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Abstract. Data trading is an emerging business, in which data sellers
provide buyers with, for example, their private datasets and get paid from
buyers. In many scenarios, sellers prefer to sell pieces of data, such as sta-
tistical results derived from the dataset, rather than the entire dataset.
Meanwhile, buyers wish to hide the results they retrieve. Since it is not
preferable to rely on a trusted third party (TTP), we are wondering, in
the absence of TTP, whether there exists a practical mechanism satisfy-
ing the following requirements: the seller Sarah receives the payment if
and only if she obliviously returns the buyer Bob the correct evaluation
result of a function delegated by Bob on her dataset, and Bob can only
derive the result for which he pays. Despite a lot of attention data trad-
ing has received, a desirable mechanism for this scenario is still missing.
This is due to the fact that general solutions are inefficient when the
size of datasets is considerable or the evaluated function is complicated,
and that existing efficient cryptographic techniques cannot fully capture
the features of our scenario or can only address very limited computing
tasks.
In this paper, we propose the first desirable mechanism that is practical
and supports a wide variety of computing tasks — evaluation of arbitrary
functions that can be represented as polynomials. We introduce a new
cryptographic notion called blind polynomial evaluation and instantiate
it with an explicit protocol. We further combine this notion with the
blockchain paradigm to provide a practical framework that can satisfy
the requirements mentioned above.

Keywords: Blind polynomial evaluation · Blockchain · ElGamal en-
cryption · Encryption switching protocol · Paillier encryption.

1 Introduction

Nowadays, data trading is an emerging business, which may involve different
kinds of data, such as financial data, commercial data, and personal data. As
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the public gradually realizes the value of data, data trading has attracted more
and more attention. Traditional data trading trivially seeks help from a cen-
tral platform as a trusted third party (TTP). In most trading strategies, sellers
send the entire dataset directly to buyers, which is fairly exchanged under the
coordination of the central platform.

Unfortunately, in these solutions, central platforms are heavily relied on and
have to be assumed to act honestly. Once the central platform is corrupted,
the interests of parties will be significantly hurt. Furthermore, in many data
trading scenarios, sellers may prefer to sell only certain calculation results on
the dataset rather than exposing the entire dataset at one time. At the same
time, buyers in a blind fashion wish to hide from sellers the results they retrieve.
Therefore, it would be preferable to design a practical mechanism for selling only
function evaluation results and capturing requirements like correctness, privacy,
consistency, and fairness, but without the existence of TTP.

Dataset x

Seller SarahBuyer Bob

Data
xf

f(x )
Trading

An illustration of such a scenario is shown above. More precisely, without the
help of TTP, the seller Sarah possessing dataset x receives the payment if and
only if she obliviously helps the buyer Bob possessing a function f get the result
f(x) correctly. Meanwhile, Bob can only derive the result for which he pays from
the data trading. Besides, we should ensure the consistency of datasets in two
transactions, i.e., for each transaction (with the same buyer or with different
buyers), Sarah should use the same dataset x. In addition, for the reason that
datasets during data trading tend to remain unchanged and consistent, we prefer
a pre-processing procedure that amortizes the processing cost of datasets rather
than a one-time solution. Here we call a solution one-time if every execution of
such a solution involves a new entire processing procedure of the dataset.

However, even if data trading is more and more important, desirable solutions
meeting the above requirements are still unknown. Although general solutions,
such as Yao’s garbled circuits [29] using universal circuit [26, 30] and fully ho-
momorphic encryption [14] (see more discussion in Section 2.2 and Section 2.3)
can theoretically be used as a component for this scenario, they are infeasible for
practical use when the sizes of datasets are considerable and the evaluated func-
tions are complicated. Furthermore, existing efficient frameworks cannot fully
capture the features of our scenario and practical cryptographic tools can only
cover limited computing tasks. Thus, despite the existence of theoretical solu-
tions, the following question remains open:

How to construct a practical mechanism for the requirements of data
trading mentioned above, with the capability of supporting a wide variety
of computing tasks?

We answer this question in the present paper.
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1.1 Our Results

In this paper, we focus on arbitrary functions that can be represented as poly-
nomials and propose the first practical solution that fulfills all aforementioned
requirements. We remark that the evaluation of polynomials is powerful and
can be utilized in many applications. To further motivate our results, we illus-
trate some potential applications from three aspects: (i) Polynomial evaluation
supports many statistical numerical calculations, including mean, variance, de-
terminant, inner product, Minkowski distance, etc. (ii) Since many functions can
be approximated by Taylor polynomials, our work supports approximate eval-
uations of these functions. (iii) Datasets can be specially designed to support
many operations through polynomial evaluation. Here we provide a toy exam-
ple. Suppose that a seller holds a dataset containing the gender and salary of
employees at a company. In cells for gender, female employees are specifically
represented by zero and male by one. If a buyer intends to calculate the total
salary of employees of a particular gender, he requires selecting and summing the
salary items of employees of that gender. We denote the gender and salary as bi
and si, respectively, for the term of the index i. Then calculating the total salary
of female employees is equivalent to evaluating the polynomial

∑
i(si − bisi) on

the dataset and that of male employees equals
∑
i bisi.

To capture the features of the scenario for polynomial evaluations on private
datasets, we introduce a new cryptographic notion called blind polynomial eval-
uation. This notion can be viewed as a subset of two-party computation (2PC)
problems [28] and is of independent interest. We further combine our blind poly-
nomial evaluation protocol with the blockchain paradigm to provide a practical
solution that achieves fairness of exchange for the scenario of data trading.

Here we briefly introduce the underlying insights. We borrow the idea from
[6] of using two compatible homomorphic encryption schemes and introducing
a switching mechanism between them to support complicated computing tasks.
But we note that the scenario we consider is anyhow different from that of [6]
(for a comparison, see Section 2.4). Through this mechanism, buyers can eval-
uate their polynomials on sellers’ encrypted datasets via additively and mul-
tiplicatively homomorphic properties simultaneously. This idea is simple, but
it is a highly nontrivial approach for two main reasons: two schemes should be
compatible, and switching should be guaranteed to perform correctly. For our sce-
nario, we need to ensure that two encryption schemes are switched secretly and
correctly when one party holds the complete private keys and intends to behave
dishonestly. In addition, we also consider the fact that almost all multiplicatively
homomorphic encryption schemes do not support encryption of zero, but it is
indeed required in some scenarios. We customize a new multiplicatively homo-
morphic encryption scheme to resolve this situation. Furthermore, we introduce
how to achieve fair exchange of the final result over blockchain.

We summarize the main contributions of this work in the following.

1. Considering the scenario of data trading, we introduce a new cryptographic
notion, namely, blind polynomial evaluation. We propose a generic construc-
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tion of this notion with communication cost O(k), where k is the number of
terms of polynomials.

2. We propose a small-constant-round protocol to instantiate the generic con-
struction to support polynomial evaluation over Z∗n, where n is a strong
RSA modulus having two distinct prime factors of the same length, under
standard computational hardness assumptions. Furthermore, we extend our
instantiation from polynomial evaluation over Z∗n to that over Zn.

3. We integrate our blind polynomial evaluation protocol with the blockchain
paradigm to support fair exchange in the data trading scenario.

4. We analyze our protocol in terms of both round complexity and a proof-of-
concept implementation to provide evidence that the protocol is practical.

The rest of the present paper is organized as follows. In Section 2, we in-
troduce some related work, with an emphasis on both relevance and difference
compared to our work. We then introduce the notion of blind polynomial eval-
uation together with a generic construction and corresponding definitions in
Section 3. The protocol to instantiate the generic construction over Z∗n is pre-
sented in Section 4, and is further extended from Z∗n to Zn in Section 5. In
Section 6, we show how to combine our blind polynomial evaluation protocol
with the blockchain paradigm to achieve fair exchange for data trading. Finally,
analysis of the practicality of our protocol is given in Section 7.

2 Related Work

In this section, we recall some classical definitions and results that are related
to our work.

2.1 Oblivious Polynomial Evaluation

Naor and Pinkas [21] proposed a cryptographic notion named oblivious poly-
nomial evaluation (OPE), and then an extended version called oblivious multi-
variate polynomial evaluation [25] was proposed. These notions are for the sce-
nario that a receiver holding a value x (resp. vector x) intends to compute p(x)
(resp. p(x)) with the help of a sender possessing a private univariate (resp. multi-
variate) polynomial p. By the protocol, the receiver gets only p(x) (resp. p(x)),
and the sender can infer no information about x (resp. x) from the interaction.

We note that the scenario of data trading we now consider is different from
OPE. On the one hand, the receiver of the evaluation result is the polynomial
provider in our setting, while the data provider in OPE. This difference leads to
very different security definitions. On the other hand, most OPE protocols are
designed for one-time use. Such solutions are not preferable and could lead to
data inconsistencies among transactions as we have mentioned in Section 1.

2.2 Universal Circuit and Garbled Circuit

For a fixed universal circuit Un such that Un(x,C) = C(x) for any circuits
having at most n gates, it is easy to see that universal circuits combined with the
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garbled circuit technique can theoretically be used for the data trading scenario
we consider. However, overhead is prohibitive for the following four main reasons.

– For polynomial evaluation, complicated polynomials lead to boolean circuits
with considerable sizes. Meanwhile, representations of boolean circuits us-
ing universal circuits involve a significant expansion of the circuit size —
O(n log n) with significant constant terms as well as the low-order terms.

– To ensure data consistency, a costly consistency check of the entire dataset
may need to be encoded in the circuit.

– To be secure against malicious parties, expensive techniques (e.g., cut-and-
choose approach) should be involved.

– The solution will be a one-time use solution.

In contrast, our solution is efficient and overcomes all of these issues.

2.3 Homomorphic Encryption

Homomorphic encryption is an encryption scheme that allows computations to
be performed on encrypted data, such that the decryption of the final result
equals the result directly computed from the plaintexts. As a classic example,
ElGamal [13] cryptosystem is multiplicatively homomorphic. For additively ho-
momorphic encryption schemes, one of the well-known schemes is Paillier cryp-
tosystem [22], which supports additions of encrypted values and multiplications
between encrypted values and constants. Although these cryptosystems (named
partially homomorphic encryption (PHE)) are practically used in many applica-
tions, they support very limited computing tasks (such as only addition or multi-
plication) and are limited in many other applications. In 2009, Gentry proposed
the first fully homomorphic encryption (FHE) [14], from which it is possible to
perform arbitrary computations. Following Gentry’s seminal work, some FHE
schemes are proposed afterward. The noted barrier of FHE is that current FHE
schemes are still inefficient and prohibitive, especially for datasets of considerable
size and complicated functions. For example, polynomial evaluation via FHE is
prohibitive when the degree of polynomials is not a very small constant and the
polynomial cannot be written in a batch-friendly form. In contrast, our protocol
is efficient and will not be subject to these limitations.

2.4 Encryption Switching Protocol

The notion of encryption switching protocol was formalized by Couteau, Peters,
and Pointcheval [6] in 2016 (see [3] for a more general construction). The en-
cryption switching protocol applies to the scenario that two parties secretly share
two private keys for a multiplicatively homomorphic encryption scheme and an
additively homomorphic encryption scheme, respectively. Both of them can indi-
vidually encrypt a message, but neither of them can decrypt a ciphertext unless
they cooperate to perform threshold decryption. This leads to a framework for
two parties to cooperatively switch a ciphertext from one cryptosystem to the
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other and follow a deterministic computation path on the ciphertexts together
until a computation result is reached. The encryption switching protocol also
shows efficiency in practice [5]. Although we utilize this encryption switching
idea in our work, we are considering a different scenario: one party holds the
two complete private keys while the other holds only the corresponding pub-
lic keys. In this scenario, given an encrypted value, the party holding the two
private keys can decrypt this ciphertext and learn the corresponding plaintext
herself, which leads to entirely different definitions and solutions from [6, 3].

2.5 Fairness Based on Blockchain

The blockchain paradigm is the underlying data structure, along with the emer-
gence of Bitcoin [20]. It is deployed in a peer-to-peer (P2P) network, where all
nodes follow a consensus mechanism. Ethereum [27] is the first platform that
introduced blockchain-based smart contracts. After the deployment of a smart
contract, nodes in the network execute the instructions specified by this smart
contract and users. If the majority of nodes honestly follow the consensus mech-
anism, a blockchain can be deemed as a (semi-)honest third party with a public
execution transcript.

It is known that general protocols in the absence of a third party cannot
guarantee fairness when one of the parties is corrupted for 2PC problems [4]. Be-
cause of the emergence of the blockchain and smart contracts, some researchers
recently integrated them into protocols as a third party to achieve fairness. A
few of blockchain-based protocols, such as [2, 1, 16], ensure fairness of 2PC via a
mechanism called claim-or-refund, in which a malicious party who aborts ahead
of specified time will be forced to pay a monetary penalty.

For data trading, a few results based on the blockchain are also proposed
to ensure data consistency through the claim-or-refund mechanism, such as [8,
10, 11]. These results mainly focus on data delivery, in which data sellers intend
to sell an entire dataset or file. A few other results are proposed for collecting
data from specified data generators, such as [18, 15, 19]. As a comparison, in our
scenario, only two parties are involved, and the result evaluated on the function
delegated by the buyer is delivered instead of the entire dataset.

3 Definitions and Generic Construction

According to earlier discussion in Section 1, we need a practical mechanism to
capture the requirements of correctness, privacy, consistency and fairness for the
data trading scenario. In this section, we model such a data trading scenario
as a cryptographic notion called blind polynomial evaluation, aiming to resolve
concerns of the first three requirements during data trading. The concern of
fairness will be postponed to Section 6.
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3.1 Blind Polynomial Evaluation

We consider the scenario that a seller Sarah initially uploads her entire dataset
x in an encrypted form (denoted by cx) to a public place (e.g., cloud) and
publishes a hash value of cx for consistency check. Then she can start trading
data with potential buyers who have downloaded cx. We note that for Business-
to-Customer (B2C) scenarios, the seller Sarah can indeed play the role of the
storage server, and here we use public place to generalize the description that
may also involve Customer-to-Customer (C2C) scenarios. It is typically cheap for
individual sellers to use cloud storage service, and in this way sellers even do not
need to store cx locally. Since Sarah only needs to encrypt her dataset once, this
approach avoids one-time use cost. We also note that once Sarah wants to update
a portion of the dataset, she can only update this portion and the hash value.
Moreover, since buyers can download the encrypted dataset without interaction
with Sarah before a data trading, this approach, in some sense, largely saves
Sarah’s communication cost. Furthermore, the hash value of cx ensures data
consistency of transactions. Once the encrypted dataset is uploaded, Bob, as a
potential buyer, can download cx and check the hash value of cx.

Sarah, as a sender, in a blind fashion helps Bob, as a receiver, evaluates on
the dataset x a function that belongs to the set P, which contains all `-variate
polynomials with k + 1 terms in the sparse representation of

P (x) =

k∑
i=0

bi
∏̀
j=1

x
dij
j ,

where x ∈ (Z∗n)`, κ is the security parameter, `, k ∈ O (κc ) for large enough
constant c > 0, all bi, dij ∈ O (2κ ), and d0j = 0 for j = 1 . . . `. We denote the

terms of P (x) by Pi(x) = bi
∏`
j=1 x

dij
j for i = 1, . . . , k and P0(x) = b0, such

that P (x) =
∑k
i=0 Pi(x). Note that polynomials with the number of variates

less than ` and number of terms less than k+ 1 can also be written in this form
by simply setting certain bi and dij to be 0. We call such a procedure blind
polynomial evaluation and define its functionality of this notion as follows.

Definition 1. The two-round functionality of the blind polynomial evaluation
protocol between a receiver and a sender is presented below.

1. (a) The receiver inputs an encrypted vector cx corresponding to a plaintext
vector x and public information pi. The sender inputs a trapdoor td and
public information pi′.

(b) If pi = pi′, td is correct for cx and pi, both parties receive continue and
proceed to the next round. Otherwise, both parties receive ⊥ with abortion.

2. (a) The receiver inputs the description of a polynomial P ∈ P.
(b) If P ∈ P, the receiver receives the evaluation result P (x) and the sender

receives nothing. Otherwise, both parties receive ⊥ with abortion.

We note that pi (resp. pi′) includes public parameters such as public keys for
cx. From this definition, the receiver only receives the result P (x) at the end
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without leaking any more information to the sender. Here, we allow buyer to set
the polynomial P (x) = xi to retrieve the i-th entry of x. Our goal is for the
seller to avoid revealing the entire dataset at one time, and it is acceptable that
buyer retrieves the entire dataset via numerous transactions. If the scenario is to
avoid leaking information of single entries, the dataset could simply be processed
by differential privacy [9] techniques at the beginning.

As stated in Section 1.1, to support polynomial evaluation on encrypted
datasets, and meanwhile, to make it practical, we utilize in our construction
two compatible homomorphic encryption schemes Π× and Π+, where Π× is
multiplicatively homomorphic, and Π+ is additively homomorphic. Here we call
two schemes Π× and Π+ compatible if the plaintext space of Π+ is a ring R and
that of Π× is a monoid M with R ∩M = R∗, where R∗ is the set of invertible
elements of R [3]. The main idea of our construction is that Sarah first encrypts
via Π× all entries of the dataset, which then allows Bob to multiply encrypted
values of the encrypted dataset directly. After multiplications, Sarah, in a blind
manner, helps Bob switch all encrypted multiplication results to ciphertexts of
Π+, which again allows Bob to add encrypted values of these ciphertexts. Finally,
we let Sarah once again in a blind fashion provide Bob with the final decrypted
result.

To avoid duplicate definitions, in the rest of this section we denote the multi-
plicatively homomorphic encryption scheme as Π× = (KGen,Enc,Dec,Mul) with
a key pair (pk×, sk×), message space M×, and ciphertext space C×, and the
additively homomorphic encryption scheme as Π+ = (KGen,Enc,Dec,Add,Mul)
with a key pair (pk+, sk+), message space M+, and ciphertext space C+. Here
we require Π+ to support efficient multiplication of an encrypted value and
a constant. Since most additively homomorphic encryption schemes have this
property, this requirement can be easily satisfied. We assume that Π× and Π+

are compatible and both IND-CPA (Indistinguishability under Chosen Plaintext
Attack) secure. We write r←$S for sampling r uniformly from a set S.

3.2 Definitions of Building Blocks

To formalize our idea, we introduce the following building blocks. We first recall
the definition of twin-ciphertext pair.

Definition 2 (Twin-Ciphertext Pair [6]). For two encryption schemes Π×
and Π+, we call a pair of ciphertexts (c×, c+) ∈ (C×, C+) a twin-ciphertext pair
if c× is an encryption of a message m× under Π×, c+ is an encryption of a
message m+ under Π+, m×,m+ ∈M× ∩M+ and m× = m+.

Then in Table 1, we present some languages for relations and their corresponding
zero-knowledge ideal functionality. The functionality FTwinCtx

zk is for proving that
a ciphertext pair is a twin-ciphertext pair, FEncValue

zk is for proof of encrypted

value for Π+, and F sk+
zk is for proof of private key sk+ of the scheme Π+. Each

ideal functionality receives the statement from both the prover and verifier, and
a witness from the prover. It outputs accept to the verifier if the statement from
both parties are the same and true, and reject otherwise.
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Table 1. Languages for relations and their zero-knowledge ideal functionalities.

Language for relation Functionality

LTwinCtx = {(c× ∈ C×, c+ ∈ C+, pk×, pk+) | ∃(m×,m+, r+, sk×), s.t.

sk× is the private key of pk× ∧m× = Π×.Decpk×(c×, sk×)

∧ c+ = Π+.Encpk+(m+; r+) ∧m× = m+}
FTwinCtx

zk

LEncValue = {(c+ ∈ C+,m+ ∈M+, pk+) |∃(r+), s.t.

c+ = Π+.Encpk+(m+; r+)}
FEncValue

zk

Lsk+ = {(pk+) | ∃(sk+), s.t.sk+ is the private key of pk+} F sk+
zk

3.3 Construction

We here present our generic construction of blind polynomial evaluation be-
tween the sender, i.e., seller Sarah, and the receiver, i.e., buyer Bob, in the

(FTwinCtx
zk ,FEncValue

zk ,F sk+
zk )-hybrid model in Fig. 1.

Now we define the security of this construction. For the receiver’s security, we
should guarantee that: (i) A malicious sender cannot deviate from the protocol
without being detected (with protocol abortion); (ii) The view of the sender
can be simulated, i.e., the sender learns nothing. The ideal functionalities indeed
guarantee the first requirement in the hybrid model, that is, the sender must
return the correct switched ciphertexts and the decryption result. We now define
the receiver’s security in the hybrid model against malicious senders as follows.

Definition 3 (Receiver’s Security). For all adversaries A running in prob-
abilistic polynomial-time (PPT) with input pi, sk×, sk+, and auxiliary input z

playing the sender’s role in the (FTwinCtx
zk ,FEncValue

zk ,F sk+
zk )-hybrid model, there

exists a PPT simulator S given pi, sk×, sk+ and z in the ideal model of blind
polynomial evaluation, such that the output of S is (perfectly) indistinguishable
from the view of A.

For the sender’s security, it is necessary to ensure that after the evaluation
of a polynomial P , the receiver cannot obtain more information than he should,
i.e., Bob only retrieves P (x). In the hybrid model, a malicious Bob can only
cause abortion or send different ciphertexts to Sarah instead of the ciphertexts
according to an honest evaluation for P (x). If Bob sends values in incorrect
forms, he will be rejected and the protocol aborts. Since Bob obtains nothing,
this behavior does not offend our security goal. If he sends ciphertexts that are
different from an honest evaluation, but in the correct form, he indeed evaluates a
different polynomial P ′ from P . We notice that if Π× and Π+ are both IND-CPA
secure, Bob gains no advantage after he receives ciphertexts from Sarah (see more
in Section 6.1). Hence, it is reasonable to let malicious Bob pick a polynomial P
after seeing cx and before the execution of the protocol, and then Bob behaves
semi-honestly during the protocol. Hence, we define the adversary that plays the
role of the receiver as A = (A0,A1): A0 takes as input cx and pi, and outputs
the description of a polynomial P ∈ P; A1 takes as input the description of P ,
cx and pi, and acts as a semi-honest adversary to evaluate P on the encrypted
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Inputs: The receiver Bob takes as input the description of a polynomial P ∈ P,
an encrypted vector cx of Π× corresponding to a vector x. The sender Sarah takes
as input the keys sk× and sk+ (i.e., the trapdoor td) for Π× and Π+, respectively.
Both parties also take as input the public information pi containing pk×, pk+.

1. Sarah checks if keys sk× and sk+ are correct, and aborts if they are incorrect.

Bob, as the verifier, calls F sk+
zk with the prover Sarah for pk+. If F sk+

zk outputs
accept, Bob continues. Otherwise, Bob halts and outputs ⊥.

2. Bob computes on cx according to the term Pi to derive c×,Pi(x) for i = 1, . . . , k.
If a coefficient bi = 0, Bob picks a random ciphertext of Π× as c×,Pi(x).

3. Bob interacts with Sarah for all c×,Pi(x)’s, i = 1, . . . , k, following the encryp-
tion switching procedure below to switch the underlying encryption scheme of
these ciphertexts. At the end, Bob retrieves switched ciphertexts c+,Pi(x)’s,
i = 1, . . . , k.
(a) Bob picks s←$M× and computes cs ← Π×.Encpk×(s). Then Bob com-

putes c′×,Pi(x) ← Π×.Mulpk×(c×,Pi(x), cs) to randomize c×,Pi(x), and sends
c′×,Pi(x) to Sarah.

(b) If c′×,Pi(x) ∈ C×, Sarah decrypts c′×,Pi(x), re-encrypts the decrypted value
via Π+ with pk+ to derive c′+,Pi(x), and sends it to Bob. Otherwise, Sarah
halts and outputs ⊥.

(c) Bob, as the verifier, calls FTwinCtx
zk with the prover Sarah for

(c′×,Pi(x), c
′
+,Pi(x)). If FTwinCtx

zk outputs accept, Bob continues. Otherwise,
Bob halts and outputs ⊥.

(d) Bob computes c+,Pi(x) ← Π+.Mulpk+(c′+,Pi(x), s
−1), where s−1 is the multi-

plicative inverse of s (such an inverse exists as Π× and Π+ are compatible).
4. Bob computes c+,P0(x) ← Π+.Encpk+(b0) and sums encrypted values of c+,Pi(x)

for i = 0, . . . , k (except bi = 0) to obtain c+,P (x), which is the encrypted P (x).
5. Bob retrieves the final result m = P (x) via the following result retrieval proce-

dure.
(a) Bob picks s←$M+ and encrypts it via cs ← Π+.Encpk+(s). Then Bob

computes c′+,P (x) ← Π+.Addpk+(c+,P (x), cs) and sends it to Sarah.
(b) If c′+,P (x) ∈ C+, Sarah decrypts it and sends the decrypted value m′ to

Bob.
(c) Bob, as the verifier, calls FEncValue

zk with the prover Sarah for c′+,P (x) and

m′. If FEncValue
zk outputs accept, Bob continues. Otherwise, Bob halts and

outputs ⊥.
(d) Bob outputs the decrypted result m← m′ − s.

Fig. 1. Generic construction with FTwinCtx
zk , FEncValue

zk , and F sk+
zk .

dataset cx with the sender. We abuse the notion representation slightly and use
P to represent the description of the polynomial P if the context is clear.

Definition 4 (Sender’s Security). For every PPT adversary A = (A0,A1)

in the (FTwinCtx
zk ,FEncValue

zk ,F sk+
zk )-hybrid model with input cx, pi and auxiliary

input z playing receiver’s role, once the description of a polynomial is output via
P ← A0(cx, pi, z), there exists a PPT simulator S taking cx, pi and P as input
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in the ideal model, such that the view simulated by S and the view of the semi-
honest A1 in the hybrid model taking cx, pi, and P as input are computationally
indistinguishable.

For the above generic construction, we have the theorem as follows.

Theorem 1. If Π× and Π+ are both IND-CPA, the generic construction in the

(FTwinCtx
zk ,FEncValue

zk ,F sk+
zk )-hybrid model guarantees both receiver’s and sender’s

security.

Therefore, to guarantee both receiver’s and sender’s security, we should en-
sure that both Π× and Π+ are IND-CPA secure, and functionalities FTwinCtx

zk ,

FEncValue
zk , and F sk+

zk are securely realized in the presence of malicious adversaries.

4 Instantiation of Blind Polynomial Evaluation over Z∗
n

To instantiate the generic construction of blind polynomial evaluation, we utilize
a variant of ElGamal encryption scheme from [6] with the plaintext space of Z∗n
and the Paillier encryption scheme from [22] with the plaintext space of Zn,
where n is a strong RSA modulus having two distinct prime factors of the same
length. It is easy to see that these two schemes are compatible. Given these
two schemes, we then provide protocols that securely realize FTwinCtx

zk , FEncValue
zk ,

and F sk+
zk in the presence of malicious adversaries, which immediately leads to a

secure blind polynomial evaluation protocol based on the generic construction.
For the following description, let κ and t be the security parameters, and negl

be a negligible function. Algorithms implicitly take as input 1κ. Our instantiation
in this paper relies on the following computational hardness assumptions.

– The Decisional Diffie-Hellman (DDH) assumption in a cyclic group G = 〈g〉
of order q ∈ Θ(2κ ) is that for all PPT adversaries A, we have

Pr

[
A(G, q, g, gx, gy, zb) = b :

x, y←$Zq; z0 = gxy;

z1←$G; b←$ {0, 1}

]
≤ 1/2 + negl(κ) .

– The Decisional Composite Residuosity (DCR) assumption in Z∗n2 , where n ∈
Θ(2κ ) is a strong RSA modulus, is that for all PPT adversaries A, we have

Pr

[
A(n, zb) = b :

r←$Z∗n; z0 = rn mod n2;

z1←$Z∗n2 ; b←$ {0, 1}

]
≤ 1/2 + negl(κ) .

– The Quadratic Residuosity (QR) assumption in Z∗n, where n ∈ Θ (2κ ) is a
strong RSA modulus, is that for all PPT adversaries A, we have

Pr

[
A(n, zb) = b :

r←$Z∗n; z0 ← r2 mod n;

z1←$ Jn; b←$ {0, 1}

]
≤ 1/2 + negl(κ) ,

where Jn is the set of all elements of Z∗n whose Jacobi symbols are +1.
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4.1 ElGamal Encryption over Z∗
n

We slightly modify a variant of ElGamal encryption scheme Z∗n-EG over Z∗n
introduced in [6] and use it as the multiplicatively homomorphic encryption
scheme Π×. The description of Z∗n-EG is given below.

Key Generation The key generation algorithm KGen takes as input the se-
curity parameter 1κ and generates a strong RSA modulus n = pq where
p, q ∈ Θ (2κ ) are distinct randomly-chosen safe primes having the same
length. Then the algorithm follows the procedure below:

1. Compute g0←$Z∗n, g ← −g20 to obtain a generator of Jn of order λ =
lcm(p − 1, q − 1). Here Jn is the set of all elements of Z∗n whose Jacobi
symbols are +1.

2. Compute v = [p−1 mod q] · p mod n, such that v ≡ 0 mod p and v ≡
1 mod q, and χ ← (1 − v) · gtp + v · gtq mod n for an even tp←$Zλ and
an odd tq ←$Zλ. Compute θ, such that g2θ = χ2, based on the Chinese
Remainder Theorem.

3. Pick s←$Zλ, and set h← gs. Note that such (s, h) are components of the
private key and the public key in the generic ElGamal encryption scheme.

4. Output the public key pk× ← (n, g, χ, h) and the private key sk× ←
(s, θ, p, q). Note that we can derive λ, v, tp, tq from sk×.

Encryption The encryption algorithm Enc takes as input a message m ∈ Z∗n
and a public key pk×, and encodes m in Jn via (m1,m2)← (ga, χ−am) ∈ J2n
for a←$ {1, . . . , bn/2c} that satisfies Jn(m) = (−1)a. Here Jn is an algorithm
to compute the Jacobi symbol of a given value. Then the algorithm com-
putes cJ ← Jn-EG.Enc(m2) = (c0 = gr, c1 = m2h

r) for r←$ {1, . . . , bn/2c}.
Finally, the algorithm returns the ciphertext c← (cJ = (c0, c1),m1).

Decryption The decryption algorithm Dec takes as input a ciphertext c =
(cJ = (c0, c1),m1) and a key pair (pk×, sk×), checks whether Jn(c1) = 1 and
outputs ⊥ if it is not. If the check passes, the algorithm recovers m2 via
m2 ← Jn-EG.Dec(cJ) = c1/c

s
0 mod n and computes m0 ← (1− v) ·mtp

1 + v ·
m
tq
1 mod n. Finally, the algorithm returns the message m← m0m2 mod n.

Multiplication The multiplication algorithm Mul takes as input two cipher-
texts c = (c0, c1,m1) and c′ = (c′0, c

′
1,m

′
1), and outputs c′′ = (c0 · c′0, c1 ·

c′1,m1 · m′1) = (c′′0 , c
′′
1 ,m

′′
1). Assume that m is the plaintext of c and m′ is

the plaintext of c′. We can easily verify that c′′ is the ciphertext of m ·m′.

For simplicity, we may omit the parameters pk× and sk× from input parame-
ters of the above algorithms in the setting of no confusion. We may also use
Z∗n-EG.Enc(m; r, a) to explicitly indicate the random coins (r, a) for encryption.

The correctness of Jn-EG is the same as the generic ElGamal encryption
scheme: c1/c

s
0 = (m2h

r)/grs = (m2g
rs)/grs = m2 in Jn. For an isomorphism f

from Z∗n to Z∗p × Z∗q : f(x) = ([x mod p], [x mod q]), it is easily verified that

m0 = (1− v) ·mtp
1 + v ·mtq

1 mod n↔ (m
tp
1 ,m

tq
1 ) = (gatp , gatq )

= (gtp , gtq )a ↔
(
(1− v) · gtp + v · gtq mod n

)a
mod n = χa mod n
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and m0m2 = χaχ−am mod n = m.
In [6], the authors proved the above Z∗n-EG is IND-CPA secure under the

DDH assumption in Jn and the QR assumption in Z∗n.

4.2 Paillier Encryption over Zn

We use as the additively homomorphic encryption scheme the Paillier encryption
scheme [22] Zn-P, i.e., Π+ = Zn-P. Its description is as follows.

Key Generation The algorithm KGen takes as input a security parameter 1κ,
and generates a strong RSA modulus n = pq, where p, q ∈ Θ (2κ ) are
randomly-chosen safe primes having the same length. Then the algorithm
outputs a key pair (pk+ = n, sk+ = (p, q)). From sk+, we can compute
λ← lcm(p− 1, q− 1) and d← [λ−1 mod n] ·λ mod nλ. Note that the public
key pk+ = n is equal to n of the public key pk× of Z∗n-EG.

Encryption The algorithm Enc takes as input a message m ∈ Zn and the public
key pk+, and outputs the ciphertext c← (1+n)mrn mod n2, where r←$Z∗n.

Decryption The algorithm Dec takes as input a ciphertext c, the key pair
(pk+, sk+), and returns the plaintext m = ([cd mod n2]− 1)/n.

Addition The algorithm Add takes as input two ciphertexts c and c′, and out-
puts c′′ = c · c′ mod n2. Assume that m is the plaintext of c and m′ is the
plaintext of c′. We can easily check that c′′ is the ciphertext of m+m′.

Multiplication The scalar multiplication algorithm Mul takes as input a ci-
phertext c and a constant s, and outputs c′ = cs mod n2. Note that comput-
ing a constant power of a ciphertext is equivalent to multiplying its encrypted
value by this constant.

Randomness Extraction The algorithm ExtractR takes as input a ciphertext
c and a key pair (pk+, sk+). It first computes m← Zn-P.Decpk+(c, sk+) and

c0 ← c·(1+n)−m. Since p and q have the same length, we have gcd(λ, n) = 1.
Hence, the algorithm can find a value x, such that n · x mod λ = 1. Finally,
the algorithm outputs the random coin r ← cx0 mod n.

Since cd ≡ (1 + n)mdrnd ≡ (1 + n)m[λ−1 mod n]·λrn[λ
−1 mod n]·λ ≡ (1 + n)m ≡

1 +mn mod n2, we can easily extract the message via m← ([cd mod n2]−1)/n.
We remark that Zn-P is IND-CPA secure under the DCR assumption [22]. For
simplicity, we may omit the parameters pk+ and sk+ from input parameters of
the above algorithms when the setting is clear. We may also use Zn-P.Enc(m; r)
to explicitly indicate the random coins r for encryption.

4.3 Instantiation of Functionalities

We introduce how to securely realize FTwinCtx
zk , FEncValue

zk , and F sk+
zk based on

Z∗n-EG and Zn-P. We provide protocols that are public-coin honest-verifier zero-
knowledge proof of knowledge. There are several approaches to compile such
protocols to protocols against malicious verifiers with low overhead, such as the
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Fiat-Shamir heuristic [12]. Note that we could simply use proof of factoring

techniques, such as [23] to securely realize F sk+
zk for Zn-P.

We use ideas of [7] to realize FEncValue
zk in Fig. 2. Here the prover Sarah can

use Zn-P.ExtractR to extract the random coins r+ of the ciphertext c+.

Inputs: Both the prover P and the verifier V take as input c+ ∈ Z∗n2 , m+ ∈ Zn,
pk+ = n. P also takes as input the witness r+ ∈ Z∗n.

1. P picks s←$Z∗n and sends a← Zn-P.Encpk+(0; s) = sn mod n2 to V.

2. V returns e←$ {0, 1}t to P if a ∈ Z∗n2 . Otherwise, V outputs reject.
3. P computes and sends to V the value z ← sre+ mod n.
4. V computes c′ = c+(1 + n)−m+ mod n2. V outputs accept if zn ≡ ac′e mod n2

and c′, a, and z are all relatively prime to n. Otherwise, V outputs reject.

Fig. 2. Protocol EncValue associated with Zn-P.

Proposition 1. The protocol EncValue associated with Zn-P is public-coin honest-
verifier zero-knowledge proof of knowledge.

Before we provide the protocol for FTwinCtx
zk , we introduce a zero-knowledge ideal

functionality FEncOne
zk associated with the language that a given ciphertext c×

encrypts 1 as follows:

LEncOne = {(c× = ((c0,c1),m1) ∈ (Z∗n)3, pk× = (n, g, χ, h)) | ∃(s, θ), s.t.
h = gs mod n ∧ χ2 ≡ g2θ mod n ∧ c1 = m−θ1 cs0 mod n} .

If the plaintext of c× = ((c0 = gr, c1 = m2h
r),m1 = ga) is 1, which is encoded

by (m1,m2) = (ga, χ−a) ∈ J2n for an even a, we should have c1 = χ−ahr =
g−θagsr = m−θ1 cs0. Hence, the protocol that could be used to realize FEncOne

zk is
given in Fig. 3 and the proposition for its security is in the following.

Proposition 2. The protocol EncOne associated with Z∗n-EG is complete, sound,
and honest-verifier zero-knowledge.

For FTwinCtx
zk , the prover Sarah proves to the verifier Bob that a given cipher-

text pair is a twin-ciphertext pair. We separate the protocol realizing FTwinCtx
zk

into two phases: offline and online phases, to obtain a more practical protocol4.
For the offline phase (Fig. 4), the prover Sarah possessing sk× first gener-

ates a random ciphertext pair (c0, c
′
0), such that c0 = Z∗n-EG.Enc(m0) = (c0J =

(c00, c01),m01) and c′0 = Zn-P.Enc(m′0; r′0), where m0 = m′0. Then P sends it to
the verifier Bob and convinces Bob that it is indeed a twin-ciphertext pair with-
out revealing information about the plaintexts and the corresponding random
coins. The generated (c0, c

′
0) will then be used in the online phase of TwinCtx.

4 Such an approach is similar to that of [6]. However, their security goal indeed cannot
be achieved since the random coins of the ElGamal encryption cannot be extracted
and the group order is hidden. We overcome the security faults for our scenario.
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Inputs: Both the prover P and the verifier V take as input pk× = (n, g, χ, h)) and
(c× = ((c0, c1),m1) ∈ (Z∗n)3. P also takes as input the witness (s, θ).

1. P randomly picks u, v←$Zn, computes d1 ← g2u mod n, d2 ← gv mod n, d3 ←
m−u1 cv0 mod n, and sends d1, d2, and d3 to V.

2. V randomly picks e←$ {0, 1}t and sends it to P if d1, d2, d3 ∈ (Z∗n)3. Otherwise,
V outputs reject.

3. P computes z1 ← u+ eθ mod λ, z2 ← v + es mod λ, and sends it to V.
4. V checks g2z1 ≡ d1(χe)2 mod n, gz2 ≡ d2he mod n, and m−z11 cz20 ≡ d3ce1 mod n.

V outputs accept if all equations hold, and reject otherwise.

Fig. 3. Protocol EncOne associated with Z∗n-EG.

Inputs: Both the prover P and the verifier V take as input c0 = (c0J =
(c00, c01),m01) ∈ (Z∗n)3, c′0 ∈ Z∗n2 , pk+ = n, pk× = (n, g, χ, h). P also takes as
input (s, θ) ∈ sk×, m0 = m′0 ∈ Zn and r′0 ∈ Z∗n, such that c′0 = Zn-P.Encpk(m′0; r′0).

1. P generates t random ciphertext pairs (ci, c
′
i), such that ci =

Z∗n-EG.Enc(mi; ri, ai) = (ciJ = (ci0, ci1),mi1), c′i = Zn-P.Enc(m′i; r′i), and
mi = m′i, for i = 1, . . . , t. Then P sends them to V.

2. V picks e = e1 · · · et ← {0, 1}t and returns e to P if ci ∈ (Z∗n)3 and c′i ∈ Z∗n2 .
Otherwise, V outputs reject.

3. For i = 1, . . . , t,
– if ei = 0, P sends to V the values mi, ri, ai and r′i;
– if ei = 1, P computes Ri ← m0/mi mod n, and encodes it as (Ri1, Ri2)←

(gaRi , χ−aRiRi) ∈ J2n for aRi ←$ {1, . . . , bn/2c}, such that Jn(Ri) =

(−1)aRi . Then P computes ρ′i ← r′
Ri
i · r−1

0 mod n. Finally, P sends Ri,
aRi to V.

4. For i = 1, . . . , t,
– if ei = 0, V checks the validity of (ci, c

′
i) via ci = Z∗n-EG.Enc(mi; ri, ai) and

c′i = Zn-P.Enc(mi; r
′
i);

– if ei = 1, V reconstructs (Ri1, Ri2) ← (gaRi , χ−aRiRi) ∈ J2n, computes
Di ← ((ci0 · (c00)−1, ci1 ·Ri2 · (c01)−1),mi1 ·Ri1 · (m01)−1) ∈ J3n and D′i ←
c′Ri
i · (c′0)−1 mod n2. Then, P proves to V that Di = Z∗n-EG.Enc(1) and
D′i = Zn-P.Enc(0; ρ′i) hold using FEncOne

zk and FEncValue
zk .

If all verifications are accepted, V outputs accept, and reject otherwise.

Fig. 4. Protocol TwinCtx for Z∗n-EG and Zn-P — offline Phase.

In the online phase (Fig. 5), Sarah proves a given ciphertext (c×, c+) is a
twin-ciphertext pair using (c0, c

′
0), as required in FTwinCtx

zk .
Intuitively, since m′ is a random message and both Zn-P and Z∗n-EG are

IND-CPA secure, m and the random coins of (c×, c+) will be preserved if (c0, c
′
0)

is correctly generated in the offline phase. We have the following proposition.

Proposition 3. The TwinCtx protocol associated with Z∗n-EG and Zn-P is public-
coin honest-verifier zero-knowledge proof of knowledge.
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Inputs: Both the prover P and the verifier V take as input c× = (cJ =
(c×0, c×1),m×1) ∈ (Z∗n)3, c+ ∈ Z∗n2 , pk+ = n, and pk× = (n, g, χ, h). They have
input a twin-ciphertext pair (c0, c

′
0), where c0 = ((c00, c01),m01) and c′0 from the

offline phase. P also takes as input (s, θ) ∈ sk×, m ∈ Zn and r+ ∈ Z∗n, such that
c+ = Zn-P.Encpk(m; r+), and (m′0, r

′
0) from the offline phase.

1. P computes R ← m/m′0, and encodes R as (R1, R2) ← (gaR , χ−aRR) ∈ J2n
for aR ←$ {1, . . . , bn/2c}, such that Jn(R) = (−1)aR . P computes ρ+ ← r′R0 ·
r−1
+ mod n, and sends R, aR to V.

2. V reconstructs (R1, R2) ← (gaR , χ−aRR) ∈ J2n, computes D× ← ((c00 ·
(c×0)−1, c01 ·R2 · (c×1)−1),m01 ·R1 · (m×1)−1) ∈ J2n and D+ ← c′R0 · (c+)−1 mod
n2. P proves to V that D× = Z∗n-EG.Encpk×(1) and D+ = Zn-P.Encpk+(0; ρ+)

hold using FEncOne
zk and FEncValue

zk . If they hold, V outputs accept, and reject
otherwise.

Fig. 5. Protocol TwinCtx for Z∗n-EG and Zn-P — online Phase.

Here each execution of TwinCtx generates and consumes a (random) twin-
ciphertext pair, which is not desirable. We now introduce how to improve the
efficiency of the TwinCtx protocol using the idea in [6, 17]. We first recall the
notion multi-exponentiation with encrypted bases (MEB). The zero-knowledge
functionality FMEB

zk is for the relation associated with the language below:

LMEB = {(n,{ωi}ki=1 ∈ {0, 1}κ·k, C, {ci}ki=1 ∈ (Zn2)k+1 | ∃(r, {mi, ri}ki=1), s.t.

∀i ∈ {1, . . . , k}ci = Zn-P.Enc(mi; ri) ∧ C = Zn-P.Enc(
k∏
i=1

mωi
i ; r)} .

A protocol to realize FMEB
zk was proposed in [6], and then it was improved and

its security was formally proved in [17]. We can use the 5-round protocol in [17]
to batch the executions of the online phase of TwinCtx. In this setting, the
prover P wants to prove to the verifier V that all pairs of (ci, c

′
i)i=1,...,k where

ci = Z∗n-EG.Enc(mi; ri, ai) and c′i = Zn-P.Enc(m′i; r′i) are all twin-ciphertext
pairs, i.e., mi = m′i given only one random twin-ciphertext pair generated in the
offline phase of TwinCtx. Here the common reference string (CRS) contains the
description of a pseudo-random generator (PRG). The procedure for batching
the executions of the online phase of TwinCtx is as follows.

1. V sends ω←$ {0, 1}κ to P.
2. Both parties use ω as a seed for PRG to generate (ωi)i=1,...,k. Then both

parties take ωith power for each entry of ci and add them together to ob-
tain C, such that C = Z∗n-EG.Enc(

∏k
i=1m

ωi
i ;
∑k
i=1 ωiri,

∑k
i=1 ωiai). P picks

ρ←$Z∗n and sends C ′ ← Zn-P.Enc(
∏k
i=1m

′ωi
i ; ρ) to V.

3. P and V uses FMEB
zk on ((ωi)i=1,...,k, C

′, (c′i)i=1,...,k).
4. If FMEB

zk returns accept, P and V perform the online phase of TwinCtx for
(C,C ′), and V outputs what TwinCtx outputs. Otherwise, V returns reject.
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MEB proves that C ′ is indeed the ciphertext of
∏k
i=1m

′ωi
i . If

∏k
i=1m

ωi
i =∏k

i=1m
′ωi
i for random (ωi)i=1,...,k, we have mi = m′i for i = 1, . . . , k with an

overwhelming probability. Here we note that the messages from P in Step 2 and
Step 3 can be combined, and the two protocols, MEB [17] and TwinCtx, can
be performed in parallel. We can further pack the procedure, such that the on-
line phase and the offline phase of TwinCtx are executed simultaneously. More
precisely, the online phase uses the generated random twin-ciphertext pair, and
meanwhile the offline phase proves that this generated ciphertext pair is indeed
a twin-ciphertext pair. Such an approach can reduce the number of rounds of
the encryption switching procedure (Step 3 of the generic construction) to 6.

5 Extension from Z∗
n to Zn

The Z∗n-EG scheme encrypts values in Z∗n. However, in some scenarios, it would
be nice if one can encrypt the element 0. We illustrate a method to extend the
protocol from Z∗n to Zn in this section. We recall the definition of computational
equality as follows for our further discussion.

Definition 5 (Computational Equality [6]). For two finite sets S1 and S2

with cardinalities |S1|, |S2| ∈ Θ (κc ) for large enough constant c > 0, we call
them computationally equal if for every PPT adversary A, we have

Pr[m ∈ S1 ⊕ S2 : m← A(S1, S2)] ≤ negl(κ) ,

where S1 ⊕ S2 denotes the symmetric difference of S1 and S2.

We claim that Zn and Z∗n ∪ {0} is computationally equal, since if we can find a
value m ∈ Zn⊕ (Z∗n∪{0}), we can factor the RSA modulus n, which contradicts
the assumption that it is computationally hard to factor n. Hence, we only need
to include 0 in the Z∗n-EG plaintext space to extend from Z∗n to Zn.

The ciphertext of the new encryption scheme Zn-EG is a tuple C = (c, u),
where u is called zero indicator. A messages m is encrypted as follows.

– If m 6= 0, we compute c← Z∗n-EG.Enc(m), u← Z∗n-EG.Enc(1).
– Ifm = 0, we compute c← Z∗n-EG.Enc(r) for r←$Z∗n, and u← Z∗n-EG.Enc(ḡ),

where ḡ ∈ Jn is a predefined fixed value for Zn-EG.

Multiplication of two encrypted values with tuples (c1, u1) and (c2, u2) is by
doing element-wise multiplications of these tuples. If the multiplication involves
an encrypted zero, the zero indicator encrypts a non-one value and the first
entry c encrypts a random value. Otherwise, the zero indicator encrypts 1,
and c encrypts the multiplication result. To decrypt a tuple (c, u), the de-
cryption algorithm decrypts the zero indicator via z ← Z∗n-EG.Decpk×(u, sk×).
If z 6= 1, the algorithm outputs m ← 0. Otherwise, the algorithm outputs
m← Z∗n-EG.Decpk×(c, sk×). Because Zn-EG is based on Z∗n-EG, it is obvious that
Zn-EG is also IND-CPA secure. Otherwise, we can construct a distinguisher to
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break the IND-CPA security of Z∗n-EG. For the zero indicator, we can further
encrypt values ḡ ∈ Jn without encoding and thus obtain shorter ciphertexts.

The extension from Z∗n to Zn affects the encryption switching procedure in
the generic construction (Step 3), and we now illustrate how to modify this
procedure in Fig 6. Our goal is to switch a Zn-EG ciphertext (c, u) to a Zn-P

Inputs: The receiver Bob takes as input pk×, pk+, and sk×. The sender Sarah
takes as input C = (c, u), pk×, pk+.

1. Bob switches the encryption scheme of c from Z∗n-EG to Zn-P according to
Step 3 of the generic construction, and obtains c+. Bob executes Step 2 – 4
of the generic construction to evaluate the Lagrange polynomial L mentioned
above on the encrypted value of u, and obtains a Zn-P ciphertext v. Denote
the plaintext of c+ by a and the plaintext of v by b, i.e., b ∈ {0, 1}.

2. Bob picks α, β←$Zn and computes ciphertexts cα ← Zn-P.Encpk+(α), cβ ←
Zn-P.Encpk+(β), ca+α ← Zn-P.Addpk+(c+, cα), cb+β ← Zn-P.Addpk+(v, cβ).
Then Bob sends ca+α and cb+β to Sarah. Meanwhile, Bob locally com-
putes caβ ← Zn-P.Mulpk+(c+, β), cbα ← Zn-P.Mulpk+(v, α), and cαβ ←
Zn-P.Encpk+(αβ).

3. Sarah extracts a′ ← Zn-P.Decpk+(ca+α, sk+) and b′ ← Zn-P.Decpk+(cb+β , sk+),
and the corresponding random coins via Zn-P.ExtractR. Then Sarah computes
c′c ← Zn-P.Encpk+(a′ ·b′), and sends c′c to Bob. Sarah, as the prover, calls FEncMul

zk

with Bob, as the verifier, for the multiplication relation of ca+α, cb+β , and c′c.
4. If the output of FEncMul

zk is accept, Bob outputs cc ← c′c · c−1
aβ · c

−1
bβ · c

−1
αβ mod n2,

which is the switched ciphertext of C. Otherwise, Bob outputs ⊥ and halts.

Fig. 6. Encryption switching procedure from Zn-EG to Zn-P with FEncMul
zk .

ciphertext. Let the maximum degree of the polynomial P be dmax. For u inside
(c, u), we know that u encrypts one value of {1, ḡ, . . . , ḡdmax}. We thus can con-
struct a Lagrange polynomial L of (at most) degree dmax, which maps 1 to 1
and values in {ḡ, . . . , ḡdmax} to 0. If we evaluate L on the encrypted value of u,
we derive encrypted 1 for ciphertexts of non-zero values and encrypted 0 for ci-
phertexts of zero according to the zero indicator. Then this encrypted evaluation
result multiplied by the encrypted value of c leads to the switched ciphertext.

The procedure in Fig. 6 utilizes the zero-knowledge functionality FEncMul
zk for

the multiplication of encrypted values relation associated with the language:

LEncMul = {(ca, cb, cc ∈ (Z∗n2)3, pk+ = n) | ∃(a, b, c, ra, rb, rc), s.t.
ab ≡ c mod n ∧ ∀x ∈ {a, b, c}, Zn-P.Encpk+(x; rx) = cx} .

The protocol that realizes FEncMul
zk can be found in [7]. Note that since α and β

are random, c′a+α and c′b+β do not leak any information about a, b, Sarah learns
no information about C, c+ and v during the protocol.
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Similar to the Z∗n case, we can pack the encryption switching procedure for
the Zn case. More precisely, Bob can switch for both c and terms of Lagrange
polynomial L on u simultaneously via batching TwinCtx. After obtaining the
switched ciphertexts (c+ and v), Bob starts Step 3 of the encryption switching
procedure from Zn-EG to Zn-P in parallel. Hence, we derive a 6-round procedure.
We present an illustration of this procedure for switching one ciphertext in Fig. 7,
and a very similar approach can be used to switch multiple ciphertexts.

Encryption Switching for Z∗n

blinded c and u, . . . , ud

Batching TwinCtx

ω

EncMulMEB TwinCtx
c′a+sa and c′b+sb

switched blinded c and u, . . . , ud,
random twin-ciphertext pair

TwinCtx

Bob Sarah

Encryption Switching for Zn

Online

Offline

Fig. 7. Packing encryption switching procedure for the Zn case.

6 Fair Exchange on Blockchain

In this section, we introduce how to achieve fairness via blockchain, such that
the buyer Bob receives the evaluation result if and only if the seller Sarah gets
paid from Bob. We first briefly introduce the underlying ideas.

We stress that Sarah has a negligible advantage to provide an incorrect result
without being rejected if the blind polynomial evaluation protocol guarantees
receivers’ security. Meanwhile, Bob obtains no more information than the result
P (x) and cannot have any information about P (x) before Step 5 of the generic
construction. Therefore, we can compile the protocol EncValue associated with
Zn-P via Fiat-Shamir heuristic to make it non-interactive, and deploy the proof
verification process on smart contracts to achieve fair exchange. More precisely,
Bob programs a smart contract, uploads parameters for EncValue, and freezes his
payment on the contract. This smart contract receives Sarah’s decrypted result,
together with the proof, and verifies the proof. If the verification returns accept,
Sarah will retrieve the payment automatically. Bob can remove the blind factor
to obtain the final result. We call this approach active verification.

It is indeed possible to further reduce the cost. It is reasonable to assume
that Sarah behaves mostly honestly, since Sarah may trade data many times with
different buyers, and it will influence Sarah’s credit if she is detected to behave
dishonestly. We could require Sarah to pay a deposit on the smart contract
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when she submits her proof. The smart contract now does not verify this proof.
Alternatively, Bob verifies the proof off-chain, i.e., Bob retrieves the proof from
the smart contract and verifies it locally. If the proof is accepted, Sarah can
retrieve the payment and her deposit after a specified period called complaint
period. Hence, we save the cost of on-chain verification. Otherwise, Bob starts
the verification procedure on the smart contract during the complaint period.
If the smart contract indeed rejects the proof, it transfers the payment together
with Sarah’s deposit to Bob to penalize dishonest Sarah. Hence, if the latency of
the complaint period is acceptable, this passive verification approach is cheaper.
In what follows, we give a formal description and analysis for the ideas above.

6.1 Procedure Obliviousness

Before introducing the fair exchange protocol, we explicitly define for blind poly-
nomial evaluation a security property called procedure obliviousness. Informally,
the blind polynomial evaluation protocol achieves procedure obliviousness if the
receiver of the protocol learns nothing beyond the public information cx and pi
before the result retrieval procedure of the generic construction. This property is
to ensure that buyers must learn nothing if he aborts before the seller can claim
the payment. The definition is given as follows.

Definition 6 (Procedure Obliviousness). For every PPT adversary A with
input cx, pi and auxiliary input z playing receiver’s role until the beginning of
the fifth step in the generic construction, there exists a PPT simulator S tak-
ing cx, pi, z as input in the ideal model, such that the view simulated by S is
computationally indistinguishable from the view of A.

Our generic construction in Section 3 indeed achieves procedure obliviousness.

Theorem 2. The generic construction in the hybrid model with the ideal func-

tionalities FTwinCtx
zk , FEncValue

zk , and F sk+
zk achieves procedure obliviousness.

6.2 Security Requirements

Given that the blind polynomial evaluation protocol is procedure obliviousness,
we proceed to introduce the fair exchange protocol for the result retrieval proce-
dure of the generic construction over blockchain. Note that in this procedure, the
seller Sarah will receive the blinded ciphertext c′+,P (x) from the buyer Bob. Now
to achieve a fair exchange of the decryption result and the payment, we move
the transfer of the decryption result for c′+,P (x) and the verification of EncValue
protocol to blockchain. After the fair exchange, Bob can simply remove the blind
factor to obtain the final result to finish the data trading procedure.

We first define the security requirements for the fair exchange of the data
trading scenario between a data buyer and a data seller via termination, buyer
fairness, and seller fairness in the following.

Termination. If at least one party is honest, the protocol will terminate, and
all coins for the contract will be unlocked.
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Buyer Fairness. An honest buyer is guaranteed that only if the seller provides
the correct decryption result of the ciphertext c given by the buyer, the buyer
will pay the seller p coins.

Seller Fairness. An honest seller is ensured that only if the buyer pays p coins
to the seller, the buyer can learn the decryption result.

6.3 Protocol

We remark that our goal in this section is to integrate the transfer of the decryp-
tion result and the verification of EncValue protocol into the blockchain paradigm
to achieve the security requirements defined in Section 6.2.

We first introduce how to compile the EncValue protocol for a Paillier cipher-
text c, i.e., c′+,P (x) in the generic construction, via the Fiat-Shamir heuristic to
make it non-interactive and secure against malicious verifiers. Given a cryp-
tographic hash function H : {0, 1}∗ 7→ {0, 1}t, the prover first picks s←$Z∗n
and computes the value a as in EncValue. Then the prover computes e ←
H(n, c,m, a) to generate the challenge e. Finally, the prover computes z as in
EncValue and sends (m, e, z) to verifiers. To verify the proof, verifiers compute
a← znc′−e mod n2 and output accept if and only if e← H(n, c,m, a). Note that
the size of the non-interactive proof is short to be deployed on blockchain, e.g.,
0.28125 KB for ||n|| = 2048 and t = 256. The idea for the fair exchange of the
evaluation result is to use a blockchain-enabled smart contract as a judge for the
verification of this non-interactive proof when disputes happen.

The description of our fair exchange protocol basically follows the symbols
and framework used in [10] (and also in [11]). As the same as [10], we abstract the
communication by the synchronous communication model. This model assumes
that the protocol is executed in rounds and all parties are aware of the current
round. At the beginning of each round, parties receive all messages sent to them
in the previous round. Meanwhile, all messages are sent within one round and
received within the next round, i.e., the communication is instantaneous.

We model the hash function (e.g., keccak 256) used in the Fiat-Shamir
heuristic via the global random oracle H and use the global ledger L (see [10] for
more information) to model a blockchain (e.g., Ethereum). Here we focus on the
passive verification approach as described in Section 6. The ideal functionality
GL,HFairExchange is to model the blockchain-enabled smart contract GFairExchange with

access to L and H. Note that GL,HFairExchange, acting as a judge smart contract over
the blockchain, interacts with L, H, the buyer Bob, and the seller Sarah. The
description of GL,HFairExchange is given in Fig. 8, and the description of the four-phase
protocol for fair exchange between an honest buyer Bob and an honest seller
Sarah is given in Fig. 9. In practice, because of the transparency of blockchain,
both parties can check the code of the smart contract and start the protocol
only if the smart contract correctly realizes the functionality of GL,HFairExchange.

In the initiation phase, GL,HFairExchange receives from the buyer Bob the public
key pk+ = n for the Paillier encryption, the Paillier ciphertext c, as well as the
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The ideal functionality GL,HFairExchange locally stores addresses addrBob and addrSarah
for both Bob and Sarah, respectively. It also maintains price p, state s, and the
corresponding parameters for EncValue: n, c, m, e, and z.

Initiation

Upon receiving (initiate, id, n, c, p) from the buyer Bob, store n, c, and p, and send
(freeze, id,Bob, p) to L. If L responds with (frozen, id,Bob, p), set s = initialized
and send (initialized, id, n, c, p) to all parties.

Submission

Upon receiving (submit, id,m, e, z) from the seller Sarah when s = initialized,
send (freeze, id,Sarah, p) to L. If L responds with (frozen, id,Sarah, p), set s =
submitted, store m, e, and z, and send (submitted, id,m, e, z) to all parties.
Otherwise, if no such a message from Sarah was received, send (unfreeze, id,Bob, p)
to L and abort.

Complaint

Upon receiving (complain, id) from the buyer Bob when s = submitted, compute
c′ ← c · (1 + n)−m mod n2, a ← zn · c′−e mod n2, set s = finalized, and verify
whether the equation e = H(n, c,m, a) holds.

– If the equation holds, send (unfreeze, id,Sarah, 2p) to L, (sold, id) to all par-
ties, and terminate.

– If the equation does not hold, send (unfreeze, id,Bob, 2p) to L, (not sold, id)
to all parties, and terminate.

If the message from Bob is (finalize, id) when s = submitted, set s = finalized,
send (unfreeze, id,Sarah, 2p) to L, output (sold, id), and terminate.
Otherwise, if no such messages from Bob were received, proceed to the payout phase.

Payout

Upon receiving (finalize, id) from Sarah when s = submitted, set s = finalized,
send (unfreeze, id,Sarah, 2p) to L, output (sold, id), and terminate.

Fig. 8. Ideal functionality GL,HFairExchange for fair exchange smart contract.

price p for the evaluation result. Then GL,HFairExchange locks p coins from Bob via L
for the payment. The buyer Bob also sends n and c to the seller Sarah.

If the message from Bob and GL,HFairExchange are consistent, Bob submits the de-
cryption result and corresponding non-interactive zero-knowledge proof derived
from EncValue to GL,HFairExchange in the submission phase. Additionally, GL,HFairExchange

locks p coins from Bob via L, which would be used to penalize dishonest Bob.

In the complaint phase, upon receiving the acknowledgment of Sarah’s sub-
mitted message from GL,HFairExchange, Bob could locally run the verification of the
non-interactive zero-knowledge proof. If the proof is incorrect, Bob needs to send
the message to complain the dispute during the complaint phase in time. Once
GL,HFairExchange receives the complaint during the complaint phase, GL,HFairExchange ver-
ifies the non-interactive zero-knowledge proof and resolves the dispute. If the
verification is indeed incorrect, GL,HFairExchange unlocks 2p coins to Bob (p coins sent
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The description of the fair exchange protocol consists of the behavior of the honest
buyer Bob and seller Sarah.

Initiation

Buyer Bob: Upon receiving input (buy, id, n, c, p), Bob sends (buy, id, n, c) to Sarah
and (initiate, id, n, c, p) to GL,HFairExchange. Then he proceeds to the submission phase.
Seller Sarah: Upon receiving input (sell, id, n, c,m, r, p), Sarah proceeds to the sub-
mission phase.

Submission

Seller Sarah: Upon receiving (buy, id, n, c) from Bob, Sarah checks if she receives
(initialized, id, n, c, p) from GL,HFairExchange. If it is, Sarah computes c′ ← c·(1+n)−m mod

n2, picks s←$Z∗n, and computes a = sn mod n2, e ← H(n, c,m, a), and z ← s · re.
Then Sarah sends (submit, id,m, e, z) to GL,HFairExchange.

If either message (initialized, id, n, c, p) from GL,HFairExchange or (buy, id, n, c) from Bob
was not received, Sarah instead terminates the protocol.
Buyer Bob: Upon receiving (submitted, id,m, e, z) from GL,HFairExchange, Bob proceeds

to the complaint phase. If no message (submitted, id,m, e, z) from GL,HFairExchange was
received, Bob terminates the protocol.

Complaint

Buyer Bob: Bob computes c′ ← c · (1 + n)−m mod n2, a ← zn · c′−e mod n2. Bob
then verifies whether e = H(n, c,m, a) holds. If it holds, Bob terminates the protocol
by sending (finalize, id) to GL,HFairExchange and outputs (bought, id,m). Otherwise, Bob

sends (complain, id) to GL,HFairExchange and outputs (not sold, id).

Seller Sarah: Upon receiving (sold, id) or (not sold, id) from GL,HFairExchange, Sarah out-
puts this message and terminates the protocol. Otherwise, if no such a message from
GL,HFairExchange was received, Sarah proceeds to the payout phase.

Payout

Seller Sarah: Sarah sends (finalize, id) to GL,HFairExchange and outputs (sold, id).

Fig. 9. Protocol associated with GL,HFairExchange between honest buyer Bob and seller Sarah.

back to honest Bob and p coins for penalizing dishonest Sarah sending incorrect
proof). Otherwise, GL,HFairExchange unlocks these 2p coins to Sarah. If the verification
of the proof is accepted, Bob sends (finalize, id) to finalize the fair exchange.

If no complain message or finalize message from Bob is sent to GL,HFairExchange

during the complaint phase, Sarah sends (finalize, id) to GL,HFairExchange in the

payout phase. Then GL,HFairExchange unlocks the 2p coins to Sarah.

We note that smart contract for active verification approach mentioned in
Section 6 is similar to GL,HFairExchange. The smart contract for active verification
merges the submission, complaint, and payout phases together, i.e., the smart
contract verifies the proof once it receives the submit message. If the proof is
correct, coins are sent to the seller. Otherwise, coins are sent back to the buyer.
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6.4 Security Analysis

We now analyze the security requirements mentioned in Section 6.2 for the fair
exchange protocol.

Termination The protocol always terminates, and all coins for the contract will
be unlocked in one of the following cases when at least one parties act honestly.

No Abort. This case occurs when both parties act honestly, i.e., Bob sends
a complain message or finalize message to GL,HFairExchange in the complaint

phase. According to the description of GL,HFairExchange, all coins will be unlocked
at the end of the protocol.

Buyer Bob Aborts. After the initiation phase, Bob’s abortion cannot stop
the execution of GL,HFairExchange when an honest Sarah involves. In case that
Bob does not send (finalize, id) in the complaint phase, Sarah could send

(finalize, id) to GL,HFairExchange in the payout phase and coins will be sent to
Sarah. Therefore, all coins will be unlocked at the end of the protocol.

Seller Sarah Aborts. This case occurs when Sarah does not submit decryp-
tion result and the corresponding non-interactive zero-knowledge proof in
the submission phase. Here GL,HFairExchange will ask L to unlock all p coins back
to Bob and terminate the protocol.

Buyer Fairness The non-interactive zero-knowledge proof derived from Enc-
Value guarantees the correctness of the decryption result for the ciphertext c.
Note that a computationally bounded seller cannot provide a correct proof due
to the security of EncValue compiled by the Fiat-Shamir heuristic under the
random oracle model except a negligible probability.

Suppose that the decryption result m is incorrect, i.e., the proof is incorrect.
In that case, an honest buyer can complain to GL,HFairExchange on time to prevent the

payment and retrieve coins back. Since the verification of the proof on GL,HFairExchange

is the same as the verification executed by the honest buyer, coins will be back
to the buyer. Thus, the seller here cannot retrieve the payment, and the protocol
achieves buyer fairness.

Seller Fairness For seller fairness, we should ensure that once the buyer learns
the decryption result of c, the honest seller should be paid. From the protocol,
the buyer Bob learns the decryption result of c only if the honest seller Sarah
submits it. For a submission of an honest seller, the buyer can choose to send
complain or finalize to GL,HFairExchange, or does nothing.

Suppose the buyer sends a complain message to GL,HFairExchange. In that case,

the correct proof will still be accepted by GL,HFairExchange. Then the honest seller will
receive the payment, together with her p coins frozen in the submission phase.
For the finalize message, 2p coins will be sent to the seller directly. If the buyer
does nothing, the honest seller can send the message finalize to GL,HFairExchange to
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retrieve the payment together with her own p coins frozen in the submission
phase. Therefore, the protocol achieves seller fairness.

6.5 Possible Attacks and Countermeasures

We note that a malicious seller in practice may try to submit incorrect proof and
hope that the buyer does not verify the proof or send complain on time. For this
case, our solution is to penalize the malicious seller when her submitted proof
is incorrect. In the submission phase, the seller is required to deposit p coins on
GL,HFairExchange when she submits the decryption result and the proof. Hence, if the

proof is incorrect, the buyer can complain to GL,HFairExchange and retrieve these p
coins to penalize the seller.

A malicious buyer may be able to perform a Denial of Service (DoS) attack.
In a normal interaction of the data trading, the buyer Bob will perform compu-
tation on the encrypted dataset, run the encryption switching procedure with the
seller Sarah, and execute the fair exchange protocol to retrieve the final decryp-
tion result. However, malicious Bob may perform a DoS attack by performing
the encryption switching procedure with Sarah using garbage ciphertexts. These
garbage ciphertexts are generated randomly rather than through computation
on encrypted data. Then malicious Bob will always abort before the result re-
trieval procedure, i.e., the fair exchange protocol. We note that the seller needs to
conduct more computation than Bob during the TwinCtx protocol. Hence, if Bob
launches this attack, though malicious Bob learns nothing from the protocol, it
is unfair for Sarah to perform much more useless computation than Bob (since
Bob here only generates garbage ciphertexts and acts as a verifier in TwinCtx).
This DoS attack cannot be avoided, but we still have countermeasures. A black-
list approach may be a possible solution, but alternatively, we provide another
solution here. The solution is to let the buyer deploy the smart contract and
freeze some coins on the contract before the data trading. These frozen coins
can only be retrieved back at the end of the fair exchange, after a specified
period, or directly treated as the payment. If the malicious buyer performs the
DoS attack, he needs to pay the fee for the smart contract’s deployment and
freeze some coins on the smart contract at first, and thus we make it expensive
to carry out such a DoS attack.

For the fair exchange protocol, if Sarah does not submit the decryption result
and the corresponding proof, Bob is allowed to retrieve his coins frozen for the
payment back. However, in practice, updates of blockchain follow a consensus
mechanism, which allows malicious buyers to launch an attack based on this sce-
nario of getting the payment back. In practice, it takes some time for the seller’s
submission to be confirmed on blockchain because of the consensus mechanism.
At this point, after seeing the seller’s submission, the malicious buyer can quickly
submit a request to the smart contract to retrieve the frozen payment pretending
that the seller has not submitted the decryption result. In this way, the malicious
buyer’s request may be confirmed by blockchain before the seller’s submission.
Thus, the malicious buyer gets the answer submitted by the seller while getting
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back the frozen payment. Our solution to this attack is to set a time limit for
the withdrawal of frozen payments in smart contracts. Within this period, the
seller can submit the decryption result and proof, and the buyer is allowed to
retrieve the frozen payment only after this period. Therefore, if the seller can
submit the decryption result in time, malicious buyers’ request to retrieve the
frozen payment will not be accepted, so the attack cannot succeed.

7 Analysis

7.1 Round Complexity

We count the number of rounds of our two instantiations (both using the batch
technique for TwinCtx) for protocols that are honest-verifier zero-knowledge
(HVZK) or compiled by Fiat-Shamir heuristic. Since the offline phase of TwinCtx
involves a cut-and-choose procedure, we do not recommend compiling this pro-
cedure via the Fiat-Shamir heuristic, and it is regarded as a three-round protocol
even for the Fiat-Shamir heuristic. The total number of rounds of the protocol
is equal to the number of rounds of the encryption switching procedure plus the
number of rounds of the decryption procedure. For both the cases of Z∗n and Zn,
our instantiations only need 5 rounds under the Fiat-Shamir heuristic and 10
rounds under HVZK, which is very cheap for practical use.

7.2 Experimental Performance

We provide a proof-of-concept implementation to evaluate the performance of
our blind polynomial evaluation protocol. The protocol is implemented in C++

using the NTL library [24] for the underlying modular arithmetic on a single
core of MacBook Air (2018) with a 1.6 GHz Intel c©Core i5 CPU, 8GB of RAM,
running macOS 10.15.4.

Table 2 provides the experimental performance of basic operations and ci-
phertext sizes in our instantiations. We give the total running time of per 10000
addition and multiplication operations, respectively. For the instantiation over
Zn, we use zero indicators encrypting values of Jn, as mentioned in Section 5.

Table 2. Experimental performance of basic operations and size of ciphertexts.

Ptx space ||n|| 10k ×Mul 10k × Add ElGamal ctx Paillier ctx

Z∗n 1024 0.2173s 0.1996s 0.375 KB 0.25 KB

Zn 1024 0.3834s 0.1971s 0.625 KB 0.25 KB

Z∗n 2048 0.6271s 0.6199s 0.750 KB 0.50 KB

Zn 2048 1.0387s 0.6143s 1.250 KB 0.50 KB

Table 3 presents the experimental performance of batching executions of
TwinCtx and corresponding communication cost for security parameter t = 32.
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We measure the running time for both the verifier and the prover when a random
twin-ciphertext has been generated. The parameter k denotes the number of
ciphertext pairs that are proved to be twin-ciphertext pairs. As the bottleneck
of the protocol, its performance is efficient and practical.

Table 3. Performance of batching the executions of TwinCtx for t = 32.

||n|| k Verifier Prover Communication cost

1024 128 0.6421s 4.6771s 172.50 KB

1024 256 1.1878s 9.2474s 316.81 KB

1024 512 2.3242s 18.5823s 605.44 KB

2048 128 4.2374s 28.7013s 344.44 KB

2048 256 8.1683s 58.3467s 632.75 KB

2048 512 16.1003s 117.2097s 1209.38 KB

7.3 Cost on Blockchain

We give a proof-of-concept implementation for the blockchain part illustrated in
Section 6 by deploying it on a private network of Ethereum. We measure the
computation cost via gas consumption of the smart contract execution, which
only depends on the instructions executed by the Ethereum Virtual Machine.
Table 4 presents the gas consumption and total transaction fee for both active
and passive verification, with different security parameters κ.5 Although our
proof-of-concept implementation is not fully optimized, the gas consumption
and fees are acceptable, especially for the passive verification approach.6
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5 Assume that the gas price is 10 Gwei (a common price, albeit lower fees is possible).
The total transaction fees (of US dollar) are calculated according to the average price
of gas and coin on April 12th, 2020 (see more in https://etherscan.io/chart/gasprice).
For the total fee, we take into account the total gas consumption of all functions for
active verification and all functions except complain for passive verification.

6 Note that since our implementation involves big integers and Ethereum today can
only support integers represented by 256 bits, we have to use an external library.
However, library instructions from therein will be pulled into the calling contract
in the compilation. Hence, once a new version of Ethereum has better support of
external library call, the cost of our protocol can further be dramatically reduced.
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Table 4. Gas consumption of functions and total transaction fee for t = 256.

Mode ||n|| initiate submit complain getPaid Total Fee

Active 1024 620167 2807188 None None $5.41
Active 2048 1061626 13408995 None None $22.84
Passive 1024 635495 586386 2636802 30271 $1.98
Passive 2048 1076542 950408 13190574 30271 $3.25
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A Supplementary Material

A.1 Proof of Theorem 1

Theorem 1. If Π× and Π+ are both IND-CPA, the generic construction in the

(FTwinCtx
zk ,FEncValue

zk ,F sk+
zk )-hybrid model guarantees both receiver’s and sender’s

security.

Proof. We prove the security of the receiver and the sender, respectively, in the
following.
Receiver’s Security. We define a PPT simulator S as follows.

The simulator internally runs the adversary A playing the role of the sender,
and feeds A with specified input private keys, pi and auxiliary input z. If the
adversary A causes abortion during the execution, S sends abort to the ideal
functionality of blind polynomial evaluation and outputs whatever A outputs.

When A sends sk+ to F sk+
zk , S does the same as what will be done by the

ideal functionality F sk+
zk and the honest receiver. If the witness sk+ is accepted,

S records it.
For Step 3, S picks random ciphertext c′×,Pi(x)

∈ C× for i = 1, . . . , k, and
sends them to A as what will be done by an honest receiver. Then S receives
switched ciphertexts from A. When A sends witness for ciphertext pairs to
FTwinCtx

zk , S does the same as what will be done by the ideal functionality FTwinCtx
zk

and the honest receiver. If all witnesses for i = 1, . . . , k are accepted, S records
the private key sk×.

For Step 4, S picks a random ciphertext c′+,P (x) ∈ C+, and sends it to A.

Then S receives the result from A. When A sends witness for c′+,P (x) to FEncValue
zk ,

S does the same as what will be done by the ideal functionality FEncValue
zk and

an honest receiver. If the witness is accepted, S sends sk× and sk+ to the ideal
functionality of blind polynomial evaluation, and outputs whatever A outputs
to conclude the simulation. Since all ciphertexts received by A are all totally
random in the simulation as well as in the real procedure, the output of S is
perfectly indistinguishable from the view of A, and the generic construction
guarantees the receiver’s security.

Sender’s Security. We define a PPT simulator S as follows. After submitting
pi, cx to the ideal functionality of blind polynomial evaluation, If S receives ⊥,
S simply simulates the abortion due to the incorrect keys. Otherwise, S follows
the simulation strategy below.

Recall that here A = (A0,A1). Given input the description of the polynomial
P from P ← A0(cx, pi, z), the simulator S, as the receiver, sends P to the ideal
functionality of blind polynomial evaluation and receives the evaluation result
P (x).

Then S follows the instructions of the generic construction to prepare accept

messages for F sk+
zk and computes c×,Pi(x) and c′×,Pi(x)

for i = 1, . . . , k.

The simulator S encrypts P (x) via Π+ to obtain c+,P (x). If there exists
an index i∗ 6= 0, such that bi∗ 6= 0 for the polynomial P , we let c+,Pi(x) be a
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random ciphertext that encrypts 0 for all i 6= i∗ and i 6= 0. The simulator S then
generates c+,P0(x) following the protocol. We let c+,Pi∗ (x) be the ciphertext that
the summation of all c+,Pi(x) (except bi = 0) is equal to c+,P (x). Otherwise, we
let c+,Pi(x) be a random ciphertext that encrypts 0 for all i 6= 0 and c+,P0(x) =
c+,P (x). Then S computes c′+,Pi(x)

’s using the same blind factor s’s as c′×,Pi(x)
’s

and uses accept as the outputs of FTwinCtx
zk .

For the result retrieval procedure, S follows the instructions of the generic
construction to compute c′+,P (x) using a random blind factor s. S prepares

P (x)+s as the response from the sender when receiving c′+,P (x), and uses accept

as the output of FEncValue
zk . Finally, S sets P (x) as the final result.

We note that the difference between the real execution and the simulation
is the distribution of c+,Pi(x)’s and c′+,Pi(x)

’s. Note that here c′+,Pi(x)
’s totally

depend on c+,Pi(x)’s. We analyze for the case that i∗ exists. Security proof for
the case that i∗ does not exist follows similarly. We define the following sequence
of games.

Game 0. This game is the transcript of the real execution in the hybrid model.
All c+,Pi(x)’s are computed as in a real execution of the generic construction.

Game i (0 < i < i∗). In this game, the first i ciphertexts are replaced by the
ciphertexts computed as in the simulation, i.e., for j = 1, . . . , i, c+,Pj(x) is a
random ciphertext that encrypts 0. The i∗-th ciphertext is also computed as
in the simulation. The last k − i (except the index i∗) ciphertexts c+,Pi(x)’s
are computed the same as the real execution.

Game i∗. This game is the same as Game i∗ − 1.
Game i (i∗ < i < k). In this game, the first i ciphertexts are the ciphertexts

computed as in the simulation. The last k− i ciphertexts c+,Pi(x)’s are com-
puted the same as the real execution.

Game k. This game is the simulation.

We note that other values in the transcripts of this sequence of games are the
same or totally depend on ciphertexts c+,Pi(x)’s. If there exists a distinguisher
D that can distinguish Game 0 and Game k, there should exist an index
i ∈ {0, . . . , k − 1}, such that it is possible to distinguish Game i and Game
i+1. The difference between Game i and Game i+1 is whether the ciphertext
c+,Pi+1(x) encrypts the value as in the real execution or 0. However, since Π+

is IND-CPA secure, Game i and Game i + 1 for all i ∈ {0, . . . , k − 1} are
computationally indistinguishable. Thus, we have that Game 0 and Game k
are computationally indistinguishable. Therefore, the view simulated by S is
computationally indistinguishable from the view of the semi-honest A1 in the
hybrid model, and the generic construction guarantees the sender’s security. ut

A.2 Proof of Proposition 1

Proposition 1. The protocol EncValue associated with Zn-P is a public-coin
honest-verifier zero-knowledge proof of knowledge.
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Proof. For completeness, it is easy to verify that zn mod n2 = (sre+)n mod n2 =
snrne+ mod n2 = ac′e mod n2.

For special soundness, given any c and a pair of transcripts (a, e, z), (a, e′, z′)
where e 6= e′, we have znc′−e ≡ z′nc′−e

′
mod n2. Rewriting this equation, we

derive (z/z′)n ≡ c′e−e′ mod n2. Since e− e′ is relatively prime to n except with
a negligible probability, we can easily compute α and β, such that αn+β(e−e′) =
1. Let c̄′ = c′ mod n and v = c̄′

α
(z/z′)β mod n, we have

vn ≡ Zn-P.Enc(0; v) ≡ (Zn-P.Enc(0, c̄′))α · (Zn-P.Enc(0; z/z′))β

≡ c̄′αn · (z/z′)nβ ≡ c′αn · cβ(e−e
′) ≡ c′ mod n2 .

Therefore, v is an n-th root of c′, and c′ encrypts m+.
For the special honest-verifier zero-knowledge property, a PPT simulator S

can generate a transcript by randomly picking z←$Z∗n, e←$ {0, 1}t and comput-
ing a← znc′−e mod n2. It is easy to see that the generated transcript (a, e, z) is
perfectly indistinguishable from a real interaction transcript. ut

A.3 Proof of Proposition 2

Proposition 2. The protocol EncOne associated with Z∗n-EG is complete, sound,
and honest-verifier zero-knowledge.

Proof. For completeness of the protocol, it is easy to verify that g2z1 ≡ g2(u+eθ) ≡
g2ug2θe ≡ d1(χe)2 mod n, gz2 ≡ gv+es ≡ gvgse ≡ d2h

e mod n, and m−z11 cz20 ≡
m−u−eθ1 cv+es0 ≡ m−u1 m−θe1 cv0c

se
0 ≡ d3ce1 mod n.

For soundness, given transcripts (d1, d2, d3, e, z1, z2) and (d1, d2, d3, e
′, z′1, z

′
2)

with e 6= e′, we have g2z1χ−2e ≡ g2z
′
1χ−2e

′
mod n, gz2h−e ≡ gz

′
2h−e

′
mod n,

and m−z11 cz20 c
−e
1 ≡ m

−z′1
1 c

z′2
0 c
−e′
1 mod n. Since e − e′ is relatively prime to λ

except with a negligible probability, from these equations, we derive the fol-
lowing three equations: g2(z1−z

′
1)/(e−e

′) ≡ χ2 mod n, g(z2−z
′
2)/(e−e

′) ≡ h mod n,

and m
(z′1−z1)/(e−e

′)
1 c

(z2−z′2)/(e−e
′)

0 ≡ c1 mod n. Therefore, there exists s = (z2 −
z′2)/(e− e′) and θ = (z1− z′1)/(e− e′), such that h = gs mod n, χ2 ≡ g2θ mod n,
c1 = m−θ1 cs0 mod n hold, which implies that the protocol is sound.

For honest-verifier zero-knowledge property, a PPT simulator S can generate
a transcript by randomly picking z1, z2←$ ({0, . . . , n/2})2, e←$ {0, 1}t and com-
puting d1 ← g2z1χ−2e mod n, d2 ← gz1h−e mod n, and d3 ← m−z11 cz20 c

−e
1 mod

n. It is easy to see that the generated transcript (d1, d2, d3, e, z1, z2) is statisti-
cally indistinguishable from a real interaction transcript. ut

Note that we can perform F sk+
zk for Zn-P (e.g., [23]) in parallel, such that the

simulator in the proof of security is able to obtain the group order λ. Thus, the
protocol acquires the proof of knowledge property.

A.4 Proof of Proposition 3

Proposition 3. The TwinCtx protocol associated with Z∗n-EG and Zn-P is public-
coin honest-verifier zero-knowledge proof of knowledge.
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Proof. It is easy to verify the completeness of the protocol.
Let us first simulate the online phase of the protocol for a given twin-

ciphertext pair (c×, c+), where c× = (c×0, c×1,m×1). The simulator S picks

randomly R←$Z∗n, and computes c′0 ← c
[R−1 mod n]
+ · τn mod n2 for τ ←$Z∗n,

such that D+ = c′R0 · c−1+ encrypts 0. S encodes R as (R1, R2)← (gaR , χ−aRR) ∈
J2n for aR←$ {1, . . . , bn/2c}, such that Jn(R) = (−1)aR . S then generates a
random ciphertext D× = (d0, d1, m̃1) that encrypts 1, and computes c0 =
(c00, c01,m01), where c00 = d0c×0 mod n, c01 = d1c×1R

−1
2 mod n, and m01 =

m̃1m×1R
−1
1 mod n. The ciphertext pair (c0, c

′
0) is the random twin-ciphertext

pair for the online phase. It is easy to check that these simulated ciphertexts
are perfectly distinguishable from a real execution. Then S simulates FsfEncOnezk

and FEncValue
zk for D× and D+.

Now given the twin-ciphertext pair (c0, c
′
0), where c0 = ((c00, c01),m01), and

the challenge e, S simulates the offline phase of the protocol as follows. For
every ei = 0, the simulator S picks a random twin-ciphertext pair (ci, c

′
i), whose

openings are now known by S in Step 3. For every ei = 1, S picks randomly

Ri←$Z∗n, and computes c′i ← c
′[R−1

i mod n]
0 · τni mod n2 for τi←$Z∗n, such that

D′i = c′Ri
i · (c′0)−1 encrypts 0. S encodes Ri as (Ri1, Ri2) ← (gaRi , χ−aRiRi) ∈

J2n for aRi
←$ {1, . . . , bn/2c}, such that Jn(Ri) = (−1)aRi . S then generates

a random ciphertext Di = (di0, di1, m̃i1) that encrypts 1, and computes ci =
(ci0, ci1,mi1), where ci0 = di0c00 mod n, ci1 = di1c01R

−1
i2 mod n, and mi1 =

m̃i1m01R
−1
i1 mod n. Finally, S simulates FEncOne

zk and FEncValue
zk to conclude the

simulation. It is easy to check that these simulated ciphertexts are perfectly
distinguishable from those of a real execution.

Finally, we will show that the protocol has witness-extended emulation. The
witness-extended emulator runs the protocol with a random challenge e for the
offline phase. If the proof is accepted, the emulator rewinds to the second move
until it gets another accepted transcript for a challenge e′ 6= e. On average, the
emulator will be making 2 transcripts, so it runs in expected polynomial time.

Since e′ 6= e, there exists at least one pair ej 6= e′j . Now the emulator has
the openings of the twin-ciphertext pair (cj , c

′
j). We can obtain the opening of

D′j from FEncValue
zk and (s, θ) from FEncOne

zk . Thus, the emulator can compute
the openings of c′0 from the openings of c′j and D′j . It is easy to verify that if
(c0, c

′
0) is not a twin-ciphertext pair, at least one check for challenges (ej , e

′
j)

will be rejected. Hence, we have all private inputs of P for the online phase.
Now, using a similar technique as above, the emulator can extract the witness
of the ciphertext pair (c×, c+) for the relation RTwinCtx. Thus, the protocol has
witness-extended emulation, and the soundness of the protocol follows. ut

A.5 Proof of Theorem 2

Theorem 2. The generic construction in the hybrid model with the ideal func-

tionalities FTwinCtx
zk , FEncValue

zk , and F sk+
zk achieves procedure obliviousness.

Proof. We define a PPT simulator S that internally runs A. After submitting
pi, cx to the ideal functionality of blind polynomial evaluation, if S receives ⊥,
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S simply simulates the abortion due to the incorrect keys. Otherwise, S follows
the simulation strategy below.

Upon receiving the call for F sk+
zk from A, S plays the role of F sk+

zk and replies
accept to A as the honest execution of the protocol. Then upon receiving the
list of ciphertexts c′×,Pi(x)

’s for the encryption switching procedure, S picks

c′+,Pi(x)
← Π+.Enc(0) for all i and sends them to A. When A calls FTwinCtx

zk

for these c′×,Pi(x)
’s and c′+,Pi(x)

’s, S replies accept on behalf of FTwinCtx
zk as the

honest execution of the protocol. Finally, the simulator S outputs what A out-
puts to conclude the simulation.

We claim that the simulated view derived from simulation strategy above is
computationally indistinguishable from the view of A. Note that the difference
between these two views is the distributions of ciphertext list of c′+,Pi(x)

’s. Let
us define the following games to prove this claim.

Game 0. Suppose that S knows the private key sk×. All c+,Pi(x)’s in this game
are computed by S as in a real execution of the generic construction. This
game is the transcript of the real execution in the hybrid model.

Game i (for i = 1, . . . , k − 1). Suppose that S knows the private key sk×. In
this game, the first i ciphertexts are replaced by the ciphertexts computed
as in the simulation, i.e., for j = 1, . . . , i, c+,Pj(x) is a random ciphertext
that encrypts 0. The last k− i ciphertexts c+,Pi(x)’s are computed the same
as the real execution.

Game k. This game is the simulation. All ciphertexts c+,Pj(x)’s are random
ciphertexts encrypting 0.

If there exists a distinguisher D that can distinguish Game 0 and Game k, there
should exist an index i ∈ {0, . . . , k − 1}, such that it is possible to distinguish
Game i and Game i + 1. The difference between Game i and Game i + 1
is whether the ciphertext c+,Pi+1(x) encrypts the value as in the real execution
or 0. However, since Π+ is IND-CPA secure, Game i and Game i + 1 for all
i ∈ {0, . . . , k − 1} are computationally indistinguishable. Thus, Game 0 and
Game k are computationally indistinguishable. It then follows that the generic
construction in the hybrid model with the ideal functionalities FTwinCtx

zk , FEncValue
zk ,

and F sk+
zk achieves procedure obliviousness. ut


