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Abstract. Recent publications consider side-channel attacks against the key schedule
of the Data Encryption Standard (DES). These publications identify a leakage model
depending on the XOR of register values in the DES key schedule.
Building on this leakage model, we first revisit a discrete model which assumes that
the Hamming distances between subsequent round keys leak without error. We
analyze this model formally and provide theoretical explanations for observations
made in previous works.
Next we examine a continuous model which considers more points of interest and
also takes noise into account. The model gives rise to an evaluation function for key
candidates and an associated notion of key ranking. We develop an algorithm for
enumerating key candidates up to a desired rank which is based on the Fincke–Pohst
lattice point enumeration algorithm. We derive information-theoretic bounds and
estimates for the remaining entropy and compare them with our experimental results.
We apply our attack to side-channel measurements of a security controler. Using
our enumeration algorithm we are able to significantly improve the results reported
previously for the same measurement data.
Keywords: Side-channel analysis · Data Encryption Standard (DES) · Key schedule
· XOR leakage · Linear regression · Fincke–Pohst enumeration · Mutual information

1 Introduction
Publications by Wagner et al. [HZZW16, WHZZ16, WH17b, WH17a, WH18] attempt
side-channel attacks against the key schedule of the Data Encryption Standard (DES),
which are further investigated in [HMU+20]. They conduct template attacks against
several microcontrollers and demonstrate that the entropy of the 56-bit DES keys can be
reduced to 48 bits on average in their experimental setting.

In this article we consider the leakage model identified in aforementioned works. The
model assumes that information about the XOR of register values in the DES key schedule
leaks.

First we revisit a discrete model examined in [WH17a], which assumes that the
Hamming distances between subsequent round keys leak without error. We analyze this
model formally and provide theoretical explanations for observations made in previous
works.

Next we examine a continuous model which considers more points of interest (POI)
and also takes noise into account. The parameters of this model can be learned in a
profiling phase using linear regression. The model gives rise to an evaluation function
for key candidates and an associated notion of key ranking. We develop an algorithm
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for enumerating key candidates up to a desired rank which is based on the Fincke–Pohst
lattice point enumeration algorithm [FP85].

We apply our attack to side-channel measurements provided by the authors of [HMU+20].
The measurements are obtained from an implementation without countermeasures. In
the profiling phase we use nearly 900,000 measurements to learn the parameters of our
model and in the attack phase we use averages of several hundred measurements. Using
our enumeration algorithm we are able to explicitly compute the ranks of the correct keys
and find that the entropy of the DES keys is reduced to 15 bits on average and below 21
bits in 75% of the considered cases. Furthermore, we conduct a series of experiments on
simulated measurements in different noise regimes.

We derive information-theoretic bounds and estimates for the remaining entropy and
compare them with our experimental results. Our bounds and heuristics may be used by
evaluators as theoretical tools for assessing side-channel leakage of DES implementations.

Fortunately, our attack becomes infeasible in the presence of large noise. Therefore it
is possible to design effective countermeasures against this attack based on randomization
(e.g. masking) and/or limited key usage.

2 Preliminaries
2.1 Notation
Let [n] := {1, . . . , n}.

We denote by 0n = (0, . . . , 0)> ∈ Rn the all-zero-vector, by 1n = (1, . . . , 1)> ∈ Rn the
all-one-vector, by In ∈ Rn×n the identity matrix, and by 0m,n ∈ Rm×n the zero matrix.
The Euclidean norm of a vector v ∈ Rn is denoted by ‖v‖.

Let a = a1 · · · an ∈ {0, 1}n be a bit-string. Depending on the context, we identify
a with the (column) vector (a1, . . . , an)> ∈ Rn or the (big-endian represented) integer∑n
i=1 ai2n−i ∈ {0, 1, . . . , 2n − 1}. The bit-wise XOR of a, b ∈ {0, 1}n is denoted by a⊕ b.

The bit-wise complement of a ∈ {0, 1}n is denoted by a := a ⊕ 1n, the cyclic left-shift
(rotation) of a by k ∈ Z positions is denoted by a≪ k := a1+k · · · an+k (where indices
are to be interpreted modulo n with representatives in [n]), and the Hamming weight of a
is denoted by wt(a) :=

∑n
i=1 ai.

.

2.2 DES key schedule
The Data Encryption Standard (DES) is defined in [Nat99]. In this article we are only
concerned with the DES key schedule, which we describe below.

For simplicity and without loss of generality, we assume that DES keys are represented
by k = (c,d) ∈ {0, 1}56, where c,d ∈ {0, 1}28 denote the contents of the C- and D-register
after the map PC-1 (permuted choice 1) has been applied to the actual DES master key
KEY (i.e. c,d correspond to C0,D0 in the notation of [Nat99]).

The DES round keys k1, . . . ,k16 ∈ {0, 1}48 are derived from k = (c,d) as follows. We
write c = c1 · · · c28 and d = d1 · · · d28. In each round i ∈ [16], the values of the C- and
D-registers are cyclically shifted (i.e. rotated) by 1 or 2 positions to the left. The number
δ(i) of shifts in round i is given by

δ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

)
. (1)

The accumulated number ρ(i) of shifts (modulo 28) up to round i is given by

ρ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 4 6 8 10 12 14 15 17 19 21 23 25 27 0

)
, (2)
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i.e. we have ρ(1) = δ(1) and ρ(i) = ρ(i− 1) + δ(i) (mod 28) for 2 ≤ i ≤ 16. The values of
the C- and D-registers in round i are therefore given by

(ci,di) := (cρ(i)+1 · · · cρ(i)+28, dρ(i)+1 · · · dρ(i)+28) for i ∈ [16] , (3)

where the indices are to be interpreted modulo 28 (with representatives in [28]).
In each round i ∈ [16], the map PC-2 (permuted choice 2) is applied to (ci,di) to

obtain the round key ki. The map PC-2 is defined as

PC-2: {0, 1}56 → {0, 1}48 , (c1 · · · c28, d1 · · · d28) 7→ (cσ(1) · · · cσ(24), dτ(1) · · · dτ(24)) ,

where σ : [24]→ [28] \ {9, 18, 22, 25} and τ : [24]→ [28] \ {7, 10, 15, 26} are the bijections
defined by

σ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
14 17 11 24 1 5 3 28 15 6 21 10 23 19 12 4 26 8 16 7 27 20 13 2

)
,

τ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
13 24 3 9 19 27 2 12 23 17 5 20 16 21 11 28 6 25 18 14 22 8 1 4

)
.

We denote by Mσ := {9, 18, 22, 25} and Mτ := {7, 10, 15, 26} the sets of elements in [28]
which are “missing” from the images of σ and τ , respectively. The round keys are finally
defined as ki := PC-2(ci,di) for i ∈ [16]. Written in terms of the original key k = (c,d),
we have

ki =
(
cρ(i)+σ(1) · · · cρ(i)+σ(24), dρ(i)+τ(1) · · · dρ(i)+τ(24)

)
for i ∈ [16] , (4)

where the indices are again to be interpreted modulo 28.

2.3 Leakage models
We consider variations of the leakage models identified in previous works [HZZW16,
WHZZ16, WH17b, WH17a, WH18, HMU+20]. The models assume that the key-dependent
leakage originates from updates (ci+1,di+1)← (ci,di) of the C- and D-registers and/or
updates ki+1 ← ki of the round-key register for i ∈ [15]. Moreover, it is assumed that the
leakage stemming from a bit transition b← a in those register updates depends only on
a⊕ b (XOR leakage) for a, b ∈ {0, 1}.

Let a ∈ {0, 1}28 be one half of a DES key (c,d) ∈ {0, 1}56 in the C- or D-register. By
(2), (3), and (4), the bit transitions occuring in the DES key schedule are of the form
ai+1 ← ai (shift-1 transitions) or ai+2 ← ai (shift-2 transitions) for some i ∈ [28] and
with indices interpreted modulo 28. Hence we may assume that the leakage depends only
on ai ⊕ ai+1 and ai ⊕ ai+2 or, equivalently, only on (−1)ai⊕ai+1 and (−1)ai⊕ai+2 for all
i ∈ [28]. Since shift-1 transitions appear in 3 rounds and shift-2 transitions in 12 rounds
of the key schedule (cf. (1)), it is conceivable that shift-2 transitions will have a higher
impact on the total leakage.

Based on this discussion, we introduce explanatory variables for the leakage models as
follows. For a shift k ∈ {1, 2} and a key half a ∈ {0, 1}28, we define the vector

∆k(a) := 128 − 2 ·
(
a⊕ (a≪ k)

)
∈ {±1}28 . (5)

Written differently, we have

∆1(a) =
(
(−1)a1⊕a2 , (−1)a2⊕a3 , . . . , (−1)a27⊕a28 , (−1)a28⊕a1

)> and

∆2(a) =
(
(−1)a1⊕a3 , (−1)a2⊕a4 , . . . , (−1)a27⊕a1 , (−1)a28⊕a2

)>
.

Furthermore, we define the stacked vectors

∆(a) :=
(

∆1(a)
∆2(a)

)
∈ {±1}56 and ∆(c,d) :=

(
∆(c)
∆(d)

)
∈ {±1}112 (6)
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for all key halves a ∈ {0, 1}28 and full keys (c,d) ∈ {0, 1}56. The components of ∆(a) are
illustrated in Figure 1. The vector ∆(c,d) captures all possible bit transitions in the key
schedule of (c,d) and will serve as explanatory variable for the leakage models.
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Figure 1: The nodes in this graph represent the bits of a key half a ∈ {0, 1}28 in the C-
or D-register. The dashed edges {ai, ai+1} correspond to the components (−1)ai⊕ai+1 of
∆1(a) and the solid edges {ai, ai+2} to the components (−1)ai⊕ai+2 of ∆2(a). The union
of all edges corresponds to the components of ∆(a). For a full key (c,d) ∈ {0, 1}56, the
components of ∆(c,d) can be described by two disjoint copies of this graph with nodes
labelled by the bits of c and d, respectively.

Remark 1. Let k ∈ {1, 2}. The map ∆k is a group homomorphism from ({0, 1}28,⊕)
to ({±1}28,�), where � denotes componentwise multiplication. A vector x ∈ {±1}28 is
in the image of ∆k iff x has an even number of positive components iff x has an even
number of negative components iff

∑28
i=1 xi = 0 (mod 4). The kernel of ∆k is the cyclic

group generated by 128. In particular, we have ∆k(a) = ∆k(a) and ∆(a) = ∆(a) for all
a ∈ {0, 1}28, as well as ∆(c,d) = ∆(c,d) = ∆(c,d) = ∆(c,d) for all c,d ∈ {0, 1}28.

Now we can define the general form of the leakage models under consideration. We
restrict ourselves to one of the simplest conceivable settings in which the leakage for a key
(c,d) is given by an R-linear function of ∆(c,d) and a key-independent error term.

Leakage Model 1 (General model). Let m ≥ 1, let W ∈ Rm×112 be a fixed weight
matrix, and let K = (C,D) be a uniformly distributed random variable on {0, 1}56. We
define the random variable Y on Rm by

Y = W∆(C,D) + ε , (7)

where ε is a zero-mean random variable on Rm which is independent of K.

We refer to realizations y ∈ Rm of Y as observations, to realizations of ε in Rm as
errors or noise, and to m as the number of points of interest (POIs). The following lemma
collects some general properties of the random variables in Leakage Model 1.

Lemma 1. Consider the situation of Leakage Model 1 and let W 1,W 2 ∈ Rm×56 such
that W = (W 1,W 2).
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(a) We have W∆(C,D) = W 1∆(C) +W 2∆(D).

(b) We have E(∆(C)) = E(∆(D)) = 056 and Cov(∆(C)) = Cov(∆(D)) = I56.

(c) We have E(∆(C,D)) = 0112 and Cov(∆(C,D)) = I112.

(d) We have E(Y ) = 0m and Cov(Y ) = WW>+ Cov(ε) = W 1W
>
1 +W 2W

>
2 + Cov(ε).

Proof. Assertion (a) is obvious. To show (b), denote X := ∆(C). Clearly E(X) = 056,
hence Cov(X) = E(XX>) =

(
E(XiXj)

)
i,j∈[56]. Let i, j ∈ [56]. We distinguish two cases:

• If i = j, then E(XiXj) = E(X2
i ) = 1.

• If i 6= j, then there are p, q, r, s ∈ [28] such that {p, q} 6= {r, s}, q−p mod 28 ∈ {1, 2},
s− r mod 28 ∈ {1, 2}, and

E(XiXj) = E
(
(−1)Cp⊕Cq (−1)Cr⊕Cs

)
= E

(
(−1)Cp(−1)Cq (−1)Cr (−1)Cs

)
.

Since p 6= q, r 6= s, and {p, q} 6= {r, s}, we have p /∈ {q, r, s} or q /∈ {p, r, s}.
Let us assume p /∈ {q, r, s} (the case q /∈ {p, r, s} can be handled analogously).
Then (−1)Cp and (−1)Cq(−1)Cr(−1)Cs are independent, therefore E(XiXj) =
E
(
(−1)Cp

)
E
(
(−1)Cq (−1)Cr (−1)Cs

)
= 0.

We have shown that Cov(X) = I56. The remaining assertions of (b) follow analogously.
Since ∆(C) and ∆(D) are independent, (b) implies (c). Assertion (d) follows from (a),
(b), and (c) by linearity of expectation and independence of C,D, and ε.

3 Hamming weight model
In this section we consider a discrete leakage model, whose observations consist of the
(centered) Hamming distances between subsequent round keys and are error-free. This
model was already examined in [WH17a, Section 5].

Leakage Model 2 (Hamming weight model). LetK = (C,D) be a uniformly distributed
random variable on {0, 1}56 and let K1, . . . ,K16 be the random variables on {0, 1}48

derived from K as defined by equation (4). We define the random variable Y on Z15 by

Yi := wt(Ki ⊕Ki+1)− 24 , i ∈ [15] . (8)

The components Yi take values in [−24, 24] ∩ Z.

This leakage model is a special instance of Leakage Model 1 with m = 15, a weight
matrix W ∈ {− 1

2 , 0}
15×112, and error ε = 015. The weight matrix W is completely

determined by the model assumptions and will be derived in Subsection 3.1.

Remark 2. In the case of noisy measurements, the error can be reduced by averaging
repeated measurements for a fixed key. If the maximum norm of the error vector is less
than 1

2 , an exact observation as in (8) can be recovered from the noisy version by rounding
each component to the nearest integer.

3.1 Determination of the weight and covariance matrix
Let K = (C,D) and Y be the random variables as defined in Leakage Model 2. We want
to determine a weight matrixW ∈ {− 1

2 , 0}
15×112 such that Y = W∆(C,D). Let i ∈ [15].
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Then

Yi = wt(Ki ⊕Ki+1)− 24

=
24∑
j=1

(Cρ(i)+σ(j) ⊕ Cρ(i+1)+σ(j)) +
24∑
j=1

(Dρ(i)+τ(j) ⊕Dρ(i+1)+τ(j))− 24

= −1
2

24∑
j=1

(−1)Cρ(i)+σ(j)⊕Cρ(i+1)+σ(j) − 1
2

24∑
j=1

(−1)Dρ(i)+τ(j)⊕Dρ(i+1)+τ(j) .

The images of σ and τ are [28] \Mσ and [28] \Mτ , respectively, where Mσ = {9, 18, 22, 25}
and Mτ = {7, 10, 15, 26} (cf. Subsection 2.2). Changing the summation order, we obtain
the representation

Yi = −1
2

∑
j∈[28]\(ρ(i)+Mσ)

(−1)Cj⊕Cj+δ(i+1) − 1
2

∑
j∈[28]\(ρ(i)+Mτ )

(−1)Dj⊕Dj+δ(i+1) , (9)

where the elements in the shifted sets ρ(i) + Mσ and ρ(i) + Mτ are to be interpreted
modulo 28 (with representatives in [28]). From (9) the weight matrix W ∈ {− 1

2 , 0}
15×112

can be easily read off, see Figure 2.

28 56 84 112

1

8

15

Figure 2: Matrix plot of the weight matrix W with element values − 1
2 and 0 depicted in

black and white, respectively.

Next we want to determine the covariance matrix Σ = Cov(Y ). By Lemma 1 (d), we
have Σ = WW>. Let i, j ∈ [15]. If δ(i + 1) 6= δ(j + 1) (rounds i + 1 and j + 1 have
different shifts), then σi,j = 0. If δ(i+ 1) = δ(j + 1) (rounds i+ 1 and j + 1 have the same
shift), then

σi,j = 1
4

(
56−#

(
(ρ(i) +Mσ) ∪ (ρ(j) +Mσ)

)
−#

(
(ρ(i) +Mτ ) ∪ (ρ(j) +Mτ )

))
.



Andreas Wiemers and Johannes Mittmann 7

More concretely, we get

Σ = 1
4



48 0 0 0 0 0 0 41 0 0 0 0 0 0 40
0 48 40 41 40 41 40 0 41 41 41 42 41 41 0
0 40 48 40 41 40 41 0 41 41 41 41 42 41 0
0 41 40 48 40 41 40 0 42 41 41 41 41 42 0
0 40 41 40 48 40 41 0 41 42 41 41 41 41 0
0 41 40 41 40 48 40 0 41 41 42 41 41 41 0
0 40 41 40 41 40 48 0 42 41 41 42 41 41 0

41 0 0 0 0 0 0 48 0 0 0 0 0 0 41
0 41 41 42 41 41 42 0 48 40 41 40 41 40 0
0 41 41 41 42 41 41 0 40 48 40 41 40 41 0
0 41 41 41 41 42 41 0 41 40 48 40 41 40 0
0 42 41 41 41 41 42 0 40 41 40 48 40 41 0
0 41 42 41 41 41 41 0 41 40 41 40 48 40 0
0 41 41 42 41 41 41 0 40 41 40 41 40 48 0

40 0 0 0 0 0 0 41 0 0 0 0 0 0 48



.

We note that det(Σ) = 4−15 · 4650233960271024.

3.2 Key ranking and key enumeration
Let y ∈ Z15 be an observation under Leakage Model 2 corresponding to an unknown key
k∗ = (c∗,d∗) ∈ {0, 1}56, i.e. we have y = W∆(c∗,d∗). We denote by

C(y) :=
{

(c,d) ∈ {0, 1}56 | y = W∆(c,d)
}

(10)

the set of key candidates for observation y. The rank of k∗ is defined as

R(k∗) := #C(y) . (11)

Note that R(k∗) is a multiple of 4 (cf. Remark 1). We call log2R(k∗) the logarithmic key
rank of k∗.

At first glance, enumerating the set C(y) looks like a 56-bit (or 54-bit) problem.
However, we can apply a meet-in-the-middle approach (cf. [WH17a, Section 5]). By
Lemma 1 (a), we have the decomposition

W∆(c,d) = W 1∆(c) +W 2∆(d) for all (c,d) ∈ {0, 1}56 , (12)

where W 1,W 2 ∈ R15×56 such that W = (W 1,W 2). This leads to the following simple
enumeration procedure.

Algorithm 1.
Input: A vector y ∈ ([−24, 24] ∩ Z)15.
Output: The set of key candidates C(y).

1. Compute the lists

L1 ←
{

(c,y −W 1∆(c)) | c = 0, . . . , 227 − 1
}
,

L2 ←
{

(d,W 2∆(d)) | d = 0, . . . , 227 − 1
}

and sort them by the second component of their elements (e.g. using the lexicographical
order on Z15).

2. Set C ← ∅. For all (c,y1) ∈ L1 and (d,y2) ∈ L2 with y1 = y2, set

C ← C ∪ {(c,d), (c,d), (c,d), (c,d)} .

(Since L1 and L1 are ordered by the second component of their elements, the lists
only have to be traversed once in order to find all collisions in the second component.)
Return C and stop.
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3.3 Experiments
In order to estimate the expected logarithmic key rank, we implemented Algorithm 1 in the
Julia programming language [BEKS17] and conducted 1000 trials. For each trial we chose a
random DES key and calculated the associated observation vector y. Then we enumerated
all candidates (c,d) such that y = W∆(c,d). Each attempt took approximately 140
seconds of single-core computing time on a standard computer. The results of the
experiments are given in Table 1.

Table 1: Empirical distribution of the logarithmic key rank based on 1000 trials with
random keys. Q1 and Q3 denote the first and third quartile, respectively.

Logarithmic key rank Running time
Min Q1 Median Q3 Max

2 13 16 18 23 140 s

We observe that in one half of all cases the logarithmic key rank is less than 16. With
such low logarithmic key ranks we note that the classic meet-in-the-middle approach
against 3-key triple DES has very moderate running time. For average keys we can expect
a running time of roughly 232 DES encryptions/decryptions.

3.4 Theoretical estimation of the remaining entropy
The conditional entropy H(C,D | Y ) is an information-theoretic measure for the expected
logarithmic key rank, which we call remaining entropy. We have

H(C,D | Y ) = H(C,D)− I(Y ;C,D) = 56− I(Y ;C,D) ,

where I(Y ;C,D) is the mutual information of Y and (C,D). Since Y is a deterministic
function of (C,D), we have I(Y ;C,D) = H(Y ), hence H(C,D | Y ) = 56−H(Y ).

3.4.1 A lower bound for the remaining entropy

The following lemma provides an upper bound for H(Y ).

Lemma 2. Let Y be a random variable on Zm with E(Y ) = 0m and positive-definite
covariance matrix Σ := Cov(Y ) ∈ Rm×m. Then

H(Y ) ≤ 1
2 log2

(
det(2πeΣ)

)
+m log2

(
1 + e−2π2λ

1− e−2π2λ

)
, (13)

where λ > 0 is the smallest eigenvalue of Σ.

Proof. Let Y ⊆ Zm be the support of Y . By Gibbs’ inequality (cf. [CT06, Theorem 2.6.3]),
we have

H(Y ) = −
∑
y∈Y

Pr(Y = y) log2
(
Pr(Y = y)

)
≤ −

∑
y∈Y

Pr(Y = y) log2
(
p(y)

)
for any probability distribution p : Y → [0, 1] with support Y. Setting

p(y) := µ e−
1
2 y>Σ−1y with µ :=

(∑
y∈Y

e−
1
2 y>Σ−1y

)−1

,
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we obtain

H(Y ) ≤ − log2(µ) + log2(e)
2

∑
y∈Y

Pr(Y = y)y>Σ−1y

= − log2(µ) + log2(e)
2 E(Y >Σ−1Y )

= − log2(µ) + log2(e)
2 tr

(
Σ−1 E(Y Y >)

)
(by the “trace trick”)

= − log2(µ) + m log2(e)
2 .

Using the Poisson summation formula (cf. [Ban93, Lemma (1.1) (i)]), we get

H(Y ) ≤ m log2(e)
2 + log2

(∑
y∈Y

e−
1
2 y>Σ−1y

)

≤ m log2(e)
2 + log2

( ∑
y∈Zm

e−
1
2 y>Σ−1y

)

= m log2(e)
2 + log2

(√
(2π)m det(Σ)

)
+ log2

( ∑
y∈Zm

e−2π2y>Σy

)

= 1
2 log2

(
det(2πeΣ)

)
+ log2

( ∑
y∈Zm

e−2π2y>Σy

)
.

Since y>Σy ≥ λ‖y‖2 for all y ∈ Rm, we have

log2

( ∑
y∈Zm

e−2π2y>Σy

)
≤ log2

( ∑
y∈Zm

e−2π2λ‖y‖2

)
= m log2

(∑
z∈Z

e−2π2λz2

)

≤ m log2

(
−1 + 2

∑
n≥0

e−2π2λn

)
= m log2

(
1 + e−2π2λ

1− e−2π2λ

)
,

finishing the proof.

Remark 3. We note that [Ban93, Lemma (1.5) (i)] implies a better bound for the term
m log2(. . .) of equation (13) in general. However, the bound of Lemma 2 is sufficient for
our purposes.

Applying Lemma 2 to Leakage Model 2, we obtain λ ≈ 0.65 and H(Y ) ≤ 41.73 by
numerical methods. We also note that the term

15 log2

(
1 + e−2π2λ

1− e−2π2λ

)
≈ 0.0001 (14)

in (13) is negligible for this random variable. We obtain the lower bound

H(C,D | Y ) = 56−H(Y ) ≥ 14.27 (15)

for the remaining entropy. The experiments reported in Subsection 3.3 (cf. Table 1) suggest
that the remaining entropy is close to this lower bound. In Subsubsection 3.4.2 we support
this hypothesis by geometric considerations.
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3.4.2 A heuristic for the remaining entropy

Based on the experiments reported in Subsection 3.3, we propose the heuristic formula

H(C,D | Y ) ≈ 56− 1
2 log2

(
det(2πeΣ)

)
≈ 14.27 (16)

for the remaining entropy.
Each component Yi of Y is a sum of independent random variables and we can certainly

approximate the distribution of each Yi by a continuous normal distribution. But is it
a valid approximation, if we replace the distribution of Y by a 15-dimensional normal
distribution?

Let m ≤ n, let X be a uniformly distributed random variable on {±1}n, and let
A ∈ Rm×n be a matrix of full row rank such that AX takes values in Zm. We have the
following general properties:

• If the support of AX is contained in a subset S ⊆ Rm, then clearly H(AX) ≤
log2

(
#(S ∩ Zm)

)
. In addition, we can expect that log2

(
#(S ∩ Zm)

)
≈ log2

(
vol(S)

)
for “natural” sets S.

• Let A = UDV > be the singular value decomposition of A, where U ∈ Rm×m and
V ∈ Rn×n are orthogonal matrices and D ∈ Rm×n is a rectangular diagonal matrix
with non-negative elements on the diagonal. This representation of A easily implies
that AX takes values in an m-dimensional ellipsoid with semiaxes equal to the
non-zeros elements of D times

√
n. The volume of this ellipsoid is

Vm(1)nm/2
√

det
(
DD>

)
= Vm(1)nm/2

√
det
(
AA>

)
,

where Vm(1) denotes the volume of the m-dimensional ball with radius 1.

• The heuristic argumentation based on the singular value decomposition:
(i) If the volume of this ellipsoid is smaller than 2n, then we can expect that all
integer points of this ellipsoid occur in the support of AX.
(ii) The components of V >X have expectation 0 and variance 1. Therefore, the bulk
of the support of AX lies in a smaller ellipsoid with semiaxes equal to the non-zero
elements of D times

√
m. The volume of this smaller ellipsoid is

Vm(1)mm/2
√

det
(
AA>

)
.

(iii) Furthermore, if (i) is valid, we expect that the discrete distribution of AX is
“similar” to the continuous distribution AZ, where Z is normally distributed with
covariance matrix In. AZ is therefore normally distributed with covariance matrix
AA>. The entropy of AZ is well known and given by the formula

1
2 log2

(
det(2πeAA>)

)
.

Note that the approaches (ii) and (iii) lead to very similar approximations, since

log2
(
Vm(1)mm/2) ≈ m

2 log2(2πe) .

3.4.3 Distribution of the remaining entropy

Why has the remaining entropy in the experiments in Subsection 3.3 such a large variation?
Each yi is a realization of a binomially distributed random variable. If yi takes on extreme
values near ±24, we have a large amount of information about the key (c,d). On the other
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hand, for yi = 0 there are many candidates for (c,d). As argued in Subsubsection 3.4.2,
we expect that in our case

Pr(Y = y) =
#
{

(c,d) ∈ {0, 1}56 |W∆(c,d) = y
}

256

≈ 1√
(2π)15 det(Σ)

exp
(
− 1

2y
>Σ−1y

)
.

This leads to the following approximation of the remaining entropy H(C,D | Y = y) for
fixed y:

H(C,D | Y = y) = log2
(
#
{

(c,d) ∈ {0, 1}56 |W∆(c,d) = y
})

= 56 + log2
(
Pr(Y = y)

)
≈ max

{
2 , 56− 1

2 log2
(
det(2πΣ)

)
− 1

2 log2(e)‖Σ−1/2y‖2
}

≈ max
{

2 , 25.09− 0.72 · ‖Σ−1/2y‖2
}
.

(17)

In approximation the remaining entropy depends only on ‖Σ−1/2y‖. If ‖Σ−1/2y‖ is small,
the remaining entropy H(C,D | Y = y) is large (“strong keys”). If ‖Σ−1/2y‖ is large, the
remaining entropy H(C,D | Y = y) is small (“weak keys”).

We expect that the largest remaining entropy should occur near y = 015. The largest
number of candidates we found experimentally was indeed

#C(015) = 34296072 ,

exactly for the observation y = 015. Since log2(34296072) ≈ 25.03, this fits well to the
heuristic argumentation above. At the other extreme, for the key k = 056 we have

R(056) = #C(−24 · 115) = 4 .

In order to test the heuristic (17), we conducted some further experiments. For every
a ∈ {0.6, 0.8, . . . , 7.4}, we generated 10 random observations y = W∆(k) such that
‖Σ−1/2y‖ ∈ [a, a + 0.2] by rejection sampling and computed #C(y) using Algorithm 1.
Figure 3 shows a plot of the remaining entropy estimate (17) as a function of ‖Σ−1/2y‖
together with the logarithmic key ranks computed in the experiments. Note that for
unconditionally chosen random keys the observations would be concentrated around
the middle region of the graph (cf. Subsection 3.3). The experiments confirm that the
approximation (17) is good.

In the end, we can expect that the distribution of H(C,D | Y = y) is near the
continuous distribution of the random variable 25.1− 1

2y
>Σ−1y log2(e), where y is normally

distributed with expectation 015 and covariance matrix Σ. Note that the probability
density function of this continuous distribution is identical to the probability density
function of the random variable 25.1− 1

2u
>u log2(e), where u is a standard normal random

vector. Since u>u is χ2-distributed we know that

E
(

25.09− 1
2u
>u log2(e)

)
= 25.09− 1

215 log2(e) ≈ 14.27 ,

Var
(

25.09− 1
2u
>u log2(e)

)
= 30 ·

(1
2 log2(e)

)2
≈ 15.61 .

Note that the expectation fits to the value H(C,D | Y ) = 56−H(Y ) ≈ 56−41.7 ≈ 14.3 as
estimated above. In comparison, we obtained a mean value of 15.08 and empirical variance
of 12.02 for the logarithmic key ranks in the experiment reported in Subsection 3.3.
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Figure 3: Graph of the remaining entropy estimate (17) as a function of ‖Σ−1/2y‖ together
with the logarithmic key ranks computed in the experiments.

3.5 Isolated consideration of the C- and D-register
As a natural approach one might try to find the values of the C- and D-register separately.
In the publication [HMU+20], for instance, the authors discuss a template attack on even
smaller parts of the C- and D-registers. Here we want to clarify that this reduces the
amount of mutual information significantly. We consider the following general strategy:

1. Define an appropriate evaluation function that depends only on the key part c in
the C-register. Find a set C of likely candidates for the C-register.

2. Define an appropriate evaluation function that depends only on the key part d in
the D-register. Find a set D of likely candidates for the D-register.

3. Check all combinations (c,d) ∈ C × D.

The work load of this approach is bounded by 227 in step 1 and 2, but in step 3 we
have to check all combinations. We can now give an easy to compute indication of how
successful such an approach could be. The random variable W 2∆(D) takes on certain
values in a 15-dimensional space and its entropy H(W 2∆(D)) is clearly bounded by 27.
By Lemma 2, we have

H(W 2∆(D)) . 1
2 log2

(
det(2πeW 2W

>
2 ) ≈ 34.05 ,

where we have neglected the second term in (13). Let U2 be a uniformly distributed
random variable on {±1}56. We assume that in our case the upper bound of Lemma 2 is
in fact a good approximation

H(W 2U2) ≈ 34.05 .

Now we use the following heuristic. The success of an evaluation function that depends
only on the key part c of the C-register should be restricted to the mutual information of
C and the random variable

Y 1 := W 1∆(C) +W 2U2 .



Andreas Wiemers and Johannes Mittmann 13

Applying Lemma 2 to Y 1, we get

I(Y 1;C) = I(W 1∆(C) +W 2U2;C) = H(Y 1)−H(W 2U2)

≈ 1
2 log2

(
det(2πeWW>)

)
− 1

2 log2
(
det(2πeW 2W

>
2 )
)

= 1
2 log2

(
det(WW>)

)
− 1

2 log2
(
det(W 2W

>
2 )
)
.

Using this approximation, we obtain

I(Y 1;C) ≈ 7.68 and I(Y 2;D) ≈ 8.68 ,

where Y 2 := W 1U1 + W 2∆(D) is defined analoguously to Y 1 with U1 uniformly
distributed on {±1}56.
Remark 4. These small concrete values do not come as a complete surprise. By construction
of W we know that W 1W

>
1 ≈W 2W

>
2 , so that we can expect roughly

I(Y 1;C) ≈ 1
2 log2

(
det(WW>)

)
− 1

2 log2
(
det(W 2W

>
2 )
)

≈ 1
2 log2

(
det(2W 2W

>
2 )
)
− 1

2 log2
(
det(W 2W

>
2 )
)

= 1
2 log2(215) = 15

2 .

4 Linear regression model
In this section we consider a continuous leakage model, whose observations cover more
points of interest but may contain errors. The weight matrix of this model is not derived by
theoretical considerations, but must be learned in a profiling phase using linear regression.

Leakage Model 3 (Linear regression model). Let m ≥ 112, let W ∈ Rm×112 be a fixed
weight matrix of full column rank, and let K = (C,D) be a uniformly distributed random
variable on {0, 1}56. We define the random variable Y on Rm by

Y = W∆(C,D) + ε , (18)

where ε is a zero-mean normal random variable on Rm with covariance matrix σ2Im which
is independent of K.

Remark 5. The leakage of a real implementation might not strictly follow this leakage
model. For instance, there might be a non-linear key-dependent influence on the leakage
and the error might follow a different distribution or be key-dependent as well. One may
attempt to fit real measurements better to this model by recentering and decorrelating the
measurements. Moreover, the error can be reduced by averaging over several observations
for the same key, see Subsubsection 4.3.1.

4.1 Key ranking and key enumeration
Let y ∈ Rm be an observation under Leakage Model 3 corresponding to an unknown key
k∗ = (c∗,d∗) ∈ {0, 1}56, i.e. we have y = W∆(c∗,d∗) + ε for some unknown noise vector
ε ∈ Rm. We also assume for the moment that we know the weight matrix W ∈ Rm×112

(in Subsection 4.2 we describe how W can be estimated).
We define the evaluation function

ηW ,y : {0, 1}56 → R≥0 , (c,d) 7→
∥∥y −W∆(c,d)

∥∥2
. (19)

We denote by
CW (y, B) :=

{
(c,d) ∈ {0, 1}56 | ηW ,y(c,d) ≤ B

}
(20)
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the set of key candidates for observation y with error bound B ∈ R≥0. The rank of the
correct key k∗ with respect to W and y is defined as

RW ,y(k∗) := #CW

(
y, ηW ,y(k∗)

)
. (21)

Note that RW ,y(k∗) is a multiple of 4 (cf. Remark 1). We call log2RW ,y(k∗) the
logarithmic key rank of k∗.

A quick check for assessing the quality of ηW ,y can be obtained by testing the condition
ηW ,y(cj ,dj) ≤ ηW ,y(c∗,d∗) for several random key candidates (cj ,dj) ∈ {0, 1}56 with
j = 1, . . . , N . If N is large and RW ,y(k∗) is not too small, we can expect

RW ,y(k∗) ≈ 256

N
·#
{
j ∈ [N ] | ηW ,y(cj ,dj) ≤ ηW ,y(c∗,d∗)

}
. (22)

Next we develop an algorithm to enumerate the set CW (y, B) based on the Fincke–
Pohst lattice point enumeration algorithm [FP85]. In principle, this algorithm explores
the whole key space {0, 1}56 (or {0, 1}54), but in many instances the search tree can be
pruned considerably.

The following preparatory lemma shows that the weight matrix W ∈ Rm×112 can be
replaced by an upper triangular matrix R ∈ R112×112. At the same time, the observation
vector y is projected onto the range of W .

Lemma 3. Let m ≥ 112, let W ∈ Rm×112 be a matrix of full column rank, and let
y ∈ Rm. Then there exists a unique upper triangular matrix R ∈ R112×112 with positive
diagonal elements such that W>W = R>R. We have∥∥y −Wx

∥∥2 =
∥∥R(t− x)

∥∥2 +
∥∥y −Wt

∥∥2 for all x ∈ R112 ,

where t := (W>W )−1W>y ∈ R112.

Proof. Since W has full column rank, the matrix W>W is symmetric positive-definite
and, in particular, non-singular. The existence and uniqueness of R follow from the
Cholesky factorization of W>W (cf. [GL96, Theorem 4.2.5]). Since W (W>W )−1W> is
the orthogonal projection onto the range ofW , we have 〈Wx,y−Wt〉 = 0 for all x ∈ R112,
hence ‖y−Wx‖2 = ‖W (t−x) +y−Wt‖2 = ‖W (t−x)‖2 +‖y−Wt‖2 for all x ∈ R112.
Finally, we have ‖W (t−x)‖2 = (t−x)>W>W (t−x) = (t−x)>R>R(t−x) = ‖R(t−x)‖2

for all x ∈ R112.

Remark 6. Consider the situation of Lemma 3. By the thin/reduced QR factorization
of W , there exists a unique matrix Q ∈ Rm×112 with orthonormal columns and a unique
upper triangular matrix R ∈ R112×112 with positive diagonal elements such thatW = QR
(cf. [GL96, Theorem 5.2.2]). We have W>W = R>R (in particular, R is the Cholesky
factor of W>W ) and t = (W>W )−1W>y = R−1Q>y.

By Lemma 3, we have CW (y, B) = CR(Rt, B − ‖y −Wt‖2). Let (c,d) ∈ {0, 1}56 and
x := ∆(c,d) ∈ {±1}112. Then (c,d) ∈ CW (y, B) if and only if

∥∥R(t− x)
∥∥2 =

112∑
i=1

( 112∑
j=i

ri,j(tj − xj)
)2

≤ B −
∥∥y −Wt

∥∥2
. (23)

In principle, we could enumerate all vectors x ∈ {±1}112 satisfying (23) using backtracking
(cf. [Knu19, Section 7.2.2, Algorithm B]). If the elements of x are traversed in the order
x112, x111, . . . , x1, then partial assignments xs · · ·x112 violating the condition

112∑
i=s

( 112∑
j=i

ri,j(tj − xj)
)2

≤ B −
∥∥y −Wt

∥∥2
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can be rejected immediately (without trying further values for x1 · · ·xs−1). For each
vector x ∈ {±1}112 satisfying (23) we could then compute the preimage under ∆ to obtain
the corresponding key candidates (cf. Remark 1). However, this approach is impractical
due to the size of {±1}112. Therefore, we enumerate the keys k = (c,d) ∈ {0, 1}56

directly. In order to make this approach work, we have to reorder the components of
x = ∆(k) = ∆(c,d) and the columns of W have to be reordered accordingly (before
applying Lemma 3).

Let k = k1 · · · k56 = (c,d) = c1 · · · c28 d1 · · · d28 ∈ {0, 1}56. First we choose a permuta-
tion π : [56]→ [56] that determines the order kπ(1), kπ(2), . . . , kπ(56) in which we want to
traverse the bits of k in the enumeration procedure. By Remark 1 we can keep one bit of
c and one bit of d fixed, so we move those bits to the front and do not change them during
the enumeration. For example, we may choose π(1) = 1 and π(2) = 29, hence kπ(1) = c1
and kπ(2) = d1. We proceed by choosing bits as to maximize the number of components in
∆(k) that are determined by the current choices. In other words, we pick nodes in the
graph of Figure 1 such that the number of edges between the chosen nodes is maximized.
For example, we may choose

π =
(

1 2 3 4 · · · 28 29 30 31 · · · 55 56
1 29 2 3 · · · 27 28 30 31 · · · 55 56

)
.

Next we determine a permutation matrix P ∈ R112×112 and integers s1 = s2 = 113 > s3 >
· · · > s56 = 1 such that for all ` ∈ [56] the components of x := P>∆(k) ∈ {±1}112, which
are determined by kπ(1), . . . , kπ(`), are the trailing components xs` , . . . , x112 of x. In our
example, we have

s3 = 112 , s3+i = 112− 2i for i ∈ [24] , s28 = 61 , s29 = 57 ,
s30 = 56 , s30+i = 56− 2i for i ∈ [24] , s55 = 5 , s56 = 1 ,

and we may choose P such that

x1, x2, x3, x4 = (−1)d1⊕d28 , (−1)d2⊕d28 , (−1)d26⊕d28 , (−1)d27⊕d28 ,

x5, x6, x7 = (−1)d1⊕d27 , (−1)d25⊕d27 , (−1)d26⊕d27 ,

x56−2i, x57−2i = (−1)di⊕di+2 , (−1)di+1⊕di+2 for i ∈ [24] ,
x56 = (−1)d1⊕d2 ,

x57, x58, x59, x60 = (−1)c1⊕c28 , (−1)c2⊕c28 , (−1)c26⊕c28 , (−1)c27⊕c28 ,

x61, x62, x63 = (−1)c1⊕c27 , (−1)c25⊕c27 , (−1)c26⊕c27 ,

x112−2i, x113−2i = (−1)ci⊕ci+2 , (−1)ci+1⊕ci+2 for i ∈ [24] ,
x112 = (−1)c1⊕c2 .

Applying Lemma 3 to the column-permuted matrix WP and the observation y ∈ Rm,
we obtain an upper triangular matrix R ∈ R112×112 and t ∈ R112 such that∥∥y −W∆(k)

∥∥2 =
∥∥y −WPP>∆(k)

∥∥2 =
∥∥R(t− x)

∥∥2 +
∥∥y −WPt

∥∥2
.

Therefore, we have k ∈ CW (y, B) if and only if

ρ` :=
112∑
i=s`

( 112∑
j=i

ri,j(tj − xj)
)2

≤ B −
∥∥y −WPt

∥∥2 for all ` ∈ [56] .

Note that ρ` depends on the components xs` , . . . , x112 of x = P>∆(k) which are determined
completely by kπ(1), . . . , kπ(`). Furthermore, ρ` can be computed recursively, since ρ1 =
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ρ2 = 0 and

ρ` = ρ`−1 +
s`−1−1∑
i=s`

( 112∑
j=i

ri,j(tj − xj)
)2

for 3 ≤ ` ≤ 56 .

Using the backtracking scheme described in [Knu19, Section 7.2.2, Algorithm B], we
obtain the following algorithm.

Algorithm 2.
Input: A matrix W ∈ Rm×112 of full column rank, a vector y ∈ Rm, and a bound
B ∈ R≥0.
Output: The set of key candidates CW (y, B).

1. [Initialize.] Set C ← ∅, `← 3, k← 056, x← 1112, and ρ← 056.

2. [Preprocess.] Set W ←WP . Compute an upper triangular matrix R ∈ R112×112 such
that W>W = R>R. Set t← (W>W )−1W>y and B ← B − ‖y −Wt‖2. If B < 0,
return C and stop.

3. [Enter level `.] If ` = 57, set (c,d)← k, set C ← C ∪ {(c,d), (c,d), (c,d), (c,d)}, and
go to step 6. Otherwise set kπ(`) ← 0.

4. [Try kπ(`).] Set xi ← (P>∆(k))i for i = s`, . . . , s`−1 − 1 and set

ρ` ← ρ`−1 +
s`−1−1∑
i=s`

( 112∑
j=i

ri,j(tj − xj)
)2

.

If ρ` ≤ B, set `← `+ 1 and go to step 3.

5. [Try again.] If kπ(`) = 0, set kπ(`) ← 1 and go to step 4.

6. [Backtrack.] Set `← `− 1. If ` ≥ 3, go to step 5. Otherwise return C and stop.

Remark 7. We note some possible variations and optimizations of Algorithm 2.

(a) To avoid repeated computations, Algorithm 2 can be modified as follows (cf. [GNR10,
Appendix B] and [LN13, Appendix A]). Let σi,h :=

∑112
j=h ri,j(tj − xj) for i ∈ [112]

and h ∈ [113]. The value σi,h can be computed recursively, since σi,113 = 0 and
σi,h = σi,h+1+ri,h(th−xh) for all i, h ∈ [112]. Further, we have ρ` = ρ`−1+

∑s`−1−1
i=s` σ2

i,i

for 3 ≤ ` ≤ 56. By using these recurrence relations and by reusing values of σi,h that
are still valid during the enumeration, the partial squared norms ρ` can be computed
with fewer operations. For details, see Algorithm 3 in Appendix A.

(b) Using pruning [SE94, SH95], we can heuristically reject partial assignments kπ(1) · · · kπ(`)
during the enumeration if the partial squared norm ρ` is already so large that ρ56 ≤ B
becomes unlikely for any choice of kπ(`+1) · · · kπ(56). This can be done by replacing the if-
condition “ρ` ≤ B” in step 4 by “ρ` ≤ B`” for suitable bounds 0 ≤ B3 ≤ · · · ≤ B56 = B.
In our experiments we used the bounds

B` :=
{
`+17

54 B , if 3 ≤ ` ≤ 36 ,
B , if 37 ≤ ` ≤ 56 .

Note that we cannot use extreme pruning [GNR10], since we want to find all (or almost
all) key candidates in CW (y, B).
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(c) For a given weight matrix W , the running time of Algorithm 2 may be optimized by
choosing different permutations π and P (in compliance with the conditions outlined
above). Preprocessing W with general unimodular transformations (e.g. lattice basis
reduction, cf. [FP85, (2.12)]) seems not possible in our setting.

(d) To find N best key candidates for the evaluation function ηW ,y, Algorithm 2 can be
modified as follows. We start the algorithm with B :=∞. The set C is replaced by
a list that is ordered by ηW ,y and keeps only the N best key candidates. Each time
a key candidate gets evicted from C, the bound B can be updated according to the
currently worst key candidate in C.

4.2 Estimation of the weight matrix
The weight matrix W ∈ Rm×112 of Leakage Model 3 can be estimated in a profiling phase
using linear regression if observations for several known keys are available.

Let Nprf � 112. Assume we are given observations yprf,j ∈ Rm of Leakage Model 3
for known and randomly chosen keys kprf,j = (cprf,j ,dprf,j) ∈ {0, 1}56 for j ∈ [Nprf]. We
denote by Xprf ∈ {±1}112×Nprf the matrix with columns xprf,j := ∆(cprf,j ,dprf,j) and by
Y prf ∈ Rm×Nprf the matrix with columns yprf,j for j ∈ [Nprf].

We want to find an approximation W̃ ∈ Rm×112 ofW such that Y prf ≈ W̃Xprf. Since
the error vector in Leakage Model 3 has independent components, we may estimate the
rows of W independently. Let i ∈ [m] and let yprf,i ∈ R1×Nprf denote the i-th row of Y prf.
We approximate the i-th row ofW by a least squares estimate, i.e. by a vector w ∈ R1×112

minimizing ∥∥yprf,i −wXprf
∥∥2
. (24)

Since Nprf � 112, we may assume that Xprf has full row rank and XprfX
>
prf ∈ R112×112

is non-singular. This implies that (24) is minimized by the (unique) vector w̃i :=
yprf,iX

>
prf(XprfX

>
prf)−1 ∈ R1×112 (cf. [GL96, Section 5.3.1]). Combining the estimated

rows of the weight matrix, we obtain the matrix

W̃ := Y prfX
>
prf(XprfX

>
prf)−1 ∈ Rm×112 . (25)

Since the “true”, unknown weight matrix W is assumed to have full column rank,
we may hope that the same holds for the estimated weight matrix W̃ . We just mention
that this was indeed the case in our experiments with real measurements reported in
Subsubsection 4.3.1.

4.3 Experiments
We performed experiments using real and simulated measurements.

4.3.1 Real measurements

The authors of [HMU+20] provided us with their measurement data. The provided data
set consists of a profiling set and an attack set. The measurements are already aligned
and trimmed to m = 460 points of interest.

The profiling set comprisesNprf = 882547 measurements of DES operations with random
keys kprf,j = (cprf,j ,dprf,j) ∈ {0, 1}56 for j ∈ [Nprf]. We denote by Y prf ∈ Rm×Nprf the
matrix of measurements (arranged in columns) and by Xprf ∈ {±1}112×Nprf the matrix
with columns ∆(cprf,j ,dprf,j).

The attack set comprises Natt = 247088 measurements of DES operations with random
keys katt,j ∈ {0, 1}56 for j ∈ [288], where Natt,j ∈ {761, . . . , 927} measurements have been
performed with key katt,j . (The authors of [HMU+20] also carried out measurements
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for so-called weak keys, but we do not consider them in this article.) We denote by
Y att,j ∈ Rm×Natt,j the matrix of measurements with key katt,j (arranged in columns) for
j ∈ [288].

In order to fit the measurement data to Leakage Model 3, we preprocessed the data
sets as follows. Using the mean

µ̃prf := N−1
prfY prf1Nprf ∈ Rm

of the measurements Y prf of the profiling set, we centered Y prf and Y att,j by replacing

Y prf ← Y prf − µ̃prf 1>Nprf
and Y att,j ← Y att,j − µ̃prf 1>Natt,j

for j ∈ [288] .

Using the empirical covariance matrix

Σ̃prf := N−1
prfY prfY

>
prf ∈ Rm×m

of the (centered) measurements Y prf of the profiling set, we decorrelated Y prf and Y att,j
(Mahalanobis whitening) by replacing

Y prf ← Σ̃−1/2Y prf and Y att,j ← Σ̃−1/2Y att,j for j ∈ [288] .

Finally, we computed the averaged measurements

yj := N−1
att,j Y att,j 1Natt,j for j ∈ [288] .

Due to a slight shift in the averaged measurements, we also recentered them amongst each
other by replacing

(y1, . . . ,y288)← (y1, . . . ,y288)(I288 − 288−1 1288 1>288) .

Using the preprocessed data of the profiling set, we computed an estimate W̃ ∈ Rm×112

of the weight matrix according to Leakage Model 3 as in (25). A matrix plot of W̃
is shown in Figure 4. The plot illustrates the locations where updates of the C- and
D-register (rotation by 1 resp. 2 positions) take place. In particular, it is visible that the
measurement covers a DES-encryption followed by a full DES-decryption, presumably as a
countermeasure against fault attacks. The upper half and the mirrored lower half of the
plot bears some resemblance with the weight matrix of Leakage Model 2 (cf. Figure 2).
This visual structure of W̃ is a first indication that Leakage Model 3 is adequate for the
measurements.

We implemented Algorithm 2 in the Julia programming language [BEKS17] with the
optimizations of Remark 7 (a) and (b). We computed the key ranks

Ri := R
W̃ ,yi

(katt,i)

for 287 of the 288 averaged measurements yi on a standard computer by explicit enumer-
ation. The distribution of the computed ranks Ri and the single-core running times is
described in Table 2.

One half of the computed ranks are below 215 and 75% of them are below 221. The key
enumerations finished in under 7 minutes in one half of the cases using a single CPU-core.
A log-log plot of the running times and key ranks is shown in Figure 5.

The experiments demonstrate that Leakage Model 3 is adequate for the measurement
data. Although the leakage model might only approximate the real leakage, the attack
is successful. We note that, apart from model errors, there may be further obstacles to
a successful attack. If the number of measurements in the profiling phase is insufficient,
the estimated weight matrix may differ significantly from the “true” weight matrix. If
the number of measurements in the attack phase is insufficient, the noise of the averaged
measurements may be too large.
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Figure 4: Matrix plot of the estimated weight matrix W̃ with element values depicted
according to the color bar.

Table 2: Empirical distribution of the logarithmic key ranks and key enumeration running
time for 287/288 averaged, real measurements.

Logarithmic key rank Running time
Min Q1 Median Q3 Max Min Median Max

2 9 15 21 34 1 s 7 min 8 d

4.3.2 Simulated measurements

In order to investigate the influence of the error distribution on the key rank, we performed
a series of experiments with simulated measurements in different noise regimes.

For the simulated measurements, we used the weight matrix W̃ ∈ Rm×112 withm = 460
estimated from the real measurements as described in Subsubsection 4.3.1 (cf. Figure 4) and
generated the observations as samples from Leakage Model 3, where the keys were drawn
uniformly from {0, 1}56 and the errors were drawn from a centered normal distribution
on Rm with covariance matrix σ2Im. In contrast to Subsubsection 4.3.1, we used the
observations directly without averaging over several observations.

For each σ ∈ {0.02, 0.03, . . . , 0.07}, we generated 100 observations and computed the
corresponding key ranks explicitly using our implementation of Algorithm 2 with the
optimizations of Remark 7 (a) and (b). The distributions of the computed ranks and the
single-core running times are described in Table 3.

Comparing the distributions of Table 2 and Table 3, we recognize that the averaged
observations in Subsubsection 4.3.1 behave similarly to observations of Leakage Model 3
with σ ≈ 0.07.

For larger values of σ, we have resorted to the Monte-Carlo heuristic (22). For each
σ ∈ {0.2, 0.3, . . . , 0.7}, we generated 100 observations and estimated the corresponding key
ranks using the Monte-Carlo heuristic (22) with an appropriate number N of random keys.
The distribution of the estimated ranks is described in Table 4.

4.4 Theoretical estimation of the remaining entropy
Similar to the discrete case we use mutual information as a measure for the uncertainty
about the key if an observation is given. However, mutual information of continuous
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Figure 5: Log-log plot of the key enumeration running times and key ranks for the real
measurements.

Table 3: Empirical distribution of the logarithmic key ranks and key enumeration running
times for 100 simulated measurements per value of σ. The key ranks were computed
explicitly using Algorithm 2 with the optimizations of Remark 7 (a) and (b).

Noise Logarithmic key rank Running time
σ Min Q1 Median Q3 Max Min Median Max

0.02 2 2 2 2 2 1 s 1 s 1 s
0.03 2 2 2 2 3 1 s 1 s 1 s
0.04 2 2 2 2 6 1 s 1 s 6 s
0.05 2 2 3 7 14 1 s 9 s 30 min
0.06 2 5 8 12 30 2 s 2 min 14 h
0.07 2 9 15 19 33 5 s 29 min 13 d

random variables should be treated with care, since some of its properties are different
compared to the discrete case (cf. [CT06]). The following lemma provides an upper bound
for the mutual information of Y and (C,D) in Leakage Model 3.

Lemma 4. Let K = (C,D) and Y = W∆(C,D) +ε with Cov(ε) = σ2Im as in Leakage
Model 3. Then

I(Y ;C,D) ≤ 1
2 log2

(
det(σ−2W>W + I112)

)
.

Proof. We have I(Y ;C,D) = H(Y )−H(ε). Let Σ = Cov(Y ). By Lemma 1 (d), we have
Σ = WW> + σ2Im. By [CT06, Theorem 8.6.5], we obtain H(Y ) ≤ 1

2 log2
(
det(2πeΣ)

)
and H(ε) = 1

2 log2
(
det(2πeσ2Im)

)
. This implies

I(Y ;C,D) ≤ 1
2 log2

(
det(2πeΣ)/ det(2πeσ2Im)

)
= 1

2 log2
(
det(σ−2WW> + Im)

)
.

Since WW> and W>W have identical non-zero eigenvalues, we get

det(σ−2WW> + Im) = det(σ−2W>W + I112)
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Table 4: Empirical distribution of the estimated logarithmic key ranks for 100 simulated
measurements per value of σ. The key ranks were estimated using the Monte-Carlo
heuristic (22) with N random keys.

Noise Logarithmic key rank # Random keys
σ Min Q1 Median Q3 Max N

0.2 32 40 43 46 54 224

0.3 39 44 48 50 55 222

0.4 39 48 50 53 55 220

0.5 42 50 52 53 56 220

and the assertion follows.

Based on the experiments in Subsubsection 4.3.2, we propose the heuristic formula

H(C,D | Y ) ≈ max
{

2 , 56− 1
2 log2

(
det(σ−2W>W + I112)

)}
(26)

for the remaining entropy. Figure 6 and Figure 7 compare this heuristic with the results of
the experiments with simulated measurements reported in Table 3 and Table 4, respectively.
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Figure 6: Graph of the remaining entropy estimate (26) as a function of σ together with
the logarithmic key ranks computed in the experiments reported in Table 3.

4.5 Isolated consideration of the C- and D-register
In Subsection 3.5 we looked at an approach that considers the C- and D-register separately.
We argued that the mutual information is much lower in this setting. However, in the
continuous case with error the situation is different. On the one hand, we have an additional
error so that each observation gives less information compared to Leakage Model 2. On
the other hand, we have much more POIs in Leakage Model 3. The general strategy is
again as follows:

1. Define an appropriate evaluation function that depends only on the key part c in
the C-register. Find a set C of likely candidates for the C-register.



22 Improving Recent Side-Channel Attacks Against the DES Key Schedule

0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

σ

Lo
g.

ke
y
ra
nk

/
R
em

.e
nt
ro
py

Log. key rank
Log. key rank median
Rem. entropy estimate

Figure 7: Graph of the remaining entropy estimate (26) as a function of σ together with
the logarithmic key ranks estimated in the experiments reported in Table 4.

2. Define an appropriate evaluation function that depends only on the key part d in
the D-register. Find a set D of likely candidates for the D-register.

3. Check all combinations (c,d) ∈ C × D.

The work load of this approach is again bounded by 227 in step 1 and 2, but in step 3
we have to check all combinations. Here we consider the following heuristic. We replace
the random variable ∆(D) by a normal distributed random variable N2 with mean 0m
and covariance matrix Im in Y , i.e. we set

Y 1 := W 1∆(C) +W 2N2 + ε .

As an indication of the success of an evaluation function that depends only on the key
part c of the C-register, we compute the mutual information of C and the observation Y 1.
First we normalize the new resulting error by setting

Y ′1 := Σ−1/2
2 Y 1 ,

where Σ2 := Cov(W 2N2 + ε) = W 2W
>
2 + σ2Im. Analogously to Subsection 4.1, we

define the evaluation function for the key part c in the C-register as

ηW ,y,1 : {0, 1}28 → R≥0 , c 7→
∥∥Σ−1/2

2 y −Σ−1/2
2 W 1∆(c)

∥∥2
. (27)

We assume that (26) can be applied analogously and get

H(C | Y ′1) ≈ max
{

1 , 28− 1
2 log2

(
det(Σ−1/2

2 W 1W
>
1 Σ−1/2

2 + Im)
)}

= max
{

1 , 28− 1
2 log2

(
det(σ−2WW> + Im)

/
det(σ−2W 2W

>
2 + Im)

)}
.

(28)
We expect that the work load of step 3 is roughly of size 2H(C|Y ′1)+H(D|Y ′2) in the algorithm
above, where Y ′2 is defined analogously for the D-register.

Applying heuristic (28) to the weight matrix W̃ estimated in Subsubsection 4.3.1
for the real measurements and σ = 0.07 as estimated in Subsubsection 4.3.2, we obtain
H(C | Y ′1) ≈ 6.55 and H(D | Y ′2) ≈ 16.64. We computed the ranks of the key parts in the
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C- and D-register with respect to η
W̃ ,yi,1

and the analogously defined evaluation function
η

W̃ ,yi,2
, respectively. The distribution of the computed ranks is described in Table 5.

The average logarithmic key ranks were 6.55 and 17.26 for the C- and D-register in good
agreement with heuristic (28).

Table 5: Empirical distribution of the logarithmic key ranks of the key parts in the C- and
D-register for 288 averaged, real measurements (cf. Subsubsection 4.3.1).

Register Logarithmic key rank
Min Q1 Median Q3 Max

C 1 2 6 10 20
D 1 15 18 21 27

Remark 8. The key ranks in the experiments vary a lot. Therefore, in practice, the sets C
and D of likely candidates have to be chosen larger than 2H(C|Y ′1) and 2H(D|Y ′2) in step 1
and 2, respectively, or one has to accept that the algorithm finds the correct combined
key only with a certain probability. Algorithm 2 in Subsection 4.1 does not have this
drawback.
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A An optimized version of Algorithm 2
The following algorithm is a variation of Algorithm 2 with the optimization described in
Remark 7 (a).

Algorithm 3.
Input: A matrix W ∈ Rm×112 of full column rank, a vector y ∈ Rm, and a bound
B ∈ R≥0.
Output: The set of key candidates CW (y, B).

1. [Initialize.] Set C ← ∅, ` ← 3, k ← 056, x ← 1112, ρ ← 056, σ ← 0112,113, and
v ← 112 · 156.
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2. [Preprocess.] Set W ←WP . Compute an upper triangular matrix R ∈ R112×112 such
that W>W = R>R. Set t← (W>W )−1W>y and B ← B − ‖y −Wt‖2. If B < 0,
return C and stop.

3. [Enter level `.] If ` = 57, set (c,d)← k, set C ← C ∪ {(c,d), (c,d), (c,d), (c,d)}, and
go to step 6. Otherwise set kπ(`) ← 0 and v` ← max{v`−1, v`}.

4. [Try kπ(`).] Set ρ` ← ρ`−1. For i← s`−1 − 1, s`−1 − 2, . . . , s`, do the following:

a. Set xi ← (P>∆(k))i.
b. For j ← v`, v` − 1, . . . , i, set σi,j ← σi,j+1 + ri,j(tj − xj).
c. Set ρ` ← ρ` + σ2

i,i.

If ρ` ≤ B, set `← `+ 1 and go to step 3.

5. [Try again.] If kπ(`) = 0, set kπ(`) ← 1 and go to step 4.

6. [Backtrack.] Set ` ← ` − 1. If ` ≥ 3, set v` ← s`−1 − 1 and go to step 5. Otherwise
return C and stop.


	Introduction
	Preliminaries
	Notation
	DES key schedule
	Leakage models

	Hamming weight model
	Determination of the weight and covariance matrix
	Key ranking and key enumeration
	Experiments
	Theoretical estimation of the remaining entropy
	Isolated consideration of the C- and D-register

	Linear regression model
	Key ranking and key enumeration
	Estimation of the weight matrix
	Experiments
	Theoretical estimation of the remaining entropy
	Isolated consideration of the C- and D-register

	An optimized version of Algorithm 2

