
iTimed: Cache Attacks on the Apple A10 Fusion SoC

Gregor Haas, Seetal Potluri, and Aydin Aysu
Department of Electrical and Computer Engineering

North Carolina State University
{ghaas, spotlur2, aaysu}@ncsu.edu

Abstract—This paper proposes the first cache timing side-
channel attack on one of Apple’s mobile devices. Utilizing
a recent, permanent exploit named checkm8, we reverse-
engineered Apple’s BootROM and created a powerful toolkit
for running arbitrary hardware security experiments on Ap-
ple’s in-house designed ARM systems-on-a-chip (SoC). Using
this toolkit, we then implement an access-driven cache timing
attack (in the style of PRIME+PROBE) as a proof-of-concept
illustrator.

The advanced hardware control enabled by our toolkit
allowed us to reverse-engineer key microarchitectural details
of the Apple A10 Fusion’s memory hierarchy. We find that the
SoC employs a randomized cache-line replacement policy as
well as a hardware-based L1 prefetcher. We propose statistical
innovations which specifically account for these hardware
structures and thus further the state-of-the-art in cache timing
attacks. We find that our access-driven attack, at best, can
reduce the security of OpenSSL AES-128 by 50 more bits
than a straightforward adaptation of PRIME+PROBE, while
requiring only half as many side channel measurement traces.

I. INTRODUCTION

With rare exceptions [1] [2], side channel attacks (SCAs)
on Apple’s line of mobile devices have been largely unex-
plored in the literature for two core reasons. First, Apple’s
”It Just Works” design philosophy is based on tight vertical
integration and hiding their devices’ underlying complex-
ities from both users and application programmers. Apple
either designs or integrates all components in the system
stack, and does not release detailed documentation about
the system. Therefore, security research on iPhones typi-
cally starts with reverse engineering the target subsystem
or application. Researchers rely on high-level overviews of
security components [3], partial source code releases [4],
or even illegally leaked source code [5] to aid their reverse
engineering efforts.

Second, while reverse engineering and other forms of
static analysis are partially possible on iPhones, dynamic
analysis tends to be even more difficult. Dynamic analysis
involves observing applications while they are running,
typically under a debugger or another control tool. Apple’s
proprietary development tool (Xcode) does ship with a
debugger, but it is not possible to debug arbitrary appli-
cations without first compromising the operating system
and removing certain security restrictions [6]. Even in
these cases, the kernel can often not be debugged—rare
exceptions include the Apple A11 SoC, which contains
proprietary debug registers that were accidentally left en-
abled in production devices [7], and development-fused

devices which cannot be obtained legally [8]. Additionally,
Apple ensures that applications cannot arbitrarily interact
with other applications or the operating system by strictly
enforcing the allowed inter-process communication (IPC)
interfaces. As shown in the literature [9], even determining
which interfaces exist is a challenging research problem.

In the context of hardware security research on iPhones,
useful resources such as documentation or development
tools are even rarer than for software security research. For
one, Apple does not release any detailed documentation
for their in-house designed hardware modules. Some in-
formation can be found in Apple’s patents for a dynamic
voltage frequency modulation (DVFM) module [10], secure
co-processor [11], etc., but even such references only
provide high-level views of system components rather than
the technical implementation details. Even with detailed
knowledge of the hardware, interfaces to useful modules
are often not exposed to application programmers. For
example, without an attacker-controllable interface to the
DVFM module, fault attacks such as CLKSCREW [12]
or VoltJockey [13] are not possible. Likewise, since the
operating system’s scheduling interfaces are not exposed to
programmers, it is arguably harder to apply timing-based
SCAs which depend on thread-shared and core-shared state.
In fact, to date, there is no successful demonstration of
timing SCAs on Apple SoCs.

The iPhone security research community exhibits closed-
source tendencies that are similar to, and partially caused
by, Apple’s closed-source design philosophy. Powerful ex-
ploit chains, especially ones which can modify the kernel,
are often used to bootstrap further security research. To
that extent, the most powerful class of iPhone exploits
is based on vulnerabilities in the BootROM, a region of
read-only memory (ROM) that contains Apple’s first-stage
bootloader [3]. Security researchers can use BootROM
exploits to create an arbitrary kernel modification primitive
that is permanent, and cannot be patched by Apple short of
recalling all vulnerable devices. Public BootROM exploits
thus are very rare. Currently, only eight exploits are known
across all iPhone models [14].

Contributing to the ongoing effort to build quality, open-
source iPhone research tools [7] [9], we present iTimed:
a novel research toolkit built on checkm8, a new publicly
disclosed BootROM vulnerability. Most modern iPhones,
from the iPhone 5 to the iPhone X, are permanently vul-
nerable to checkm8 which creates a unique opportunity for

hardware security research on those devices. Our toolkit ex-
poses many useful interfaces for general hardware security
research, many of which tie directly into Apple’s hardware
drivers. Utilizing these toolkits, we present a proof-of-
concept access-driven (as in [15]) cache timing SCA. Our
toolkit allows us to bootstrap a research-friendly software
environment on Apple hardware and reverse-engineer key
details of the caching microarchitecture. Then, accounting
for these, we create novel statistical analyses which sig-
nificantly improve the success rate of PRIME+PROBE on
t-table AES-128. To the best of our knowledge, this is the
first such SCA on an Apple SoC.

A. Contributions

The central contributions of this paper are:
• Building off of the checkm8 exploit, we implement an

extensible BootROM toolkit to base extensive hard-
ware security experiments on. This toolkit is open-
sourced at https://github.com/iTimed-Toolkit.

• Using this toolkit, we develop and implement an
access-driven timing side channel attack based on the
PRIME+PROBE strategy. We show that a straightfor-
ward implementation of PRIME+PROBE may not leak
sufficient information due to Apple’s cache replace-
ment policies and prefetcher.

• To successfully implement this attack, we propose
novel attack and statistical techniques that account for
the A10’s microarchitecture. We find that our modi-
fied PRIME+PROBE attack can lower the OpenSSL
1.1.1d AES-128 implementation’s security level by
up to 50 more bits than a standard PRIME+PROBE
attack, while requiring only half as many traces. To
the best of our knowledge, this is the first such access-
driven SCA on an Apple SoC.

II. BACKGROUND

In this section, we introduce relevant background in-
formation to contextualize our work. We begin with a
discussion on the iPhone system integrity infrastructure and
show how the checkm8 vulnerability naturally leads to an
arbitrary kernel modification primitive. We then give a brief
architectural overview of the Apple A10 Fusion SoC, which
is the target of our attack. Finally, we review recent and
relevant advances in cache timing SCAs to further motivate
our attacks.

A. iPhone System Integrity

Apple’s design philosophy is that all software on their
devices should ”just work” exactly as distributed, such
that any non-Apple modifications are neither necessary nor
allowed. To that extent, system integrity is a core guarantee
provided by Apple’s security infrastructure. For iPhones
specifically, this guarantee is rooted in the secure boot
chain.

Apple’s boot chain ensures that only the software signed
by Apple can execute on the device. The chain begins in

the BootROM, a small area of ROM that contains Apple’s
first-stage bootloader and public key. The BootROM loads
the second-stage bootloader (named iBoot) from nonvolatile
storage and verifies that its signature is valid. If either the
load or the signature check fails, the BootROM instead
enters a direct firmware upgrade (DFU) mode. In this mode,
a signed firmware image can be sent to the device over USB
and booted instead of iBoot—typically, this image would
restore the device to a working state by reinstalling both
iBoot and the kernel. Once entered, the device will loop in
DFU mode until it is powered off or receives a valid image.

Once iBoot is successfully loaded and verified, the
BootROM will transfer control to a special boot trampoline.
The trampoline is an intermediate stage of the boot process,
designed to reset the device to a known state by clearing
all memory from the previous boot stage, and disabling
hardware devices where applicable. The trampoline en-
sures that a vulnerability in one boot stage will not leak
information about the previous boot stages. After exiting,
the trampoline transfers control to iBoot which loads and
verifies the kernel using the same general process as the
BootROM. Thus, the integrity of the operating system is
closely tied to the immutability and correctness guarantees
of the BootROM.

B. checkm8

On September 27th, 2019, independent iOS security
researcher axi0mX released a proof-of-concept tool named
checkm81, which exploits a use-after-free vulnerability in
the DFU mode’s USB core implementation. Using this
vulnerability, it is possible to craft a buffer overflow attack
that overwrites a function pointer on the heap (for technical
details, see [16]). Then, using the DFU mode’s normal
functionality, an arbitrary shellcode can be uploaded and
executed with full permissions in the BootROM. This
breaks all integrity-related security guarantees provided
by the BootROM—for example, checkm8 can be used to
patch iBoot after it is loaded and verified, but before it
is booted. Then, in iBoot, checkm8 can similarly patch
the XNU kernel or transfer control to another operating
system entirely. These claims are not theoretical—both our
own toolkit and various other open-source tools, which
we discuss in Section IV, implement this functionality. By
default, axi0mX’s shellcode simply adds stubs for reading,
writing, and executing arbitrary addresses (triggered by
specially formatted USB requests). However, we will show
in Section IV that these read/write/execute primitives can
be combined and extended in powerful ways to build a
more advanced research platform.

C. Apple A10 Fusion SoC

The checkm8 exploit works on most iPhone models,
from the iPhone 5 to the iPhone X. Therefore our toolkit
can be trivially extended to all these models. However, we

1https://github.com/axi0mX/ipwndfu

2

https://github.com/iTimed-Toolkit
https://github.com/axi0mX/ipwndfu

specifically target an iPhone 7 (model A1778) containing
an A10 SoC because, when this project began in 2019,
the iPhone 7 was the most common Apple mobile device
in the consumer market2—it is still commonly used with
over 80 million sold copies. The iPhone 7’s SoC contains
four ARMv8-A cores arranged in a standard big.LITTLE3

configuration: two power efficient cores, and two high
performance cores [17]. However, only one of these core
types can be active at a time which means the SoC appears
as a dual-core processor. This SoC has a four-level memory
hierarchy - a 64KB L1 data cache, a 64KB L1 instruction
cache, a unified 3MB L2 cache, a unified 4MB L3 cache,
and (depending on the boot stage) either 2MB of SRAM
or 2GB of DRAM.

D. Target Algorithm for SCAs

For this work, we analyze AES-128 which encrypts
a 16-byte input M using a 16-byte key K. During
this encryption, AES utilizes four lookup tables—mainly
T0, T1, T2, T3 (each of which contains 256 4-byte con-
stants) and S (which contains 256 1-byte constants). The
t-tables implement the SubBytes, ShiftRows, and MixCol-
umn operations whereas the S-box implements SubBytes
and ShiftRows [18]. We index the plaintext M as bytes
M = M0‖ . . . ‖M15 and the key K in four-byte chunks
K = K0‖ . . . ‖K3. The key is expanded into 10 round keys
Ki, 1 ≤ i ≤ 10 with K0 = K. Then, utilizing an interme-
diate byte-indexed state x initialized as x0 = M ⊕K, we
iterate for 0 ≤ i < 9:
(xi+1

0 ‖ . . . ‖xi+1
3) = T0[x

i
0]⊕ T1[x

i
5]⊕ T2[x

i
10]⊕ T3[x

i
15]⊕Ki+1

0

(xi+1
4 ‖ . . . ‖xi+1

7) = T0[x
i
4]⊕ T1[x

i
9]⊕ T2[x

i
14]⊕ T3[x

i
3]⊕Ki+1

1

(xi+1
8 ‖ . . . ‖xi+1

11) = T0[x
i
8]⊕ T1[x

i
13]⊕ T2[x

i
2]⊕ T3[x

i
7]⊕Ki+1

2

(xi+1
12 ‖ . . . ‖x

i+1
15) = T0[x

i
12]⊕ T1[x

i
1]⊕ T2[x

i
6]⊕ T3[x

i
11]⊕Ki+1

3

Then in the final round, we set i = 9 and calculate

(x10
0 ‖ . . . ‖x10

3) =
(
S[x9

0]‖S[x9
5]‖S[x9

10]‖S[x9
15]

)
⊕K10

0

(x10
4 ‖ . . . ‖x10

7) =
(
S[x9

4]‖S[x9
9]‖S[x9

14]‖S[x9
3]
)
⊕K10

1

(x10
8 ‖ . . . ‖x10

11) =
(
S[x9

8]‖S[x9
13]‖S[x9

2]‖S[x9
7]
)
⊕K10

2

(x10
12‖ . . . ‖x10

15) =
(
S[x9

12]‖S[x9
1]‖S[x9

6]‖S[x9
11]

)
⊕K10

3

and return x10 as the ciphertext.

E. Timing Attacks on AES

Cache timing attacks can be broadly classified into three
categories, ordered by adversary strength: time-driven at-
tacks, trace-driven attacks, and access-driven attacks. Time-
driven and trace-driven attacks were first theoretically dis-
cussed in [19], experimentally demonstrated later by Bern-
stein in [20] and by Acıiçmez et al. in [21], respectively,
and then improved with better statistical analysis [22], [23].
These attacks mainly define their threat model adversary as
a passive observer.

Access-driven attacks, by contrast, assume that the
adversary can actively manipulate the state of the

2https://deviceatlas.com/blog/most-popular-iphones
3https://www.arm.com/why-arm/technologies/big-little

Fig. 1: Summary of Apple’s secure boot chain (top, [16]),
and how each component of our research platform inter-
acts with it (bottom). Our tooling enhances checkm8 by
addressing its limitations and combines our own extensions
(openc8) with pongoOS and Project Sandcastle.

cache. These were first demonstrated with the seminal
PRIME+PROBE technique [15], but have become much
more popular recently. Discoveries of techniques such
as FLUSH+RELOAD [24], EVICT+RELOAD [25], and
FLUSH+FLUSH [26], among others, have led to a wealth of
powerful, high-resolution attacks that require significantly
less traces than time and trace-driven attacks.

Timing attacks typically target x86 desktop and server
computers, but have also been demonstrated on ARM
mobile devices running Android. Bernstein’s attack was
first shown on three Android devices [27] and subse-
quently extended to others [23]. More recently, Lipp et
al., at USENIX 2016, ported access-driven attacks to ARM
Android devices [28]. These papers inspire us to pursue
this work as to date, and to the best of our knowledge,
no cache attacks have been demonstrated on the Apple-
designed ARM SoCs found in iPhones.

In addition to attacks, many timing SCA defenses have
also been proposed [29]. Details of these lie out of the scope
of this work since none have been confirmed on Apple’s
devices, except the ones which we identify in this work.

III. THREAT MODEL

Our access-driven attack (Section V), follows the stan-
dard synchronous threat model for access-driven timing
SCAs [15]. Specifically, we assume that the adversary has
the ability to synchronously trigger AES encryptions with
known plaintexts. For this specific attack instantiation, we
require that the attacker is co-located on the same core
as the victim since this attack, like other access-driven
attacks, hinges on precise manipulations and measurements
of the victim’s cache state. We note that cross-core access-
driven attacks are possible (i.e. through L2), but we did
not pursue this attack style in order to simplify our initial
microarchitectural reverse-engineering. Furthermore, the at-
tack assumes knowledge of the virtual address of the t-
tables—this is a standard assumption in the literature [15]
and is not difficult to learn in practice.

3

https://deviceatlas.com/blog/most-popular-iphones
https://www.arm.com/why-arm/technologies/big-little

IV. TOOLING

While checkm8 is a powerful exploit technique, the
proof-of-concept released by axi0mX is not suitable for ex-
tensive hardware security research. We fully re-implement
the base checkm8 exploit with novel extensions to improve
both reliability and extensibility. We also discuss two other
tools which were not originally intended for hardware
security research, and show how we incorporate these into
our research platform. Figure 1 shows a summary view of
our research platform. When discussing openc8, we refer
to the computer that runs the toolkit as the host and the
target iPhone as the device.

A. Expanding the checkm8 Toolkit

We created our own open-source toolkit (named openc8)
based on checkm8 that addresses a core set of usability is-
sues. When discussing our toolkit, we refer to the computer
that runs the toolkit as the host and the target iPhone as
the device.

1) Reliability: We first improved the tool’s success rate,
both in terms of successfully exploiting checkm8 and
system stability. checkm8 depends on partial USB transac-
tions containing only a SETUP packet. However, no stan-
dard USB host controller drivers support generating such
transactions. axi0mX’s solution involves asynchronously
canceling a normal USB request, which probabilistically
results in a correct partial request. Several of these requests
must be made (correctly) for the exploit to succeed, so
the exploit’s success rate becomes probabilistic as well.
Furthermore, partial requests can be correct enough for the
exploit to succeed but will silently corrupt memory in the
background, crashing the device at some point in the future.
This is a major challenge for hardware security research,
which often depends on long profiling phases or precise
hardware manipulation.

Figure 2 shows how we solved the reliability prob-
lem caused by the need for stable partial USB requests.
Modifying a standard USB host controller driver (such as
XHCI) to support partial requests would be challenging—
each layer of the host’s USB stack, from the driver to the
user-space interface, would need to be changed. Therefore,
we have opted to implement the required functionality
on the Arduino platform. Arduinos are a family of low-
cost 8-bit microcontrollers. They can be extended with
functionality-specific ”shields”—the one shown here has a
USB host shield4 with a MAX3421E USB host controller.
The Arduino driver for this host controller is open source
and rather minimal, so we modified it to support checkm8
partial requests. Then, the Arduino acts as a proxy between
the host and the device, forwarding all USB communication
and generating correct partial requests when necessary.

2) Extensibility: Our checkm8 toolkit also addresses
the issue of extensibility. Ideally, we would like to easily
write, load, and execute complex programs that implement

4https://store.arduino.cc/usa/arduino-usb-host-shield

Fig. 2: Arduino with MAX3421E USB host shield con-
nected to our test iPhone 7. The Arduino is a USB proxy
between the host and device and generates correct partial
requests when necessary. This setup successfully addresses
checkm8’s reliability issues. This iPhone is running pon-
goOS, briefly discussed in Section IV-B.

extensive hardware security experiments. For many such
experiments, it is convenient to interact directly with the
hardware; however, writing drivers for Apple’s proprietary
modules could be extraordinarily difficult. Luckily, the
BootROM includes fully functional, if somewhat minimal,
interfaces to many of these modules. For our toolkit, we
reverse-engineered much of the BootROM and exposed
a core set of useful functions which can be used by
experimental programs to interact with the BootROM and
the iPhone’s hardware.

3) Execution Framework: In our toolkit, we follow
the same general technique as axi0mX for arbitrary code
execution. After exploiting the device, we upload a handler
shellcode which replaces the default USB data handler in
the DFU mode implementation. This USB handler, in most
cases, will simply forward incoming USB transactions to
the existing DFU handler thus preserving the functionality
of DFU mode. However, specially formatted USB requests
are instead forwarded to the shellcode, for request-specific
processing. At this point, our implementation diverges from

4

https://store.arduino.cc/usa/arduino-usb-host-shield

that of axi0mX. Rather than implementing a static set of
functions in the shellcode (such as the read/write/execute
functionality in the original checkm8), we implement an
extensible system for installing and uninstalling so-called
payloads—short programs which implement some desired
functionality extension for the BootROM.

4) Payload Infrastructure: openc8 additionally includes
full build and execution systems for these payloads. The
BootROM does not support common executable formats,
such as ELF, so all programs must consist of raw assembly
instructions when they are installed on the device. All
iPhones which we investigate in this work are ARMv8-
A devices—therefore, we include cross compiler support
for this architecture so that experimental programs can
be written in C rather than assembly. Our build system
then automatically strips the compiled binary and places
the program’s entry point at the beginning of the file.
All BootROM function calls are translated to use absolute
jumps rather than relative jumps, so payloads can be
installed anywhere in the device’s memory space.

B. checkra1n

We employ two external groups’ toolkits that nicely com-
plement ours and, used together, create a much richer hard-
ware security research environment for iPhones. The first
of these toolkits, checkra1n [30], is maintained by axi0mX,
Luca Todesco, and other iPhone security researchers, aim-
ing to create a user-land jailbreak via checkm8 as an exploit
primitive. Jailbreaks allow ordinary users to install non-
approved applications or system tweaks on their devices,
and may be repurposed as a research tool. The checkra1n
toolkit was first released on November 10th, 2019, and was
partially open-sourced on March 1st, 2020 as pongoOS5.
pongoOS is a simple, task based operating system used
by checkra1n to patch the XNU kernel. It runs in the
boot trampoline (discussed in Section II-A) after iBoot, so
it must first configure the hardware to support a proper
execution environment.

Todesco reverse-engineered and reimplemented (without
Apple’s proprietary code) a large number of drivers for
iPhone hardware. These drivers are tied together with
a simple command line interface to control the system.
pongoOS is modular and provides a straightforward SDK
to compile custom modules against, as well as support
for dynamically loading these modules at runtime. While
pongoOS does include some useful features (such as access
to the device’s full 2GB of DRAM), we primarily use
pongoOS to bootstrap the second open-source tool used
in our hardware security experiments.

1) Integration with openc8: openc8 fully supports both
building and booting to pongoOS, which is a necessary
functionality since checkra1n does not fully support all
platforms which we use. In openc8, pongoOS is compiled
as a payload similarly to all of our other experimental code.

5https://github.com/checkra1n/pongoOS

However a very specific set of patches must be made to
iBoot in order for pongoOS to boot successfully. The details
of these patches are not known except to the checkra1n
developers, but an attempt can still be made to apply them.
Although the host-side checkra1n executable is obfuscated
such that static reverse-engineering is not possible, all USB
traffic between checkra1n and the device is completely un-
encrypted. Using Wireshark6, we snooped this USB traffic
and extracted checkra1n’s patching shellcode. Although we
could have attempted to directly statically reverse-engineer
this, we found that the functionality is quite complex. The
shellcode is recursive, reinitializes the DFU mode several
times, and includes many hard-coded constants. Therefore,
we simply saved this shellcode binary and send it to the
device at the appropriate time.

C. Project Sandcastle

Corellium, LLC, is the creator of a line of virtualized
iPhones, functionally identical to real, physical devices.
These are sold primarily to security researchers who do
not want to risk irreversibly damaging real devices while
searching for exploits. Corellium open-sourced the first
version of Project Sandcastle on March 4th, 2020. Project
Sandcastle consists of a set of supporting pongoOS modules
and tools, a patched Linux kernel capable of booting on
an iPhone 7, and a buildroot project that automatically
compiles a bootable image with this kernel. This image
includes, among other things, a full glibc and compiler
toolchain, network drivers, support for both CPUs on A10,
and many more features. pongoOS includes functionality
for receiving and booting these images. This environment
then makes it possible to fully explore advanced SCAs on
iPhones, including industry-standard cryptographic imple-
mentations such as OpenSSL.

V. ITIMED: ACCESS-DRIVEN ATTACK ON APPLE A10

We now present an access-driven SCA on the OpenSSL
t-table AES-128 implementation. This attack is motivated
by the synchronous PRIME+PROBE attack from the sem-
inal work of Osvik et al. in [15], but makes several key
modifications which address the A10’s specific microarchi-
tecture. We emphasize that we pursue the PRIME+PROBE
attack as it forms a canonical example—our statistical
method is not only limited to this particular attack style,
and extends easily to the ever-evolving iterations of access-
driven attacks. For example, we have observed vulnerable
cache flush timings which would enable attacks such as
FLUSH+RELOAD [24] and FLUSH+FLUSH [26]. However,
PRIME+PROBE attacks are still relevant today and the most
recent publications exclusively use them as the canonical
example[31].

A. Notation

We closely follow the notation presented by Osvik et.
al. in PRIME+PROBE [15]. Access-driven attacks must

6https://github.com/wireshark/wireshark

5

https://github.com/checkra1n/pongoOS
https://github.com/wireshark/wireshark

account for cache configuration, so we model caches as
tuples (S,W,B), which represent the number of sets, asso-
ciativity, and block size (in bytes) of the cache respectively.
To model the t-tables, for simplicity, we assume that the
tables are contiguous in memory and that the start address
is known.

The t-tables map into the cache based on two further
parameters (s, o) which denote the size of an individual
table entry (typically 4 bytes) and the offset of the first table
within the cache (i.e., the memory address of T0[0] mod
SB). For indices y ∈ [0, 256) within a given t-table L, we
can define the cache set of y in L:

C(L, y) = bo+ s(256L+ y − (o mod B))

B
c+ 1 (1)

Encrypting a message M with a key K will cause
memory accesses to certain t-table entries. We define an
oracle QK(M,L, y), which equals 1 if encrypting M with
K will access index y in t-table L. Thus, by repeatedly
querying Q with known plaintexts, tables, and indices,
we can learn some information about the unknown key
K. Osvik et al. note that access to a perfect oracle Q is
unrealistic and instead base their attack on an unreliable
oracle M(M,L, y). Specifically, M ≈ Q such that, for
many (K,M,L, y), the expectation of M is higher when
Qk(M,L, y) = 1 than when Qk(M,L, y) = 0:

E [MK | QK = 1] > E [MK | QK = 0] (2)

B. Standard PRIME+PROBE Fails

For our attack, we use PRIME+PROBE measurements to
query the aforementioned oracle. For this strategy, we must
allocate a probe array A of size S ×W × B bytes such
that the start of the array is congruent to the start of the
cache—that is, the address of A[0] mod SB = 0. Then, to
obtain a PRIME+PROBE measurement for a message M ,
we:

1) Prime: read from every memory block in A. This
step has the dual purpose of evicting the t-tables
from memory, while also filling the cache with the
attacker’s data.

2) Encrypt M with the unknown key K.
3) Probe: if QK(M,L, y) = 0, we would expect that

all of the attacker’s data is still present in cache set
x = C(L, y). By contrast, if QK(M,L, y) = 1, one
of the ways in cache set x would have been evicted
and replaced with the corresponding t-table block. We
can thus extract a measurement of MK(M,L, y) by
reading the W array entries

A [Bx] , A [Bx+BS] , . . . , A [Bx+ (W − 1)BS]

and saving the total time taken for these accesses as
TM
x . A full trace consists of the set

{
TM
x | x ∈ S

}
.

Fig. 3: PRIME+PROBE timing measurements for each set
with a known plaintext and key. The top figure shows raw
timing measurements, while the bottom figure normalizes
each measurement by the average timing of a set. The
highlighted region shows the range of the t-tables (that is,
C(0, 0) → C(3, 255)). Dashed vertical lines show t-table
sets which are not accessed during this encryption.

1) PRIME+PROBE Challenges: The general attack de-
scribed above serves as a good theoretical base, but ad-
justments must often be made to account for specific
processor microarchitecture. In the case of the A10 SoC,
we must make two key modifications for the attack to
succeed. The first has been well studied in the literature.
PRIME+PROBE attacks on ARM processors were first
shown in ARMageddon [28]. In this work, the authors note
that ARM processors often use pseudorandom cache re-
placement policies (rather than deterministic least-recently-
used-based policies) and, as such, the prime step must
be modified. To successfully evict the t-tables and fill the
target cache with the attacker’s probe array, Lipp et. al. use
the work of [32] to automatically search for fast eviction
strategies. We employ a similar, yet simplified, approach in
our attack—we simply access the W array entries in each
set enough times that we have a good probability of filling
the cache with our data.

The second modification has not been extensively re-
searched from the attacker’s perspective in the literature,
with rare exceptions [33] that lack generality. We re-
fer to Figure 3 to motivate this extension. The figure
shows an example trace obtained using our attack’s final
PRIME+PROBE technique. For traces such as these, we
define four measurement categories:

1) True positives: Cache sets which are accessed during
the encryption, and are measured as if they were

6

accessed. These are the most common and cluster
near y = 0.

2) True negatives: Cache sets which are not accessed,
and are measured as if they were not accessed.
Visually, these are outliers of various magnitudes.

3) False positives: Cache sets which are not accessed,
yet are measured as if they were accessed. These are
caused by prefetching of the t-tables and cluster near
y = 0.

4) False negatives: Cache sets which are accessed, yet
are measured as if they were not accessed. These
would be caused by prefetching of the probe array,
but are mostly eliminated by our attack technique.

2) A10 SoC Hardware Prefetcher: In the top chart of
Figure 3 we can visually identify the sets which correspond
to t-table entries. In the bottom (normalized) figure we
can clearly see several low outliers, which represent cache
sets that are probed faster than usual, and thus correspond
directly to t-table entries that are not accessed during the
encryption. These outliers are useful for deducing infor-
mation about the unknown key. However, there are also
several cache sets which should be outliers, but are instead
very close to the mean. We argue that these false positives
are potentially caused by hardware prefetching of adjacent
t-table entries, resulting in cache misses in the probe array.

Prefetching is a common technique used in cache archi-
tectures which increases spatial locality. Prefetchers learn
the CPU’s current working set (group of addresses which
are commonly accessed together) and store all of these
addresses in the cache when one of them is accessed—
even if the addresses reside in different cache data blocks.
Prefetchers have been proposed as active cache timing SCA
defenses [34]. We therefore reveal that a successful access-
driven timing SCA on the A10 SoC has to modify both
the PRIME+PROBE attack technique and statistical analysis
in order to defeat Apple’s prefetcher implementation. We
discuss these two aspects in the next two subsections
respectively.

C. Platform-Specific Attack Modifications

Our key insight is that prefetching not only affects
the targeted t-tables, but also the attacker’s probe array.
Generally, without supposing a specific prefetcher imple-
mentation, we can assume that sequentially priming the
array A will train the prefetcher to tightly associate the
addresses in A. Then, when the attacker later probes the
array, the A10 will prefetch further entries into the cache—
potentially evicting t-table entries which were accessed
during the encryption and causing false negatives. This
problem is further exacerbated by the advanced eviction
strategies required to defeat the pseudorandom replacement
policy, since such strategies often rely on accessing the
entries in A in structured, repetitive ways.

In order to defeat the prefetcher, we must minimize the
amount of information which it can learn about A. The most
straightforward method to do so, which we use, is to prime

Fig. 4: Register map of our randomized PRIME+PROBE
implementation. By using the A10’s floating-point registers
as state storage and a PRG, we can defeat the prefetche
without any additional memory accesses.

and probe with a uniform random distribution. Generating
random numbers and keeping track of state (such as which
cache sets have been primed or probed already) would,
however, induce many auxiliary memory accesses and add
further noise to the measurements. Instead, we rely on an
architectural feature of the A10—the ARM NEON floating-
point unit (FPU). This FPU includes 32 16-byte registers,
as well as an implementation of the ARM AES instructions.

Figure 4 shows details of our randomized
PRIME+PROBE implementation. We use the index
state (v0 - v15) to track sets which have been primed
or probed. The miscellaneous registers (v16 - v19) hold
various counters which help us measure the performance
of our technique. We load a full set of AES-128 round
keys into registers v20 - v30, and then use these
round keys (and the ARM AES instructions) to repeatedly
encrypt the value in v31. Finally, we use the individual
bytes in v31 as a source of randomness for our prime
and probe methods. In this way, we can fully randomize
our PRIME+PROBE attack without adding any additional
noise due to auxiliary memory accesses.

D. Statistical Modifications

While the original PRIME+PROBE statistical tech-
nique [15] is functional on the A10 SoC, its effi-
cacy is greatly reduced (see Section VI). The hardware
prefetcher causes false positives when encrypting, which
decreases the distance between E [MK | QK = 1] and
E [MK | QK = 0]. Instead, we rely on a novel constraint-
based statistical technique which is based on exploit-
ing information from true negatives while remaining tol-
erant of false positives. We note that prefetcher-aware
PRIME+PROBE attacks have been previous explored [33],
but these approaches are tailored to specific prefetchers and
lack generality.

First, we heuristically determine two thresholds T+ and
T−. We use these thresholds to categorize normalized
measurements into positives and negatives—a measurement
greater than T+ is categorized as a positive, while a
measurement less than T− is categorized as a negative.

7

Fig. 5: Visual representation of t-tables which are not
aligned on the cache block boundary. We find that such
t-tables often leak more information than aligned t-tables.

For the dataset in Figure 3, for example, we would set
T+ = −0.01 and T− = −0.05—see Figure 7 for a
comprehensive performance evaluation. We then define a
scoring function E for individual timing measurements
TM
x :

E(TM
x) =


0 TM

x > T+

1 TM
x < T−

TM
x −T+

(T−−T+) otherwise

(3)

Higher values of E(TM
x), then, indicate stronger evi-

dence that the cache set x is not accessed when encrypting
M with the unknown key K. We can determine exactly
which tables L and indices y this measurement is useful
for by inverting x = C(L, y)—we denote the set of these
table-index pairs as Y . Finally, we exploit the fact that the
t-table lookup indices in the first round are simply equal to
T`[Mi ⊕ Ki], i ≡ ` mod 4. Thus, by definition, we know
that higher values of E(TM

x) indicate stronger evidence
that:

Mi ⊕ yi 6= ki,∀(`, y) ∈ Y ∧ i ≡ ` mod 4 (4)

Using equation 4 we can iteratively eliminate potential
key candidates by accumulating many such constraints
from various random plaintexts. We note that this attack
is particularly effective when the t-tables are not aligned
to the cache block size (i.e., o mod B 6= 0). Figure 5
illustrates the concept. Assume we obtain a measurement
for set 92 with a plaintext M = 0128. If we obtain strong
evidence that this set is not accessed, we would have
Y = {(0, 236), . . . , (0, 251)} and we could thus build the
constraints k0, k4, k8, k12 6∈ {236, . . . , 251}. However, if
we obtain such evidence for set 93 instead, we would have
Y = {(0, 252), . . . , (0, 255), (1, 0), . . . , (1, 11)}. We could
then build the constraints k0, k4, k8, k12 6∈ {252, . . . , 255}∧
k1, k5, k9, k13 6∈ {0, . . . , 11}, which eliminates potential
key candidates for twice the number of key indices.

Our statistical attack proceeds as described above, it-
erating over random plaintexts Mi and the corresponding
traces TMi = {TMi

0 , . . . , TMi

S } and accumulating evidence

against certain key candidates. True negatives contribute
useful information for eventually deducing the correct key,
while false positives do not actively reduce the quality of
the attack. False negatives would add incorrect evidence,
leading to incorrect rejections of key candidates. However,
our randomized attack technique discussed in the last
section largely eliminates such effects.

VI. RESULTS

We now proceed to instantiate the attack described in the
previous sections on real Apple hardware. We attack the
industry-standard OpenSSL 1.1.1d using our improved
PRIME+PROBE attack, and quantify the success rate in
terms of two parameters—the number of random plaintexts,
and the number of traces captured for each plaintext. For
each random plaintext, we summarize the corresponding
traces into an averaged trace and use this average to
eliminate key candidates. Any single trace may be noisy,
and averaging many traces lets us identify true negatives
more accurately. We also use these averaged traces to run a
standard PRIME+PROBE attack without our improvements,
as a comparison.

For this attack, we quantify the reduced AES security
level by defining a simple brute-force attack. The key
candidates for each key index are scored using either our
constraint-based approach or the classic PRIME+PROBE
approach, and then sorted by score. We then find the
maximum position L of a correct key candidate across
all key indices, and report 16 log2 L as the reduced AES
security level. This models an adversary who performs a
simple breadth-first search across key candidates, informed
only by cache side-channel leakage information.

A. PRIME+PROBE Results

Using Project Sandcastle (Section IV-C) we compile a
full Linux system for the iPhone 7, which includes the
target of our access-driven attack—OpenSSL 1.1.1d. We
specifically compile OpenSSL with the no-asm configu-
ration flag to ensure that the ARM AES instructions are not
used, as attacking these is out of scope for this work. This
is a standard choice for earlier works [25], [35], [28] in
this field as well. We then boot the Linux kernel using
the kernel parameters isolcpus=1, nohz_full=1,
which removes the second CPU core from the scheduler
and causes all processes to run on the first core. Finally,
we explicitly launch our victim and attack processes on the
second core using taskset 0x2.

To quantify the success rate of our PRIME+PROBE
attack, we gathered a large dataset containing measure-
ments for one random key. Specifically, this dataset includes
16384 traces collected for each of 16384 random plaintexts,
encrypted by OpenSSL with a naturally unaligned t-table
(o mod B = 16). We then randomly subsample from
this dataset to analyze other attack configurations. Our
results are summarized in Figure 6 which displays the
reduced AES security level along both hyperparameters. As

8

Fig. 6: Results of our constraint-based statistical technique, compared to the average, best, and worst performance of the
original PRIME+PROBE technique [15]. Our attack can reduce the key search-space for an exhaustive evaluation.

expected, increasing the number of random plaintexts and
traces per plaintext generally decreases the security level
of AES-128. We find that, generally, collecting traces for
more plaintexts is better than collecting more traces per
plaintext, primarily because our technique can build more
constraints.

The results show that we outperform classical techniques
[15], even when they perform at their best and especially
when they perform at their worst. When comparing the
average performance of both attacks, we find the best
speedup for the configuration with 1024 plaintexts, aver-
aged from 8192 traces each—our attack recovers 31 more
bits of key material than the classic attack. When comparing
the best performance for both attacks, we find the best
improvement for the configuration with 256 plaintexts,
averaged from 4096 traces each. We recover 37 more
bits of key material in this case. Finally, when comparing
the worst-case performance for both attacks, we find that
we can recover 50 more bits of key material under the
configuration with 4096 plaintexts, averaged from 4096
traces each. Note that, generally, our attack brings another
”row” (as in Figure 6) into the brute-forceable range. This
represents a 2× reduction in the number of side channel
traces required.

We also explore the effect of threshold choice on the
attack’s guessing entropy. Specifically we focus on the
configuration with 2048 plaintext measurements, averaged
from 2048 traces each. We then set T+, T− ∈ [0.05,−0.15]
such that T− < T+, and run our constraint-based attack
multiple times. We report the average-case performance in
Figure 7. We find that our attack has a narrow band of
thresholds for which it leads to successful key extraction.
For higher T+, T− (bottom left of Figure 7) we observe
generally increasing success rates as thresholds increase.
With these configurations, we classify many measurements
as negatives (often falsely). This leads to high guessing
entropies, which then generally decrease as the threshold
band moves to a more correct range. For lower T+, T−

(top right of Figure 7), we observe that the attack fails
completely. This is because these configurations classify
almost each measurement as a positive, which means that
our attack cannot build any constraints.

VII. CONCLUSION AND FUTURE WORK

Hardware security research on iPhones is notoriously dif-
ficult. This paper proposes the first complete infrastructure
to enable general-purpose hardware security experiments on
the Apple iPhone SoCs. Extending a new public BootROM

9

Fig. 7: Average performance of our attack on 2048 plain-
texts, averaged from 2048 traces each, with varying values
of T+ and T−. Note that the attack performs at its worst
for low T+, T−—this is because we mistakenly classify
every measurement as a positive in this configuration, and
thus our attack can extract no constraints.

exploit, we reverse-engineered a significant part of the
BootROM, exposed useful functions and interfaces within,
and increased the experimental scope of our platform
to whole system stacks, including hardware, driver, and
operating system layers. Our effort greatly lowers the diffi-
culty of implementing future hardware security experiments
on Apple’s SoCs. Using our tool, we implemented the
first cache timing SCAs on the target platform, showed
practical secret-key extraction on AES, and even improved
the state-of-the-art of SCA by addressing platform-specific
challenges and proposing statistical enhancements.

Our results show that the novel constraint-based attack
outperforms the classic PRIME+PROBE attack [15] un-
der various hyperparameters and attack configurations. We
again note that we only pursue a PRIME+PROBE attack
style as it forms a canonical access-driven example. Re-
cent research has exclusively used PRIME+PROBE, which
indicates that it is still a primary and relevant access-driven
attack style [31] However, we have observed vulnerable
cache flush timings in our experiments, paving a way
towards other, more recent cache attacks [24], [26].

Based on results, we argue that cross-core attack
styles (i.e. through L2) are possible as well. The highly-
controllable research platform created by our toolkit can
allow reverse-engineering of the A10’s memory hierarchy
at these higher levels, including details such as replacement
policies and any other prefetchers. Then, with knowledge
of key details of the A10’s memory hierarchy, it may be
possible to execute access-driven attack through the iOS

software environment on iPhones. We thus emphasize that
the purpose of this specific work is to determine what kinds
of modifications must be made to a classic PRIME+PROBE
attack in order for the attack to succeed.

Finally, we could explore other novel avenues of side-
channel research. Side-channel attacks on microarchitec-
tural structures such as branch predictors [36] or TLBs
[37], which have mostly been demonstrated on Intel x86
processors, could be possible on mobile Android and iOS
devices as well. Attacks based on speculative execution,
such as Meltdown [38] and Spectre [39] are possible on
Apple SoCs as well7, but Apple’s mitigations for these
vulnerabilities have not yet been analyzed in the literature.
Finally, implementations of fault attacks such as VoltJockey
[13] or ClkScrew [12] could be possible with future work
on reverse-engineering Apple’s DVFM driver. Rowhammer
attacks, which have previously been shown on ARM An-
droid devices [40], could be possible as well.

VIII. ETHICAL DISCLOSURE

We took the necessary steps for ethical disclosure. This
work began on September 27th, 2019, when checkm8
was released to the public. We contacted Apple’s product
security team on July 11th, 2020, to report our preliminary
findings prior to submitting the paper or revealing it on any
other public forum.

IX. ACKNOWLEDGEMENTS

We thank anonymous reviewers for their feedback on the
paper. This research is supported in part by the National
Science Foundation (NSF) Division of Computer and Net-
work Systems (CNS) under Grant No. 1850373 and Grant
No. 1943245.

REFERENCES

[1] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom,
“Ecdsa key extraction from mobile devices via nonintrusive physical
side channels,” in ACM SIGSAC Conference on Computer and
Communications Security, 2016, p. 1626–1638.

[2] O. Lisovets, D. Knichel, T. Moos, and A. Moradi, “Let’s take it
offline: Boosting brute-force attacks on iphone’s user authentication
through sca,” Cryptology ePrint Archive, Report 2021/460, 2021,
https://eprint.iacr.org/2021/460.

[3] A. Inc., “Apple platform security guide,” Spring 2020.
[Online]. Available: https://manuals.info.apple.com/MANUALS/
1000/MA1902/en US/apple-platform-security-guide.pdf

[4] ——, “Apple open source, https://opensource.apple.com/.”
[5] L. Franceschi-Bicchierai, “Key iphone source code gets posted

online in ’biggest leak in history’,” 2018, motherboard.
[Online]. Available: https://www.vice.com/en us/article/a34g9j/
iphone-source-code-iboot-ios-leak

[6] D. Branch, “Debugging ios applications: A guide to debug
other developers’ apps,” 2017, medium. [Online]. Available:
https://blog.securityevaluators.com/debugging-ios-applications-a-
guide-to-debug-other-developers-apps-c041311498eb

[7] B. Azad, “KTRW: The journey to build a
debuggable iPhone,” 2019, 36C3. [Online]. Avail-
able: https://bazad.github.io/presentations/36C3-2019-KTRW The
journey to build a debuggable iPhone.pdf

7https://support.apple.com/en-us/HT208394

10

https://eprint.iacr.org/2021/460
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://opensource.apple.com/
https://www.vice.com/en_us/article/a34g9j/iphone-source-code-iboot-ios-leak
https://www.vice.com/en_us/article/a34g9j/iphone-source-code-iboot-ios-leak
https://blog.securityevaluators.com/debugging-ios-applications-a-guide-to-debug-other-developers-apps-c041311498eb
https://blog.securityevaluators.com/debugging-ios-applications-a-guide-to-debug-other-developers-apps-c041311498eb
https://bazad.github.io/presentations/36C3-2019-KTRW_The_journey_to_build_a_debuggable_iPhone.pdf
https://bazad.github.io/presentations/36C3-2019-KTRW_The_journey_to_build_a_debuggable_iPhone.pdf
https://support.apple.com/en-us/HT208394

[8] L. Franceschi-Bicchierai, “The prototype iphones that hackers use
to research apple’s most sensitive code,” 2019, vice. [Online]. Avail-
able: https://www.vice.com/en us/article/gyakgw/the-prototype-
dev-fused-iphones-that-hackers-use-to-research-apple-zero-days

[9] L. Deshotels, C. Carabas, , J. Beichler, R. Deaconescu, and W. Enck,
“Kobold: Evaluating Decentralized Access Control for Remote
NSXPC Methods on iOS,” in IEEE Symposium on Security and
Privacy (SP), 2020, pp. 399–413.

[10] A. Inc., Dynamic voltage and frequency management based on active
processors, 2013, no. US9304573B2.

[11] A. Inc, Security enclave processor for a system on a chip, 2012, no.
US8832465B2.

[12] A. Tang, S. Sethumadhavan, and S. Stolfo, “Clkscrew: Exposing the
perils of security-oblivious energy management,” in 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 1057–1074.

[13] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “Voltjockey: Breaking sgx by
software-controlled voltage-induced hardware faults,” in 2019 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST).
IEEE, 2019, pp. 1–6.

[14] T. iPhone Wiki, “Bootrom exploits, https://www.theiphonewiki.com/
wiki/Bootrom#Bootrom Exploits.”

[15] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of aes,” in Cryptographers’ track at the
RSA conference. Springer, 2006, pp. 1–20.

[16] A. Kovrizhnykh, “Technical analysis of the checkm8 exploit,” 2019,
digital Security. [Online]. Available: https://habr.com/en/company/
dsec/blog/472762/

[17] J. Ho and B. Chester, “The iphone 7 and iphone 7
plus review: Iterating on a flagship,” 2016, anandtech.
[Online]. Available: https://www.anandtech.com/show/10685/the-
iphone-7-and-iphone-7-plus-review/3

[18] J. Daemen and V. Rijmen, “The block cipher rijndael,” in In-
ternational Conference on Smart Card Research and Advanced
Applications. Springer, 1998, pp. 277–284.

[19] D. Page, “Theoretical use of cache memory as a cryptanalytic side-
channel.” 2002.

[20] D. J. Bernstein, “Cache-timing attacks on aes,” 2005. [Online].
Available: http://palms.ee.princeton.edu/system/files/Cache-timing+
attacks+on+AES.pdf

[21] O. Acıiçmez and Ç. K. Koç, “Trace-driven cache attacks on aes
(short paper),” in International Conference on Information and
Communications Security. Springer, 2006, pp. 112–121.

[22] C. Rebeiro and D. Mukhopadhyay, “Boosting profiled cache timing
attacks with a priori analysis,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 6, pp. 1900–1905, 2012.

[23] R. Spreitzer and B. Gérard, “Towards more practical time-driven
cache attacks,” in IFIP International Workshop on Information
Security Theory and Practice. Springer, 2014, pp. 24–39.

[24] Y. Yarom and K. Falkner, “Flush+reload: a high resolution, low
noise, l3 cache side-channel attack,” in 23rd USENIX Security
Symposium (USENIX Security 14), 2014, pp. 719–732.

[25] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in 24th USENIX
Security Symposium (USENIX Security 15), 2015, pp. 897–912.

[26] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush:
a fast and stealthy cache attack,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2016, pp. 279–299.

[27] R. Spreitzer and T. Plos, “On the applicability of time-driven cache
attacks on mobile devices,” in International Conference on Network
and System Security. Springer, 2013, pp. 656–662.

[28] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“Armageddon: Cache attacks on mobile devices,” in 25th
USENIX Security Symposium (USENIX Security 16). Austin, TX:
USENIX Association, Aug. 2016, pp. 549–564. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/lipp

[29] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microar-
chitectural timing attacks and countermeasures on contemporary
hardware,” Journal of Cryptographic Engineering, vol. 8, no. 1, pp.
1–27, 2018.

[30] L. Todesco, “The One Weird Trick SecureROM Hates,” 2019,
power of Community. [Online]. Available: https://iokit.racing/
oneweirdtrick.pdf

[31] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren,
and Y. Yarom, “Prime+probe 1, javascript 0: Overcoming
browser-based side-channel defenses,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association,
Aug. 2021. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/shusterman

[32] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote
software-induced fault attack in javascript,” in International Con-
ference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2016, pp. 300–321.

[33] D. Wang, Z. Qian, N. Abu-Ghazaleh, and S. V. Krishnamurthy,
“Papp: Prefetcher-aware prime and probe side-channel attack,” in
Proceedings of the 56th Annual Design Automation Conference
2019, 2019, pp. 1–6.

[34] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovački, and G. Venkatara-
mani, “Prefetch-guard: Leveraging hardware prefetches to defend
against cache timing channels,” in 2018 IEEE International Sym-
posium on Hardware Oriented Security and Trust (HOST). IEEE,
2018, pp. 187–190.

[35] Z. H. Jiang and Y. Fei, “A novel cache bank timing attack,” in 2017
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2017, pp. 139–146.

[36] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in Cryptographers’ Track at the RSA Conference.
Springer, 2007, pp. 225–242.

[37] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with tlb attacks,” in
27th USENIX Security Symposium (USENIX Security 18), 2018, pp.
955–972.

[38] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown:
Reading kernel memory from user space,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 973–990.

[39] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre
attacks: Exploiting speculative execution,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 1–19.

[40] V. Van Der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deter-
ministic rowhammer attacks on mobile platforms,” in Proceedings of
the 2016 ACM SIGSAC conference on computer and communications
security, 2016, pp. 1675–1689.

11

https://www.vice.com/en_us/article/gyakgw/the-prototype-dev-fused-iphones-that-hackers-use-to-research-apple-zero-days
https://www.vice.com/en_us/article/gyakgw/the-prototype-dev-fused-iphones-that-hackers-use-to-research-apple-zero-days
https://www.theiphonewiki.com/wiki/Bootrom#Bootrom_Exploits
https://www.theiphonewiki.com/wiki/Bootrom#Bootrom_Exploits
https://habr.com/en/company/dsec/blog/472762/
https://habr.com/en/company/dsec/blog/472762/
https://www.anandtech.com/show/10685/the-iphone-7-and-iphone-7-plus-review/3
https://www.anandtech.com/show/10685/the-iphone-7-and-iphone-7-plus-review/3
http://palms.ee.princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf
http://palms.ee.princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://iokit.racing/oneweirdtrick.pdf
https://iokit.racing/oneweirdtrick.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/shusterman
https://www.usenix.org/conference/usenixsecurity21/presentation/shusterman

	Introduction
	Contributions

	Background
	iPhone System Integrity
	checkm8
	Apple A10 Fusion SoC
	Target Algorithm for SCAs
	Timing Attacks on AES

	Threat Model
	Tooling
	Expanding the checkm8 Toolkit
	Reliability
	Extensibility
	Execution Framework
	Payload Infrastructure

	checkra1n
	Integration with openc8

	Project Sandcastle

	iTimed: Access-Driven Attack on Apple A10
	Notation
	Standard PRIME+PROBE Fails
	PRIME+PROBE Challenges
	A10 SoC Hardware Prefetcher

	Platform-Specific Attack Modifications
	Statistical Modifications

	Results
	PRIME+PROBE Results

	Conclusion and Future Work
	Ethical Disclosure
	Acknowledgements
	References

