
RandChain: Practical Scalable Decentralized Randomness
Attested by Blockchain

Gang Wang∗, Mark Nixon†
∗University of Connecticut

†Emerson Automation Solutions
Email: gang.wang@uconn.edu

Abstract—Reliable and verifiable public randomness is not only an
essential building block in various cryptographic primitives, but also is a
critical component in many distributed and decentralized protocols, e.g.,
blockchain sharding. A ‘good’ randomness generator should preserve
several distinctive properties, such as public-verifiability, bias-resistance,
unpredictability, and availability. However, it is a challenging task to gen-
erate such good randomness. For instance, a dishonest party may behave
deceptively to bias the final randomness, which is toward his preferences.
And this challenge is more serious in a distributed and decentralized
system. Blockchain technology provides several promising features, such
as decentralization, immutability, and trustworthiness. Due to extremely
high overheads on both communication and computation, most existing
solutions face an additional scalability issue. We propose a sharding-
based scheme, RandChain, to obtain a practical scalable distributed
and decentralized randomness attested by blockchain in large-scale
applications. In RandChain, we eliminate the use of computation-heavy
cryptographic operations, e.g., Publicly Verifiable Secret Sharing (PVSS),
in prevalent approaches. We build a sub-routine, RandGene, which utilizes
a commit-then-reveal strategy to establish a local randomness, enforced
by efficient Verifiable Random Function (VRF). RandGene generates the
randomness based on statistical approaches, instead of cryptographic
operations, to eliminate computational operations. RandChain maintains
a two-layer hierarchical chain structure via a sharding scheme. The first
level chain is maintained by RandGene within each shard to provide a
verifiable randomness source by blockchain. The second level chain uses
the randomnesses from each shard to build a randomness chain.

I. INTRODUCTION

A reliable randomness engine is an essential component in
various distributed protocols (e.g., blockchain protocols). The reliable
randomness is of importance and highly used in modern cryptography
domains [1], e.g., generating a high-entropy ciphertext. The coin
tossing protocol [2] was first introduced to achieve randomness, which
enables the property that multiple parties can generate a uniform
randomness output as long as there exists at least one honest party.
As the popularity of distributed and decentralized ledgers [3] [4] [5],
the coin-tossing protocol as a randomness generator has gained
great attention. However, a coin-tossing scheme typically relies on
a trusted authority, which is further based on a centralized scheme.
Generating a trustworthy and reliable randomness in a distributed and
decentralized manner is still a complementary problem.

Random beacon protocols are the foundation of many practical
protocols, and can be applied in various applications. It is desirable
to generate public randomness in many scenarios without resorting to
a trusted third authority. However, it is challenging to obtain public
unbiased randomness, as dishonest parties may behave deceptively to
bias the final randomness towards their preferences. This can be done,
for example, by selectively injecting and providing error-prone input
values or by manipulating their own inputs at the final stage. These
issues can be handled on a small scale; however, it is a challenging
task on a large-scale to achieve an enhanced security level.

Postprint online version of paper published in proceeding of 2020
IEEE International Conference on Blockchain (Blockchain’20). DOI
https://doi.org/10.1109/Blockchain50366.2020.00064

In this paper, we present RandChain, a practical scalable decen-
tralized random beacon protocol, attested by blockchain. RandChain
is a decentralized random beacon protocol designed to provide
continuous randomness at regular intervals and provides guaranteed
output delivery. To build RandChain, we design a randomness gener-
ation protocol via VRF, RandGene, which is a consensus protocol
used to establish the single randomness values in a small scale.
RandChain is a public randomness beacon protocol that can generate
a series of random outputs at a regular pace based on the RandGene
protocol. Roughly speaking, both RandGene and RandChain provide
a same level of security on some critical properties, e.g., availabil-
ity, unpredictability, bias-resistance, and third-party verifiability. The
overall design follows a two-layer hierarchical blockchain based on
the concept of sharding. The first layer is formed by RandGene,
which serves as an attestation to RandChain; while the second layer
builds a blockchain on all distinct shards, and each shard contributes
randomness based on its local blockchain.

The rest of the paper is organized as follows. Section II provides
the preliminaries and motivations. Section III describes the RandGene
and RandChain protocols. Section IV provides the analysis of the
proposed protocol. Section V concludes this paper.

II. PRELIMINARIES AND MOTIVATION

A. Good Randomness

Along with the advances of various cryptographic primitives, ob-
taining a reliable randomness source becomes more and more critical.
In general, this can be fulfilled by utilizing local randomness, e.g.,
relying on some trusted agents. However, establishing such a common
randomness generally relies on trusted dealers, at least for the initial
setup [6], which can potentially bias the system and make the
system subject to single-failure attacks. The goal of random beacon
protocols is to generate reliable, bias-resistant, publicly-verifiable, and
unpredictable random values at a regular interval in a distributed and
decentralized manner. When introducing random beacon protocols
into decentralized applications, several unique properties are still
required to guarantee to be a good random beacon protocol [7] [8] [9]:

1). Public-Verifiability: An external party, e.g., the one who even
did not actively participate in the generation process, still has the
ability to verify the validity of the generated randomness. This means
any party has the ability to verify the validity of the generated
randomness simply by resorting to publicly available information.

2). Bias-Resistance: This property is to assure that the final
randomness is a uniform and unbiased random value. This means any
single party or multiple colluding parties (e.g., controlled by an active
adversary) do not have the ability to influence the future randomness
to its favor.

3). Unpredictability: Any party (either honest or adversarial)
should not have the ability to pre-compute or predict the future
randomness in advance. This means no party learns anything about
the final randomness before the generation process is completed.

4). Availability: This property indicates that any single party or
multiple colluding parties (e.g., controlled by an active adversary)
should not have the ability to prevent the progress of randomness
generation.

B. Motivation

Coin-tossing protocols have been used to generate randomness;
however, they require a centralized “bulletin board”, which is not
practical and infeasible in many decentralized systems. Another
shortcoming of existing randomness generators is that the scalability
is very low, where the number of participants is limited in a small
range. A scalable randomness scheme is desired to fit large-scale
distributed systems. The third shortcoming of the current distributed
randomness schemes is that most of them primarily rely on complex
cryptographic operations, such as Verifiable Secret Sharing (VSS)
or Publicly Verifiable Secret Sharing (PVSS). The computation and
communication complexities of these cryptographic operations are
extremely high. And, the cryptography-based schemes are time-
consuming to perform cryptographic operations. For instance, a
recent work RandHound takes more than 240 seconds to generate
randomness and 76 seconds to verify it using the produced 4 Mbyte
transcript [9].

Comparing with VSS or PVSS, Verifiable Random Functions
(VRF) [10] is a lightweight cryptographic tool. For example, a typical
PVSS runs in three steps: (1) secrete generation and distribution;
(2) share verification, encryption and decryption; and (3) shares
verification and combination. When applying PVSS into a real
randomness generation protocol, it may involve more steps, e.g.,
RandHound taking six-step to generate one randomness, and each
step involves complex computation. While VRF will not have this to
provide verifiable service. If we assume there exists a random oracle
model, and we can simplify VRF construction as a hash function
H(•). H(•) is a simple VRF under the random oracle model. The
only obstacle is to design a robust consensus protocol to get good
randomness based on VRF. This is the goal of this paper.

It is critical to developing a practical scalable continuous de-
centralized randomness scheme, which can be used for large-scale
scenarios. In this paper, we propose to utilize blockchain as the
“trusted entity” to generate good randomness.

C. Models

1) System Model: RandChain can work on untrusted networks, in
which malicious nodes can perform arbitrary behaviors on messages,
e.g., drop or delay messages. We assume the overall communication
network is based on the synchrony, as defined in [11], in which there
exists a fixed bound, ∆, on a message’s traversal. We assume each
node i has a public/private key pair (pki, ski), and the public key
pki is used to identify its identity. All messages communicated in the
network are authenticated with the sender’s private key. In addition,
we made similar assumptions in previous work, e.g. [12] [13] [14].
For example, our network model has assumption that (a) the net-
work connections among the honest nodes are well connected and
authenticated, and (b) the communication channels among the honest
nodes are synchronous. However, we do not require the order of the
messages to their destinations to be preserved.

2) Threat Model: In our threat model, we distinguish between
honest nodes and Byzantine nodes. We consider a replica (node) as
honest if it follows the protocol faithfully and behaves honestly. For
a Byzantine node, we do not have control over its behavior, and the
node may behave arbitrarily. Our threat model considers a Byzantine
adversary who has an ability to corrupt any f < n/3 of nodes at the
beginning of the protocol run. We assume that once a node broadcasts
a message (even a wrong message), this message will arrive to all
participating nodes. Also, the Byzantine adversary is a probabilistic
polynomial-time adversary with bounded computation capacity, which
cannot break any established cryptographic primitives.

III. RANDCHAIN: RANDOMNESS BEACON PROTOCOL

This section presents the proposed RandChain, a scalable, verifi-
able randomness beacon.

A. Protocol Overview

RandChain seeks to offer a stand-alone randomness generator
that is bias-resistant, unpredictable, and publicly verifiable, which
can emit random values at a predetermined and regular time interval.
We aim the RandChain, with a fixed number of participating nodes,
at a permissioned blockchain setting (e.g., requiring authentication
and authorization for membership). Especially, RandChain uses a
commit-then-reveal mechanism to generate randomness, with the help
of VRF, and it then uses a Byzantine Fault Tolerant (BFT) protocol to
build a blockchain to secure the protocol’s output. The blockchain is
used to attest agreement on generated randomness among all honest
participants.

RandChain employs a two-layer hierarchical blockchain structure,
in which the sharding technology is adopted to achieve this hier-
archical blockchain. The participating nodes are uniformly sharded
into distinct committees (alternatively called “shards”), and each
committee maintains its own local blockchain. The local blockchain
runs a RandGene protocol, which is used to generate a “good”
local randomness (defined in Section II-A) and record this local
randomness into its local blockchain. Then, all committees together
form a RandChain, which serves as a randomness source for all
participating nodes. RandChain utilizes the concept of epoch, and
each epoch generates one randomness. Compared with traditional
distributed randomness generation protocols, we eliminate the use
of computational-heavy cryptographic primitives, such as PVSS and
threshold signatures. Instead, we use a statistical approach to obtain
local randomness, which reduces both computation and communi-
cation complexities. To achieve this, we split each epoch E into k
sub-epoch ei, where 0 ≤ i ≤ k and

∑
k ei = E. The process of

generating randomness is based on a statistical scheme RandGene.
We have two types of epochs: one is the sub-epoch e within each shard
(the basic unit for the second-layer blockchain, shard blockchain); the
other is the epoch E for overall shards (the basic unit for the first-
layer blockchain, RandChain). Within an epoch E, each shard will
have a local block generated, consisting of the agreed-upon “good”
randomness. Fig. 1 shows an overview of the proposed RandGene
protocol.

B. Description of RandGene

The RandGene protocol proceeds in rounds where each round
consists of six distinct phases1: propose, pre-commit, release, re-

1One round represents one epoch E to generate a local block, and each
phase might consist of a different number of sub-epoch e.

Fig. 1. Overview of RandGene Protocol, Consisting of k + 4 Sub-epochs and Six Phases: propose, pre-commit, release, re-commit, cast and commit.

commit, cast, and commit. Each round is counted by epoch E, and
each epoch E consists of k + 4 equal-sized sub-epochs. To simplify
the expression in RandGene, in this section, the terms “sub-epoch”
and “epoch” have the same meaning e, and are exchangeable. In k+4
epochs, k epochs are used to propose random values by participating
nodes, where each final randomness consists of k random values
from each node. Let S = {s1, s2, ..., sn} denote the list of nodes,
and node si has a public/private key pair (pki, ski). Let vij denote
the random value committed by node si in sub-epoch ej , and Vj

denotes the randomness in sub-epoch ej after the pre-commit / re-
commit phases. The final random values proposed by nodes have
two parts sequentially. Pre-commit phase deals with the first half of
random values proposed by nodes, while re-commit phase commits
the second half of random values. Fig. 1 shows an overview of
RandGene protocol. For each participating node, it runs a six-phase
protocol to get randomness, and these phases can be pipelined to
improve efficiency.

RandGene is based on a well-established VRF. In VRF, for any
input string, say x, VRF returns two components: one is a hash
value h and the other is the proof π on h. In our design, string
x consists of the id of the node, sub-epoch information as well as
the randomness from the previous epoch, xij = idsi ||ej ||RE , where
xij is the message proposed by node si during sub-epoch ej , and
RE is the randomness of the previous epoch E. The construction of
string x is critical to our design, so that everyone can publicly verify
this message. We describe the six-phase RandGene as follows.

1) Propose: In propose phase, node si accesses VRF, by provid-
ing the string x, to obtain its random value vij for the sub-epoch
ej , where i ∈ {1, ..., n}, j ∈ {1, ..., bk/2c}. This value vij is to be
committed during the sub-epoch ej by node si, and vij will be sent
to all other nodes. Initially, each node marks each vij as a infinity
value (e.g., +∞). Upon receiving a message, the node must check
the validity of each received value vij by verifying two aspects: (a)
the value is indeed sent from its sender (e.g., without modification);
and that (b) the value is indeed obtained from VRF2 (e.g., public
verifiability). If the value vij is valid, then the node will treat it as
a valid committed value for the pre-commit phase, and updates the
value vij . The propose phase occupies bk/2c sub-epochs out of k+4
sub-epochs, and each sub-epoch processes in sequential.

The string x provided by node si consists of its sub-epoch

2The string x to VRF is known to every node, and the proof π can verify
the validity of vij .

information ej and identification information i. Thus, it is a trivial
task to distinguish the corresponding epoch that a value vij belongs
to.

2) Pre-commit: In pre-commit phase, each node needs to inde-
pendently calculate the committed values V during sub-epoch e1 and
ebk/2c from all received random values (including its own value).
Each node si only needs to provide one random value, in each sub-
epoch, and this can be guaranteed by verifying the string xij , which
consists of the sub-epoch number j. The calculated values during
sub-epoch e1 and ebk/2c are only the potential values and some of
which may not be selected to be included to the final randomness.
Without loss of generality, we calculate the minimum value of vij
(where i ∈ {1, .., n}) as the committed value Vj during sub-epoch
ej (where j ∈ {1, .., bk/2c}):

Vj = min
i∈{1,...,n}

vij

This pre-commit phase happens during the sub-epoch ebk/2c+1 to
commit randomness during the propose phase (consisting of the
first bk/2c sub-epochs). After pre-commit phase, the values Vj

(j ∈ {1, .., bk/2c}) are as the commitment for the first half of
randomness.

3) Release: Once the pre-commit phase is finished, all values
Vj before the sub-epoch ebk/2c+1 are committed and confirmed. We
still need another half randomness to construct the whole randomness
for the epoch E. The release phase consists of the sub-epochs from
ebk/2c+1 to ek (as shown in Fig. 1), which is used to release the
remaining random values from each node. The operations in this
release phase are similar to those in the propose phase. This phase is
as a kind of future commitment, for the unpredictability of the final
randomness.

4) Re-commit: This re-commit phase is exactly same as the pre-
commit phase, with only one exception: this phase operates on the
random values between sub-epochs ebk/2c+1 and ek, while pre-
commit phase operates on sub-epochs before ebk/2c+1.

After re-commit phase, each node obtains all potential random
values which are used to construct the final randomness for epoch E.
However, not all committed random values from sub-epoch e1 to ek
are used for the final randomness. We select only part of them for
epoch E.

5) Cast: The goal of the cast phase is to calculate the final
randomness for epoch E. Until this phase, each node has k random

Fig. 2. Example of the Cast Phase of RandGene Protocol, where k = 8.

values Vj , coming from the previous k sub-epochs. Each node needs
to independently select bk/2c+ 1 out of k randomnesses to construct
the final randomness. According to the pigeonhole theorem, this
guarantees that at least one random value comes from the commitment
of re-commit phase.

This phase will utilize a publicly agreed randomness attested
by the blockchain. From the final randomness of previous epoch
E − 1, e.g., RE−1 in blockchain, each node needs to calculate
the starting index of the first random value (among k values Vj)
which contributes to the epoch E, e.g., index l calculated by l =
H(RE−1||Vk) mod bk/2c 3 (where Vk is the random value of the
sub-epoch ek in re-commit phase), which guarantees that the first
random value is in the first half of the committed randomnesses. And
the input value of Vk to l is used to guarantee that the first random
value is not a pre-calculated value before the end of pre-commit
phase. Then, Vl will be the first random value contributed to the final
randomness. The second random value will be Vm = H(Vl) mod k,
following the same procedure (H(·) mod k) until the node selects
bk/2c+ 1 distinct random values. The selected bk/2c+ 1 distinct
random values will be calculated via the XOR (w.r.t., ⊕) operation
together to form a final randomness VE for epoch E. Finally, each
node sends its calculated final randomness to all other nodes.

Fig. 2 shows an example of the cast phase of RandGene protocol
when the number of sub-epochs k = 8. In this example, the index l is
3, so the value V3 is selected as the first randomness to contribute the
final randomness. Following the operations provided in cast phase,
each node will get a final randomness VE .

6) Commit: In commit phase, the node receives the final random-
ness from all other nodes with a full verifiable proof, e.g., its selected
bk/2c+ 1 distinct randomnesses. It first verifies the validity of each
received randomness. Only validated final randomness can be counted
into the commit phase. Only if at least 1/2 of the total nodes have the
same final randomness, can the node then add this final randomness
to its local blockchain.

Put All Together: The six-phase RandGene protocol is used to
generate a randomness per epoch E, which will be appended into
shard chains as a block. RandGene protocol itself can be imple-
mented as a consensus protocol to form a blockchain to record the
randomness. Our overall RandChain is used to provide a continuous
randomness beacon based on the local chains, and Section III-C will
present how to build this randomness beacon.

We need to emphasize that each sub-epoch of RandGene proceeds
in sequence, e.g., sub-epoch ei+1 proceeded just after sub-epoch ei,
where 1 ≤ i ≤ k + 3 in one round 4. In traditional randomness

3H is a random oracle. If l = 0, then the index is bk/2c, which represents
the last sub-epoch of the propose phase

4The sub-epochs here include the functional sub-epochs, e.g.,
eE1, eE2, eE3, eE4 in Fig. 1.

Fig. 3. Overview on the RandChain Protocol Design. The upper shows on
the contraction of chains, and the lower part shows the connections among
participating nodes.

generation, to bias a final result, the adversary can perform a grinding
attack [5] [15], in which an adversary can try multiple times to get a
solution that can benefit its choice. For example, the adversary may
prepare multiple random values vij , and chooses the one which can
bias the final result. Our scheme can prevent this kind of attack by
the design of string xij and the system model. Each sub-epoch can
easily verify if a presented random value vij is in the right epoch, and
the recipient only processes the random value targeted to that sub-
epoch and discards all other random values. The synchronous model
guarantees that the adversary cannot go back to choose its potential
random values for any previous sub-epochs.

The string xij contains the identity information of the node i. If
a node receives multiple distinct random values from the same node,
e.g., sm, with a correct signature for one sub-epoch, then the node
will discard all random values from the node sm. When a node detects
this kind of attack, it can optionally mark this node as a malicious
node, since the communicated message cannot be modified by any
intermediate nodes with a correct signature.

C. Building RandChain

This section introduces RandChain, a blockchain-based protocol
to generate unbiasable and verifiable randomness. RandChain serves
as a decentralized randomness beacon which builds on RandGene
protocol.

1) Why Sharding Scheme: With the pervasiveness of large-scale
distributed applications, one common issue is how to obtain good
randomness on a large-scale. RandChain adopts the concept of
blockchain sharding, which distributes the overall processing over-
head among multiple, smaller sets of participating nodes (alternatively
called shards). By integrating a sharding scheme into randomness
generation protocol, RandChain improves scalability by sharing ran-
dom values, generated by participating nodes, not directly among all
nodes, but only within a smaller set of nodes. Also, picking a smaller
shard leads to lower network latency and bandwidth consumption,
which can effectively reduce the communication and computation
complexity on each participating node.

Each node in RandChain only needs to share random values
with its respective shard members, decreasing the communication
and computation overhead from O(n2) to O(cn), where n is the
total number of participating nodes and c is the average size of a
shard. Detailed analysis on this refers to Section IV-C. Different from

a generic sharding scheme, in which each shard maintains its own
distinct chain independently from others, RandChain scheme aims
to achieve a randomness beacon among all participating nodes. To
achieve this purpose, we adopt a two-layer hierarchical blockchain
structure: the local chains and the RandChain. The local chain is
maintained by each distinct shard, the RandChain is maintained by
all distinct shards, and each shard is one of its members. Fig. 3 shows
an overview of this hierarchical RandChain design. To reduce the
communication overhead among shards, we need to elect a leader,
as the representative of that shard, to participate in the formation of
the RandChain among distinct shards. Also, we need a consensus
protocol to achieve an agreement between them. We assume each
shard has been estimated at the beginning of epoch, based on the
previous randomness of RandChain. The sharding process can be
simplified to the problem of assigning n nodes into m groups, so
that each group has a nearly identical size, say c = n/m nodes.

2) Leader Election for Shard: In our shard-based hierarchical
structure, each shard as a whole can be considered as one participating
node of RandChain, as shown in Fig. 3. However, each shard
has multiple participating nodes; thus, we need to elect a leader
to represent its shard to propose the shard’s choice. Each shard
leader is considered as a committee member of RandChain. And, the
randomness recorded in RandChain is as epoch randomness for the
sharding scheme to assign nodes into distinct shards. This is critical
for any shard-based schemes [16].

At the beginning of each round r (r ≥ 1), a node i learns the
shard’s current configuration C, based on the available local informa-
tion it has gathered so far, e.g., listing the public keys of participating
nodes in its shard. We can typically consider this configuration C
as a view of the current status of the shard. With publicly-available
randomness, e.g. Rr−1 in previous consensus round, a node i can
deterministically select a leader from a group of potential leaders.
We need to establish this potential list. The leader election process is
very similar to the lottery process. When RandChain starts, each node
generates a lottery token ti = H(Rr−1||C||Xi) for every i ∈ N ,
where Xi is the public key of node i, and sorts those tokens in an
ascending order. It is necessary to note that those tokens are verifiable
and publicly-available to all shard members. We choose the winner
of this lottery process as the one with the lowest lottery token value
ti. And the node i with this lowest lottery token value will become
a tentative RandGene leader for its shard. However, in case that this
tentative leader becomes unavailable or provides forged information,
the leadership will proceed to the next available node in ascending
order of the lottery token list.

This selects a leader for each shard to represent as a shard to
participate in the construction of RandChain. Our RandChain protocol
is based on a BFT protocol, taking the advantages of instant finality.

3) RandChain: After a BFT leader is selected for RandChain,
each shard leader will broadcast its shard-block (containing the
generated randomness of RandGene). The BFT leader will decide
which blocks are included in the BFT consensus process. To make
this block proposed by BFT leader publicly verifiable, we require that
the BFT leader perform VRF function on each shard-block. The hash
values from VRF are sorted in ascending order, and the BFT leader
needs to select k smallest hash values, where k = (n/c)/3 + 1 (n
is the total number of nodes and c is the average size of shard)5,
to construct the final block. The BFT leader will create a transcript

5We assume the adopted BFT is a (3f + 1)-based protocol.

containing all shard-blocks received and this final block and broadcast
it. Then, each participating node follows the consensus process to
reach an agreement on this final block. If errors happen on the
consensus process, it will start a view-change protocol. Finally, the
BFT protocol will get epoch randomness.

After epoch randomness is obtained and appended into Rand-
Chain, this epoch randomness can be used for the sharding process
to assign nodes into distinct shards. And each shard runs RandGene
protocol to get new randomness for that shard. However, in prac-
tice, we can run multiple rounds of RandGene and then run once
RandChain to start the sharding process.

IV. SECURITY PROPERTIES

This section shows that RandGene achieves the desirable proper-
ties as a random beacon protocol, outlined in Section II-A.

A. Good Randomness

Definition 1 (Good Randomness): We say an epoch has a good
randomness, with high probability, if it meets: (i) availability; (ii)
unpredictability; (iii) bias-resistance; and (iv) public-verifiability.

We need to guarantee that RandGene protocol meets these proper-
ties to be good randomness. We now prove these necessary properties.

Lemma 1 (L1:Availability): For an honest node, the protocol
successfully completes and produces a final randomness block with
high probability, even in the presence of a malicious adversary.

Proof: According to the overall design of RandChain, the par-
ticipating nodes are randomly assigned to distinct shards based on
publicly available information, such as the previous randomness block
of RandChain and the node identity. Simply, we first assume the
participating nodes have already been randomly assigned to distinct
shards. We aim to achieve availability (or the guaranteed output
delivery) of final randomness based on RandGene. According to the
proof in Section IV-B, the probability of honest nodes in each shard
is greater than 1/2 with high probability, which means the number of
honest nodes is greater than the number of malicious nodes in each
shard with high probability.

From the sharding process, we can get each shard with at most
1/2 malicious nodes with high probability. We need to prove that
each secure shard meets the availability at the end of the protocol.
Within each shard, the honest nodes always follow the designed
protocol and show these randomness shares. And RandGene protocol
is based on a synchrony setting, in which the randomness shares
from honest nodes will be guaranteed to be delivered among honest
nodes. If an honest node knows the randomness value RE−1, it will
make satisfactory progress and eventually reach at the end of phase 6
Commit. RandGene is a leaderless consensus protocol. As long as at
least 1/2 honest nodes agree on the final randomness, and the protocol
will have a final randomness output. From the sharding process, we
have at least 1/2 honest nodes in each shard with high probability.
Thus, the shard will output final randomness with high probability.

Lemma 2 (L2:Unpredictability): Unpredictability ensures that
the output randomness remains unknown to the adversary until the
commit phase of RandGene, when all honest nodes commit the
random values they hold.

Proof: By intuition, the predictability of a randomness output
by an adversary can be possible only if this adversary functions as a
leader node, as the leader typically has enough information to recover
the randomness output. However, the RandGene protocol is leaderless,
so there is no way to leak such information from a special node, and
each honest node works independently. While RandGene is based on
sub-epochs, and these sub-epochs may leak some information. As we
prove below, this is impossible for bk/2c+ 1 sub-epochs, and there
is no way for an adversary to obtain enough information to recover
the final randomness before the commit phase. The random output
of RandGene is a function of bk/2c+ 1 out of k random shares to
construct a final randomness, where roughly half of these random
values are at pre-commit phase and the other half of them are at
re-commit phase. Further, the calculation of the index l of the first
random share requires the commitment of the last sub-phase in the
re-commit phase. Following our protocol design, in order to achieve
unpredictability, according to the pigeonhole theorem, there must be
at least one value from the re-commit phase that remains unknown
from the adversary until the commit phase.

We show that at least one random share exists from which
the adversary cannot prematurely recover the final randomness. An
adversary, e.g., by controlling enough number of participating nodes,
has the ability to deviate from the protocol description and arbitrarily
calculate the random shares of the pre-commit phase. Assuming that
the adversary already knew bk/2c random shares of the first half.
Our protocol is based on a synchronous model. When the sub-
phase k is done, all previous sub-phases must be committed. In the
cast phase, to calculate the first random share, which contributes to
the final randomness, the sub-phase k should be committed. In the
final randomness, we require at least bk/2c+ 1 out of k random
shares to construct the final randomness. Considering the generalized
pigeonhole principle, no matter how many dishonest nodes know
about the previous bk/2c random shares, it will always have at
least one unknown random share which comes from the second half
random shares. In other words, there must be at least one random
share unknown to the adversary from the re-commit phase. Thus, the
adversary cannot construct final randomness before the commit phase
of RandGene.

Lemma 3 (L3:Bias-resistance): Bias-resistance ensures that an
adversary does not have the ability to influence the final randomness
output.

Proof: To achieve bias-resistance, we must guarantee that at least
one random share is out of the adversary’s control. If, for every
random share, an adversary has the ability to observe all honest inputs
to the final randomness, which means he has the ability to recover
all honest random inputs prematurely. In this case, the adversary may
engage in trying different valid values as its commitments, and find
a value that is most beneficial to him. If, for each random value, the
adversary can exclude honest nodes from contributing input random
shares to the final randomness, then the adversary has full control
over all shard members, and hence the final randomness. This case
is impossible with a high probability according to Section IV-B

As for the discussion of unpredictability, there is at least one
random value that is out of the adversary’s control before the end of
the re-commit phase. And the cast phase is only to calculate the final
randomness, which would not affect the final result as long as both
the first and second half of random shares are committed. Roughly
speaking, we can consider the cast phase as a recovery phase for all
participating nodes, which is used to recover the commonly shared

and committed random shares. As the protocol finishes the re-commit
phase, all the random shares which potentially contribute to the final
randomness are committed, and hence the final randomness. Each
node then runs the cast phase to decide the index of the first random
share, and the calculation of this index requires the last random shares
in the re-commit phase, which is already committed based on the
synchrony model. The protocol requires bk/2c+ 1 out of k random
values to construct the final randomness, which means that at least
one random value comes from the second half commitment. And at
least one random value from the second half commitment is partially
related to the last committed random share. As a result, the honest
nodes’ final randomness output would not be affected, no matter how
powerful of the adversary.

Lemma 4 (L4:Public-verifiability): For each epoch E, an exter-
nal verifier can verify the validity of the final randomness value RE

at the end of epoch E.

Proof: In RandGene, all the participating nodes obtain the final
randomness as a block in the blockchain. Randomness blockchain
can act as a trusted third party, which can provide its service to
another party, and any third party should have the ability to verify
the validity of the final randomness independently. In our design, the
output of RandGene contains both the generated final randomness
and a transcript L. L should be publicly verifiable on the process of
generating final randomness. The transcript L must have some unique
features, e.g., that the protocol execution can be replayed by any third
party, and the final result should be unforgeable.

To be verifiable, the transcript L must contain all the commu-
nication messages of the protocol execution. Also, it must contain
the configuration information of the corresponding epoch. As in
Section III-B description, the string x proposed by a participating
node consists of the id of the node and sub-epoch information,
then applying this string x to a VRF to get a random value. This
information is publicly available for all participating nodes, and
will be recorded in the transcript L. As long as anyone has this
transcript L, he/she can verify the validity of this final randomness.
For example, a verifying third party who learns that the epoch
configuration information is acceptable (i.e., the identities of the
participating nodes) can re-execute the whole protocol execution
process and verify the behavior of the whole process against the given
final randomness.

When a correct final randomness generated, the only information
that is still kept secret is the private keys of the participating nodes.
However, during the verification process, the third party does not need
to know the private keys to verify the transcript L, as signatures of
messages can be verified using the public keys.

Lemma 5 (L5:Efficient-verification): For each epoch E, an exter-
nal verifier can verify the validity of the final randomness value RE

in O(kn) (where k is a constant) at the end of epoch E.

Proof: Anyone with the transcript L can verify the validity of
the final randomness. In propose and release phases, the randomness
shares provided by replicas are via a VRF function. From the
construction of final randomness of RandGene, each replica at most
needs to present k shares for k sub-epochs, which in total there are
kn random shares to verify. And each verification process is simply
which only requires the string x, the public key of the proposer, and
the corresponding proof π returned by VRF. To calculate the final
randomness, it also needs bk/2c+ 1 hash operations to calculate the
random shares, which were included in final randomness. Comparing

with the computational-heavy PVSS operations, verifying VRF proof
can be considered as a lightweight operation. In total, the final
randomness value can be verified in O(kn) (where k is a constant).

Theorem 6 (Good Randomness): In every epoch, the properties
of good randomness meet with high probability. In addition, no node
has the ability to know the random outputs ahead of one round. That
means, if epoch e obtains a good random output, the epoch e + 1
also will be a good random output.

Proof: By Lemmas 1 – 4, we can claim that the output of
RandGene protocol is a good randomness

Put All Together: From the above discussion, RandGene serves
as a reliable randomness source, which meets the requirements of
availability, unpredictability, bias-resistance, and public-verifiability.
The RandGene itself can provide a scheme to generate a reliable
random beacon. To deal with the scalability issue, we integrate the
sharding scheme into the construction of RandChain. The RandGene
builds a local blockchain for each shard, which further can be used
to attest RandChain.

B. Secure Shards

This section analyzes the secure sharding process, and then we
analyze the failure probability within each shard.

1) Secure Sharding Process: The security of an epoch E is a
critical aspect in a sharding scheme to ensure the whole system cannot
be compromised. We first need to define what a good shard is for
RandChain. For each shard in RandChain, a good shard should follow
a good majority rule.

Definition 2 (Good Majority): We say that a shard has a good
majority, with high probability, if it has at least half of its shard
members are honest nodes.

Most of the previous sharding systems are randomness-based
schemes, such as as [12] [13] [14] [17], to assign the participating
nodes into shards. We need to show each shard in RandChain is with
a good majority, and we will use hypergeometric distribution to show
this property.

Lemma 7 (Secure Sharding): We claim RandChain meets a good
majority for each shard with high probability. Alternatively, we call
it as a secure sharding process.

Proof: The upper bound failure probability of a sharding scheme
is estimated via the hypergeometric distribution (a probabilistic se-
curity analysis) [18] [19], the calculation of which typically requires
O(mk) time (m is the number of participating nodes in one shard,
and k is the number of shards in total), where m = n/k and n is the
number of total nodes [14].

We first utilize the recursive formula and hypergeometric distri-
bution to define the failure probability in a random-based sharding
protocol. The key idea is to calculate the number of safe assignments
and then use this number to calculate the failure probability. Let
Wsafe(x, y) refer to the number of safe assignments, where x
represents the number of malicious nodes and y is the number
of shards. Wsafe(x, y) literally means that x malicious nodes are
assigned to y shards and the system is safe. Typically, we con-
sider a shard is unsafe if half of its shard members are malicious
nodes or controlled by an adversary (See the consensus protocol

in Section III-B). For all sharding assignments, if any assignment
triggers the unsafe case, we consider this assignment as being a failure
assignment. The corresponding failure probability can be calculated
by P (failure) = 1 − Wsafe(g, k)/Cg

n, where g < n/3 is the
number of nodes corrupted by the malicious adversary6, and Cg

n is
a combination operation (Cg

n = n!
g!(n−g)!

). We utilize a recursive
formula to derive Wsafe(x, y). We first consider the case that there
are t malicious nodes assigned to the y−th shard and there are g− t
malicious nodes left, then the original question is to calculate the
number of the safe assignments so that the remaining g− t malicious
nodes are assigned to y−1 shards, respectively. The safe assignments
of Wsafe(x, y) can therefore be calculated recursively by:

Wsafe(x, y) =

d∑
t=0

F (x− t, y − 1)Ct
m,

where d = bm−1
2
c and Wsafe(x, 1) = Cx

m1x≤d. This case is for
random-based sharding. For instance, given n = 1800 and k = 8,
the failure probability P (failure) =1.26e-07. Thus, we can obtain
a secure sharding process with high probability.

2) Secure Shard: In Section IV-B1, we analyze our secure shard-
ing process is with high probability. Simply, we first assume the
participating nodes are randomly assigned to distinct shards. It is
necessary to analyze the failure probability of the availability, a
probability that the protocol fails to maintain the availability [9]. As
for a continuous randomness generator, we try to obtain the upper
bound for this failure probability in RandGene, which is responsible
for each shard. Typically, we can use a random variable, e.g., X , to
model a system’s failure probability P [·], and we require to obtain
an upper bound within a single shard. In our model, X follows the
hypergeometric distribution, as well as the Boole’s inequality, which
together are being as a union bound. At first, we apply a Chvatal’s
formula [20] to a single shard:

P [X ≥ E[X] + cd] ≤ e−2cd2 ,

where d ≥ 0 is a constant value and c is the number of draws in
a hypergeometric distribution (in this paper it represents the size of
a shard). The case of having a disproportionately high amount of
dishonest nodes in a specified shard can be modeled by the variable
X ≥ c − t + 1, where t is the threshold required the number of
nodes agreed on the random value. In our case, we set the threshold
t = cp+ 1 since the expectation E[X] = cp, where p ≤ 0.50 is the
adversarial power in shards. By integrating all the above information
into Chvatal’s formula and performing some simplifications, the
following formula is generated:

P [X ≥ c(1− p)] ≤ e−2c(1−2p)2 .

Applying a union bound on this result, we obtain Fig. 4, which
shows the trends of the average system failure probabilities q when
the shard size increases. Different colors represent different cases of
compromised nodes. The x−axis shows the size of a shard, and the
legend shows the different adversarial powers. While the y−axis is
in the form of −log2(·) on the failure probability q. In general, the
higher value in y−axis, the lower the system failure probability. And
the change exhibits exponentially. For instance, a failure probability is
at most 2−20 ≈ 9.537e−7 and 2−30 ≈ 9.313e−10 when the system
failure probability is 20 and 30 (shown in y−axis), respectively.

6We use g, instead of f , to denote the number of malicious nodes; f
represents the upper bound of malicious nodes in the designed whole system.

10 40 70 100 130 160 190 220 250 280
Group Size c

0

20

40

60

80

100

120

140

160

180

200

220
S
y
st

e
m

 F
a
ilu

re
 P

ro
b
a
b
ili

ty
 (

-l
o
g
2
(q

)) Percentage p of Compromised Nodes

0.20

0.25

0.33

0.40

Fig. 4. System Failure Probability vs. Varying Group Sizes

C. Communication Complexity Analysis

We briefly analyze the communication complexity in RandChain.
We define that the communication complexity refers to the number
of messages exchanged between the nodes in a single run of the
protocol.

The reduced overall communication complexity mainly takes
advantage of the sharding scheme. Our RandGene scheme is a leader-
less consensus protocol in the construction of shard chains. Without
considering the sharding scheme, each participating node needs to
broadcast its randomness shares to all other nodes. Suppose that we
have n participating nodes; this will incur O(n2) communication
complexity.

With the sharding scheme, n participating nodes are randomly
assigned to each shard. Suppose the size of each shard is c. Within
each shard, to get randomness, each node requires to broadcast its
random shares to all other nodes, which will incur O(c2) commu-
nication complexity. In total, we have roughly n/c shards. Thus,
the total communication complexity will be n/c × O(c2), which
is O(cn). This communication complexity is for shard chains for
all shards. Recall the construction of RandChain, above the shard
chains; we have a second layer chain. This chain is constructed from
shard chains, and each shard needs to select one participating node
to be the consensus committee, in which it contains n/c members.
The construction of this chain is based on the scalable BFT protocol,
which will incur another O(n/c) communication complexity when
constructing RandChain. Thus, the total communication complexity
for RandChain is O(cn).

V. CONCLUSION

This paper proposes RandChain to generate good randomness
via a sharding scheme to achieve scalability. RandChain is based
on its primitive, RandGene, which is used to form local randomness.
RandGene eliminates the use of computational heavy cryptographic
operations to get shard chains; then these shard chains are fed to
RandChain. By utilizing the sharding scheme, RandChain achieves
scalability. Also, RandGene utilizes a commit-then-reveal approach
and VRF to achieve good randomness to its shard chain. As fu-
ture work, we plan to work on implementing both RandGene and
RandChain schemes in applications and thoroughly evaluate its per-
formance, such as the latency and throughput.

REFERENCES

[1] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone,
Handbook of applied cryptography. CRC press, 1996.

[2] M. Blum, “Coin flipping by telephone a protocol for solving impossible
problems,” ACM SIGACT News, vol. 15, no. 1, pp. 23–27, 1983.

[3] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs of
stake.” IACR Cryptology ePrint Archive, vol. 2016, p. 919, 2016.

[4] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 2017,
pp. 51–68.

[5] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Inter-
national Cryptology Conference. Springer, 2017, pp. 357–388.

[6] J. P. Degabriele, K. G. Paterson, J. C. Schuldt, and J. Woodage, “Back-
doors in pseudorandom number generators: Possibility and impossibility
results,” in Annual Cryptology Conference. Springer, 2016, pp. 403–
432.

[7] S. Azouvi, P. McCorry, and S. Meiklejohn, “Winning the caucus race:
Continuous leader election via public randomness,” arXiv preprint
arXiv:1801.07965, 2018.

[8] J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin as a public
randomness source.” IACR Cryptology ePrint Archive, vol. 2015, p.
1015, 2015.

[9] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford, “Scalable bias-resistant distributed randomness,”
in Security and Privacy (SP), 2017 IEEE Symposium on. Ieee, 2017,
pp. 444–460.

[10] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
40th Annual Symposium on Foundations of Computer Science (Cat. No.
99CB37039). IEEE, 1999, pp. 120–130.

[11] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 1988.

[12] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016, pp. 17–30.

[13] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 583–598.

[14] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018,
pp. 931–948.

[15] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2018, pp. 66–98.

[16] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on
blockchain,” in Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, 2019, pp. 41–61.

[17] R. K. Raman and L. R. Varshney, “Distributed storage meets secret shar-
ing on the blockchain,” in 2018 Information Theory and Applications
Workshop (ITA). IEEE, 2018, pp. 1–6.

[18] A. Hafid, A. S. Hafid, and M. Samih, “A methodology for a probabilistic
security analysis of sharding-based blockchain protocols,” in Interna-
tional Congress on Blockchain and Applications. Springer, 2019, pp.
101–109.

[19] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “Hydrand: Efficient
continuous distributed randomness,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 73–89.

[20] M. Skala, “Hypergeometric tail inequalities: ending the insanity,” arXiv
preprint arXiv:1311.5939, 2013.

