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Abstract. In 1989, Shamir presented an efficient identification scheme
(IDS) based on the permuted kernel problem (PKP). After 21 years,
PKP was generalized by Lampe and Patarin, who were able to build
an IDS similar to Shamir’s one, but using the binary field. This binary
variant presented some interesting advantages over Shamir’s original
IDS, such as reduced number of operations and inherently resistance
against side-channel attacks. In the security analysis, considering the
best attacks against the original PKP, the authors concluded that none
of these existing attacks appeared to have a significant advantage when
attacking the binary variant. In this paper, we propose the first attack
that targets the binary PKP. The attack is analyzed in detail, and its
practical performance is compared with our theoretical models. For the
proposed parameters originally targeting 79 and 98 bits of security, our
attack can recover about 100% of all keys using less than 263 and 277

operations, respectively.

Keywords: permuted kernel problem, cryptanalysis, post-quantum cryptogra-
phy

1 Introduction

With the engineering progress on building larger quantum computers, the main
cryptographic schemes used today become more and more vulnerable. Since
2016, the National Institute of Standards and Technology (NIST), is running a
standardization process for post-quantum cryptography [4]. A similar initiative
is conducted by the Chinese Association for Cryptographic Research (CACR).

One of the candidate for CACR’s competition is PKP-DSS [3], a digital
signature scheme based on the hardness of the permuted kernel problem (PKP).
This signature scheme is obtained by applying the Fiat-Shamir [6] transform
on Shamir’s PKP-based identification scheme [20], which dates back from 1989.
Given a matrix A and a vector v with elements in a finite field, PKP asks to
find a permutation of the entries of v that is in the kernel of A. PKP is NP-hard
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and there is no known quantum algorithm which have a significant advantage
over classical algorithms when solving the problem.

In 2010, Lampe and Patarin proposed a generalized version of PKP, in which
vector v is substituted by a matrix V. This enabled them to instantiate PKP
in the binary field, without an apparent security loss. At the time, this binary
variant presented some interesting advantages such as a reduction in the number
of operations and an inherently resistance to side-channel attacks. To estimate
the security of binary PKP, the authors considered the best attacks against the
original PKP, with minor adjustments to make they work against the binary
variant. They noted that none of the available attacks was significantly faster
against binary PKP.

However, the use of binary coefficients for matrix A comes with a security
risk. We observed that that low weight binary words occur with non-negligible
probability in two public spaces: one is generated by the matrix A while the other
is generated by the kernel of V. It is then possible to devise an attack against
binary PKP by matching these low weight codewords using subgraph isomorphism
algorithms, and recovering the secret permutation from these matchings.

Contribution. In this paper, we present the first attack that specifically targets
the binary PKP. Unlike previous attacks, which need a very large amount of
memory to run efficiently, our attack uses only a negligible amount of memory.
This allows us to provide a concrete implementation of the attack. We provide a
detailed analysis of the attack, and then compare these results with the attack’s
performance in practice. As an example of the power of the attack: for binary
PKP parameters originally targeting 80 bits of security, it uses about 263 CPU
cycles to fully recover the key, while the best previously known attack [12] needs
about 276 matrix-vector multiplications and 250 bytes of memory.

Paper organization. In Section 2, we introduce our notation and review basic
concepts of Coding Theory. Then, PKP and its binary variant are presented
in Section 3, where we also review previous attacks against PKP. The attack
is described in Section 4 and its performance is analyzed in Section 5. The
asymptotic analysis of the attack is given in Section 6. In Section 7 we briefly
describe how to choose secure parameters for binary PKP. In Section 8 we
conclude and provide directions for future work.

2 Background

This section introduces the notation and reviews important concepts in Coding
Theory.

Notation. Vectors and matrices are denoted by lower and upper case bold letters,
respectively. In general, vectors are rows, except when explicitly mentioning
specific columns of matrices. If 𝜑 is a permutation of 𝑛 elements and M is an
𝑛 × 𝑛 matrix, then M𝜑 and 𝜑 (M) correspond to the action of permutation 𝜑
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over rows and columns of M, respectively. For any matrix X, we denote its 𝑖–th
column as (X)𝑖. We denote the finite field of 𝑞 elements as F𝑞.

We abuse the factorial notation to avoid overloading expressions in the analysis
of the attack. For any 𝑥 ∈ [0, +∞), we let

𝑥! =
{︃

𝛤 (𝑥 + 1), if 𝑥 ≥ 1, and
1, otherwise.

Clearly it does not affect the definition of factorials of integers. Furthermore,
it allows us to evaluate upper bounds of products of factorials of real numbers
without having to worry about the interval 𝑥 ∈ (0, 1), where 𝛤 (𝑥 + 1) < 1, which
could make the product vanish rapidly. Using this notation, we can then write(︀

𝑥
𝑦

)︀
= 𝑥!/((𝑥− 𝑦)!𝑦!), for 𝑥, 𝑦 ∈ [0, +∞) with 𝑥 > 𝑦. These will make for a more

clear description of our approximations in Section 5.

Coding Theory. A binary [𝑛, 𝑘]-linear code is a 𝑘-dimensional linear subspace of
F𝑛

2 , where F2 denotes the binary field. Let 𝒞 be a binary [𝑛, 𝑘]-linear code. If 𝒞
is the linear subspace spanned by the rows of a matrix G in F𝑘×𝑛

2 , we say that
G is a generator matrix of 𝒞. The Hamming weight of a vector v, denoted by
w (v), is the number of its non-null entries. The support of a vector v, denoted
by supp (v), is the set of indexes of its non-null entries.

3 The Permuted Kernel Problem

Let us begin by formally defining the permuted kernel problem. Let A be an
𝑚× 𝑛 matrix and v be a vector of 𝑛 entries whose coordinates are taken from a
finite field F𝑝. Then, the permuted kernel problem asks to find some permutation
𝜋 of the coordinates of v such that Av⊤

𝜋 = 0.
PKP is well-known to be NP-hard [8], and it is conjectured to be hard on

the average case. The naive approach to solve this problem would be to test all
permutations of the entries of v. Intuitively, there are two components which
make the problem hard. The first is the large number of possible permutations,
which is close to 𝑛!, when v does not have a large number of equal entries. The
second is the small number of permutations of v which are in the kernel of A.

In 2011, Lampe and Patarin [13] considered a PKP variant with 𝑝 = 2. The
authors pointed a few problems when transitioning to the binary setting that
need to be taken into account. One is that the number of different permutations
is significantly reduced, since every two binary vectors of the same weight are
equal, up to some permutation. Furthermore, for a fixed matrix A, there are
effectively only 𝑛 possibilities for v, corresponding to one for each possible value
of w (v). To avoid these problems, they proposed the use of an 𝑛× ℓ matrix V

instead of the vector v, obtaining the following PKP variant.

Definition 1 (Binary PKP [13]). Let A be an 𝑚 × 𝑛 binary matrix and V

be an 𝑛× ℓ binary matrix. Then, the permuted kernel problem asks to find some

permutation 𝜋 of the rows of V such that AV𝜋 = 0.
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Notice that the original PKP can be seen as an instance of this generalized
variant, by taking 𝑝 instead of 2, and ℓ = 1.

Even though the main interest on PKP is for the construction of signature
schemes, we will not review details of Shamir’s protocol [20] or PKP-DSS [3]
this construction because they are not relevant for our attack.

3.1 Previous Attacks on PKP

After Shamir introduced the PKP-based IDS [20], there has been some effort to
find efficient algorithms to solve the problem. In 1990, Georgiades [9] discussed
how one can use symmetric equations, such as the sum of the entries of v or the
sum of their squares, can help in lowering the number of permutations one needs
to test. This, combined with the linear relations among the coordinates of kernel
elements, can reduce the number of permutations to test in a brute force attack
from 𝑛! to 𝑛!/(𝑚 + 2)! permutations.

Soon after, in 1992, Baritaud et al. [1] proposed a time-memory tradeoff,
where one first precompute a large table of partial solutions, which is then used
to speed up a bruteforce search. In particular, for attack parameters (𝑘, 𝑘′), their
algorithm searches for solutions of a set of 𝑘 ≤ 𝑚 equations, after precomputing
partial values of the equations when some set of 𝑘′ variables are fixed by some
arrangement of the entries in v.

In 1993, Patarin and Chauvaud [17] showed a significant improvement on
the cryptanalysis of PKP, which is also based on a time-memory tradeoff. Their
idea was to partition the variables of the linear equation Av⊤

𝜋 = 0 into two sets.
For one set, all the possible values for their linear combination is computed and
stored in a file. Then, a brute-force search, which is sped-up by the precomputed
values, is used to find the values of the other set of variables. Furthermore, in
1997, Poupard [18] provided a careful and realistic extension on the analysis
of Patarin and Chauvaud’s algorithm by considering the impact of reasonable
memory limitations on the time-memory trade-off.

In 2001, Jaulmes and Joux [10] proposed a new attack against PKP, which
is also based on a time-memory tradeoff, but used a very different strategy.
Their attack consists in adapting an algorithm for counting points in an elliptic
curve [11] to solve a new problem, called 4SET, to which PKP can be reduced.
Interestingly, this approach resulted in an algorithm somewhat similar to the one
by Patarin and Chavaud [17], but, for years after the attack was published, it
appeared to be more efficient.

More recently, in 2019, Koussa, Macario-Rat and Patarin [12] presented two
important contributions on the hardness of PKP. Their first contribution is to
provide a detailed analysis of the attack proposed by Jaulmes and Joux [10],
which was considered to be the most efficient attack against PKP. They concluded
that Jaulmes and Joux’s attack may not be as efficient as previously thought for
the current PKP security parameters. Koussa, Macario-Rat and Patarin’s second
contribution is a combination of the ideas of Patarin and Chauvaud [17] with the
ones by Poupard [18] to obtain a new algorithm to solve PKP, together with a
detailed analysis on their time and space complexity.
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The main drawback of Koussa’s et al. attack is that they use a significant
amount of memory, and their implementation may not be efficient in practice.
Moreover, all of the published attacks against PKP target the original version
of the problem. And even though they all can be adapted to attack the binary
PKP, as done by Lampe and Patarin [13] for their analysis, it appears that none
of the attacks are significantly more efficient in the binary case.

3.2 Instantiation

We now present the parameter sets for PKP, in which the security level is
estimated based on the best attacks available by Koussa et al. [12]. Table 1
shows these parameter sets for different security levels. The focus of this work is
in the parameter sets given in the first two rows, corresponding to the binary
PKP. It is important to notice that what we now consider to be the parameter
sets BPKP–76 and BPKP–89, originally targeted security levels 79 and 98,
respectively. However, these had to be revised after Koussa et al’s [12] attack.

Table 1: Parameter sets for different security levels. The security level is estimated
based on the attack by Koussa et al. [12].

Parameter
set

Security
level

Targeted security
level when proposed 𝑝 𝑛 𝑚 ℓ

BPKP–76 [13] 76 79 2 38 15 10
BPKP–89 [13] 89 98 2 42 15 11

PKP–128 [3] 128 128 251 69 41 1
PKP–192 [3] 192 192 509 94 54 1
PKP-256 [3] 256 256 4093 106 47 1

4 A Novel Attack Against Binary PKP

We are given the public matrices A and V and we want to find the secret
permutation 𝜋 such that AV𝜋 = 0. Let 𝒞A and 𝒞K be the binary codes generated
by A and K, respectively, where K is the left kernel matrix of V. Fix an integer
𝑤 small enough so that we can build the sets ℒ𝑤

A and ℒ𝑤
K consisting of all

the codewords of weight 𝑤 in 𝒞A and 𝒞K, correspondingly. Notice that, since
AV𝜋 = 0, then ℒ𝑤

A ⊂ ℒ𝑤
𝜋(K) = {u𝜋 : u ∈ ℒ𝑤

K}.
This idea gives the following simple algorithm to find the secret permutation 𝜋.

First find a subset 𝑆 of ℒ𝑤
K, such that, for some permutation 𝜏 , ℒ𝑤

A = {u𝜏 : u ∈ 𝑆}.
Then, test if the corresponding column permutation 𝜏 is valid, that is, if AV𝜏 = 0.
If 𝜏 is valid, return it as 𝜋. Otherwise, restart the search. Figure 1 can be useful
for visualizing the relationship between the two sets of codewords, which is the
core of the attack.
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Secret permutation 𝜋

ℒ𝑤
K ℒ𝑤

A

Fig. 1: Illustration of the relationship between ℒ𝑤
A and ℒ𝑤

K with respect to the
secret column permutation 𝜋 for codewords of weight 𝑤 = 2. White and black
squares represent null and non-null entries, respectively.

Even though it has a rather simple description, we need to carefully deal
with the following two problems. The first one is that matching vectors in ℒ𝑤

A
and a subset of ℒ𝑤

K is closely related to the subgraph isomorphism problem,
which is NP-hard [8]. The second problem is that, since we are dealing with
sparse codewords, there may be a large number of repeated columns in ℒ𝑤

A. This
could potentially make it infeasible to find the secret permutation 𝜋 because of
the combinatorial explosion on the number of possible permutations between
columns.

In the following sections, we formally describe the algorithms for the attack
against the binary PKP. Then, after this initial exposition, each component of
the algorithm is analyzed in Section 5.

4.1 Searching for codewords of small weight

The problem of finding codewords of small weight is hard in general, with the
security of some well known cryptographic schemes, such as McEliece’s one [15],
depend on this problem’s hardness. However, in the binary PKP setting, the
length 𝑛 of the codes in question, namely 𝒞A and 𝒞K, is typically very small,
which makes it even possible to use brute force. Using brute force, one has to
test exactly if

(︀
𝑛
𝑤

)︀
words are elements of each of the codes.

A better approach would be to use specialized algorithms from Coding Theory
such as Stern’s algorithm [22], which we used in our attack implementation, or its
improved variants [2, 7]. All of these are are well-known probabilistic algorithms
that can be used to find low weight codewords in binary codes.

4.2 Searching for matchings

Aiming to simplify the description of the attack, we identify sets ℒ𝑤
A and ℒ𝑤

K as
matrices where each row is one vector in the corresponding set. This is arguably
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a natural identification when we consider a real implementation of the algorithm
in a programming language such as C.

We now focus on the problem of finding a submatrix of ℒ𝑤
K which is equal to

matrix ℒ𝑤
A when its coordinates are permuted by some permutation 𝜏 . Notice

that, if we let 𝒢 (X) be the bipartite graph built using matrix X as a biadjacency
matrix, then this problem is exactly the subgraph isomorphism problem for the
bipartite graphs 𝒢 (ℒ𝑤

A) and 𝒢 (ℒ𝑤
K).

Even though subgraph isomorphism is NP-hard [8], for small enough inputs,
the problem has been widely studied because of its importance in Pattern
Recognition. It is well-known that, for sufficiently small instances, the problem
can be solved efficiently using algorithms such as the one by Ullman [23] or
the ones from the VF family [5, 19]. The main problem with these widely used
algorithms is that they use heuristics that make it hard to perform a sound
average case complexity analysis for our case. Since such analysis is critical for
estimating the concrete security of the scheme, we propose a different algorithm
with two remarkable advantages. The first one is that it runs faster than other
generic subgraph isomorphism algorithms for our specific case of bipartite graphs.
The second is that it is simpler to analyze and give realistic estimates on its
performance.

The algorithm we propose is based on a simple depth-first search strategy. In
each level 𝛼 of the search, a node represents a matrix built using a set of 𝛼 rows
of ℒ𝑤

K which is equal to the first 𝛼 rows of ℒ𝑤
A, when its columns are permuted

by some permutation. Whenever a matching is found, the searching algorithm
calls a procedure that tries to extract the secret permutation from the matching.
In the following sections, we describe each component of the algorithm in more
detail.

Signature of a matrix. It is crucial for the subgraph isomorphism algorithms
to efficiently determine whether a matrix S is equal to a submatrix of ℒ𝑤

A up to
some column permutation. For this task, we can use a function 𝜎 such that, if
𝜎(S1) = 𝜎(S2), then with high probability S1 = 𝜏(S2) for some permutation 𝜏 ,
for any two matrices S1 and S2 with equal dimensions.

One easy way to build such a function is to sort the columns of S using a
lexicographical ordering obtaining SSorted. Then, the signature of S is simply
𝜎(S) = ℎ

(︀
SSorted

)︀
, for some cryptographic hash function ℎ. It is clear, by this

construction, that 𝜎 is invariant with respect to column permutations.
The problem with sorting is that, since this function will be executed a very

large number of times, it can become expensive. One alternative is to use the
following approximation 𝜎(S) =

∑︀
c column of S ℎ (c) , for some hash function ℎ.

Precomputation of signatures. This step consists in building the |ℒ𝑤
A|×|ℒ𝑤

A|
matrix H containing signatures of submatrices of ℒ𝑤

A that are used for pruning
the possible child nodes in each level of the search. Let a1, . . . , a|ℒ𝑤

A| be the
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vectors in ℒ𝑤
A, and let L𝑗 denote the matrix formed by the first 𝑗 rows of ℒ𝑤

A.
Then, we let

H𝑖,𝑗 =

⎧⎪⎨⎪⎩ 𝜎

(︃[︃
L𝑗

a𝑖

]︃)︃
if 𝑖 > 𝑗, and

0 otherwise.
(1)

Key recovery algorithm. In this step, the algorithm effectively tries to build
a submatrix S of ℒ𝑤

K such that 𝜏 (S) = ℒ𝑤
A, for some column permutation 𝜏 . The

algorithm is formally described as Algorithm 1 but we give a brief description
next.

Algorithm 1: KeySearch: Key search algorithm using depth-first
search

Data: A and V: the PKP public parameters
ℒ𝑤

A: a set of codewords in 𝒞A of weight 𝑤
ℒ𝑤

K: the set of all codewords in 𝒞K of weight 𝑤
H: the precomputed matrix of signatures
𝛼: the level in the search tree (initially, 𝛼 = 0)
S: an 𝛼× 𝑛 matrix (initially, S is the empty 0× 𝑛 matrix)
𝒫 =

(︁
𝑃1, . . . , 𝑃|ℒ𝑤

A|
)︁
: the sets of children (initially, each 𝑃𝑖 = ℒ𝑤

K)
Result: 𝜋: a permutation such that AV𝜋 = 0 or ⊥ if none exists

1 begin

2 if 𝛼 = |ℒ𝑤
A| then

3 return ExtractPermutationFromMatching(A, V, S)
/* Updates the possible children for each level not yet defined: */

4 for 𝑖 = 𝛼 + 1 to |ℒ𝑤
A| do

5 𝑃𝑖 ←
{︂

p ∈ 𝑃𝑖 : 𝜎

(︂[︂
S

p

]︂)︂
= H𝑖,𝛼

}︂
6 𝒫 ←

(︁
𝑃1, . . . , 𝑃𝛼, 𝑃𝛼+1, . . . , 𝑃|ℒ𝑤

A|
)︁

7 for each p in 𝑃𝛼+1 do

8 Update S by inserting p as its last row
/* Recursive call: */

9 𝜋 ← KeySearch(A, V,ℒ𝑤
A,ℒ𝑤

K, H, 𝛼 + 1, S,𝒫)
10 if 𝜋 ̸= ⊥ then

11 return 𝜋
12 Update S by removing its last row p

13 return ⊥

The search starts at level 𝛼 = 0, with S being a 0× 𝑛 empty matrix. At each
level 𝛼 in the search tree, the algorithm runs a pruning procedure, that updates
the lists of possible vectors for each level greater than 𝛼 using the precomputed
matrix of signatures H. This ensures that the main invariant of the recursive
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algorithm is that, at level 𝛼, the algorithm holds an 𝛼× 𝑛 submatrix S of ℒ𝑤
K

which is equal to the matrix formed by the first 𝛼 rows of ℒ𝑤
A, up to some column

permutation. The search proceeds by selecting a vector from set 𝑃𝛼+1 ⊂ ℒ𝑤
K of

vectors which can be safely added to the next level without breaking the invariant.
Each time the algorithm successfully gets to a leaf, that is, it adds a vector to
level 𝛼 = |ℒ𝑤

A|, then a full matching S is found and the procedure that tries to
extract the permutation 𝜋 from matching S is executed. If the permutation 𝜋
is successfully extracted, then 𝜋 is returned. Otherwise, the depth-first search
proceeds.

The procedure for extracting the secret permutation from the matching, if
possible, is described in the next section.

4.3 Extracting permutations from matchings

After each each matching found in the previous step, we are given a matrix S

such that 𝜏(S) = ℒ𝑤
A for at least one permutation of columns 𝜏 . In this section we

describe how to efficiently extract the secret permutation 𝜋 from this matching,
if possible.

We first consider the brute force solution. Let 𝑇 be the set of permutations that
match equal columns in S and ℒ𝑤

A. Then, we can just test, for each permutation
𝜏 in 𝑇 , if AV𝜏 = 0. If one such 𝜏 is found, then the algorithm returns 𝜋 ← 𝜏 .
Suppose that there are 𝛽 unique columns c1, . . . , c𝛽 of matrix ℒ𝑤

A, and let 𝑐𝑖

denote the number of times column c𝑖 appears in ℒ𝑤
A. This implies that the

number of candidate permutations is given by |𝑇 | =
∏︀𝛽

𝑖=1 (𝑐𝑖!). The brute force
approach may be efficient when S has a large number of unique columns. However,
due to the combinatorial nature of this problem, even a small increase in the
number of equal columns can make the algorithm very inefficient.

To reduce the number of permutations to test we can use the fact that
dim (ker A) = 𝑛−𝑚. Therefore, there are 𝑛−𝑚 rows of V𝜋 which, together with
the 𝑚 equations defined by A, completely determine the other 𝑚 rows of V𝜋.
Intuitively, this means we can focus on partial permutations in 𝑇 corresponding
to these 𝑛−𝑚 indexes.

More formally, let 𝐼1 and 𝐼2 be a partition of the set of possible 𝑛 indexes such
that |𝐼1| = 𝑚 and the 𝑚×𝑚 matrix A1 built using the columns from A whose
indexes are in 𝐼1 is invertible. Similarly, let A2 be the 𝑚× (𝑛−𝑚) matrix whose
columns are taken from A, but with indexes in 𝐼2. Let 𝜑 be the permutation of
𝑛 elements such that 𝜑 (A) = [A1|A2], and define as U1 and U2 the matrices
such that 𝜑

(︁
(V𝜋)⊤

)︁
= (V𝜋𝜑)⊤ =

[︀
U⊤

1 |U⊤
2

]︀
. Then, we have

AV𝜋 = 𝜑(A)V𝜋𝜑 = [A1|A2]
[︂

U1

U2

]︂
= A1U1 + A2U2 = 0,

which implies that U1 =
(︀
A−1

1 A2

)︀
U2.

Therefore, one can reduce the number of permutations in 𝑇 to test by using
the following procedure. Let 𝐼 be a sequence of 𝑛 column indexes sorted, in
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decreasing order, by the number of times in which the corresponding column of
matrix ℒ𝑤

A occurs in this same matrix.1 Now let 𝐼1 to be composed by the first
𝑚 indexes in 𝐼 whose corresponding columns of A are linearly independent, and
let 𝐼2 = 𝐼 − 𝐼1 = {𝑖1, . . . , 𝑖𝑛−𝑚}. Consider the set

𝒥 =
{︁

(𝑗1, . . . , 𝑗𝑛−𝑚) : (S)𝑗𝑘 = (ℒ𝑤
A)𝑖𝑘 for all 𝑘 = 1, . . . , 𝑛−𝑚

}︁
,

where (X)𝑦 denotes the 𝑦–th column of matrix X. Intuitively, set 𝒥 captures the
parts of the permutations in 𝑇 corresponding only to the 𝑛−𝑚 indexes in 𝐼2,
and therefore |𝒥 | may be much smaller than |𝑇 |. For each sequence 𝐽 of 𝒥 , we
let U2 be the (𝑛− 𝑟)× ℓ matrix built from rows of V whose indexes are in 𝐽 . For
each of these possible values of U2, we compute the matrix U1 =

(︀
A−1

1 A2

)︀
U2,

and test if
[︂

U1

U2

]︂
corresponds to a permutation of the rows of V. If this is indeed

the case, then the secret matrix V𝜋 is simply V𝜋 =
[︂

U1

U2

]︂
𝜑−1

.

It is important to notice that, since we want to make |𝒥 | as low as possible,
we sorted the set of indexes 𝐼 so that, when defining 𝐼1 and 𝐼2, the columns of ℒ𝑤

A
whose indexes are in 𝐼2 tend to appear a lower number of times. In Section 5.3,
we show how to estimate the size of 𝒥 .

5 Concrete Analysis of the Attack

In this section we estimate the attack complexity. We begin by analyzing, in the
first three subsections, the work factor of the three components of the attack
algorithm: building sets ℒ𝑤

A and ℒ𝑤
K, matching the low weight vectors in these

sets, and extracting the secret permutation from matchings. Then, we put these
components together to give the complexity of the attack in Section 5.4. Finally,
in Section 5.5, we show the performance of the attack in practice.

The work factor of attacks against PKP is typically stated in number of
matrix-vector products, as it is the basic operation to test if a vector is in the
kernel of a matrix. Even though binary PKP uses two matrices, we can see the
rows of V as elements of F2ℓ and, since ℓ is typically small, then the product AV

can be seen as a matrix-vector multiplication where sum is replaced by a XOR.

5.1 Searching for codewords of small weight

Let us analyze the first step of the attack: the construction of sets ℒ𝑤
A and ℒ𝑤

K.
Each of these sets can be computed by searching exhaustively the whole set
of
(︀

𝑛
𝑤

)︀
possible vectors of 𝑛 bits of weight 𝑤, and testing if they belong to 𝒞A

and 𝒞K. However, as we pointed in Section 4.1, we can do a lot better by using
Stern’s [22] algorithm. Consider a random [𝑛, 𝑘]–linear code generated by matrix

1 The reason why it is interesting to sort the indexes in this way is explained in the
last paragraph of this section.
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G. Given parameters (𝑝, 𝑞), Stern’s algorithm first permutes the columns of G

hoping to obtain a matrix Ĝ = 𝜑(G), called a good permutation, for which there
is a linear combination of its rows that has the form c = [c1|c2|c3|c4], such that
w (c1) = w (c2) = 𝑝, component c3 is the zero vector of length 𝑞, and c4 has
weight w (c4) = 𝑤 − 2𝑝.

When such conditions are met, Stern’s algorithm finds a vector c with such
properties, which can then be permuted to give a vector c𝜑−1 of weight 𝑤 in
the code generated by G. To compute the work factor of Stern’s algorithm then,
we have to take into account the average number of iterations until it chooses a
good permutation Ĝ and the average number of operations performed by the
algorithm each time. Considering Finiasz and Sendrier’s [7] approximation, which
takes parameter 𝑞 ≈ log

(︀
𝑘/2

𝑝

)︀
, the work factor of Stern’s algorithm, considering

the number of binary operations, until it gives us a random codeword of weight
𝑤 in a random [𝑛, 𝑘]–linear code is

BinOpsWF
(𝑛,𝑘,𝑤)
Stern ≈ min

𝑝

2𝑞
(︀

𝑛
𝑤

)︀(︀
𝑛−𝑘−𝑞
𝑤−2𝑝

)︀(︀
𝑘/2

𝑝

)︀ .

Each time Stern’s algorithm runs successfully, it finds a random codeword
of weight 𝑤. Therefore we can model the expected number of iterations until
all codewords are found as an instance of the coupon collector problem. Let us
consider the time to build ℒ𝑤

A. Each low weight vectors is modeled as a coupon,
and we need to collect all ℓA of them. Let 𝐶 be the random variable that counts
the number of low weight vectors we need to find before obtaining ℓA different
vectors. Then, it is well known that E (𝐶) = 𝛩 (ℓA log ℓA). Furthermore, the
upper tail estimate for the coupon collector problem ensures that

Pr (𝐶 ≤ 𝛾AℓA log ℓA) ≤ ℓ−𝛾A+1
A .

Let WFℒ𝑤
A

be the work factor of building the set ℒ𝑤
A, counted in number

of binary matrix-vector multiplications. Since dim A = 𝑚, we can get an upper
bound on WFℒ𝑤

A
as

WF
(𝑛,𝑚,𝑤,ℓA)

ℒ𝑤
A

≤ BinOpsWF
(𝑛,𝑚,𝑤,ℓA)

ℒ𝑤
A

= 𝛾A (ℓA log ℓA) BinOpsWF
(𝑛,𝑚,𝑤)

Stern ,

where 𝛾A > 1 is chosen so that ℓ−𝛾A+1
A gives a small error probability.

Now we want do do the same thing for the construction of ℒ𝑤
K. Let ℓK = |ℒ𝑤

K|.
and let us estimate ℓK. As usual in coding theory, to count elements of a given
weight, we approximate the number of elements of weight 𝑤 in a random code
as a binomial distribution. Thus, out of the

(︀
𝑛
𝑤

)︀
possible vectors of weight 𝑤,

we expect that a fraction of 2dim K/2𝑛 belong to 𝒞K. Since K is the left kernel
matrix of V, then dim K = (𝑛− dim V) = (𝑛− ℓ), and we can approximate the
expected value of ℓK as

ℓ̂K = E (ℓK) ≈ 2𝑛−𝑙

2𝑛

(︂
𝑛

𝑤

)︂
= 2−𝑙

(︂
𝑛

𝑤

)︂
. (2)
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Therefore, for some factor 𝛾K > 1 we can define an upper bound on the work
factor of building ℒ𝑤

K as

WF
(𝑛,ℓ,𝑤,ℓA)

ℒ𝑤
K

≤ 𝛾K

(︁
ℓ̂K log ℓ̂K

)︁
BinOpsWF

(𝑛,𝑛−ℓ,𝑤)

Stern .

Notice that if ℒ𝑤
K does not contain the permutations of all vectors of ℒ𝑤

A, then
the search will fail. Thus, factor 𝛾K must be chosen conservatively, but since ℓ̂K

is typically very large, the probability ℓ̂
(1−𝛾K)
K of not collecting all vectors can be

made negligible even for relatively small 𝛾K.

5.2 Searching for matchings

In this section, we evaluate the number of paths that will be tested by the
subgraph isomorphism algorithm. For this evaluation, we need to estimate the
number of possible child nodes in each level.

Consider the case when the search is holding matrix S at level 𝛼. We want to
estimate the size of set 𝑃𝛼+1 of possible rows to add to S in the next level of the
search. In other words, we want to compute the number of vectors that survive
the filter imposed by the line 5 of Algorithm 1. The first thing to notice is that
the result of the filtering is exactly the same if we filter from p ∈ ℒ𝑤

K instead of
p ∈ 𝑃𝑖, that is

𝑃𝑖 =
{︂

p ∈ 𝑃𝑖 : 𝜎

(︂[︂
S

p

]︂)︂
= H𝑖,𝛼

}︂
=
{︂

p ∈ ℒ𝑤
K : 𝜎

(︂[︂
S

p

]︂)︂
= H𝑖,𝛼

}︂
.

The reason why the algorithm keeps updating the list 𝒫 =
(︁

𝑃1, . . . , 𝑃|ℒ𝑤
A|
)︁

of possible vectors in all levels, is solely for efficiency. Without it, the filtering
would be very inefficient for nodes in lower levels down the search because it
would have to run, every time, through set ℒ𝑤

K, which may be very large.
Let L𝛼 be the matrix formed by the first 𝛼 rows of ℒ𝑤

A, and let r be the
(𝛼 + 1)–th row of ℒ𝑤

A. Now, using the definition of H𝑖,𝛼, we want to estimate

how many vectors p in ℒ𝑤
K satisfy 𝜎

(︂[︂
S

p

]︂)︂
= 𝜎

(︂[︂
L𝛼

r

]︂)︂
.

One problem that makes estimating the number of child nodes difficult is
that, since vectors in ℒ𝑤

K are low-weight codewords of a fixed linear code, the
vectors in ℒ𝑤

K are not independently distributed. This is a common problem when
analyzing bounds on weight distribution in coding theory, and as usual in the
field, we overcome this problem by assuming that the set ℒ𝑤

K consists of vectors
chosen uniformly at random over the vectors of length 𝑛 and weight 𝑤.

Now, under our model, let us fix L𝛼 and estimate the probability 𝑞𝛼+1(L𝛼)
that vector p̂ of ℒ𝑤

K is a possible child node in 𝑃𝛼+1. Because of the way that
the algorithm builds S, its columns are the same as the ones of L𝛼, up to some
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permutation, and therefore

𝑞𝛼+1(L𝛼) = Pr
(︂

𝜎

(︂[︂
S

p̂

]︂)︂
= 𝜎

(︂[︂
L𝛼

r

]︂)︂)︂
= Pr

(︂
𝜎

(︂[︂
L𝛼

p

]︂)︂
= 𝜎

(︂[︂
L𝛼

r

]︂)︂)︂
,

where p is a random 𝑛–bit vector of weight 𝑤.
The signatures of the two matrices will be the same if the columns above

the non-null entries of p and r are equal, up to some permutation. Therefore,
𝑞𝛼+1(L𝛼) is simply the probability that two subsets of 𝑤 columns drawn from
L𝛼 are the same, up to some permutation. In the simple case when all columns
of L𝛼 are unique, then 𝑞𝛼+1(L𝛼) = 1/

(︀
𝑛
𝑤

)︀
. However, in general, L𝛼 may have

non-unique columns, which occur with high probability for small values of 𝛼,
since L𝛼 is sparse.

Let R be the 𝛼× 𝑤 matrix built by taking columns of L𝛼 whose indexes are
in supp (r). Define two counting functions 𝑁 and 𝑁R that, given a column c,
output the number of times column c appears in matrices L𝛼 and R, respectively.
For each column c, which should appear 𝑁R(c) times in the columns above the
non-null entries of p, there are

(︀
𝑁(c)

𝑁R(c)

)︀
ways in which different column indexes of

R can be chosen. Therefore

𝑞𝛼+1(L𝛼) = 1(︀
𝑛
𝑤

)︀ ∏︁
c∈F𝛼

2

(︂
𝑁(c)

𝑁R(c)

)︂
.

To estimate the average attack performance, we want to compute the expected
value 𝑞𝛼+1 = E (𝑞𝛼+1(L𝛼)) when L𝛼 is obtained from a randomly generated key.
This value can be easily estimated using simulations by sampling L𝛼 from the set
of 𝛼× 𝑛 matrices in which each row has weight 𝑤. However, to give an analytic
approximation, we face the problem of computing the expected value of the
binomial coefficients over the random variables 𝑁(c) and 𝑁R(c) for each possible
column c. To deal with this problem, we use of the following rough approximation

𝑞𝛼+1 ≈
1(︀
𝑛
𝑤

)︀ ∏︁
c∈F𝛼

2

(︂
E (𝑁(c))
E (𝑁R(c))

)︂
.

To compute the expected values E (𝑁(c)) and E (𝑁R(c)), we consider L𝛼 as a
random sparse matrix of density 𝑤/𝑛 as an approximation of the real case where
each of its rows have a fixed weight 𝑤. Under this model, the probability that a
random column of L𝛼 is equal to c depends only on its the weight 𝑘 = w(c) and
and the number 𝛼 of rows in L𝛼. This probability is given by

𝑝 (𝑘, 𝛼) =
(︁𝑤

𝑛

)︁𝑘 (︁
1− 𝑤

𝑛

)︁𝛼−𝑘

. (3)
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Thus both 𝑁(c) and 𝑁R(c) follow binomial distributions with parameters
(𝑛, 𝑝(w (c) , 𝛼)) and (𝑤, 𝑝(w (c) , 𝛼)), respectively. Therefore2

𝑞𝛼+1 ≈
1(︀
𝑛
𝑤

)︀ ∏︁
c∈F𝛼

2

(︂
𝑛𝑝(w (c) , 𝛼)
𝑤𝑝(w (c) , 𝛼)

)︂

≈ 1(︀
𝑛
𝑤

)︀ 𝛼∏︁
𝑘=0

(︂
𝑛𝑝 (𝑘, 𝛼)
𝑤𝑝 (𝑘, 𝛼)

)︂(𝛼
𝑘)

.

One can then use this analytic approximation or simulations for 𝑞𝛼 to obtain
the number of possible nodes in each level as

⃒⃒⃒
𝑃𝛼

⃒⃒⃒
= 𝑞𝛼ℓ̂K, where ℓ̂K = E (|ℒ𝑤

K|)
is given approximately by Equation 2. Figure 2 shows how the analytic approxi-
mation and the value obtained by simulations compare with what is observed
during a real attack. We can see that simulations can accurately be used to
estimate 𝑞𝛼 and that the analytic estimate tends to overestimate the number of
possible nodes in each level.
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Using analytic approximation for q̄α

Using simulations to estimate q̄α

Observed during a real attack

Fig. 2: Comparison of estimates on the average number of possible vectors to add
in each level of the search. The attack parameters (𝑤 = 8, ℓA = 10) were used
against the BPKP–76 parameter set.

The work factor of the search procedure, denoted by WFSearch, consists of
the expected number of possible paths, which is given by

WF
(𝑛,𝑤,ℓA)

Search =
ℓA∏︁

𝛼=1

⃒⃒⃒
𝑃𝛼

⃒⃒⃒
≈
(︁

ℓ̂K

)︁ℓA
ℓA∏︁

𝛼=1

𝑞𝛼.

2 Recall, from Section 2, that binomials are defined over non-negative real numbers to
allow our approximations.
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5.3 Extracting permutations from matchings

We now analyze the complexity of the procedure that tries to extract the secret
permutation after a matching is found. The main quantity we need to estimate
is the number of permutations that the procedure needs to test each time it is
called. Formally, we need to estimate the average size of set 𝒥 for each parameter
set (𝑛, 𝑚, ℓ) when the scheme is attacked with attack parameters (𝑤, ℓA).

Let 𝐼1 and 𝐼2 = {𝑖1, . . . , 𝑖𝑛−𝑚} be the sets constructed from ℒ𝑤
A and A as

described in Section 4.3. The first thing to notice is that |𝒥 | can be computed
directly from matrix ℒ𝑤

A, that is, it does not depend on a each S. This is a
consequence of the fact that, by construction, S = 𝜏 (ℒ𝑤

A), for some column
permutation 𝜏 . Formally, what we mean is that, since3

𝒥 =
{︁

(𝑗1, . . . , 𝑗𝑛−𝑚) : (𝜏 (ℒ𝑤
A))𝑗𝑘 = (ℒ𝑤

A)𝑖𝑘 for all 𝑘 = 1, . . . , 𝑛−𝑚
}︁

=
{︁

(𝑗1, . . . , 𝑗𝑛−𝑚)𝜏 : (ℒ𝑤
A)𝑗𝑘 = (ℒ𝑤

A)𝑖𝑘 for all 𝑘 = 1, . . . , 𝑛−𝑚
}︁

,

then |𝒥 | =
⃒⃒⃒{︁

(𝑗1, . . . , 𝑗𝑛−𝑚) : (ℒ𝑤
A)𝑗𝑘 = (ℒ𝑤

A)𝑖𝑘 for all 𝑘 = 1, . . . , 𝑛−𝑚
}︁⃒⃒⃒

, which
does not depend on 𝜏 .

Thus we can model |𝒥 | as the number of arrangements of 𝑛 −𝑚 different
balls, which may come from different boxes, under the restriction that each box
will be sampled a fixed number of times. In this analogy, each box represents a
set of indexes that correspond to equal columns in ℒ𝑤

A. More formally, let L2 be
the ℓA × (𝑛−𝑚) matrix formed by taking columns of ℒ𝑤

A whose indexes are in
𝐼2. Define two counting functions 𝑁 and 𝑁2 that, given a column c, output the
number of times column c appears in matrices ℒ𝑤

A and L2, respectively. Then,
we have

|𝒥 | =
∏︁

c∈𝒞2

𝑁(c)!
(𝑁(c)−𝑁2(c))! .

Now, let us consider the expected value of 𝒥 when A is a random matrix such
that ℒ𝑤

A contains ℓA vectors of weight 𝑤. This number can easily be estimated by
simulations, which perfectly correspond to what is observed in a real attack since,
up to this point no simplification has been made. Furthermore, we can also give
an analytic estimate using the very same ideas from the previous section. First
we approximate this case by modeling ℒ𝑤

A as a random ℓA×𝑛 sparse matrix with
density 𝑤/𝑛, and let 𝑝 (𝑘, ℓA) denote the probability that a given column of ℒ𝑤

A
is equal to a fixed column of weight 𝑘 and height ℓA, as defined by Equation 3.

3 Recall that (X)𝑖 denotes the 𝑖–th column of matrix X.
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Then, the rough approximation on E (|𝒥 |) is given by

E (|𝒥 |) ≈
∏︁

c∈FℓA
2

E (𝑁(c))!
(E (𝑁(c))− E (𝑁2(c)))!

=
ℓA∏︁

𝑘=0

(︂
(𝑛𝑝 (𝑘, ℓA))!

(𝑛𝑝 (𝑘, ℓA)− (𝑛−𝑚)𝑝 (𝑘, ℓA))!

)︂(ℓA
𝑘 )

=
ℓA∏︁

𝑘=0

(︂
(𝑛𝑝 (𝑘, ℓA))!
(𝑚𝑝 (𝑘, ℓA))!

)︂(ℓA
𝑘 )

.

Figure 3 shows how |𝒥 | rapidly decreases as larger values of ℓA are used.
It also provides a comparison between our analytic estimate on E (|𝒥 |) and
the observed values in our simulations. Notice that, for small values of ℓA, the
analytic estimate tends to overestimate the real values of |𝒥 |, but for sufficiently
large ℓA, the estimate converges to the observed values. Now, since each sequence
E (|𝐽 |) needs one matrix multiplication to be tested, we define the work factor of
the permutation extraction procedure, as WF

(𝑛,𝑚,𝑤,ℓA)
Perms = E (|𝐽 |) .
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Fig. 3: The number of permutations to test after each matching considering
the BPKP–76 parameter set. The attack parameter 𝑤 = 8 was fixed, and the
simulations were run for increasing values of parameter ℓA.

5.4 Attack Complexity

This section builds upon the three previous sections to explicitly state the attack
complexity and the fraction of keys that can be attacked for different attack
parameters (𝑤, ℓA).

The full complexity of the attack is given by the following lemma.
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Lemma 1. Let (𝑛, 𝑚, ℓ) be a binary PKP parameter set. Then, the work factor

of the attack with parameters (𝑤, ℓA) is given as

WF
(𝑛,𝑚,ℓ,𝑤,ℓA)

Attack = WF
(𝑛,𝑚,ℓ,𝑤,ℓA)

LowWeightSets +
(︁

WF
(𝑛,𝑤,ℓA)

Search

)︁(︁
WF

(𝑛,𝑚,𝑤,ℓA)
Perms

)︁
.

Proof. The complexity of the attack is given by summing the costs of building
the sets of vectors of small weight ℒ𝑤

A and ℒ𝑤
K, and the complexity of the key

recovery algorithm. The cost of the key recovery algorithm is computed as
follows. Remember that, for each path, from the root to one leaf, the number of
permutations we have to test is given as WF

(𝑛,𝑚,𝑤,ℓA)
Perms . Since the average number

of paths is WF
(𝑛,𝑤,ℓA)

Search , the complexity of the key recovery algorithm is simply
the product

(︁
WF

(𝑛,𝑤,ℓA)

Search

)︁(︁
WF

(𝑛,𝑚,𝑤,ℓA)
Perms

)︁
. ⊓⊔

Figure 4 shows how WF
(𝑛,𝑚,ℓ,𝑤,ℓA)

Attack varies with respect to the attack parame-
ters used, when attacking BPKP–76 parameter set. To estimate the work factor
of the attack, we used simulations4 for WF

(𝑛,𝑤,ℓA)

Search and analytic estimation for
WF

(𝑛,𝑚,𝑤,ℓA)
Perms . Notice how, as ℓA gets larger, the work factor stabilizes. This

happens because the number of permutations to test gets closer to 1. Furthermore,
it is clear that when 𝑤 is smaller, the attack is more efficient, which happens
because, in this case, |ℒ𝑤

K| is smaller, which makes the search much faster. The
problem however, is that the attack parameters for which the attack is most
efficient occur with lower probability, as we elaborate next.

Lemma 1 does not say anything about the fraction of keys that one can attack
using parameters (𝑤, ℓA). To compute this fraction, we have to take into account
the probability that a public matrix A, selected at random, generates a code with
at least ℓA codewords of weight 𝑤. This is considered in the following lemma.

Lemma 2. Let (𝑛, 𝑚, ℓ) be a binary PKP parameter set. Then, the fraction of

keys against which the attack is effective when using parameters (𝑤, ℓA) is given

as

KF
𝑛,𝑚,ℓ,𝑤,ℓA
Attack ≈ 1− 𝑒−𝜆

ℓA−1∑︁
𝑘=0

𝜆𝑘

𝑘! , (4)

where 𝜆 =
(︀

𝑛
𝑤

)︀
2𝑚−𝑛.

Proof. Take a random matrix A, generated with parameters (𝑛, 𝑚, ℓ). Let 𝐿𝑤

be the random variable that represents the number of vectors of weight 𝑤 in the
code generated by matrix A. Since the code generated by A is a random code,
we can approximate 𝐿𝑤 by a binomial distribution which samples

(︀
𝑛
𝑤

)︀
vectors

and each one of them is in the code with probability 2𝑚−𝑛.
4 Even though the analytic approach is useful to estimate the number of nodes in each
level, the errors would accumulate exponentially in the product necessary to compute
the work factor of the search.
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The probability that 𝐿𝑤 ≥ ℓA would be then simply
(︁

1−
∑︀ℓA−1

𝑘=0 Pr(𝐿𝑤 = 𝑘)
)︁
.

However, the probability mass function of the binomial can be costly to compute
for some values of 𝑘, since 𝑁 may be very large, and 𝑁−𝑘 appears as an exponent.
But, for large 𝑁 and small probability 2𝑚−𝑛, the binomial may be approximated
as a Poisson distribution with parameter 𝜆 =

(︀
𝑛
𝑤

)︀
2𝑚−𝑛. Then, the approximation

given as Equation 4 is easily achieved by considering the cumulative distribution
function of the Poisson distribution, instead of the binomial. ⊓⊔
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Fig. 4: Work factor of the attack against BPKP–76 parameter set using different
attack parameters (𝑤, ℓA).
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Fig. 5: Fraction of the keys generated with BPKP–76 parameter set against which
the attack is successful using different attack parameters (𝑤, ℓA).

Figure 5 shows the effect of parameters (𝑤, ℓA) in the fraction of keys that we
can attack. The first thing to notice is that large ℓA and small 𝑤 tend to occur
with smaller probability. Now we can combine both Figures 4 and 5 to understand
the power of the attack. For example, considering parameters (𝑤 = 7, ℓA = 10),
we can attack about 1 in each 150.000 keys of BPKP–76 with less than 255

operations, and about 100% of all keys can be recovered using 262 operations.
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5.5 Experimental Results

To validate our proposed attack, we implemented it in SageMath and in C
language, using M4RI [14] library for efficient binary linear algebra computations.
The source code is publicly available at www.ime.usp.br/~tpaiva.

Table 2 shows the performance of the attack against BPKP-76. To obtain
empirical estimates on its performance, we considered the average number of
clock cycles for the smallest level 𝛼̂ in the search for which we can get a significant
number of samples. Then, the empirical estimate is given by the product between
this average number of clock cycles and the average number of total nodes in
level 𝛼̂. Thus smallest values of 𝛼 give more accurate results. The values of ℓA
are chosen as to guarantee that the number of permutations to test is within
reasonable computational limits and so that 𝛼̂ ≤ 3.

Notice how, in general, the estimates on the work factor of the attack tend to
overestimate the real complexity of the attack. The main explanation for this
fact seems to be that, for sufficiently large ℓA, the algorithm rarely enters in
a leaf node, which is where most of the matrix product operations occur. This
is exemplified by the decay, shown in Figure 2, of the curve representing the
observed number of nodes in each level during a real attack, where, after level
𝛼 = 7, a node rarely has more than one child.

Table 2: Estimates on the number of clock cycles necessary for a successful attack.

𝑤 ℓA 𝛼̂ Fraction of keys Predicted work factor
(matrix-vector products)

Empirical estimate
(clock cycles)

5 14 1 0 239.46 234.39

6 11 2 2−43.32 249.75 247.58

7 10 2 2−17.86 255.84 248.62

8 9 3 2−2.88 262.28 260.54

9 9 3 2−0.00 264.16 262.31

6 Asymptotic Analysis

In the previous section, a detailed analysis of the attack is presented. However, the
concrete analysis fails to provide a general idea of how the complexity grows, as
the complexity of the components are not easy to simplify and must be computed
using iterative procedures for products of binomial coefficients. Therefore we aim,
in this section, to give simpler and closed expressions for the asymptotic attack
complexity, but without compromising the reliability of the analysis.

6.1 Asymptotic growth of the attack parameters

First let us recall the growth of parameters 𝑚 and ℓ with respect to 𝑛. To ensure
that the binary PKP instances are difficult to solve on average, we need that,

www.ime.usp.br/~tpaiva
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out of the 𝑛! possible permutations of the rows of V, about only one of them is
in the kernel of A. The dimension of A is 𝑚, which means the probability that a
random vector belongs to the kernel is 2(𝑛−𝑚)/2𝑛 = 2−𝑚. Therefore, since the
binary PKP is solved only when all ℓ column vectors of V𝜋 are in the kernel of
A, then 𝑛!2−𝑚ℓ ≈ 1. As suggested by Lampe and Patarin [13], we consider that
𝑚 and 𝑙 should be roughly the same size

𝑚 ≈ 𝑙 ≈
√︀

log 𝑛! = 𝑂(
√︀

𝑛 log 𝑛). (5)

From Equation 5, we see that the dimension 𝑚 of the code generated by
A grows much slower than its size 𝑛. Intuitively then, as 𝑛 gets larger, it gets
harder to obtain codewords of weight much smaller than 𝑛/2, because of the
small dimension. Since we need to deal with values of 𝑤 close to 𝑛/2, we are
interested in using the following lemma that gives approximations on binomial
coefficients

(︀
𝑛
𝑤

)︀
under this regime.

Lemma 3 (Eq. 5.41 [21]). Let 𝑛 and 𝑤 be positive integers such that |𝑛/2−
𝑤| = 𝑜(𝑛2/3). Then (︂

𝑛

𝑤

)︂
∼ 2𝑛

√︂
2

𝑛𝜋
𝑒

−(𝑛−2𝑤)2

2𝑛 .

⊓⊔

We are now ready to show, in the following lemma, how to carefully choose
values of 𝑤 such that Lemma 3 ensures us that ℒ𝑤

A has a reasonable number of
vectors.

Lemma 4. Take the attack parameter 𝑤 as

𝑤 =

⎢⎢⎢⎣𝑛

2 −

√︃
𝑚𝑛4/5

2 log 𝑒

⎤⎥⎥⎥ . (6)

Then, on average, the attack can effectively use parameters (𝑤, ℓA) when ℓA is

smaller than

ℓA ≤

(︃√︂
2
𝜋

)︃
2(𝑚(1−𝑛(−1/5))−(log 𝑛)/2).

Proof. Let A be an 𝑚 × 𝑛 random binary PKP public matrix. The attack
parameters (𝑤, ℓA) are effective when ℓA is smaller than or equal to the number
of vectors of weight 𝑤 in the code generated by A. Therefore, on average, the
attack works when

ℓA ≤ 2𝑚−𝑛

(︂
𝑛

𝑤

)︂
.
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Now take 𝑤 as defined by Equation 6, and notice that, since 𝑚 = 𝑂
(︀√

𝑛 log 𝑛
)︀
,

then

|𝑛/2− 𝑤| =

√︃
𝑚𝑛4/5

2 log 𝑒
= 𝑂

(︂√︁
𝑛4/5

√︀
𝑛 log 𝑛

)︂
= 𝑂

(︁
𝑛13/20 (log 𝑛)1/4

)︁
= 𝑜

(︁
𝑛13/20+𝜖

)︁
= 𝑜

(︁
𝑛2/3

)︁
.

Therefore we can use Lemma 3 to obtain the approximation

2𝑚−𝑛

(︂
𝑛

𝑤

)︂
≈ 2𝑚−𝑛

(︃
2𝑛

√︂
2

𝑛𝜋
𝑒

−(𝑛−2𝑤)2

2𝑛

)︃
= 2𝑚

(︃√︂
2

𝑛𝜋
𝑒

−(𝑛−2𝑤)2

2𝑛

)︃
.

But notice that

𝑒
−(𝑛−2𝑤)2

2𝑛 = 𝑒
−(𝑛/2−𝑤)2

𝑛/2 = exp

⎛⎝− 1
𝑛/2

√︃
𝑚𝑛4/5

2 log 𝑒

2⎞⎠ = exp
(︂
−𝑚𝑛−1/5

log 𝑒

)︂
.

That is

𝑒
−(𝑛−2𝑤)2

2𝑛 = 2−𝑚𝑛−1/5
. (7)

Therefore the attack is effective for

ℓA ≤ 2𝑚

(︃√︂
2

𝑛𝜋
2−𝑚𝑛−1/5

)︃
=
(︃√︂

2
𝜋

)︃
2(𝑚(1−𝑛(−1/5))−(log 𝑛)/2).

⊓⊔

Notice that when 𝑤 is chosen according to the lemma above, then 𝑤/𝑛
approaches 1/2 when 𝑛 gets larger. This motivates the following corollary, which
has an important role in simplifying the analysis.

Corollary 1. As 𝑛 gets larger and 𝑤 is taken as in Lemma 4, the values of

𝑝 (𝑘, 𝛼) stop depending on 𝑘, and we have

𝑝 (𝑘, 𝛼) =
(︂

1
2

)︂𝑘 (︂
1− 1

2

)︂𝛼−𝑘

= 2−𝛼.

⊓⊔

As a first application of Corollary 1, we show that, for sufficiently large 𝑛, we
do not need ℓA to be very large. With roughly ℓA ≈ log 𝑛, the number WFPerms
of permutations to test after each matching is very close to 1.
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Lemma 5. Consider binary PKP parameters (𝑛, 𝑚, ℓ). Take attack parameters

𝑤 as in Lemma 4 and ℓA ≥ ⌈log 𝑛⌉. Then, for sufficiently large values of 𝑛, the
average number of permutations to test after each matching is

WFPerms = 1.

Proof. From our concrete analysis, we know that

WFPerms =
ℓA∏︁

𝑘=0

(︂
(𝑛𝑝 (𝑘, ℓA))!
(𝑚𝑝 (𝑘, ℓA))!

)︂(ℓA
𝑘 )

.

But Corollary 1 tells us that 𝑝 (𝑘, ℓA) ≈ 2−ℓA when 𝑛 is large. Therefore,

WFPerms =
ℓA∏︁

𝑘=0

(︃ (︀
𝑛2−ℓA

)︀
!

(𝑚2−ℓA)!

)︃(ℓA
𝑘 )

=
ℓA∏︁

𝑘=0

(︃ (︀
𝑛2−⌈log 𝑛⌉)︀!(︀
𝑚2−⌈log 𝑛⌉

)︀
!

)︃(⌈log 𝑛⌉
𝑘 )

= 1.

⊓⊔

It is important to understand that the lemma above needs a relatively large
𝑛, because it uses Corollary 1. Therefore, to lower the number of permutations to
test after each matching when attacking small values of 𝑛, we typically want to
use ℓA near the maximum provided by Lemma 4. Notice that even for relatively
small values of 𝑛, there are usually more than log 𝑛 vectors of weight 𝑤 in the
code generated by A. For example, when 𝑛 = 38 we have

log(𝑛) ≈ 5.25 < 5.99 ≈
√︁

2
𝜋 2𝑚(1−𝑛−1/5)−(log 𝑛)/2).

We are now ready to derive the asymptotic complexity of WFSearch, which
is the most critical step of the attack.

6.2 Searching for matchings

Let us begin by deriving an asymptotic bound on the number of child nodes in
each level of the search tree.
Lemma 6. Take the attack parameter 𝑤 as in Lemma 4. Then, for sufficiently

large values of 𝑛, the number of child nodes in each level 𝛼 of the search is given

as ⃒⃒⃒
𝑃𝛼+1

⃒⃒⃒
=

⎧⎨⎩2𝑛−𝑙−𝑚𝑛−1/5 (︀2𝛼2𝛼/2
)︀√︁

2
𝑛𝜋

2𝛼

if 𝛼 ≤ (⌈log 𝑛⌉ − 2);
1 otherwise.

Proof. By our concrete analysis, we know that
⃒⃒⃒
𝑃𝛼+1

⃒⃒⃒
is given as

⃒⃒⃒
𝑃𝛼+1

⃒⃒⃒
= ℓ̂K𝑞𝛼+1 =

(︂
2−𝑙

(︂
𝑛

𝑘

)︂)︂
1(︀
𝑛
𝑤

)︀ 𝛼∏︁
𝑘=0

(︂
𝑛𝑝 (𝑘, 𝛼)
𝑤𝑝 (𝑘, 𝛼)

)︂(𝛼
𝑘)

= 2−𝑙
𝛼∏︁

𝑘=0

(︂
𝑛𝑝 (𝑘, 𝛼)
𝑤𝑝 (𝑘, 𝛼)

)︂(𝛼
𝑘)

.
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Using Corollary 1, we can simplify the above expression as

⃒⃒⃒
𝑃𝛼+1

⃒⃒⃒
= 2−𝑙

𝛼∏︁
𝑘=0

(︂
𝑛2−𝛼

𝑤2−𝛼

)︂(𝛼
𝑘)

= 2−𝑙

(︂
𝑛2−𝛼

𝑤2−𝛼

)︂(
∑︀𝛼

𝑘=0 (𝛼
𝑘))

= 2−𝑙

(︂
𝑛2−𝛼

𝑤2−𝛼

)︂2𝛼

.

Now, if 𝛼 ≥ (⌈log 𝑛⌉ − 1), then 𝑤2−𝛼 < 1, and(︂
𝑛2−𝛼

𝑤2−𝛼

)︂2𝛼

≤
(︂

𝑛2−𝛼

𝑛
2

2−𝛼

)︂2𝛼

≈ 1.

Therefore, we can focus on approximating the case when 𝛼 ≤ (⌈log 𝑛⌉ − 2). Re-
member that 𝑤 is close to 𝑛/2, thus we can use Lemma 3 to get the approximation

(︂
𝑛2−𝛼

𝑤2−𝛼

)︂
≈ 2𝑛2−𝛼

√︂
2

𝑛2−𝛼𝜋
𝑒

−(𝑛2−𝛼−2𝑤2−𝛼)2

2𝑛2−𝛼

= 2𝑛2−𝛼

2𝛼/2

√︂
2

𝑛𝜋
𝑒

−(𝑛−𝑤)2

2𝑛 2−𝛼

.

Recall Equation 7, which lets us further simplify the expression above as

(︂
𝑛2−𝛼

𝑤2−𝛼

)︂
= 2𝑛2−𝛼

2𝛼/2

√︂
2

𝑛𝜋

(︁
2−𝑚𝑛−1/5

)︁2−𝛼

.

Now, getting back to
⃒⃒⃒
𝑃𝛼+1

⃒⃒⃒
, we have

⃒⃒⃒
𝑃𝛼+1

⃒⃒⃒
= 2−𝑙

(︂
𝑛2−𝛼

𝑤2−𝛼

)︂2𝛼

= 2−𝑙

(︃
2𝑛2−𝛼

2𝛼/2

√︂
2

𝑛𝜋

(︁
2−𝑚𝑛−1/5

)︁2−𝛼
)︃2𝛼

= 2𝑛−𝑙−𝑚𝑛−1/5
(︁

2𝛼2𝛼/2
)︁√︂ 2

𝑛𝜋

2𝛼

.

⊓⊔

Now that we have bounded the number of nodes in each level, we are ready
to give the asymptotic bound on the search procedure.
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Lemma 7. Take attack parameters 𝑤 and ℓA ≥ ⌈log 𝑛⌉ as in Lemma 4. Then,

the asymptotic work factor of the search is given as

WFSearch ≈ 2(𝑛−𝑙−𝑚𝑛−1/5)(⌈log 𝑛⌉−1)−0.91𝑛+
1
2

log 𝑛+1.33.

Proof. From our concrete analysis, we know that the complexity of the search
is the product of the number of nodes in each level of the search. Furthermore,
Lemma 6 says that we only need to compute these values for 𝛼 ≤ ⌈log 𝑛⌉ − 2,
because after this point, typically there is at most one possible child node.
Therefore, the complexity of the search is given as

WFSearch =
ℓA−1∏︁
𝛼=0

⃒⃒⃒
𝑃𝛼+1

⃒⃒⃒
=

⌈log 𝑛⌉−2∏︁
𝛼=0

⃒⃒⃒
𝑃𝛼+1

⃒⃒⃒

=
⌈log 𝑛⌉−2∏︁

𝛼=0

(︃
2𝑛−𝑙−𝑚𝑛−1/5

(︁
2𝛼2𝛼/2

)︁√︂ 2
𝑛𝜋

2𝛼)︃

= 2(𝑛−𝑙−𝑚𝑛−1/5)(⌈log 𝑛⌉−1)2
(︀∑︀⌈log 𝑛⌉−2

𝛼=0
𝛼2𝛼/2

)︀ (︂ 2
𝑛𝜋

)︂(︀∑︀⌈log 𝑛⌉−2
𝛼=0

2𝛼/2
)︀

= 2(𝑛−𝑙−𝑚𝑛−1/5)(⌈log 𝑛⌉−1)2(1+
𝑛
4

(⌈log 𝑛⌉−3))2(log 2
𝑛𝜋 )(𝑛/4−1/2)

≈ 2(𝑛−𝑙−𝑚𝑛−1/5)(⌈log 𝑛⌉−1)−0.91𝑛+
1
2

log 𝑛+1.33.

⊓⊔

6.3 Asymptotic Complexity of the Attack

We are almost ready to complete the asymptotic analysis of the attack. The
only missing component to consider is WFLowWeightSets. Using the bruteforce
algorithm, one needs to test, for all

(︀
𝑛
𝑤

)︀
= 𝑂(2𝑛) possible vectors of weight 𝑤, if

they are in the space generated by A or in the left kernel of V. Therefore, the
complexity of building sets ℒ𝑤

A and ℒ𝑤
K is

WFLowWeightSets = 𝑂(2𝑛).

We can then combine the result above with Lemmas 5 and 7 to obtain the
complexity of the attack, as given next.

Theorem 1. Take attack parameters 𝑤 and ℓA ≥ ⌈log 𝑛⌉ as in Lemma 4. Then,

the asymptotic work factor of the attack is given as

WFAttack = WFLowWeightSets + (WFSearch) (WFPerms)

= 𝑂

(︂
2(𝑛−𝑙−𝑚𝑛−1/5)(⌈log 𝑛⌉−1)−0.91𝑛+

1
2

log 𝑛

)︂
.

⊓⊔
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Figure 6 shows how the asymptotic complexity presented above compares with
the simulations based on the concrete analysis. We can see that the asymptotic
estimate appears to be realistic, even though the ceiling operation used for ⌈log 𝑛⌉
makes the function rapidly increase when 𝑛−1 is a power of 2, and then decrease
until the next power of 2 is found.
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Fig. 6: Asymptotic complexity of the attack.

Figure 7 shows an asymptotic comparison between our algorithm and the one
by Koussa et al. [12]. Even though their algorithm is currently the best generic
algorithm for solving PKP in every field, we can see that our algorithm has a
considerable advantage in the binary case. To help us visualize the asymptotic
growth of our attack, we consider a smooth version of the estimate that consists
in using log 𝑛 instead of ⌈log 𝑛⌉ in the expression provided in Theorem 1.
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Fig. 7: Comparison between our attack and the one by Koussa et al. [12].
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7 On Secure Parameters for Binary PKP

A conservative approach to select parameters for binary PKP, considering security
level 𝜆, would be to choose them in such a way that no class of keys that occurs
with probability greater than 2−𝜆 should be attacked with less 2𝜆 operations.
Furthermore, the choice of parameters should consider the use of binary PKP
when building a signature scheme, and, as such, should aim to minimize not only
the key sizes, but also signature sizes and the computational cost to sign and
verify each signature.

The safest possible choice of parameters would be the ones that make it
difficult to even build sets ℒ𝑤

A and ℒ𝑤
K. If we take schemes that rely on the

difficulty of finding small weight codewords such as MDPC [16], this would result
in a very large matrix A. This, however, would have a very negative impact on
performance, key sizes and signature length.

A less conservative approach is to scale parameters (𝑛, 𝑚, ℓ) and compute
WF

(𝑛,𝑚,ℓ,𝑤,ℓA)

Attack and KF
(𝑛,𝑚,ℓ,𝑤,ℓA)

Attack for different attack parameters (𝑤, ℓA). The
search is efficient and can be done with the code that we provide. However,
it is important to notice that it seems to be early to state sets of parameters
for BPKP, as there may be some opportunities to improve this attack, which
could thwart the security of parameters suggested without careful consideration.
Our recommendation therefore is to avoid the Binary PKP, and more generally,
the PKP using small fields for matrix A, for which the search for low weight
codewords can be done efficiently.

8 Conclusion and Future Work

In this paper, we present the first attack that targets binary PKP and provide
a detailed analysis on the attack’s components. The attack is practical and
we provide an implementation of the attack in SageMath and C. Furthermore,
the attack shows an inherently weakness of PKP using small fields, and we
recommend that binary PKP be avoided while its security is not well understood
against this new type of attack.

For future work, we plan to extend this attack to the original PKP, hoping to
better understand what is the minimum finite field size 𝑝 that can used securely.
Furthermore, we believe that there are some opportunities to improve this attack.
For example, it may be possible to increase the fraction of keys that one can
attack by considering different parameters 𝑤 simultaneously, or one can try to
reduce the complexity of matching by introducing heuristics.
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