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Abstract: In the current crypto paradigm a single secret key 
transforms a plaintext into a ciphertext and vice versa, or at 
most a different key is doing the reverse action. Attackers 
exposed to the ciphertext are hammering it to extract that 
single key and the plaintext. This paradigm may be 
challenged with an alternate setup: using a particular crypto 
algorithm, there is an infinite number of keys that are 
perfectly interchangeable -- each has the same effect. 
Nonetheless  they are hard to find. And unlike regular 
cryptography, the best an attacker can hope for using this 
new "Family Key Cryptography”, is to identify the entire 
infinitely large family of keys, not the actual key that 
executed the cryptographic action. This very fact is a 
cornerstone for a host of applications, mostly still to be 
unfolded. E.g.: (1) Community Cryptography, where each 
member has a different key, but the community will encrypt 
and decrypt as if sharing the same key; (2) 'Forever Key 
Cryptography': crashing the Shannon's limit, the Forever 
Key strategy will allow a single finite key to last 
indefinitely. The shared secret key will be used to derive a 
succession of operating keys, which will be replaced before 
they are being compromised. Since any cryptanalysis of 
usage will end up with an infinite list of key candidates, 
there will be equal number of candidates for the shared 
"Forever Key", and thus there will be no erosion in the 
secrecy of the Forever Key regardless of its level of use. The 
very idea of infinite number of interchangeable keys is so 
fundamentally different, that most of its applications are still 
unknown.  
 

I.  INTRODUCTION 
In the early 70s of the last century, a thousand years old 
paradigm was blown away -- one key turned to two. They 
were closely related, they were each other reverse, but they 
were different, and knowing only one made it difficult to 
deduce the other. This simple departure from an age old 
established paradigm has catapulted cryptography to what it 
is today, the foundation of commercial cyber space.  
If going from single key to two made such a big change, 
then what about changing from one or two to infinity?  
It sounds weird, a key is something one tries to hide. It is 

harder to hide an infinite number of keys then to hide one, 
or two.  How does one hide a single key? By drawing it 
from a large pool of keys -- "the key space". Similarly an 
infinite number of keys can be diluted to any desired degree 
in a corresponding infinite key space.  
But why would someone wish to list infinite number of 
keys? One reason: interchangeability.  
Let a cryptographic function fam convert a cryptographic 
input I to a cryptographic output O, by using a 
cryptographic key, K: O = fam(I, K) with a corresponding 
function fam-1 reversing the process:  
I = fam-1(O, K)  
Further suppose that fam, and fam-1 are such that there are 
infinite number of keys K, K', K".... that would yield the 
same results over the same input I and output  

O = fam(I, K) = fam(I,K') = fam(I, K")=....  
I = fam-1(O, K) = fam-1(O, K')= fam-1(O, K")= .... 

The next question is what good does it offer?  
Typically new paradigms open up new vista, which unfolds 
over time. Right off the bat two benefits come to mind: (i) 
community cryptography  (ii) forever key cryptography.  
The first one relates to a community of communication 
partners who shares a secret cryptographic instrument while 
not sharing actual keys. The second relates to breaking 
through the Shannon boundary that asserts that no finite key 
can extend mathematical secrecy to an infinite amount of 
processed data..  
These two applications are discussed ahead. Later on we 
bring a particular family key cryptography function, fam, 
which is based on a special kind of cryptography called 
'ordinal cryptography'. It is based on ordinal properties of 
data. Ordinal properties are shared by an infinite number of 
keys. So encryption, decryption or any other algorithm 
which relies only on the ordinal properties of a key, cannot 
be cryptanalyzed to extract the actual key used. In other 
words, ordinal cryptography is an embodiment of 
equivocation key cryptography, namely 'family key 
cryptography'.  
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A.  Vernam, Vernam+, Vernam++ 
Vernam cipher offers mathematical secrecy based on bit-
wise refreshment of the key. Every next bit of message is 
encrypted via an unused key bit. As a result Vernam 
consumes 1 bit of key for every bit of encrypted message.  
We define a 'Vernam+' cipher as one where the key, K, is 
larger than the message, M, and hence the key may be 
refreshed after being used for m > 1 bits of the plaintext 
message, while maintaining mathematical secrecy. Case in 
point: the Unary Cipher [2]  
We define 'Vernam++' cipher as one where for every triset 
of, M, K, C (plain message, key, and ciphertext), there are 
infinitely more keys that match the same M and C, and 
hence cryptanalysis of such a cipher will limit the key 
options to an infinite list. If the same key is used for 
sufficient amount of plaintext then cryptanalysis will nail it 
down and use this knowledge of K to compromise the next 
use of same key, K. Alas, if K is derived from a master key 
Km using an open derivation algorithm, D, then the infinity 
of the K series will translate to infinity of options for Km. 
When Km now is used as a source to service the next key, 
K', then the prior knowledge regarding K does not transfer 
to knowledge of K' because of the 'infinity barrier' -- there 
are infinite number of options for Km from the point of view 
of the attacker. Since the same cipher is used, we then have 
an infinite number of keys that could replace K' for the same 
pair of M and C. So while with use the identity of K' may be 
gradually brute force compromised, all this knowledge 
becomes useless, when K' is replaced with K" the same way 
that K' was replacing K. This procedure can repeat itself 
indefinitely and thereby achieves a practical breach through 
the Shannon limitation: practicing infinite use of a finite key 
while maintaining secrecy as nearly close to mathematical 
secrecy as desired. The replacement of keys: K, K', K" can 
be done after very small use of each key. 

B. Security 
In the abstract family key cryptography is mathematically 
secure.  However, in practice the picture looks differently 
owing to the fact that no finite computing system can 
operate with infinitely large numbers.   So while the use of  
family key cryptography will insure “at will” equivocation 
as to the key identity, an attacker is assumed to have a good 
guess as to the users’ computational power,  speed and 
storage,  and thereby bound the cryptographic equivocation 
so as to allow them to practice brute force,  or more efficient 
cryptanalysis.    

 

II. COMMUNITY KEY CRYPTOGRAPHY 
Family Key cryptography enables a situation where n 
communication partners use n unique keys K1, K2, .....Kn 
which all belong to the same cryptographic family and 
hence these partners can encrypt and decrypt messages 
among themselves, using a family cryptography cipher, as if 
they shared the same key as in normal cryptography.  

The actual key, Ki, held by partner i, identifies it as partner 
i. This identification can be put to good use. Three options 
presented:  

•  percolation tracing  
•  revocation management  
•  Intersecting Sub-Communities Management 

Percolation Tracing relates to 'percolation' where a 
message percolates from one peer to the next with no central 
distribution. In between carrier nodes without the family key 
will simply pass the message on. Every message writer will 
add a hash of their key. The recipient of the message will 
add a hash of their key. The running message will carry its 
chain of custody, to be analyzed at any stage as to who 
received it.  
Revocation Management: We consider a communication 
manager, CM, managing a conversation among n members 
m1, m2, .... mn. Each member is given a unique member key 
k1, k2, .... kn,  passed in a secure mode, preferably off line. 
The communication manager, CM, is setting up n family 
keys. Member mi holding ki is assigned family key k1

i.  
Then the CM communicates to each member key adjusting 
data a1, a2, .... an such that:  

k1
i = ki + ai 

Instead of addition, many other relations will do. Only 
member i in possession of ki will be able to construct k1

i. By 
so doing all n members share a key for family key 
cryptography which allows them to communicate freely as if 
they shared the same key. In fact they operate n different 
keys.  
At any time the communication manager, CM, may switch 
from K1 to K2, and repeat the protocol done over K1. The 
members will then use k2

i , i=1,2,...n and communicate as if 
they share the same key while in fact they each have a 
different key.  
This switch of keys to K3, K4, etc. can continue indefinitely. 
Any cryptanalysis done over the communication of the n 
members conversation will be lost when the keys are 
switched.  
It is easy to add members to the group. Each new member 
receives its own personal key ki and is treated like the 
former members.  
It is easy to exclude members from the conversation. The 
CM simply switches to the next key and excludes the 
terminated members from the update. Their knowledge of 
the prior keys is not helpful in guessing and extracting the 
current key.  
This at-will termination may take place for any reason, 
including suspicion of compromise. Should there be a 
suspicion that member i compromised its ki, this member 
will be excluded until he or she comes forth to get a new 
personal key.  
Intersecting Sub-Communities Management: A 
community of m communication partners may define s sub-
communities, S1, S2, .... Ss, which may or may not intersect. 
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Namely a member i of the community may belong to none, 
one, or as many as s sub-communities. Each sub-community 
will wish to run private confidential conversations.  
The Family Key solution to this challenge is to give member 
i (i=1,2,...n) ti +1 family keys for the full community 
conversation, and for each of the ti sub-community member i 
belongs to.  
Member i will belong to sub-committee Sj (j=1,2,...s), which 
has mj members. All these mj members will have distinct 
keys which nonetheless operate as a family key setting, 
namely the members of Sj have distinct keys but can 
communicate freely owing to the Family Key setting.  
In summary, every member i of the community will have 
distinct keys, unshared by any other members, but the 
community will be conversing in full community mode or in 
any sub-community mode with full privacy and 
confidentiality.  
A CM will be able to update the keys as described above, as 
frequently as desired.  
One operational setting for this communication mode is to 
assign each member of the community (s+1) secret keys that 
can be delivered off line. This will allow the CM to send 
key modification recipes to each member to put them on the 
full community conversation or on one, any or all the sub-
communities conversations.  

III.  FOREVER KEY CRYPTOGRAPHY 
Discussing a theoretical and Practical Framework to Extend 
the Service of a Cryptographic Key Indefinitely.  
The longer one uses a cryptographic key, the higher the 
accumulated probability for a successful cryptanalysis 
thereof. A simple way to counter this erosion is for the users 
to share a master key from which to derive a succession of 
use-keys that are replaced before they are being 
compromised. While this measure does slow the attack, the 
accumulated cryptanalytic gains eventually chip away the 
secrecy of the master key. Family Key Cryptography could 
alleviate this threat.   
Considering a set comprising a cryptographic input, I, a 
cryptographic output, O, and a key K that operates on either 
I, or O to generate the other. We show that Family Key 
Cryptography, will shield the master key from cryptanalytic 
erosion indefinitely. This technology is critical for instances 
where one communication station is beyond easy or possible 
access for key replacement, including: far off climate 
sensors, orbiting satellites, implanted medical devices, etc.  
Consider two parties sharing a master key K0. Party one 
then sends party two a recipe R1 to convert K0 to use-key K1 
( K1 = R1(K0). The parties then use K1 for some measure, 
and then either party sends the other another recipe R2 to 
convert the master key to a second use-key, K2 = R2(K0). K2 
is used for some measure, and then either party switches the 
communication to the next key K3, K4,.... indefinitely.  
In normal cryptography, assuming the recipes R1, R2,..... are 
in the open, the on going switch of keys will eventually 

erode the secrecy of the master key, complying with 
Shannon's limitation on mathematical security. But with 
family cryptography, every time a key is switched, the 
previous cryptanalytic effort is rendered null and void. The 
most that a cryptanalyst will deduce from use of key Ki, for 
i=1,2,.... is the infinite series Ki, K'i, K"i that operate 
indistinguishably on the input that was used with Ki. Now 
given R1, the cryptanalyst will face an infinite list of 
candidates for the master key,  

K0: K'0 = R-1
1(K'1), K"0 = R-1

1(K"1) = ...... 
Where R-1 is the reverse function for R. 
After using t keys K1, K2, ..... Kt, the cryptanalyst will 
remain with an infinite series for the master key. There are 
infinite key candidates that satisfy a finite number of 
limitation, t, levied on t infinite series. Say then: family key 
cryptography can be applied indefinitely with stable robust 
security based on finite shared key.  

 

IV. ORDINAL CRYPTOGRAPHY 
We now present an embodiment of family key 
cryptography: ordinal cryptography. It is based on ordinal 
properties of sets, which will be presented shortly. We will 
show that by limiting the use of a key so that only its ordinal 
properties are used, one establishes a robust family key 
cryptography because there are infinitely many keys that 
share ordinal properties and an attacker cannot pin them 
down.  

 

A. Ordinal Properties of Sets 
We define a numeric set as a set of elements comprising 
identity and numeric value. The identity of each element is 
set unique (namely no other element in the set bears the 
same identity mark), and the numbers are limited to real 
numbers.  
We define a mathematical construct regarded as "ordinal 
property". Two numeric sets will be considered "ordinally 
equal" (or “ordinally equivalent”) if each pair of elements in 
one set may be matched with a corresponding pair of 
elements in the other set such that the pair-wise ordinal 
function of the respective values will be the same.  
We define an ordinal function "o" over a pair of ordered real 
numbers a, and b: o(a,b) as follows:  
If a < b then o(a,b) = -1  
If a = b then o(a,b) = 0  
If a > b then o(a,b) = 1  
Let X and X' be two proper numeric sets comprised of n 
elements each. Every element x ∈ X is matched with an 
element x' ∈ X'. X and X' will be regarded as "ordinally 
equivalent" if, and only if:  

o(xi, xj) = o(x'i, x'j)...... for all i,j = 1,2,...n 
where xi represents the numeric value of xi; xj represents the 
numeric value of xj; x'i represents the numeric value of x'i; 
x'j represents the numeric value of x'j.  
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Illustration: Let X = {x1, x2, x3, x4} with corresponding 
values: -1 12 100 6; and let: X' = {x'1, x'2, x'3, x'4} with 
corresponding values: 30 32 33 31;  
In this case X and X' will be ordinally equal because the 
ordinal value of each pair is the same in both sets.  For 
example o(x2, x4) = 1, and o(x’2, x’4) = 1. 
We examine the following case: X = {x1, x2, x3, x4} with 
corresponding values: 1, 2, 2 300; and also: X' = {x'1, x'2, 
x'3, x'4} with corresponding values: 1, 2, 3, 4;  
In this case X and X' will be ordinally non-equivalent 
because o(x2, x3) = 0 while o(x'2, x'3) = -1  
The fundamental Theorem of Ordinal Properties: Every 
numeric set has an infinite number of ordinally equivalent 
sets.  
Proof: Let x'i = xi + δ, for i=1,2,...n where δ is any real 
number. Accordingly:  

x'i - x'j = (xi + δ) - (xj + δ) = xi - xj, 
and hence:  

o(xi, xj) = o(x'i, x'j)...... for i,j = 1,2,...n 
And since: -∞ < δ < ∞, the lemma is proven.  
More generally: Let the n items of a numeric set X be 
organized according to their numeric values: x1, x2, ..... xn 
such that for any i < j xi ≤ xj for i,j=1,2,...n. Let Y be a 
numeric set of n items. Let us match the n items in both sets 
and mark them such that yi is the match for xi. We can then 
line up the n y items to match the order of the n x items. The 
numeric values will also be lined up: y1, y2, ..... yn.  
In order for the sets X and Y to be ordinally equivalent we 
require:  

yi = (xi + ρi(xi+1 - xi)) 
for 0 < ρi < 1 for all i=1,2,....n  
Thereby given any set element xi, the corresponding yi-1, yi-

2... will be lower in value, and the corresponding yi, yi+1, 
yi+2... will be higher in value, unless xi = xi+1, in which case 
yi = xi.  And since xi by construction is larger than xi, xi-1, ... 
and smaller than xi+1, xi+2,...  we have ordinal equivalence 
between the two sets.  This proof of ordinal equivalence 
allows for an infinite value variety of ρ1, ρ2,  ...ρi,..., which 
implies that there are infinite number of n y values that will 
be ordinally equivalent to the n x values.   
We can also prove that for the case where yi = s * xi, where 
s is any positive real number.  We can write:  

yj - yi = s(xj - xi) 
and hence: o(yj, yi) = s * o(xj - xi)  
and since s > 0 we conclude that o(yj, yi) = o(xj, xi) for all 
values of i,j=1,2....n  
Conclusion: there is infinite number of choices for the 
values of s, and ρ1, ρ2, .... ρn, hence any ordinal set has 
infinite sets ordinally equal to it.  
Matrix Elements as Numeric Sets: We consider a square 
matrix n x n listing m elements [1], [2],...[n] as columns and 
as rows with the n2 cells of the matrix representing an 

assigned measure of  distance between every one of the n 
elements to every other. The distance measure written as dij  
is representing the distance between elements i and j.  These 
n2  matrix cells may be viewed as a numeric set. Each cell 
has a unique identity designated by the value of i and j, and 
a unique value -- the positive distance between i and j.  
Two such matrices M1 and M2 over a set of n elements [1], 
[2],....[n] may be numerically different but ordinally 
equivalent.  
Complete Ordinal dis-Equality: Two numeric sets X, and 
X' with matching n elements will be regarded as completely 
dis-equal if and only if:  

o(xi, xj) ≠ o(x'i, x'j)...... for every combination of i,j = 1,2,...n 

Illustration: Let X = {x1, x2, x3, x4} with corresponding 
values: 1, 2,3, 4 ; and let: X' = {x'1, x'2, x'3, x'4} with 
corresponding values: 4, 3, 2, 1  
In this case X and X' will be ordinally completely dis-
equivalent because the ordinal value of each pair is different 
in both sets.  
Ordinal Similarity: Two numeric sets of matching n 
elements for which e pairs have the same ordinal value, and 
0.5n(n-1)-e pairs have  different ordinal values between the 
sets, will be regarded as having ordinal similarity σ defined 
as  

σ = e / 0.5n(n-1) 
Ordinal similarity may range from zero (state of complete 
dis-equality) to one (state of equality):  

0 ≤ σ ≤ 1 
Ordinal Proprties of a Set: Any property of a set which is 
the same for all the sets ordinally equal to it, will be 
regarded as an ordinal property of the set.  
The Ordinal Equivocation Premise: Let information 
quantity Z be generated by operating on a numeric set X 
such that Z is generated by an ordinal property of X. In that 
case no analysis of Z will be able to determine whether it 
was generated by X or by any of the infinite number of sets, 
which are ordinally equal to X. This is on account of the 
definition of an ordinal property of a set.  
Ordinal Disruption Operation: Let Do be an operation 
applied on a numeric set X, with n elements, such that the 
result is another numeric set, X* with the same number of 
elements, but such that the ordinal similarity, or say, ordinal 
similarity index,  σ,  between X, and X* is zero or close  
“enough” to it:  

σ(X, X*) → 0 
Such an operation, Do, will be regarded as ordinal-disruption 
operator on X.  
The Ordinal Matrix of a Numeric Set: A numeric set X 
with n elements may be associated with an n x n matrix 
constructed with the n elements both columns and rows, and 
where oij fitted for row i and column j, represents the ordinal 
value of elements xi and xj in the given order, oij = o(xi, xj).   
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This matrix will be regarded as the “Ordinal Image” of the 
numeric set. 
Ilustration. Let X = {x1, x2, x3} or respective values 3, 5, 5, 
The corresponding ordinal matrix will be:  

          x1              x2               x3  
x1       0              -1                 -1  
x2       1               0                  0  
x3       1               0                  0   
.  
Flatness of an Ordinal Matrix: Flatness is a measure 
of how many zeros there are in the ordinal matrix. 
Written in  a matrix form,  we formally account also for  
the main diagonal representing the ‘fake’ ordinal values 
of an element relative to itself, which is always zero.  
We therefore  don’t count these diagonal placed zeros. 
In  the ordinal matrix representing a numeric set with n 
elements, there are  z zeros, and the other 0.5n(n-1)-z  
matrix values are not zeros.  If all the values of the 
ordinal matrix are zeros, then the represented set is 
regarded as ‘completely flat set’.   If there are no zeros 
(z=0), then the represented set is regarded a ‘completely 
non-flat’.  And for in between values of z, the 
represented set is regarded as partially flat.  We 
compute:  

φ = z/0.5n(n-1) 
Ordinal Disruption Options: An efficient way to 
disrupt ordinal status of a numeric state is to apply 
some procedure involving modular arithmetic. Modular 
arithmetic will switch large values to small values. 
Combined with an enlargement option like squaring or 
raising to some power, p, a numeric set X may be 
turned to a numeric set X* where the similarity index 
between them σ(X, X*) is very low.  
For example a set X with elements x1, x2, ..... xn will be 
operated on, element by element as:  

x*i = xi
2 MOD R 

Where one may choose R to at least 2 or 3 times n,  
Illustration: Let X = {x1, x2, x3, x4} with respective 
values 4, 6, 2, 0. Using R=10 we have:  
x*1 = 42 MOD 10 = 6  
x*2 = 62 MOD 10 = 6  
x*3 = 22 MOD 10 = 4  
x*4 = 02 MOD 10 = 0  
The ordinal matrix for X:  
        x1       x2        x3        x4  
x1       0     -1       +1        +1  
x2     +1      0       +1        +1  
x3      -1     -1         0        +1  
x4      -1     -1        -1          0  
The ordinal matrix for X*:  

             x1              x2                  x3                     x4  
x1         0                 0                  +1                    +1  
x2         0                 0                  +1                    +1  
x3        -1               -1                    0                     +1  
x4        -1               -1                   -1                       0  
 

We record similarity of σ(X, X*) = 10/12 = 83%  
Trying with another disruptive algorithm:  

x*i = (xi + 1)2 MOD 11 
We get X* = {x1, x2, x3, x4) = 11, 3, 5, 1  
with ordinal matrix:  
             x1               x2                  x3                     x4  
x1          0                +1                 +1                    +1  
x2         -1                 0                  -1                     +1  
x3         -1               +1                   0                     +1  
x4        +1                -1                  -1                      0    
 

with a lower similarity: σ(X, X*) = 7/12 = 58%  
Given a reference numeric set one could explore disruption 
algorithms, D, that would process an input numeric set to 
one with very poor similarity to it.  Alternatively one could 
use ‘brute force’ and with trial and error look for a D that 
would transport an input set to a very dissimilar output set.  
 

B. Ordinal Ciphers 
We describe ciphers that limit the use of a cryptographic key 
such that only ordinal properties will be applied, in order to 
establish unbreachable equivocation as to which of the 
possible keys that share the same ordinal properties was 
actually used.  
At some point the communicating parties can apply an 
ordinal disruptor operation on their key, and then use the 
resultant disrupted key, K* for further applications in the 
crypto protocol. To the extent that every possible key (from 
the infinite list of possible keys) is disrupted such that it 
holds little similarity with the result of applying the 
disruption algorithm on the ordinal equivalent keys then the 
adversary will face the persistent equivocation of all 
possible disrupted keys. Thereby the life of the original (pre-
disruption) key is extended. Alternatively, the parties can 
share a never-used master key, and keep disrupting it to 
successively used keys, guarding thereby the identity of the 
master key indefinitely.  
We first make the foundational theoretical case for 
Breaching the Shannon Limit for mathematical secrecy, then 
we describe the general procedure for ordinal cryptography.  

 
Generic Ordinal Cryptography: Generic Ordinal 
cryptography serves two parties sharing a key K0.  
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They do:  
1. Extract from K0 a use key, Ki for i=1  
2. Use Ki by relying only on its ordinal properties.  
3. Repeat steps 1 and 2 after incrementing i → i+1.  

By relying only on ordinal properties, (step 2), the users 
deny an attacker the option to extract from the use of Ki the 
numeric identity of Ki, from which to extract the identity of 
K0 by reversing the extraction process which was: K0 → K1. 
The users may hide this derivation process,  and keep their 
attacker further in the dark,  but per the analysis herein, even 
if the derivation (key transformation) algorithm is in the 
open, the master key K0 cannot be deduced from 
cryptanalysis of K1 because of ordinal equivocation.  
Proof: Let the ordinal procedure above be practiced for i=t 
rounds. t keys have been used by the parties: K1, K2, .... Kt. 
The users aware of their level of exposure will stop using a 
key in favor of the next one "early", but even if they fail to 
do so, and use all keys for so long that the attacker figures 
out their ordinal structure, this will leave the attacker with t 
infinite series of possible keys that would have the same 
ordinal properties and as such will be indistinguishable for 
the attacker.  
The attacker does not know the size of K0.  There are 
infinite number of options for K0 that given the extraction 
procedures to K1, K2, .. Kt would have a key in each of the 
infinite series (t infinite series). Say then, that despite 
infinite use, t → ∞, brute force cryptanalysis of the secret K0 
is doomed to fail.  
For ordinal encryption there is another security feature. 
Ordinal Encryption: When ordinal cryptography is used 
for encryption then the transformation K0 → Ki may not 
necessarily be released in the open. Each encrypted 
message, C, may include the secret parameters how to 
transform K0 to the next key. This will add difficulties for 
the attacker. When ordinal cryptography (OC) is used for 
hashing, for authentication, etc., this option does not present 
itself.  
Implementing Generic Ordinal Cryptography. The 
shared secret K0 may be constructed via a strong 
randomness source. It may be shared online with standard 
security measure -- with all the vulnerability thereto, or 
shared off line, with greater security. It may be written in 
software, firmware, or hardware. The transformation of K0 
to Ki may be carried out through a transformation algorithm 
D  that maps K0 to Ki based on some g transformation 
parameters h1, h2, hg:  

Ki =D(K0, h1, h2, ...hg) 
where the g transformation parameters {h}g influence the 
output Ki.  
While the algorithm D is arbitrary the values of the g 
parameters may be randomly picked for a trial and error 
application, to insure that the growing list of K1, K2, ... keys 
is sufficiently diverse (no great ordinal similarity).   
 

4.3  SpaceFlip 
SpaceFlip refers to cryptographic procedures where the key 
is a distance matrix between letters of an alphabet. An 
alphabet featuring l letters defines q=0.5(l)(l-1) mutual 
distances, dij between letter Li and letter Lj of the used 
alphabet. Each distance is identified by the two letters it 
connects and its numeric value. So the q distances represent 
a numeric set, Q.  
The numeric set Q is used per its ordinal properties only for 
all the protocols and procedures presented. Therefore even a 
very smart and very capable cryptanalyst will only identify, 
at most, the infinite number of ordinally equivalent sets that 
will give the same outcome as the set that was actually used.  
The users would share a master key K0. They will derive 
from it a series of use keys K1, K2, ...., use each derived key 
for a prescribed measure, and then switch to the next key. 
Because the keys are used only per their ordinal properties, 
then any degree of cryptanalysis accomplished by an 
attacker on the usage of keys K1, K2, .... Kt, will be of no 
use, and of no value when the users switch to key Kt+1. And 
thereby the master key K0 will serve the users indefinitely.  
SpaceFlip defines the following functions over the alphabet 
distance matrix: NEXT, LINE, FIGURE. 
NEXT: maps a letter Li to a letter Lj for i ≠ j: Lj = 
NEXT(Li). The mapping is based on the distances from 
letter Li to all other (n-1) letters. Letter Lj is the one that is 
the closest to Li. If two or more letters share the same 
smallest distance with respect to Li, then a well defined 'next 
equivocation resolution' kicks in to specify the identity of Lj. 
See [1] for details. 
LINE: maps a letter Li to a letter Lj for i ≠ j: Lj = LINE(Li, 
r). where: 

Lj = LINE(Li, r) = NEXT(NEXT,,,,(NEXT(Li)......  
applying NEXT r times. Where each time the NEXT letter is 
selected among the letters that have not been selected 
before. A LINE is a sequence of letters that don't repeat 
twice in the sequence. 
FIGURE: maps a letter Li to a letter Lj for i ≠ j: 

Lj = FIGURE(Li, r1, r2, .... rf) 
where one draws a LINE from Li to letter Lk = LINE(Li, r1), 
and then draws a second line form letter Lk to letter Lk' = 
LINE(Lk, r2), and so on until Lf = LINE(Lk

(f-1), rf). 
Family Key Compliance: Any cryptographic operation 
based on the three functions: FIGURE, LINE, and NEXT is 
limited to making use of only ordinal properties of the key, 
which is the distance matrix.   FIGURE is based on LINE, 
and LINE is based on NEXT, and NEXT is based on the 
ordinal order of distances from the pre-NEXT letter, x,  to 
the post-NEXT letter, y.  The actual values of the (n-1) 
distances from x to all the other letters play no role in 
evaluating NEXT.  Only the ordinal order counts, which 
puts SpaceFlip in strict compliance with the Family 
Equivocation paradigm. 
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SpaceFlip Authentication: The environment: two mutually 
remote stations sharing a secret key K0 are every so often 
reaching out to each other to establish secure 
communication. They wish to convince one another that 
they are not talking to an identity thief. They do so via an 
identity-proving dialogue which hides the identity of K0 so 
that even after practicing such an identity-proving dialogue 
as many as desired times, no attacker will be able to extract 
the identity of K0.  

Procedure:  
1. A Key derivation operator D is applied to K0 to 
extract Ki for i=1  
2. Ki is used an arbitrary ti times via the SpaceFlip 
dialogue for the two stations to mutually prove 
themselves to the other.  
3. Incrementing i to i+1, and repeating steps 1 and 2 for 
as long as needed.  
Schematically, for r → ∞:  
[K0 → K1][t1 times use of K1] [K0 → K2][t2 times use of 

K2] ...... [K0 → Kr][tr times use of Kr] 
The two communicating stations are each equipped with a 
good source of randomness. 
Illustration: Alice and Bob use a five letters alphabet L1, 
L2, L3, L4, L5 in conjunction with a SpaceFlip cipher. They 
share the following 5*5 master key (K0):  

0     8   11      5     15    
8     0     7    12       6    
11   7     0      5     10    
5    12    5      0       9   
15    6  10      9       0  

They decide to derive from K0 the first use key, K1 based on 
a generic key transformation formula where distance 
between any two letters of the used alphabet, dij (distance 
between letters Li and letter Lj) is derived via a formula of 
three parameters:  

dij = D(mij, u, v, w) 
where mij is the distance corresponding to dij in the master 
key, and u, v, and w are arbitrary numeric values. D -- is the 
disruption operator that disrupts (transforms) the mater key.  
Alice and Bob further decide to implement the disruptor 
function D as follows:  

dij = (mij + u)v MOD w + 1 
For K1 Alice and Bob use u=4, v=1, w = 14 and hence  

(K1):  
          L1   L2   L3  L4     L5  
L1      0     13    2     10       6  
L2    13      0    12      3     11  
L3      2    12      0    10       1  
L4    10      3    10     0      14  
L5     6      11     1    14       0  

Alice approaches Bob claiming to be Alice. Bob then wishes 
to authenticate Alice, so he challenges her to identify the 
end of a figure (y) defined as: 

y = FIGURE(x, r1, r2) =FIGURE(L3, 2, 1) 
Alice then applies the NEXT function to L3: L5 = 
NEXT(L3). And again L1 = NEXT(L5). She then identifies 
the next element to L1: L3 = NEXT(L1). Alice 
communicates to Bob: y=L3. Bob then concludes that he is 
talking to Alice since it appears she is in possession of K1.  
Since the key is small Alice and Bob decide to switch to K2 
right away. Alice selects random values to u, v, and w. u=1, 
v=2, w=17:  

dij = (mij + 1)2 MOD 17 + 1 
So (K2):        
          L1   L2    L3     L4      L5  
L1       0     10    10       3      16  
L2     10       0    17     17        8       
L3     10     17      0       3        5         
L4       3     17      3       0        5  
L5     16       8      5       5        0  

Now it is Bob who approaches Alice to prove his identity, 
and Alice randomly defines a figure: y = FIGURE(x, r1, r2, 
r3) =FIGURE(L2, 1, 2, 1).  
Now Bob computes L5 = NEXT(L2). When it comes to 
finding next to L5 both L3 and L4 compete.  Bob then 
resorts to the agreed-upon equivocation resolution 
procedure.  Accordingly Bob checks the NEXT distance for 
both. It turns out that L4 = NEXT(L3) and L3=NEXT(L4), 
so according to the agreed-upon NEXT equivocation 
resolution (NER) both are disqualified and L2 becomes 
L2=NEXT(L5). Then L5 = NEXT(L2), but L5 is 
disqualified since it is part of the LINE so the NEXT letter 
of the 2nd line is L1. Bob then computes L4 = NEXT(L1), 
and reports to Alice: y=L4. This answer convinces Alice 
that Bob is who he says he is because he appears to be in 
possession of K2.  
An attacker who somehow figures out K1, will interpret 
Alice challenge as: L3 (L2 → L4; L4 → L2 → L5; L5 → 
L3), and will not pass the test.  
In practice the size of the alphabet may be much larger than 
5, and the confidence in the test is greater. For small 
alphabets the test can be carried out several times.  
SpaceFlip Encryption: The overall procedure for 
SpaceFlip encryption is similar to SpaceFlip authentication. 
Keys are used and serially replaced to keep the degree of 
secrecy  at the desired level. The difference is in the fact that 
with encryption the working key is used more extensively, 
and each time it is being used it provides raw material for 
cryptanalytic attack, it may be that for long communication 
sessions, keys will have to be switched to the next in the 
middle of a long transmission.  
On the other hand Ordinal Encryption allows the users to 
encrypt the derivation parameters (the ordinalization 
disruption algorithm) for key derivation algorithm Di+1 in 
the encrypted message where key Ki is used. Thereby 
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denying the cryptanalyst the identity of the derivation 
algorithms.  
Randomized FIGURE Encryption: Given an alphabet A 
comprising n letters, L1, L2, .... Ln, two communicating 
partners agree on a "space" for the alphabet, namely on a set 
of q=0.5n(n-1) distances between each letter to each other, 
where the distance between a letter to itself is zero, and all 
distances are positive real numbers.  
A partner will transmit to the other partner a letter X ∈ A as 
follows:  
The transmitter will:  

1. Randomly select a letter Y ∈ A.  
2. Arbitrarily select two integers gl, and gh -- the 
minimum and maximum number of LINES to build a 
FIGURE  
3. Randomly select a value l between gl and gh  
4. Randomly select l-1 values in the range 1 to (n-1): t1, 
t2, ..... tl -1  
5. Define a FIGURE, FIG1, with Y as a starting letter, 
and (l -1) LINEs defined with t1, t2, ..... tl -1.  
6. Compute Y' = FIG1(Y, t1, t2, ..... tl -1)  
7. Build a LINE starting with letter Y’. Do:  repeatedly 
apply NEXT to Y', until, after tl applications of NEXT 
on Y' the result is X: X = LINE(Y', tl ).  
8. Define FIGURE FIG2 as X = FIG2(Y, t1, t2, ..... tl )  
9. Communicate FIG2 to the receiving partner as 
follows: (i) send letter Y; (ii) for i=1, 2, ... l , randomly 
select an integer k in the range 0 to some arbitrary limit, 
then compute: wi= k*n + ti,  
(iii) send to the recipient by order w1, w2, ... wl  

The receiving partner will use the shared space (the shared 
key) to compute FIG2 and identify X as the plaintext letter 
sent to them encrypted via FIG2. Aware of the value of n, 
the recipient will extract ti from the respective wi: ti = wi 
MOD n.  
The transmitting partner will send any size message letter by 
letter to the receiving partner. The partners can reverse roles 
and thereby conduct a conversation.  
With sufficiently large values for n and gl and gh, the 
randomized selection of FIG1 will insure that for the life of 
the key, there will be no repetition of FIG2. However, the 
parties may maintain a log of FIG2 used before, and if the 
randomized selection generates a duplicate, then, this 
duplicate is dropped and the randomized selection is tried 
again.  
The higher the values of gl and gh the greater the 
cryptanalytic burden, but the larger the size of the ciphertext 
relative to the plaintext. The user will determine the values 
of gl and gh according to the sensitivity of the encrypted 
material and the threat thereto. So when passing super 
sensitive cryptographic keys or text, the values of gl and gh 
will be high. When encrypting say audio or video stream it 
may be made vary low, say gl = 1, gh =3.  

One could also use small FIGURES as a baseline with 
occasional large FIGURES, and less frequently very large 
FIGURES, according to counter-cryptanalytic analysis.  
Flatness management: Given an alphabet A comprised of n 
letters, the respective ordinal key will be comprised of q = 
0.5n(n-1) numbers.  The ordinal key is associated with a 
respective ordinal image.  If the ordinal key is with zero 
flatness,   then its ordinal image has no zeroes. φ = z/q = 0. 
This means that all the numbers in the ordinal key are 
different from each other. This in turn means that there are 
q! different keys. For  alaphabet A being Base64 we have 
q=0.5*64*63 = 2016. And 2016! = 2.325849581 E+5788 is 
the size of the key space. This very large number may be 
further enlarged by increasing flatness to optimal levels.  
Now we consider flatness. Let w numbers be featured with 
repetition: r1, r2, .... rw. The remaining (non duplicating 
numbers) will be ordered in (q- Σ ri )! ways. The i-th 
duplicate will have Cri

q'i ways to be assigned to the 
remaining locations, where  

q'i = q - Σ rj ......for j=1,2,...(i-1), 
leading to a much larger hurdle for brute force 
cryptanalysis:  

[Partial Flatness Key Space] = (q- Σ ri )! * π (Cr q'i) 
In summary some flatness increases the key variability. 
Although too much flatness will choke it. In the extreme, for 
w=1, and rw=q, the key space collapses: {K} = 1 
 

V. OUTLOOK 
The cited applications for family key cryptography represent 
a range of applications from authentication to encryption, 
further applying to multi party cryptography and to 
extending the life of a finite shared secret. Albeit, the more 
interesting aspect are the yet unidentified applications. We 
have seen the dramatic impact of public key cryptography 
over the traditional symmetric practice. One should expect a 
hefty impact on account of extending one or two keys to an 
infinite series of keys.  
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