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Abstract

We study the notion of indistinguishability obfuscation for null quantum circuits (quantum null-iO).
We present a construction assuming:

• The quantum hardness of learning with errors (LWE).

• Post-quantum indistinguishability obfuscation for classical circuits.

• A notion of “dual-mode” classical verification of quantum computation (CVQC).

We give evidence that our notion of dual-mode CVQC exists by proposing a scheme that is secure assum-
ing LWE in the quantum random oracle model (QROM).

Then we show how quantum null-iO enables a series of new cryptographic primitives that, prior to
our work, were unknown to exist even making heuristic assumptions. Among others, we obtain the first
witness encryption scheme for QMA, the first publicly verifiable non-interactive zero-knowledge (NIZK)
scheme for QMA, and the first attribute-based encryption (ABE) scheme for BQP.

1 Introduction

The goal of program obfuscation [Had00, BGI+01] is to convert an arbitrary circuit C into an unintelligible
but functionally equivalent circuit C̃. Recent work has shown that program obfuscation enables a series of
new remarkable applications (e.g. [GGH+13, SW14, GGG+14, BPR15]), establishing obfuscation as a central
object in cryptography.

Yet, the scope of obfuscation has so far been concerned almost exclusively with classical cryptography.
The advent of quantum computing has motivated researchers [Aar05, AF16] to ask whether program ob-
fuscation is a meaningful notion also in a quantum world:

Can we obfuscate quantum circuits? Is this notion useful at all?

Unfortunately, results on the matter are largely negative [AF16, AP20, ABDS20], barring a few schemes
for restricted function classes of questionable usefulness [AJJ14, BK20]. At present, it is unclear whether
obfuscation of quantum circuits in its most general form can exist at all. The goal of this work is to make
progress on this question.

1.1 Our Results

In this work, we study the notion of obfuscation for quantum circuits. Our contributions are twofold.
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1.1.1 Quantum Null-iO and Witness Encryption for QMA

We show that, assuming LWE, post-quantum indistinguishability obfuscation (iO) for classical circuits, and
(trapdoor) dual-mode classical verification of quantum computation (CVQC), there exists an obfuscation
scheme for null quantum circuits, i.e., any polynomial-size quantum circuit that rejects all inputs with
overwhelming probability. The following statement summarizes our main result.

Theorem 1.1 (Informal). Assuming the hardness of the LWE problem, the existence of post-quantum iO for classical
circuits, and a (trapdoor) dual-mode CVQC protocol, there exists quantum null-iO.

While the first assumption is standard, and the second seems to some extent necessary, dual-mode
CVQC is a non-standard cryptographic building block that we introduce in this work. Loosely speaking, a
CVQC protocol is dual-mode if there is a standard mode in which the scheme is correct, and a simulation
mode in which there do not exist any accepting proofs for no instances (though in this mode, the scheme
may not necessarily be correct for yes instances). These modes must be computationally indistinguishable
even given the verification key.

Actually, we do not know of any construction of CVQC that satisfies this dual-mode property, so we
instead relax the property to a “trapdoor” variant, where there exists a trapdoor setup algorithm (com-
putationally indistinguishable from the original one) that satisfies the dual-mode property. We show that
this relaxation suffices to construct quantum null-iO (along with LWE and post-quantum iO for classical
circuits), and present a construction of trapdoor dual-mode CVQC secure against the learning with errors
(LWE) problem in the quantum random oracle model (QROM).

Theorem 1.2 (Informal). Assuming the hardness of the LWE problem, there exists a trapdoor dual-mode CVQC
protocol in the QROM.

In addition, we propose an alternative construction of quantum null-iO (Appendix A) secure only
against the LWE problem but with respect to an oracle. The oracle that we consider is entirely classical, but
queriable in superposition. In fact, we show that the scheme is secure assuming LWE and post-quantum
virtual black-box obfuscation of a particular classical circuit.

Witness Encryption for QMA. Applying a well-known transformation, we obtain witness encryption
[GGSW13] for QMA as a corollary. Importantly, our scheme has an entirely classical encryption algorithm:
Any classical user can encrypt a message m with respect to the membership of some statement x in a
language L ∈ QMA. The message m can be (quantumly) decrypted by anyone possessing (multiple copies
of) a valid witness |ψ〉 ∈ RL(x).

1.1.2 New Applications

We show that witness encryption for QMA with classical encryption enables a series of new cryptographic
primitives, thereby positioning witness encryption for QMA (and consequently quantum null-iO) as a cen-
tral catalyst in quantum cryptography. Most of our results are obtained via classical synthesis of quantum
programs: We compress an exponential number of quantum programs into a small classical circuit via the
use of classical iO. We give an overview of the implications of our results below. We remark that, prior to
our work, we did not even have a heuristic candidate for any of the primitives that we obtain.

(1) NIZK for QMA: We present the first construction of NIZK [BFM88] for QMA. A (quantum) prover
can efficiently produce a zero-knowledge certificate π that a certain statement x ∈ L, where L is any
language in QMA. This certificate is publicly verifiable with respect to a publicly-known common
reference string (CRS). Prior to our work, all non-interactive proof systems for QMA [BG19, CVZ20,
ACGH20, CCY20] were in the secret parameters model or the designated verifier setting, i.e. the verifier
(or additionally the prover) needed some secret information not accessible to the other party.

This resolves an outstanding open problem in the area (see e.g. [Shm20] for a discussion on the barriers
to achieving public verifiability). In addition, our NIZK scheme satisfies several properties of interest,
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namely, (i) it is statistically zero-knowledge, (ii) the verification algorithm (and CRS) is fully classical,
and (iii) the verification algorithm is succinct, i.e. its runtime is independent of the size of the witness.
In fact, we obtain the first succinct non-interactive argument (zk-SNARG) for QMA.

This primitive also implies the first classical verification of quantum computation (CVQC) scheme
with succinct verifier (and large CRS) that is publicly verifiable, and thus reusable. This improves over
the privately-verifiable scheme of [CCY20] where the large CRS is not reusable, though we note that
their CRS is actually a common random string as opposed to the common reference string required for
our protocol.

(2) ZAPR for QMA: We show how to transform our NIZK for QMA scheme into a (publicly verifiable)
two-round statistically witness-indistinguishable argument (ZAPR) for QMA. Our transformation is
generic and can be thought of as a quantum analogue of the Dwork-Naor compiler [DN00], in the
setting of computational soundness.

(3) ABE for BQP: We obtain a ciphertext-policy ABE [SW05, GPSW06] scheme for BQP (bounded-error
quantum polynomial-time) computation. In ciphertext-policy ABE for BQP, anyone can encrypt a
message m with respect to some BQP language, represented by a quantum circuit Q. The key au-
thority can generate decryption keys associated with any attribute x. The ciphertext can then be de-
crypted if and only if evaluating Q on x produces 1 (which, by QMA amplification, can happen with
either overwhelming probability or negligible probability). Interestingly, all algorithms except for the
decryption circuit are fully classical. This is the first example of an ABE scheme for functionalities
beyond classical computations.

The scheme satisfies the standard notion of payload-hiding. That is, the message m is hidden, though
the policy Q is revealed by the ciphertext. We then show that we can upgrade the security of the
scheme via a generic transformation to predicate-encryption security [GVW15] (i.e. the policy Q is
hidden from the evaluator if they are only in possession of keys for rejecting attributes). We achieve
this via a construction of lockable obfuscation [GKW17, WZ17] for quantum circuits from LWE.

(4) Constrained PRF for BQP: We present a construction of a pseudorandom function (PRF) [BW13,
KPTZ13, BGI14] where one can issue constrained keys associated to a quantum circuit Q. Such keys
can evaluate the PRF on an input x if and only if evaluatingQ on x returns 1 with overwhelming prob-
ability. Otherwise, the output of the PRF on x looks pseudorandom. The scheme is fully collusion-
resistant, i.e. security is preserved even if an unbounded number of constrained keys is issued.

(5) Secret Sharing for Monotone QMA: Finally, as a direct application of our witness encryption scheme,
we show how to construct a secret sharing scheme for access structures in monotone QMA.

1.2 Technical Overview

We give a cursory overview of the techniques introduced by our work and we provide some informal
intuition on how we achieve our results.

1.2.1 How to Obfuscate Quantum Circuits

Before delving into the specifics of our approach, we highlight a few reasons why known techniques for ob-
fuscating classical circuits do not seem to be directly portable to the quantum setting. For obvious reasons,
we restrict this discussion to schemes that plausibly retain security in the presence of quantum adversaries.
Recent proposals [BDGM20b, GP20, WW20] follow the split fully homomorphic encryption (split-FHE) ap-
proach [BDGM20a], which we loosely recall here. The obfuscator computes

FHE(C)
Eval(x,·)−−−−−→ FHE(C(x))

Hint(sk,·)−−−−−→ h
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where the decryption hint h is specific to the ciphertext encoding C(x). The obfuscated circuit consists of
(FHE(C), h) and the evaluator can recompute the homomorphic evaluation and use the decryption hint h to
recover C(x). It turns out that, as long as |h| � |C(x)|, this primitive alone is enough to build full-fledged
obfuscation. One crucial aspect of this paradigm is that the split-FHE evaluation algorithm is deterministic,
which allows the obfuscator and the evaluator to converge to the exact same ciphertext.

Translating this approach to the quantum setting seems to get stuck at a very fundamental level: Known
FHE schemes for quantum circuits [Mah18a] have an inherently randomized homomorphic evaluation al-
gorithm. This means that the evaluator and the obfuscator would most likely end up with a different cipher-
text even though they are computing the same function. This makes the hint h (which is ciphertext-specific)
completely useless to recover the output. A similar barrier also emerges in other generic transformations,
such as [GKP+13], which are at the foundations of many existing obfuscation schemes.

Reducing to Classical Obfuscation. As a direct approach seems to be out of reach of current techniques,
in this work we take a different route. Following the template of [GGH+13], our high-level idea is to
outsource the quantum computation to some untrusted component of the scheme and instead obfuscate
only the circuit that verifies that the computation was carried out correctly. The important point here is that
verifying the correctness of quantum computation is a much easier task than performing the computation
itself. In fact, it was recently shown [Mah18b] that the validity of any BQP computation can be verified by a
completely classical algorithm, assuming the quantum hardness of the LWE problem. Furthermore, recent
works [ACGH20, CCY20] have shown that the protocol can be collapsed to two rounds (in the random
oracle model): On input a quantum circuit Q, the verifier produces some public parameters pp, which can
be used by the prover (holding a quantum state |ψ〉) to compute a classical proof π. The verifier can then
locally verify π using some secret information r which was sampled together with pp.

Using these classical verification of quantum computation (CVQC) protocols without any additional
modification would allow us to implement the scheme as outlined above. However, we would not get
any meaningful notion of privacy for the obfuscated circuit, since the prover needs to evaluate the circuit
Q in plain. Thus, we will need to turn these protocol blind: The prover is able to prove that Q(|ψ〉) = y
obliviously, without knowing Q. This can be done in a canonical way, using fully homomorphic encryption
for quantum circuits (QFHE) with classical keys [Mah18a, Bra18].

Challenges Towards Provable Security. Although everything seems to fall in place, there is a subtle as-
pect that makes our attempt not sound: We implicitly assumed that the CVQC protocol is resettably secure. If
the prover is given access to a circuit implementing a (obfuscated) verifier, nothing prevents it from rewind-
ing it in an attempt to extract the verifier’s secret. Once this is leaked, the prover can fool the verifier into
accepting false statements, ultimately learning some information about the obfuscated circuit. This is not
only a theoretical concern, instead one can show concrete attacks against all known CVQC protocols (more
discussion on this later). While this class of attacks seems to be hard to prevent in general, we observe that,
if we restrict our attention to null (i.e. always rejecting) circuits, then this concern disappears. This is not a
coincidence: Any two-round CVQC protocol that is one-time sound is automatically many-time sound for
reject-only circuits, since it is easy to simulate the responses of the verifier (always reject).

Another challenge that we need to resolve is that of provable security: The classical obfuscation only
provides us with the weak guarantee of computational indistinguishability for functionally equivalent
(classical) circuits. Even if we restrict our attention to null circuits, our scheme still needs to hardwire
the verifier’s secret in the obfuscated verifier circuit. That is, to obfuscate a null circuit Q, we publish

pp and Obf (ΠnullQiO(π) : Return CVQC.Verify(pp, π, r))

where (pp, r)←$CVQC.KeyGen(1λ, Q) is sampled by the obfuscator. To show security, we cannot simply
switch the obfuscated circuit to reject all inputs: Since the CVQC protocol is only computationally sound,
valid proofs π for false statements always exist, they are just hard to find. In particular, this means that the
circuit ΠnullQiO as defined above is not functionally equivalent to an always rejecting (classical) circuit.
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Quantum Null iO from Trapdoor Dual-Mode CVQC. To address the above issue, we introduce the no-
tion of dual-mode CVQC. As mentioned earlier, a dual-mode CVQC supports an alternative parameter gen-
eration algorithm SimGen where for any null circuitQ and (pp, r)← CVQC.SimGen(1λ, Q), there do not exist
any proofs π that accept with respect to the verification key r. Furthermore, the parameters and verification
key generated by SimGen should be computationally indistinguishable from those generated by KeyGen.

Unfortunately, the two-message CVQC protocol mentioned above does not satisfy this dual-mode prop-
erty.1 However, we observe that a weaker property, which we call the trapdoor dual-mode property, both
suffices for quantum null-iO, and can be shown to exist in the quantum random oracle model. In a trap-
door dual-mode CVQC, the standard key generation algorithm KeyGen does not support the dual-mode
property. However, there exists a “trapdoor” parameter generation algorithm CVQC.TdGen that returns the
public parameters pptd along with a secret key rtd and a trapdoor td. The operation of the protocol in this
trapdoor setting does actually satisfy the dual-mode property. In full detail, a trapdoor dual-mode CVQC
satisfies the following properties:

• (Setup Indistinguishability) For all circuits Q, the distributions

CVQC.KeyGen(1λ, Q) ≈c (pptd, rtd)

are computationally indistinguishable, where (pptd, rtd, td)←$CVQC.TdGen(1λ, Q).

• (Verification Equivalence) The algorithms

CVQC.Verify(Q, ·, rtd) ≡ CVQC.TdVerify(Q, ·, td)

are functionally equivalent.

Moreover, in the trapdoor setting the scheme should satisfy the dual-mode property, using parameter
generation algorithm SimGen.

• (Dual-Mode) For any null circuit Q, the distributions

(pptd, td) ≈c (ppsim, tdsim)

are computationally indistinguishable, where (pptd, sktd, td)←$CVQC.TdGen(1λ, Q) and (ppsim, tdsim)
←$CVQC.SimGen(1λ, Q). Moreover, the circuit CVQC.TdVerify(Q, ·, tdsim) has no accepting inputs.

Deferring for the moment the discussion on how to actually construct a trapdoor dual-mode CVQC,
we now argue that the above properties suffice for constructing quantum null-iO. Our obfuscation scheme
will make use of quantum fully-homomorphic encryption to make the CVQC blind, as well as classical
indistinguishability obfuscation to hide the secret key r of the CVQC scheme and the secret key sk of the
QFHE scheme. An obfuscation of circuit Q consists of

QFHE.Enc(pp), Obf(ΠnullQiO(ctπ) : Return CVQC.Verify(Q,QFHE.Dec(sk, ctπ), r)),

where (pp, r)←$CVQC.KeyGen(1λ, Q). To show indistinguishability security, we use the properties of trap-
door dual-mode CVQC to gradually move from an obfuscation of null circuit Q0 to null circuit Q1:

QFHE.Enc(pp), Obf(ΠnullQiO(ctπ) : Return CVQC.Verify(Q0,QFHE.Dec(sk, ctπ), r))

≈c QFHE.Enc( pptd ), Obf(ΠnullQiO(ctπ) : Return CVQC.Verify(Q0,QFHE.Dec(sk, ctπ), rtd ))

≈c QFHE.Enc(pptd), Obf(ΠnullQiO(ctπ) : Return CVQC.Verify(Q0,QFHE.Dec(sk, ctπ), td ))

≈c QFHE.Enc( ppsim ), Obf(ΠnullQiO(ctπ) : Return CVQC.Verify(Q0,QFHE.Dec(sk, ctπ), tdsim ))

≈c QFHE.Enc(ppsim), Obf( Π⊥ )

1Note in particular that such a property actually implies publicly-verifiable CVQC, for which there were no known constructions
prior to this work.
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where Π⊥ is the always rejecting circuit. At this point we can appeal to semantic security of the QFHE
to switch the parameter generation to use Q1, and then undo the above sequence of four hybrids. This
establishes that the obfuscation of Q0 is computationally indistinguishable from the obfuscation of Q1.

Finally, applying a known transformation, we obtain a witness encryption scheme for QMA as an im-
mediate corollary.

A Trapdoor Dual-Mode CVQC Protocol in the QROM. What is left to be shown is an instantiation of
a trapdoor dual-mode CVQC protocol. While we do not know of a scheme secure in the standard model
(in fact, we do not yet know how to construct any two-message CVQC secure in the standard model, even
without the trapdoor dual-mode property), we present a construction secure against the LWE assumption
in the QROM. In fact, we show how to compile any two-message CVQC protocol (such as the one discussed
above), into a trapdoor dual-mode CVQC. We make use of a random oracle H : {0, 1}∗ → {0, 1}λ+1 that
may be queried in superposition. The modified protocol simply consists of running the CVQC prover and
hashing the resulting proof

π←$CVQC.Prove(pp, |ψ〉) and h = H(π)

whereas the verification algorithm checks the consistency of h ?
= H(π), in addition to running the CVQC.Verify

algorithm on π.
In the trapdoor setting, we move the computation of the verification algorithm CVQC.Verify(pp, π, r)

into the specification of the random oracle H. That is, we replace the last bit of the random oracle output
with an encryption of CVQC.Verify(pp, π, r), under a secret key td that functions as the trapdoor. Then, the
trapdoor verification algorithm no longer requires the CVQC secret parameters: It can instead use td to
decrypt the last bit of the random oracle output h in order to uncover the result of CVQC.Verify(pp, π, r). To
implement this, we use a quantum-secure PRF F with key td. On input some proof π, we set the first λ bits
of the random oracle to be uniformly sampled and the last bit to

F (td, π)⊕ CVQC.Verify(pp, π, r).

Note that the verifier (TdVerify) can equivalently check the validity of π by simply recomputing F (td, π)
and unmasking the response that was already computed in the random oracle.

Now, it remains to show how we obtain the dual-mode property in the trapdoor setting. This follows by
letting SimGen simply be the same as TdGen, except that CVQC.Verify(pp, π, r) is replaced with 0 always in
the implementation of the random oracle. That is, the last bit of the random oracle output is always F (td, π),
and thus, verification using td will always output 0. To show that this is computationally indistinguishable
from CVQC.TdGen for any null circuit Q, we observe that any adversary that can distinguish these oracles
can be used to break the soundness of CVQC. This follows by specifying a reduction that measures one of
the adversary’s oracle queries to obtain an accepting proof with noticeable probability.

1.2.2 Applications

Next, we explore some applications of our newly constructed null-iO for quantum circuits. Since it is
the weaker primitive, we are going to use witness encryption for QMA (with classical ciphertexts) as the
starting point for all of our primitives.

NIZK for QMA. Our first result is a construction of NIZK arguments for QMA with public verifiability.
To build up some intuition about the protocol, consider the simplified setting where we have a single fixed
statement x. We can then define the common reference string to be

(vk,WE.Enc(x, σ)) such that Verify(vk, σ, x) = 1

where vk is a verification key of a signature scheme. Anyone with a valid witness |ψ〉 for x can recover the
signature by decrypting the ciphertext. Then anyone can verify the validity of x by simply verifying the
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signature σ against vk. Note that this computation is entirely classical and succinct: It’s runtime does not
depend on the computation needed to compute |ψ〉 ∈ RL(x). To extend this approach to an exponential
number of statements, we exploit the fact that our witness encryption scheme has a completely classical
encryption procedure. Our idea is to place in the common reference string the obfuscation of the (classical)
circuit

ΠNIZK[sk, k](x) : Return WE.Enc(x, σ;PRF(k, x))

where PRF is a puncturable PRF [SW14]. The prover algorithm can then evaluate the obfuscated circuit on
x to obtain WE.Enc(x, σ) and proceed as before. Such an approach can be shown to be sound via a standard
puncturing argument.

ZAPR for QMA. The next question that we ask is whether we can reduce the trust on the setup and
obtain some meaningful guarantees also in the presence of a maliciously generated common reference
string. Known generic transformations [DN00] do not apply to our case, since the NIZK that we obtain
is an argument, i.e. it has computational soundness. Our saving grace is again the fact that our NIZK
has completely classical setup and verification procedures. This allows us to leverage powerful tools from
the literature of (classical) zero-knowledge. We adopt a dual-track approach (reminiscent of the Naor-
Yung [NY90] paradigm) where we define the setup to sample two copies (crs0, crs1), the image of a one-way
function y, and a classical non-interactive witness indistinguishable (NIWI) proof that either crs0 or crs1 is
correctly generated.

At this point, it is still unclear whether we have any privacy guarantee, since one of the two strings can
be maliciously generated and can therefore leak some information about the witness, if naively used by the
prover. Thus, instead of having the prover directly compute the proofs (π0, π1), we let it compute a classical
NIWI for the statement ∃ (π0, π1, z) such that:

Verify(crs0, π0, x) = 1 OR
Verify(crs1, π1, x) = 1 OR
OWF(z) = y.

 .

Since the verification algorithm of our NIZK schem is classical, then so is the above statement. By the
witness indistinguishbility of the NIWI, the verifier cannot distinguish whether the prover inverted the one-
way function or possesses a valid proof. Proving soundness requires more work, since our NIZK scheme
is only computationally sound. To get around this, we further augment the scheme with a statistically hiding
sometimes-binding (SBSH) commitment [KKS18, GJJM20, BFJ+20]: This tool allows the prover to commit
to its witness, which is statistically hidden, except with some (exponentially) small probability where the
commitment is efficiently extractable. We can then set the parameters of our primitives to be sufficiently
large (i.e. use complexity leveraging) to ensure that whenever the extraction even happens, it still leads to
a contradiction to the soundness of the NIZK or to the one-wayness of OWF.

ABE for BQP. We next show how our witness encryption scheme for QMA yields the first ABE scheme for
quantum functionalities. For starters, consider again the simplified setting where the key authority issues a
single key for a fixed attribute x. The witness encryption suggests a natural ABE encryption procedure for a
policy encoded by a quantum circuitQ: We compute WE.Enc((Q, x),m), where the statement (Q, x) returns
1 if and only if Q(x) = 1. Note that this is technically a BQP statement (the witness is publicly computable),
but a witness encryption for QMA is also a witness encryption for BQP. The challenge is now to define
an encryption algorithm that does not need to take the attribute x as an input. Instead of publishing the
ciphertext directly, the encrypter obfuscate the (classical) circuit

ΠABE[vk, k](x, σ) : If Verify(vk, σ, x) = 1 return WE.Enc((Q, x),m;PRF(k, x))

where PRF is a puncturable PRF and vk is the verification key for a signature scheme. A secret key for an
attribute x simply consists of a signature σx on x, computed with a signing key held by the key authority.
This way, the holder of a key for an attribute x can only extract witness encryption ciphertexts associated
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with x. Some additional work is needed in order to obtain a provably secure scheme, but the main ideas
are already present in this outline.

The scheme as described so far does not hide the circuit Q, i.e. it only satisfies the notion of payload
hiding. We show a generic compiler that transforms any quantum ABE with payload-hiding security into
one with predicate encryption security, i.e. where the circuit Q is hidden to the holders of keys for rejecting
attributes. This result is obtained by introducing the notion of quantum lockable obfuscation and presenting a
construction under LWE.

Constrained PRF for BQP. Given the above ABE scheme for BQP, one can easily turn any puncturable
PRF into a constrained PRF. For convenience, here we consider a key-policy ABE, which can be obtained
from the scheme as described above via universal (quantum) circuits. The public parameters of the PRF are
augmented with an obfuscated circuit

ΠPRF[k, k̃](x) : Return ABE.Enc(x,PRF(k, x);PRF(k̃, x))

where k̃ is an independently sampled key. Note that anyone can query such circuit on any attribute x,
however only the holder of a key for a policy Q such that Q(x) = 1 (with overwhelming probability) can
recover the PRF output PRF(k, x) by decrypting the resulting ciphertext. Furthermore, observe that the
functionality specified above is entirely classical, and therefore classical obfuscation suffices.

Secret Sharing for Monotone QMA. It is well-known that witness encryption for NP implies the existence
of a secret sharing scheme for monotone NP [KNY14]. The high-level idea is to assign to each party Pi the
opening of a perfectly binding commitment ci = Com(i; ri) encoding the index corresponding to the party.
Then one can publish a witness encryption for the statement{

∃ (I ⊆ P, r1, . . . , r|I|) such that: I ∈ L AND ∀i ∈ I : ci = Com(i; ri)
}

where I , parsed as a binary string, forms a statement in a NP-complete language Lwith witness w. It is not
hard to show that decrypting the witness encryption (i.e. reconstructing the secret) can only be done by an
authorized set of parties holding the witness w. We show that this construction naturally generalizes to the
QMA setting, when given a witness encryption scheme for QMA.

1.3 Discussion and Open Problems

We discuss two clear open problems that are suggested by this work. We identify barriers towards making
progress on each problem with our current approach.

Obfuscation Beyond Null Circuits. In this work, we only consider obfuscating the CVQC verification
circuit in the setting where each instance the prover can query will be rejecting (with high probability).
One could also consider obfuscating the verification circuit in the setting where the prover can query on an
accepting instance, which would help in constructing fully-fledged iO for all quantum circuits. We expect
obfuscation for general quantum circuits to have a variety of applications and we consider it a fascinating
problem in its own right.

Unfortunately, it turns out that this approach is in general insecure and concrete attacks exist against all
known constructions of CVQC. We provide a high-level description of these attacks in Section 9. The main
source of trouble appears to be the lack of resettable security of CVQC protocols. That is, an attacker is able
to extract the verifier’s secret by observing its responses on accepting instances.

Quantum Null-iO from Standard Assumptions. Another natural question is whether one can obtain
quantum null-iO from standard cryptographic assumptions. Since we only give a construction of (trapdoor)
dual-mode CVQC in the QROM, the resulting quantum null-iO does not achieve provable security. We
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stress that even without the dual-mode property, two-message CVQC protocols are only known in the
QROM. One approach towards evading this barrier could be to instantiate the base CVQC protocol with
the two message protocol of [MY21] (with quantum first message), which is statistically sound. This would
result in a valid quantum null-iO since the first message can be computed by the obfuscator and sent
along with the obfuscated circuit. However, even in this case, the verification circuit in [MY21] will accept
exponentially many proofs even for no instances, as the underlying delegation of quantum computation
protocol has a probabilistic verifier (that chooses which Hamiltonian terms to measure on each copy of the
history state). Even though soundness can be driven to negligible by parallel repetition, this also rapidly
increases the proof size. Thus, attempting to hybrid over each proof will fail, since the number of hybrids
will be much larger than inverse of the soundness error. Given this barrier, we leave constructing any of the
primitives discussed in this work in the standard model and against standard cryptographic assumptions,
as an intriguing open problem.

In Appendix A, we present an alternative construction of quantum null-iO assuming classical virtual-
blackbox (VBB) obfuscation. While it is known that VBB obfuscation is in general impossible [BGI+01],
classical VBB obfuscation has been used as a heuristic method to analyze the security of certain schemes.
Recent examples include fully-homomorphic encryption for RAM programs [HHWW19] and one-shot sig-
natures [AGKZ20]. As another example, Aaronson and Christiano [AC12] made use of ideal classical obfus-
cation to establish the feasibility of public-key quantum money. This influential result inspired a fruitful line
of research, including a result by Zhandry [Zha19] that showed how to instantiate their original approach
from indistinguishability obfuscation.

2 Preliminaries

We denote by λ the security parameter. A function f : N → [0, 1] is negligible if for every constant c ∈ N
there exists N ∈ N such that for all n > N , f(n) < n−c. We recall some standard notation for classical
Turing machines and Boolean circuits:

• We say that a Turing machine (or algorithm) is PPT if it is probabilistic and runs in polynomial time
in λ.

• We sometimes think about PPT Turing machines as polynomial-size uniform families of circuits. A
polynomial-size circuit family C is a sequence of circuits C = {Cλ}λ∈N, such that each circuit Cλ is of
polynomial size λO(1) and has λO(1) input and output bits. We say that the family is uniform if there
exists a polynomial-time deterministic Turing machine M that on input 1λ outputs Cλ.

• For a PPT Turing machine (algorithm) M , we denote by M(x; r) the output of M on input x and
random coins r. For such an algorithm, and any input x, we write m ∈ M(x) to denote that m is in
the support of M(x; ·). Finally we write y←$M(x) to denote the computation of M on input x with
some uniformly sampled random coins.

2.1 Quantum Computation

We recall some notation for quantum computation and we define the notions of computational and statisti-
cal indistinguishability for quantum adversaries. Various parts of what follows are taken almost verbatim
from [BS20].

We say that a Turing machine (or algorithm) is QPT if it is quantum and runs in polynomial time. We
sometimes think about QPT Turing machines as polynomial-size uniform families of quantum circuits (as
these are equivalent models). We call a polynomial-size quantum circuit family C = {Cλ}λ∈N uniform if
there exists a polynomial-time deterministic Turing machine M that on input 1λ outputs Cλ.

Throughout this work, we model efficient adversaries as quantum circuits with non-uniform quantum
advices. This is denoted by A∗ = {A∗λ, ρλ}λ∈N, where {A∗λ}λ∈N is a polynomial-size non-uniform sequence
of quantum circuits, and {ρλ}λ∈N is some polynomial-size sequence of mixed quantum states. We now
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define the formal notion of computational indistinguishability in the quantum setting, where random vari-
ables X,Y are represented as mixed quantum states.

Definition 2.1 (Computational Indistinguishability). Two ensembles of quantum random variablesX = {Xλ}λ∈N
and Y = {Yλ}λ∈N are said to be computationally indistinguishable (denoted by X ≈c Y) if there exists a negligible
function ν such that for all λ ∈ N and all non-uniform QPT distinguishers with quantum advice A = {Aλ, ρλ}λ∈N,
it holds that

|Pr[Aλ(Xλ; ρλ) = 1]− Pr[A(Yλ; ρλ) = 1]| ≤ ν(λ).

The trace distance between two quantum distributions (Xλ, Yλ), denoted by TD(Xλ, Yλ), is a general-
ization of statistical distance to the quantum setting and represents the maximal distinguishing advantage
between two quantum distributions by an unbounded quantum algorithm. We define below the notion of
statistical indistinguishability.

Definition 2.2 (Statistical Indistinguishability). Two ensembles of quantum random variables X = {Xλ}λ∈N and
Y = {Yλ}λ∈N are said to be statistically indistinguishable (denoted by X ≈s Y) if there exists a negligible function ν
such that for all λ ∈ N, it holds that

TD(Xλ, Yλ) ≤ ν(λ).

Throughout this work, we will often consider quantum circuits Q that output a single classical bit. Any
such circuit can be written as a unitary followed by a computational basis measurement of the first qubit.
When we compute Q on some classical (resp. quantum) input x (resp. |ψ〉), we write Q(x) (resp. Q(|ψ〉))
to denote the output that results from padding the input with sufficiently many ancillary |0〉 states (as
determined by the description of Q), computing a unitary, and then measuring the first qubit. We will
sometimes consider the following restricted families of “psuedo-deterministic” quantum circuits.

Definition 2.3 (Pseudo-Deterministic Quantum Circuit). A family of psuedo-deterministic quantum circuits is
defined by a family of circuits {Qλ}λ∈N. The circuit defined by Qλ takes as input a bit string x ∈ {0, 1}n(λ) (along
with ancillary 0 states) and outputs a single classical bit b← U(x). The circuit is pseudo-deterministic if there exists
a negligible function ν such that for every sequence of classical inputs {xλ}λ∈N, there exists a sequence of outputs
{bλ}λ∈N such that

Pr[Qλ(xλ) = bλ] = 1− ν(λ).

2.2 Learning with Errors

We recall the definition of the learning with errors (LWE) problem [Reg05].

Definition 2.4 (Learning with Errors). The LWE problem is parametrized by a modulus q = q(λ), polynomials
n = n(λ) and m = m(λ), and an error distribution χ. The LWE problem is hard if it holds that

(A,A · s + e) ≈c (A,u)

where A←$Zm×nq , s←$Znq , u←$Zmq , and e←$χm.

As shown in [Reg05, PRS17], for any sufficiently large modulus q the LWE problem where χ is a discrete
Gaussian distribution with parameter σ = ξq ≥ 2

√
n (i.e. the distribution over Z where the probability of x

is proportional to e−π(|x|/σ)
2

), is at least as hard as approximating the shortest independent vector problem
(SIVP) to within a factor of γ = Õ(n/ξ) in worst case dimension n lattices.

2.3 Quantum Fully-Homomorphic Encryption

We recall the notion of quantum fully homomorphic encryption (QFHE) [BJ15]. In this work we are inter-
ested in QFHE schemes with classical keys, classical encryption of classical messages, and classical decryp-
tion and therefore we only define QFHE for this restricted case.
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Definition 2.5 (Quantum Homomorphic Encryption). A quantum homomorphic encryption scheme (QFHE.Gen,
QFHE.Enc,QFHE.Eval,QFHE.Dec) consists of the following efficient algorithms.

• QFHE.Gen(1λ): On input the security parameter, the key generation algorithm returns secret/public key pair
(sk, pk).

• QFHE.Enc(pk,m): On input the public key pk and a message m, the encryption algorithm returns a ciphertext
c.

• QFHE.Eval(pk, C, c): On input the public key pk, a quantum circuit C, and a ciphertext c, the evaluation
algorithm returns an evaluated ciphertext c̃.

• QFHE.Dec(sk, c): On input the secret key sk and a ciphertext c, the decryption algorithm returns a message m.

Analogously to the classical case [Gen09], we say that the scheme is fully homomorphic if the evaluation
algorithm supports all polynomial-size quantum circuits. We say that the scheme is leveled if the maximum
depth of the homomorphically evaluated circuits is bounded by the key generation algorithm (formally,
the key generation algorithm takes as input an additional 1d depth parameter). In this work, we are only
interested in levelled schemes, so we drop the adjective wherever it is clear from the context. Next we
define the notion of (single-hop) evaluation correctness for QFHE.

Definition 2.6 (Evaluation Correctness). A quantum homomorphic encryption scheme (QFHE.Gen,QFHE.Enc,
QFHE.Eval,QFHE.Dec) is correct if for all λ ∈ N, all (sk, pk) ∈ QFHE.Gen(1λ), all messagesm, and all polynomial-
size quantum circuits C, it holds that

QFHE.Dec(sk,QFHE.Eval(pk, C,QFHE.Enc(pk,m))) ≈s C(m).

The notion of semantic security is defined analogously to the classical case, and we refer the reader
to [BJ15] for a formal definition. The works of Mahadev [Mah18a] and Brakerski [Bra18] show that QFHE
with classical keys can be constructed from the quantum hardness of the LWE problem. We recall their
results below.

Lemma 2.7 ([Mah18a, Bra18]). Assuming the quantum hardness of the LWE problem, there exists a (leveled) QFHE
scheme (QFHE.Gen,QFHE.Enc,QFHE.Eval,QFHE.Dec) with classical keys and classical decryption.

2.4 Program Obfuscation

We recall two notions of obfuscation for classical circuits: indistinguishability obfuscation and virtual black-
box obfuscation. An obfuscator Obf is a PPT algorithm that takes as input a circuit C and outputs an
obfuscated circuit C̃. For both notions of obfuscation, Obf must satisfy the following correctness property.

Definition 2.8 (Correctness). An obfuscator Obf is correct if for all circuits C, it holds that

Pr
[
∀x ∈ {0, 1}n : C(x) = Obf(1λ, C)(x)

]
= 1.

Now we define the two notions of security. First, we define indistinguishability obfuscation.

Definition 2.9 (Indistinguishability Obfuscation). For all pairs of circuits (C0, C1) such that |C0| = |C1|, and
such that for all inputs x, it holds that C0(x) = C1(x), it holds that

Obf(1λ, C0) ≈c Obf(1λ, C1).

This definition extends to the post-quantum setting by allowing the adversary to be QPT.
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2.5 Puncturable Pseudorandom Functions

We recall the definition of a puncturable pseudorandom function (PRF) from [SW14].

Definition 2.10 (Puncturable Pseudorandom Function). A puncturable PRF (PRF.Gen,PRF.Punct,PRF.Eval)
consists of the following efficient algorithms.

• PRF.Gen(1λ): On input the security parameter, the key generation algorithm returns a key k.

• PRF.Punct(k, z): On input a key k and a point z, the puncturing algorithm returns the punctured key kz .

• PRF.Eval(k, x): On input a key k and a string x ∈ {0, 1}λ, the evaluation algorithm returns a string y ∈
{0, 1}λ.

Correctness requires that the evaluation over the punctured key agrees with the evaluation over the
non-punctured key, except for the punctured point.

Definition 2.11 (Correctness). A puncturable PRF (PRF.Gen,PRF.Punct,PRF.Eval) is correct if for all λ ∈ N, all
z ∈ {0, 1}λ, and all strings x 6= z it holds that

Pr [PRF.Eval(k, x) = PRF.Eval(kz, x)] = 1

where k←$PRF.Gen(1λ) and kz ←$PRF.Punct(k, z).

Pseudorandomness requires that the evaluation of the PRF at any point z is computationally indistin-
guishable from random, even given the punctured key kz .

Definition 2.12 (Pseudorandomness). A puncturable PRF (PRF.Gen,PRF.Punct,PRF.Eval) is pseudorandom if
for all λ ∈ N and all z ∈ {0, 1}λ it holds that

(PRF.Eval(k, z), kz) ≈c (u, kz)

where k←$PRF.Gen(1λ), kz ←$PRF.Punct(k, z), and u←$ {0, 1}λ.

3 Obfuscation of Null Quantum Circuits

In this section, we present a scheme to obfuscate null quantum circuits. Then we show that such a scheme
implies the existence of a witness encryption scheme for QMA.

3.1 Classical Verification of Quantum Computation

Mahadev [Mah18b] gave the first protocol for classical verification of quantum computation. The proto-
col was recently improved to only require two messages in the quantum random oracle model [CCY20,
ACGH20].

Definition 3.1 (Classical Verification of Quantum Computation (CVQC)). A two-message classical verifica-
tion of quantum computation protocol consists of algorithms (KeyGen,Prove,Verify). The following is defined for
quantum circuits Q with one classical bit of output, and involves a random oracleH.

• KeyGen(1λ, Q): On input the security parameter and a quantum circuitQ, the PPT algorithm KeyGen outputs
public parameters pp and a verification key r.

• ProveH(pp, |ψ〉): On input the public parameters pp and a quantum state |ψ〉, the QPT Prove algorithm, with
query access to random oracleH, outputs a proof π.

• VerifyH(Q, π, r): On input a quantum circuit Q, a proof π, and a verification key r, the PPT algorithm Verify,
with query access to a random oracleH, outputs a bit b indicating acceptance or rejection.
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We require the following notion of correctness.

Definition 3.2 (Correctness). A CVQC protocol (KeyGen,Prove,Verify) is correct if for any negligible function ν,
there exists a polynomial k and negligible function µ such that for all polynomial-size families of quantum circuits
{Qλ}λ∈N and inputs {|ψλ〉}λ∈N such that there exists b ∈ {0, 1} such that Pr[Qλ(|ψλ〉) = b] ≥ 1 − ν(λ), it holds
that

Pr
[
VerifyH(Qλ, π, r) = b : (pp, r)←$KeyGen(1λ, Qλ), π←$ProveH(pp, |ψλ〉⊗k(λ))

]
= 1− µ(λ).

Remark 3.3. We state correctness above with respect to (quantum circuit, input) pairs that either accept or reject
with overwhelming probability. By standard QMA amplification, a protocol that satisfies this correctness guarantee
can also be used to verify (quantum circuit, input) pairs that either accept with probability α or reject with probability
β, where α and β are separated by an inverse polynomial.

Soundness. We define the notion of soundness below.

Definition 3.4 (Soundness). A CVQC protocol (KeyGen,Prove,Verify) is sound if for any negligible function ν,
any polynomial-size family of quantum circuits {Qλ}λ∈N such that for all inputs {|ψλ〉}λ∈N, Pr[Qλ(|ψλ〉) = 1] ≤
ν(λ), and all QPT adversaries A, there exists a negligible function µ such that

Pr

[
VerifyH(Qλ, π, r) = 1 :

(pp, r)←$KeyGen(1λ, Qλ),
π←$A|H〉(pp)

]
= µ(λ).

The notation A|H〉 indicates that A has quantum query access to the random oracleH.

Trapdoor Dual-Mode CVQC. In the following we define CVQC with a strong notion of soundness, which
involves a dual-mode verifier algorithm.

Definition 3.5 (Trapdoor Dual-Mode CVQC). A trapdoor dual-mode CVQC protocol (KeyGen,Prove,Verify)
includes an additional triple of algorithms (TdGen,TdVerify,SimGen) with the following properties.

• (Setup Indistinguishability) For any polynomial-size family of quantum circuits {Qλ}λ∈N it holds that

KeyGen(1λ, Qλ) ≈c (pptd, rtd)

where (pptd, rtd, td)←$TdGen(1λ, Qλ).

• (Verification Equivalence) For any polynomial-size family of quantum circuits {Qλ}λ∈N, and any proof π, it
holds that

Verify(Qλ, π, rtd) = TdVerify(Qλ, π, td)

where (pptd, rtd, td)←$TdGen(1λ, Qλ).

• (Dual-Mode) For any negligible function ν, any polynomial-size family of quantum circuits {Qλ}λ∈N such that
for all inputs {|ψλ〉}λ∈N, Pr[Qλ(|ψλ〉) = 1] ≤ ν(λ), it holds that

(pptd, td) ≈c (ppsim, tdsim),

where (pptd, rtd, td)←$TdGen(1λ, Qλ), (ppsim, tdsim) ← SimGen(1λ, Qλ), and TdVerify(Qλ, ·, tdsim) has no
accepting input.

Let (KeyGen,Prove,Verify) be a two-message CVQC scheme (Definition 3.1). Our construction of trap-
door dual-mode CVQC is identical to such a two-message CVQC except for the modified prover algorithm

Prove∗H(pp, |ψ〉) : Return (π←$ProveH(pp, |ψ〉),H(π)),
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whereH is a random oracle with range {0, 1}λ+1, and the modified verification algorithm

Verify∗H(Q, (π, h), r) : IfH(π)
?
= h return VerifyH(Q, π, r), else return 0.

In order to prove our construction, we are going to assume the existence of a quantum-secure PRF F :
{0, 1}λ × {0, 1}∗ → {0, 1}, that is, a function that remains computationally indistinguishable from a truly
random function even when the adversary can issue superposition queries. Quantum-secure PRFs are
known from quantum-secure one-way functions [Zha12].

Theorem 3.6. Let (KeyGen,Prove,Verify) be a two-message CVQC scheme and let F be a quantum-secure PRF.
Then (KeyGen,Prove∗,Verify∗) is a trapdoor dual-mode CVQC in the QROM.

Proof. First, we define the algorithms (TdGen,TdVerify,SimGen).

• TdGen(1λ, Q) : Sample (pp, r)←$KeyGen(1λ, Q) and a PRF key k. Set td = k and output (pp, r, td).
Also, the random oracle H will be implemented using a random oracle G : {0, 1}∗ → {0, 1}λ and
evaluated asH(x) = (G(x), F (td, x)⊕ Verify(Q, x, r)).

• TdVerifyH(Q, (π, h), td) : IfH(π)
?
= h return hλ+1 ⊕ F (td, π).

• SimGen(1λ, Q) : Same as TdGen except that the random oracle H will be implemented as H(x) =
(G(x), F (td, x)).

We now argue that the three properties are satisfied.
To show Setup Indistinguishability, we first note that (pp, r) are sampled identically by KeyGen and

TdGen. Thus, it suffices to argue that the adversary cannot notice the change in the implementation of the
random oracle H, which we show via a sequence of hybrids. Let G : {0, 1}∗ → {0, 1}λ and I : {0, 1}∗ →
{0, 1} be random oracles.

• Hyb0 : This is the original hybrid, whereH is implemented as a random oracle {0, 1}∗ → {0, 1}λ+1.

• Hyb1 : ImplementH(x) as (G(x), I(x)), which is perfectly indistinguishable from Hyb0.

• Hyb2 : ImplementH(x) as (G(x), I(x)⊕Verify(Q, x, r)), which is perfectly indistinguishable from Hyb1.

• Hyb3 : ImplementH(x) as (G(x), F (td, x)⊕Verify(Q, x, r)), which is computationally indistinguishable
from Hyb2 due to the security of F .

Next, Verification Equivalence follows by definition. Finally, we show the Dual-Mode property. First,
we note that the fact that TdVerify(Q, ·, tdsim) has no accepting input follows by definition. It remains to
argue that (pptd, td) ≈c (ppsim, tdsim), which we show via a sequence of hybrids. Let q be an upper bound
on the number of random oracle queries made by the adversary.

• Hyb0 : This is (pptd, td) sampled by TdGen(1λ, Q) and H implemented as H(x) = (G(x), F (td, x) ⊕
Verify(Q, x, r)).

• Hyb1,i for i ∈ [q] : The adversary’s first i queries toH are answered asH(x) = (G(x), F (td, x)). That is,
in the first i queries, Verify(Q, x, r) is always set to 0. The indistinguishability H1,i ≈c H1,i−1 follows
from the soundness of the CVQC protocol. Indeed, an adversary can only distinguish if its i’th query
has some inverse polynomial amplitude on x such that VerifyH(Q, x, r) = 1. Otherwise, the hybrids
would be statistically close. However, in this case, a reduction can produce an accepting proof for
CVQC with inverse polynomial probability by answering each of the first i − 1 queries as in H1,i−1
and then measuring the i’th query. This violates the soundness of CVQC, since Q rejects on all inputs
with overwhelming probability.

Finally, note that Hyb1,q is SimGen(1λ, Q), which completes the proof.
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3.2 Definition

Below we define obfuscation for a class of null quantum circuits. We again consider the set of quantum
circuits that have one bit of classical output.

Definition 3.7 (Null-iO for Quantum Circuits). A null obfuscator (Obf,Eval) for quantum circuits is defined as
the following QPT algorithms.

• Obf(1λ, Q): The obfuscation algorithm takes as input a security parameter 1λ and a quantum circuit Q with
one classical bit of output, and outputs an obfuscation Q̃.

• Eval(Q̃, |ψ〉): The evaluation algorithm takes as input a unitary Q̃ and an input |ψ〉 and outputs a bit b.

We define correctness below.

Definition 3.8 (Correctness). A null obfuscator (Obf,Eval) is correct if for any negligible function ν, there exists
a polynomial k and negligible function µ such that for all polynomial-size families of quantum circuits {Qλ}λ∈N and
inputs {|ψλ〉}λ∈N such that there exists b ∈ {0, 1} such that Pr[Qλ(|ψλ〉) = b] ≥ 1− ν(λ), it holds that

Pr[Eval(Q̃, |ψλ〉⊗k(λ)) = b : Q̃←$Obf(1λ, Qλ)] ≥ 1− µ(λ).

Remark 3.9. The correctness guarantee stated above is a weakening of standard obfuscation correctness in two ways.
First, it only guarantees correctness for inputs that either accept or reject with high probability. Second, it requires
the evaluator to possess multiple copies of the quantum input. However, note that for the class of pseudo-deterministic
quantum circuits on classical inputs (Definition 2.3), where each input x is mapped to a particular classical output
y = Q(x) with overwhelming probability, the above correctness guarantee is standard. Thus, this null-iO definition
can be thought of as standard null-iO for psuedo-deterministic quantum circuits (strictly generalizing null-iO for
classical circuits) with an additional correctness guarantee that holds when considering certain quantum inputs.

We define the notion of security below.

Definition 3.10 (Security). A null obfuscator (Obf,Eval) is secure if for any negligible function ν and polynomial-
size sequences of quantum circuits {U0,λ}λ∈N, {U1,λ}λ∈N such that for all inputs {|ψλ〉}λ∈N, Pr[Q0,λ(|ψλ〉) = 0] ≥
1− ν(λ) and Pr[Q1,λ(|ψλ〉) = 0] ≥ 1− ν(λ), it holds that

Obf(1λ, Q0,λ) ≈c Obf(1λ, Q1,λ).

3.3 Construction

Let (KeyGen,TdGen,SimGen,Prove,Verify,TdVerify) be a trapdoor dual-mode CVQC scheme, let Obf be a
post-quantum indistinguishability obfuscator, and let QFHE be a quantum fully-homomorphic encryption
scheme. Our construction is presented in Figure 1. An alternative construction assuming classical VBB
obfuscation is given in Appendix A.

Analysis. Correctness of the scheme follows immediately from correctness of the CVQC protocol, the
post-quantum iO, and the QFHE. We show that our scheme is secure in an indistinguishability sense.

Theorem 3.11 (Security). Let (KeyGen,TdGen,SimGen,Prove,Verify,TdVerify) be a trapdoor dual-mode CVQC
scheme, let Obf be a post-quantum indistinguishability obfuscator, and let QFHE be a quantum fully-homomorphic
encryption scheme. Then the protocol in Figure 1 is a secure quantum null-iO.

Proof. The proof proceeds by defining a series of hybrid distributions for the computation of the obfuscated
circuit, moving from null circuit Q0 to null circuit Q1.

• HybridH0: This is the honestly computed obfuscated circuit (ctpp, C̃) for Q0.
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Null-iO for Quantum Circuits

• Obf(1λ, Q):

– Sample (pk, sk)←$QFHE.Gen(1λ).

– Sample (pp, r)←$KeyGen(1λ, Q) and ctpp ← QFHE.Enc(pk, pp).

– Let C[Q, sk, r](·) be the circuit that takes as input ctπ and outputs

b = Verify(Q,QFHE.Dec(sk, ctπ), r).

– Compute C̃←$Obf(1λ,C[Q, sk, r]).

– Output Q̃ = (ctpp, C̃).

• Eval(Q̃, |ψ〉): Compute ctπ ←$QFHE.Eval(pk,Prove(·, |ψ〉), ctpp) and output C̃(ctπ).

Figure 1: A null obfuscation scheme for quantum circuits.

• Hybrid H1: In this hybrid, we sample the public parameters of the CVQC scheme in trapdoor mode
(pptd, rtd, td)←$TdGen(1λ, Q0). This modification is indistinguishable by the setup indistinguishabil-
ity of the dual-mode CVQC protocol.

• HybridH2: In this hybrid, we obfuscate the circuit C∗[Q0, sk, td] that uses the algorithm TdVerify(Q0, π, td)
rather than Verify(Q0, π, rtd). By the verification equivalence of the CVQC protocol, the circuits C[Q0, sk, rtd]
and C∗[Q0, sk, td] are functionally equivalent and therefore the indistinguishability follows from the
security of Obf.

• Hyb3 : In this hybrid, we generate (ppsim, tdsim)←$SimGen(1λ, Q0). This is indistinguishable from Hyb2
due to the dual-mode property of the CVQC, since Q0 is a null circuit.

• Hyb4 : In this hybrid, we let C̃ be an obfuscation of an always rejecting circuit, which is functionally
equivalent to the obfuscated circuit in Hyb2 due to the dual-mode property of the CVQC.

• Hyb5 : In this hybrid, we sample (ppsim, tdsim)←$SimGen(1λ, Q1). This is indistinguishable from Hyb4
due to the semantic security of QFHE, since ppsim is encrypted under QFHE, and sk, tdsim are not
needed to produce the obfuscation.

• Hyb6 : We revert the change done in Hyb4, except that we obfuscate the circuit C∗[Q1, sk, tdsim].

• Hyb7 : We revert the change done in Hyb3, except that we sample (pptd, rtd, td)←$TdGen(1λ, Q1).

• Hyb8 : We revert the change done in Hyb2, except that we obfuscate the circuit C[Q1, sk, rtd].

• Hyb9 : We revert the change done in Hyb1, except that we sample (pp, r)←$KeyGen(1λ, Q1).

The proof is concluded by observing that the last hybrid is identical to the correctly computed obfuscation
of Q1.

3.4 Witness Encryption for QMA

Recall that a language L = (Lyes,Lno) in QMA is defined by a tuple (V, p, α, β), where p is a polynomial,
V = {Vλ}λ∈N is a uniformly generated family of circuits such that for every λ, Vλ takes as input a string
x ∈ {0, 1}λ and a quantum state |ψ〉 on p(λ) qubits and returns a single bit, and α, β : N → [0, 1] are such
that α(λ)− β(λ) ≥ 1/p(λ). The language is then defined as follows.
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• For all x ∈ Lyes of length λ, there exists a quantum state |ψ〉 of size at most p(λ) such that the probabil-
ity that Vλ accepts (x, |ψ〉) is at least α(λ). We denote the (possibly infinite) set of quantum witnesses
that make Vλ accept x by RL(x).

• For all x ∈ Lno of length λ, and all quantum states |ψ〉 of size at most p(λ), it holds that Vλ accepts on
input (x, |ψ〉) with probability at most β(λ).

We now recall the definition of witness encryption [GGSW13], and adapt it to the quantum setting.
Note that we define encryption only with respect to classical messages. This is without loss of generality,
since one can encode a quantum state with the quantum one-time pad [AMTDW00] and use the witness
encryption to encrypt the corresponding (classical) one-time pad keys.

Definition 3.12 (Witness Encryption for QMA). A witness encryption (WE.Enc,WE.Dec) for a language L ∈
QMA with relation RL consists of the following efficient algorithms.

• WE.Enc(1λ, x,m): On input the security parameter 1λ, a statement x, and a message m ∈ {0, 1}, the encryp-
tion algorithm returns a ciphertext c.

• WE.Dec(x, c, |ψ〉): On input a statement x, a ciphertext c, and a quantum state |ψ〉, the decryption algorithm
returns a message m or ⊥.

We define correctness below.

Definition 3.13 (Correctness). A witness encryption (WE.Enc,WE.Dec) for a language L ∈ QMA is correct if
there exists a negligible function ν(λ) and a polynomial k(λ) such that for all m ∈ {0, 1}, all polynomial-length
sequences of instances {xλ}λ∈N and witnesses {|ψλ〉}λ∈N where each xλ ∈ Lyes and |ψλ〉 ∈ RL(xλ), it holds that

Pr
[
WE.Dec(xλ,WE.Enc(1λ, xλ,m), |ψλ〉⊗k(λ)) = m

]
= 1− ν(λ).

Finally we recall the definition of security against quantum algorithms.

Definition 3.14 (Security). A witness encryption (WE.Enc,WE.Dec) for a language L ∈ QMA is secure if for all
polynomial-length sequences of instances {xλ}λ∈N where each xλ ∈ Lno, it holds that

WE.Enc(1λ, xλ, 0) ≈c WE.Enc(1λ, xλ, 1).

Lemma 3.15. Assuming null-iO for quantum circuits satisfying Definition 3.7, there exists witness encryption for
QMA.

Proof. WE.Enc(1λ, x,m) will simply output c←$Obf(1λ, Q[x,m]), where Q[x,m] takes as input |ψ〉, runs
the QMA verification procedure for instance x and witness |ψ〉, and then outputs m if verification ac-
cepts, and otherwise outputs ⊥. WE.Dec(x, c, |ψ〉⊗k(λ)) will take polynomially many copies of the wit-
ness |ψ〉 and run Eval(c, |ψ〉⊗k(λ)) to produce either m or ⊥. Assuming that the QMA language L is such
that α(λ) = 1 − negl(λ) and β(λ) = negl(λ) (which is without loss of generality by applying standard
QMA amplification), correctness and security of the witness encryption scheme follow immediately from
correctness and security of the null-iO. In particular, for x ∈ Lno, Q[x,m] is a null circuit, implying that
Obf(1λ, Q[x,m]) ≈c Obf(1λ, Q[x, 0]).

4 Non-Interactive Zero-Knowledge for QMA

In the following we show how a witness encryption scheme for QMA with classical encryption allows us
to obtain a non-interactive zero-knowledge (NIZK) argument for QMA. Before describing our scheme, we
introduce the necessary building blocks that we are going to use.
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4.1 Definition

We recall the definition of NIZK for QMA.

Definition 4.1 (NIZK Argument). A NIZK argument (NIZK.Setup,NIZK.Prove,NIZK.Verify) for a language
L ∈ QMA with relation RL consists of the following efficient algorithms.

• NIZK.Setup(1λ): On input the security parameter 1λ, the setup returns a common reference string crs.

• NIZK.Prove(crs, |ψ〉⊗k(λ) , x): On input a common reference string crs, k(λ) copies of the witness |ψ〉, and a
statement x, the proving algorithm returns a proof π.

• NIZK.Verify(crs, π, x): On input a common reference string crs, a proof π, and a statement x, the verification
algorithm returns a bit {0, 1}.

We defined correctness below.

Definition 4.2 (Correctness). A NIZK argument (NIZK.Setup,NIZK.Prove,NIZK.Verify) is correct if there exists
a negligible function ν such that for all λ ∈ N, all x ∈ Lyes, and all |ψ〉 ∈ RL(x) it holds that

Pr
[
NIZK.Verify(crs,NIZK.Prove(crs, |ψ〉⊗k(λ) , x), x) = 1

]
= 1− ν(λ)

where crs←$NIZK.Setup(1λ).

Next, we define (non-adaptive) computational soundness.

Definition 4.3 (Computational Soundness). A NIZK argument (NIZK.Setup,NIZK.Prove,NIZK.Verify) is com-
putationally sound if there exist a negligible function ν such that for all non-uniform QPT adversaries with quantum
advice A = {Aλ, ρλ}λ∈N and all x∗ ∈ Lno, it holds that

Pr [NIZK.Verify(crs,Aλ(crs, x∗; ρλ), x∗) = 1] = ν(λ)

where crs←$NIZK.Setup(1λ).

In the following we present the notion of (statistical) zero-knowledge.

Definition 4.4 (Statistical Zero-Knowledge). A NIZK argument (NIZK.Setup,NIZK.Prove,NIZK.Verify) is sta-
tistically zero-knowledge if here exists a simulator Sim such that for λ ∈ N, all r ∈ {0, 1}λ, all statements x ∈ Lyes,
and all witnesses |ψ〉 ∈ RL(x), it holds that

Sim(1λ, x, r) ≈s NIZK.Prove(crs, |ψ〉⊗k(λ) , x)

where crs = NIZK.Setup(1λ; r).

4.2 Construction

We describe in the following our NIZK argument system for any language L ∈ QMA with relation RL.
We assume the existence of a witness encryption (WE.Enc,WE.Dec) with classical encryption for the same
language L, a puncturable PRF (PRF.Gen,PRF.Punct,PRF.Eval), a one-way function OWF, and an indistin-
guishability obfuscator Obf for classical polynomial-size circuits. Our NIZK argument system (NIZK.Setup,
NIZK.Prove,NIZK.Verify) is presented in Figure 2.

Correctness. It is easy to see that the scheme is correct, i.e. true statements correctly verify, except with
negligible probability over the randomness imposed by the evaluation of the WE.Dec algorithm.
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NIZK for QMA

• NIZK.Setup(1λ):

– Sample two keys k0←$PRF.Gen(1λ) and k1←$PRF.Gen(1λ).

– Compute the obfuscation P̃←$Obf(1λ,P) where P is the circuit that, on input some state-
ment x, returns WE.Enc(1λ, x,PRF.Eval(k0, x);PRF.Eval(k1, x)). The circuit P is padded to
the maximum size of P∗ (defined in the proof of Theorem 4.5).

– Compute the obfuscation Ṽ←$Obf(1λ,V) where V is the circuit that, on input some state-
ment x and a string y, returns 1 if and only if OWF(PRF.Eval(k0, x)) = OWF(y). The circuit
V is padded to the maximum size of V∗ (defined in the proof of Theorem 4.5).

– Return crs = (P̃, Ṽ).

• NIZK.Prove(crs, |ψ〉⊗k(λ) , x):

– Compute c = P̃(x).

– Return π = WE.Dec(x, c, |ψ〉⊗k(λ)).

• NIZK.Verify(crs, π, x):

– Return Ṽ(x, π).

Figure 2: A publicly-verifiable NIZK argument for QMA

Soundness. Next we show that the scheme satisfies (non-adaptive) computational soundness.

Theorem 4.5 (Soundness). Let (WE.Enc,WE.Dec) be a witness encryption, let (PRF.Gen,PRF.Punct,PRF.Eval)
be a puncturable PRF, let OWF be a one-way function, and let Obf be an indistinguishability obfuscator. Then the
scheme in Figure 2 is computationally sound.

Proof. The proof proceeds by defining a series of hybrid distributions for the computation of the crs that we
argue to be computationally indistinguishable from each other. In the last hybrid, the probability that any
prover can cause the verifier to accept some x∗ ∈ Lno will be negligible.

• HybridH0: This is the original distribution where the crs is sampled from crs←$NIZK.Setup.

• Hybrid H1: In this hybrid we compute P̃←$Obf(1λ,P1) where P1 is the circuit that on input some
statement x, checks whether x = x∗. If that is the case, then it returns the ciphertext

c = WE.Enc(1λ, x∗,PRF.Eval(k0, x
∗);PRF.Eval(k1, x

∗)).

Otherwise compute c = WE.Enc(1λ, x,PRF.Eval(k0, x);PRF.Eval(k1,x∗ , x)), where k1,x∗ ←$PRF.Punct(k1, x
∗).

Note that the circuits P and P1 have different representations but are functionally equivalent. Thus,
H0 andH1 are computationally indistinguishable by the security of the obfuscator Obf.

• HybridH2: In this hybrid we compute P̃←$Obf(1λ,P2) where P2 is defined as P1 except that if x = x∗,
then it returns the ciphertext

c = WE.Enc(1λ, x∗,PRF.Eval(k0, x
∗);u)

where u←$ {0, 1}λ.

The indistinguishabilityH1 ≈c H2 follows by the pseudorandomness of the puncturable PRF.
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• HybridH3: Here we compute P̃←$Obf(1λ,P3) where P3 is defined as P2 except that if x 6= x∗, then it
returns the ciphertext

c = WE.Enc(1λ, x,PRF.Eval(k0,x∗ , x);PRF.Eval(k1,x∗ , x))

where k0,x∗ ←$PRF.Punct(k0, x
∗).

By the correctness of the puncturable PRF, the two circuits are functionally identical and therefore the
computational indistinguishability follows from the security of Obf.

• HybridH4: In this hybrid we compute P̃←$Obf(1λ,P∗) where P∗ is defined as P3 except that if x = x∗,
then it returns the ciphertext

c = WE.Enc(1λ, x∗, 0λ;u)

where u←$ {0, 1}λ.

Recall that x∗ ∈ Lno and thus indistinguishability betweenH3 andH4 follows from the security of the
witness encryption scheme.

• HybridH5: We now compute Ṽ←$Obf(1λ,V1) where V1 is the circuit that, on input a pair of strings
(x, y) checks whether x = x∗. If this is the case, then it returns 1 if OWF(PRF.Eval(k0, x

∗)) = OWF(y)
and 0 otherwise. If x 6= x∗ it returns 1 if and only if OWF(PRF.Eval(k0,x∗ , x)) = OWF(y) where k0,x∗ is
the punctured key.

Observe that the circuits V and V1 are functionally equivalent and thus we can invoke the security of
Obf to show thatH4 ≈c H5.

• HybridH6: In this hybrid we compute Ṽ←$Obf(1λ,V2) where V2 is defined as V1 except for the case
where x = x∗. In this case the circuit returns 1 if and only if OWF(r) = OWF(y), where r←$ {0, 1}λ.

The computational indistinguishabilityH5 ≈c H6 follows from a reduction to the pseudorandomness
of the puncturable PRF.

• HybridH7: In the final hybrid we compute Ṽ←$Obf(1λ,V∗) where V∗ is defined as V2 except for the
case where x = x∗. In this case the circuit returns 1 if and only if R = OWF(y), where R = OWF(r),
i.e. the image of the one-way function is hardwired in the circuit.

Since the two circuits are functionally equivalent, we obatain thatH6 ≈c H7 by another invocation of
the security of Obf.

Observe that causing the verifier to accept a proof π for x∗ ∈ Lno requires one to output a valid preimage
of R = OWF(r), where r is uniformly sampled. This is a contradiction to the one-wayness of OWF and
concludes our proof.

Zero Knowledge. We now show that the scheme satisfies a strong variant of statistical zero-knowledge.
Namely, we show the existence of an efficient simulator whose output is statistically close to the output of
the prover, for all valid choices of the common reference string.

Theorem 4.6 (Zero Knowledge). The scheme in Figure 2 is statistically zero-knowledge.

Proof. The simulator computes crs as in the NIZK.Setup algorithm and sets π = PRF.Eval(k0, x). This dis-
tribution is identical to the one induced by the honest algorithms, except when the WE.Dec fails which
happens only with negligible probability.
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5 ZAPR Arguments for QMA

In the following we show a transformation to lift our NIZK argument for QMA to the setting where the
common reference string can be sampled maliciously. Specifically we construct a two-message witness
indistinguishable argument for QMA with public verifiability. Such an argument has been referred to in
the literature as a ZAPR argument (i.e. a ZAP [DN00] where the first message may be sampled with pri-
vate random coins that are not needed for verification). Before presenting our scheme, we introduce the
necessary cryptographic machinery.

5.1 Definition

In the following we define the notion of statistical ZAPR arguments for QMA, although a similar definition
applies (with minor modifications) to the case of NP.

Definition 5.1 (ZAPR Argument). A ZAPR argument (ZAPR.Setup,ZAPR.Prove,ZAPR.Verify) for a language
L ∈ QMA with relation RL consists of the following efficient algorithms.

• ZAPR.Setup(1λ): On input the security parameter 1λ, the setup returns a common reference string crs.

• ZAPR.Prove(crs, |ψ〉⊗k(λ) , x): On input a common reference string crs, k(λ) copies of the witness |ψ〉, and a
statement x, the proving algorithm returns a proof π.

• ZAPR.Verify(crs, π, x): On input a common reference string crs, a proof π, and a statement x, the verification
algorithm returns a bit {0, 1}.

We define correctness below.

Definition 5.2 (Correctness). A ZAPR argument (ZAPR.Setup,ZAPR.Prove,ZAPR.Verify) is correct if there ex-
ists a negligible function ν such that for all λ ∈ N, all x ∈ Lyes, and all |ψ〉 ∈ RL(x) it holds that

Pr
[
ZAPR.Verify(crs,ZAPR.Prove(crs, |ψ〉⊗k(λ) , x), x) = 1

]
= 1− ν(λ)

where crs←$ZAPR.Setup(1λ).

Next, we define computational soundness.

Definition 5.3 (Computational Soundness). A ZAPR argument (ZAPR.Setup,ZAPR.Prove,ZAPR.Verify) is
computationally sound if there exist a negligible function ν such that for all non-uniform QPT adversaries with
quantum advice A = {Aλ, ρλ}λ∈N and all x∗ ∈ Lno, it holds that

Pr [ZAPR.Verify(crs,Aλ(crs, x∗; ρλ), x∗) = 1] = ν(λ)

where crs←$ZAPR.Setup(1λ).

In the following we present the notion of (statistical) witness indistinguishability.

Definition 5.4 (Statistical Witness Indistinguishability). A ZAPR argument (ZAPR.Setup,ZAPR.Prove,ZAPR.Verify)
is witness indistinguishable if for all λ ∈ N, all x ∈ Lyes, all pairs of witnesses |ψ0〉 , |ψ1〉 ∈ RL(x), and all common
reference strings crs, it holds that

ZAPR.Prove(crs, |ψ0〉k(λ) , x) ≈s ZAPR.Prove(crs, |ψ1〉k(λ) , x).

Statistical ZAPs for NP. It was recently show in [BFJ+20, GJJM20] that statistical ZAPs for NP exist as-
suming the quasi-polynomial (quantum) hardness of the LWE problem.

Lemma 5.5 ([BFJ+20, GJJM20]). Assuming the quantum quasi-polynomial hardness of the LWE problem, there
exists a public coin ZAP for NP (ZAP.Setup,ZAP.Prove,ZAP.Verify).
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5.2 Non-Interactive Witness-Indistinguishable Proofs for NP

We recall the notion of non-interactive witness-indistinguishable (NIWI) proof for NP [BOV03].

Definition 5.6 (NIWI Proof for NP). A NIWI proof (NIWI.Prove,NIWI.Verify) for a language L ∈ NP with
relation RL consists of the following efficient algorithms.

• NIWI.Prove(1λ, w, x): On input the security parameter 1λ, a witness w, and a statement x, the proving algo-
rithm returns a proof π.

• NIWI.Verify(π, x): On input a proof π, and a statement x, the verification algorithm returns a bit {0, 1}.

We defined the properties of interest below.

Definition 5.7 (Correctness). A NIWI proof (NIWI.Prove,NIWI.Verify) is correct if for all λ ∈ N, all x ∈ L, and
all w ∈ RL(x) it holds that

Pr
[
NIWI.Verify(NIWI.Prove(1λ, w, x), x) = 1

]
= 1.

We define statistical soundness.

Definition 5.8 (Statistical Soundness). A NIWI proof (NIWI.Prove,NIWI.Verify) is statistically sound if there
exist a negligible function ν such that for all x∗ /∈ L and all proofs π∗ it holds that

Pr [NIWI.Verify(π∗, x∗) = 1] = ν(λ).

Finally we define computational witness indistinguishability.

Definition 5.9 (Computational Witness Indistinguishability). A NIWI proof (NIWI.Prove,NIWI.Verify) is wit-
ness indistinguishable if there exist a negligible function ν such that for all λ ∈ N, all x ∈ L, and all pairs of witnesses
w0, w1 ∈ RL(x) it holds that

NIWI.Prove(1λ, w0, x) ≈c NIWI.Prove(1λ, w1, x).

NIWI proofs are known to exist under a variety of assumptions, but for the purpose of our work we
only consider constructions that (plausibly) satisfy post-quantum security.

Lemma 5.10 ([BP15],[BPW16]). Assuming the existence of post-quantum one-way functions and post-quantum
sub-exponential indistinguishability obfuscation for classical circuits, there exists a post-quantum NIWI for NP
(NIWI.Prove,NIWI.Verify).

5.3 Sometimes-Binding Statistically Hiding Commitments

We introduce the notion of sometimes-binding statistically hiding (SBSH) commitments, a notion formally
introduced in [LVW20].

Definition 5.11 (SBSH Commitment). An SBSH commitment scheme (SBSH.Gen,SBSH.Key,SBSH.Com) con-
sists of the following efficient algorithms.

• SBSH.Gen(1λ): On input the security parameter 1λ, the generation algorithm returns a partial commitment
key ck0.

• SBSH.Key(ck0): On input a partial key ck0, the key agreement algorithm returns the complement of the key
ck1.

• SBSH.Com((ck0, ck1),m): On input a commitment key (ck0, ck1) and a message m, the commitment algo-
rithm returns a partial commitment key ck1 and a commitment c.
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The commitment must satisfy the notion of statistical hiding.

Definition 5.12 (Statistical Hiding). An SBSH commitment scheme (SBSH.Gen,SBSH.Key,SBSH.Com) is sta-
tistically hiding if for all λ ∈ N, all partial keys ck0, and all pairs of messages (m0,m1), it holds that

(ck0, ck1,SBSH.Com((ck0, ck1),m0)) ≈s (ck0, ck1,SBSH.Com((ck0, ck1),m1))

where ck1←$SBSH.Key(ck0).

Next we define the notion of sometimes-binding for an SBSH commitment scheme. We define the set
Binding as the set of all commitment keys (ck0, ck1) such that any resulting commitment is perfectly binding.
We present the definition of the property in the following.

Definition 5.13 (Sometimes Binding). An SBSH commitment scheme (SBSH.Gen,SBSH.Key,SBSH.Com) is
(ε, δ)-sometimes binding if there exists a negligible function ν such that for all λ ∈ N and all (stateful) QPT distin-
guishers A = {Aλ, ρλ}λ∈N, it holds that

Pr [Aλ(τ) = 1 ∧ (ck0, ck1) ∈ Binding] = ε(λ) · Pr [Aλ(τ) = 1]− δ(λ) · ν(λ)

where ck0←$SBSH.Gen(1λ) and (τ, ck1)← Aλ(ck0, ρλ).

We also require the existence of a polynomial-time extractor SBSH.Ext that, on input the random coins r
used in the SBSH.Gen algorithm, extracts the committed messagem from the protocol transcript if (ck0, ck1) ∈
Binding. The works of [KKS18, BFJ+20, GJJM20] present constructions of SBSH commitment schemes (al-
beit with a slightly different syntax) for quasi-polynomial (ε, δ) assuming the quasi-polynomial hardness of
LWE. Note that the extractor does not need to access the code of the adversary (not even as an oracle) and
therefore it is well defined regardless on whether the adversary is classical or quantum.

Lemma 5.14 ([KKS18, BFJ+20, GJJM20]). Assuming the quantum quasi-polynomial hardness of the LWE problem,
there exists an (ε, δ)-sometimes binding SBSH commitment scheme (SBSH.Gen,SBSH.Key,SBSH.Com).

5.4 Construction

We are now in the position to present a formal description of our ZAPR argument system for any language
L ∈ QMA with relation RL. Let ε be some fixed negligible function. We assume the existence of a NIZK for
L (NIZK.Setup,NIZK.Prove,NIZK.Verify) with classical setup and classical verification, a one-way function
OWF, a statistical ZAP for NP (ZAP.Setup,ZAP.Prove,ZAP.Verify), and a NIWI for NP (NIWI.Prove,NIWI.Verify),
all with quasi-polynomial security ε(λ)2 · ν(λ), for some negligible function ν. Finally, we assume the ex-
istence of an SBSH commitment scheme (SBSH.Gen,SBSH.Key,SBSH.Com) with (ε(λ), ε(λ)2)-sometimes
binding. Our protocol is presented in Figure 3.

Correctness. The correctness of the scheme follows immediately from the correctness of the underlying
primitives.

Soundness. We show how to reduce the (non-adaptive) computational soundness of our protocol to the
security of the corresponding cryptographic primitives.

Theorem 5.15 (Soundness). Let (SBSH.Gen,SBSH.Key,SBSH.Com) be an SBSH commitment with (ε(λ), ε(λ)2)-
sometimes binding. Let (NIZK.Setup,NIZK.Prove,NIZK.Verify) be a NIZK for L, let OWF be a one-way function,
let (ZAP.Setup,ZAP.Prove,ZAP.Verify) be a ZAP for NP, and let (NIWI.Prove,NIWI.Verify), all with negligible
security in ε(λ)2. Then the scheme in Figure 3 is computationally sound.
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ZAPR for QMA

• ZAPR.Setup(1λ):

– Sample two common reference strings for the NIZK system crs0←$NIZK.Setup(1λ) and
crs1←$NIZK.Setup(1λ).

– Sample two strings (x0, x1)←$ {0, 1}2λ and compute the corresponding images y0 =
OWF(x0) and y1 = OWF(x1).

– Compute the partial key of the SBSH commitment ck0←$SBSH.Gen(1λ) and the first mes-
sage of the ZAP crs′′←$ZAP.Setup(1λ).

– Compute a NIWI proof π′ for the statement

{(crs0 ∈ NIZK.Setup AND y0 ∈ OWF) OR (crs1 ∈ NIZK.Setup AND y1 ∈ OWF)}.

– Return crs = (crs0, crs1, y0, y1, ck0, crs
′′, π′).

• ZAPR.Prove(crs, |ψ〉⊗2k(λ) , x):

– Verify π′ and abort if the verification does not succeed.

– Compute two NIZK proofs for the statement x, π0←$NIZK.Prove(crs0, |ψ〉⊗k(λ) , x) and
π1←$NIZK.Prove(crs1, |ψ〉⊗k(λ) , x). If π0 is a valid proof, then set b = 0, else if π1 is valid
then set b = 1. If neither of the two proofs is valid, then abort.

– Sample a partial key for the SBSH commitment ck1←$SBSH.Key(ck0).

– Compute two SBSH commitments cNIZK←$SBSH.Com((ck0, ck1), (b, πb)) and
cOWF←$SBSH.Com((ck0, ck1), 0).

– Compute a ZAP proof π′′ for the statement{
cNIZK ∈ SBSH.Com((ck0, ck1), (b, πb)) s.t. NIZK.Verify(crsb, πb, x) = 1
OR cOWF ∈ SBSH.Com((ck0, ck1), xb) s.t. OWF(xb) = yb

}
.

– Return π = (ck1, cNIZK, cOWF, π
′′).

• ZAPR.Verify(crs, π, x):

– Accept if and only if π′′ verifies.

Figure 3: A publicly-verifiable ZAPR argument for QMA

Proof. The proof proceeds by showing a bound on the success probability of the prover of ε(λ). Assume
towards contradiction that

Pr [ZAPR.Verify(crs,Aλ(crs, x∗; ρλ), x∗) = 1] ≥ ε(λ).

By the (ε(λ), ε(λ)2)-sometimes binding property of the SBSH commitment scheme, we have that

Pr [ZAPR.Verify(crs,Aλ(crs, x∗; ρλ), x∗) = 1 ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1− ν(λ))

for some negligible function ν(λ). We denote the outputs of the SBSH extractor by r∗NIZK = SBSH.Ext(r,
ck0, ck1, cNIZK) and r∗OWF = SBSH.Ext(r, ck0, ck1, cOWF), where r denotes the random coins used in the
SBSH.Gen algorithm. We now proceed by modifying the verification procedure to derive a contradiction.
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• The verifier additionally checks whether r∗NIZK or r∗OWF define a bit b ∈ {0, 1}, either by containing a
valid proof πb with respect to crsb or by containing a pre-image of yb. If no such bit is defined, then
the verifier aborts.

We claim that the probability that the adversary cheats and that the bit b is well defined is at least
ε(λ)2 · 1/poly(λ). Assume towards contradiction that this is not the case. Then we know that with
probability at least ε(λ)2 · (1−negl(λ)) the adversary successfully cheats and the ZAP proof π′′ proves
a false statement. This contradicts the quasi-polynomial soundness of the ZAP for NP. It follows that
a well-defined b is extracted by the proof with probability inverse polynomial in ε(λ)2.

• During the computation of the common reference string, the verifier samples a bit b′ and computes
the NIWI proof using xb′⊕1 and the random coins of the generation of crsb′⊕1 as a witness. In the
verification algorithm, the verifier aborts if b′ 6= b.

We claim that, conditioned on the extraction being successful, the probabiliy that the verifier aborts
is negligibly close to 1/2. Assume the contrary, and consider the following reduction against the
quasi-polynomial witness indistinguishability of the NIWI proof: The reduction performs the same
operations of the verifier and, if the extraction is not successful, then it outputs a uniformly sampled
bit, otherwise it outputs the extracted bit b. As argued above, the extraction succeeds with probability
at least inverse polynomial in ε(λ)2. Thus, the advantage of the reduction is also at least inverse
polynomial in ε(λ)2, which contradicts the security of the NIWI proof.

The bias on the output of the reduction is identical to the probability that b′ 6= b, conditioned on the
fact that the extraction is successful. As argued above, the extraction succeeds with probability at least
inverse polynomial in ε(λ)2. This is a contradiction to the quasi-polynomial soundness of the NIWI.

By the above analysis, it follows that, with probability inverse polynomial in ε(λ)2, the variables (r∗NIZK, r
∗
OWF)

encode either (1) a valid NIZK proof πb against crsb or (2) the pre-image of yb. Note that the random coins
used to sample crsb and yb are not used by the verifier to compute the NIWI proof. Thus, case (1) contra-
dicts the quasi-polynomial soundness of the NIZK argument, whereas (2) contradicts the quasi-polynomial
security of the one-way function.

Witness Indistinguishability. In the following we show that our scheme satisfies statistical witness in-
distinguishability.

Theorem 5.16 (Witness Indistinguishability). The scheme in Figure 3 is statistically witness indistinguishable.

Proof. The proof proceeds by defining a sequence of hybrid distributions that we show to be statistically
indistinguishable.

• Hybrid H0: This is the distribution with the proof being computed using |ψ0〉, i.e. this is the distribu-
tion ZAPR.Prove(crs, |ψ0〉⊗2k(λ) , x).

• Hybrid H1: In this hybrid the algorithm checks inefficiently whether one of the two (crs0, crs1) is
correctly computed and whether the corresponding (y0, y1) is in the range of the one-way function,
and aborts if this is not the case. Otherwise proceed as inH0.

Note that the only difference between this hybrid and the previous hybrid is if the algorithm in H1

aborts and the algorithm in H0 does not. This however implies that both (crs0, y0) and (crs1, y1) are
invalid and thus contradicts the statistical soundness of the NIWI.

• HybridH2: In this hybrid we compute cOWF←$SBSH.Com((ck0, ck1), x′) where x′ is the (inefficiently
computed) pre-image of either y0 or y1. Note at least one among y0 and y1 is guaranteed to have a
pre-image.

By the statistical hiding of the SBSH commitment, we have thatH1 ≈s H2.

25



• Hybrid H3: Here we compute the ZAP proof π′′ using the alternative branch, i.e. using x′ and the
randomness of cOWF as the witness.

This change is statistically indistinguishable by the statistical indistinguishability of the ZAP argu-
ment.

• HybridH4: Here we compute cNIZK←$SBSH.Com((ck0, ck1), 0).

By the statistical indistinguishability of the SBSH commitment we have thatH3 ≈s H4.

• HybridH5: Here we use |ψ1〉⊗k(λ) to compute the NIZK, instead of |ψ0〉⊗k(λ).
Note that at this point the ouput of the distribution is independent of the NIZK proofs π0 and π1 and
thereforeH4 ≡ H5.

• HybridH6: We revert the change done inH4.

• HybridH7: We revert the change done inH3.

• HybridH7: We revert the change done inH2.

• HybridH8: We revert the change done inH1.

Note that the last hybrid corresponds to the distribution ZAPR.Prove(crs, |ψ1〉⊗2k(λ) , x), which concludes
our proof.

6 Attribute-Based Encryption for BQP

In the following we present our construction of attribute-based encryption (ABE) for quantum functionali-
ties.

6.1 Definition

We recall the definition of ABE. For convenience we consider the notion of ciphertext-policy ABE where
messages are encrypted with respect to circuits and keys are issued for attribute strings. If the class of
circuits supported by the scheme is large enough, then one can switch to the complementary notion (i.e.
key-policy ABE) by encoding universal (quantum) circuits. We also consider without loss of generality an
ABE that encrypts a single (classical) bit of information.

Definition 6.1 (Attribute-Based Encryption for BQP). An ABE scheme for BQP (ABE.Gen,ABE.Enc,ABE.KeyGen,
ABE.Dec) consists of the following efficient algorithms.

• ABE.Gen(1λ, 1`): On input the security parameter 1λ and the length ` of attributes, the parameters generation
algorithm outputs a master public key mpk, and master secret key msk.

• ABE.Enc(mpk, Q,m): On input the master public key mpk, a quantum circuit Q (implementing a BQP lan-
guage), and a message m, the encryption algorithm outputs a ciphertext ctQ.

• ABE.KeyGen(msk, x): On input the master secret key msk and an attribute x, the key generation algorithm
outputs a secret key skx.

• ABE.Dec(skx, ctQ): On input a secret key skx and a ciphertext ctQ, the decryption algorithms either outputs a
message m or ⊥.

Throughout the rest of this work, we always assume that the ciphertexts also contain a description of
the corresponding unitary Q and that the keys also contain a description of the corresponding attribute x.
We define correctness below.
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Definition 6.2 (Correctness). An ABE scheme (ABE.Gen,ABE.Enc,ABE.KeyGen,ABE.Dec) is correct if for all
negligible functions ν, there exists a negligible function µ such that for any λ ∈ N, ` ∈ N,m ∈ {0, 1}, x ∈ {0, 1}`,
and any quantum circuit Q on ` input bits such that Pr[Q(x) = 1] = 1− ν(λ), it holds that

Pr [ABE.Dec (ABE.KeyGen(msk, x),ABE.Enc(mpk, Q,m)) = m] = 1− µ(λ)

where (mpk,msk)←$ABE.Gen(1λ, 1`).

Finally we define the notion of security for ABE. We consider the selective notion of security, where the
quantum circuit associated with the challenge ciphertext is known ahead of time. It is well known that
this can be generically upgraded to the stronger notion of adaptive security (via complexity leveraging),
although at the cost of an exponential decrease in the quality of the reduction.

Definition 6.3 (Security). An ABE scheme (ABE.Gen,ABE.Enc,ABE.KeyGen,ABE.Dec) is secure if there exists a
pair of negligible functions ν and µ such that for all λ ∈ N, all quantum circuits Q∗, and all admissible non-uniform
QPT distinguishers with quantum advice A = {Aλ, ρλ}λ∈N, it holds that

Pr

b = Aλ(ctQ∗ ,mpk; ρλ)ABE.KeyGen(msk,·) :
(mpk,msk)←$ABE.Gen(1λ, 1`)
b←$ {0, 1}
ctQ∗ ←$ABE.Enc(mpk, Q∗, b)

 = 1/2 + µ(λ)

where A is admissible if each query x to ABE.KeyGen(msk, ·) is such that Pr[Q∗(x) = 1] ≤ ν(λ).

6.2 Construction

We are now ready the present our construction of ABE for BQP. We assume the existence of a pseudo-
random generator PRG : {0, 1}λ → {0, 1}`·λ, a puncturable PRF (PRF.Gen,PRF.Punct,PRF.Eval), and an
indistinguishability obfuscator Obf for classical circuits, all with sub-exponential security. We additionally
assume the existence of a sub-exponentially secure witness encryption scheme (WE.Enc,WE.Dec) for BQP
with a classical encryption algorithm, which is implied by the scheme shown in Section 3.4. Our scheme
(ABE.Gen,ABE.Enc,ABE.KeyGen,ABE.Dec) is described in Figure 4.

Correctness. The statistical correctness of the scheme follows immediately from the correctness of the
underlying building blocks. In particular, note that all the circuits that we obfuscate are entirely classical
and thus obfuscation for classical circuits suffices.

Security. We analyze the (selective) security of our construction in the following. We remark that the
proof can be upgraded to the stronger notion of adaptive security with additional complexity leveraging.

Theorem 6.4 (Security). Let PRG be a pseudorandom generator, let (PRF.Gen,PRF.Punct,PRF.Eval) be a punc-
turabl PRF, let Obf be an indistinguishability obfuscator for classical circuits, and let (WE.Enc,WE.Dec) be a witness
encryption scheme, all with sub-exponential security (in the attribute size `). Then the scheme in Figure 4 is secure.

Proof. The proof proceeds by defining an exponentially long series of hybrids, iterating over all possible
attributes x ∈ {0, 1}`. More specifically, starting from hybrid H0 (the original experiment with the bit b
fixed to b = 0) we define, for each i ∈ {0, 1}`, a different sequence of hybrids and we argue about the
indistinguishability of neighbouring distributions. As mentioned earlier, we assume all primitives we use
are sub-exponentially secure, that is, there exists an ε > 0 such that no efficient adversary can break the
primitive with probability better than 2−λ

ε

. Thus, we can set the security parameter for each to be at least
`c for some c > 1/ε, ensuring that efficient adversaries have advantage negl(λ)/2`.

• Hybrid Hi,0: Defined the previous hybrid, except that we change the way we compute the chal-
lenge ciphertext. We begin by computing a punctured key ri←$PRF.Punct(r, i). Then we compute
Ẽ←$Obf(1λ,E1), where E1 takes as input a pair (x, s) and does the following.
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ABE for BQP

• ABE.Gen(1λ, 1`):

– Sample a key k←$PRF.Gen(1λ).

– Compute the obfuscation P̃←$Obf(1λ,P) where P is the circuit that, on input some attribute
x ∈ {0, 1}` and a string s ∈ {0, 1}λ, returns 1 if and only if PRG(s) = PRG(PRF.Eval(k, x)).
The circuit P[k] is padded to the maximum size of P∗ (defined in the proof of Theorem 6.4).

– Return msk = k and mpk = P̃.

• ABE.Enc(mpk, Q,m):

– Sample a key r←$PRF.Gen(1λ).

– Compute the obfuscation Ẽ←$Obf(1λ,E) where E is the circuit that, on input some at-
tribute x ∈ {0, 1}` and a string s ∈ {0, 1}λ, checks whether P̃(x, s) = 1 and returns
WE.Enc(1λ, (Q, x),m;PRF.Eval(r, x)) if this is the case. The circuit E[m, r] is padded to the
maximum size of E∗ (defined in the proof of Theorem 6.4).

– Return Ẽ.

• ABE.KeyGen(msk, x):

– Return PRF.Eval(k, x).

• ABE.Dec(skx, ctQ):

– Parse ctQ as Ẽ and compute c = Ẽ(x, skx).

– Return WE.Dec((Q, x), c).a

aNote that WE.Dec does not need to take a third input (the witness) since the statement is in BQP.

Figure 4: An attribute-based encryption scheme for BQP

– If x < i: Check whether P̃(x, s) = 1 and return

WE.Enc(1λ, (Q, x), 1;PRF.Eval(ri, x))

if this is the case.

– If x = i: Check whether P̃(x, s) = 1 and return

WE.Enc(1λ, (Q, x), 0;PRF.Eval(r, x))

if this is the case.

– If x > i: Check whether P̃(x, s) = 1 and return

WE.Enc(1λ, (Q, x), 0;PRF.Eval(ri, x))

if this is the case.

Note that, by the correctness of the puncturable PRF, the circuits E and E1 are functionally equivalent
and therefore indistinguishability follows from the security of the classical obfuscator Obf.
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• Hybrid Hi,1: Defined the previous hybrid, except that we compute Ẽ←$Obf(1λ,E2), where E2 takes
as input a pair (x, s) and does the following.

– If x < i: Same as E1.

– If x = i: Check whether P̃(x, s) = 1 and return WE.Enc(1λ, (Q, x), 0; r̃) if this is the case, where
r̃←$ {0, 1}λ.

– If x > i: Same as E1.

Note that the two hybrids differ only in the definition of r̃, which is uniformly sampled in Hi,1 and
computed according to the puncturable PRF in Hi,0. By the indistinguishability of the puncturable
PRF, we have that the two distributions are computationally close.

• Hybrid Hi,2: In this hybrid we check whether Q∗(i) = 0. If this is not the case, then we proceed as
before. Otherwise, we compute Ẽ←$Obf(1λ,E3), where E3 takes as input a pair (x, s) and does the
following.

– If x < i: Same as E2.

– If x = i: Check whether P̃(x, s) = 1 and return WE.Enc(1λ, (Q, x), 1; r̃) if this is the case, where
r̃←$ {0, 1}λ.

– If x > i: Same as E2.

Note that we change the view of the adversary only if Q∗(i) = 0, which implies that the statement
(Q, i) is false. Thus indistinguishability follows from the security of the witness encryption scheme.

• HybridHi,3: This is defined as the previous one, except that we compute a punctured key ki←$PRF.Punct(k, i)

and we modify the public parameters as follows. We obfuscate P̃←$Obf(1λ,P1) where P1 is the circuit
that, on input some attribute x ∈ {0, 1}` and a string s ∈ {0, 1}λ, does the following.

– If x 6= i: Return 1 if and only if PRG(s) = PRG(PRF.Eval(ki, x)).

– If x = i: Return 1 if and only if PRG(s) = PRG(PRF.Eval(k, i)).

By the perfect correctness of the puncturable PRF, the two circuits are functionally equivalent and
therefore the indistinguishability follows from the security of the obfuscator Obf.

• Hybrid Hi,4: In this hybrid we compute P̃←$Obf(1λ,P2) where P2 is the circuit that, on input some
attribute x ∈ {0, 1}` and a string s ∈ {0, 1}λ, does the following.

– If x 6= i: Same as P1.

– If x = i: Return 1 if and only if PRG(s) = PRG(k̃), where k̃←$ {0, 1}λ.

Additionally, we answer the query of the adversary to the key generation oracle with k̃, if queried on
attribute i.

Note that this hybrid is identical to the previous one, except that k̃ is sampled uniformly. By the
security of the puncturable PRF, the two hybrids are computationally indistinguishable.

• Hybrid Hi,5: Before sampling the public parameters, we check whether Q∗(i) = 1. If this is not the
case, then we proceed as before. Otherwise we obfuscate P̃←$Obf(1λ,P3) where P3 is the circuit that,
on input some attribute x ∈ {0, 1}` and a string s ∈ {0, 1}λ, does the following.

– If x 6= i: Same as P2.

– If x = i: Return 1 if and only if PRG(s) = K, where K ←$ {0, 1}λ·`.
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Note that if Q∗(i) 6= 1, then the distribution induced by this hybrid is identical to the previous one, so
we only consider the case where Q∗(i) = 1. Observe that an admissible adversary never queries the
key generation oracle on i. Thus, the key k̃ is not present in the view of the distinguisher. Indistin-
guishability follows from the pseudorandomness of PRG.

• Hybrid Hi,6: Here we again check whether Q∗(i) = 1. If this is not the case, then we proceed as
before. Otherwise we compute P̃←$Obf(1λ,P∗) where P∗ is the circuit that, on input some attribute
x ∈ {0, 1}` and a string s ∈ {0, 1}λ, does the following.

– If x 6= i: Same as P3.

– If x = i: Return 0.

Note that the programs P3 and P∗ are identical except if K falls within the range of PRG. Since this
happens only with negligible probability, then the two hybrids are computationally indistinguishable
by the security of the obfuscator Obf.

• Hybrid Hi,7: In this hybrid we check whether Q∗(i) = 1. If this is not the case, then we proceed as
before. Otherwise, we compute the challenge ciphertext as Ẽ←$Obf(1λ,E∗), where E∗ takes as input
a pair (x, s) and does the following.

– If x < i: Same as E3.

– If x = i: Check whether P̃(x, s) = 1 and return WE.Enc(1λ, (Q, x), 1; r̃) if this is the case, where
r̃←$ {0, 1}λ.

– If x > i: Same as E3.

Observe that at this point P̃ always returns 0 whenever queried on i, and thus the programs E3 and
E∗ are functionally equivalent. Indistinguishability follows from the security of Obf.

• HybridHi,8: We revert the change done inHi,6.

• HybridHi,9: We revert the change done inHi,5.

• HybridHi,10: We revert the change done inHi,4.

• HybridHi,11: We revert the change done inHi,3.

• HybridHi,12: We revert the change done inHi,1.

• HybridHi,13: We revert the change done inHi,0.

We denote by H1 the last hybrid of the sequence H2`,13. Observe that such an hybrid is identical to the
original experiment with the bit b fixed to b = 1. This concludes our proof.

Remark 6.5. We remark that using null-iO instead of witness encryption in the above scheme would allow us to
achieve a stronger security definition where the attributes are also hiding to the eyes of parties that have keys for
non-accepting predicates (one-sided attribute hiding). In Appendix B we show an alternative transformation from
any ABE scheme to one-sided attribute-hiding ABE, additionally assuming the post-quantum hardness of the LWE
problem.

7 Constrained PRF for BQP

We define the notion of constrained pseudorandom function (PRF) and we present a construction for BQP.
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7.1 Definition

We recall the syntax of constrained PRFs.

Definition 7.1 (Constrained PRF for BQP). A constrained PRF for BQP (cPRF.Gen, cPRF.Eval, cPRF.Constrain,
cPRF.CEval) consists of the following efficient algorithms.

• cPRF.Gen(1λ): On input the security parameter 1λ, the key generation algorithm outputs a the public param-
eters pp, and master secret key K.

• cPRF.Eval(K,x): On input the key K and a string x, the evaluation algorithm outputs a string y.

• cPRF.Constrain(K,Q): On input the key K and a quantum circuit Q (implementing a BQP language), the
constrain algorithm returns a constrained key KQ.

• cPRF.CEval(pp,KQ, x): On input the public parameters pp, a constrained key KQ, and a string x, the con-
strained evaluation algorithm returns a string y.

For simplicity, we implicitly assume that the constrained key KQ also contains a (classical) description
of the circuit Q.

Definition 7.2 (Correctness). A constrained PRF for BQP (cPRF.Gen, cPRF.Eval, cPRF.Constrain, cPRF.CEval)
is correct if for all negligible functions ν, there exists a negligible function µ such that for any λ ∈ N, x ∈ {0, 1}λ,
and any quantum circuit Q on ` input bits such that Pr[Q(x) = 1] = 1− ν(λ), it holds that

Pr [cPRF.Eval(K,x) = cPRF.CEval(pp,KQ, x)] = 1− µ(λ)

where (pp,K)←$ cPRF.Gen(1λ) and KQ←$ cPRF.Constrain(K,Q).

We define the notion of security of interest. In this work, we consider selective security, meaning that
the adversary is bound to choose the challenge point ahead of time. We also consider the collusion resistant
variant, where the adversary can obtain an unbounded number of constrained keys for circuits of his choice.

Definition 7.3 (Security). A constrained PRF for BQP (cPRF.Gen, cPRF.Eval, cPRF.Constrain, cPRF.CEval) is
secure if there exists a pair of negligible functions ν and µ such that for all λ ∈ N, all points x∗, and all admissible
non-uniform QPT distinguishers with quantum advice A = {Aλ, ρλ}λ∈N, it holds that

Pr

b = Aλ(pp, y∗; ρλ)cPRF.Constrain(K,·) :

(pp,K)←$ cPRF.Gen(1λ)
b←$ {0, 1}
y∗ = cPRF.Eval(K,x∗) if b = 0
y∗←$ {0, 1}λ if b = 1

 = 1/2 + µ(λ)

where A is admissible if each query Q to cPRF.Constrain(K, ·) is such that Pr[Q(x∗) = 1] ≤ ν(λ).

7.2 Construction

We show in the following a construction of a (collusion-resistant) constrained PRF for BQP. We assume the
existence of a puncturable PRF (PRF.Gen,PRF.Punct,PRF.Eval), an indistinguishability obfuscator Obf for
classical circuits, and a key-policy ABE (ABE.Gen,ABE.Enc,ABE.KeyGen,ABE.Dec) for BQP, with classical
ciphertexts and classical keys. Our scheme (cPRF.Gen, cPRF.Eval, cPRF.Constrain, cPRF.CEval) is described
in Figure 5.

Correctness. The statistical correctness of the scheme follows from the correctness of the underlying cryp-
tographic building blocks. We stress that we assume that the ABE scheme has classical ciphertext, and
therefore obfuscation for classical circuits suffices.
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Constrained PRF for BQP

• cPRF.Gen(1λ):

– Sample two keys (k, k)←$PRF.Gen(1λ).

– Sample a pair (msk,mpk)←$ABE.Gen(1λ, 1λ).

– Compute the obfuscation P̃←$Obf(1λ,P) where P is the circuit that, on input some string
x ∈ {0, 1}λ, returns

ABE.Enc(mpk, x,PRF.Eval(k, x);PRF.Eval(k̃, x)).

The circuit P[k] is padded to the maximum size of P∗ (defined in the proof of Theorem 7.4).

– Return the key K = (k,msk) and pp = P̃.

• cPRF.Eval(K,x):

– Return PRF.Eval(k, x).

• cPRF.Constrain(K,Q):

– Return ABE.KeyGen(msk, Q).

• cPRF.CEval(pp,KQ, x):

– Compute c = P̃(x).

– Return ABE.Dec(KQ, c).

Figure 5: A constrained PRF for BQP

Security. In the following we show that the scheme satisfies selective security. One can lift the analysis to
the more realistic adaptive settings by standard complexity leveraging.

Theorem 7.4 (Security). Let (PRF.Gen,PRF.Punct,PRF.Eval) be a puncturable PRF, let Obf be an indistinguisha-
bility obfuscator for classical circuits, and let (ABE.Gen,ABE.Enc,ABE.KeyGen,ABE.Dec) be an ABE for BQP.
Then the scheme in Figure 5 is secure.

Proof. The proof proceeds by defining the following series of hybrid and arguing about the indistinguisha-
bility of neighbouring experiments.

• Hybrid H0: This is the experiment with the challenge bit fixed to 0, i.e. the challenge string is com-
puted as cPRF.Eval(K,x∗).

• HybridH1: In this hybrid we replace the key k̃ with k̃x∗ ←$PRF.Punct(k̃, x∗) and we define the circuit
P1 to return

ABE.Enc(mpk, x,PRF.Eval(k, x);PRF.Eval(k̃x∗ , x))

if x 6= x∗, and ABE.Enc(mpk, x∗,PRF.Eval(k, x∗);PRF.Eval(k̃, x∗)) otherwise.

Note that P and P1 are functionally equivalent and therefore this modification is computationally
indistinguishable by the security of the obfuscator Obf.

• Hybrid H2: In this hybrid we replace the key k with k with kx∗ ←$PRF.Punct(k, x∗) and we define
the circuit P2 to return

ABE.Enc(mpk, x,PRF.Eval(kx∗ , x);PRF.Eval(k̃x∗ , x))
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if x 6= x∗, and ABE.Enc(mpk, x∗,PRF.Eval(k, x∗);PRF.Eval(k̃, x∗)) otherwise.

Note that P1 and P2 are functionally equivalent and therefore this modification is computationally
indistinguishable by the security of the obfuscator Obf.

• Hybrid H3: In this hybrid we define the circuit P3 to be identical to P2 except that on input x∗ it
returns

ABE.Enc(mpk, x∗,PRF.Eval(k, x∗); r̃)

where r̃←$ {0, 1}λ.

By the security of the puncturable PRF, this modification is computationally indistinguishable.

• Hybrid H4: In this hybrid we define the circuit P∗ to be identical to P3 except that on input x∗ it
returns

ABE.Enc(mpk, x∗, 0; r̃).

This change is computationally indistinguishable by the (selective) security of the ABE scheme.

• HybridH5: In this hybrid we sample challenge string uniformly from {0, 1}λ.

This modification is computationally indistinguishable by the security of the puncturable PRF.

• HybridH6: We revert the change done inH4.

• HybridH7: We revert the change done inH3.

• HybridH8: We revert the change done inH2.

• HybridH9: We revert the change done inH1.

The proof is concluded by observing that H9 is identical to the experiment where the challenge bit is fixed
to 1.

8 Secret Sharing for Monotone QMA

In the following we show how a witness encryption scheme for QMA directly implies a secret sharing
scheme for monotone QMA (mQMA). A language L = (Lyes,Lno) is in monotone QMA if L ∈ QMA and i)
for all statements x ∈ Lyes and y such that x ⊆ y it holds that y ∈ Lyes, and ii) for all statements x ∈ Lno and
y such that y ⊆ x it holds that y ∈ Lno. Here, by x ⊆ y for binary strings x, y, we mean that for each index i,
if xi = 1 then yi = 1.

8.1 Definition

We begin by defining the notion of secret sharing for languages monotone QMA. For convenience, we only
define the scheme for binary secrets, although it is easy to extend it to arbitrary length strings.

Definition 8.1 (Secret Sharing). A secret sharing scheme (Share,Rec) for N parties and a language L ∈ mQMA
consists of the following efficient algorithms.

• Share(1λ, s): On input the security parameter 1λ and a secret s ∈ {0, 1}, the sharing algorithm returns a set
of N shares (p1, . . . , pN ).

• Rec(p1, . . . , p|I|, |ψ〉
⊗k(λ)

): On input a set I of shares (p1, . . . , p|I|) and a k(λ) copies of a quantum state |ψ〉,
the reconstruction algorithm returns a secret s.

Next we define the notion of correctness. We say that a set of parties I is qualified if its binary represen-
tation defines a statement x ∈ Lyes.
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Definition 8.2 (Correctness). A secret sharing scheme (Share,Rec) is correct if there exists a negligible function ν
such that for all λ ∈ N, all secrets s ∈ {0, 1}, all qualified sets of parties I that define a statement x ∈ Lyes, and all
|ψ〉 ∈ RL(x), it holds that

Pr
[
s = Rec(p1, . . . , p|I|, |ψ〉

⊗k(λ)
)
]

= 1− ν(λ)

where (p1, . . . , pN )←$Share(1λ, s).

Finally we define the notion of (non-uniform) computational security of a secret sharing scheme. In the
following we say that a set S is unauthorized if it defines a statement x ∈ Lno.

Definition 8.3 (Security). A secret sharing scheme (Share,Rec) is secure if for all λ ∈ N and all unauthorized sets
S ⊆ {1, . . . , N}, it holds that

{pi,0}i∈S ≈c {pi,1}i∈S
where (p1,0, . . . , pN,0)←$Share(1λ, 0) and (p1,1, . . . , pN,1)←$Share(1λ, 1).

8.2 Perfectly Binding Commitments

A (non-interactive) commitment scheme Com is a PPT algorithm that takes as input a message m and
returns a commitment c. We require that it satisfies the notions of perfect binding and computational hiding,
which we define below.

Definition 8.4 (Perfect Binding). A commitment scheme Com is perfectly binding if for all (m0,m1) such that
m0 6= m1 and all (r0, r1) ∈ {0, 1}2λ it holds that Com(m0; r0) 6= Com(m1; r1).

Definition 8.5 (Computational Hiding). A commitment scheme Com is computationally hiding if for all λ ∈ N
and all (m0,m1) it holds that

Com(m0; r0) ≈c Com(m1; r1)

where (r0, r1)←$ {0, 1}2λ.

8.3 Construction

We describe our secret sharing scheme (Share,Rec) for any language L = (Lyes,Lno) ∈ mQMA in the follow-
ing. Let Com be a perfectly binding commitment scheme and let (WE.Enc,WE.Dec) be a witness encryption
for the language L̃ = (L̃yes, L̃no) defined as

L̃yes =

{
(c1, . . . , cN ) :

∃ a vector (r1, . . . , rN ) ∈ {0, 1}Nλ such that x ∈ Lyes
where xi = 1 if ci = Com(i; ri) and xi = 0 otherwise.

}
L̃no =

{
(c1, . . . , cN ) :

∀ vectors (r1, . . . , rN ) ∈ {0, 1}Nλ it holds that x ∈ Lno
where xi = 1 if ci = Com(i; ri) and xi = 0 otherwise.

}
Our scheme (Share,Rec) is shown in Figure 6.

Correctness. For the correctness of the scheme, observe that any authorized set of users always has a valid
witness for the statement (c1, . . . , cN ) and therefore, by the correctness of the witness encryption scheme,
the reconstruction procedure returns the secret s, except with negligible probability.

Security. In the following we argue about the (non-uniform) security of the scheme.

Theorem 8.6 (Security). Let Com be a computationally hiding commitment scheme and let (WE.Enc,WE.Dec) be
a witness encryption scheme for L̃. Then the scheme in Figure 6 is secure.
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Secret Sharing for mQMA

• Share(1λ, s):

– For all i ∈ [1, . . . , N ] sample ri←$ {0, 1}λ and compute ci = Com(i; ri).

– Compute c←$WE.Enc(1λ, (c1, . . . , cN ), s).

– Set the share of the i-th party to pi = (ri, c).

• Rec(p1, . . . , p|I|, |ψ〉
⊗k(λ)

):

– A subset I ⊆ {1, . . . , N} of parties parses their shares as {pi = (ri, c)}i∈I .

– For all i /∈ I set ri = ⊥.

– Return WE.Dec(c, (r1, . . . , rn, |ψ〉⊗k(λ)), (c1, . . . , cN )).

Figure 6: A secret sharing scheme for (monotone) QMA

Proof. To prove this claim, we assume towards contradiction that there exists an efficient quantum algo-
rithm that is able to distinguish between the shares of 0 and the shares of 1 given the shares of some
non-authorized set of users S with probability 1/2 + δ(λ), for some non-negligible function δ. We derive a
reduction against the computational hiding property of the commitment Com. Specifically, we show that
such an algorithm implies a distinguisher between the following distributions

(Com(1), . . . ,Com(N)) and (Com(⊥), . . . ,Com(⊥))

where ⊥ is some distinguished string that does not correspond to any index. This implies a contradiction
to the hiding property of the commitment scheme, by a standard hybrid argument.

On input the challenge set of commitments (c1, . . . , cN ), the reduction defines a new set of commitments
(c′1, . . . , c

′
N ) by setting c′i = ci if i /∈ S and ci = Com(i; ri) if i ∈ S, where ri←$ {0, 1}λ. Finally, it samples a bit

b←$ {0, 1} and computes c←$WE.Enc(1λ, (c′1, . . . , c
′
N ), b). The distinguisher is given the shares {ri, c}i∈S

and returns a bit b′. The reduction returns 1 if b = b′ and 0 otherwise.
In the first case, i.e. (c1, . . . , cN ) = (Com(1), . . . ,Com(N)) then the distribution of the shares given to the

ditinguisher is identical to the one output by the algorithm Share and therefore the probability that the re-
duction outputs 1 is identical to 1/2+δ(λ). In the second case, where (c1, . . . , cN ) = (Com(⊥), . . . ,Com(⊥)),
observe that the resulting instance (c′1, . . . , c

′
N ) ∈ L̃no since the commitment scheme is perfectly binding

and the set S is non-authorized, i.e. it holds that x ∈ Lno (and consequently that z ∈ Lno, for all z ⊆ x),
where x is the statement defined by S. By the semantic security of the witness encryption scheme it holds
that the probability the distinguisher correctly guesses the bit b (and consequently the reduction outputs 1)
is negligibly close to 1/2. It follows that the reduction successfully distinguishes between the two distri-
butions of commitments with non-negligible probability, which is a contradiction to the hiding property of
the commitment scheme.

9 Cryptanalysis of Quantum Obfuscation Candidates

In the following we argue that a natural extension of our approach, where the obfuscated CVQC verification
circuit can be queried on accepting instances, leads to insecure schemes, given current constructions of
CVQC. Consider the two-message CVQC of [Mah18b, CCY20, ACGH20]. The first message pk1, . . . , pkk
essentially commits to a string x ∈ {0, 1}k where each bit xi determines whether the i’th qubit of the
prover’s committed state will be measured in the computational basis or Hadamard basis. It is crucial that
x be hidden from the prover, since a prover that can predict how its state will be measured can easily break
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soundness of the underlying information-theoretic protocol of [FHM18]. Now, the prover’s proof includes
a series of values (b1, d1), . . . , (bk, dk), where each bi is a bit and each di is a string.2 For each position where
xi = 0 (indicating a computational basis measurement), the verifier will completely ignore (bi, di), and for
each position where xi = 1 (indicating a Hadamard basis measurement), the verifier will compute some bit
ei := bi⊕ (di · si), where si is some secret known to the verifier. The ei’s are then computed on as part of the
verifier’s verdict function.

Consider an adversary, with access to an obfuscation of the verifier, that first honestly computes an
accepting proof that includes values (b1, d1), . . . , (bk, dk). Then, it generates random b′1, . . . , b

′
k until the

same proof except with (b′1, d1), . . . , (b′k, dk) rejects. Now the adversary can flip b′i to bi one at a time until
the proof accepts again. If the proof flipped back to accepting at index i, then it must be the case that xi = 1,
since (bi, di) was not ignored by the verifier. An adversary can repeat this process until it learns enough
of x to break soundness. Once the adversary can make the verifier accept even on rejecting instances, it is
able to learn any other secrets hidden in the obfuscation of the verifier (concretely, information about the
obfuscated quantum circuit).

The above describes an attack against the basic scheme, but there may be ways of altering the protocol
to avoid such an attack. Below, we argue that three natural variants of the protocol will still be susceptible
to attacks.

Sampling Fresh Hamiltonian Terms. The above attack does assume that the same verification function
is applied to the ei’s across all of the different proofs that the prover submits. This will be the case if the
verifier has sampled and fixed the same set of Hamiltonian terms to measure. However, one could consider
re-sampling the Hamiltonian terms each time, by using randomness derived from applying a PRF to the
proof. Then, when the adversary observes that flipping b′i to bi results in the verification flipping from
rejecting to accepting, it may not be clear whether this flip occurred as a result of changing ei, or as a
result of sampling a new subset of indices to compute on (corresponding to a different set of Hamiltonian
terms). Unfortunately, this does not solve the issue that the keys pk1, . . . , pkk commit to a fixed string x of
measurement bases. Indeed, an adversary could still compute accepting/rejecting statistics for bi vs. b′i, by
altering other parts of the proof. If the acceptance probability remains roughly the same, it is likely that
xi = 0, and otherwise it is likely that xi = 1.

Removing the Commitment. One could try to design a CVQC protocol where pk1, . . . , pkk does not com-
mit to x, i.e. each pki is the public key for a trapdoor claw-free function family (as opposed to Mahadev’s
protocol [Mah18b], where some of the public keys are for injective functions). However, the ability to flip
the verifier’s verdict based on just flipping (bi, di) to (b′i, di) will still lead to an attack. Indeed, the adversary
can now alter the di in order to learn enough linear equations of the verifier’s secret si to eventually recover
si. The value si is actually related to the LWE secret underlying the pki, allowing the adversary to break the
claw-freeness of the function, and thus soundness of the protocol.

Quantum CVQC. Recently, [MY21] showed how to construct an information-theoretically secure two-
message verification protocol where the first message from verifier to prover is quantum, but the proof
and subsequent verification function are entirely classical. Thus, one could still use classical obfuscation to
obfuscate the verification circuit (though now the obfuscation of the quantum circuit would be a quantum
state). However, this scheme would succumb to the same class of attacks outlined above. Indeed, the pro-
tocol of [MY21] roughly works by having the verifier prepare several EPR pairs and release half of each to
the prover. The prover then prepares a (quantum) proof for [FHM18]’s protocol and teleports this proof into
the verifier’s halves of the EPR pairs. That is, the prover performs Bell measurements between its proof
and the quantum state sent by the verifier, and the final proof just consists of the resulting teleportation
errors. Now, the verification can be made completely classical by pre-measuring (in either the computational

2Actually some positions will be designated for a test round, in which case the proof at those positions will have a different
structure, but this can be ignored for the purpose of this discussion.
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or Hadamard basis) each of the verifier halves of the EPR pairs and hard-coding these measurement results
into the verification circuit. Unfortunately, this also implies that qubit i sent by the verifier is again essen-
tially a commitment to measuring qubit i of the prover’s proof in either the computational or Hadamard
basis, and the attack sketched above will still apply.
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A An Alternative Obfuscation of Null Quantum Circuits

In the following we present an alternative construction of null-iO for quantum circuits that uses classical
VBB obfuscation.

Classical VBB Obfuscation. First, we recall the definition of virtual black-box obfuscation.

Definition A.1 (Virtual Black-Box Obfuscation). For every PPT adversary A, there exists a PPT simulator Sim
such that for all circuits C, and all polynomial-size auxiliary input z, it holds that∣∣∣∣Pr

[
A
(
Obf(1λ, C), z

)
= 1
]

= Pr
[
SimC

(
1λ, 1|C|, z

)
= 1
] ∣∣∣∣ ≤ negl(λ).

This definition extends to the post-quantum setting by allowing the adversary and simulator to be QPT,
and giving the simulator superposition query access to C.

Blind CVQC. Next, we define and construct blind CVQC.

Definition A.2 (Blindness). A CVQC protocol (KeyGen,Prove,Verify) is blind if for any QPT adversary A there
exists a negligible function ν(λ) such that for any polynomial-size sequences of circuits {Q0,λ}λ∈N, {Q1,λ}λ∈N, it
holds that∣∣Pr

[
A|H〉(pp) = 1 : (pp, r)←$KeyGen(1λ, Q0,λ)

]
− Pr

[
A|H〉(pp) = 1 : (pp, r)←$KeyGen(1λ, Q1,λ)

]∣∣ = ν(λ).

We observe that blind CVQC exists in the QROM from LWE. While the works of [CCY20, ACGH20]
give CVQC protocols that satisfy correctness and soundness, their protocols are not blind. However, us-
ing quantum fully-homomorphic encryption (Definition 2.5), it is straightforward to obtain a two-message
blind protocol in the QROM, by applying Fiat-Shamir to a blind variant of the four-message CVQC protocol
from [CCY20, ACGH20].

Lemma A.3. Assuming the quantum hardness of learning with errors problem, there exists a two-message blind
classical verification of quantum computation protocol in the QROM.

Proof. Consider the four-message CVQC protocol from [CCY20, ACGH20], which is correct and sound as-
suming the quantum hardness of learning with errors. The protocol includes two prover algorithms Prove1
and Prove2, and operates as follows. First, KeyGen(1λ, Q) is run to produce parameters pp and a verification
key r. Next, Prove1(pp, |ψ〉) outputs a classical string y and quantum state |ψ1〉. Next, a uniformly ran-
dom classical challenge c is sampled, and Prove2(pp, y, c, |ψ1〉) is run to produce a classical proof π. Finally,
Verify(Q, y, c, π, r) outputs a bit indicating acceptance of rejection.

This protocol consisting of algorithms (KeyGen,Prove1,Prove2,Verify) can be turned into a blind proto-
col (KeyGen′,Prove′1,Prove

′
2,Verify

′) as follows. KeyGen′ will run KeyGen, sample a random QFHE key pair
(pk, sk), and then output Enc(pk, pp). Prove′1 will now run Prove1 under the QFHE to produce (pk,Enc(pk, y)).
The challenge c will still be sampled and given to the prover in the clear. Prove′2 will now run Prove2 un-
der the QFHE to produce Enc(pk, π). Finally, the verification procedure Verify′(Q,Enc(pk, y), c,Enc(pk, π), r)
will compute sk from r, decrypt the ciphertexts to obtain y and π, and then run Verify(Q, y, c, π, r).

Correctness of (KeyGen′,Prove′1,Prove
′
2,Verify

′) follows immediately from correctness of QFHE. Sound-
ness follows by a reduction to the soundness of (KeyGen,Prove1,Prove2,Verify), in which the reduction
samples the (pk, sk) key pair, encrypts pp received from its challenger, and decrypts each of Enc(pk, y) and
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Enc(pk, π) before forwarding them to its challenger. Blindness follows immediately from the semantic se-
curity of QFHE.

Finally, we can compile (KeyGen′,Prove′1,Prove
′
2,Verify

′) into a two-message protocol in the QROM, by
appealing to the “Fiat-Shamir for generalized Σ-protocols” Lemma [ACGH20, Lemma 6.2].

Construction. Finally, we present the construction. Let (KeyGen,Prove,Verify) be a two-message blind
CVQC scheme in the QROM (Definition 3.1). Let Obf be a post-quantum virtual black-box obfuscator for
classical circuits (Definition A.1). Let F : {0, 1}λ × {0, 1}∗ → {0, 1}m(λ) be a quantum-secure PRF.

Alternative Null-iO for Quantum Circuits

• Obf(1λ, Q):

– Sample (pp, r)←$KeyGen(1λ, Q).

– Sample a PRF key k←$ {0, 1}λ and define C0(·) = F (k, ·).

– Let V [Q, k, r](·) be the circuit that takes as input π and computes and outputs b =

VerifyF (k,·)(Q, π, f). Define C1(·) = V [Q, k, r](·).

– Define C(b, x) = Cb(x), and compute C̃ ←$Obf(1λ, C).

– Output Q̃ = (pp, C̃).

• Eval(Q̃, |ψ〉): Compute π←$ProveC̃(0,·)(pp, |ψ〉) and output C̃(1, π).

Figure 7: A null obfuscation scheme for quantum circuits from classical VBB obfuscation.

Theorem A.4. Assuming post-quantum virtual black-box obfuscation of classical circuits and the quantum hardness
of learning with errors, the scheme in Figure 7 is a secure null-iO for quantum circuits.

Proof. Correctness follows immediately from correctness of CVQC and the VBB obfuscator, and security of
the PRF.

To show security, fix any two null circuits Q0, Q1 (these are technically families of circuits, but we drop
the indexing by λ to avoid clutter), and a QPT adversary A. Recall that virtual black-box obfuscation
guarantees the existence of a simulator Sim based on the description of A. Let q be an upper bound on the
number of queries Sim makes to its oracle.

• H0: Adversary A receives Obf(1λ, Q0), which consists of pp, and a classical obfuscated circuit C̃.

• H1: Simulator Sim receives pp and is given (superposition) oracle access to C. The output of this
hybrid is indistinguishable fromH0 by the security of classical VBB obfuscation.

• H2: Any calls to F (k, ·) during the evaluation of C are forwarded to a quantum-accessible random
oracleH. Since F is a quantum-secure PRF, this is indistinguishable fromH1.

• H3,i for i ∈ [q]: The simulator’s first i queries to C̃ are answered as follow.∑
x

α0,x |0, x〉 |0〉+
∑
π

α1,π |1, π〉 |0〉 →
∑
x

α0,x |0, x〉 |H(x)〉+
∑
π

α1,π |1, π〉 |0〉 .

The indistinguishability H3,i ≈c H3,i−1 follows from the soundness of CVQC. Indeed, an adver-
sary can only distinguish if its i’th query has some inverse polynomial amplitude on π such that
VerifyH(Q0, π, r) = 1. Otherwise, the hybrids would be statistically close. However, in this case, a
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reduction can produce an accepting proof for CVQC with inverse polynomial probability by answer-
ing each of the first i − 1 queries as in H3,i−1 and then measuring the i’th query. This violates the
soundness of CVQC, since Q0 rejects on all inputs with overwhelming probability.

• H4: Switch the obfuscation to Q1. Indistinguishability follows from the blindness of CVQC. Indeed,
the verifier’s secret key is no longer needed to simulate this distribution, since the Verify circuit is no
longer invoked.

• H5,i for i ∈ [q]: reverse the changes fromH3,i for i ∈ [q].

• H6: reverse the change fromH2.

• H7: reverse the change fromH1. This is Obf(1λ, Q1).

B One-Sided Attribute-Hiding

In the following we show how to convert generically an ABE for BQP into a predicate encryption scheme
with one-sided security (i.e. where the quantum circuit associated with a ciphertext is hidden to the eyes
of an adversary that cannot decrypt), additionally assuming the quantum hardness of the LWE problem.
Towards this goal, we introduce the notion of quantum lockable obfuscation and we present a scheme from
quantum-hard LWE.

B.1 Definition

We define the notion of one-sided attribute-hiding for attribute based encryption. In the literature, this
primitive is also referred to as predicate encryption [GVW15]. Since the syntax is unchanged, we only
present the upgraded security definition. Similarly as before, we consider the case of selective security,
where the quantum circuit associated with the challenge ciphertext is fixed ahead of time, and in particular
is chosen before seeing the public parameters of the scheme.

Definition B.1 (One-Sided Attribute-Hiding). An ABE scheme (ABE.Gen,ABE.Enc,ABE.KeyGen,ABE.Dec)
is one-sided attribute-hiding if there exists a triple of negligible functions ν0, ν1, and µ such that for all λ ∈ N,
all pairs of quantum circuits (Q0, Q1), and all admissible non-uniform QPT distinguishers with quantum advice
A = {Aλ, ρλ}λ∈N, it holds that

Pr

b = Aλ(ctQb ,mpk; ρλ)ABE.KeyGen(msk,·) :
(mpk,msk)←$ABE.Gen(1λ, 1`)
b←$ {0, 1}
ctQb ←$ABE.Enc(mpk, Qb, b)

 = 1/2 + µ(λ),

where A is admissible if each query x to ABE.KeyGen(msk, ·) is such that Pr[Q0(x) = 1] = ν0(λ) and Pr[Q1(x) =
1] = ν1(λ).

B.2 Quantum Lockable Obfuscation

In the following we give a construction of quantum lockable obfuscation assuming the quantum hardness
of the LWE problem.

Compute-and-Compare Programs. We define the class of compute-and-compare circuits. The definition
below applies both to classical and pseudo-deterministic quantum circuits (with classical input and output).

Definition B.2 (Compute-and-Compare). Let C : {0, 1}n → {0, 1}λ be a circuit, and let u ∈ {0, 1}λ and
z ∈ {0, 1}∗ be two classical strings. Then CC[C, u, z](x) is a circuit that returns z if C(x) = u, and 0 otherwise.
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Definition. We are now ready to define the notion of lockable obfuscation for compute-and-compare pro-
grams. In what follows we only define the classical version of lockable obfuscation. The extension to
quantum circuits follows along the same lines. A lockable obfuscator Obf is a PPT algorithm that takes
as input a compute-and-compare program CC[C, u, z] and outputs a new circuit C̃C. We assume that the
circuit CC[C, u, z] is given in some canonical description from which C, u, and z can be read. Correctness
is defined as follows.

Definition B.3 (Correctness). A lockable obfuscator Obf is correct if there exists a negligible function ν such that
for all λ ∈ N, all circuits C : {0, 1}n → {0, 1}λ, all u ∈ {0, 1}λ, and all z ∈ {0, 1}∗, it holds that

Pr
[
∀x ∈ {0, 1}n : C̃C(x) = CC[C, u, z](x)

]
= 1− ν(λ)

where C̃C←$Obf(1λ,CC[C, u, z]).

We require a strong notion of simulation security for lockable obfuscation.

Definition B.4 (Simulation Security). A lockable obfuscator Obf is secure if there exists a simulator Sim such that
for all λ ∈ N, all pseudo-deterministic polynomial-size quantum circuits C : {0, 1}n → {0, 1}λ, and all polynomial-
length output strings z ∈ {0, 1}∗ it holds that

Obf(1λ,CC[C, u, z]) ≈c Sim(1λ, 1|C|, 1|z|)

where u←$ {0, 1}λ.

Classical Lockable Obfuscation. Lockable obfuscation for classical circuits and with almost perfect cor-
rectness were constructed in [GKW17, WZ17], assuming the quantum hardness of LWE. Recently, a con-
struction with perfect correctness has been shown in [GKVW20].

Lemma B.5 ([GKW17, WZ17]). Assuming the quantum hardness of the LWE problem, there exists a lockable ob-
fuscation Obf for compute-and-compare programs.

Quantum Lockable Obfuscation. We now propose a lockable obfuscation scheme for pseudo-deterministic
compute-and-compare quantum programs. The scheme combines a QFHE scheme (QFHE.Gen,QFHE.Enc,
QFHE.Eval,QFHE.Dec) with classical keys and classical decryption with a lockable obfuscator Obf for clas-
sical circuits. The scheme Obf∗ is described in Figure 8.

Correctness follows straightforwardly from the correctness of the underlying building blocks. One
caveat is that the QFHE evaluation procedure is inherently probabilistic, so correctness only holds with
probability negligibly close to one (over the randomness imposed by the QFHE evaluation). We now pro-
ceed to establish the simulation security of the scheme.

Theorem B.6 (Simulation Security). Let (QFHE.Gen,QFHE.Enc,QFHE.Eval,QFHE.Dec) be a secure QFHE
scheme and let Obf be a simulation secure lockable obfuscator for classical compute-and-compare programs. Then
the scheme in Figure 8 is simulation secure.

Proof. To prove the security of our construction, we define a series of hybrid distributions that we argue to
be computationally close. The real distribution for an obfuscated quantum circuit Q consists of

(QFHE.Enc(pk, Q),Obf(1λ,CC[QFHE.Dec(sk, ·), u, z])).

In the first hybrid distribution we simulate the obfuscated classical circuit. Since u is uniformly sampled
(and in particular is independent of all other variables of our distribution), by an invocation of the simula-
tion security of Obf, we obtain that

(QFHE.Enc(pk, Q),Obf(1λ,CC[QFHE.Dec(sk, ·), u, z]))
≈c (QFHE.Enc(pk, Q),Sim(1λ, 1|QFHE.Dec|, 1|z|)).
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Quantum Lockable Obfuscation

• Obf∗(1λ,CC[Q, u, z]):

– Sample (sk, pk)←$QFHE.Gen(1λ).

– Compute the classical encryption c←$QFHE.Enc(pk, Q) of the circuit Q.

– Compute the obfuscation C̃C←$Obf(1λ,CC[QFHE.Dec(sk, ·), u, z]) of the classical
compute-and-compare program that takes as input a ciphertext c∗ and returns z if and
only if QFHE.Dec(sk, c∗) = u.

– Return (c, C̃C).

To evaluate the obfuscated circuit (c, C̃C) on some input x, the (quantum) algorithm computes
c̃←$QFHE.Eval(pk,Ux, c) as the homomorphic evaluation of the universal quantum circuit Ux that
has hard-wired input x and evaluates the encrypted circuit Q homomorphically. Then return the
evaluation of C̃C on input the resulting c̃.

Figure 8: A lockable obfuscator for (pseudo-deterministic) compute-and-compare quantum circuits

Next, we switch the QFHE to be an encryption of 0|U |. By the semantic security of the QFHE scheme we
have that

(QFHE.Enc(pk, Q),Sim(1λ, 1|QFHE.Dec|, 1|z|))

≈c (QFHE.Enc(pk, 0|Q|),Sim(1λ, 1|QFHE.Dec|, 1|z|)).

Note that the latter distribution does not contain any information about the circuit Q, besides its size. This
concludes our proof.

B.3 Construction

We now present our transformation to upgrade the security of an ABE scheme for quantum circuit to one-
sided attribute-hiding. The transformation is identical to [WZ17, GKW17] and we describe it here for com-
pleteness. We require the existence of an ABE scheme (ABE.Gen,ABE.Enc,ABE.KeyGen,ABE.Dec) which
(for convenience) we assume that it can encrypt multiple bits, and a lockable obfuscator Obf for compute-
and-compare quantum circuits. The scheme Obf∗ is described in Figure 9.

Correctness. The ABE decryption circuit is by definition pseudo-deterministiic and therefore the correct-
ness of the scheme is routinely established by invoking the correctness of the ABE and of the obfuscator for
compute-and-compare quantum programs.

Security. We now analyze the security of the scheme, which we establish with the following theorem.

Theorem B.7 (One-Sided Attribute-Hiding). Let (ABE.Gen,ABE.Enc,ABE.KeyGen,ABE.Dec) be a secure ABE
scheme and let Obf be a simulation secure obfuscator for compute-and-compare quantum programs. Then the scheme
in Figure 9 is one-sided attribute-hiding.

Proof. The proof proceeds by defining the following series of hybrids.

• HybridH0: This is the original experiment with the bit fixed to b = 0.
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One-Sided Attribute-Hiding ABE

• ABE.Gen∗(1λ, 1`):

– Return ABE.Gen(1λ, 1`).

• ABE.Enc∗(mpk, Q,m):

– Sample a uniform u←$ {0, 1}λ.

– Compute c←$ABE.Enc(mpk, Q, u).

– Compute the obfuscation C̃C←$Obf(1λ,CC[ABE.Dec(·, c), u,m]) of the quantum
compute-and-compare program that takes as input a key skx and returns m if and only
if ABE.Dec(skx, c) = u.

– Return cQ = C̃C.

• ABE.KeyGen∗(msk, x):

– Return ABE.KeyGen(msk, x).

• ABE.Dec∗(skx, ctQ):

– Return the output of the evaluation of C̃C on skx.

Figure 9: A one-sided attribute-hiding ABE scheme

• HybridH1: This is identical to the previous hybrid except that in the challenge ciphertext we compute
c←$ABE.Enc(pk, Q0, 0

λ).

Indisinguishability follows from the (standard) security of the ABE scheme.

• HybridH2: In this hybrid we compute the challenge ciphertext via the simulator Sim(1λ, 1|ABE.Dec|, 1|m|)).

Note that in H1 the target value u is uniform to the eyes of the distinguisher and therefore indistin-
guishbility follows from the simulation security of the compute-and-compare obfuscator.

• HybridH3: In this hybrid we modify the challenge ciphertext by sampling c←$ABE.Enc(pk, Q1, 0
λ).

Since c does not affect the view of the adversary this modification is only syntactical.

• Hybrid H4: We revert the change done in H2, except that we compute the obfuscated circuit as
C̃C←$Obf(1λ,CC[ABE.Dec(·, c), u,m1]).

Indistinguishability follows along the same lines as what argued above.

• HybridH4: We revert the change done inH1, except that we compute c←$ABE.Enc(pk, Q1, u).

Indistinguishability follows from another invocation of the security of the ABE scheme.

The proof is concluded by observing that the distribution induced by H4 is identical to the original experi-
ment with the bit fixed to b = 1.
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