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1. Introduction
Public-key cryptography is a branch of modern cryptography that studies the
protection of secrecy and authenticity in an open and public environment.
Two most important functionalities of public-key cryptography are digital
signature (authenticity) and public-key encryption and (its functional
equivalent) key exchange (secrecy). 

Two most prominent development occurred in the 1970s - the Diffie-Hellman
key exchange [DH76], and the RSA cryptosystem [RSA78], with current
cryptanalysis showing that at least 2048-bit parameters are required for 112-
bit security level due to the "General Number Field Sieving" algorithm 
[LL93]. The most prominent industry standard for RSA is [PKCS#1]. 

The most compact public-key cryptosystems known today are based on the
elliptic-curve discrete logarithm problem, with current cryptanalysis showing
that only 256-bit parameters are needed for 128-bit security level due to
Pollard's rho algorithm for discrete logarithm [Po78]. The most prominent
industry standard for elliptic-curve cryptography would be [SEC#1]. 

The search for compact public-key cryptosystem would have stopped when
Berstein et al. introduced Curve25519 for key exchange and Ed25519 for
digital signature [Curve25519] [EdDSA], which offered the best-in-class
efficiency, performance, and logical and practical security (that is, both
mathematically correct and easy to implement correctly and free of side
channels), if wasn't for there're polynomial-time quantum computer
algorithms for integer factorization and discrete logarithm [Shor95]. 

For the list of finalist and alternate candidates in the 3rd round of the NIST
Post-Quantum Cryptography project [NIST-PQC], ones with one compact
cryptogram usually have another one that's very huge (compact public key
for SPHINCS+ with huge signature, compact signature for Rainbow with
huge public key), some with solid security records may have large
cryptograms with no compact one at all (Classic McEliece). For the ones with
overall acceptable cryptogram sizes (Dilithium, Falcon, Kyber, NTRU, Saber),
those sizes are still larger than that of RSA by a factor of a single decimal
digit, and larger than that of elliptic curve by an order of magnitude. 

In this paper, we propose 2 compact cryptosystems - 1 for key exchange and
1 for digital signature - both based on a quasigroup with the special property
of "restricted-commutativity". Although cryptosystems based on quasigroups
had been proposed [GMK08] and broken [FOPG10] before, our construction
is completely different from theirs. While we cannot disprove the existence of
efficient algorithm that break our cryptosystems, we present empirical
arguments for the security of our cryptosystems. 

The proposed cryptosystem along with the reference implementation are
released to the public domain. 
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1.1. Parallel Efforts

In an independent effort, D.Gligoroski had proposed [Glig21] the use of
quasigroups with "restricted-commutativity" in public-key cryptography and
termed it "entropic" quasigroups - "entropoids". 

In his paper, key exchange and digital signature algorithms are built using a
discrete-logarithm-like problem based on an underlaying mathematical
structures that doesn't appear to admit cryptanalysis by Shor's algorithm. In
an exchange taken between us, we acknowledged that 1) his design have
more solid foundation than ours; 2) our design doesn't appear to provide
adequate level of complexity to calm worries of cryptanalysis; 3) our design
appears to be more efficient than his. 

Finally, we'd like to note that, if his design withstands the test of time, our
choice of verifiably random quasigroup can be beneficially used as a
component in his schemes. 

2. Xifrat Elements - The "Entropic"
Quasigroup
The core element of Xifrat cryptosystem is a entropic quasigroup of 8
elements. We represent the binary operation of this group as 

. This groupoid has the following properties: 

Non-Associative In General: that is, for most cases, 

Non-Commutative In General: that is, for most cases, 
Restricted-Commutativity: that is, for all cases, 

The table for the quasigroup is as follow: 

  5   3   1   6   7   2   0   4
  3   5   0   2   4   6   1   7
  6   2   4   5   0   3   7   1
  4   7   6   1   3   0   2   5
  0   1   3   7   6   4   5   2
  7   4   2   0   5   1   6   3
  2   6   7   3   1   5   4   0
  1   0   5   4   2   7   3   6

The function  returns the value of the cell at 'th row and 'th column
(indices are 0-based). 

f : ℤ8 × ℤ8→ ℤ

8 

• f(f(a,b),c) ≠ 
f(a,f(b,c)) 

• f(a,b) ≠ f(b,a) 
• f(f(a,b),f(c,d)) = 

f(f(a,c),f(b,d)) 

f(a,b) a b
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2.1. How did we choose such entropoid

The first part is "why 8"? Actually, we originally had one of 16 elements;
although it had all the desired property, its choice cannot be verified. So we
went for one that can be verified as random. When we run our program to
find a verifiably random quasigroup with 16 elements, it took so much time
that we concluded that it's beyond the patience of any potential third-party
verifiers, so we went for 8. 

Second, we have a list of desired property of the quasigroup. In addition to
the arithmetic ones listed above, we have the following: 

The quasigroup table should not have obvious symmetry;
The quasigroup table should not have any fixed points;

With these requirements in mind, we created a simple C program that
searched for candidate quasigroup tables. The program ran the following
steps: 

• 
• 

Xifrat - Compact Public-Key Cryptosystems based on Quasigroups

Xifrat Elements - The "Entropic" Quasigroup 5



Figure 2.1. Quasigroup Search Program 

Create an array of shuffles as follow: 
Seed an instance of SHAKE-256 XOF [FIPS-202]
function with the NUL-terminated ASCII string:
"xifrat - public-key cryptosystem" 
Create a list  of shuffles one by one using the
following steps: 

[label-1]: Read 8 octets from the XOF stream
and interpret it as a 64-bit little-endian unsigned
integer. 
If the number is greater than 

then go to [label-1] and proceed
from there again. 
Take the number modulo  and label it as (i.e.,
set it to) . 
Initialize the list  to be shuffled as [0,1,2 ... 7].
For  in 8...2: 

Swap  and . 

Append  to  
Walk diagonally from top-right to bottom-right starting
from the top-left corner to the bottom-right corner; the
cells traversed in such pattern are labelled 0...63, and for
each cell walked suchly: 

[label-2]: Set the value of the cell to that of the
lowest index in the shuffle such that the constraints as
set out and implied in the requirements are not
violated. 
Recursively set the next cell similarly: 

If at some point constraints are violated, try the
next index in the shuffle; and if all indices are
tried out, recursively fix it by trying the next
index in the previous cells by reverting to 
[label-2] . Until: 
When all cells are set and no constraint is
violated, output the table and return
[SUCCESS]. 

The source code for the program can be found at our GitHub repository: 
https://github.com/dannyniu/xifrat. 

2.2. Miscellaneous information about the
quasigroup

As we choose our quasigroup operation table in a verifiably random fashion,
we should indicate how random the choice was. Below is "indices of freedom"

1. 
1. 

2. U

1. 

2. floor( (264-1) / 8!
) · ( 8! ) 

3. 8!
s

4. V
5. i

1. p ← s modulo i 
2. j ← 8 - i 
3. Vp+j Vj
4. s ← floor(s / i) 

6. V U
2. 

1. 

2. 
1. 

2. 
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of our quasigroup, laid in walking order from left to right and top to bottom.
The smaller the index indicates the more free the choice of the cell value is; a
value of 9 indicates that the constraints from other cells had determined the
value of that cell 

  1   2   1   6   4   7   3   4
  7   2   3   1   1   3   5   9
  9   9   9   9   9   9   9   9
  9   9   9   9   9   9   9   9
  9   9   9   9   9   9   9   9
  9   9   9   9   9   9   9   9
  9   9   9   9   9   9   9   9
  9   9   9   9   9   9   9   9

Our program was originally written as a single-thread program. When it's
found that more efficiency was more desired, we parallelized it with the 
fork(2) POSIX function, so that global states can still be shared by every
function in the code, and minimal modification is needed. 

3. Xifrat Primitive - The Mixing
Function
The next building block in Xifrat, is the mixing function , where 

 are "cryptograms" of Xifrat. The function has the following property: 

Restricted-Commutativity, as is the case with  
Resistance to Key-Recovery: that is, given any number of pairs of  and 
, it should be computationally infeasible to find . 

Resistance to Cryptogram Prediction: that is, given  or  (but not
both), and any number of such pair of cryptogram under a particular ,
it should be computationally infeasible to find  from  and vice-versa. 

3.1. The Construction and Instantiation of the
Mixing Function

The mixing function  runs with 1 parameter:  - number of scalar
elements from  in the cryptogram vector. The scalar elements indexed  in

a cryptogram  is . 

c = m(r,k) c,
r, k

• f(a,b)
• c

r k
• c' r'

k
c' r'

m() N
ℤ8 i
p pi
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Figure 3.1. Algorithm for  

For  in [0...N-1]: 
// initial mixing of cryptograms  with  

Given , for  in [0...N·N]: 
// mixing of  with itself in random sequence

to block certain types of divide-and-conquer attack. 
For  in [0...N-1]: 

// final mixing of cryptograms  with  

In the above algorithm, the  function takes the outputs of an iterator and
assembles them in to an ordered list. The function  is defined as
follow: 

Figure 3.2. Algorithm for  

Create a list 

For  in [0...x-1]: 
yield 

If : 
Copy  to . 

Return [END].

For ease of implementation, we choose a single parameter ,
resulting in a cryptogram size of 393 bits (rounded up to 50 octets), targeting
192-bit overall security.  is chosen to be a prime so that it's easy to build a
random sequence generator that consumes few working memory. 

As a cryptanalysis challenge proposed for the purpose of helping understand
the properties of Xifrat cryptosystem better, we propose a toy parameter set 

 of 23 targeting 32-bit security. 

3.2. The Arguments for Security

To argue for the security of , we observe that the middle loop of the
mixing function is actually  rounds of application of Feistel network, with
each 2 rounds consisting of mixing of  tritets with each other permuted by
the  function. Unlike regular Feistel network where operands are mixed
sequentially, we randomized the order of mixing in order to deter potential
'divide-and-conquer' attacks. 

Algebraically, each 8 values of the tritet needs to be represented as 64 × 64
sparse matrix - two 8 × 8 ones nested together, as an inner one and an outer

m(r,k)

1. i
ri ← f(ri , ki) r k

2. U ← list(generator(N·N+1)) i
ri ← f(rUi

 , rUi+1
) r

3. i
ri ← f(ri , ki) r k

list()
generator()

generator(x)

1. U ← list( 7*(3·i + 5)17 + 11 mod N for i
in [0...N-1] ) 

2. i
1. Ui mod N
2. (N - i mod N) = 1 

1. U V
2. Uj ← VUj

 for j in [0...N] 

3. i = i+1
3. 

N = 131

N

N

m()
N

N
f()
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one that receives operands differently depending on whether the operand is
applied on the left or right. In other words, the arithmetic value of the matrix
depends on whether it's used as row or column index when looking up in the
sbox. 

Next, each tritet output from the mixing function  is the product of
appying  tritets - the  and  , where  is 131. We roughly estimate that
potential algebraic attacks would either have to operate at very high degree,
or produce large set of linear relationships with too many derived linearized
variables to be practical. 

3.3. Proof of Correctness

To prove the correctness of "restricted-commutativity" of the  function,
we'll first need to simplify the notations and state a few propositions. 

Notation 1. We simplify, both entry-wise application of scalar elements of
cryptogram vectors, and direct application on tritet operands,  as  ,
and  as  . 

Notation 2. We simplify the operation  as  . 

Notation 3. For a function  defined later, we denote  as  . 

Prop 1. Left-associativity of distributiveness 

That is: 

Proof: 
observe a case of 3 pairs: .
due to restricted commutativity: ,
next, substitute , we have:

,
again, due to restricted-commutativity, we have: ,
substitute back, we have: ,
generalizing recursively, we have Prop 1.

Definition 1.  applies the middle loop (step 2) of the algorithm for 
 to  ; and per Notation 1. results in  . 

Prop 2.  

Proof: Due to the structure of the middle loop of , this is apparent by
applying Prop 1. 

Prop 3. For members of an entropoid: 

Proof: From the left side of the equation, by Prop 1., we have 

m()
2N r k N

m()

f(a,b) ab
f(f(...(a,b),c...)) abc...

m(a,b) a*b

e() e(a) a'

(a1 b1)(a2 b2) ... (an bn) = (a1 a2 ... an)(b1 b2 ... bn) 

(ab)(cd)(ef) 
(ac)(bd)(ef) 

g=(ac) , h = (bd) 
(gh)(ef) 

(ge)(hf) 
(ace)(bdf) 

e(a)
m(r,k) a a'

e(ab)=e(a)e(b)

m()

(a1 a2 a3)(b1 b2 b3)(c1 c2 c3) = (a1 
b1 c1)(a2 b2 c2)(a3 b3 c3) 
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Main Proposition  

Proof: observe that the  function can be represented using  as: 
 , we first rewrite the left side of the equation as: 

Likewise for the right side

By Prop 3., the two expressions are equal. 

4. Xifrat Schemes
For readability purposes, we inherit at here, the notations used in the
previous section. 

4.1. Xifrat-Kex the Key Exchange

Xifrat-Kex is a bi-party key exchange scheme similar to Diffie-Hellman 
[DH76]. Unlike recent lattice-based key encapsulation mechanisms or public-
key encryption algorithms, Xifrat-Kex is "participant-symmetric" and has no
"decryption failure". 

(a1 a2 a3)(b1 b2 b3)(c1 c2 c3) =

( (a1 b1)(a2 b2)(a3 b3) ) (c1 c2 c3) =

((a1 b1)c1) ((a2 b2)c2) ((a3 b3)c3) =

(a1 b1 c1)(a2 b2 c2)(a3 b3 c3)

(a*b)*(c*d) = (a*c)*(b*d)

m(a,b) e(x)
e(ab)b

(a*b)*(c*d) = (e(ab)b) * (e(cd)d) = 

(e(a)e(b)b) * (e(c)e(d)d) = 

(a' b' b) * (c' d' d) = 

e(a' b' b) e(c' d' d) (c' d' d) =

(a'' b'' b') (c'' d'' d') (c' d' d) =

(a*c)*(b*d) =

(a'' c'' c') (b'' d'' d') (b' d' d) =
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Figure 4.1. The Xifrat-Kex Key Exchange Protocol 

Agree on a public cryptogram  with the peer. 
Generate a private key , and send 

 to the peer. 

Receive the key share of the peer , and compute 

. 

Correctness: Suppose the private keys for oneself is K and for the peer is Q,
the correctness of the key exchange is apparent from the restricted-
commutativity property; the key exchange can be re-written as: 

 

4.2. Xifrat-Sign the Digital Signature
Algorithm

Xifrat-Sign is a digital signature scheme consisting of 3 algorithms for key-
pair generation, signature generation, and verfication. Xifrat-Sign uses a
hash function, which is instantiated with the XOF SHAKE-256 by taking its
first 384 bits of output. 

Figure 4.2. Xifrat-Sign Key Generation 

Generate 3 cryptograms: , , and . 
Compute , , 

Return public-key , and private-key 

, 

Figure 4.3. Xifrat-Sign Signature Generation 

Input:  - the message 
Compute  , and zero-extend the output

to the size of Xifrat cryptogram, and obtain the result as 
 . 

Compute 
Return 

1. C
2. Kprivate Kself =

(CKprivate)
3. Kpeer

Kshared = Kpeer(KprivateC) 

(CK)(QC) =
(CQ)(KC) = Kshared

1. C K Q
2. P1 = (CK) P2 = (KQ)
3. pk = (C, P1, P2) sk =

(C, K, Q)

1. m
2. SHAKE256384(m)

H
3. S = (HQ)
4. S
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Figure 4.4. Xifrat-Sign Signature Verification 

Input:  - the message ,  - the signature 
Compute  , and zero-extend the output

to the size of Xifrat cryptogram, and obtain the result as 
 . 

Compute 

Compute 

If , return [VALID] ; otherwise, return [INVALID] . 

Correctness: the formula for two verification transcripts: 

and , by restricted commutativity, 
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