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Towards Cloud-assisted Industrial IoT Platform for
Large-scale Continuous Condition Monitoring

Gang Wang, Mark Nixon, Mike Boudreaux

Abstract—Process industries cover a wide set of industries,
in which the processes are controlled by a combination of
Distributed Control Systems (DCSs) and Programmable Logic
Controllers (PLCs). These control systems utilize various mea-
surements such as pressure, flow, and temperature to determine
the state of the process and then use field devices such as valves
and other actuating devices to manipulate the process. Since
there are many different types of field devices and since each
device is calibrated to its specific installation, when monitoring
devices, it is important to be able to transfer not only the
device measurement and diagnostics, but also characteristics
about the device and the process in which it is installed. The
current monitoring architecture however creates challenges for
continuous monitoring and analysis of diagnostic data. In this
paper, we present the design of an Industrial IoT system for
supporting large-scale and continuous device condition monitor-
ing and analysis in process control systems. The system design
seamlessly integrates existing infrastructure (e.g., HART and
WirelessHART networks, and DeltaV DCS) and newly developed
hardware/software components (e.g., one-way data diode, IoT
cellular architecture) together for control network data collection
and streaming of the collected device diagnostic parameters to
a private cloud to perform streaming data analytics designed
for fault identification and prediction. A prototype system has
been developed and supported by Emerson Automation Solutions
and deployed in the field for design validation and long-term
performance evaluation. To the best of our knowledge, this is the
first ever publicly reported effort on IoT system design for process
automation applications. The design can be readily extended
for condition monitoring and analysis of many other industrial
facilities and processes.

I. INTRODUCTION

The potential for the Industrial Internet includes many
opportunities throughout the process industry which includes
oil and gas production, chemical, specialty chemical, petro-
chemical, refining, pharmaceutical, food and beverage, power,
cement, water and wastewater pulp and paper, and steel plants.
For many of these industries, a shift in quality or productiv-
ity of 1-2% can produce significant benefits through energy
savings, reduction in waste, reduction in lost manufacturing
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time, improved safety, and reduced impact on the environment.
To realize these potential benefits, the industry has adopted
Industrial IoT (IIoT) methods [1].

In most existing process control systems (PCSs), process
measurements are periodically collected and communicated to
gateways, controllers, and workstations or clouds [2]. As an
example, the Oil and Gas industry collects data on flows, pres-
sures, and temperatures of oil, gas, water, and other materials.
The industry also collects data on the condition of machinery
and equipment across the entire field installation. In the past,
much of this data collection was performed manually [3]. The
industry is now shifting towards the use of intelligent devices
that provide this monitoring. These devices are capable of
being networked together, allowing for a centralized location
to collect and aggregate data [4]. These devices also include
advanced diagnostics that can diagnose the health of the device
and in many cases, the health of the process to which the
device is connected. It is not uncommon for the devices
to include diagnostics that can detect plugged lines, burner
flame instability, agitator loss, wet gas, orifice wear, leaks, and
cavitations. These devices provide information on how well
they are operating and when they need maintenance. Many of
these installations utilize WirelessHART [5].

Reliability is another area where the Industrial IoT has
made progress [6]. Reliability applications include well in-
tegrity monitoring, energy loss monitoring such as steam trap
monitoring, pump health monitoring, and valve and equipment
monitoring. In many cases, this data is being transferred to
the cloud where the data can be stored and further processed.
Cloud monitoring is driven by some unique features [7]. The
cloud provides low-cost, highly scalable cloud-based storage
and processing capability; it offers innovative, lower-cost de-
ployments of sensor technology generally enabled by wireless
capability, and more out-of-the-box connectivity solutions to
the cloud. In addition, cloud monitoring can connect experts
to data wherever they are in a sustainable way.

The current monitoring architecture creates challenges for
continuous monitoring and analysis of production and di-
agnostic data due to the lack of measurements, the limited
network bandwidth, the labor-intensive and time-consuming
data collection process, the lack of data trending and advanced
analytics for accurate fault identification and prediction, the
lack of details about the specific devices, and the lack of details
about the process into which the instrument and actuator are
installed.

The lack of measurements and connectivity is being ad-
dressed through standards such as Highway Addressable Re-
mote Transducer Protocol (HART) and WirelessHART [8],
Open Platform Communications - Unified Architecture (OPC-
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UA) [9], and Data-Distribution Service (DDS) [10]. In many
cases, the connectivity is addressed by connecting edge gate-
ways that connect devices already installed into the process to
higher level applications that perform streaming and detailed
diagnostics. In other cases, separate networks are being in-
stalled that are used to transfer the data directly to the cloud
services.

Industrial IoT consists of millions of devices designed
and manufactured by hundreds of vendors. Industrial IoT
devices are not homogeneous with regard to the hardware
platform [11]. The heterogeneous IIoT is a combination of pro-
cessors with different computing capabilities in different appli-
cation scenarios and a few standardized communication mech-
anisms. The interoperability problems might happen between
different devices [12]. Details about the devices themselves
are well described through standards such as Field Device
Integration (FDI) [5], however, gaining access to these from
outside of the asset monitoring systems has been problematic.
In this paper, techniques will be described for extracting device
description metadata from the devices and streaming it along
with the data.

Historical data about the health of the device and the process
in which the device is installed has been missing largely
because there was no convenient way to capture this data and
no low-cost way to store the data and metadata.

The last part of this relates to the process in which the
devices are installed. It is important to be able to capture not
only data about the device but also details about the process.
For example, when monitoring the health of equipment such
as heat exchangers, pumps, and valves it is important to track
the flows, temperatures, pressures and other factors where the
equipment is installed. In the long term, it is important to be
able to plot the degradation of the equipment and to be able
to evaluate how the equipment responds to load disturbances
and changes in the overall process operation.

In this paper, we present the design of an industrial IoT
system for supporting large-scale and continuous device con-
dition monitoring and analysis in process control systems. One
of the scientific contributions of this system design is that it
seamlessly integrates existing infrastructure (e.g., HART and
WirelessHART networks, and DeltaV Distributed Control Sys-
tem (DeltaV DCS)) and newly developed hardware/software
components (e.g., one-way data diode and IoT cellular ar-
chitecture) together for control network data collection and
streaming of the collected device diagnostic parameters to a
private cloud to perform data analytics designed for fault iden-
tification and prediction. Also, the proposed prototype system
has been validated and supported by Emerson Automation
Solutions for long-term performance.

The remainder of this paper is organized as follows. Sec-
tion II provides background information. Section III provides
detailed system design, including architecture design, data-
driven approach, and analytics in the cloud. Section IV de-
scribes security. Section V walks through the proof of concept
and initial field test results and concludes with information on
moving forward. We conclude the paper and discuss future
works in Section VII.

Fig. 1. Implementation of Industrial IoT with Fusion of Information and
Operational Technology.

II. BACKGROUND

A. SOA of Industrial IoT
Industrial IoT aims to connect different devices (or “things”)

over the network. As a key technology in integrating het-
erogeneous systems or devices, Service-Oriented Architecture
(SOA) can be applied to support Industrial IoT in layered
structures [13]. From the technology perspective, the design of
an Industrial IoT architecture needs to consider extensibility,
scalability, modularity, and interoperability among heteroge-
neous devices [14].

At the computing domains in the industry, IIoT is commonly
grouped into Operational and Information Technologies (OT,
IT), shaped by different requirements and environments [15].
At the core of IIoT are several shared challenges (as shown in
Fig. 1), such as data sharing, interoperability, reliability, and
resilience.

An SOA of Industrial IoT includes the following four
functional layers [16]:
• Physical Layer (Level 0): This layer provides the physical

production process, which is directly related to production
hardware.
• Sensing Layer (Level 1): This layer is integrated with

existing hardware (Radio-frequency identification (RFID), sen-
sors, actuators, etc.) to sense/control the physical world and
acquire data.
• Control Layer (Level 2): This layer provides basic net-

working support and data transfer over a wireless or wired
network, as well as manufacturing control, such as basic
control, supervisory control, and monitoring.
• Operational Layer (Level 3): This layer manages services

that satisfy user needs. It provides the Industrial IoT with
a cost-efficient platform, where the hardware and software
platforms can be reused.
• Interface Layer (Level 4): This layer provides interaction

methods to users and other applications via business planning
and logistics.

However, communication, synchronization with the physical
production process, determinism, and real-time operations are
challenges that must be resolved in IIoT scenarios. One key
challenging task is to perform continuous condition monitor-
ing, so that the control system can obtain real-time data and
provide feedback for the actuating devices.
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B. Continuous Condition Monitoring
The continuous and uninterrupted characteristics of the in-

dustrial process have historically challenged traditional mainte-
nance practices. And continuous condition monitoring (CCM)
has been one of the main industrial challenges in the last
decade [17]. A highly sophisticated methodology for condition
monitoring has evolved in the last decade with respect to
techniques, digital instruments, and computer chips [18]. His-
torically, preventive maintenance (PM) and predictive mainte-
nance (PdM) [19] has required maintenance and inspection on
a regular basis without prior knowledge of “normal” system
conditions. Various sensors, such as vibration, thermal, current,
voltage, and power, can be applied to achieve PdM via con-
tinuous monitoring [20]. However, these approaches are costly
and most often require supervisory control via a Distributed
Control System (DCS) to record and analyze data.

The key idea of continuous condition monitoring is to mon-
itor the health condition (or status) of the devices (including
sensing and actuating devices) at each time step in terms of
a continuous metric based on the available input data. CCM
differs from traditional methods such as setting thresholds or
differentiating distinct health states as various classes [21].
Instead, CCM monitors the health state of the devices in a
continuous manner, which enables operational units to have
smoother decision making systems in the condition based
maintenance. The input data is typically a set of selected
features that are extracted from non-intrusively sensed and
captured signals [17]. These signals such as force, vibration
and acoustic emission can be captured and recorded using
various sensors mounted on the machinery systems, then, these
signals are synchronized to the analytical system (e.g., cloud)
to make the decision.

III. SYSTEM DESIGN

This section provides a detailed system design for cloud-
assisted continuous condition monitoring in large-scale indus-
trial IoT. We first present the key components and these corre-
sponding functionalities of each component and then introduce
the data-driven approach for monitoring data processing.

A. System Overview
There are many industrial systems deployed today that are

connected to enterprise systems providing very significant
operational benefits. These deployments extract data from a
mixture of sensors, actuators, logic components, and databases
allowing them to interconnect and perform the functions re-
quested by their individual users. The difference between these
existing installations and what is described here is that with
a more open Industrial IoT approach, these industrial systems
can connect in standardized ways that require very little or
no configuration to support advanced data processing and
cloud-based advanced historical and predictive analytics. The
advanced cloud services can then be used to drive optimized
decision-making and operational efficiencies and facilitate the
collaboration between autonomous industrial control systems.

The best way to approach this overall architecture is through
a 3-tier architecture. These three tiers include an edge tier,

a platform tier, and an enterprise tier. This architecture is
illustrated in Fig. 2. The left part of Fig. 2 shows heterogeneous
data sources. For instance, OPC UA servers are used to connect
to DeltaV systems to retrieve periodic measurements from
installed modules, controllers and hardware devices. HART
and WirelessHART gateways are used to connect to sensor and
actuator measurements as well as network health information
in a real-time and continuous manner. Wireless packet sniffers,
spectrum analyzers and surveillance cameras are installed in
the plant to monitor its operation and RF spectrum environ-
ments. All these real-time data will be streamed into cloud-
based data analytics platforms for advanced modeling, scalable
analytics, and real-time visualization and mobile alerts. In the
data analytics platform, these data points will be further stored,
fused, analyzed and visualized to represent the current status
of plant operations.

The edge tier is where data from the Distributed Control
System (DCS) data sources and nodes is collected, aggregated,
and transmitted over the L2/L2.5 network to the L3 network.
Some level of data translation and aggregation may also be
performed at the edge gateway. The edge gateway may also
include control applications or control extensions that are used
to further process or aggregate data.

The platform tier receives data from the edge tier and is
responsible for data storage, workflow processing, plant opti-
mizations, and other applications. If a data diode is not being
used, then the platform tier may also write data back through
the edge gateway to the control system. Sites may require two
edge gateway setups: a general one for one-way data flows and
a highly restricted one for two-way communications.

The enterprise tier is where planning and decision support
applications are utilized to perform streaming analytics, data
mining, and reporting. This tier is also used to support data
exploration, searches, and other functions.

The lower layers of the edge tier are comparable with IEEE
1451 [22] in terms of keeping track of sensor information
and product parameters. The IEEE 1451, a family of Smart
Transducer Interface Standards, defines a set of open, common,
network-independent communication interfaces for connecting
transducers (sensors or actuators) to microprocessors, instru-
mentation systems, and control/field networks. The IEEE 1451
standard family provides a set of protocols for wired and
wireless distributed monitoring and control applications [23].
The IEEE 1451.0 standard defines a common set of commands
for accessing sensors and actuators connected in various phys-
ical configurations, such as point-to-point, distributed multi-
drop, and wireless configurations, to fulfill various application
needs [24]. The major difference with IEEE 1451 is that our
system design seamlessly integrates existing infrastructure and
newly developed components together to provide a complete
data streaming approach to the cloud.

B. Architecture
Data was streamed from field devices such as valves through

User Datagram Protocol (UDP) and Advanced Message Queu-
ing Protocol (AMQP) [25] gateways to a cloud-based layer
where data was analyzed, aggregated, and stored for further
use and visualizations.
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Fig. 2. Three-tier architecture, which consists of edge tier, platform tier and enterprise tier. The edge tier via the IIoT gateway connects to the cloud and
platform tier, and the enterprise tier accesses data from the platform tier.

To prevent unintentional or unauthorized access to the
control system, device data was streamed through a data
diode. The AMQP protocol [26] was used to stream data
from the field to the cloud via a secure Industrial IoT Field
Gateway (IIoT-FG). The proposed architecture consists of
several important components: UDP and AMQP gateway, IIoT
Field Gateway, and the cloud.

1) UDP and AMQP Gateway: The UDP and AMQP Gate-
ways are used to transfer process measurements, instrument
data, and diagnostic data from the field through to the cloud
infrastructure. Physically, these gateways may be provided as
two separate boxes or virtual machines separated by a data
diode. They may also be packaged together as a single physical
box.

Along with the ever-growing number of sensors and actu-
ators being deployed in the field, a large number of real-
time measurements are being streamed from heterogeneous re-
sources for monitoring and control applications. A simple and
unified streaming protocol is thus needed to define these data
streams for emitting and retrieving data across platforms. Fig. 3
shows an abstract of streaming data from the field through
gateways to the clouds. Given its capability to represent rich
data structures in an extendable way, we use JavaScript Object
Notation (JSON) [27] objects to define these data streams.

The content streamed through the gateways contains both
data and metadata. The metadata itself can be extracted from
the device descriptions and then through a discriminator to
produce a data stream that contains values that are much more
usable by the end applications. This procedure is described
below in the section on the data-driven approach.

2) Naming Conventions: Naming conventions distinguish
real-time data points from different plant resources. The format
is consistent with the one used by Distributed Control System
(DCS) vendors. Each data point is assigned a unique tag name.
Within one zone, the top name of the tag can be one of three
types: module, workstation/controller, and devices. The data
points are all defined as paths from the top name. In a plant

with multiple zones, the zone name will be prefixed to the top
name. To further distinguish different plants, the domain name
will be prefixed to the zone name.

3) Industrial IoT Field Gateway: For industrial IoT sce-
narios in continuous condition monitoring, plenty of real-
time data points from heterogeneous plant resources will
be collected from a variety data connectors, via hardware
devices and software interfaces, which are geographically
distributed in the field. The connectors are usually running
different communication protocols (e.g., OPC UA and HART-
IP). Instead of implementing protocol adapters on each of the
connectors to steam the data to the cloud. The system needs a
universal IIoT Field Gateway (IIoT-FG) to connect to multiple
data connectors to provide protocol adaptation and remote
configuration. IIoT-FG has a small form factor, is cheap, and
thus can support massive field deployment.

The left part of Fig. 2 shows heterogeneous data sources. For
instance, OPC UA servers are used to connect to DeltaV sys-
tems to retrieve periodic measurements from installed modules,
controllers and hardware devices. HART and WirelessHART
gateways are used to connect sensor and actuator measure-
ments as well as network health information in a real-time
and continuous manner. Wireless packet sniffers, spectrum
analyzers and surveillance cameras are installed in the plant
to monitor operation and RF spectrum environments. All these
real-time data will be streamed into cloud-based data analytics
platforms for advanced modeling, scalable analytics, and real-
time visualization and mobile alerting [28].

The upper right part of Fig. 2 presents the software archi-
tecture of IIoT-FG. The current prototype has the following
major software modules: (1) a web portal running on Apache
to enable remote configuration; (2) a data concentrator module
and an OPC publisher module to interpret HART-IP and OPC
UA messages respectively; (3) a device mapping module to
map device UID to the device key used on the analytics
platform, and (4) an IoT hub module to stream the data to
the data analytics platform by supporting different messaging
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Fig. 3. Streaming Data from the Field through Gateways to the Cloud.

Fig. 4. Azure IoT Suite for Remote Monitoring.

protocols, such as HTTP (Hypertext Transfer Protocol) [29],
MQTT (Message Queuing Telemetry Transport) [30] and
AMQP (Advanced Message Queuing Protocol). All these
modules communicate with each other through a message bus.
Then, operators can remotely access the IIoT-FG via the web
portal and configure the target data points and the associated
streaming parameters. Process measurements will be streamed
into IIoT-FG for protocol adaptation, and then forwarded to the
data analytics platform according to the messaging protocol.

4) Cloud: The cloud provides a centralized location to
perform analytics, store data, provide access for users, and
support capabilities such as notifications. For this project,
Microsoft Azure was used as the cloud platform. Features from
the Azure IoT Suite were used to receive data, perform stream
analytics and machine learning, archive data, and display data.
These features are shown in Fig. 4.

The IoT Hub receives the input data structure from the
device network over the AMQP protocol. The IoT then divides
the traffic and sends it to Stream Analytics and storage. The
Stream Analytics application runs monitoring in-stream and
sends the findings as they occur to the Event Hub. The Event
Hub sends the events on to Web Jobs, storage for archiving,
and to additional logic apps. Users can access the events
as well as any archived data online through a Web/Mobile
application. Document Database (DB) [31] is used by some of
the applications for additional reporting and analytics.

The entire cloud environment is accessed through Azure
Active Directory [32]. More complete information on the
authorization and authentication is provided in follow-on sec-
tions.

C. Data Driven Approach

A key design criterion is to reduce setup and configuration
as much as possible. To make this happen we adopt data-
driven methods. The data-driven approach combines data from
the devices together with device descriptions to fully describe
the data to receiving applications. The data from devices is
received as HART published data. The data descriptions are
extracted from the device descriptions (or DDs in the HART
standard).

In data-driven approaches, data and functionality are decou-
pled. The approach can be effectively used in cases where
the data is not overly complex. The approach can be applied
as part of Industrial IoT projects where 1000s of device types
hold multiple sets of measurement, diagnostic, and derived data
and communicate it as structured data over communication
networks to subscribing applications.

In the case of standards such as Foundation Fieldbus,
HART, and WirelessHART, devices are described by a de-
vice description language [8] which describes devices in a
consistent way. Each device description describes the device,
methods provided by the device, measurement and device
parameters that the device supports, configuration information,
and the interactions that the users can perform with that device.
The description file for a device is called the DD (Device
Description). A DD file provides a mapping of all parameters
and functions of a device in a standardized language.

1) Message-oriented Communication: The HART protocol
supports message-oriented communications. With message-
oriented communications, all communication between applica-
tions is based on messages that use well-known descriptions.
In the case of HART, these descriptions are HART commands.
With this communication pattern, it is not necessary for
applications to know internal details about each other. Interac-
tion between applications is accomplished by passing HART
commands over a common messaging medium. Several com-
munication styles are supported, including request/response,
publish/subscribe, event-based, and simple streaming.

Using messages and commands has several advantages.
First, applications can be run in different environments (for
example one side of the application may be running on a
Windows-based host and the other end in an embedded device
such as a pressure transmitter). Second, not all devices need to
support all commands and services. Third, the device protocol
can be easily abstracted from the application logic.
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2) Communicating HART data using data-driven methods:
For this project, HART devices published their data using
commands such as command 1 and 9 through gateways to
the Azure platform for condition monitoring and long-term
storage. The data was converted from its highly compressed
command structure into more easily understandable structures
using a data discriminator. The data discriminator took raw
packets and, using data descriptions for packet structures and
commands and converted the raw data into JSON structures.

3) Messaging Protocol for Data Collection: Typically, a
large amount of real-time measurements are required to be
collected from heterogeneous plant resources for various mon-
itoring and control applications. It is critical to define a simple
and unified streaming protocol to transmit these data streams
for cross-platform data emitting and retrieving. Given the
capability to represent rich data structures in an extendable
way, JSON objects are more suitable for these data streams.

Practically, JSON sends its schema along with every mes-
sage, which requires a relatively large bandwidth. Since many
compatible compression techniques have been reported to
achieve good JSON format compression rates, they can be
performed on data records to make the streaming protocol
more bandwidth-efficient. All data records collected through
streaming protocol will be streamed to the cloud.

D. Analytics in Cloud

Two types of analytics were performed as part of the project.
The first, stream analytics, was performed on data as it was
streamed from the premises to the cloud services. The second,
machine learning, involved building models off-line and then
deploying these models online as services. Both techniques are
described below.

1) Stream Analytics: Azure Stream Analytics start with a
source of streaming data that is ingested into the Azure Event
Hub, Azure IoT Hub or from a data store like Azure Blob
Storage [33]. To examine the streams, a Stream Analytics job
is created that specifies the input source that streams data. The
job also specifies a transformation query that defines how to
look for data, patterns, and relationships. The transformation
query leverages an SQL-like query language that is used to
filter, sort, aggregate, and join streaming data over time. When
executing the job, the event ordering options, and duration of
time windows when performing aggregation operations can be
adjusted.

After analyzing the incoming data, an output for the trans-
formed data is created. As part of setting up the output, actions
can be set up to perform the following:

• Send data to a monitored queue to trigger custom work-
flows downstream.

• Send data to Power BI dashboard for real-time visualiza-
tion.

• Archive data to other Azure storage services.
In the condition monitoring system created here stream

analytics jobs were created that monitored several features such
as drive signal limits and travel limits. This is described in
more detail in the POC section V.

2) Machine Learning: Machine learning was used in this
project to perform linear regression and time-series analysis
using Partial Least Squares regression (PLS regression) [34].
Linear regression models were generated using libraries that
existed as part of the Azure Machine Learning (Azure ML)
environment. PLS algorithms were developed in Python. Both
linear regression and PLS trained models were executed on-
line as web jobs. Machine Learning models and jobs were
developed and executed as part of the Azure ML environ-
ment [33] [35].

Linear regression is a classic statistical technique used for
regression problems to make a prediction for a continuous
value from one or more variables or features. This algorithm
uses a linear function and optimizes the coefficients that fit
best to the training data. If you have only one variable, then
you may think of this model as a straight line that best fits the
data.

Partial least squares regression (PLS regression) is a statis-
tical method that bears some relation to principal components
regression; instead of finding hyperplanes of maximum vari-
ance between the response and independent variables, it finds
a linear regression model by projecting the predicted variables
and the observable variables to a new space. Because both the
X and Y data are projected to new spaces, the PLS family of
methods are known as bilinear factor models.

PLS is used to find the fundamental relationships between
two matrices (X and Y), i.e., a latent variable approach to
modeling the covariance structures in these two spaces. A
PLS model attempts to find the multidimensional direction
in the X space that explains the maximum multidimensional
variance direction in the Y space. PLS regression is particularly
suitable when the matrix of predictors has more variables than
observations, and when there is multicollinearity among X
values. By contrast, standard regression will fail in these cases
(unless it is regularized).

In the valve monitoring case, since there were only 9
features used to perform health indications, linear regression
models worked well. In other examples that were tested that
required over 100 features with significant coupling, PLS
models worked better.

E. Continuous Condition Monitoring
Industrial IoT drives many opportunities such as the po-

tential for energy savings, improved quality, and increased
throughput. While Industrial IoT is new to many sectors of
the economy, a form of it has been used since the 1960s in
manufacturing. These early implementations did not use the In-
ternet, which was decades away, but instead relied on plant and
enterprise-wide intranets to deliver information from sensors
to software and decision makers, where it drove operational
improvements [36]. What is new is the IIoT service business
model, and corresponding solutions. These IIoT solutions start
with sensors and deliver information to decision makers, but
the infrastructure in between has changed drastically, offering
three different and overlapping options for manufacturers. At
one end of the service model is an in-plant intranets system
that is used as the communications infrastructure to deliver
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sensor data to plant maintenance and engineering personnel.
This raw data is then transformed into actionable information
by various software applications licensed and operated by end
users and augmented by their experienced domain experts. At
the other end is a full outcome-based model where sensor data
is delivered to a third-party service provider via the Internet.
The service provider then analyzes the data with their own
software applications and experts. They not only analyze the
data, but also send personnel to the manufacturing site to
implement operational improvements by repairing or replacing
malfunctioning components and equipment. The third model
is a hybrid model, where the service provider analyzes sensor
data and provides guidance to the plant on appropriate actions,
with the plant taking final action. In all cases, the goal is to
convert data to actionable information.

To illustrate how condition monitoring works with these
models, consider what is in-place in an actual plant. All
plants have flow, pressure, temperature, level and other sensors
which are connected to some type of automation system for
controlling and monitoring the plant. Additional sensors can be
added to support other types of applications such as equipment
reliability, energy management, environmental monitoring, etc.
With the traditional model, intranet connections channel this
sensor data to other parts of the organization for analysis by
applications hosted in-house.

With this traditional model, sensors are added to large com-
pressors at the plant, purely to monitor operating conditions.
Data from these sensors is transmitted across the plant intranet
and analyzed by in-house compressor experts. These experts
can be onsite personnel looking at just local compressors, or
remote personnel in a centralized corporate engineering center.
The centers can monitor dozens of compressors located across
multiple sites. Local plant service people are responsible for
any corrective actions.

In the outcome-based method, this same compressor data
goes over the Internet to a third-party service provider such as
Emerson, where experts use models and software to perform
analysis using the latest tools. When problems are detected, the
service provider takes corrective actions at the plant, providing
uninterrupted operation of the compressors.

While the infrastructure described in this paper is ideal for
a full outcome-based model, it may be used for the other
two models as well. Tools such as analytic models are used
to monitor equipment and provide recommend actions. These
actions are stored in a database for later recall. They are
accessible through an Azure-hosted web site for users. In
addition to being made available as a summary, the actions
may also be communicated as notifications.

IV. SAFETY ANALYSIS

Industrial IoT systems must follow a layered approach.
With this approach, demilitarization zones (DMZs) separate
internal LANs from external-facing servers that have access
to the internet and business networks. The most secure DMZ
zones tend to be the control systems, followed by the site and
business networks, followed by the servers that have access to
the Internet. Firewalls are used to isolate networks. In some

cases, it may be necessary to fully air-gap the most restricted
parts of the system which mean that the control systems are
hidden behind a device such as Data Diode. This isolation is
shown in Figure 2.

Another aspect of security is gateway authentication. In the
condition monitoring described here the connection between
the on-premise gateways and the Azure cloud is formed bottom
up, i.e., from the gateway to Azure. For this to work, the Azure
side must be configured with a list of gateways that are allowed
to connect. Once the gateway has been authenticated, the Azure
Service Bus API hands it a token. The final step is for the
connection to request a certificate and then use this certificate
to encrypt communications.

All users who access the monitoring service must have valid
credentials. User identity is validated through Azure Active
Directory.

The final aspect of security for this project was data pro-
tection. Two methods are used. In the first method, for each
company or site, if required, separate Azure subscriptions are
used for complete isolation. Within each Azure subscription,
data is restricted using security filters.

V. PROOF OF CONCEPT

A. Overview
In this section, we present the objectives for the Proof-of-

Concept (PoC) as follows.
1) PoC provides an “end-to-end” run of processing incoming

telemetry from valves to hot and cold storage, including in-
stream processing, as well as archives of all the data; 2)
It generates alerts on the field data if the data falls outside
operating ranges individualized for each valve or if the data
exceeds established limits; 3) PoC offers a way to train and
connect to Azure Machine Learning models and access from
Stream Analytics and custom algorithms; 4) It authenticates
gateway connections using Shared Access Signature (SAS)
tokens; 5) It develops an analyst portal that allows experts and
users to securely access field data, alerts, reports, and an online
web site; 6) PoC also refines the understanding of architecture
and decision points for an Industrial IoT solution.

The gateways connected to WirelessHART networks. HART
data was run through the data discriminator where it was
converted to JSON form before being streamed over AMQP to
the Azure environment. Once in Azure the data was processed
in an IoT Event Hub and forwarded as events to Azure stream
analytics and other Azure services. The data flow has several
critical steps:

1) In the field, data is published by WirelessHART devices.
The parameters published, publish rates, scaling and other
settings are configured as part of the device configuration.

2) After generating the data, it is reformed into JSON form
via the data discriminator. The data is then forwarded to the
AMQP gateway where it is streamed to the Azure IoT Event
Hub.

3) The IoT Event Hub converts the data stream into events
(the data coming out of the gateways is streamed from the edge
to Azure). These events are then passed on to Azure Stream
Analytics.
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4) Azure Stream Analytics processes each incoming event
and performs some checks: (a) It generates alerts if the data
falls outside normal operating regions for each valve; (b) It
generates alerts if data exceeds derived or engineering limits;
(c) It performs evaluations using Azure Machine Learning
models.

5) After stream analytics, Azure Machine Learning models
are run for specific models, e.g., Linear models, and PLS
models, to generate learning results.

6) All events, which include both the raw data from the
field devices as well as the stream and machine learning
results, are passed through to archives for long term storage.
Several storage formats are used including blob storage and
a Cassandra database [37]. Cassandra is a distributed storage
system for managing very large amounts of structured data
spread out across many commodity servers, while providing
highly available service with no single point of failure.

7) An Azure web site displays device data and alerts.
During the data transmission, the AMQP gateway performs

as follows: (a) It accepts incoming UDP messages from the
UDP gateway; (b) It acquires a SAS token from the Azure
API app and then uses this token to communicate to Azure
Event Hubs using AMQP; (c) It buffers up to 24 hours worth
of data in case of loss of the internet connection.

The core technologies supported as part of the Azure cloud
are:

• Azure Event Hub (AEH): Azure Event Hub supports
communications between the on-premise gateways and Azure-
based services.

• Azure Stream Analytics: Azure Stream Analytics (ASA)
monitors data in real-time as the data is received from devices,
sensors, infrastructure, applications, and data. ASA provides
out-of-the-box integration with AEH to ingest millions of
events per second.

• Azure ML: Azure ML performs more extensive analytics
on the data. Once models are generated they are exported as
web services and called from Azure Stream Analytics.

• Azure Storage: A Cassandra column-store database
archives data and supports queries, reporting, and the online
web site.

• Azure Web App: The Azure Web App presents data to
analysts for use in valve monitoring and diagnostics.

• Azure API App: Azure API Apps host REST-based APIs.
The API App issues SAS tokens to on-premise gateways. The
SAS tokens authenticate the on- premise gateway with the
AEH.

• Azure Active Directory: Azure Active Directory provides
identity manage- ment and authentication for the analyst web
portal.

For the analytics applications, several months of field data
generated reference data for the valves. This reference data
was then used as part of the stream analytics application. The
field data was further used by the machine learning portion of
the project through Azure ML.

B. Historical Field Data and Reference Data
Data collected from several sites was used to generate

reference data and typical limits for the stream analytics and

Fig. 5. Stream Analytics Processing

for the machine learning models developed as part of the Azure
ML model generation. The reference data was generated off-
line and sent to Azure to be used in the stream analytics. The
reference data included operating ranges for each valve derived
from the data provided for the study. This data also included
upper limits generated from the data aggregated across all of
the valves used in the study. The reference data originated from
several manufacturing sites.

C. Stream Analytics
The stream analytics processed data en-route as it was

received from each of the manufacturing sites. The processing
was performed as shown in Fig. 5.

Since this was a PoC, a couple of the limits were set lower
than would be used once the condition monitoring site was set
up for actual use. As shown in Fig. 5, using a drive signal level
of 50 % instead of the typical upper limit of 85 % generated
more alerts.

The stream analytics used a tumbling average for the input
field value. Since it is possible to get a transient measurement
that was outside the normal operating region, an average of
the past 60 seconds worth of data was used.

D. Machine Learning
There are many valve performance problems that require

more extensive models than the simple models used as part of
the stream analytics implementation. Examples include:
• Increase in Valve Friction
• Process oscillation due to valve instability (requires addi-

tional device measurements, which we had but did not utilize)
• Oscillations due to loop tuning
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Fig. 6. Machine Learning for High Cycle Counts, Excessive Travel, and
Supply Pressure Issues

• Supply pressure issues
• High cycle counts
• Sticking valve / high dead band
• Changes in operating ranges
• Throttling at low levels
• Excessive travel
For the POC linear and PLS (Partial Least Squares) models

were generated to supply pressure issues and detect high cycle
counts and excessive travel. The model generation is shown in
Fig. 6.

The models were generated using the data provided off-
line and deployed online. They were initiated by the stream
analytics processor.

E. Visualizing and interacting with site data
After leaving the plant gateways, the data is analyzed

instream, archived, and accessed by users for viewing and
analysis. For this project the web interface shown in Fig. 7
was created.

The web interface enables the user to select the site and edge
gateway to connect, view the top alerts, and browse the data.
Since there can be more alerts than will fit on the alert banner,
the total number is displayed in the active alert indicator. The
right-hand side of the display shows the devices from which
data is being collected and the parameters that were provided
by the on-premise gateway. The naming, site, device tags, and
parameters shown are provided by the on-premise gateway.

Categories were used to indicate different alert levels such as
critical, warning, advisory, and log. Critical alerts are normally
reserved for situations where action must be taken to avoid
endangering the safety of plant equipment and/or personnel or
impact on the environment. In some cases, critical alerts may

be used to indicate that product quality will be impacted if
action is not taken. Warning, advisory, and log alerts are used
when the user has more time to respond, or when the outcome
is not likely to lead to a condition that is not critical.

Alerts must be displayed with the highest unacknowledged
alert at the top of the list. For this project alerts were presented
on an alert banner with the highest priority alert at the left.
This is shown in Fig. 7.

VI. DISCUSSION

In this section, we provide some ongoing issues, which
combine new technologies in the existing design. As the last
mile of continuous condition monitoring, it needs to connect
the actual plants to the operational units. The Fifth Generation
of cellular wireless technology (5G) [38] promises to provide
a communication platform to advance the communication
between IT and OT. Similarly, abstracting metering in a
secure way is an ongoing concern. When multiple independent
plants are involved in the large-scale IIoT, immutability and
trustworthiness are important to guarantee data authenticity.
Blockchain technology offers a mechanism to provide the
immutability and trustworthiness among different plants.

A. 5G in IIoT

Industrial IoT focuses on the integration between Informa-
tion Technology (IT) and Operational Technology (OT) [39]
and on how smart objects (e.g., smart machines, networked
sensors) improve services. IIoT generally implies machine-to-
machine (M2M) interactions, either for application monitoring
or as part of a self-organized system in a distributed man-
ner [40]. However, many current cellular communication net-
works, such as the 3rd Generation Partnership Project (3GPP)
do not support efficient Machine Type Communication (MTC).
5G communication provides several disruptive elements, such
as increased data rate, reduced end-to-end latency, and im-
proved coverage. In addition, by providing the integration
of heterogeneous access, 5G can serve the role of unified
interconnection framework, facilitating seamless connectivity
of “things” with the Internet.

Currently, one of the most promising options for IIoT
integration within the LTE (Long Term Evolution) [41] enabled
standard is Narrowband IoT (NB-IoT) [42] [43]. NB-IoT is a
new 3GPP cellular technology for providing wide-area cover-
age for IoT, which is designed to achieve excellent coexistence
performance in the presence of legacy Global System for
Mobile Communications (GSM) [44] and LTE technologies.
Still, further enhancements of NB-IoT are ongoing in 3GPP
new releases. In general, NB-IoT is a step toward building
the 5G radio access technology intended for enabling new
use cases like efficient machine type communication. Due to
the existence of NB-IoT devices while the network migrates
toward 5G, it is important to design 5G access technology to
coexist with NB-IoT and its evolution. It is also important to
ensure that NB-IoT continues to evolve toward meeting all 5G
requirements for IoT, minimizing any need to introduce a new
5G IoT technology.
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Fig. 7. Condition Monitoring Web Interface

The main objective is to increase the capacity of current
wireless technologies through self-organizing 5G technology
and prepare for future scenarios [1]. Besides, end-to-end
communication may require the integration of public cellular
networking technologies with private networks, such as pic-
ocells or meshed networking topologies. However, the appli-
cation functions should be applicable to different resources.
They cannot rely on specific communication functions directly.
Thus, generic communication services are required. Also,
the services and data models in legacy systems should be
consistent with the new networks, so that there is some form
of uniform data exchange at the higher networking layers,
irrespective of the underlying communication systems.

With the help of end-to-end communication, 5G enables
cellular networking technologies to be used in industrial con-
tinuous condition monitoring without sacrificing the latency.
Also, 5G’s higher speeds enhance the feasibility of real-time
condition monitoring. Besides, IEEE standardization is moving
towards industry standards (i.e., WirelessHART) [45].

B. Blockchain in IIoT

In IIoT, different devices will be interconnected together in
a distributed manner. IIoT typically requires multiple entities,
such as plants, to cooperate to perform some measurements
or monitoring. It is particularly difficult to build secure and
trusted distributed industrial systems which integrate informa-
tion and computation from independent administrative plants.
Each plant has policies for security and privacy, but does
not fully trust other plants to enforce them [46]. Integrat-
ing information from different plants is important because it
enables new services and capabilities. The distributed ledger

technology, e.g., Blockchain [47], provides a candidate to keep
the consistency of blockchain.

A blockchain allows a number of participants in a restricted
or unrestricted peer-to-peer (P2P) network to validate new
transactions or blocks of new transactions and append them
to the chain of previously validated blocks. The ledger is not
owned or controlled by one centralized authority or company;
it can be viewed by the participating nodes on the network.
The transactions on the blockchain can be verified at any time
in the future. Blockchain technology, as a distributed ledger,
provides several innovative features, such as distribution, de-
centralization, trustworthiness, immutability, transparency, and
security [48]. These features together fit the multiple plants
scenario.

Combined with the current industrial infrastructure and
communication networks, the blockchain data can be stored
in the cloud to guarantee consistency and immutability.

VII. CONCLUSION AND FUTURE WORK

Continuous condition monitoring is a critical and chal-
lenging process to monitor the health state of devices in a
continuous manner for a large-scale Industrial IoT platform.
This paper presents a complete system design to stream the col-
lected device diagnostic parameters, by following the universal
data-driven approach, to the cloud for analytics and decision-
making. Specifically, the proposed system design seamlessly
integrates existing infrastructure and newly developed com-
ponents together for control network data collection. It then
streams the collected device diagnostic parameters to a private
cloud. We also provide a validated and deployed PoC to refine
the understanding of the proposed prototype system for the
Industrial IoT solutions.
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Currently, this prototype system has been developed and
supported by Emerson Automation Solutions and deployed
in the field for design validation and long-term performance
evaluation. Future work is focused on three areas. The first
is to deploy this prototype for other continuous condition
monitoring use cases, and evaluate latency, throughput, and
path stability. The second area is expanding the scope beyond
devices into process equipment, process units, and the process
itself. This includes sending the structure of the data, the
relationships between equipment, and the data itself. The
third area is to incorporate new technologies (e.g., 5G and
blockchain technology) into the current prototype system to
provide more exciting features, such as low-latency, immutabil-
ity, and trustworthiness.
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