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Abstract

The Ring-LWE over two-to-power cyclotomic integer rings has been
the hard computational problem for lattice cryptographic construction-
s. Its hardness and the conjectured hardness of approximating ideal-
SIVP for ideal lattices in two-to-power cyclotomic fields have been the
fundamental open problems in lattice cryptography and computational
number theory. In our previous paper we presented a general theory
of subset attack in classical computation model on the Ring-LWE with
not only the Gaussian error distribution but also general error distribu-
tions. By the usage of our subset attack from sublattice quadruples we
prove that the decision (then the search version) Ring-LWE over two-
to-power cyclotomic integer rings with certain sufficiently large poly-
nomially bounded modulus parameters when degrees dn = 2n−1 going
to the infinity can be solved by a polynomial (in dn) time algorithm
for wide error distributions with widths in the range of Peikert-Regev-
Stephens-Davidowitz hardness reduction results in their STOC 2017
paper. Hence we also prove that approximating ideal-SIV Ppoly(dn)

with some polynomial factors for ideal lattices in two-to-power cy-
clotomic fields can be solved within the quantum polynomial time.
Therefore post-quantum lattice cryptographic constructions can not
be based on the ”hardness” of Ring-LWE over two-to-power cyclotom-
ic integer rings even in the classical computational model.
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1 Introduction

1.1 SVP and SIVP

A lattice L is a discrete subgroup in Rn generated by several linear in-
dependent vectors b1, . . . ,bm over the ring of integers, where m ≤ n,
L := {a1b1 + · · · + ambm : a1 ∈ Z, . . . , am ∈ Z}. The volume vol(L) of
this lattice is

√
det(B ·Bτ ), where B := (bij) is the m× n generator matrix

of this lattice, bi = (bi1, . . . , bin) ∈ Rn, i = 1, · · · ,m, are base vectors of
this lattice. The length of the shortest non-zero lattice vectors is denoted by
λ1(L). The well-known shortest vector problem (SVP) is defined as follows.
Given an arbitrary Z basis of an arbitrary lattice L to find a lattice vector
with length λ1(L) (see [37]). The approximating shortest vector problem
SV Pf(m) is to find some lattice vectors of length within f(m)λ1(L) where
f(m) is an approximating factor as a function of the lattice dimension m
(see [37]). The Shortest Independent Vectors Problem (SIV Pγ(m)) is de-
fined as follows. Given an arbitrary Z basis of an arbitrary lattice L of
dimension m, to find m independent lattice vectors such that the maximum
length of these m lattice vectors is upper bounded by γ(m)λm(L), where
λm(L) is the m-th Minkowski’s successive minima of lattice L (see [37]).
A breakthrough result of M. Ajtai [5] showed that SVP is NP-hard under
the randomized reduction. Another breakthrough proved by Micciancio as-
serts that approximating SVP within a constant factor is NP-hard under
the randomized reduction (see [37]). For the latest development we refer
to the paper of Khot [25]. It was proved that approximating SVP within
a quasi-polynomial factor is NP-hard under the randomized reduction. For
the hardness results about SV P and SIV P we refer to [25, 26, 49].

1.2 Algebraic number fields

The Ring-LWE was introduced in [32] and has been the computational hard
problem for lattice cryptography. It was suggested in [32] that the Ring-
LWE over the integer ring Z[ξm] = Z[x]/(Φm(x)) of m-th cyclotomic fields,
where m = 2n, Φm(x) =

∏
gcd(m,j)=1(x− ξjm) is a cyclotomic polynomial, ξm

is a primitive m-th root of unity, can be used for lattice-based cryptographic
constructions. For example homomorphic encryption standard suggested in
[3] was based on Ring-LWE over two-to-power cyclotomic rings. Cyclotomic
number fields was first originated from Kummers pioneering work on Fer-
mats last Theorem (see [50]). In general an algebraic number field is a finite
degree extension of the rational number field Q. Let K be an algebraic num-
ber field and RK be its ring of integers in K. From the primitive element
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theorem there exists an element θ ∈ K such that K = Q[x]/(f) = Q[θ],
where f(x) ∈ Z[x] is an irreducible monic polynomial satisfying f(θ) = 0
(see [18, 7]). It is well-known there is a positive definite inner product on
K ⊗ C defined by < u, v >= Σd

i=1σi(u) ˜σi(v), where σi, i = 1, . . . , d, are d
embedings of K in C, and ṽ is complex conjugate. Sometimes we use ||u||tr
to represent (Σd

i=1σi(u) ˜σi(u))1/2. This is also the norm with respect to the
canonical embedding (see [32]). An ideal in RK is a subset of RK which is
closed under the ring addition and the multiplication by an arbitrary ele-
ment in RK. An ideal is a sublattice in RK of dimension deg(K/Q). For an
ideal I ⊂ RK, the (algebraic) norm of ideal I is defined by the cardinality
N(I) = |RK/I|, we have N(I · J) = N(I)N(J). For a principal ideal xRK

generated by an element x, then N(x) = N(xRK), we refer to [7, 17] for the
detail. The algebraic number field has the nice symmetry property reflected
in the following lower bound (see [32] Lemma 2.9) for a fraction ideal I,

√
dN(I)1/d ≤ λ1(I).

The dual of a lattice L ⊂ K of rank deg(K/Q) is defined by L∨ = {x ∈
K, trK/Q(ax) ∈ Z, ∀a ∈ L}. An order O ⊂ K in a number field K is a
subring of K which is a lattice with rank equal to deg(K/Q). We refer to
[17, 18, 7] for number theoretic properties of orders in number fields.

Let ξn be a primitive n-th root of unity, the n-th cyclotomic polynomial
Φn is defined as Φn(x) =

∏n
j=1,gcd(j,n)=1(x− ξjn). This is a monic irreducible

polynomial in Z[x] of degree φ(n), where φ is the Euler function. The n-th
cyclotomic field is Q(ξn) = Q[x]/(Φn(x)). When n = p is an odd prime
Φp(x) = xp−1 +xp−2 + · · ·+x+ 1 and when n = pm, Φpm(x) = Φp(x

pm−1
) =

(xp
m−1

)p−1 + · · ·+xpm−1
+1. The ring of integers in Q(ξn) is exactly Z[ξn] =

Z[x]/(Φn(x)) (see Theorem 2.6 in [52]). Hence the cyclotomic number field
Q[ξn] is a monogenic field. The discriminant of the cyclotomic field (also
the discriminant of the cyclotomic polynomial Φn) is

(−1)
φ(n)
2

nφ(n)∏
p|n p

φ(n)
p−1

.

A polynomial f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ Z[X] satisfies

the condition of the Eisenstein criterion at a prime p, if p|ai for 0 ≤ i ≤ n−1
and p2 not dividing a0. A polynomial satisfying this condition is irreducible
in Z[x] from the Eisenstein criterion (see [7, 18]).
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1.3 Gaussian and discrete Gaussian

Set ρs,c(x) = e−π||x−c||
2/s2 for any vector c in Rn and any s > 0, ρs = ρs,0,

ρ = ρ1. The Gaussian distribution around c with width s is defined by its

probability density function Ds,c =
ρs,c(x)
sn , ∀x ∈ Rn.

1.3.1 Discretization

For any discrete subset A ⊂ Rn we set ρs,c(A) = Σx∈Aρs,c(x) andDs,c(A) =
Σx∈ADs,c(x). Let L ⊂ Rn be a dimension n lattice, the discrete Gaussian
distribution over L is the probability distribution over L defined by

∀x ∈ L, DL,s,c =
Ds,c(x)

Ds,c(L)
=
ρs,c(x)

ρs,c(L)
.

When c = 0, the discrete Gaussian distribution is denoted by DL,s. We
refer to [36] for the properties of discrete Gaussian distributions.

1.3.2 Width with the canonical embedding

The Gaussian distribution depends on coordinates and the norm. We need
to pay special attention to coordinates (or the basis with which coordinates
are obtained) and the norm used when we say the ”width” of a Gaussian
distribution. The ”canonical embedding’ was used to define the Gaussian
distribution on K ⊗R (see [32, 33, 43, 10]). We recall the analysis in [10].
Set Φ : K −→ H the canonical embedding defined on the number field
K = Q[x]/(f) where f is a degree n irreducible polynomial over Q and
α1, . . . , αn in C are n roots of f . We refer the definition of the space H
to Subsection 2.2 in [33]. Set Nf the inverse of the Vandermonde matrix

(αj−1
i )1≤i,j≤n and B the following matrix. Is1 0 0

0 1√
2
Is2

i√
2
Is2

0 1√
2
Is2

−i√
2
Is2


Here there are s1 real roots of f and 2s2 conjugate complex roots of f . Hence
s1 + 2s2 = n. Let r = (r1, . . . , rn) where r1, . . . , rn are n positive real num-
bers. If xi, i = 1, . . . , n, is sampled independently from the Gaussian distri-
bution with width ri, then coordinate vector with respect to the polynomial
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base 1, x, . . . , xn of K ⊗R from the Gaussian distribution with parameter
r (with respect to the canonical embedding Φ) is Nf ·B · (x1, . . . , xn)τ . Set

||Nf ||2 = max
||Nf ·x||
||x|| where x ∈ Rd takes all non-zero vectors. In the case

r = (σ′, . . . , σ′), if in the dual form of the Ring-LWE problem we set the
width of the Gaussian distribution with respect to the canonical embedding
is σ, then σ′ ≤ ||Nf ||2 ·max{|f ′(α1)|, . . . , |f ′(αn)|} ·σ. Here f ′ is the deriva-
tive of the defining equation f(x) of the number field.

1.4 Plain LWE, Ring-LWE, LWE over number field lattices
and module-LWE

Plain LWE

O. Regev proposed the plain LWE and lattice-based cryptographic con-
struction based on it in his paper [47]. We also refer to [48] for a survey.
Let n be the security parameter, q be an integer modulus and χ be an error
distribution over Zq. Let s ∈ Znq be a secret chosen uniformly at random.
Given access to d samples of the form

(a, [a · s + e]q) ∈ Znq × Zq,

or

(a,
1

q
[a · s + e]q) ∈ Znq ×R/Z,

where a ∈ Znq are chosen uniformly at random and e are sampled from the
error distribution χ, the search LWE is to recover the secret s. In general
χ is the discrete Gaussian distribution with the width σ. Here a · s = Σaisi
is the inner product of two vectors in Znq . Solving decision LWEn,q,d,χ is to

distinguish with non-negligible probability whether (A,b) ∈ Zn×dq × Zdq is
sampled uniformly at random, or if it is of the form (A,Aτ · s + e) where e
is sampled from the distribution χ. Here [a · s + e]q is the residue class in
the interval (− q

2 ,
q
2 ]. We refer to [48] for the detail and the background.

Ring-LWE

In [34] the algebraic structure of ring was first considered for the hard-
ness of computational problems of lattices, we also refer to [30, 31]. This
Ring-SIS (Short Integer Solution over Ring, see [34]) problem is an analogue
of Ajtai’s SIS problem. The one-wayness of some functions was proved in
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[34] by assuming the hardness of some computational problems of ideal lat-
tices (cyclic lattices). In their Eurocrypt 2010 paper [32] the Ring-LWE was
proposed and then extended in [33]. We refer to the nice survey [42] for the
history of development, the theory and cryptographic constructions based on
Ring-LWE and Ring-SIS. In particular suggested homomorphic encryption
standard [3] was based on Ring-LWE over two-to-power cyclotomic integer
rings.

If the Znq in plain LWE is replaced by Pq = P/qP where P = Z[x]/(f),
f(x) is a monic irreducible polynomial of degree n in Z[x], this is the
polynomial learning with errors (Poly-LWE or PLWE). The inner prod-
uct a · s = Σaisi is replaced by the multiplication a · s in the ring Pq. The
error distribution χ is defined as the discrete Gaussian distributions with
respect to the basis 1, x, x2, . . . , xn−1 (see [23, 10]). We refer to [51] for
relations and reductions between Ring-LWE and Poly-LWE. In general ar-
bitrary number of samples can be accessed to distinguish the the samples
from the the Ring-LWE equation and the uniformly distributed samples. In
the hardness reduction result in [32] only polynomially many samples are
allowed for the adversary.

If the Znq is replaced by (RK)q = RK/qRK where RK is the ring
of integers in an algebraic number field K of degree n, this is the Ring-
LWE, learning with errors over the ring RK. The secret s is in the dual
(RK

∨)q = RK
∨/qRK

∨ and a ∈ RKq is chosen uniformly at random. The
inner product a · s = Σaisi is replaced by the multiplication a · s in (RK

∨)q.
The error e is in (RK

∨)q = RK
∨/qRK

∨. In this case the width of error
distribution is defined by the canonical norm on K ⊗ R via the canonical
embedding (see [32, 10]). This is called the dual form of Ring-LWE problem
. When s ∈ (RK)q and e ∈ (RK)q are assumed it is called the non-dual
form of Ring LWE problem. As indicated in [43] page 10 in monogenic case
a ”tweak factor” f ′(θ) can be used to make two versions equivalent.

LWE over number field lattice

Learning with errors over a number field lattice was introduced in [44].
Let L ⊂ K be a rank deg(K) lattice and

OL = {x ∈ K : x · L ⊂ L}.

Then OL is an order.
L∨q = L∨/qL∨.
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Then OL ·L∨ ⊂ L∨. Set OL
q = OL/qOL and (L∨)q = L∨/qL∨. The secret

vector s is in (L∨)q and a is in OL
q. Here we notice that O · L∨ ⊂ L∨.

Then the error e ∈ (L∨)q. Samples from LWE over number field lattice L is
(a,b) ∈ OL

q × (L∨)q, where a is uniformly chosen in OL
q, the error vector

e is chosen in (L∨)q according to a Gaussian distribution with the width σ,
then b ∈ (L∨)q. The decisional LWE over L is to distinguish these samples
from uniformly chosen (a,b) ∈ OL

q × (L∨)q. For the detail and hardness
reduction we refer to [44].

Module-LWE

Let M = RK
d, for s ∈ (RK

∨
q )d, and an error distribution ψ over

K⊗R, we sample the module learning with error distribution A
(R)
d,q,s,ψ over

RK
d × T(RK

∨) by outputting (a, < a, s > +1
q e mod RK

∨), where a ←−
U(RK

d
q) and e ←− ψ. The decision module learning with errors problem

Module-LWE over M is to distinguish uniform samples U(RK
d ×T(RK

∨)

and samples from A
(R)
d,q,s,ψ. Here ψ is the Gaussian distribution with width

σ. We refer to [4] for the detail.

1.5 Hardness reduction

The reduction results from approximating ideal-SIV Ppoly(d) (or approxi-
mating ideal-SV Ppoly(d)) to Ring-LWE were first given in [32, 33] for search
version and then a general form from to decision version was proved for ar-
bitrary number fields in [45]. We refer to [45] Corollary 6.3 for the following
hardness reduction result.

Hardness reduction for decision Ring-LWE. Let K be an arbi-
trary number field of degree n and R = RK. Let α = α(n) ∈ (0, 1), and let
q = q(n) be an integer such that αq ≥ 2ω(1). Then there exists a polynomial-
time quantum reduction from K − SIV Pγ to average-case, decision R −
LWEq,Υα, for any γ = max{ η(I)·2

α·ω(1) ,
√

2n
λ1(I)} ≤ max{ω(

√
nlogn/α),

√
2n}.

Here K−SIV Pγ is the Shortest Independent Vector Problems for any frac-
tional ideal lattice in K. I is any ideal lattice and η(I) is the smoothing
parameter of I.

Approximating SV P and SIV P restricted to ideal lattices in number
fields with degrees going to the infinity are called approximating ideal-SV P
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and ideal-SIV P , we refer to [19, 20, 21, 46, 28, 39] for the latest development
on this topic.

1.6 Known attacks

The famous Blum-Kalai-Wasserman (BKW) algorithm in [6] was improved
in [1, 27]. On the other hand some provable weak instances of Ring-LWE
was given in [22, 23, 16] and analysed in [10, 43]. As showed in [43, 10]
these instances of Ring-LWE can be solved by polynomial time algorithms
main because the widths of Gaussian distributions of errors are too small
or Gaussian distributions of errors are too skew. In [11] these attacks were
improved for these modulus parameters which are factors of f(u), where f
is the defining equation of the number field and u is an arbitrary integer.
However the Gaussian distribution is still required to be narrow such that
this type of attack can be succeed. We refer to [2] for the dual lattice attack
to LWE with small secrets and refer to [19, 20, 21, 28, 39] for the latest
development in algorithms on approximating ideal-SVP.

2 Subset attacks

2.1 The ideal attack is very restricted

In previous attacks on Ring-LWE in [23] the Ring-LWE equation a·s+e ≡ b
mod q was transformed to consider a · s + e ≡ b mod P, where P is a
prime ideal factor of the modulus parameter q with a polynomially bounded
algebraic norm N(P). This kind of attack initiated in [23] and then analysed
in [10, 43] can be called the ideal attack on Ring-LWE. In the ideal attack
on Ring-LWE λ1(P∨) satisfies

λ1(P∨) ≥
√
dN(P∨)1/d ≥ d1/2−c/d 1

|∆K|1/d
.

Since P has a polynomially bounded algebraic norm, the width has a small
upper bound for solvable instances for some fixed positive integer c .

When the degree d goes to the infinity, if the modulus parameter q is
a prime number such that qRK is a prime ideal in RK, it is obvious we
get nothing from the ideal attack, since the index of any ideal factor of q is
exponential. In our sublattice attack and subset attack we propose to find
subtle polynomially bounded index sublattices L or feasible non-negligible
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subsets A3, then to test the samples from the Ring-LWE equation in the
quotient of the sublattice L or in the feasible non-negligible subset A3. Sub-
lattice attacks was proposed in [11]. In [12] we extend it to subset attacks.

2.2 The motivation of subset attacks

In previous attacks on Ring-LWE, when polynomially bounded many sam-
ples (a,b) ∈ RK/qRK × RK/qRK are given, only the distributions of
these samples over RK/I for some ideals satisfying qRK ⊂ I ⊂ RK and
|RK/I| ≤ poly(d) have been checked. This is not natural and not sufficient.
We need to check the distributions of samples in A ⊂ RK/qRK where A
can be any feasible non-negligible subsets, that is, the condition

a ∈ A

can be computed within polynomial time and the size of A satisfies

|A|
|RK/qRK|

≥ 1

dc
,

where c is a fixed positive integer. In general when the learning with error
problems with algebraic structures are used to improve the efficiency, subset
attacks as above to analysis the distributions of samples over A ⊂ M/qM
should be considered, where M is module over which the module-LWE is
defined and A takes over all feasible subsets of M/qM satisfying

|A|
|M/qM|

≥ 1

poly(d)
.

The previous attacks where A is restricted to images of ideals or sub-modules
are not natural, special and not sufficient to guarantee the security, we refer
to our next paper [15].

The basic point here is as follows. When we want to use the algebraic
structure to improve the efficiency of lattice-based cryptographic construc-
tions. The adversary is not restricted to only check the distributions of sam-
ples over algebraic-structured object, the adversary can attack the problem
by using feasible non-negligible subsets without any structure.
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2.3 Subset quadruples are needed

We need to find three non-negligible subsets Ai, i = 1, 2, 3 satisfying that

|Ai|
|RK/qRK|

≥ 1

dc
,

and A1 and A3 are feasible, that is the condition a ∈ Ai, i = 1, 2, can be
checked within polynomial time. Here we denote

A1 ·A2 = {as : a ∈ A1, s ∈ A2},

and
A1 + A2 = {a1 + a2 : ai ∈ Ai},

for two subsets A1 and A2 in RK/qRK. A subset A4 ⊂ RK/qRK is needed
to satisfy A1 ·A2 + A4 ⊂ A3 and

Prob(e ∈ proj−1(A4)) ≥ dC |A3|
|RK/qRK|

,

where C is a fixed positive integer and proj is the natural mapping

RK −→ RK/qRK.

Then the samples from the Ring-LWE equations can be distinguished from
uniformly distributed samples. Hence it is important to calculate the error
distribution over the subset A4.

In the case that A1 and A2 are additive, that is,

Ai + Ai ⊂ Ai,

we recover the sublattice attack in [13] and the previous versions of this
paper. We call (A1,A2,A3,A4) a sublattice quadruple when A1, A2, A3

and A4 are images of sublattices. In the sublattice quadruple case if A1

is the whole ring and A2 is an ideal it is the sublattice pair with an ideal
introduced in the previous version of this paper. In the case that Ai is
an ideal, it is the very restricted case of ideal attack considered in [23, 10]
and analysed in [43]. The ”sublattice pair with ideal” construction for the
required sublattices proposed in the previous versions of the paper can not
work for number field case as indicated in [43]. However the comment in
[43] can not apply to the general sublattice attack or its extended version
of subset attack (for general structured LWE) considered in this version.
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The only problem in previous versions is the usage of polynomially bounded
index ideals in the construction of the required sublattices for number field
case.

2.4 Description of the main result and its proof

The main result can be expressed informally as follows. Let c be an arbitrary
fixed positive integer, let σn be the widths of a sequence of Gaussian error
distributions over the two-to-power cyclotomic number field sequence Kn =
Q[ξ2n ] of degree d = 2n−1 with respect to the canonical norms satisfying

√
dn

λ1(Z[ξ2n ]∨)
≤ σn ≤ dcn,

then for a sequence of sufficiently large poly(dn) prime modulus parameters
pn, the decision Ring-LWE over Z[x2n ] can be solved within polynomial (in
dn) time. The prime modulus parameters pn can be upper bounded by dc1n
where c1 is certain positive integer determined from c.

The first ingredient of the proof is Theorem 4.1 which claims that for a
sublattice L in Z[ξ2n ] with many very short lattice vectors in its dual the
probability that an error e in L can be lowered by

Prob(e ∈ L) ≥ 1

dc2
,

where c2 is certain positive integer determined from c. The two sublattices
A4 and A3 are the images of sublattice L. L can be defined by Tr(b ·x) ≡ 0
mod pn, for all x ∈ Z[ξ2n ], with certain b ∈ Z[ξ2n ] promising that b

pn
∈ L∨

is very short. That is the reason that pn has to be sufficiently large.

For the purpose to construct the sublattice quadruple we only need to
find two polynomially bounded index sublattices L1,L2 satisfying

pnZ[ξ2n ] ⊂ Li ⊂ Z[ξ2n ],

|Z[ξ2n ]/Li| ≤ poly(dn),

and
L1 · L2 ⊂ L.
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The last condition is equivalent to Tr(b·y1 ·y2)) ≡ 0 mod pn, for all yi ∈ Li,
i = 1, 2. Let pn be un-ramified prime numbers with very high residual class
degrees fn satisfying

Z[ξ2n ]/pnZ[ξ2n ] = F
pfnn
× F

pfnn
,

we can calculate the trace function from this isomorphism. From the lin-
earized polynomials in Fpn [x] and the trace function over F

pfnn
, we can

construct such sublattices L1 and L2.

2.5 Subset attacks on other algebraically structured LWE

Some generalizations of Ring-LWE to other learning with errors problems
over algebraically structured objects, such as number field lattices in [44]
and order-LWE in [9], were presented in recent years. LWE problems have
been even defined for some non-commutative algebras or rings with suit-
able positive definite inner products. Subset attack theory in [12] can be
extended naturally to these kind of algebraically structured LWE problem-
s with the multiplication. It has been realized that LWE is indeed a good
framework to establish nice cryptographic constructions since the pioneering
work of Regev in [47]. However the cryptanalysis of LWE over algebraically
structured objects is obviously not sufficient. Feasible non-negligible subset
quadruples or sublattice quadruples are general framework to analysis the
hardness of these LWE over algebraically structured objects. This subset or
sublattice attack can be used to detect the intrinsic bias of samples from
the algebraic structured LWE equations. We believe that these problems are
not hard in many settings. The main point is the existence of feasible non-
negligible subset quadruples or sublattice quadruples is equivalent to some
algebraic conditions from the computation of error distribution in Theorem
4.1. In Galois extension number field case there are so many prime numbers
with various decomposition properties in the ring of integers, then we can
find sufficiently large polynomially bounded prime modulus parameters to
satisfy the required algebraic conditions.
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3 Our contribution

3.1 Subset quadruples

Let K = Q[x]/(f(x)) = Q[θ] be a degree d extension field of the rational
field Q, where f is a monic irreducible polynomial in Z[x] and θ ∈ C is a
root of f . Let RK be its ring of integers. We consider the non-dual Ring-
LWE over RK with a modulus parameter q.

Definition 3.1. We assume that the modulus parameter q satisfies
dC1 ≤ q < dC2 where C1 and C2 are two fixed positive integers. Let
Ai ⊂ RK/qRK, i = 1, 2, 3, 4, be four subsets in RK/qRK satisfying the
following conditions.
1) |Ai|
|RK/qRK| ≥

1
dC3

for i = 1, 2, 3, where C3 is fixed positive integer;

2) A1 ·A2 + A4 ⊂ A3;
3) The set A1 and A3 are feasible, that is, the condition a ∈ A1 and the
condition b ∈ A3 for a ∈ RK/qRK and b ∈ RK/qRK can be checked within
polynomial time;

4) The probability Prob(e ∈ proj−1(A4)) > dC4 |A3|
|RK/qRK

| , where C4 is a fixed

positive integer.

In general if we can construct such subset quadruples for a Ring-LWE
over RK with the polynomially bounded modulus parameter q, then the
decision version of this Ring-LWE can be solved by a polynomial in d time
algorithm. Moreover we notice that the error distribution is only involved in
4), it is not assumed Gaussian. The property 4) is sufficient for a polynomial
time attack on the general Ring-LWE with an error distribution satisfying
the property 4). We do not require that A4 to be non-negligible in the uni-
form distribution and A2 to be feasible.

3.2 Main results

In case that A1 and A2 come from sublattice. We denote the set of all
elements of RK of the form

ΣC5
i=1mibi,

where C5 is a fixed positive integer when d goes to the infinity, ||bi|| ≤ dC6

for a fixed positive integer C6, by B.
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Condition. Let Kd be a sequence of Galois extension fields of the ra-
tional number field Q with degree d going to the infinity, and Bd be the
set described as above. For any given fixed positive integer C7 we assume
that there exists a sufficiently large polynomially bounded un-ramified prime
dC7 ≤ p(d) satisfying gcd(p(d), d) = 1, such that RKd

/p(d)RKd
is isomor-

phic to the product of bounded (by a fixed positive integer C8) number of
Fp(d)f(d) ,

RKd
/p(d)RKd

= Fp(d)f(d) × · · · × Fp(d)f(d) ,

(C8 copies of Fp(d)f(d) , C8f(d) = d), and there exist Fp(d) linear subspaces

Aj
1 and Aj

2 in Fp(d)f(d) for j = 1, 2, . . . , C8, with dimensions

dim(Aj
i ) ≥ d− C9

for i = 1, 2, where C9 is a fixed positive integer when d goes to the infini-
ty, and an element b ∈ Bd, such that ΣC8

j=1TrF
p(d)f(d)

/Fp(d)(b · x
j
1x

j
2) ≡ 0

mod pd satisfied for any xji ∈ Aj
i for i = 1, 2, j = 1, 2, . . . , C8. Here

TrF
p(d)f(d)

/Fp(d) = x + xp(d) + · · · + xp(d)f(d)−1
is the trace mapping from

the finite field Fp(d)f(d) to Fp(d).

Theorem 3.1. If Kd is a sequence of Galois number fields with degree
d going to the infinity and the above condition is satisfied. Let σd be the
sequence of the widths of Gaussian error distributions over RKd

. Suppose

that
√
d

λ1(RKd
∨)
≤ σd ≤ dC9, where C9 is a fixed positive integer when d goes

to the infinity. Then the decision non-dual Ring-LWE over RKd
for certain

polynomially bounded prime modulus parameters can be solved within the
polynomial (in d) time.

Notice that the above condition depends on the number fields only with
the element b ∈ Bd. Hence we believe that if we can prove the existence of
such an element, it should work for many number field sequences. The above
condition will be analysed in Section 5. In the above case that p(d)RK is
the product of bounded number of prime ideals, no ideal factor of p(d) has
polynomially bounded index when d goes to the infinity, then the analysis in
[43] does not work in this situation. However this is not the only approach to
construct sublattices for sublattice attacks or feasible non-negligible subset
quadruples for subset attacks.

Let Kn = Q[x]/(fn) = Q[ξ2n ], where fn = x2n−1
+1, dn = φ(2n) = 2n−1,

and ξ2n is a primitive 2n-th root of unity. This is a monogenic number field.
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It is easy to verify that the boundness ||ξj2n ||tr ≤
√
d for any integer j and

the boundness of the size of ”tweak factors” |f ′(ξj2n)| ≤ d where ξj2n takes
over all 2n-th roots of unity. We can construct sublattice quadruples for
two-to-power cyclotomic number fields.

Theorem 3.2. Let C be an arbitrary large fixed positive integer. We
consider the non-dual decision Ring-LWE over RKn = Z[ξ2n ]. Suppose that
the width sequence σn of the error distribution sequences over RKn satisfies√

dn
λ1(Z[ξ2n ]∨) ≤ σn ≤ d

C
n . Then there exists a sequence of polynomially bounded

modulus parameters qn ≤ poly(dn) only depending on dn and C such that we
can construct sublattice quadruple sequences for the the decision Ring-LWE
over Z[ξ2n ] with the modulus parameter qn.

From Theorem 3.2 the following result can be proved.

Corollary 3.1. Let C be an arbitrary large fixed positive integer. We
consider the dual decision Ring-LWE over RKn

∨ = Z[ξ2n ]∨. Suppose that

the widths σn of the error distribution over RKn
∨ satisfies

√
dn

λ1(Z[ξ2n ]) ≤ σn ≤
dCn . Then there exists a sequence of polynomially bounded modulus parame-
ters qn only depending on dn and C such that the dual decision Ring-LWE
over Z[ξ2n ]∨ with the modulus parameter qn can be solved in the polynomial
time (in dn).

From the hardness reduction result Theorem 6.2 and Corollary 6.3 in
[45] we have the following result.

Corollary 3.2. Let Kn, dn = 2n−1, be the sequence of two-to-power
cyclotomic fields with their degrees dn −→∞. Then there exists a fixed pos-
itive integer c such that approximating SIV Pdcn with approximating factor dc

for ideal lattices in Kdn can be solved by a polynomial (in dn) time quantum
algorithm.

The similar results in the case of two-to-power cyclotomic fields and
more general fields were proved in our preprint [13, 14] in 2019 by a differ-
ent method. However the preprocessings in [13, 14] are super-exponential.

Corollary 3.3. Let C be an arbitrary fixed positive integer and m be a
fixed positive integer. We consider the Module-LWE over RKn

m = Z[ξ2n ]m.
Suppose that the width sequences σn of the error distribution sequence sat-
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isfies
√
dn

λ1(Z[ξ2n ]) ≤ σn ≤ dCn . Then there exists a sequence of polynomially
bounded modulus parameters qn only depending on dn and m,C such that
the the decision Module-LWE over Z[ξ2n ]m with the modulus parameter qn
can be solved in the polynomial time (in dn).

3.3 Cryptographic and algorithmic implications

We prove that the decision Ring-LWE over two-to-power cyclotomic inte-
ger rings (then the search version) can be solved within the classical poly-
nomial time even for error distributions with the widths in the range of
Peikert-Regev-Stephens-Davidowitz hardness reduction results in Corollary
3.2. Then post-quantum lattice cryptographic constructions can not be
based on the hardness of Ring-LWE. For the computational number theory
of ideal lattices, our main result Corollary 3.2 and the main results in [13, 14]
indicate that approximating ideal-SIV P problems with a polynomial factor
for cyclotomic fields can be solved in the quantum polynomial time. Further
results about other Galois number field sequences will be presented in [15].

4 Probability computation

We need the following computation of probability for the proof of Theorem
3.2.

Theorem 4.1. Let L be a rank d number field lattice in a degree d
number field K. Let L1 be rank d sublattice of L∨ satisfying that qL∨ ⊂
L1 ⊂ L∨ and the cardinality |L∨/L1| is polynomially bounded. Suppose

that the width of the Gaussian distribution of errors e satisfying
√
d

λ1(L) ≤
σ ≤

√
c1√

πλ1(L∨1 )
and moreover there are at least |L

∨/L1|
qc2 lattice vectors in L∨1

satisfying ||x||tr ≤
√
c1√
πσ

, where c1 and c2 are fixed positive real numbers.

Then the probability e ∈ L1 is

Prob(e ∈ L1) =
Σx∈L1e

−π(
||x||tr
σ

)2

Σx∈L∨e
−π(

||x||tr
σ

)2
.

It satisfies

Prob(e ∈ L1) ≥ 1

ec1qc2
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when q is sufficiently large.

Proof. We calculate the probability Prob(e ∈ L1) of the condition e ≡ 0
mod L1. It is clear

Prob(e ∈ L1) =
Σx∈L1e

−π(
||x||tr
σ

)2

Σx∈L∨e
−π(

||x||tr
σ

)2
.

Set Y3(0) =
Σx∈L∨e

−π( ||x||trσ )2

σn and Y4(0) =
Σx∈L1

e−π(
||x||tr
σ )2

σn . From the
Poisson summation formula (see [36]) we have

Y3(0) =
1

det(L∨)
Σx∈Le

−π(||x||trσ)2 .

and

Y4(0) =
1

det(L1)
Σx∈(L1)∨e

−π(||x||trσ)2 .

Since σ ≥
√
d

λ1(L) then Σx∈L−0e
−π(||x||trσ)2 ≤ 1 + 1

2d
from Lemma 3.2 in [36].

For lattice vectors x ∈ L∨1 satisfying

||x||tr ≤
√
c1√
πσ

we have
e−π(||x||trσ)2 ≥ e−c1 .

Hence Prob(e ∈ L1) ≥ 1
|L∨/L1|(1 + 1

ec1 ·
|L∨/L1|
qc2 ). The conclusion follows

directly.

5 Number theory

5.1 Basic facts

We recall some basic facts in algebraic number theory. Please refer to [18, 7]
for the proof.

Proposition 5.1. Let K = Q[α] be a number field of degree n and
f(T ) ∈ Q[T ] = anT

n + an−1T
n−1 + · · ·+ aT + a0 be the minimal polynomial

of α. Write

f(T ) = (T − α)(cn−1T
n−1 + · · ·+ c1(α)T + c0(α))
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where cj(α) = Σn
i=j+1aiα

i−j−1. The dual base of {1, α, α2, . . . , αn−1} relative
to the trace product is

{c0(α)

f ′(α)
,
c1(α)

f ′(α)
, . . . ,

cn−1(α)

f ′(α)
}

.
Proposition 5.2. Let K = Q[θ] be a number field, where θ is an alge-

braic integer whose monic minimal polynomial is denoted by f(X). Then for
any prime p not dividing |RK/Z[θ]| one can obtain the prime decomposition
of pRK as follows. Let f(X) ≡

∏g
i=1 fi(X)ei mod p be the decomposition

of f(X) module p into irreducible factors in Fp[X] where fi are taken to be
monic. Then

pRK =
g∏
i=1

Pei
i ,

where
Pi = (p, fi(θ)) = pRK + fi(θ)RK.

Furthermore the residual index of Pi is equal to the degree of fi.

The main construction in Theorem 3.2 is as follows. There should be
many very short lattice vectors in the dual L∨1 of the number field lat-
tice L1 satisfying qRKd

⊂ L1 ⊂ RKq . Let x1, . . . ,xt are t elements in
RK

∨/qRK
∨, we define a number field lattice L(x1, . . . ,xt) by the equa-

tions Tr(xi · y) ≡ 0 mod q, where y ∈ RK, and i = 1, . . . , t. It is ob-
vious qRK ⊂ L(x1, . . . ,xt) ⊂ RK. Moreover it is clear the definition of
L(x1, . . . ,xt) only depends on the residue classes of xi’s in RK

∨/qRK
∨.

Proposition 5.3. The vectors x1
q , . . . ,

xt
q are in the dual lattice

L(x1, . . . ,xt)
∨ ⊂ RK

q
.

If a ∈ RK/qRK is an invertible element, then there is a Z/qZ linear iso-
morphism from L(x1, . . . ,xt) to L(a−1x1, . . . ,a

−1xt) defined by y −→ ay.
In particular the cardinalities of

RK/L(x1, . . . ,xt)

and
RK/L(a−1x1, . . . ,a

−1xt)
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are the same.

Proof. The first conclusion is direct from the definition. The second
conclusion is a simple computation.

The following result about the factorization of a prime number in the
cyclotomic fields is useful in the sublattice construction, we refer to [52].

Proposition 5.4 Let n = 2m be a two-to-power and d = φ(n) = 2m−1 be
its Euler function. Let p be an odd prime. Set f the order of p in (Z/2mZ)∗,
that is, f is the smallest positive integer such that pf ≡ 1 mod n. Then p
factorized to M = 2m−1

f prime ideals in Z[ξn],

pZ[ξn] = P1 · · ·PM .

Moreover Z[ξn]/Pi is isomorphic Fpf .

We refer to [7, 38] for the following general result about decomposition
groups of prime ideals.

Proposition 5.5. Let K be a degree n Galois extension of the rational
number field with the Galois group G. Suppose that p is an un-ramified
prime in RK. Let pRK = P1 · · ·Pt be its decomposition of the product
of prime ideals, RK/Pi = Fpfi . Then G acts on P1, . . . ,Pt transitively
and all residual class degrees fi’s, i = 1, 2, . . . , t are the same f . We have
n = |G| = tf . Let

GP1 = {g ∈ G : g(P1) = P1}

be the decomposition subgroup of the prime ideal P1 in the Galois group G.
Then the decomposition subgroup GPi of Pi, i = 2, . . . , t, is the conjugate
giGP1g

−1
i of GP1. The Galois group G is the sum of these decomposition

subgroups. Moreover GPi is isomorphic to the automorphism group of the
extension Fpf of Fp generated by the Frobenius element x −→ xp.

5.2 Trace functions and adjoint linearized polynomials over
Fqn

In the following part we recall some basic facts about linearized polynomials
(q polynomials ) and trace functions over Fqn . Let L(x) = Σn−1

i=0 aix
qi , where

ai ∈ Fqn . It is clear L : Fqn −→ Fqn is a linear mapping of n dimensional
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linear space over Fq. The polynomial l(x) = Σn−1
i=0 aix

i is called the con-
ventional q-associate of L(x). The polynomial L(x) is called the linearized
associate of l(x). The following proposition is well-known, we refer to [29].

Proposition 5.6. Let L1(x) = Σn−1
i=0 aix

qi, L2(x) = Σn−1
i=0 bix

qi be two
linearized polynomials with coefficients ai ∈ Fq and bi ∈ Fq. The polyno-
mial l1(x) = Σn−1

i=0 aix
i and l2(x) = Σn−1

i=0 bix
i in Fq[x] are their conventional

q-associates. The conventional q-associate of L1(L2(x)) = L2(L1(x)) is the
product l1(x)l2(x).

Proof. L1(L2(x)) = Σn−1
j=0 aj(Σ

n−1
i=0 bix

qi)q
j

= Σn−1
j=0 (Σn−1

i=0 b
qi

i x
qi+j ). Since

bq
i

i = bi for any i = 1, 2, . . . , n − 1 from the condition bi ∈ Fq, we have

L1(L2(x)) = Σn−1
j=0 aj(Σ

n−1
i=0 bix

qi+j ) = Σn−1
j=0 Σn−1

i=0 ajbix
qi+j . The conclusion

follows directly.

For the linearized polynomial L(x) = Σn−1
i=0 aix

qi ∈ Fqn [x], the adjoint

polynomial of L is the linearized polynomial L̂(x) = Σn−1
i=0 a

qn−i

i xq
n−i

.

Proposition 5.7. We have TrFqn/Fq(yL(z)) = TrFqn/Fq(zL̂(y)) for
y, z ∈ Fqn.

Proof. It is clear that TrFqn/Fq(yaz
qi) = TrFqn/Fq(za

qn−iyq
n−i

) for
z, y, a ∈ Fqn . Then the conclusion follows from the additivity directly.

We set n = 2m−1 and L1(x) = xq
4 −x and L2(x) = xq

n−4
+xq

n−8
+ · · ·+

xq
8

+ xq
4

+ x+ w(x), where w(x) is a linearized polynomial with degree at
most q16.

Proposition 5.8. The kernels of L1 and L2 as Fq linear mappings of
Fqn have their dimensions at most 20.

Proof. The dimension of L1 is at most 4 since its degree is at most 4.
Let TrFqn/Fq4 : Fqn −→ Fq4 be the trace function from Fqn to Fq4 defined

by x+ xq
4

+ xq
8

+ · · ·+ xq
n−4

. The codimension of its kernel as a Fq linear
space is at most 4. For y ∈ ker(L2)

⋂
ker(TrFqn/Fq4 ), it is clear that y sat-

isfies w(x) = 0. Since the codimension of the kernel of TrFqn/Fq4 is at most

4. The conclusion follows directly.
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6 Proof of the main results

Proof of Theorem 3.1. We prove that feasible non-negligible subset
quadruples grantee the polynomial time solvability. The probability that
uniformly chosen a ∈ RK/qRK is in the subset A1 is at least 1

dC3
, the

probability s ∈ A2 is at least 1
dC3

for uniformly distributed s ∈ RK/qRK.

We check the probability (a,b) ∈ (A1,A3) for dC11 samples (a,b)’s where
C10 is a fixed sufficiently large positive integer. Since both A1 and A3 are
feasible, this can be done within a polynomial time. When these samples
are uniformly distributed, the probability that

(a,b) ∈ (A1,A3)

is exactly
|A1|

|RK/qRK|
· |A3|
|RK/qRK|

.

Since a · s ∈ A1 · A2 for the fixed unknown secret s ∈ A2, when a ∈
A1. Then the probability b ∈ A3 is bigger than or equal to Prob(e ∈
proj−1(A4)) from the condition 2)

A1 ·A2 + A4 ⊂ A3

in the definition of subset quadruples. Then we have

Prob((a,b) ∈ (A1,A3)) ≥ |A1|
|RK/qRK|

· Prob(e ∈ proj−1(A4)).

From the condition 4) of the subset quadruple we have

Prob((a,b) ∈ (A1,A3)) >
|A1|

|RK/qRK|
· 2|A3|
|RK/qRK|

,

when samples are from the Ring-LWE equations. Hence for non-negligible
secrets s ∈ A2, the dC11 samples (a,b)’s from the Ring-LWE equation are
not uniformly distributed and can be tested within a polynomial time.

The Trd of the extension Kd/Q has a natural projection Trd,p(d) :
RKd

/p(d)RKd
= Fp(d)f(d) × · · · × Fp(d)f(d) −→ Z/p(d)Z = Fp(d). From

Proposition 5.5, this Trd,p(d) function of RKd
/p(d)RKd

= Fp(d)f(d) × · · · ×
Fp(d)f(d) is the sum

Trd,p(d)(x1, . . . , xC8) = TrF
p(d)f(d)

/Fp(d)(x1) + · · ·+ TrF
p(d)f(d)

/Fp(d)(xC8).
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Here f(d)C8 = d. We take A1 and A2 the sum of Aj
1, j = 1, 2, . . . , C8, A4

the subspace in RKd
/p(d)RKd

defined by Tr(b · x) ≡ 0 mod p(d). Then
A1 ·A2 ⊂ A4. A3 is the same as the A4. From Theorem 4.1 the condition
4) of subset quadruple is satisfied. The conclusion follows directly.

We give the proof of Theorem 3.2.

Proof of Theorem 3.2. First of all we can find p(d) from Proposition
5.4. It is well-known that 3 is an order 2m−2 element in (Z/2mZ)∗. Then
for any odd prime satisfying p ≡ 3 mod 2m, its order in (Z/2mZ)∗ is 2m−2.
From Proposition 5.4 the suitable sufficiently large polynomially bounded
un-ramified prime p(d) such that Z[ξn]/pZ[ξn] factorized to the product of
2 prime ideals can be found directly from Dirichlet’s Theorem (by an argu-
ment of Dirichlet’s density). Then C8 = 2 in the Condition of Theorem 3.1.

Set b = 1. Let Aj
1 be the image of the linearized polynomial Gj(x)

and A2 be the image of of the linearized polynomial Lj(x) for j = 1, 2 in
Fp(d)4 [x]. Hence

TrF
qf(d)

/Fq(G
1(y)L1(z))+TrF

qf(d)
/Fq(G

2(y)L2(z)) = TrF
qf(d)

/Fq(z(L̂
1(G1(y))+L̂2(G2(y)))

from Proposition 5.7. From Proposition 5.6 we only need to find linearized
p(d)4 polynomials G1, G2, L1, L2 in Fp(d)4 [x] such that g1l1 + g2l2 is of the

form xd − 1 where gj , lj , j = 1, 2, are the conventional p(d)4-associates of
Gj , Lj . This can be constructed from Proposition 5.8 directly. The conclu-
sion follows from Theorem 3.1.

Proof of Corollary 3.1, 3.2 and 3.3. The conclusions follows from
Theorem 3.2 directly by the results in [32, 45].

7 Conclusion

In this paper we construct sublattice quadruples for the Ring-LWE over
the two-to-power cyclotomics such that the samples from the Ring-LWE e-
quations can be distinguished from the uniformly distributed samples. The
main point of our subset or sublattice attack is to find carefully construct-
ed polynomially bounded index sublattices or feasible non-negligible subsets
and check samples from the Ring-LWE equations in the quotients of such
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lattices or these feasible non-negligible subsets. The sublattice attack from
sublattice quadruples is applied to the Ring-LWE with arbitrary polyno-
mially bound width Gaussian error distributions over two-to-power field-
s. We prove that the decision (then search) Ring-LWE over two-to-power
fields with wide error distributions of widths in the range of Peikert-Regev-
Stephens-Davidowitz hardness reduction results for certain sufficiently large
polynomially bounded modulus parameters can be solved by a polynomial
time algorithm. Then from the hardness reduction results the approximating
ideal-SIV Ppoly(d) with some polynomial factors for ideal lattices in two-to-
power cyclotomic fields can be solved within quantum polynomial time. The
construction of suitable sublattice quadruples for many Galois number field
sequences will be presented in [15].

Acknowledgement. I am grateful to Chris Peikert for his comment in
[43] on my effort to understand the hardness of the Ring-LWE. I also thank
these friends for their interest and comment on the previous versions of this
paper and my other ePrints on related problems.

The Twitter claim in [43] ”entire approach cannot possibly work against
the targeted Ring-LWE parameters” is exaggerating. This claim can only
apply to the minor error of ”sublattice pairs with ideals” construction for the
required sublattice in the sublattice attack for the number field case, not the
whole theory of sublattice attack on Ring-LWE. Even for polynomial ring
LWE with some special inner products the sublattice pair with ideals can
be used to construct the required sublattices as in [12]. In previous crypt-
analysis of Ring-LWE in [23, 10] only samples from Ring-LWE equations
in quotients of polynomially bounded index prime ideals were considered.
This kind of ideal attack was analysed in [43], which was emphasized in
Chris Twitter comment. When polynomially bounded index ideals are not
used in our sublattice attack construction or the inner product has no the
symmetric property √

dN(I)1/d ≤ λ1(I),

actually there is no previous results can be used to say anything about the
sublattice attack.

The sufficiently large polynomially bounded prime numbers which are
completely split in the cyclotomic integer rings were used in the 1st version
as modulus parameters. Then there are poly(d) many polynomially bounded
index ideal factors of this prime modulus parameters. Hence the construc-
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tion of ”sublattice pair with an ideal” in the 1st version is incorrect in the
number field case as indicated in [43]. In this version un-ramified sufficient-
ly large polynomially bounded prime numbers with very high residual class
degrees f are used as modulus parameters, that is, d/f is bounded when d
goes to the infinity. Then no ideal factors of these modulus parameters has
polynomially bounded indices. In the proof of Theorem 3.2 all ideal factors
of the modulus parameters are of exponential indices in Z[ξ2m ].
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