of multiple gadgets at
higher orders (i.e., t > 1). Therefore, it is common to rely on the concepts of t-(Strong)-
Non-Interference (t-(S)NI) as introduced in [BBD+16] to argue about the security of such
constructions. We recall the t-NI and t-SNI security notions as presented in [BCZ18]. We
consider a gadget taking as input a (or multiple) ns-tuple x(·) of shares, and outputting a
(or multiple) ns-tuple y(·). Given a subset I ⊂ [0, ns − 1], we denote by x(I) all elements
x(i) such that i ∈ I.

Definition 1 (t-NI security (from [BBD+15, BBD+16])). Let G be a gadget taking as
input x(·) and outputting y(·). The gadget G is t-NI secure if for any set of tG ≤ t
intermediate variables, there exists a subset I ⊂ [0, ns − 1] of input indices with |I| ≤ tG,
such that the tG intermediate variables can be perfectly simulated from x(I).

Definition 2 (t-SNI security (from [BBD+16])). Let G be a gadget taking as input x(·)

and outputting y(·). The gadget G is t-SNI secure if for any set of tG ≤ t intermediate
variables and any subset O ⊂ [0, ns − 1] of output indices, such that tG + |O| ≤ t, there
exists a subset I ⊂ [0, ns − 1] of input indices with |I| ≤ tG, such that the tG intermediate
variables and the output variables y(O) can be perfectly simulated from x(I).

In Section 3, we prove our new algorithms to be t-SNI with ns = t + 1 to provide
resistance against t-order attacks and allow formal arguing about their composition.

6 Masking Kyber: First- and Higher-Order Implementations

Decompressqc

u
NTT

◦
ŝ

NTT−1

−
v

Compressq
m′ G

h
K̄ ′

r′
PRF

PRF

PRF

CBD

CBD

CBD

NTT ◦
Â

NTT−1

+ u′

◦t̂ NTT−1

+ +

Decompressq v′
Decompressed
Comparison

0
1

z KDF

H

K

Figure 1: An overview of the various components in the Kyber CCA decapsulation. The
components which need to be protected / masked are in color (gray or green) where we
present new approaches for the green components.

3 Masking Kyber at Arbitrary Order
The post-quantum secure key encapsulation mechanism Kyber has a structure similar to
other submissions to the NIST PQC standardization effort such as NewHope and Saber.
In particular, it first applies a CPA decryption to the ciphertext in order to create a
message m. This message is then re-encrypted with the CPA encryption and the resulting
ciphertext is compared with the original input. Depending on the Boolean result of this
comparison, a session-key K is derived either from the message if the ciphertext and the
original input are the same or from a secret fixed value z otherwise.

A graphical overview of the various modules in Kyber decapsulation is given in Fig-
ure 1; the colored components are those that need to be masked. The decapsulation
is deterministic and therefore all modules which process sensitive data that is derived
from the long-term secret s, need to be protected against SCAs. In this section we first
focus on the two green Compressq and DecompressedComparison modules. We present
two new approaches for these modules: masked one-bit compression (Section 3.1) and
masked comparison (Section 3.2). For each, we first provide the basic intuition about their
functionality and then prove their t-SNI security in the probing model. We then put the
components together to achieve a fully masked Kyber in Section 3.3.

3.1 Higher-Order One-Bit Compression
For Saber, where the used modulus is a power-of-two, the compression operation represents
a shift of the sensitive value: this can be efficiently masked using look-up tables as
demonstrated in [BDK+20]. For schemes that use a prime modulus, masking this step is
more involved. The authors of [OSPG18] propose a first-order masked solution based on
two mask conversions: one arithmetic-to-arithmetic (A2A) and one arithmetic-to-Boolean
(A2B) conversion per polynomial coefficient. To improve efficiency and allow extensions to
higher orders, we propose a new approach which works for any modulus and at any order
that requires only one conversion per coefficient.

Informally, the compression to one bit in Kyber splits the domain of each polynomial
coefficient into two disjunctive intervals and assigns a bit value depending on which
interval the value of the coefficient is contained. In Kyber, this is done with the function
Compressq(x, d) =

⌈(
2d/q

)
· x
⌋

mod 2d. The compression to one bit results in the following
mapping

Compressq(x, 1) = d(2/q) · xc mod 2 =
{

1 if q4 < x < 3q
4 ,

0 otherwise.

This computation is trivial without masks, but poses a challenge when q is prime and
masking is required. When the modulus is a power-of-two, less-than-comparisons can be

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 7

Algorithm 1 Masked version of Compressq(x, 1) = Compresss
q(x+

⌊
q
4
⌋

mod q) as used in
Kyber for any order using one A2B conversion per coefficient.
Input: An arithmetic sharing a(·)A of a polynomial a ∈ Zq[X].
Output: A Boolean sharing m′(·)B of the message m′ = Compressq(a, 1) ∈ Z2256 .
1: for i = 0 to 255 do
2: a

(0)A

i = a
(0)A

i +
⌊
q
4
⌋

mod q
3: a

(·)B

i = A2B(a(·)A

i)
4: x(·)B = Bitslice(a(·)B)
5: m′(·)B = SecAND(SecREF(¬x(·)B

8), x(·)B

7)
6: m′(·)B = SecREF(SecXOR(m′(·)B , x

(·)B

8))
7: m′(·)B = SecAND(m′(·)B , x

(·)B

9)
8: m′(·)B = SecAND(m′(·)B , x

(·)B

10)
9: m′(·)B = SecAND(m′(·)B ,¬x(·)B

11)
10: m′(·)B = SecXOR(m′(·)B , x

(·)B

11)
11: return m′(·)B

computed using a B2A conversion [OSPG18]. However, for prime moduli the value space
is not equally divided by specific bits. In this case masking Compressq requires either the
use of pre-computed tables or a dedicated masked-compression algorithm.

Let us first recall the first-order based approach from [OSPG18]. Given a masked
coefficient a(·)A , they first apply an A2A conversion to produce a masked coefficient b(·)A

with a power-of-two modulus such that

ns−1∑
i=0

a(i)A mod q =
ns−1∑
i=0

b(i)A mod 2k = ai,

where 2k > q. Next, an appropriate offset is subtracted from b(·)A such that the MSB of
the sensitive variable denotes the value to which the coefficient should be compressed. This
shared bit can be extracted from the Boolean shares after applying an A2B conversion.
Hence, this technique requires one A2A and one A2B conversion per coefficient. Given
that these conversions are usually quite expensive this introduces a significant overhead.
Furthermore, to the best of our knowledge, there are no known results for higher-order
A2A conversion for arbitrary moduli. The only other published solution in this direction is
presented in [BDK+20] and applies only to power-of-two moduli.

We present a solution which can be applied in first- and higher-order settings, can be
applied to the setting where a prime modulus is used and is faster by omitting one A2A
conversion per coefficient compared to the state-of-the-art. In the remainder we introduce
the method with focus on the Kyber application, however, it should be noted that this
approach works for any modulus q. We start with adding the offset

⌊
q
4
⌋

= 832 modulo
q from the arithmetic shares with a subsequent A2B conversion to create k-bit Boolean
shares of the coefficient, where k = dlog2(q)e = 12. Given these Boolean shares, it then
suffices to securely compute whether the masked value is smaller than q

2 . Let us denote this
shifted function as Compresss

q(x) such that Compressq(x, 1) = Compresss
q(x+

⌊
q
4
⌋

mod q)
where

Compresss
q(x) :=

{
0 if x < q

2 ,
1 otherwise.

To compute Compresss
q in a masked fashion, we perform a masked-binary-search on the

Boolean-shared bits of the coefficient starting from the MSB. For example, if the MSB is

8 Masking Kyber: First- and Higher-Order Implementations

set to 1, we can ignore the values of all subsequent bits and compress the coefficient to 1 as
2MSB = 2k−1 = 211 > q

2 . If the MSB is set to 0, the remaining bits need to be taken into
account. This process is repeated until all possible coefficient values have been mapped to
a single bit value. For the case of Kyber,

⌊
q
2
⌋

= 1664, bits 11 to 7 are taken into account.
In this case Compresss

q is computed as

Compresss
q(x) = x11 ⊕ (¬x11 · x10 · x9 · (x8 ⊕ (¬x8 · x7))) . (1)

In a masked implementation, the ⊕ and · operations should be replaced with calls to
their secure counterparts (SecXOR and SecAND). Moreover, to improve efficiency, we can
first transform the Boolean shares of the polynomial to a bitsliced representation and
compute the compress function for all coefficients in parallel (limited by the word size
of the target platform). This complete masked algorithm for Compressq(x, 1) is given in
Algorithm 1. Note that the algorithm is independent of the specific masked algorithms
used for the modules A2B, Bitslice, SecAND, SecREF, and SecXOR. Instead, we provide
a short description of the computed functionality and the assumed security property
for the proof. A2B denotes a t-SNI secure conversion of arithmetic shares with a prime
modulus to Boolean shares encoding the same value. In our higher-order implementations,
we use Algorithm 3 from [SPOG19]. Bitslice maps a Boolean-masked polynomial to its
Boolean-masked bitsliced representation. This is a linear function and can, therefore, be
computed on each share separately. The most efficient way to accomplish this strongly
depends on the capabilities of the target platform. In our implementation, we realized it as
a sequence of bitshift, bitwise OR, and bitwise AND to rearrange the bits share by share.
With SecAND and SecREF, we describe t-SNI algorithms to compute the masked bitwise
AND and refresh Boolean shares. There are multiple proposals that fulfill this property,
e.g., [GJRS18, BCPZ16], and we use Algorithm 18 (resp. Algorithm 20) from [SPOG19] for
SecAND (resp. SecREF) in our implementations. SecXOR refers to the t-NI computation
of the bitwise XOR of Boolean shares. This is usually achieved by computing the XOR of
the input shares separately, e.g., [CGV14, Algorithm 3, Line 3] Furthermore, we use ¬ to
indicate the negation of only the first share of the Boolean-masked input.

Correctness. For Kyber, we use q = 3329 with the parameters k = 12,
⌊
q
4
⌋

= 832 and⌊
q
2
⌋

= 1664. Let us provide the detailed steps to derive the equation to compute the
compression operation Compresss

q(x) using only XOR, AND, and negation.

1. 211 > 1664 : If x11 = 1, then x should be compressed to 1. Otherwise, we need to take
less significant bits into consideration, therefore: Compresss

q(x) = x11⊕ (¬x11 · (. . .)).

2. 210 < 1664 : If x10 = 0 ∧ x11 = 0, then x should be compressed to 0. Otherwise, we
need to take less significant bits into consideration: Compresss

q(x) = x11 ⊕ (¬x11 ·
x10 · (. . .)).

3. 210 + 29 < 1664 : If x9 = 0 ∧ x10 = 1 ∧ x11 = 0, then x should be compressed to 0.
Otherwise, we need to take less significant bits into consideration: Compresss

q(x) =
x11 ⊕ (¬x11 · x10 · x9 · (. . .)).

4. 210 + 29 + 28 > 1664 : If x8 = 1 ∧ x9 = 1 ∧ x10 = 1 ∧ x11 = 0, then x should be
compressed to 1. Otherwise, we need to take less significant bits into consideration:
Compresss

q(x) = x11 ⊕ (¬x11 · x10 · x9 · (x8 ⊕ (¬x8 · (. . .)))).

5. 210 + 29 + 27 = 1664 : If x7 = 1 ∧ x9 = 1 ∧ x10 = 1 ∧ x11 = 0, then x should be
compressed to 1. All remaining combinations should be compressed to 0 since they are
necessarily < 1664, therefore: Compresss

q(x) = x11⊕ (¬x11 ·x10 ·x9 · (x8⊕ (¬x8 ·x7))).

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 9

a(·)A G1 G2 a(·)B G3 x(·)B

x
(·)B

7

x
(·)B

8

x
(·)B

9

x
(·)B

10

x
(·)B

11

G4 G5

G6

G7 G8

G9

G10

G11

G12

G13 m′(·)B

Figure 2: The gadgets considered in the proof of Theorem 1. t-NI gadgets are depicted
with a single circle, t-SNI gadgets are depicted with a double circle.

Complexity. We estimate the run-time complexity TA1(ns, k), where ns goes to infinity,
of Algorithm 1. For ease of notation we write Tf (ns, k) as Tf .

TA1 = 256 · (O(1) + TA2B) + TBitslice + 256
w
· 2 · (2 · TSecAND + TSecREF + T¬ + TSecXOR)

with k = dlog2(q)e = 12 and w denoting the word size of the target platform, i.e., how
many bits can be processed in parallel. Given TA2B = O

(
n2
s · log2(k)

)
[SPOG19], TBitslice =

O (256 · ns · k) (transforming each of the 256 k-bit coefficients sharewise), TSecAND =
TSecREF = O

(
n2
s

)
[SPOG19], T¬ = O (1) (negating one of the input shares), and TSecXOR =

O (ns) (computing the sharewise XOR) as the complexities for the modules, we derive the
asymptotic run-time complexity for Algorithm 1 as TA1 = O

(
n2
s · log2(k)

)
for a constant p.

Analogously, we can derive the randomness complexity RA1 = O
(
n2
s · log2(k)

)
by replacing

the run-time complexity of the modules with the corresponding randomness complexities.
Security. To argue about the higher-order security of Algorithm 1, we prove it to be t-SNI
with ns = t+ 1 shares. This provides resistance against a probing adversary with t probes
and allows using the algorithm in larger compositions. The proof requires us to show how
probes on intermediate (and output) variables in the algorithm can be perfectly simulated
with only a limited number of the input shares. To this end, we iterate over all possible
intermediate variables, starting from the output, and provide formal arguments on how
they can be simulated relying on the t-(S)NI properties of the modules. In this step, it is
important to ensure that the simulation of tx probes on one intermediate variable does not
require more than tx shares of another intermediate variable. Otherwise, the simulation is
not sound as it would require more than t shares of one intermediate variable for tx = t.
For t-SNI, it is important to further show that the simulation of the intermediate and
output probes can be performed with only a subset of the input shares with cardinality
equal to the number of intermediate probes.

Theorem 1 (t-SNI of Algorithm 1). Let a(·)A be the input and let m′(·)B be the output
of Algorithm 1. For any set of tA1 intermediate variables and any subset O ⊂ [0, ns − 1]
with tA1 + |O| < ns, there exists a subset I of input indices such that the tA1 intermediate
variables as well as m′(O)B can be perfectly simulated from a(I)A , with |I| ≤ tA1 .

Proof. We model Algorithm 1 as a sequence of t-(S)NI gadgets as depicted in Figure 2.
For simplicity, we model the linear operations in Lines 2, 4, 5, 9 as t-NI gadgets, which can
be trivially shown as the operations process the inputs share-wise. Furthermore, as the
iterations of the initial loop are independent, we consider them to be executed in parallel
and summarize them into single gadgets, one for Line 2 and one for Line 3. The exact
mapping of gadgets in Figure 2 to Algorithm 1 is as follows:

10 Masking Kyber: First- and Higher-Order Implementations

• G1 (NI): Subtraction in Line 2.

• G2 (SNI): A2B in Line 3.

• G3 (NI): Bitslice in Line 4.

• G4 (NI): ¬ in Line 5.

• G5 (SNI): SecREF in Line 5.

• G6 (SNI): SecAND in Line 5.

• G7 (NI): SecXOR in Line 6.

• G8 (SNI): SecREF in Line 6.

• G9 (SNI): SecAND in Line 7.

• G10 (SNI): SecAND in Line 8.

• G11 (NI): ¬ in Line 9.

• G12 (SNI): SecAND in Line 9.

• G13 (NI): SecXOR in Line 10.

An adversary can place probes internally and on the output shares for each gadget.
The number of internal (resp. output) probes for gadget Gi is denoted as tGi (resp. oGi)
with

tA1 =
13∑
i=1

tGi
+

12∑
i=1

oGi
, |O| = oG13

where tA1 and |O| refer to the number of probes and output shares of the complete
Algorithm 1 as used in Theorem 1. To prove Theorem 1, we show that the internal probes
and output shares can be perfectly simulated with ≤ tA1 of the input shares a(·)A . To
this end, we argue about the internal probes and output shares of each gadget relying
on their t-(S)NI property. In particular, we rely on the characteristic that the simulation
of a t-SNI gadget can be performed independent of the number of probed output shares.
This allows stopping the propagation of probes from the output shares to the input shares.
For example, to simulate the tG13 intermediate and oG13 output probes of the t-NI gadget
G13, we require tG13 + oG13 shares of both inputs of G13 (i.e., x(·)B

11 and the output of G12).
Throughout a larger composition, the shares required for simulation are added up. To avoid
an unsound simulation, it is often required to use t-SNI gadgets to stop the propagation
of probes on the output shares, e.g., the tG12 intermediate and oG12 output probes of
the t-SNI gadget G12 can be simulated with only tG12 input shares (i.e., without oG12).
As shown later, we need to insert t-SNI SecREF gadgets to ensure that our simulation is
sound.

In the following, we provide details for the simulation at particular points in the
algorithm. The complete explanation for each gadget is provided in Appendix A. To
simulate the internal probes and output shares of gadgets G4 to G13, we need the following
number of shares of x(·)B

7 to x(·)B

11 :

t
x

(·)B
7

= tG6 , t
x

(·)B
8

= tG4 + oG4 + tG5 + tG7 + oG7 + tG8 ,

t
x

(·)B
9

= tG9 , t
x

(·)B
10

= tG10 ,

t
x

(·)B
11

= tG11 + oG11 + tG12 + tG13 + oG13 .

To argue about Bitslice, we summarize the variables of each bit to x(·)B . For the simulation,
we add up the number of shares for each bit as tx(·)B =

∑11
i=7 tx(·)B

i

. This simulation can
only be performed if there are no duplicate entries in the sum: without the t-SNI refresh
G5, the simulation would require tG6 shares of both x(·)B

7 and x(·)B

8 . In effect, tx(·)B would
be ≥ 2 · tG6 , which cannot be simulated for, e.g., tG6 = t. Therefore, it is necessary to
refresh1 the input to G6, and analogously to G9. For the other SecAND gadgets, this issue
does not occur and, therefore, we do not need to refresh their inputs.

Given the t-NI property of Bitslice, we can simulate the tx(·)B shares of x(·)B with the
corresponding number of shares of a(·)B . Following the flow through gadgets G2 and G1,

1Refreshing may be avoided by gadgets which conform to stricter security notions, e.g., PINI [CS20].

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 11

the simulation of Algorithm 1 requires |I| = tG1 + oG1 + tG2 of the input shares a(·)A . In
particular, the t-SNI property of G2 allows to simulate the shares of a(·)B with only tG2

of its input, i.e., it is independent of the number of the probes on a(·)B , which stops the
propagation of tx(·)B to |I|. As |I| ≤ tA1 and independent of o13, Algorithm 1 is t-SNI.

Extension Compressq(x, d) for d > 1. We use Algorithm 1 for compression to d = 1 bits,
but it can be adapted to create masked compression functions for d > 1 bits as well. To
this end, it is necessary to derive the Boolean equations for each of the d output bits,
analogous to Equation (1). These are then computed using instantiations of SecXOR and
SecAND with independent shared inputs. A generic description of Algorithm 1 for any d
would, therefore, need to refresh the input to any SecAND, which would induce a significant
overhead. In this section an optimized version for d = 1, as used in Kyber, is provided.
The creation of optimized versions for other d is straight-forward when using formal
verification tools to check which of the refreshes are needed, e.g., scVerif [BGG+21] or
MaskVerif [BBD+15, BBC+19]. In the following section, we develop a dedicated technique
to avoid masking the ciphertext compression of Kyber.CPAPKE.Enc, i.e., extending
Algorithm 1 to d > 1, as this would require to process all input bits.

3.2 Higher-Order Masked Comparison

The masked ciphertext comparison requires computing c ?= c′ in a masked fashion, which
assumes prior ciphertext compression in Kyber.CPAPKE.Enc. More explicitly, the com-
parison verifies whether

(Compressq(u′, du),Compressq(v′, dv))
?= c . (2)

For the ciphertext compression, to the best of our knowledge, there is no efficient higher-
order solution beyond generic approaches, e.g., masked look-up tables, when using prime
moduli. In [OSPG18] a hash-based first-order comparison approach is proposed. However,
this only checks for equality and is independent of the ciphertext compression. To apply
this technique to Kyber, it would be necessary to perform a masked ciphertext compression
as a prior step. In [BPO+20], a higher-order polynomial comparison is proposed which also
checks for equality but suffers from similar drawbacks as the techniques from [OSPG18].
Note that this approach was also shown to be flawed in [BDH+21] and the proposed fix
significantly reduces the performance.2 Given that none of the prior-art solutions work
without a masked ciphertext compression, we propose a new masked algorithm to perform
the comparison between a masked uncompressed ciphertext (i.e., output of our masked
re-encryption) and a public compressed ciphertext.

The core idea is to not perform the costly masked compression of the sensitive values
but work the other way around: decompressing the public ciphertext. Since this is public
information this can be done efficiently. Informally, this changes Eq. (2) to

(u′, v′) ?= Decompressq(c). (3)

Since the compression is lossy, one cannot simply check for equality. Instead, one has to
perform a masked range check for each coefficient to verify that the uncompressed sensitive
values fall into the decompressed interval. In particular, one has to first derive the interval
start- and end-point for a compressed coefficient using public functions S and E. These
border values are then subtracted from the compressed masked coefficients separately;
which is efficient given that they are arithmetically masked. Then each of these values
are transformed to Boolean masking to extract the MSB which contains the result of the

2Note that [BDH+21] also shows a flaw in the implementation of the masked comparison of [OSPG18],
but this one can be trivially fixed without impacting the performance.

12 Masking Kyber: First- and Higher-Order Implementations

Algorithm 2 Masked DecompressedComparison as used in Kyber.
Input: 1. An arithmetic sharing u′(·)A of a vector of polynomials u′ ∈ Zq[X]k,

2. An arithmetic sharing v′(·)A of a polynomial v′ ∈ Zq[X],
3. A ciphertext c ∈ Bdu·k·n/8+dv·n/8,
4. Two public functions S and E defined by Kyber which specify the

start- and end-points of the intervals in compression.
Output: A Boolean sharing b(·)B of b where b = 1 if and only if

(Compressq(u′, du),Compressq(v′, dv)) = c, otherwise b = 0.
1: function DecompressedComparison
2: (u′′, v′′) = Decode (c)
3: t

(·)B
w , t

(·)B
x = PolyCompare(u′(·)A ,u′′)

4: t
(·)B
y , t

(·)B
z = PolyCompare(v′(·)A , v′′)

5: b(·)B = SecAND(SecAND(t(·)B
w , t

(·)B
x),SecAND(t(·)B

y , t
(·)B
z))

6: for i = log2256− 1 to 0 do
7: t

(·)B

b = LSR(b(·)B , 2i)
8: b(·)B = b(·)B mod (22i − 1)
9: b(·)B = SecAND(b(·)B , t

(·)B

b)
10: return b(·)B

11: function PolyCompare(u′(·)A , u′′)
12: for i = 0 to 255 do
13: su′′ = S(u′′i)
14: eu′′ = E(u′′i)
15: w

(·)A

i = x
(·)A

i = u′i
(·)A

16: w
(0)A

i = (w(0)A

i + 2dlog2(q)e−1 − su′′) mod q
17: x

(0)A

i = (x(0)A

i − eu′′) mod q
18: w

(·)B

i = MSB(A2B(w(·)A

i))
19: x

(·)B

i = MSB(A2B(x(·)A

i))
20: return Bitslice(w(·)B), Bitslice(x(·)B)

coefficient interval check: the MSB can be viewed as something similar to the “sign” bit,
see for a more detailed explanation the correctness paragraph below.

If the compressed coefficient is indeed inside the desired interval, the MSB of both
range checks should be one. For the comparison, we need to combine the interval checks of
all coefficients into one masked output bit. This is achieved using bitsliced calls to SecAND
until one bit remains, which is only set to one if and only if Eq. (3) is fulfilled. The complete
masked algorithm for the DecompressedComparison is given in Algorithm 2. Again we
provide a short description of the new modules and their assumed security property. MSB
extracts the Boolean-masked most significant bit of the given input Boolean shares, which
is assumed to be t-NI as it can be applied on each share separately. LSR refers to the
sharewise logical shift to the right of input Boolean shares by a given offset, which is also
assumed to be t-NI.

Correctness. To better understand Algorithm 2, let us first go through the unmasked
decompressed comparison using one coefficient as an example. We move the costly
compression step to the public variable as a ?= Decompressq(b), i.e., we check if the public
b would be decompressed to an interval which contains a. As the compression is lossy,
there are multiple values for a which can be mapped to b through Compressq. Therefore, a
straight-forward check for this equality would only work for one specific value of a. Instead,

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 13

u′(·)A

v′(·)A

G1

G2

G3

G4

w(·)A

x(·)A

y(·)A

z(·)A

G5

G6

G7

G8

G9

G10

G11

G12

w(·)B

x(·)B

y(·)B

z(·)B

G13

G14

G15

G16

t
(·)B
w

t
(·)B
x

t
(·)B
y

t
(·)B
z

G17

G18

G19

G20

G21

G22

G23

G24

G25 b(·)B

Figure 3: The gadgets considered in the proof of Theorem 2. t-NI gadgets are depicted
with a single circle, t-SNI gadgets are depicted with a double circle.

we denote the lower bound S(b) and the upper bound E(b) such that for S(b) ≤ a ≤ E(b)−1
one has Compressq(a) = b. Given these pre-computed public values S(b) and E(b), we need
to decide if a given a is indeed in the interval [S(b),E(b) − 1]. While this is trivial for
unmasked values, a is sensitive and, therefore, this operation needs to be masked.

Performing a generic less-than comparison check is straight-forward for power-of-two
moduli, but challenging for prime moduli such as used in Kyber. The idea to achieve this
is to compute a− S(b) mod q and a− E(b) and checking the “sign” bits. This is done in a
masked fashion by performing first an A2B and subsequently extracting the MSB of the
masks. If a is indeed in the interval [S(b),E(b)− 1] then one expects a− S(b) to return an
MSB with a 0 while a− E(b) should be 1. These can be combined with a SecAND by first
negating the masked bit of the first range check.

In order to avoid this negation, one can shift the values in the first check appropriately
(by adding 2dlog2(q)e−1) such that it becomes a− S(b) + 211 in the setting of Kyber. Now
both the resulting MSB need to be put into a SecAND to produce the masked output of
the comparison for this coefficient. It should be noted that this approach requires that the
size of the largest interval [S(b),E(b)− 1] should be smaller or equal to the difference of
the used modulus to the next smaller power of two; i.e, q − 2dlog2(q)e − 1. For Kyber this
is indeed the case for all parameter sets; for the values d ∈ {4, 5, 10, 11} defined in Kyber
and used in Compressq(x, d) we have an interval size of at most 209 which is well below
q − 2dlog2(q)e − 1 = 3329− 211 = 1281. Note that the special case where d = 1 is handled
in detail in Section 3.1.
Complexity. Again, we estimate the run-time complexity TA2(ns, k), where ns goes to
infinity, of Algorithm 2.

TA2 = O(1) + 4 · 256 · (O(1) + 2 · (TMSB + TA2B + TBitslice))

+ 3 · 256
w
· TSecAND +

7∑
i=0

2i

w
(TLSR + Tmod + TSecAND)

with k = dlog2(q)e = 12 and w denoting the word size of the target platform. Given in
addition to the previous section, TMSB = TLSR = Tmod = O (ns) (applying the operation
sharewise), as the complexities for the modules, we derive the asymptotic run-time
complexity for Algorithm 2 as TA2 = O

(
n2
s · log2(k)

)
for a constant p. Again it is

dominated by the A2B conversion and, as in the previous case, the randomness complexity
is RA2 = O

(
n2
s · log2(k)

)
.

Security. As we also did for Algorithm 1, we now prove Algorithm 2 to be t-SNI with
ns = t+ 1 shares.

Theorem 2 (t-SNI of Algorithm 2). Let u′(·)A and v′(·)A be the inputs and let b(·)B

be the output of Algorithm 2. For any set of tA2 intermediate variables and any subset
O ⊂ [0, ns−1] with tA2 + |O| < ns, there exists a subset I of input indices such that the tA2

intermediate variables as well as b(O)B can be perfectly simulated from u′(I)A and v′(I)A ,
with |I| ≤ tA2 .

14 Masking Kyber: First- and Higher-Order Implementations

Proof. Again, we model Algorithm 2 as a sequence of t-(S)NI gadgets as depicted in
Figure 3 and, as was the case in Theorem 1, we model the linear operation in lines 7,
8, 15, 16, 17, 20 as t-NI gadgets. The input c and its derived variables (u′′, v′′) and
(su′′ , su′′ , sv′′ , ev′′) are not explicitly considered in the proof as they are public values and
their simulation is therefore trivial. As before, given that the iterations of the initial loops
(i.e., PolyCompare) are independent, we consider them to be executed in parallel and
summarize them into single gadgets. In this regard, we model the sequence MSB ◦ A2B
as a single t-SNI gadget, which holds if the conversion A2B is t-SNI and MSB is applied
sharewise. We unroll the final loop into two iterations, but the presented simulation
concept generalizes to any number of rounds due to the t-SNI property of the used SecAND.
The exact mapping of gadgets in Figure 3 to Algorithm 2 is as follows:

• G1−4 (NI): Assignment in Line 15.

• G5−8 (NI): Linear arithmetic in Lines 16 - 17.

• G9−12 (SNI): MSB ◦ A2B in Lines 18 - 19.

• G13−16 (NI): Bitslice in Lines 20.

• G17−19 (SNI): SecAND in Line 5.

• G20,23 (NI): Upper half extraction in Line 7.

• G21,24 (NI): Lower half extraction in Line 8.

• G22,25 (SNI): SecAND in Line 9.

An adversary can place probes internally and on the output shares of each gadget. The
number of internal (resp. output) probes for gadget Gi is denoted as tGi

(resp. oGi
) with

tA2 =
25∑
i=1

tGi +
24∑
i=1

oGi , |O| = oG25

where tA2 and |O| refer to respectively the number of probes and output shares of the
complete Algorithm 2 as used in Theorem 2. To prove Theorem 2, we show that the
internal probes and output shares can be perfectly simulated with ≤ tA2 of the input
shares u′(·)A and v′(·)A . Again, we provide details for the simulation at particular points
in the algorithm. The complete explanation for each gadget is provided in Appendix B.

Starting with G25, its tG25 internal probes and oG25 output shares can be simulated
with tG25 of the output shares of G23 and G24. This leads to a problem, however, as
the simulation of these output shares requires a corresponding number of shares of the
output of G22, i.e., 2 · tG25 . Therefore, on a variable-level these probes cannot be perfectly
simulated. To overcome this issue, we model the gadgets G17 to G25 to work on bit-level
rather than on the complete variables. This requires that we build multi-bit SecAND
from parallel and independent one-bit instantiations of SecAND which each are t-SNI. The
t-NI gadgets which are used to extract the upper and lower halves (G20,21,23,24) can be
represented similarly by one-bit t-NI gadgets, i.e., only selected bits are passed through,
while the others are discarded.

We now explain the simulation for probes on the Least Significant Bit (LSB), but the
presented approach applies to probes on arbitrary bits. To simulate tG25 internal probes
and oG25 output shares of the LSB of G25, we need tG25 output shares of the LSB of G23
and G24. The former can be simulated with (tG25 + tG23 + oG23) output shares of the LSB
of the upper half of G22, while the latter requires (tG25 + tG24 + oG24) output shares of the
LSB of the lower half of G22. As these halves are independent, the simulation succeeds.

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 15

The same approach can be applied to simulate gadgets G20−22. They require (tG22 +
tG20 + oG20) output shares of the LSB of the upper half and (tG22 + tG21 + oG21) output
shares of the LSB of the lower half of G19. For G17 (resp. G18), we need tG17 (resp. tG18)
output shares of the LSB of t(·)B

w and t(·)B
x (resp. t(·)B

y and t(·)B
z). To extend the simulation

to probes on arbitrary bits, it is sufficient to replace the LSB with the corresponding
indices of the probed bits.

As in the proof of Theorem 1, we add up the shares required for simulation for each
of the bits of the bitsliced variables (t(·)B

w , t
(·)B
x , t

(·)B
y , t

(·)B
z) to argue about Bitslice. This

is valid as there are no duplicate entries in the sums even without refreshes due to the
t-SNI property of G17,18, e.g., tt(·)B

w
=
∑255
i=0 tG17−Biti

. Again relying on the t-NI property

of Bitslice, we can simulate the shares of (t(·)B
w , t

(·)B
x , t

(·)B
y , t

(·)B
z) with the corresponding

number of shares of (w(·)B ,x(·)B , y(·)B , z(·)B). Following the flow through gadgets G1−12,
the simulation of Algorithm 2 requires |I| of the input shares u′(·)A and v′(·)A with

|Iu′ | = tG1 + oG1 + tG2 + oG2 + tG5 + oG5 + tG6 + oG6 + tG9 + tG10

|Iv′ | = tG3 + oG3 + tG4 + oG4 + tG7 + oG7 + tG8 + oG8 + tG11 + tG12

|I| = |Iu′ |+ |Iv′ |

Any probe on computations involving the outputs of Gadgets G9 to G12 does not propagate
to the respective inputs due to the t-SNI property of these gadgets. As |I| ≤ tA2 and
independent of o25, Algorithm 2 is t-SNI.

3.3 Masked CCA Kyber Decapsulation
We now return to the Kyber decapsulation given in Figure 1 and reason on the SCA security
of the complete decapsulation. Note that we omitted the encode- and decode-operations
as well as the generation of the public matrix A in the figure, as they are either trivial to
mask or process only public values.

The linear polynomial operations (i.e., ◦, NTT, −, +) in Kyber.CPAPKE.Dec and
Kyber.CPAPKE.Enc are masked as in previous works by applying the operation on each
share separately. For Compressq(x, 1) of Kyber.CPAPKE.Dec, we rely on our new approach
as presented in Section 3.1.

To mask the symmetric components G and PRF , we rely on prior art. In particular,
we use the masked Keccak approach and implementation from [BBD+16] to instantiate
the modules at higher order while we use the more efficient approach from [BDPVA10]
for the first order. We believe there is room for performance improvement by creating
dedicated and more efficient masking schemes of Keccak aiming at a specific masking order
(as done for the first-order setting), but this is out of scope for the current work.

For Decompressq, we first convert each bit of the Boolean-shared message m′(·)B to
arithmetic shares modulo q (e.g., using the efficient one-bit B2A algorithm from [SPOG19]
at higher orders) which are then multiplied with a constant.

To mask the sampler CBD of Kyber.CPAPKE.Enc, we adapt the bitsliced approach
from [SPOG19] to the parameters of Kyber. For example, for η = 2 we first sum the input
bits using Boolean-masked bitsliced addition. To compute the subsequent subtraction
a− b we first convert b = (b1b0)2 to b̄ = (8− b) mod 8 = (b̄1b̄1b̄0)2 by setting b̄1 = b1 ⊕ b0
and b̄0 = b0. We then compute f = (a− b) mod 8 = (a+ b̄) mod 8 = (f2f1f0)2 as

f0 = a0 ⊕ b̄0 , f1 = (a0 · b̄0)⊕ (a1 ⊕ b̄1) ,
f2 = b̄1 ⊕ (a1 · b̄1)⊕ (a0 · b̄0 · (a1 ⊕ b̄1)) .

Then we convert f to the arithmetic domain with shift constant 4, i.e., apply the conversion
to f⊕4. Note that all these operations are applied in a bitsliced manner: on a 32-bit target

16 Masking Kyber: First- and Higher-Order Implementations

ŝ(·)A G1 G2 m′(·)B

G6

G3

r′(·)B G4

G5 G7

K ′(·)B

b(·)B

Figure 4: The gadgets considered in the proof of Theorem 3. t-NI gadgets are depicted
with a single circle, t-SNI gadgets are depicted with a double circle.

platform these operations can be performed on 8 coefficients at the same time, assuming a
and b are represented with 2 bits each. The subtraction of 4 after the conversion is trivial
in arithmetic domain.

As depicted in Figure 1, our approach does not explicitly mask the ciphertext com-
pression of Kyber.CPAPKE.Enc. Instead, we instantiate the comparison as presented in
Section 3.2 which can process masked uncompressed polynomials. Furthermore, as in line
with the findings of [BDH+21], we collapse the result of the comparison to a single masked
bit before unmasking it for the selection of the KDF input.

We follow the approach and reasoning of [BDK+20] and do not mask the KDF. Instead,
if the comparison outputs true (i.e., the ciphertext is valid), we unmask K ′ and perform
an unmasked KDF. For a valid ciphertext this leaks only ephemeral secret information
and not the long-term secret. Should this short-term secret also be protected, other
countermeasures besides masking can be applied to mitigate against single-trace attacks.
Note that it is important to not unmask K ′ if the comparison fails, because this could be
used to attack the long-term secret. If the comparison does fail, we apply an unmasked
KDF to the secret value z. This value is independent of the secret key, but leaking it allows
an adversary to detect ciphertext rejection explicitly. This does not impact the IND-CCA
security claims of Kyber [HHK17, Figure 1] as Kyber is γ-spread for sufficiently large γ.

To argue about the probing security of masked Kyber.CCAKEM.Dec, we analyze a
reduced composition (denoted as GDec) excluding the unmasked components. The structure
of GDec is depicted in Figure 4.

Theorem 3 (t-SNI of GDec). Let ŝ(·)A be the input and let K̄ ′(·)B and b(·)B be the output
of GDec. For any set of tGDec intermediate variables and any subset O ⊂ [0, ns − 1] with
tGDec + |O| < ns, there exists a subset I of input indices such that the tGDec intermediate
variables as well as b(O)B and K̄ ′(O)B can be perfectly simulated from ŝ(I)A , with |I| ≤ tGDec .

Proof. We model the linear operations of the decryption and encryption as t-NI gadgets G1
and G5. The new t-SNI Compressq(x, 1) and comparison algorithms are included as G2 and
G7. The symmetric components are modeled as a t-NI gadget G6. As shown in [SPOG19],
the sampling algorithm is t-SNI and their proof is independent of the concrete instantiation
parameters. Therefore, we model it as t-SNI gadget G4. For Decompressq, we assume
a t-SNI gadget G3 which relates to the t-SNI B2A conversion. The subsequent linear
multiplication is included in G5.

An adversary can place probes internally and on the output shares of each gadget. The
number of internal (resp. output) probes for gadget Gi is denoted as tGi

(resp. oGi
) with

tGDec =
7∑
i=1

tGi
+

5∑
i=1

oGi
, |O| = oG6 + oG7

where tGDec and |O| refer to respectively the number of probes and output shares of the
complete gadget GDec as used in Theorem 3. To prove Theorem 3, we show that the
internal probes and output shares can be perfectly simulated with ≤ tGDec of the input

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 17

shares ŝ(·)A . Again, we provide details for the simulation at particular points in the
algorithm. The complete explanation for each gadget is provided in Appendix C.

To simulate the internal probes and output shares of gadgets G3 to G7, we need
tG3 + tG6 + oG6 + tG4 shares of m′(·)B . Following the flow through gadgets G1,2, the
simulation of GDec requires |I| = tG1 + oG1 + tG2 of the input shares ŝ(I)A . As |I| ≤ tGDec

and independent of oG6 and oG7 , gadget GDec is t-SNI.

4 Implementation and Evaluation
We present performance and practical security results of the new masked algorithms
presented in Section 3. We target Kyber768 since this is the recommended parameter
set targeting the NIST security level 3. We select two platforms: firstly, benchmarks
(using the SysTick timer) and measurements are performed on an NXP Freedom Devel-
opment Board for Kinetis Ultra-Low-Power KL82 MCUs (FRDM-KL82Z [NXP16]). The
Cortex-M0+ was chosen because it is the most energy-efficient Arm processor available for
constrained embedded applications. The processor comes equipped with a 2-stage pipeline,
the Armv6-M architecture and the Thumb/Thumb-2 subset of instruction support. This
allows the Cortex-M0+ to be a perfect candidate to harden cryptographic primitives
since the hardened assembly code for the Cortex-M0+ can run on more advanced Arm
instruction sets while vice-versa this is not necessarily true. Therefore, this hardened
Cortex-M0+ implementation can serve as a helpful starting point to create secure hardened
implementations for other Cortex target processors. Moreover, the side-channel behavior
of the Cortex-M0+ is well understood, allowing to mitigate device-specific leakage behav-
ior with fine-grained hardening strategies [BGG+21], whereas the unclear side-channel
characteristics of the Cortex-M4 forces inserting dummy operations in many places, purely
based on assumptions, resulting in additional performance penalties which are independent
of the masked algorithms. The difference in understanding has been used to save up to
72% of dummy operations and can lead to optimized implementations which are twice as
fast [BGG+21].

Secondly, although we do not perform measurements or any hardening, we do per-
formance benchmarks on the STM32F407G-DISC1 board that comes equipped with a
Cortex-M4F (previously known as STM32F4DISCOVERY). This is the platform used by
the embedded crypto benchmark platform pqm4 [KRSS19] and recent masked implemen-
tations of Saber [BDK+20], so allows us to compare to existing work more easily. We
make use of the standard measurement framework of pqm4, with minor modifications to
measure the run-time of subroutines.

In this section, a component-wise performance comparison for various orders and
implementation choices is given. Our masked Kyber implementation is generally written
in C and based on the C-reference code from the Round 3 Kyber submission. For the
Cortex-M4 processor we included the optimized assembly routines from pqm4, but the
used assembly is incompatible with the much simpler Cortex-M0+. On the other hand,
for our first-order Cortex-M0+ implementation we provide low-level formal verification
and physical leakage assessments based on power measurements. For this purpose we
target our own components Compressq(., 1) and DecompressedComparison. These hardened
components (and any components that they rely on) are therefore written in assembly.
Although hardening involves adding dummy operations that would decrease efficiency,
our hand-written hardened assembly still performs better than the compiler-generated
versions from the (unhardened, masked) plain-C implementation. Following the same
approach as [BDK+20], we use an already existing masked implementation of Keccak in
our masked Kyber implementation. More specifically, we re-used the first-order masked
implementation from [BDPVA10] and for higher orders use the more generic higher-order
secure implementation of Keccak from maskComp [BBD+16].

18 Masking Kyber: First- and Higher-Order Implementations

void A2B(boolean_share_t x, arith_share_t a) {
uint16_t R, a0;
rng(&R, KYBER_Q_BITSIZE);
a0 = csubq(a[0] + KYBER_Q − ra);
a0 = csubq(a0 + a[1]);
x[0] = L[a0] ^ R;
x[1] = rb ^ R;

}

Figure 5: LUT-based arithmetic to Boolean version based on [Deb12].

Randomness Generation. During the execution of decapsulation, fresh randomness is
needed for the masked operations. For example, the first-order masked implementation on
the FRDM-KL82Z uses 11 665 uniformly randomly sampled bytes for the decapsulation
operation (see Table 2). As we would like the power measurements to be reproducible, the
numbers for the FRDM-KL82Z reported in Table 2 assume that the random bytes can
be readily read off from a table, which is filled before execution of the Kyber functions.
Therefore, the cost of randomness generation is not included in our performance numbers
for this platform. On the other hand, the STM32F407G-DISC1 board comes equipped with
a TRNG. For fair comparison to existing work we do include the randomness generation
in the cycle counts on this platform.

4.1 Performance Comparison
The main goal of this section is to demonstrate the feasibility of the new techniques to
realize a (higher-order) masked Kyber implementation. For the FRDM-KL82Z we present
the results of plain-C implementations and do not optimize on assembly level except for
hardening some components. That being said, our first-order masked implementation does
aim to be efficient from an algorithmic point of view to fairly represent the performance
impact. For the STM32F407G we include the optimized assembly routines from pqm4. All
implementations were compiled with arm-none-eabi-gcc version 8.3.1 with optimization
level O3. The higher-order implementations (i.e., the second and third order results in
Table 2) are not as aggressively optimized and therefore have more room left for improve-
ment, in particular because the existing higher-order masked Keccak implementations are
not heavily optimized.
First-Order Masking. Recall that we use Algorithm 1 for Compressq(., 1), Algorithm 2
for DecompressedComparison and [SPOG19, Algorithm 3] for the conversion from arithmetic
to Boolean shares (A2B). However, for first-order masking the algorithm from [SPOG19]
is not the most efficient. Instead, we use a Look-Up-Table (LUT) based approach; more
specifically, the improved [Deb12] version of the Coron–Tchulkine method [CT03]. This
algorithm was designed for power-of-two moduli so cannot be used directly for our prime q.
To overcome this we simply use larger tables to avoid dealing with any carry propagation.
Moreover, we also refresh the output with fresh randomness as the input and output masks
in our case are from different domains, and to achieve the assumed t-SNI property.

Let us give a concrete example of the approach for the implementation of the first-order
A2B conversion. The table L satisfies L (a) = (a+ ra mod q) ⊕ rb, where a is a secret
value in [0, q − 1] which is arithmetically masked with randomness ra ∈ [0, q − 1] on the
input side and a Boolean mask with the random value rb ∈ [0, 2dlog2(q)e − 1] is applied
on the output side. Then the arithmetic to Boolean conversion is implemented as in
Figure 5. Here rng(x, y) stores y uniformly random sampled bits in x, and csubq performs
a conditional subtraction by the modulus q. More explicitly, the constant-time equivalent
of the C-expression “c = ((c >= q)? c-q : c)”.

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 19

Table 1: The different LUT settings used in our first-order (FO) and higher-order (HO)
implementations on the FRDM-KL82Z and their corresponding cycle counts rounded up
to nearest 103 cycles. For first order a LUT is used for A2B, for higher orders it is not.

Setting Approach #Cycles
Compq(., 1) Dec.Comp. Init Compq(., 1) Dec.Comp. Total

HO 0 Alg. 1 Alg. 2 – – – –

FO
1 LUT LUT 2 032 65 1 407 3 504
2 LUT Alg. 2 766 66 1 232 2 064
3 Alg. 1 Alg. 2 181 145 1 255 1 581

The A2B of [Deb12] outperforms the method of [SPOG19] at first order, and therefore
we use it in our first-order implementation. It is however not directly clear whether a
similar approach can be used for Compressq(., 1) and DecompressedComparison. Indeed, a
completely analogous masked LUT can be created for these functions. For example, one can
replace DecompressedComparison by implementing Compressq(., d) with a LUT, followed
by a hashed comparison as done in previous work [OSPG18, BDK+20]. We compare the
performance of the various options in Table 1. Concretely, we use the following four settings
in our masked implementations. The first setting (denoted setting 0) uses no LUTs at
all; this is the default for the higher-order (> 1) masked-implementations. The first-order
implementations do use the LUT-approach for A2B and the respective possible settings
for the FRDM-KL82Z for our modules can be found in Table 1. The LUTs are generated
fresh for every Kyber invocation and this run-time is included in the overall reported
performance results (Init). Since Init, Compressq(., 1) and DecompressedComparison are
only called once per decapsulation, the total cost is computed as the sum of the separate
functions. It is clear that using the new algorithms introduced in this work is favorable
compared to using the LUT-approach even in the first-order setting. This is due to the
fact that the LUT-initialization takes a non-negligible amount of time, which is significant
because the functions are only used once (as opposed to A2B). Therefore, our first-order
implementations use setting 3.
Performance Discussion. We present a complete overview of our performance results
on both the FRDM-KL82Z and the STM32F407G in Table 2. As a baseline unmasked
implementation for the FRDM-KL82Z we take the Kyber768 implementation from the
PQClean [KRS+19] software library. This is purely written in C and therefore a comparison
to our plain-C implementation is fair. Of course some of our modules contain assembly
modifications to harden them against power analysis, but this leads to only minor differences
in cycle counts. For the STM32F407G we take the currently best optimized implementation
from pqm4.

We see that the overall slowdown factor for crypto_kem_dec masked at first order on
the FRDM-KL82Z is 2.2x. A large part of this can be attributed to the masked encryption
step, which uses the masked PRF as part of the binomial sampler while also about doubling
the cost of the polynomial arithmetic. The Compressq(., 1) and DecompressedComparison
(denoted comparison in the table) also introduce large slowdowns, but this was to be
expected as their cost in the unmasked version was almost negligible. It should be noted
that the slowdown factor is relatively small due to the lack of assembly optimizations:
since the cost of polynomial arithmetic is still significant, while it has a small slowdown
factor, the overall slowdown compared to the reference implementation is brought down.

On the other hand, the slowdown factor for first-order masked decapsulation on
the STM32F407G is 3.5x. Although comparing subroutines directly is difficult due to
interleaving in the pqm4 reference, the overall slowdown is larger than on the FRDM-KL82Z

20 Masking Kyber: First- and Higher-Order Implementations

as the cost of polynomial is relatively lower due to assembly optimization. More precisely,
the cost of masking is dominated by Keccak operations rather than polynomial arithmetic,
which are more expensive to mask. Our slowdown factor is better than the (tentative) factor
4.2x reported recently by Heinz et al. for a first-order masked implementation [Dan21] at
the PQC Standardization Conference organized by NIST, though their version is hardened
for the Cortex-M4 while ours is unhardened. The overall slowdown is larger than the
2.52x factor reported in [BDK+20, Table 5] for masking Saber on the same platform. This
is mainly caused by the high cost of the Keccak-based binomial sampler: constructing
the four error polynomials for Kyber requires the use of the binomial sampler which uses
rejection sampling modulo 3329 to convert the shares from arithmetic to Boolean (256 per
polynomial). A similar operation is also performed in Saber and Kyber for the generation
of 3 secret polynomials. However, Saber uses rounding as opposed to random errors and
therefore does not need to generate these errors vectors.

Unsurprisingly, the number of random bytes used by Kyber is larger than for Saber.
Whereas [BDK+20] makes 1262 calls to a 32-bit TRNG, using 5048 bytes in total, we
sample a total of 12 072 random bytes. This is firstly caused by the generation of
additional error polynomials, as mentioned above. Secondly, the Compressq(., 1) and
DecompressedComparison components require more randomness compared to their coun-
terparts in Saber and use 704 and 4396 random bytes respectively.

The performance impact for the higher order implementations is much larger. In par-
ticular, the relative cost of DecompressedComparison compared to the whole decapsulation
increases. This is mainly due to the poor performance of the A2B component for higher
orders [SPOG19, Algorithm 3], as opposed to the LUT-based version for first order, which
is both slow and requires most of the random bytes in decapsulation. We expect many
optimizations are still possible in the higher-order A2B.

4.2 Verification
In addition to the hand-written proofs of Non-Interference we employ the verification tool
scVerif to mechanically verify the side-channel resilience of the introduced algorithms on
assembly level in realistic leakage models [BGG+21]. The disassembled object files of
our implementation are verified to be Stateful (Strong) Non-Interferent in a fine-grained
leakage model to ensure resistance against both the Cortex-M0+ device-specific leakage
behavior and the residual state in concrete execution. Stateful NI differs from NI in that
it mandates the state (e.g., registers and stack) after execution to be independent of
secrets and random values, except for specified locations, and thereby facilitates secure
composition of masked assembly components.

scVerif performs verification in fine-grained leakage models by augmenting an internal
representation of the assembly code with user-supplied explicit leakages (denoted as
“leakage model”) in the form of leak statements which are considered as internal probes
tG in the proof of (Stateful) NI (Definition 1). Verification with scVerif is split into two
phases, (1) partial evaluation to lower the assembly representation into a simpler language
amenable to (2) verification in the subsequent stage.

In the following, we detail the changes required to adapt scVerif to the Kyber imple-
mentation. The leakage model presented in [BGG+21] is extended for arithmetic and shift
instructions as well as branching instructions which are modeled without leakage. Our
leakage model serves as design aid, containing known and assumed leakage behavior but
comes without profound physical validation, as in e.g. [BGG+21, MPW21]. Instead, we
augment the model whenever a discrepancy between the model and the observed physical
leakage is encountered by constructing tests for the concerned instruction as in [PV17].
This allows us to prove the absence of vulnerabilities arising from known leakage behavior.
During our hardening phase we adopt the leakage of multiple single-operand instructions,
which differs from instructions with multiple operands. The extended formal leakage model

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 21

Ta
bl
e
2:

Pe
rfo

rm
an

ce
be

nc
hm

ar
ks

on
th
e
FR

D
M
-K

L8
2Z

(C
or
te
x-
M
0+

)
an

d
ST

M
32

F4
07

G
(C

or
te
x-
M
4F

)
pl
at
fo
rm

s
of

th
e
m
as
ke
d
im

pl
em

en
ta
tio

n
of

th
e
va
rio

us
pa

rt
s
of

K
yb

er
76
8.

T
he

cy
cl
e
co
un

ts
ar
e
re
po

rt
ed

in
th
ou

sa
nd

s
an

d
ro
un

de
d
up

to
th
e
ne

ar
es
t

10
3
cy
cl
es
.
T
he

FR
D
M
-K

L8
2Z

re
su
lts

do
no

t
in
cl
ud

e
ra
nd

om
ne

ss
ge
ne

ra
tio

n
w
hi
le

th
e
ST

M
32
F4

07
G

re
su
lts

do
.
T
he

slo
w
do

w
n
fa
ct
or

of
th
e
1s
t
or
de

r
im

pl
em

en
ta
tio

n
co
m
pa

re
d

to
PQ

C
le
an

an
d
pq

m
4
is

in
cl
ud

ed
in

br
ac
ke
ts
.
T
he

hi
gh

-le
ve
lp

qm
4
fu
nc

tio
ns

ar
e
no

t
su
bd

iv
id
ed

as
th
ey

ar
e
im

pl
em

en
te
d
in

an
in
te
rle

av
ed

fa
sh
io
n

to
re
du

ce
th
e
m
em

or
y
us
e.

T
he

ci
ph

er
te
xt

co
mp

ar
is

on
is

in
co
m
pr
es
se
d
fo
rm

fo
r
P
Q
C
le
an

an
d
pq

m
4,

an
d
de

co
m
pr
es
se
d
fo
rm

fo
r
th
e
m
as
ke
d

co
m
po

ne
nt
s.

R
es
ul
ts

m
ar
ke
d
∗
ar
e
ha

rd
en

ed
.

F
R
D
M
-K

L
82

Z
ST

M
32

F
40

7G
O
pe

ra
ti
on

P
Q
C
le
an

a
N
ew

pq
m
4b

N
ew

(u
nm

as
ke
d)

1s
t

2n
d

3r
d

(u
nm

as
ke
d)

1s
t

2n
d

3r
d

cr
yp

to
_k

em
_d

ec
55

30
12

20
8
(

2.
2x

)
10
73

52
23
16

32
88
2

31
16

(3
.5
x)

44
34
7

11
54

81
LU

T_
cr

ea
te

0
24
1
(
∞

x)
0

0
–

37
47

47
in

dc
pa

_d
ec

70
3

10
96

(
1.
6x

)
68

86
18

16
6

–
17
4

29
16

92
88

ha
sh

g
(S

HA
3-

51
2)

61
36
1
(

5.
9x

)
44

57
65

07
–

11
8

15
43

26
59

in
dc

pa
_e

nc
41

60
87

08
(

2.
1x

)
52

13
2

75
86
4

–
21

96
17

74
3

30
83
8

co
mp

ar
is

on
5

∗ 1
20
6
(2
41
.0
x)

43
27
0

13
04

89
–

46
2

22
01
7

72
56
8

ha
sh

h
(S

HA
3-

25
6)

53
0

53
5
(

1.
0x

)
54
0

54
0

–
11
5

11
5

11
5

kd
f

65
65

(
1.
0x

)
66

66
–

14
14

14
#
ra
nd

om
by

te
s

–
11

66
5

90
18

80
24

08
88
0

–
12

07
2

90
21

26
24

34
17
0

in
dc

pa
_e

nc
41

60
87

08
(

2.
1x

)
52

13
2

75
86
4

67
6

21
96

(3
.3
x)

17
74
3

30
83
8

de
co

mp
re

ss
io

n
21

28
7
(
13
.7
x)

64
4

99
4

–
11
3

26
7

49
0

ge
n_

at
17

55
17

23
(

1.
0x

)
17

71
17

48
–

39
8

39
8

39
8

po
ly

_g
et

no
is

e
49
4

37
29

(
7.
5x

)
44

22
7

66
11
2

–
13

84
16

62
5

29
34
7

po
ly

_a
ri

th
16

83
29

68
(

1.
8x

)
54

90
70

10
–

30
1

45
2

60
3

#
ra
nd

om
by

te
s

–
65
56

27
73

04
53
76

84
–

70
30

27
75

50
56
29

74
in

dc
pa

_d
ec

70
3

10
96

(
1.
6x

)
68

86
18

16
6

64
17
4

(2
.7
x)

29
16

92
88

un
pa

ck
53

68
(

1.
3x

)
86

10
2

–
23

30
36

po
ly

_a
ri

th
63
8

88
5
(

1.
4x

)
13

88
17

10
–

89
11
9

14
9

co
mp

re
ss

22
∗ 1
43

(
6.
5x

)
54

11
16

35
4

–
61

27
67

91
02

#
ra
nd

om
by

te
s

–
70
4

66
43
2

20
19

84
–

64
0

66
43
2

20
19

84

a h
tt

ps
:/

/g
it

hu
b.

co
m/

PQ
Cl

ea
n/

PQ
Cl

ea
n/

tr
ee

/m
as

te
r/

cr
yp

to
_k

em
/k

yb
er

76
8/

cl
ea

n
co
m
m
it

c0
0c

b2
d

b h
tt

ps
:/

/g
it

hu
b.

co
m/

mu
pq

/p
qm

4/
tr

ee
/m

as
te

r/
cr

yp
to

_k
em

/k
yb

er
76

8/
m4

co
m
m
it

15
7e

27
1

https://github.com/PQClean/PQClean/tree/master/crypto_kem/kyber768/clean
https://github.com/mupq/pqm4/tree/master/crypto_kem/kyber768/m4

22 Masking Kyber: First- and Higher-Order Implementations

Algorithm 3 Simplified scVerif code to represent table lookups for formal verification.
LUT(Rd, Rn, Rm)

1: val← (Rn + Rm− baseaddressL + ra)⊕ rb;
2: leak lutOperand (opA, opB, Rn, Rm);
3: leak lutMemOperand (opR, val);
4: leak lutTransition (Rd, val);
5: opR← val; opA← Rn; opB← Rd; Rd← val;

developed might be of independent interest and is provided in a Listing 1 in Appendix E.
Kyber makes use of constants (e.g., the modulus q) which are stored alongside the

program code. We extend scVerif to allow program counter (pc) relative memory accesses
to be partially evaluated for the subsequent verification phase. In doing so, we extend the
front-end of scVerif to process the assembly .word directive which introduces a constant
at some fixed address: pairs of addresses and constants are placed in the memory view ρ
for the state 〈p, c, µ, ρ, ec〉 of the partial evaluator presented in [BGG+21].

Verification of code containing table lookups, e.g., as used in the table-base A2B
conversion, poses problems as it cannot be partially evaluated since the secret value (share)
used as address or offset in the memory access is a symbol which does not resolve to
a concrete table index. We resolve this by patching the code during verification and
substituting the respective lookup instruction (e.g. ldr) with a virtual instruction (LUT)
defined in scVerif intermediate language which exposes the same leakage behavior but
expresses the semantic of the lookup in functional form.

Let us give an example of this approach for the implementation of the first-order A2B
as explained in Section 4.1. In assembly the lookup in L is implemented as ldr Rd, [Rn,
Rm], where Rd is the destination register, while Rn and Rm contain the base address of L
and an offset. The accessed table index defined by Rn and Rm cannot be partially evaluated
since it is secret dependent. To allow partial evaluation the instruction is substituted by
the virtual instruction LUT implemented in the scVerif intermediate language depicted in
Algorithm 3. The global variables ra and rb are annotated to contain uniformly distributed
random masks, specific to the masked table. Line 1 is a leak-free assignment which
allows one to convert and re-mask the sensitive value, satisfying the table’s functionality
L (a) = (a+ ra mod q)⊕ rb. The explicit leaks ensure that the side-channel behavior of
the substituted ldr is equivalently modeled. Using this approach we verify our table-based
A2B conversion to be Stateful Strong Non-Interferent.

In the subsequent verification of our Compressq(., 1) and DecompressedComparison
implementations we replace calls (branches) to A2B and random number generators by
simplified variants implemented in the scVerif intermediate language, exposing a worst-case
leakage assumption that leaks a combination of all registers. This allows us to harden our
implementation with respect to different implementations of random number generators
and A2B implementations.

Given these pre-requisites, the security of Compressq(., 1) and DecompressedComparison
is verified. The large size of our DecompressedComparison implementation forces us reduce
its parameters (i.e., k = 1 and n = 64) for verification, while Compressq(., 1) can be
verified for the Kyber768 parameters. Both components take nine minutes each to verify
successfully; stating that both implementations are Stateful Strong Non-Interferent in our
fine-grained leakage model.

4.3 Leakage Assessment
Finally, we evaluate the practical side-channel resilience of our hardened first-order imple-
mentation by performing statistical leakage detection on physical side-channel measure-

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 23

ments. We use the KL82Z development board with capacitors C31, C39, C43, C45, C46,
C59 and C61 de-soldered and an inductive current clamp connected on Jumper J15. A
PicoScope 6404C oscilloscope samples the power consumption at 312.5 MS/s, a bandwidth
of 500 MHz and 8 bit quantification. The micro-controller is clocked at 12 MHz, resulting
in slightly more than 26 samples per clock cycle.

For leakage detection, we rely on the widely-used t-test-based Test Vector Leakage
Assessment (TVLA) [GGJR+11] comparing fixed with random inputs. In particular, a
Welch t-test comparing the fixed and random measurements is computed, and the resulting
t-value is compared to a set threshold of ±4.5, representing α = 0.0001. Informally,
if the threshold is exceeded, it is assumed to be possible to distinguish between fixed
and random inputs, which indicates the existence of exploitable leakage. We refer the
reader to [CDG+13, SM16] for more details on TVLA. However, Ding et al. have shown
in [DZD+17], that this threshold needs to be adapted for very long traces to avoid false
positives during leakage detection. As our measurements indeed consist of numerous
sample points, we adapt their approach to set the threshold for our leakage assessments to
avoid erroneous results.

We measure the power consumption of the Cortex-M0+ processor executing 50 000
invocations of the algorithms on a fixed secret value which is freshly masked for each
execution, and another set of 50 000 invocations on uniformly distributed secret values. In
both cases, the implementation is provided with fresh, pre-sampled randomness stored
in a table. In line with [OSPG18] and [BDK+20], we instantiate the measured module
DecompressedComparison with reduced parameter sets, i.e., k = 1 and n = 64 to mitigate
the large size, while ensuring that the entire function can be assessed. The parameters
are chosen such that loops are executed for at least two iterations. We choose the public
compressed values in such a way that the invocations with the fixed value compare correctly
to all but the last compressed coefficient, whereas the invocations on random (uncompressed)
coefficients result in an invalid comparison to the fixed compressed coefficients with high
chance. Only by comparing uncompressed to compressed coefficients which match in the
fixed invocation, we can assess the secrecy of all intermediate comparisons and the handling
of the resulting flag.

The Compressq(., 1) is assessed without reducing parameters (i.e., n = 256). For
DecompressedComparison, the measurements consist of 1,782,438 sample points for which
we set the threshold to 6.89 as described in [DZD+17]. For Compressq(., 1), we need to
process 1,726,452 sample points, and therefore set the threshold to 6.88.

For a first-order secure implementation, the assessment is expected to show no significant
leakage at first-order, while exceeding the threshold at second order. To validate our setup,
we first run the test when the randomness source turned off. In this case, the thresholds are
exceeded for just 1000 traces, as depicted in Figures 6(a) and 6(d). The visible sawtooth
pattern in Figure 6(a) corresponds to the bitsliced comparison of 32 coefficients in parallel.

In normal operation (i.e., randomness source turned on) our hardened algorithms
do not exhibit significant first-order leakage at 100 000 measurements as can be seen in
Figures 6(b) and 6(e). On the other hand, significant univariate second-order leakage is
detectable, as depicted in Figures 6(c) and 6(f), indicating that second-order attacks are
likely to succeed. To increase the SCA resilience beyond the first-order resilience which
is provided by our first-order masked implementation, additional countermeasures are
required, e.g., increasing the masking order. Our presented higher-order masked algorithms
enable to implement Kyber at arbitrary orders, allowing to protect against higher-order
SCA attacks.

24 Masking Kyber: First- and Higher-Order Implementations

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
sample point ×106

0

20

40

60

80

100
t-

st
at

ist
ic

(a) 1 000 traces, RND off
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

sample point ×106

0

2

4

6

8

t-
st

at
ist

ic

(b) 100 000 traces, RND on
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

sample point ×106

0

5

10

15

t-
st

at
ist

ic

(c) 100 000 traces, 2nd order

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
sample point ×106

0

10

20

30

40

50

t-
st

at
ist

ic

(d) 1 000 traces, RND off
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

sample point ×106

0

2

4

6

8

t-
st

at
ist

ic

(e) 100 000 traces, RND on
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

sample point ×106

0

5

10

15

t-
st

at
ist

ic

(f) 100 000 traces, 2nd order

Figure 6: Results of TVLA assessment: the top row shows decompressed comparison
for (a) 1st order without randomness, (b) 1st order with randomness, and (c) 2nd order
with randomness, while the bottom row shows 1-bit compression for (d) 1st order without
randomness, (e) 1st order with randomness, and (f) 2nd order with randomness. The x
axis represents sample point index ×106.

5 Conclusion
In this work, we presented the first masking scheme for a complete Kyber decapsula-
tion, at both first and higher orders. This is achieved by combining known techniques
with two new approaches to respectively mask a one-bit compression and decompressed
comparison. We prove both algorithms to be t-SNI and show how to compose them to
create a masked Kyber.CCAKEM.Dec. We implement our proposed masking scheme on
an Arm Cortex-M0+ and Cortex-M4F at orders one to three. For first-order masked
Kyber, this resulted in an overhead factor of 3.5, 3.3 and 2.7 compared to unmasked for
Kyber.CCAKEM.Dec, Kyber.CPAPKE.Enc, and Kyber.CPAPKE.Dec respectively on the
Cortex-M4F. We explicitly hardened the first-order implementations of our new algorithms
on the Cortex-M0+. Their leakage behavior was both formally and practically verified
using scVerif and TVLA with 100 000 measurements. Both approaches do not detect
leakage in our hardened modules of Compressq(., 1) and DecompressedComparison.

References
[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh

Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status report on
the second round of the NIST post-quantum cryptography standardization
process. Technical Report NISTIR 8309, National Institute of Standards and
Technology, 2020. https://doi.org/10.6028/NIST.IR.8309.

[ACLZ20] Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden.
Defeating NewHope with a single trace. In Jintai Ding and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020, pages 189–205. Springer, Heidelberg, 2020.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange – a new hope. In Proceedings of the 25th USENIX
Security Symposium. USENIX Association, 2016.

https://doi.org/10.6028/NIST.IR.8309

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 25

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskVerif: Automated verification
of higher-order masking in presence of physical defaults. In Kazue Sako, Steve
Schneider, and Peter Y. A. Ryan, editors, ESORICS 2019, Part I, volume
11735 of LNCS, pages 300–318. Springer, Heidelberg, September 2019.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 457–485. Springer, Heidelberg, April 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based
signature scheme at any order. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 354–384.
Springer, Heidelberg, April / May 2018.

[BBK+17] Nina Bindel, Johannes Buchmann, Juliane Krämer, Heiko Mantel, Johannes
Schickel, and Alexandra Weber. Bounding the cache-side-channel leakage of
lattice-based signature schemes using program semantics. In Abdessamad
Imine, José M. Fernandez, Jean-Yves Marion, Luigi Logrippo, and Joaquín
García-Alfaro, editors, Foundations and Practice of Security - 10th Interna-
tional Symposium, FPS 2017, Nancy, France, October 23-25, 2017, Revised
Selected Papers, volume 10723 of Lecture Notes in Computer Science, pages
225–241. Springer, 2017.

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the TLS protocol from the ring learning with errors
problem. In 2015 IEEE Symposium on Security and Privacy – SP, pages
553–570. IEEE Computer Society, 2015.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
CHES 2016, volume 9813 of LNCS, pages 23–39. Springer, Heidelberg, August
2016.

[BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved high-order
conversion from Boolean to arithmetic masking. IACR TCHES, 2018(2):22–45,
2018. https://tches.iacr.org/index.php/TCHES/article/view/873.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann,
and Michiel Van Beirendonck. Attacking and defending masked polynomial
comparison for lattice-based cryptography. Cryptology ePrint Archive, Report
2021/104, 2021. https://eprint.iacr.org/2021/104.

[BDK+18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS - kyber: A cca-secure module-lattice-based KEM. In 2018 IEEE
European Symposium on Security and Privacy – Euro S&P, pages 353–367.
IEEE, 2018.

https://tches.iacr.org/index.php/TCHES/article/view/873
https://eprint.iacr.org/2021/104

26 Masking Kyber: First- and Higher-Order Implementations

[BDK+20] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel resistant implementation
of SABER. Cryptology ePrint Archive, Report 2020/733, 2020. https:
//eprint.iacr.org/2020/733.

[BDPVA10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Build-
ing power analysis resistant implementations of keccak. In Second SHA-3
candidate conference, volume 142. Citeseer, 2010.

[BGG+21] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara
Paglialonga, and Lars Porth. Masking in fine-grained leakage models: Con-
struction, implementation and verification. IACR TCHES, 2021(2):189–228,
2021. https://tches.iacr.org/index.php/TCHES/article/view/8792.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, editor,
ITCS 2012, pages 309–325. ACM, January 2012.

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, gauss, and reload - A cache attack on the BLISS lattice-based signature
scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016,
volume 9813 of LNCS, pages 323–345. Springer, Heidelberg, August 2016.

[BPO+20] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim
Güneysu. High-speed masking for polynomial comparison in lattice-based
kems. IACR TCHES, 2020(3):483–507, 2020. https://tches.iacr.org/
index.php/TCHES/article/view/8598.

[CDG+13] Jeremy Cooper, Elke Demulder, Gilbert Goodwill, Joshua Jaffe, Gary Kenwor-
thy, Pankaj Rohatgi, et al. Test vector leakage assessment (tvla) methodology
in practice. In International Cryptographic Module Conference, volume 20,
2013.

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Ri-
jneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU. Tech-
nical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure conversion between Boolean and arithmetic masking of any order. In
Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume 8731 of
LNCS, pages 188–205. Springer, Heidelberg, September 2014.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412. Springer,
Heidelberg, August 1999.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE
Transactions on Information Forensics and Security, 15:2542–2555, 2020.

[CT03] Jean-Sébastien Coron and Alexei Tchulkine. A new algorithm for switching
from arithmetic to Boolean masking. In Colin D. Walter, Çetin Kaya Koç,
and Christof Paar, editors, CHES 2003, volume 2779 of LNCS, pages 89–97.
Springer, Heidelberg, September 2003.

https://eprint.iacr.org/2020/733
https://eprint.iacr.org/2020/733
https://tches.iacr.org/index.php/TCHES/article/view/8792
https://tches.iacr.org/index.php/TCHES/article/view/8598
https://tches.iacr.org/index.php/TCHES/article/view/8598
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 27

[Dan21] Daniel Heinz and Matthias J. Kannwischer and Georg Land and Thomas
Pöppelmann and Peter Schwabe and Daan Sprenkels. First-Order
Masked Kyber on ARM Cortex-M4. https://csrc.nist.gov/CSRC/
media/Presentations/first-order-masked-kyber-on-arm-cortex-m4/
images-media/session-4-heinz-first-order-masked-kyber.pdf, 2021.

[Deb12] Blandine Debraize. Efficient and provably secure methods for switching
from arithmetic to Boolean masking. In Emmanuel Prouff and Patrick
Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 107–121.
Springer, Heidelberg, September 2012.

[DKR+20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik
Vercauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and An-
drea Basso. SABER. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Module-LWR based key exchange, CPA-secure encryp-
tion and CCA-secure KEM. In Antoine Joux, Abderrahmane Nitaj, and
Tajjeeddine Rachidi, editors, AFRICACRYPT 18, volume 10831 of LNCS,
pages 282–305. Springer, Heidelberg, May 2018.

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Timing attacks on error correcting codes in post-quantum schemes.
In Begül Bilgin, Svetla Petkova-Nikova, and Vincent Rijmen, editors, Pro-
ceedings of ACM Workshop on Theory of Implementation Security Workshop,
TIS@CCS 2019, London, UK, November 11, 2019, pages 2–9. ACM, 2019.

[DZD+17] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert,
and Yunsi Fei. Towards sound and optimal leakage detection procedure.
In Thomas Eisenbarth and Yannick Teglia, editors, Smart Card Research
and Advanced Applications - 16th International Conference, CARDIS 2017,
Lugano, Switzerland, November 13-15, 2017, Revised Selected Papers, volume
10728 of Lecture Notes in Computer Science, pages 105–122. Springer, 2017.

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Side-channel attacks on BLISS lattice-based signatures: Exploiting branch
tracing against strongSwan and electromagnetic emanations in microcon-
trollers. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1857–1874. ACM Press, Octo-
ber / November 2017.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 537–554. Springer, Heidelberg, August 1999.

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, volume 7, pages 115–136, 2011.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transforma-
tion and its application on FrodoKEM. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
359–386. Springer, Heidelberg, August 2020.

https://csrc.nist.gov/CSRC/media/Presentations/first-order-masked-kyber-on-arm-cortex-m4/images-media/session-4-heinz-first-order-masked-kyber.pdf
https://csrc.nist.gov/CSRC/media/Presentations/first-order-masked-kyber-on-arm-cortex-m4/images-media/session-4-heinz-first-order-masked-kyber.pdf
https://csrc.nist.gov/CSRC/media/Presentations/first-order-masked-kyber-on-arm-cortex-m4/images-media/session-4-heinz-first-order-masked-kyber.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

28 Masking Kyber: First- and Higher-Order Implementations

[GJRS18] Dahmun Goudarzi, Anthony Journault, Matthieu Rivain, and François-Xavier
Standaert. Secure multiplication for bitslice higher-order masking: Opti-
misation and comparison. In Junfeng Fan and Benedikt Gierlichs, editors,
COSADE 2018, volume 10815 of LNCS, pages 3–22. Springer, Heidelberg,
April 2018.

[GR19] François Gérard and Mélissa Rossi. An efficient and provable masked im-
plementation of qtesla. In Sonia Belaïd and Tim Güneysu, editors, Smart
Card Research and Advanced Applications - 18th International Conference,
CARDIS 2019, Prague, Czech Republic, November 11-13, 2019, Revised Se-
lected Papers, volume 11833 of Lecture Notes in Computer Science, pages
74–91. Springer, 2019.

[HCY19] Wei-Lun Huang, Jiun-Peng Chen, and Bo-Yin Yang. Power analysis on NTRU
prime. IACR TCHES, 2020(1):123–151, 2019. https://tches.iacr.org/
index.php/TCHES/article/view/8395.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Heidelberg, November 2017.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory –
ANTS-III, volume 1423 of LNCS, pages 267–288. Springer, 1998.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109
of LNCS, pages 104–113. Springer, Heidelberg, August 1996.

[KRS+19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, Douglas Stebila,
and Thom Wiggers. The PQClean project, November 2019. https://github.
com/PQClean/PQClean.

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4. Workshop
Record of the Second PQC Standardization Conference, 2019. https://
cryptojedi.org/papers/#pqm4.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking Dilithium - efficient implementation and side-channel evaluation. In
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung,
editors, ACNS 19, volume 11464 of LNCS, pages 344–362. Springer, Heidelberg,
June 2019.

[MPW21] Ben Marshall, Dan Page, and James Webb. Miracle: Micro-architectural
leakage evaluation. Cryptology ePrint Archive, Report 2021/261, 2021. https:
//eprint.iacr.org/2021/261.

https://tches.iacr.org/index.php/TCHES/article/view/8395
https://tches.iacr.org/index.php/TCHES/article/view/8395
https://github.com/PQClean/PQClean
https://github.com/PQClean/PQClean
https://cryptojedi.org/papers/#pqm4
https://cryptojedi.org/papers/#pqm4
https://eprint.iacr.org/2021/261
https://eprint.iacr.org/2021/261

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 29

[Nat] National Institute of Standards and Technology. Post-
quantum cryptography standardization. https://
csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-channel
attack on a masked IND-CCA secure saber KEM. IACR Cryptol. ePrint
Arch., 2021:79, 2021.

[NXP16] NXP Semiconductors. FRDM-KL82Z User’s Guide. https://www.nxp.com/
docs/en/user-guide/FRDMKL82ZUG.pdf, 2016.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure masked Ring-LWE implementations. IACR
TCHES, 2018(1):142–174, 2018. https://tches.iacr.org/index.php/
TCHES/article/view/836.

[PP19] Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In Peter Schwabe and Nicolas Thériault, edi-
tors, LATINCRYPT 2019, volume 11774 of LNCS, pages 130–149. Springer,
Heidelberg, 2019.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, CHES 2017, volume 10529 of LNCS, pages 513–533. Springer,
Heidelberg, September 2017.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 142–159. Springer,
Heidelberg, May 2013.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards
secure 1st-order masking in software. In Sylvain Guilley, editor, COSADE
2017, volume 10348 of LNCS, pages 282–297. Springer, Heidelberg, April
2017.

[PZ03] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for
elliptic curves. Quantum Inf. Comput., 3:317––344, 2003.

[RBRC20] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay.
Drop by drop you break the rock - exploiting generic vulnerabilities in lattice-
based PKE/KEMs using EM-based physical attacks. Cryptology ePrint
Archive, Report 2020/549, 2020. https://eprint.iacr.org/2020/549.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on CCA-secure lattice-based PKE and KEMs.
IACR TCHES, 2020(3):307–335, 2020. https://tches.iacr.org/index.
php/TCHES/article/view/8592.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A masked ring-LWE implementation. In Tim Güneysu and Helena
Handschuh, editors, CHES 2015, volume 9293 of LNCS, pages 683–702.
Springer, Heidelberg, September 2015.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://www.nxp.com/docs/en/user-guide/FRDMKL82ZUG.pdf
https://www.nxp.com/docs/en/user-guide/FRDMKL82ZUG.pdf
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/836
https://eprint.iacr.org/2020/549
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://tches.iacr.org/index.php/TCHES/article/view/8592

30 Masking Kyber: First- and Higher-Order Implementations

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tan-
crède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and
Damien Stehlé. CRYSTALS-KYBER. Technical report, National Institute
of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994.

[SM16] Tobias Schneider and Amir Moradi. Leakage assessment methodology -
extended version. Journal of Cryptographic Engineering, 6(2):85–99, June
2016.

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Effi-
ciently masking binomial sampling at arbitrary orders for lattice-based crypto.
In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443
of LNCS, pages 534–564. Springer, Heidelberg, April 2019.

[SRSW20] Thomas Schamberger, Julian Renner, Georg Sigl, and Antonia Wachter-Zeh.
A power side-channel attack on the cca2-secure HQC KEM. In Pierre-Yvan
Liardet and Nele Mentens, editors, Smart Card Research and Advanced
Applications - 19th International Conference, CARDIS 2020, Virtual Event,
November 18-19, 2020, Revised Selected Papers, volume 12609 of Lecture
Notes in Computer Science, pages 119–134. Springer, 2020.

[SW07] Joseph H. Silverman and William Whyte. Timing attacks on NTRUEn-
crypt via variation in the number of hash calls. In Masayuki Abe, editor,
CT-RSA 2007, volume 4377 of LNCS, pages 208–224. Springer, Heidelberg,
February 2007.

[TE15] Mostafa Taha and Thomas Eisenbarth. Implementation attacks on post-
quantum cryptographic schemes. Cryptology ePrint Archive, Report
2015/1083, 2015. https://eprint.iacr.org/2015/1083.

[XPRO20] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magnify-
ing side-channel leakage of lattice-based cryptosystems with chosen ciphertexts:
The case study of kyber. Cryptology ePrint Archive, Report 2020/912, 2020.
https://eprint.iacr.org/2020/912.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2015/1083
https://eprint.iacr.org/2020/912

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 31

A Supporting Material: Proof Theorem 1
• G13 (NI): The tG13 internal probes and oG13 output shares of the gadget can be

simulated with tG13 + oG13 shares of x(·)B

11 and of the output of G12.

• G12 (SNI): The tG12 internal probes and oG12 output shares of the gadget can be
simulated with tG12 shares of the output G10 and G11.

• G11 (NI): The tG11 internal probes and oG11 output shares of the gadget can be
simulated with tG11 + oG11 shares of x(·)B

11 .

• G10 (SNI): The tG10 internal probes and oG10 output shares of the gadget can be
simulated with tG10 shares of x(·)B

10 and of the output of G9.

• G9 (SNI): The tG9 internal probes and oG9 output shares of the gadget can be
simulated with tG9 shares of x(·)B

9 and of the output of G8.

• G8 (SNI): The tG8 internal probes and oG8 output shares of the gadget can be
simulated with tG8 shares of the output of G7.

• G7 (NI): The tG7 internal probes and oG7 output shares of the gadget can be
simulated with tG7 + oG7 shares of x(·)B

8 and of the output of G6.

• G6 (SNI): The tG6 internal probes and oG6 output shares of the gadget can be
simulated with tG6 shares of x(·)B

7 and of the output of G5.

• G5 (SNI): The tG5 internal probes and oG5 output shares of the gadget can be
simulated with tG5 shares of the output of G4.

• G4 (NI): The tG4 internal probes and oG4 output shares of the gadget can be
simulated with tG4 + oG4 shares of x(·)B

8 .

• G3 (NI): The tG3 internal probes and oG3 output shares of the gadget can be
simulated with tG3 + oG3 shares of a(·)B .

• G2 (SNI): The tG2 internal probes and oG2 output shares of the gadget can be
simulated with tG2 shares of the output of G1.

• G1 (NI): The tG1 internal probes and oG1 output shares of the gadget can be
simulated with tG1 + oG1 shares of the input a(·)A .

B Supporting Material: Proof Theorem 2
• G25 (SNI): The tG25 internal probes and oG25 output shares of the gadget can be

simulated with tG25 shares of the output of G23 and G24.

• G24 (NI): The tG24 internal probes and oG24 output shares of the gadget can be
simulated with tG24 + oG24 shares of the output of G22.

• G23 (NI): The tG23 internal probes and oG23 output shares of the gadget can be
simulated with tG23 + oG23 shares of the output of G22.

• G22 (SNI): The tG22 internal probes and oG22 output shares of the gadget can be
simulated with tG22 shares of the output of G20 and G21.

• G21 (NI): The tG21 internal probes and oG21 output shares of the gadget can be
simulated with tG21 + oG21 shares of the output of G19.

32 Masking Kyber: First- and Higher-Order Implementations

• G20 (NI): The tG20 internal probes and oG20 output shares of the gadget can be
simulated with tG20 + oG20 shares of the output of G19.

• G19 (SNI): The tG19 internal probes and oG19 output shares of the gadget can be
simulated with tG19 shares of the output of G17 and G18.

• G18 (SNI): The tG18 internal probes and oG18 output shares of the gadget can be
simulated with tG18 shares of the output of G15 and G16.

• G17 (SNI): The tG17 internal probes and oG17 output shares of the gadget can be
simulated with tG17 shares of the output of G13 and G14.

• G16 (NI): The tG16 internal probes and oG16 output shares of the gadget can be
simulated with tG16 + oG16 shares of the output of G12.

• G15 (NI): The tG15 internal probes and oG15 output shares of the gadget can be
simulated with tG15 + oG15 shares of the output of G11.

• G14 (NI): The tG14 internal probes and oG14 output shares of the gadget can be
simulated with tG14 + oG14 shares of the output of G10.

• G13 (NI): The tG13 internal probes and oG13 output shares of the gadget can be
simulated with tG13 + oG13 shares of the output of G9.

• G12 (SNI): The tG12 internal probes and oG12 output shares of the gadget can be
simulated with tG12 shares of the output of G8.

• G11 (SNI): The tG11 internal probes and oG11 output shares of the gadget can be
simulated with tG11 shares of the output of G7.

• G10 (SNI): The tG10 internal probes and oG10 output shares of the gadget can be
simulated with tG10 shares of the output of G6.

• G9 (SNI): The tG9 internal probes and oG9 output shares of the gadget can be
simulated with tG9 shares of the output of G5.

• G8 (NI): The tG8 internal probes and oG8 output shares of the gadget can be
simulated with tG8 + oG8 shares of the output of G4.

• G7 (NI): The tG7 internal probes and oG7 output shares of the gadget can be
simulated with tG7 + oG7 shares of the output of G3.

• G6 (NI): The tG6 internal probes and oG6 output shares of the gadget can be
simulated with tG6 + oG6 shares of the output of G2.

• G5 (NI): The tG5 internal probes and oG5 output shares of the gadget can be
simulated with tG5 + oG5 shares of the output of G1.

• G4 (NI): The tG4 internal probes and oG4 output shares of the gadget can be
simulated with tG4 + oG4 shares of the input v′(·)A .

• G3 (NI): The tG3 internal probes and oG3 output shares of the gadget can be
simulated with tG3 + oG3 shares of the input v′(·)A .

• G2 (NI): The tG2 internal probes and oG2 output shares of the gadget can be
simulated with tG2 + oG2 shares of the input u′(·)A .

• G1 (NI): The tG1 internal probes and oG1 output shares of the gadget can be
simulated with tG1 + oG1 shares of the input u′(·)A .

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 33

Table 3: Recommended parameter sets for Kyber.

n k q η1 η2 (du, dv) δ

Kyber512 256 2 3329 3 2 (10,4) 2−139

Kyber768 256 3 3329 2 2 (10,4) 2−164

Kyber1024 256 4 3329 2 2 (11,5) 2−174

Algorithm 4 Sampling from CBDη : B64η → R3329 as used in Kyber.
Input: Byte array B = (b0, b1, . . . , b64η−1) ∈ B64η

Output: Polynomial f ∈ R3329
(β0, . . . , β512η−1) := BytesToBits(B)
for i from 0 to 255 do

a :=
∑η−1
j=0 β2iη+j

b :=
∑η−1
j=0 β2iη+η+j

fi := a− b
return f0 + f1X + f2X

2 + · · ·+ f255X
255

C Supporting Material: Proof Theorem 3
• G7 (SNI): The tG7 internal probes and oG7 output shares of the gadget can be

simulated with tG7 shares of the output of G5.

• G6 (NI): The tG6 internal probes and oG6 output shares of the gadget can be
simulated with tG6 + oG6 shares of the output of G2.

• G5 (NI): The tG5 internal probes and oG5 output shares of the gadget can be
simulated with tG5 + oG5 shares of the output of G3 and G4.

• G4 (SNI): The tG4 internal probes and oG4 output shares of the gadget can be
simulated with tG4 shares of the output of G6.

• G3 (SNI): The tG3 internal probes and oG3 output shares of the gadget can be
simulated with tG3 shares of the output of G2.

• G2 (SNI): The tG2 internal probes and oG2 output shares of the gadget can be
simulated with tG2 shares of the output of G1.

• G1 (NI): The tG1 internal probes and oG1 output shares of the gadget can be
simulated with tG1 + oG1 shares of the input ŝ(·)A .

D Kyber Round 3 Tables & Algorithms

34 Masking Kyber: First- and Higher-Order Implementations

Algorithm 5 Kyber.CPAPKE.Enc(pk,m, r): encryption
Input: Public key pk ∈ B12·k·n/8+32

Input: Message m ∈ B32

Input: Random coins r ∈ B32

Output: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

1: N := 0
2: t̂ := Decode12(pk)
3: ρ := pk + 12 · k · n/8
4: for i from 0 to k − 1 do . Generate matrix Â ∈ Rk×kq in NTT domain
5: for j from 0 to k − 1 do
6: ÂT [i][j] := Parse(XOF(ρ, i, j))
7: for i from 0 to k − 1 do . Sample r ∈ Rkq from Bη1

8: r[i] := CBDη1(PRF(r,N))
9: N := N + 1
10: for i from 0 to k − 1 do . Sample e1 ∈ Rkq from Bη2

11: e1[i] := CBDη2(PRF(r,N))
12: N := N + 1
13: e2 := CBDη2(PRF(r,N)) . Sample e2 ∈ Rq from Bη2

14: r̂ := NTT(r)
15: u := NTT−1(ÂT ◦ r̂) + e1 . u := AT r + e1
16: v := NTT−1(t̂T ◦ r̂) + e2 + Decompressq(Decode1(m), 1) .

v := tT r + e2 + Decompressq(m, 1)
17: c1 := Encodedu(Compressq(u, du))
18: c2 := Encodedv

(Compressq(v, dv))
19: return c = (c1‖c2) . c := (Compressq(u, du),Compressq(v, dv))

Algorithm 6 Kyber.CPAPKE.Dec(sk, c): decryption
Input: Secret key sk ∈ B12·k·n/8

Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Output: Message m ∈ B32

1: u := Decompressq(Decodedu
(c), du)

2: v := Decompressq(Decodedv (c+ du · k · n/8), dv)
3: ŝ := Decode12(sk)
4: m := Encode1(Compressq(v−NTT−1(ŝT ◦NTT(u)), 1)) . m := Compressq(v− sTu, 1))
5: return m

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 35

Algorithm 7 Kyber.CCAKEM.Dec(c, sk)
Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Input: Secret key sk ∈ B24·k·n/8+96

Output: Shared key K ∈ B∗
1: pk := sk + 12 · k · n/8
2: h := sk + 24 · k · n/8 + 32 ∈ B32

3: z := sk + 24 · k · n/8 + 64
4: m′ := Kyber.CPAPKE.Dec(s, (u, v))
5: (K̄ ′, r′) := G(m′‖h)
6: c′ := Kyber.CPAPKE.Enc(pk,m′, r′)
7: if c = c′ then
8: return K := KDF(K̄ ′‖H(c))
9: else
10: return K := KDF(z‖H(c))
11: return K

36 Masking Kyber: First- and Higher-Order Implementations

E Leakage Models used during verification with scVerif
We provide the formal leakage model which was used to verify the security of our masked
assembly implementations of Algorithms 1 and 2 for the Cortex-M0+ processor. Our
leakage model was based on the model presented in [BGG+21] but merely served as design
aid. It was extended for assumed leakage behavior as well as observed effects but comes
without profound physical validation.

Every macro defines the leakage behavior of an instruction in the domain specific
language “IL” (refer to [BGG+21] for a detailed description), e.g., ands2_leak models the
leakage of the Arm assembly instruction ands with two operands of 32 bits. The semantics
of the instructions are provided in the supplementary material of [BGG+21]. The model
includes the virtual lut instruction which specifies the leakage model and semantic of the
table for A2B conversion (Section 4.2).

Listing 1: Fine-grained side-channel leakage model used during verification of concrete
assembly implementations.

1 w32 opA; // global leakage state to model leakage behavior which depends on past
↪→ instructions

2 w32 opB;
3 w32 opR;
4 w32 opW;
5
6 macro ands2_leak (w32 op1, w32 op2) {
7 leak andsCompResult (op1 &w32 op2);
8 leak andsTransition (op1, op1 &w32 op2);
9 leak andsOperand (opA, op1, opB, op2);

10 leak andsOperandA (opA, op1);
11 leak andsOperandB (opB, op2);
12
13 opA <- op1;
14 opB <- op2;
15 }
16
17 macro eors2_leak (w32 op1, w32 op2) {
18 leak eorsCompResult (op1 ^w32 op2);
19 leak eorsTransition (op1, op1 ^w32 op2);
20 leak eorsOperand (opA, op1, opB, op2);
21 leak eorsOperandA (opA, op1);
22 leak eorsOperandB (opB, op2);
23
24 opA <- op1;
25 opB <- op2;
26 }
27
28 macro ldr3_leak (w32 dst, w32 adr, w32 ofs)
29 w32 val
30 {
31 val <- [w32 mem (int) (adr +w32 ofs)];
32
33 leak ldrOperand1 (opA, adr, opB, ofs);
34
35 leak ldrOperand2A (opA, adr);
36 leak ldrOperand2B (opB, dst);
37 leak ldrMemOperand (opR, val);
38 leak ldrTransition (dst, val);
39

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 37

40 opA <- adr;
41 opB <- dst;
42 opR <- val;
43 }
44
45 // virtual instruction as substitute for the ldr instruction in the table lookup

↪→ of A2B with equivalent leakage behavior, including the functional
↪→ semantic of the table

46 macro lut3 (w32 dst, w32 adr, w32 ofs)
47 w32 val, w32 ra, w32 rb, w32 baseaddr
48 {
49 // in our modified implementation pcptr points to the static table containing

↪→ the base-addres for the random masks r_a, r_b and the lookup table
50 baseaddr <- [w32 mem (int) pcptr];
51 ra <- [w32 mem (int) (baseaddr +w32 (w32) 0)];
52 rb <- [w32 mem (int) (baseaddr +w32 (w32) 4)];
53
54 val <- adr +w32 ofs -w32 baseaddr +w32 ra ^w32 rb;
55 leak lutOperand (opA, opB, adr, ofs);
56 leak lutMemOperand (opR, val);
57 leak lutTransition (dst, val);
58
59 opA <- adr;
60 opB <- dst;
61 opR <- val;
62
63 dst <- val; // semantic action
64 }
65
66 macro str3_leak (w32 val, w32 adr, w32 ofs) {
67 leak strOperand1 (opA, adr, opB, ofs);
68
69 leak strOperand2A (opA, adr);
70 leak strOperand2B (opB, val);
71 leak strMemOperand (opW, val);
72
73 opA <- adr;
74 opB <- val;
75 opW <- val;
76 }
77
78 macro mov2_leak (w32 dst, w32 src) {
79 leak movCompResult (src);
80 leak movOperand (opA, dst, opB, src);
81 leak movTransition (dst, src);
82
83 opA <- src; // assumption here was "opA <- dst" which is wrong
84 // opB <- src; // assumption here was wrong, opB is not cleared but propagated
85 }
86
87 macro adds3_leak (w32 dst, w32 op1, w32 op2) {
88 leak addsCompResult (op1 +w32 op2);
89 leak addsTransition (dst, op1 +w32 op2);
90 leak addsOperand (opA, op1, opB, op2);
91
92 opA <- opA &w32 opB &w32 op1; // worst case assumption
93 opB <- opA &w32 opB &w32 op2; // worst case assumption

38 Masking Kyber: First- and Higher-Order Implementations

94 }
95
96 macro add3_leak (w32 dst, w32 op1, w32 op2) {
97 leak addCompResult (op1 +w32 op2);
98 leak addTransition (dst, op1 +w32 op2);
99 leak addOperand (opA, op1, opB, op2);

100
101 opA <- opA &w32 opB &w32 op1; // worst case assumption
102 opB <- opA &w32 opB &w32 op2; // worst case assumption
103 }
104
105 macro mvns2_leak (w32 dst, w32 src) {
106 leak movCompResult (!w32 src);
107 leak movOperand (opA, dst, opB, src);
108 leak movTransition (dst, !w32 src);
109
110 opA <- opA &w32 src;
111 }
112
113 macro adcs2_leak (w32 dst, w32 op) {
114 leak sbcsCompResult (op -w32 dst);
115 leak sbcsOperand (opA, dst, opB, op);
116 leak sbcsTransition (dst, op -w32 dst);
117
118 opA <- dst; // assumption
119 opB <- op;
120 }
121
122 macro sbcs2_leak (w32 dst, w32 op) {
123 leak sbcsCompResult (op -w32 dst);
124 leak sbcsOperand (opA, dst, opB, op);
125 leak sbcsTransition (dst, op -w32 dst);
126
127 opA <- opA &w32 op;
128 }
129
130 macro subs3_leak (w32 dst, w32 op1, w32 op2) {
131 leak subsCompResult (op1 +w32 op2);
132 leak subsTransition (dst, op1 +w32 op2);
133 leak subsOperand (opA, op1, opB, op2);
134
135 opA <- op1;
136 opB <- op2;
137 }
138
139 macro sub3_leak (w32 dst, w32 op1, w32 op2) {
140 leak subCompResult (op1 +w32 op2);
141 leak subTransition (dst, op1 +w32 op2);
142 leak subOperand (opA, op1, opB, op2);
143
144 opA <- op1;
145 opB <- op2;
146 }
147
148 macro ldrb3_leak (w32 dst, w32 adr, w32 ofs) {
149 ldr3_leak(dst, adr, ofs);
150 }

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 39

151
152 macro ldrh3_leak (w32 dst, w32 adr, w32 ofs) {
153 ldr3_leak(dst, adr, ofs);
154 }
155
156 macro strb3_leak (w32 op, w32 adr, w32 ofs) {
157 str3_leak(op, adr, ofs);
158 }
159
160 macro strh3_leak (w32 op, w32 adr, w32 ofs) {
161 str3_leak(op, adr, ofs);
162 }
163
164 macro sxtb2_leak (w32 dst, w32 src) {
165 leak sxtbCompResult (src);
166 leak sxtbOperand (opA, dst, opB, src);
167 leak sxtbTransition (dst, src);
168
169 opA <- opA &w32 src;
170 }
171
172 macro sxth2_leak (w32 dst, w32 src) {
173 leak sxthCompResult (src);
174 leak sxthOperand (opA, dst, opB, src);
175 leak sxthTransition (dst, src);
176
177 opA <- opA &w32 src;
178 }
179
180 macro lsls3_leak (w32 dst, w32 op1, w32 shift) {
181 leak lslsCompResult (op1);
182 leak lslsOperand (opA, dst, opB, op1);
183 leak lslsTransition (dst, op1);
184
185 opA <- op1; // assumption
186 // opB <- op1;
187 }
188
189 macro lsls2_leak (w32 op1, w32 op2) {
190 lsls3_leak(op1, op1, op2);
191 }
192
193 macro lsrs3_leak (w32 dst, w32 op1, w32 shift) {
194 leak lsrsCompResult (op1);
195 leak lsrsOperand (opA, dst, opB, op1);
196 leak lsrsTransition (dst, op1);
197
198 opA <- op1; // assumption
199 // opB <- op1;
200 }
201
202 macro lsrs2_leak (w32 op1, w32 op2) {
203 lsrs3_leak(op1, op1, op2);
204 }
205
206 macro asrs3_leak (w32 dst, w32 op1, w32 shift) {
207 leak asrsCompResult (op1);

40 Masking Kyber: First- and Higher-Order Implementations

208 leak asrsOperand (opA, dst, opB, op1);
209 leak asrsTransition (dst, op1);
210
211 opA <- op1; // assumption
212 // opB <- op1;
213 }
214
215 macro asrs2_leak (w32 dst, w32 op1) {
216 asrs3_leak(dst, dst, op1);
217 }
218
219 macro muls3_leak (w32 dst, w32 op1, w32 op2) {
220 leak mulsCompResult (op1 *w32 op2);
221 leak mulsTransition (dst, op1 *w32 op2);
222 leak mulsOperand (opA, op1, opB, op2);
223
224 opA <- op1;
225 opB <- op2;
226 }
227
228 macro muls2_leak (w32 op1, w32 op2) {
229 muls3_leak(op1, op1, op2);
230 }
231
232 macro orrs2_leak (w32 op1, w32 op2) {
233 leak orrsCompResult (op1 |w32 op2);
234 leak orrsTransition (op1, op1 |w32 op2);
235 leak orrsOperand (opA, op1, opB, op2);
236 leak orrsOperandA (opA, op1);
237 leak orrsOperandB (opB, op2);
238
239 opA <- op1;
240 opB <- op2;
241 }
242
243 macro rsbs2_leak (w32 op1, w32 op2) {
244 leak orrsCompResult (op2 -w32 op1);
245 leak orrsTransition (op1, op2 -w32 op1);
246 leak orrsOperand (opA, op1, opB, op2);
247
248 opA <- opA &w32 op2;
249 }
250
251 macro negs2_leak (w32 op1, w32 op2) {
252 rsbs2_leak(op1, op2);
253 }
254
255 macro uxtb2_leak (w32 dst, w32 src) {
256 leak uxtbCompResult (src);
257 leak uxtbOperand (opA, dst, opB, src);
258 leak uxtbTransition (dst, src);
259
260 opA <- opA &w32 src;
261 }
262
263 macro uxth2_leak (w32 dst, w32 src) {
264 uxtb2_leak(dst, src);

J. W. Bos, M. Gourjon, J. Renes, T. Schneider and C. van Vredendaal 41

265 }
266
267 macro cmp2_leak (w32 op1, w32 op2) {
268 subs3_leak(op1, op1, op2);
269 }
270
271 macro tst2_leak (w32 op1, w32 op2) {
272 leak tstCompResult (op1 &w32 op2);
273 leak tstOperand (opA, op1, opB, op2);
274 leak tstOperandA (opA, op1);
275 leak tstOperandB (opB, op2);
276
277 opA <- opA &w32 op1;
278 opB <- opB &w32 op2;
279 }
280
281 // the semantic of pop instructions is build from the load, therefore the values

↪→ on the stack leak as well
282 macro pop1_leak (w32 op1) {
283 leak pop (op1, opR);
284 }
285
286 macro pop2_leak (w32 op1, w32 op2) {
287 leak pop (op1, op2, opR);
288 }
289
290 macro pop3_leak (w32 op1, w32 op2, w32 op3) {
291 leak pop (op1, op2, op3, opR);
292 }
293
294 macro pop4_leak (w32 op1, w32 op2, w32 op3, w32 op4) {
295 leak pop (op1, op2, op3, op4, opR);
296 }
297
298 macro pop5_leak (w32 op1, w32 op2, w32 op3, w32 op4, w32 op5) {
299 leak pop (op1, op2, op3, op4, op5, opR);
300 }
301
302 macro pop6_leak (w32 op1, w32 op2, w32 op3, w32 op4, w32 op5, w32 op6) {
303 leak pop (op1, op2, op3, op4, op5, op6, opR);
304 }
305
306 macro pop7_leak (w32 op1, w32 op2, w32 op3, w32 op4, w32 op5, w32 op6, w32 op7) {
307 leak pop (op1, op2, op3, op4, op5, op6, op7, opR);
308 }
309
310 macro pop8_leak (w32 op1, w32 op2, w32 op3, w32 op4, w32 op5, w32 op6, w32 op7,

↪→ w32 op8) {
311 leak pop (op1, op2, op3, op4, op5, op6, op7, op8, opR);
312 }
313
314 macro pop9_leak (w32 op1, w32 op2, w32 op3, w32 op4, w32 op5, w32 op6, w32 op7,

↪→ w32 op8, w32 op9) {
315 leak pop (op1, op2, op3, op4, op5, op6, op7, op8, op9, opR);
316 }
317
318 macro push1_leak (w32 op1) {

42 Masking Kyber: First- and Higher-Order Implementations

319 leak push (op1, opW);
320 }
321
322 macro push2_leak (w32 op1, w32 op2) {
323 leak push (op1, op2, opW);
324 }
325
326 macro push3_leak (w32 op1, w32 op2, w32 op3) {
327 leak push (op1, op2, op3, opW);
328 }
329
330 macro push4_leak (w32 op1, w32 op2, w32 op3, w32 op4) {
331 leak push (op1, op2, op3, op4, opW);
332 }
333
334 macro push5_leak (w32 op1, w32 op2, w32 op3, w32 op4, w32 op5) {
335 leak push (op1, op2, op3, op4, op5, opW);
336 }
337
338 macro push6_leak (w32 op1, w32 op2, w32 op3, w32 op4, w32 op5, w32 op6) {
339 leak push (op1, op2, op3, op4, op5, op6, opW);
340 }
341
342 macro push7_leak (w32 op1, w32 op2, w32 op3, w32 op4, w32 op5, w32 op6, w32 op7) {
343 leak push (op1, op2, op3, op4, op5, op6, op7, opW);
344 }
345
346 macro push8_leak (w32 op1, w32 op2, w32 op3, w32 op4, w32 op5, w32 op6, w32 op7,

↪→ w32 op8) {
347 leak push (op1, op2, op3, op4, op5, op6, op7, op8, opW);
348 }
349
350 macro push9_leak (w32 op1, w32 op2, w32 op3, w32 op4, w32 op5, w32 op6, w32 op7,

↪→ w32 op8, w32 op9) {
351 leak push (op1, op2, op3, op4, op5, op6, op7, op8, op9, opW);
352 }

	Introduction
	Background
	Masking Kyber at Arbitrary Order
	Higher-Order One-Bit Compression
	Higher-Order Masked Comparison
	Masked CCA Kyber Decapsulation

	Implementation and Evaluation
	Performance Comparison
	Verification
	Leakage Assessment

	Conclusion
	Supporting Material: Proof Theorem 1
	Supporting Material: Proof Theorem 2
	Supporting Material: Proof Theorem 3
	Kyber Round 3 Tables & Algorithms
	Leakage Models used during verification with scVerif

