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Abstract

Topology-hiding broadcast (THB) enables parties communicating over an incomplete network
to broadcast messages while hiding the topology from within a given class of graphs. THB
is a central tool underlying general topology-hiding secure computation (THC) (Moran et al.
TCC’15). Although broadcast is a privacy-free task, it was recently shown that THB for certain
graph classes necessitates computational assumptions, even in the semi-honest setting, and even
given a single corrupted party.

In this work we investigate the minimal assumptions required for topology-hiding communi-
cation: both Broadcast or Anonymous Broadcast (where the broadcaster’s identity is hidden).
We develop new techniques that yield a variety of necessary and sufficient conditions for the fea-
sibility of THB/THAB in different cryptographic settings: information theoretic, given existence
of key agreement, and given existence of oblivious transfer. Our results show that feasibility
can depend on various properties of the graph class, such as connectivity, and highlight the
role of different properties of topology when kept hidden, including direction, distance, and/or
distance-of-neighbors to the broadcaster.

An interesting corollary of our results is a dichotomy for THC with a public number of at
least three parties, secure against one corruption: information-theoretic feasibility if all graphs
are 2-connected; necessity and sufficiency of key agreement otherwise.
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1 Introduction
Reliable communication between a set of mutually distrustful parties lies at the core of virtually any
distributed protocol, ranging from consensus tasks [28, 23] to secure multiparty computation [31,
17, 6, 11]. Classical protocols from the ’80s considered complete communication graphs between
the parties, where each pair of parties is connected by a communication channel. However, in
many real-life scenarios the parties are not pairwise connected; this raises the need for distributed
interactive computations, and in particular communication protocols, over an incomplete graph.
Often, the network topology itself may be sensitive information that should not be revealed by the
protocol.

Topology-hiding broadcast. With this motivation, Moran et al. [27] formalized the concept of
topology-hiding computation (THC). Here, the goal is to allow parties who see only their immediate
neighborhood (and possibly know that the graph belongs to some class), to securely compute
arbitrary functions without revealing any additional information about the graph topology other
than the output (computations on the graphs, e.g., establishing routing tables, are also supported).
THC is of theoretical interest, but is also motivated by real-world settings where it is desired to
keep the underlying communication graph private. These include social networks, ISP networks,
ad hoc (or mesh) networks, vehicle-to-vehicle communications, and possible approaches for contact
tracing.

Given the existence of general MPC protocols, achieving THC for arbitrary functions hinges on
communicating in a topology-hiding way, rather than on keeping inputs private. In particular, a
core bottleneck for achieving general THC is the special case of topology-hiding broadcast (THB),
where a designated party (the broadcaster) reliably sends its message to all other parties. Indeed,
given an MPC protocol for a function f defined in the broadcast model (where all communication
is sent via a broadcast channel, possibly encrypted),1 the parties can replace the broadcast channel
by a THB protocol to obtain a THC protocol for the function f .

Although broadcast is a privacy-free task, realizing THB turns out to be challenging, even in
the semi-honest setting where all parties follow the protocol. This is in stark contrast to standard
(topology-revealing) broadcast, which is trivially achievable in the semi-honest setting, e.g., simply
“flooding” the network, forwarding received messages. For general semi-honest corruptions, the
best THB constructions follow from a series of works [27, 19, 1, 2, 24], culminating in THB (as well
as THC) protocols for all graphs. However, even for THB, all known protocols require structured
public-key cryptographic assumptions, such as QR, DDH, or LWE.2 The use of strong assumptions
was justified by Ball et al. [3] who showed that without an honest majority, even THB implies
oblivious transfer (OT).3

A central paradigm in standard (topology-revealing) secure computation is to exchange cryp-
tographic assumptions with an honest-majority assumption [6, 11, 29]. A recent work of Ball
et al. [4] asked whether such a paradigm can be applied in the topology-hiding realm. The results
of [4] demonstrated that answering this question is more subtle than meets the eye, even when

1Such protocols exist in the honest-majority setting assuming key agreement, and thus under this assumption,
THB implies THC. In the information-theoretic setting THC can be strictly stronger, as we will see.

2That is, the Quadratic Residuosity assumption, the Decisional Diffie-Hellman assumption, and the Learning
With Errors assumption, respectively.

3The lower bound of [3] holds for 4-party 2-secure THB with respect to a small class of 4-node graphs, namely, a
square, and a square with any of its edges removed.

1



considering the basic case of one semi-honest corruption. On the one hand, they showed that
information-theoretic THB (IT-THB) can be achieved for the graph class of cycles, where the pro-
tocol hides the ordering of parties within the cycle. On the other hand, they identified that THB
for paths of n ≥ 4 nodes (again hiding ordering) implies key agreement.

This work. In a sense, [4] unveiled the tip of the iceberg, revealing a range of questions: Which
aspects of the topology can be hidden information theoretically, and which require cryptographic
hardness? Is key agreement sufficient for 1-corruption THB, or are there graph classes that require
stronger assumptions?

In this paper we study the cryptographic power of THB. The main question that we ask is:

What are the minimal cryptographic assumptions
required for THB for a given class of graphs?

We focus on a minimal setting, with a small number of parties and a single, or few, semi-honest
corruptions, which we denote by t-THB for t corruptions. This makes our lower bounds stronger;
and, as we demonstrate, even this simple setting offers a rich multi-layered terrain, and provides
insights and implications for more general settings (including THC).

Before proceeding to state our results, we note that prior THB protocols actually achieved
the stronger property of topology-hiding anonymous broadcast (THAB), where the identity of the
broadcaster remains hidden [9, 10]. From the definitions of these primitives, we have that

THC =⇒ THAB =⇒ THB.

Thus, all lower bounds for THB (such as the one from [4] and our own results) apply also for
THAB and THC. As we will show, there are classes of graphs where THB is possible information
theoretically, but THAB, and thus THC, require strong cryptographic assumptions. Understanding
for which topologies the reverse implications hold is addressed here in part, but the full answer
remains an interesting open question.

1.1 Our Results

This work makes significant strides in mapping the landscape of THB, THAB, and THC in minimal
settings, in the process developing new techniques that may be useful to achieve a full understanding
of its complexities. As standard in the THC literature, we consider a synchronous setting, where
the protocol proceeds in rounds.4

New Lower Bounds and Techniques

• THB. We explore which properties of graph topology are “hard” to hide, in the sense of
requiring cryptographic assumptions to do so. We show that hiding any one of the properties
of direction, distance, and/or distance-of-neighbors to the broadcaster is hard—while revealing
all three but nothing else (in fact, only revealing distance-of-neighbors) can always be achieved
information theocratically, using the trivial flooding protocol.

4LaVigne et al. [25] recently studied THC in a non-synchronous setting, demonstrating many barriers.
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• THAB. We observe that t-THAB for any graph class containing a graph that is not (t + 1)-
connected5 implies key agreement. We further show that hiding the number of participants
in certain graph classes implies infinitely often oblivious transfer, even for 1-THAB.

Unconditional & KA-Based Upper Bounds

• Unconditional. We provide a construction of 1-THAB for all 2-connected graphs, whose com-
plexity grows with the number of potential graphs in the class (in particular, it is efficient for
constant-size graphs), which achieves statistical information-theoretic security.

• Key Agreement. Assuming the existence of key agreement, we achieve 1-THB for all graphs,
and 1-THAB for all graphs of ≥ 3 nodes.

Corollaries and Conclusions

• Dichotomy for 1-THC with ≥ 3 parties. An interesting corollary of our results is a dichotomy
for 1-THC with a fixed and known set of at least three parties6 (i.e., where all graphs share
the same vertex set): if all graphs in a class are 2-connected, the class supports information-
theoretic 1-THC; otherwise, key agreement is necessary and sufficient for 1-THC.

• Dichotomy for 1-THAB with ≥ 3 parties. A similar result holds for 1-THAB for a dynamic set
of parties (i.e., the vertex set of every graph is a subset of [n]) as long as each graph contains
at least three nodes: if all graphs in a class are 2-connected, the class supports information-
theoretic 1-THAB; otherwise, key agreement is necessary and sufficient for 1-THAB.

• Characterization of 1-THB for small graphs. Our results introduce several new constructions
and analysis techniques; as a demonstration of their wider applicability, we provide a char-
acterization of the more complex case of 1-THB for all graph classes on four nodes or fewer.
Note that the feasibility boundaries of 1-THB are more complex than 1-THAB since, as we
show, certain lower bounds for 1-THAB do not apply to 1-THB.

• THB without OT. Our upper bounds constitute the first protocols using machinery “below”
oblivious transfer,7 aside from the specific graph class of cycles of fixed length (that was
shown in [4]).

We next describe these results in more detail.

1.1.1 Lower Bounds

We begin by investigating the conditions under which THB and THAB for a graph class G necessitate
cryptographic assumptions.

5A graph is k-connected if and only if every pair of nodes is connected by k vertex-disjoint paths.
6If the class of graphs contains a 2-path, then oblivious transfer is necessary for secure computation [22].
7Note that OT is strictly stronger than KA in terms of black-box reductions, since OT implies KA in a black-box

way, but the converse does not hold [16].
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THB: Hiding direction, distance, or distance-of-neighbors. Recall that restricting atten-
tion to a class of graphs G captures that a THB protocol hides partial information about a graph.
For example, if all graphs in G have property P , then the THB protocol need not hide whether P
is satisfied when providing indistinguishability within this class. Our question thus becomes: for
which properties of a graph topology is it the case that hiding necessitates cryptography?

Consider as a baseline the trivial “flooding” protocol, which in general is not topology hiding.
Parties flood the network: on receiving the broadcast message, a party forwards it to all neighbors
from which it was not previously received. Indeed, this protocol reveals information; e.g., the round
number in which a party first receives the message corresponds directly to its distance from the
broadcaster. However, even for this simple protocol, the amount of information revealed is limited.
The leakage can be quantified precisely: each party learns exactly the distance from the broadcaster
of each of its neighbors,8 or “distance-of-neighbors.” In particular, this includes the information of
(a) direction of the broadcaster (i.e., which neighbors are on a shortest path to the broadcaster),
and (b) distance to the broadcaster. Since the flooding protocol can be executed unconditionally for
any graph class G, it can only be some combination of this leaked distance-of-neighbors information
for which hiding requires cryptography.

Examining the lower bound of [4], we observe that it constitutes an example where hiding the
direction of the broadcaster from a given party necessitates key agreement (KA). This is embodied
via the class of two graphs G4-path = { 1 - 2 - 3 - 4 , 2 - 3 - 4 - 1 } on a path, where party 3 is unaware
whether the broadcasting party 1 lies to its left or right. Indeed, broadcaster direction is central to
their lower bound, where KA agents Alice and Bob emulate the THB parties 1 and 4 , respectively,
and jointly emulate 3 . Each flips a (private) coin to decide whether to also emulate 1 on their
corresponding side. The two parties can detect cases where both (or neither) party decided to
emulate 1 . In the remaining cases both parties agree on which side the broadcaster appears: this
will serve as the secret common key bit.

At a high level, the security of this KA protocol relies on the fact that the eavesdropper’s view
is essentially that of party 3 —who, by topology hiding, cannot distinguish the relative direction
of 1 . Thus, one may naturally ask whether hiding the direction to the broadcaster captures the
essence of the cryptographic power of THB.

Our first result shows that the direction to the broadcaster is not the complete answer. We
present a class of graphs Goriented-5-path for which any constant-round 1-secure THB implies infinitely
often key agreement,9 but for which the direction to the broadcaster is always known. Specifically,
we consider the class of 5-path graphs where the broadcaster 1 is always on the left,10 i.e.,

Goriented-5-path =
{

1 - 2 - 3 - 4 - 5 , 1 - 5 - 2 - 3 - 4 , 1 - 4 - 5 - 2 - 3 , 1 - 3 - 4 - 5 - 2
}
.

Because of this structure, the lower-bound techniques of Ball et al. [4] do not apply. Proving a
key-agreement implication for Goriented-5-path requires a new, more subtle approach, which we discuss
in Section 1.2. In particular, unlike [4], we must leverage the fact that topology hiding holds for

8If the neighbor sends the message in the first round that the party learns it, then its distance is one less of the
party’s distance. If the neighbor sends after the party learned it, then its distance equals the party’s distance. If the
neighbor does not send, then its distance is one more than the party’s distance.

9An infinitely often key agreement guarantees correctness and security for infinitely many λ ∈ N (where λ stands
for the security parameter).

10In particular, the “left/right” orientation can be deduced locally from each node’s neighbor set.
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any choice of corrupted party. For example, party 3 cannot distinguish between 1 - 2 - 3 - 4 - 5
and 1 - 5 - 2 - 3 - 4 , and party 2 cannot distinguish between 1 - 5 - 2 - 3 - 4 and 1 - 4 - 5 - 2 - 3 .

Taking a broader view of this example, we observe that while the direction of the broadcaster
is public for Goriented-5-path, the information to be hidden corresponds directly to the distance of the
given parties to the broadcaster. One may thus once again wonder whether revealing both the
direction and distance to the broadcaster dictates unconditional THB feasibility.

Our second result reveals that the answer is even more intricate. We demonstrate a class of
graphs for which each party publicly knows both its direction and distance to the broadcaster, but
for which 1-THB still implies key agreement.

Specifically, we consider the class Gtriangle consisting of a triangle, with possibly one of its edges
missing (see Figure 1). Interestingly, this is a very basic communication pattern: if a party has
two neighbors it does not know if its neighbors are directly connected or not, but a party with one
neighbor knows the entire topology. Notably, direction and distance from the broadcaster are both
clearly identifiable to each party given just its neighbor set; the only information hidden from a
party is its neighbor’s distance to the broadcaster. We show that this is enough to imply KA (see
Section 1.2 for details).

1

2

3 1

2

3 1

2

3

Figure 1: The class Gtriangle.

To summarize, for each strict subset of the properties that are leaked by the flooding protocol
(namely, direction and/or distance to the broadcaster) we demonstrate a graph class for which
hiding only these properties implies public-key cryptographic assumptions. Complementarily, if
all three properties (essentially, just the distance-of-neighbors) are known then one can use the
flooding protocol to obtain THB information theoretically.

Theorem 1.1 (THB lower bounds, informal). We consider THB with one semi-honest corruption.

• 1-secure THB for the graph class Goriented-5-path of 5-path graphs for which the broadcasting
party is always in the leftmost direction (see above) implies infinitely often key agreement.

• 1-secure THB for the graph class Gtriangle (Figure 1), for which the broadcasting party is always
at a known distance and direction, implies key agreement.

In contrast, for any class G such that for every party the distance of each of its neighbors to the
broadcaster is fixed and known across all graphs, there exists an unconditionally 1-secure THB
protocol.

THAB: Key Agreement and Beyond. We next turn to topology-hiding anonymous broadcast
(THAB). As mentioned above, any lower bound for THB is also a lower bound for THAB; however,
we show even stronger results for THAB.

The connection between anonymous communication and cryptographic hardness was previously
studied by Ishai et al. [20]. They showed that in a communication network that provides sender-
anonymity (under relatively strong adversarial observation), key agreement exists unconditionally;
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i.e., each pair of parties within the system can agree on a secret key. Our setting is slightly
different, however, using the lower-bound technique from [4] a similar observation can be made:
sender-anonymous communication over a path of three nodes implies the existence of standard
Alice-Bob key agreement, where the eavesdropper can see which party sends which message.

This clear-cut impossibility of information-theoretic 1-THAB (in fact, 1-secure anonymous
broadcast) on arbitrary incomplete networks stands in contrast to 1-THB, where the determi-
nation of when a graph class yields an implication to key agreement was demonstrably complex.
Concretely, consider the following (singleton) class G{1-2-3}:

G{1-2-3} =
{

1 - 2 - 3
}
.

THB for this class is glaringly trivial (indeed, there is no information to hide because the topology
is fixed); however, as discussed, 1-THAB on this class implies key agreement. For completeness, in
Section 4.1 we prove this implication as a direct corollary of the key-agreement lower bound of Ball
et al. [4], where the “direction” of the broadcaster (either 1 or 3 ) in this case is hidden from the
intermediate party 2 by anonymity.

At this moment, the reader may pause, ensnared in the underwhelming nature of the above
class G{1-2-3}. However, by a standard player-partitioning argument (“projecting” a larger graph
down onto the 3-path), the above result yields a much broader statement.

Proposition 1.2 (THAB lower bound 1, informal, [20, 4]). Let G be a class of graphs that contains
a graph with at least (t+ 2) nodes that is not (t+ 1)-connected. Then t-secure THAB for G implies
KA.

In our final lower-bound result, we demonstrate an even more extreme form of separation
between THB and THAB. We consider the graph class G2-vs-3 that consists of all possible 2-path
and 3-path graphs over three parties, i.e.,

G2-vs-3 =
{

1 - 2 , 1 - 3 , 2 - 3 , 1 - 2 - 3 , 2 - 3 - 1 , 3 - 1 - 2
}
.

In this class, for example, if 1 is connected only to 2 , then it does not know whether 2 has a
second neighbor (necessarily 3 ) or not. It is easy to see that 1-secure THB exists unconditionally
for this class (by the flooding protocol); however, we show that 1-secure THAB implies infinitely
often oblivious transfer.11 We emphasize that as opposed to other classes of graphs discussed thus
far, the “hardness” of the class G2-vs-3 is based on hiding the number of nodes participating in the
protocol. We refer the reader to Sections 1.2 and 4.2 for further details on the lower bound.

Overall, we obtain the following theorem.

Theorem 1.3 (THAB lower bound 2, informal). 1-secure THAB for G2-vs-3 implies infinitely often
OT.

We remark that these results separate THB from THAB for very simple graph classes, where THAB
requires computational assumptions whereas unconditional THB exists via the trivial flooding pro-
tocol. Later, in Section 1.1.2 we will show a more interesting separation via the “butterfly” graph,
where the existence of information-theoretic THB itself is non-trivial.

11An infinitely often OT protocol guarantees correctness and security for infinitely many λ ∈ N (where λ stands
for the security parameter).
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1.1.2 Upper Bounds

Before stating our results, we recall the state-of-the-art for semi-honest THB and THAB with one
corruption. Assuming oblivious transfer (OT), 1-THAB can be obtained for all graphs following the
construction approach of Moran et al. [27].12 Without assuming OT, the only previously known
nontrivial13 construction of THB or THAB is the information-theoretic 1-THAB for the specific
graph class of cycles on a known number of nodes in [4].

We consider three settings of upper bounds: (1) with information-theoretic security, (2) assum-
ing only key agreement, and (3) converting generically from THB to THAB.

Information-theoretic security. First, we consider protocols for achieving 1-THAB (and THB)
in the information-theoretic setting, without cryptographic assumptions. Recall that the lower
bound in Proposition 1.2 above rules out the possibility of 1-THAB for any graph class containing
a graph that is not 2-connected. We show that conversely, if a class of graphs G contains only
2-connected graphs, then 1-THAB for G is feasible.

The protocol’s communication grows polynomially in the size of the class G and its computation
grows polynomially in the size of G and exponentially in the maximal degree of any G ∈ G. However,
our results are meaningful despite this caveat: First, the protocol is efficient when considering a
constant number of parties (or appropriate graph classes of polynomial size). Second, since the
protocol remains secure against computationally unbounded adversaries, it is still meaningful to
consider protocols that are inefficient in the class.

Theorem 1.4 (1-IT-THAB for 2-connected, informal). Let G be a class containing only 2-connected
graphs. Then, there exists a statistical information-theoretic 1-THAB for G whose communication
complexity is polynomial in the size of G, and whose computation complexity is polynomial in the
size of G and exponential in the maximal degree of G.

Combining Proposition 1.2 and Theorem 1.4 gives a characterization for information-theoretic
1-THAB: Namely, a protocol exists if and only if all graphs in the class are 2-connected (with the
exception of the trivial class containing only the 2-path). For the case of 1-THB such dichotomy
does not hold and, as we show, there exist graph classes with 1-connected graphs that still admit
information-theoretic 1-THB protocols.

Remark 1.5 (1-IT-THB for Gbutterfly). Consider the 5-node, 1-connected butterfly graph (Figure 2)
and let Gbutterfly contain all permutations of the nodes on the graph (where parties’ positions are
permuted). In Section 5.2, we show that although the simple flooding protocol does not directly hide
topology, there exists a (perfectly secure) information-theoretic 1-THB protocol for Gbutterfly.

Figure 2: The butterfly graph.

12The result of [27] was limited to graphs of small diameter to allow an arbitrary number of corruptions. With a
single corruption the same construction can support all graphs.

13THB exists trivially for any graph class in which each party’s neighborhood uniquely identifies the graph topology.
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Upper bounds from KA. Recall that from the lower bounds presented above (see Section 1.1.1),
key agreement is a necessary assumption for 1-THB and 1-THAB for many classes of graphs. This
begs the question of when key agreement is also a sufficient assumption for 1-THB and 1-THAB.
We show that assuming key agreement there exist 1-secure THB for all graphs, and 1-secure THAB
for all graphs containing at least 3 nodes.

Theorem 1.6 (1-THAB and 1-THB from KA, informal).

• Let G be a class consisting of graphs with at least three nodes. Assuming key agreement, there
exist 1-THAB for G.

• Let G be a class of graphs. Assuming key agreement, there exist 1-THB for G.

We note that in the first item of Theorem 1.6, removing the restriction of at least three nodes
would require bypassing black-box separation results, due to Theorem 1.3 that asserts the necessity
of (infinitely often) OT for the class G2-vs-3. On the other hand, by [27], assuming OT there exists
1-THAB for all graphs, essentially closing the gap in this regime.

THC dichotomy. Upon closer inspection, we observe that our upper bounds—both the
information-theoretic protocols for 2-connected graphs, as well as the results from KA above—give
something even stronger than 1-THAB: they give topology-hiding secure message transmission, i.e.,
emulating pairwise secure point-to-point channels. In this case, assuming that the number of par-
ties is fixed and known across all graphs, we can run the semi-honest “BGW” protocol [6], which
only requires pairwise secure channels and works for an honest majority. Thus, together with our
lower bounds, we arrive at the following dichotomy for 1-THC:

Corollary 1.7 (1-secure THC dichotomy, informal). Consider a class of graphs G on n ≥ 3 nodes.
Then, the following hold regarding existence of THC for G secure against 1 semi-honest corruption:

• If all graphs G ∈ G are 2-connected, then there exists a statistically information-theocratically
secure, 1-THC protocol for G, whose communication is polynomial in the size of G and whose
computation is polynomial in the size of G and exponential in the maximal degree of G.

• If there exists G ∈ G that is not 2-connected, then KA is necessary and sufficient for 1-secure
THC for G.

Generically converting THB to THAB. Our results have demonstrated a number of nontrivial
separations between THB and THAB, identifying classes of t-connected graphs and computational
assumptions which admit t-THB protocols but provably cannot obtain t-THAB. This includes, for
example, G{1-2-3} and Gbutterfly for information theoretic vs. key agreement, as well as G2-vs-3 for
information theoretic vs. oblivious transfer.

Finally, we show that graph connectivity is, indeed, a critical property for determining the
relation between THB and THAB on a class of graphs. Specifically, we show that (t+1)-connectivity
is a sufficient condition for equivalence of the two notions against t corruptions.

Theorem 1.8 (t-THB ⇒ t-THAB given (t + 1)-connectivity, informal). Let n ∈ N and let G be a
class consisting of (t + 1)-connected graphs over n nodes. If there exists t-THB for G then there
exists t-THAB for G.
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Our reduction builds upon the “Dining Cryptographers” approach for anonymous broadcast due
to Chaum [10]. Recall in THAB there exists a unique broadcaster who wishes to convey its input bit
x ∈ {0, 1} to all parties without revealing its identity (or the topology). To do so, each party first
additively secret shares its input—defined to be 0 for any non-broadcaster—across its neighbors,
locally sums all received shares to si ∈ {0, 1}, and then acts as broadcaster within the underlying
(non-anonymous) THB with input value si. After this phase, all parties receive the vector of shares
(s1, . . . , sn), which can be summed to yield the original input x. It was shown by [10] that if the
graph is (t+ 1)-vertex connected (so as to ensure that the adversary cannot corrupt a vertex cut),
then the protocol is anonymous. We observe that the protocol further preserves the topology hiding
of the underlying THB protocol. Indeed, given (t+1)-connectivity, the vector of broadcasted shares
(s1, . . . , sn) will be uniform conditioned on the necessary sum, independent of the graph structure.

1.1.3 Summary and Characterization of Graphs with up to Four Nodes

We summarize our combined contributions in Table 1, together with relevant prior results.

1-THB 1-THAB
sufficient necessary sufficient necessary

IT
2-connected (Thm 1.4)
Gbutterfly (Remark 1.5)
Gcycle [4]

– 2-connected (Thm 1.4) –

KA All graphs (Thm 1.6)
Gtriangle (Thm 1.1)
Goriented-5-path (Thm 1.1)
G4-path [4]

(Thm 1.6)
All graphs (≥ 3 nodes)

(Prop 1.2)
(≥ 3 nodes)
Not 2-connected

OT All graphs [27] – All graphs [27] G2-vs-3 (Thm 1.3)

Table 1: Summary of Upper and Lower Bound Results. Read as “[row label] is necessary/sufficient
for [column label].” E.g., the IT setting suffices to construct 1-THAB for any 2-connected
family of graphs, whereas KA is needed to construct 1-THB for Gtriangle.

In addition, and as a demonstration of the power and applicability of the techniques developed,
in Section 7.2 we provide a characterization of the feasibility of 1-THB and 1-THAB for all graph
classes on up to 4 parties. The characterization uses a partition of the 4-node graphs into multiple
classes, each of which can be handled by a separate technique.

1.2 Technical Overview

We next highlight a selection of our new analysis and protocol-construction techniques, described in
Sections 1.2.1 to 1.2.4. We will describe two analysis techniques that are used in our lower bounds:
“phantom jump” and “artificial over-extension.” In addition, we will describe two protocol-design
techniques that are used in our upper bounds: “censored brute force” and “dead-end channels.”

1.2.1 Analysis Technique: “Phantom Jump”

The “phantom jump” technique is a means for proving indistinguishability of the transcript of
messages sent across a given edge 1 - 2 in THB executions on two different graphs, via a sequence
of intermediate indistinguishability steps, each appealing to THB security for a different graph pair.
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In applications, the initial and final graphs will have a party “jump” from one side of the graph to
the other, which will be used within the key-agreement implication analysis.

This technique is used within some of our key-agreement lower bounds. We focus here on a
specific example for the class Gtriangle (of a triangle graph with a potential edge missing). We point
the reader to more elaborate examples on 4-node graph classes in Section 7.2.

We start by recalling how a 1-THB protocol π for G4-path = { 1 - 2 - 3 - 4 , 2 - 3 - 4 - 1 } was used
to construct key agreement in [4]. The idea is for Alice to choose two long random strings m1 and
m2 and send them to Bob in the clear. Next, Alice and Bob continue in phases as follows:

• In each phase Alice and Bob locally toss coins A and B, respectively.

• They proceed to run two executions of π in which Alice always emulates 2 and 3 and Bob
emulates 4 . In addition, if A = 0 then Alice emulates 1 (as a neighbor of 2 ) broadcasting
m1 in the first run; otherwise she emulates 1 broadcasting m2 in the second run. Similarly, if
B = 1 then Bob emulates 1 (as a neighbor of 4 ) broadcasting m1 in the first run; otherwise
he emulates 1 broadcasting m2 in the second run.

• If parties 2 and 4 output m1 in the first run and m2 in the second, Alice and Bob output
their bits A and B, respectively; otherwise, they execute another phase.

Clearly, if A = B in some iteration then Alice and Bob will output the same coin, and by the
assumed security of π, the eavesdropper Eve will not be able to learn who emulated 1 in the
first run and who in the second. If A 6= B, then in at least one of the runs nobody emulates the
broadcaster 1 , so with overwhelming probability Alice and Bob will detect this case.

We proceed to adjust this argument to Gtriangle. Constructing the KA protocol is rather similar,
where Alice always emulates 2 and Bob always emulates 3 , and each party emulates the broad-
caster 1 based on their local coins A and B (see Figure 3). Proving correctness follows exactly as
in the argument from [4]; however, proving security is more involved. Indeed, in G4-path the view of
Eve corresponds to a partial view of the intermediate node 3 who is never a neighbor of 1 , and
so by the security of π, never learns its direction to 1 . When considering Gtriangle, the view of Eve
consists of the communication between 2 and 3 , and one of them must be a neighbor of 1 .

This is where the new phantom-jump technique comes into play. As opposed to [4], we do
not construct a reduction from Eve to the security of the THB protocol; rather, we use a direct
indistinguishability argument. Notice that the KA construction required the use of only two graphs
1 - 2 - 3 and 2 - 3 - 1 . The third graph (the triangle) is needed for the proof.

1

2

3 1

2

3

Ind. 2

1

2

3

Ind. 3 1 2 3 2 3 1
Ind. Eve

Eve Eve

Figure 3: 1-THB on Gtriangle implies KA.

As depicted in Figure 3, the view of Eve consists of the communication between 2 and 3 .
By THB security 2 cannot distinguish between the 3-path 1 - 2 - 3 and the complete triangle; in
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particular, the distribution of the messages on the channel between 2 and 3 is indistinguishable
in both cases. Similarly, by THB security 3 cannot distinguish between the 3-path 2 - 3 - 1 and
the complete triangle; in particular, the distribution of the messages on the channel between 2
and 3 is indistinguishable in both cases. By a simple hybrid argument it follows that the messages
between 2 and 3 are indistinguishable when communicating in 1 - 2 - 3 and when communicating
in 2 - 3 - 1 . It follows that the distinguishing advantage of Eve is negligible.

1.2.2 Analysis Technique: “Artificial Over-Extension”

The artificial over-extension technique is used for proving two of our lower bounds. First, Theo-
rem 1.1 where 1-THB for Goriented-5-path is used to construct infinitely often KA (see also Section 3.1);
and second, Theorem 1.3 where 1-THAB for G2-vs-3 is used to construct infinitely often OT (see
Section 4.2). In the following, we focus on the latter.

Recall that in the class G2-vs-3 a party (say 1 ) that has a single neighbor (say 2 ) does not know
whether 2 has another neighbor, 3 , or not. This uncertainty is the source of the cryptographic
hardness we present; indeed, if the parties know that an honest majority cannot be assumed (i.e.,
there are only two parties) then 1-THAB is trivial, whereas if an honest majority can be assumed
(i.e., there are three parties) then 1-THAB exists assuming KA (by Theorem 1.6). We also note
that without anonymity, 1-THB trivially exists in G2-vs-3 (via the flooding protocol).

We start with an intermediate goal, that of constructing oblivious transfer from a two-round
1-THAB protocol π for the graph class G2-vs-3,14 and later explain how the novel “artificial over-
extension” technique allows us to extend this construction to arbitrary constant-round protocols.
Note that using this technique we can only construct infinitely often OT, and extending the impli-
cation to a full-blown OT is left as an interesting open question.

OT from two-round 1-THAB. Given a two-round 1-THAB protocol π we construct a secure
two-party protocol for Boolean AND (which in turn implies OT, by Kilian [22]).

In the protocol, Alice and Bob will emulate an execution of the 1-THAB protocol on a path,
where each extends the length of the path (by emulating an extra party) if their input is 1. More
concretely, Alice simulates a single node 2 if her input is 0, and two nodes 1 - 2 if her input is 1.
Similarly, Bob simulates a single node 3 if his input is 0 and two nodes 3 - 1 if his input is 1 (see
Figure 4). Next, Alice chooses a random message m ← {0, 1}λ, sends it to Bob in the clear, and
initiates an execution of π on message m on the graph with her left-most node (either 2 or 1 ) as
broadcaster. At the conclusion of π, Bob identifies whether his right-most emulated party (either
3 or 1 ) correctly outputs m. If so, then Bob outputs 0; if not, he outputs 1.

We show that this protocol securely computes AND of Alice and Bob’s inputs.

• For security, we exploit the fact that the only case where there is something to hide (namely,
if a party holds input 0) is where the respective party has control over just a single node in π.
Security therefore follows from the fact that π is a THAB protocol with security against one
corruption. For example, the views of a corrupt Alice emulating 2 within executions over
graphs 2 - 3 (Bob has input 0) and 2 - 3 - 1 (Bob has input 1) are indistinguishable.
Note here that for security it is crucial that π is an anonymous broadcast protocol, because
in case x = 0, Alice broadcasts from node 2 and in case x = 1 from node 1 . In fact, as
noted above, 1-THB can be achieved trivially on G2-vs-3.

14In fact, for this step we will only need for the subclass { 2 - 3 , 1 - 2 - 3 , 2 - 3 - 1 } ⊆ G2-vs-3.

11



Alice Bob

If x = 0 2

If x = 1 21

If y = 03

If y = 13 1

Figure 4: Boolean AND from two-round 1-THAB for { 2 - 3 , 1 - 2 - 3 , 2 - 3 - 1 }

• For correctness, first note that when at least one party has input 0, the corresponding graph
is an element of { 2 - 3 , 1 - 2 - 3 , 2 - 3 - 1 } ⊆ G2-vs-3, in which case proper delivery of m to
Bob’s right-most node is guaranteed by correctness of π. On the other hand, when x∧ y = 1
(i.e., both Alice and Bob emulate node 1 ) the parties effectively emulate π over an “invalid”
length-4 path 1 - 2 - 3 - 1 . While behavior of π within such execution is unclear, since π runs
in only 2 rounds, the message m simply cannot reach the right-most node emulated by Bob
at distance 3. Thus, Bob will correctly output 1 with overwhelming probability.

Infinitely often OT from constant-round 1-THAB. Note that correctness of the construction
above crucially relies on efficiently detecting an execution of π on the graph 1 - 2 - 3 - 1 , leveraging
its insufficient round complexity. However, this argument is no longer guaranteed when π completes
in more than two rounds. This is where the “artificial over-extension” technique comes into play.

The insight is that either an execution of π on graph 1 - 2 - 3 - 1 can indeed be efficiently
detected, in which case the protocol above extends (and we are done), or π actually provides a
stronger form of topology hiding that we can further leverage. Namely, if neither Alice nor Bob
can identify when π is executed on 1 - 2 - 3 - 1 as opposed to a legal graph, then in particular π
provides 1-THAB for the larger graph class G′2-vs-3

..= G2-vs-3 ∪ { 1 - 2 - 3 - 1 }.
In the latter case, we can take a similar approach to above, but with the graph class

{ 1 - 2 , 3 - 1 - 2 , 1 - 2 - 3 - 1 } ⊆ G′2-vs-3, with Alice emulating 1 or 3 - 1 , and Bob emulating 2
or 2 - 3 - 1 , and hope that π identifiably breaks down on the “over-extended” path 3 - 1 - 2 - 3 - 1
of length 5. If not, this argument repeats, until—via this artificial over-extension technique—
ultimately we reach a graph class G for which:

• π is 1-THAB on G, including { u∗2 - u∗3 , u∗1 - u∗2 - u∗3 , u∗2 - u∗3 -P ∗} ⊆ G

• π is not 1-THAB on G ∪ { u∗1 - u∗2 - u∗3 -P ∗}

where u∗1 , u∗2 , u∗3 ∈ { 1 , 2 , 3 }, and P ∗ is a path of length upper-bounded by the round complexity
of π. Once we do, then the original secure-AND protocol approach will succeed, modulo some
differences described below, with Alice emulating u∗2 or u∗1 - u∗2 , and Bob emulating u∗3 or u∗3 -P ∗.

To argue that eventually we find a path u∗1 - u∗2 - u∗3 -P ∗ for which π identifiably breaks down,
we again appeal to its bounded round complexity, i.e., π must fail identifiably (with probability
1) once the length of the path exceeds the round complexity. The limitation of constant rounds is
a subtle side effect of the corresponding hybrid argument, to argue that there must be some step
where we jump sufficiently from indistinguishable to efficiently identifiable.
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Consider the resulting secure-AND protocol, once an appropriate u∗1 , u∗2 , u∗3 ,P
∗ are found.

The only modification from the simpler two-round version is how to detect the (over-extended)
case x ∧ y = 1. When π was two rounds, identifying this event was immediate: Bob’s right-most
party simply will not receive the delivered message. Here, this is not necessarily the case, as the
identifiable “breakdown” of π may occur before the length of u∗1 - u∗2 - u∗3 -P ∗ exceeds π’s round
complexity. Thus, instead, the parties will run the distinguisher that—roughly speaking—exists
from the fact that π is not 1-THAB on G ∪ { u∗1 - u∗2 - u∗3 -P ∗}. This is the reason why our final
protocol guarantees correctness only for infinitely many λ ∈ N: All we can say is that either the
protocol π is 1-THAB on G ∪ { u∗1 - u∗2 - u∗3 -P ∗} and we can continue with the extension argument,
or π is not 1-THAB, i.e., there exists a distinguisher that efficiently detects the “too-long” path
u∗1 - u∗2 - u∗3 -P ∗ with noticeable advantage for infinitely many λ ∈ N.

Finally, in order to boost correctness towards negligible correctness error (for infinitely many
λ), Alice and Bob simply run the protocol π and the distinguisher sufficiently many times, each
time on input of a fresh message m, and take a corresponding majority vote.

1.2.3 Protocol Design: “Censored Brute Force”

The Censored Brute Force technique enables constructing unconditionally secure pairwise channels
between each pair of parties which further guarantees sender anonymity. Such anonymous and
private channels are used for proving Theorem 1.4 and Corollary 1.7, by constructing 1-THAB and
1-THC with information-theoretic security for any class G for which all graphs are 2-connected (see
Section 5.1 for more details). Recall that the communication complexity of the resulting protocols
is polynomial in the size of G (which could be superpolynomial in the number of parties) and the
computation complexity is polynomial in the size of G and exponential in the maximal degree of G.

The high-level idea is twofold: For any single 2-connected graph G, we show how to uncondition-
ally perform sender-anonymous point-to-point communication on G with an ability for any party to
(anonymously) “censor” the communication, i.e., yielding delivery of random garbage instead of the
intended message. Then, for a given class of 2-connected graphs G, the parties will simultaneously
execute (in parallel) a separate anonymous-communication protocol for every graph G ∈ G; for each
such G-execution, a party will censor the execution if its true neighborhood is inconsistent with its
neighborhood in G. As such, the only protocol execution that remains uncensored will be the one
corresponding to the correct execution graph G (and the identity of which G this corresponds to
can be made hidden to the receiving party). We elaborate on these two aims below.

Communicating anonymously in a 2-connected graph. More concretely, suppose we have
a single 2-connected graph G on vertex set [n], and fix some designated source and target nodes
σ 6= τ ∈ [n]. Let Hστ denote an arbitrary στ -orientation of G,15 i.e., a directed acyclic graph with
unique sink τ and unique source σ formed by assigning a direction to each edge in G. Moreover,
label all nodes 1, 2, . . . , n according to a topologically consistent ordering of Hστ (beginning with σ
and ending at τ). We consider the numbering/orientation of any graph G to be a public parameter,
computed according to some deterministic procedure (see Proposition 5.3).

Now suppose node u wishes to send a messagem to the target node τ anonymously and securely
on the graph G. In the first round, the source σ (i.e., the node labeled 1) prepares additive shares

15The standard notation in the literature is st-orientation; to avoid confusion with the notation t that stands for
the corruption threshold, we use στ -orientation instead.
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of 0 (or of m if σ = u) for each of its outgoing edges in Hστ .
In round 2, the source σ sends the corresponding share to its neighbor node labeled 2, who then

prepares secret shares of what it received (+m if it is u) for each outgoing edge. More generally,
in round i < n all nodes with an edge to the ith node send their shares to the ith node. The ith
node, having received shares on all incoming edges, then sums up what it receives (adds m if it is
u) and prepares additive shares of the result for each of its outgoing edges. In round n, all nodes
with edges to τ (the target node) send their shares to τ and τ outputs their summation.

Correctness follows from the homomorphic properties of additive secret sharing. To see why
this protocol is secure (namely, that it hides u and m), note that the 2-connectivity of G implies
that there are at least 2 vertex-disjoint στ -paths in Hστ . Thus, the messages any intermediate
party (corresponding to 2, . . . , n− 1) receives are uniformly random because that node is in some
sense always missing at least one share (corresponding to a disjoint στ -path); the source σ does not
receive anything at all, and the view of the target τ is simply a random sharing of its output m.

This protocol enjoys some other useful properties. Most notably, any non-sink node can covertly
“censor” communication by simply preparing (and sending) shares of a uniformly random message,
instead of preparing shares corresponding to what they received (as per the protocol). The view of
every other party is identically distributed, with the exception of τ who now receives secret shares
of a uniformly random message in the final round.

Compiling to hide topology. Now, let G be a class of 2-connected graphs on vertex set [n].
Loosely speaking, the parties will simulate the above protocol for every possible graph in G simulta-
neously. Each node will covertly censor every protocol corresponding to a graph that is not locally
consistent with their local neighborhood (sending random messages at the appropriate times). As a
result, exactly one protocol (corresponding to the “real” graph) will give the correct output message
and all others will give uniformly random output.

To be slightly more concrete, all nodes will execute the protocol above for each graph in the
class in parallel. To keep track of which message is which, for every node but τ we will label
the messages with the graph/protocol that the message corresponds to. If an edge is missing
from the real graph, but present in a graph corresponding to one of the simulated protocols, the
corresponding message cannot be sent. However, the receiving node knows not to expect a message
either. From this and the uniformly random nature of non-terminal messages in the above protocol,
nothing is leaked locally by labeling the simulations. However, sending labeled messages to τ would
clearly identify the “real” topology. So instead, all parties will send all final protocol messages in
randomly permuted order. To enable τ identifying the real output, the sender will append a long
checksum to the message. The target τ will try all message combinations (this is the reason for the
exponential dependency in the maximal degree) and output the unique one with a correct checksum
(or abort if more than one message has a valid checksum).

1.2.4 Protocol Design Technique: “Dead-End Channels”

The Dead-End Channels technique is used for proving Theorem 1.6 (see also Section 6), i.e., to
obtain 1-THAB for all graphs of at least three nodes (and 1-THB for all graphs), assuming existence
of key agreement. Recall that before the present work, such results were only known assuming
oblivious transfer [27].

The high-level idea of our 1-THAB protocol, as in Moran et al. [27], is to broadcast the message
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via flooding, but in a way that hides from the parties at which round they received the broadcast
message. This can be achieved by passing the message between virtual parties, each consisting of
two real parties that hold additive secret shares of the message (depicted, e.g., as pink bars for each
neighboring pair of parties below). Only in the final round will the parties exchange their secret
shares and recover the message.

3 421

b1,2 b3,4

b3,2

b4,3

b2,3

b2,1

The challenge thus becomes passing the messages between virtual parties. In [27] this is solved
by using oblivious transfer (OT) to run an MPC protocol realizing the virtual party, and allowing
every adjacent pair of virtual parties to securely compute the OR of their messages.

In our setting, we do not have the ability to perform secure computations pairwise between par-
ties without OT. Instead, we leverage the fact that given at least three nodes we are guaranteed an
honest majority, and can therefore (once the parties establish secure channels using the key agree-
ment protocol) build on techniques from information-theoretic secure computation to appropriately
pass along the message.

However, this itself is not so straightforward. For example, in the image above, the neighboring
parties 2 - 3 - 4 would wish to jointly emulate a three-party secure computation to perform the
secure transfer from 2 - 3 to 3 - 4 . But, the issue is that parties cannot reveal whether they truly
have neighbors with which to jointly compute: for example, party 2 above must then emulate a
nonexistent neighbor 1 to hide its true degree. Thus grouping parties in three, including possibly
a simulated neighbor, would allow the adversary to gain control over a majority. (On the other
hand, building on secure computation including four our more neighbored parties, the same party
could appear several times in the protocol and therefore potentially learn about the connectivity
of its neighbors.)

Our approach builds on the following idea: We will give one party within each group of three
the role of a dealer to deal OT correlations, which can be used to establish a secure OT channel
between two other parties. This alone is not sufficient, as one of the parties could be simulated
by the dealer (in the case that the dealer has degree one), and therefore allows the dealer to gain
full control over the OT channel, and in particular learn the honest parties’ inputs. To prevent
this, we observe that — again using OT correlations — one can establish dead-end channels (i.e.,
information sent via such a channel cannot be read by anyone apart from the sender) if and only
if the receiver is a simulated party. Therefore, even if the dealer simulates one of the parties, it
does not learn anything about the honest parties’ inputs. Note that it is crucial that dead-end
channels are indistinguishable from secure channels from the view of the sender. Further, a key
observation is that using OT correlations to establish dead-end channels does not leak anything
about the topology, even if the dealer of the OT correlations has degree one. This is the case,
because the only thing the dealer could potentially learn from the other party is whether its degree
is one — but if the dealer has degree one it already knows that the degree of its neighbor must be
at least two (as we are guaranteed a connected graph with a strict honest majority).
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1.2.5 Organization of the Paper

In Section 2 we provide the necessary definitions and preliminaries. In Section 3 and Section 4
we present our THB and THAB lower bounds, respectively. In Section 5 and Section 6 we present
our information-theoretic and KA-based upper bounds. In Section 7 we present corollaries and
implications of our techniques as well as a characterization of 1-THB for graphs with at most four
nodes.

2 Preliminaries
Notations. For n ∈ N let [n] = {1, . . . , n}. In our protocols we sometimes denote by n an upper
bound on the number of participating parties and by t an upper bound on the number of corrupted
parties. The security parameter is denoted by λ.

Graph notations and properties. A graph G = (V,E) is a set V of vertices and a set E of
edges, each of which is an unordered pair {v, w} of distinct vertices. A graph is directed if its edges
are instead ordered pairs (v, w) of distinct vertices. An oriented graph is a directed graph having
no symmetric pair of directed edges, and an orientation of an undirected graph is an assignation
of a direction to each of its edges so as to make it oriented. A graph is k-connected if it has more
than k vertices and remains connected whenever fewer than k vertices are removed. A graph class
G is k-connected if every graph G ∈ G is k-connected. Throughout this paper we only consider
connected graphs, even if we do not systematically make this explicit. The (open) neighborhood of
a vertex v in an undirected graph G, denoted NG(v), is the set of vertices sharing an edge with v
in G. The closed neighborhood of v in G is in turn defined by NG[v] ..= NG(v) ∪ {v}.

2.1 Topology-Hiding Computation (THC)
Following [27] we consider two definitions of topology-hiding computation. Our positive results
(protocol constructions) in Sections 5 and 6 are defined with respect to the stronger simulation-
based definition while our lower bounds in Sections 3 and 4 are given with respect to the weaker
indistinguishability-based definition.

UC framework. The simulation-based definition is defined in the UC framework of Canetti [7];
we present an informal overview of the model in Appendix A. Unless stated otherwise, we will
consider computationally unbounded, static, and semi-honest adversaries and environments.

2.1.1 Simulation-Based THC.

We recall the definition of simulation-based topology-hiding computation from [27, 4]. The real-
world protocol is defined in a model where all communication is transmitted via the functionality
FGgraph (described in Figure 5). The functionality is parametrized by a family of graphs G, rep-
resenting all possible network topologies (aka communication graphs) that the protocol supports.
We implicitly assume that every node in a graph is associated with a specific party identifier, pid.
To simplify the notation, we will consider that Pv in the protocol is associated with node v in the
graph.
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Initially, before the protocol begins, FGgraph receives the network communication graph G from
a special graph party Pgraph, makes sure that G ∈ G, and provides to each party Pv with v ∈ V
its local neighbor-set. Next, during the protocol’s execution, whenever party Pv wishes to send a
message m to party Pw, it sends (v, w,m) to the functionality; the functionality verifies that the
edge (v, w) is indeed in the graph, and if so delivers (v, w,m) to Pw.

Note that if all the graphs in G have exactly n nodes, then the exact number of participants
is known to all and need not be kept hidden. In this case, defining the ideal functionality and
constructing protocols becomes a simpler task. However, if there exist graphs in G that contain
a different number of nodes, then the model must support functionalities and protocols that only
know an upper bound on the number of participants. In the latter case, the actual number of
participating parties must be kept hidden.

Given a class of graphs G with an upper bound n on the number of parties, we define a protocol
π with respect to G as a set of n ppt interactive Turing machines (ITMs) (P1, . . . ,Pn) (the parties),
where any subset of them may be activated with (potentially empty) inputs. Only the parties that
have been activated participate in the protocol, send messages to one another (via FGgraph), and
produce output.

The functionality FGgraph

The functionality FGgraph is parametrized by a family of graphs G; let n denote the maximal number of
nodes in G ∈ G . The functionality proceeds with a special graph party Pgraph and with a subset of
the parties P1, . . . ,Pn (to be defined by the graph received from Pgraph) as follows.

Initialization Phase:

Input: FGgraph waits to receive the graph G = (V,E) from Pgraph. If G /∈ G, abort.
Output: Upon receiving an initialization message from Pv, verify that v ∈ V , and if so send

NG(v) to Pv.

Communication Phase:

Input: FGgraph receives from a party Pv a destination/data pair (w,m) where w ∈ NG(v) and
m is the message Pv wants to send to Pw. (If v, w /∈ V , or if w is not a neighbor of v,
FGgraph ignores this input.)

Output: FGgraph gives output (v,m) to Pw indicating that Pv sent the message m to Pw.

Figure 5: The communication graph functionality

An ideal-model computation of a functionality F is augmented to provide the corrupted parties
with the information that is leaked about the graph; namely, every corrupted (dummy) party
should learn its neighbor-set. Note that the functionality F can be completely agnostic about
the actual graph that is used, and even about the family G. To augment F in a generic way, we
define the wrapper-functionality WGgraph-info(F), that runs internally a copy of the functionality F.
The wrapper WGgraph-info(·) acts as a shell that is responsible to provide the relevant leakage to the
corrupted parties; the original functionality F is the core that is responsible for the actual ideal
computation.

More specifically, the wrapper receives the graph G = (V,E) from the graph party Pgraph, makes
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sure that G ∈ G, and sends a special initialization message containing G to F. (If the functionality
F does not depend on the communication graph, it can ignore this message.) The wrapper then
proceeds to process messages as follows: Upon receiving an initialization message from a party Pv
responds with its neighbor set NG(v) (just like FGgraph). All other input messages from a party Pv
are forwarded to F and every message from F to a party Pv is delivered to its recipient.

Note that formally, the set of all possible parties V ∗ is fixed in advance. To represent a graph
G′ = (V ′, E′) where V ′ ⊆ V ∗ is a subset of the parties, we use the graph G = (V ∗, E′), where all
vertices v ∈ V ∗ \ V ′ have degree 0.

Definition 2.1 (Topology-hiding computation). We say that a protocol π securely realizes a func-
tionality F in a topology-hiding manner with respect to G tolerating a semi-honest adversary corrupt-
ing t parties if π securely realizes WGgraph-info(F) in the FGgraph-hybrid model tolerating a semi-honest
adversary corrupting t parties.

Broadcast and anonymous broadcast. In this work we will focus on topology-hiding compu-
tation of two central functionalities. The first is the broadcast functionality (see Figure 6), where
a designated and publicly known party, named the broadcaster, starts with an input value m. Our
broadcast functionality guarantees that every party that is connected to the broadcaster in the
communication graph receives the message m as output. In this paper, we assume the communi-
cation graphs are always connected. However, the broadcaster may not be participating, in which
case it is represented as a degree-0 node in the communication graph (and all the participating
nodes are in a separate connected component.)

Parties that are not connected to the broadcaster receive a message that is supplied by the
adversary (we can consider stronger versions of broadcast, but this simplifies the proofs).

We denote the broadcast functionality where the broadcaster is Pi by Fbc(Pi).

The functionality Fbc(Pi)

The broadcast functionality Fbc(Pi) is parametrized by the broadcaster Pi and proceeds as follows.

Initialization: The functionality receives the communication graph G from the wrapper Wgraph-info.

Input: Record the input message m ∈ {0, 1} sent by the broadcaster Pi.
Output: Send the output m to every party that is in the same connected component as Pi in G. For

every other party in G, the output delivered to that party is supplied by the adversary.

Figure 6: The broadcast functionality

Definition 2.2 (t-THB). Let G be a family of graphs and let t be an integer. A protocol π is a
t-THB protocol with respect to G if π(Pv) securely realizes Fbc(Pv) in a topology-hiding manner with
respect to G, for every Pv, tolerating a semi-honest adversary corrupting t parties.

The second functionality the anonymous broadcast (see Figure 7). This functionality is similar to
broadcast with the exception that the broadcaster is not known and its identity is kept hidden even
after the computation completes. Namely, the environment will activate exactly one of the parties
with an input value, informing this party that it is the broadcaster. We denote the anonymous
broadcast functionality Fanon-bc.
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The functionality Fanon-bc

The anonymous-broadcast functionality Fanon-bc proceeds as follows.

Initialization: The functionality receives the communication graph G from the wrapper Wgraph-info.

Input: Upon receiving an input message m ∈ {0, 1} from one of the parties Pi, record it.

Output: If exactly one input message m from party Pi was received, Send the output m to every
party that is in the same connected component as Pi in G. For every other party in G, the
output delivered to that party is supplied by the adversary.
If more than one input was received, send G and all received inputs to the adversary, and for
every party in G, the output delivered to that party is supplied by the adversary (i.e., there is
no security guarantee if more than one input was received.)

Figure 7: The anonymous-broadcast functionality

Definition 2.3 (t-THAB). Let G be a family of graphs and let t be an integer. A protocol π is a
t-THAB protocol with respect to G if π securely realizes Fanon-bc in a topology-hiding manner with
respect to G, tolerating a semi-honest adversary corrupting t parties.

2.1.2 Indistinguishability-Based THC.

Moran et al. [27] gave a weaker definition of topology-hiding computation: IND-CTA security (in-
distinguishability under Chosen Topology Attack). We will next provide the explicit definitions for
THB and THAB.
Definition 2.4 (1-IND-CTA THB). A broadcast protocol π is indistinguishable under chosen topol-
ogy attack against one semi-honest corruption (1-IND-CTA secure) with respect to a graph class G,
if for any ppt adversary A there exists a negligible function negl, such that for every λ ∈ N it holds
that

Pr
[
ExpTHB1-ind-cta

π,G,A (λ) = 1
]
≤ 1/2 + negl(λ),

where ExpTHB1-ind-cta
π,G,A (λ) is as defined in Figure 8 and the probability is taken over the random

coins of the experiment and of the adversary.

The experiment ExpTHB1-ind-cta
π,G,A (λ)

Choice phase. The challenger invokes A on input (G, 1λ). A chooses two graphs G0, G1 ∈ G, a
broadcaster node u ∈ V (G0)∩V (G1), a message m ∈ {0, 1}, and a corrupted node v ∈ V (G0)∩
V (G1) with NG0(v) = NG1(v). Next, the adversary returns (G0, G1, u,m, v). If A’s output is
not of the required form, the experiment aborts.

Challenge phase. The challenger flips a random bit b← {0, 1} and runs π(1λ) with node u broad-
casting message m over graph Gb, where the adversary controls node v.

Output phase. At the conclusion of the execution of π, A outputs b′. If b = b′, the experiment
outputs 1; otherwise 0.

Figure 8: The 1-IND-CTA broadcast experiment
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Definition 2.4 can be extended to support t corruptions, denoted t-IND-CTA broadcast, by
having the adversary choose a set I ⊆ [n] of size t satisfying I ⊆ V (G0)∩V (G1) in ExpTHB1-ind-cta,
instead of choosing a single node v.

The definition of anonymous broadcast is similar except that the adversary can choose different
broadcasting parties for the different executions; this is opposed to broadcast where the same node
acted as broadcaster in both executions.

Definition 2.5 (1-IND-CTA THAB). An anonymous broadcast protocol π is indistinguishable under
chosen topology attack against one semi-honest corruption (1-IND-CTA secure) with respect to a
graph class G, if for any ppt adversary A there exists a negligible function negl, such that for every
λ ∈ N it holds that

Pr
[
ExpTHAB1-ind-cta

π,G,A (λ) = 1
]
≤ 1/2 + negl(λ),

where ExpTHAB1-ind-cta
π,G,A (λ) is as defined in Figure 9 and the probability is taken over the random

coins of the experiment and of the adversary.

The experiment ExpTHAB1-ind-cta
π,G,A (λ)

Choice phase. The challenger invokes A on input (G, 1λ). A chooses two graphs G0, G1 ∈ G, two
broadcaster nodes u0 ∈ V (G0) and u1 ∈ V (G1), a message m ∈ {0, 1}, and a corrupted node
v ∈ V (G0) ∩ V (G1) with NG0(v) = NG1(v). Next, the adversary returns (G0, G1, u0, u1, v,m).
If A’s output is not of the required form, the experiment aborts.

Challenge phase. The challenger flips a random bit b← {0, 1} and runs π(1λ) with node ub broad-
casting message m over graph Gb, where the adversary controls node v.

Output phase. At the conclusion of the execution of π, A outputs b′. If b = b′, the experiment
outputs 1; otherwise 0.

Figure 9: The 1-IND-CTA anonymous broadcast experiment

Definition 2.5 can be extended to support t corruptions, denoted t-IND-CTA anonymous broad-
cast, by having the adversary choose a set I ⊆ [n] of size t satisfying I ⊆ V (G0) ∩ V (G1) in
ExpTHAB1-ind-cta, instead of choosing a single node v.

As shown in [27], the indistinguishability-based definition is in fact implied by its simulation-
based counterpart.

Proposition 2.6. If π is 1-THB (resp., 1-THAB) with respect to G, then π is a 1-IND-CTA secure
broadcast (resp., anonymous broadcast) protocol with respect to G.

In our lower bounds in Sections 3 and 4 we will require basic sequential composition guarantees
from 1-IND-CTA (anonymous) broadcast protocols. Namely, we will compose λ executions of 1-bit
(anonymous) broadcast protocols over the same graph to transmit longer messages, and we will
run two instances of λ-bit (anonymous) broadcast over two different graphs within the class G.
Definitions 2.4 and 2.5 remain secure under sequential composition via a simple hybrid argument,
as we consider independent executions and a semi-honest adversary.
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Definition 2.7 (sequential composition). A broadcast protocol π is 1-IND-CTA secure under q
sequential composition with respect to a graph class G, if for any ppt adversary A there exists a
negligible function negl, such that for every λ ∈ N it holds that

Pr
[
ExpTHB1-ind-cta

π,G,A (q, λ) = 1
]
≤ 1/2 + negl(λ),

where ExpTHB1-ind-cta
π,G,A (q, λ) is as defined in a similar way to ExpTHB1-ind-cta

π,G,A (λ) with the exception
that the adversary chooses q tuples (Gi0, Gi1, ui,mi) and the challenger sequentially runs q executions
of π where the ith execution is with graph Gib and sender ui broadcasts message mi.

1-IND-CTA anonymous broadcast secure under q sequential composition is defined in an analo-
gous way.

Lemma 2.8. Let q ∈ poly(λ). If π is a 1-IND-CTA secure broadcast (resp., anonymous broadcast)
protocol with respect to G then π is secure under q sequential composition.

Proof. We prove the lemma for broadcast; the case of anonymous broadcast follows in an analogous
way. The proof proceeds via a sequence of hybrid experiments, where the ith hybrid Hi is defined
as ExpTHB1-ind-cta

π,G,A (q, λ), except that for j = 1, . . . , i the jth execution of π is with graph Gj1 and
for j = i + 1, . . . , q with graph Gj0. It follows that H0 is exactly ExpTHB1-ind-cta

π,G,A (q, λ) with b = 0
and Hq is exactly ExpTHB1-ind-cta

π,G,A (q, λ) with b = 1.
For each i = 0, . . . , q let εi be the probability that Hi outputs 1 after interacting with adversary

A. It is thus left to show that for each i ∈ [q] it holds that |εi−1− εi| ≤ negl(λ). Indeed, for every i
we construct an adversary Ai that wins ExpTHB1-ind-cta

π,G,A (λ) with the same probability. Adversary
Ai awaits input {(Gj0, Gj1, uj ,mj)}j∈[q] and v from A and forwards (Gi0, Gi1, ui,mi, v) to its own
experiment. During the challenge phase, Ai proceeds as follows:

• For j = 1, . . . , i− 1, Ai simulates the jth execution towards A using (Gj1, uj ,mj).

• For j = i, Ai interacts with A by redirecting the messages from its own experiment.

• For j = i+ 1, . . . , q, Ai simulates the jth execution towards A using (Gj0, uj ,mj).

Now, if in the experiment ExpTHB1-ind-cta
π,G,A (λ) the challenger tossed b = 0, then the experiment

simulated by Ai is equal to Hi−1; otherwise, if b = 1 the experiment is equal to Hi. We thus have
|εi−1 − εi| ≤ negl(λ), as required.

3 THB Lower Bounds
In this section we demonstrate that achieving broadcast while hiding certain graph properties
necessitates cryptographic assumptions. In Section 3.1 we show that hiding the distance to the
broadcaster requires infinitely often KA, and in Section 3.2 that hiding distance-of-neighbors re-
quires KA.

3.1 Hiding Distance Requires io-KA (The Oriented 5-Path)

In this section, we show that hiding the distance from the broadcaster, in constant rounds, requires
infinitely often key agreement (io-KA). In particular, we will show that any constant-round protocol
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for the class Goriented-5-path (Figure 10), implies io-KA. In this class the nodes 2 , 3 , 4 , 5 always
know the direction of the broadcaster, node 1 (it is in the direction of their lowest-valued neighbor,
mod 5), but cannot distinguish (from their local neighborhood) whether they are distance 2 or 3
from the broadcaster. For example, 3 cannot distinguish between 1 - 2 - 3 - 4 - 5 and 1 - 5 - 2 - 3 - 4 ,
as in both cases its local neighborhood is 2 - 3 - 4 . Note that if just distance is leaked to this class,
the trivial flooding protocol is secure.

Goriented-5-path ..=


1 → 2 → 3 → 4 → 5 ,
1 → 3 → 4 → 5 → 2 ,
1 → 4 → 5 → 2 → 3 ,
1 → 5 → 2 → 3 → 4


Figure 10: Oriented lines on five nodes. Each node knows its direction to the broadcaster 1 , but

may not know its distance. For example, the view of node 4 is identical in the first and
second lines (from above); the view of node 5 is identical in the second and third lines;
the view of node 2 is identical in the third and fourth lines; and the view of node 3 is
identical in the first and fourth lines.

Intriguingly, the key-agreement “construction” of this section is not fully-black-box (nor is it
even explicit). Our result critically requires that the THB protocol for Goriented-5-path is efficient in
round complexity. We remark that such a limitation is inherent, as we demonstrate in Appendix C
that Goriented-5-path unconditionally admits an ε-statistically 1-secure THB protocol that works in
O(1/ε) rounds, for any ε > 0.16 In contrast, the key-agreement construction of Section 3.2 is fully
black-box and rules out the existence of such an upper bound for the class Gtriangle. It remains open
whether an ε-statistically 1-secure THB for Goriented-5-path in o(1/ε) rounds requires io-KA, or more
generally whether negligible security in polynomial rounds requires io-KA.17

We begin by recalling the definitions on key agreement and infinitely-often key agreement, as
taken from Haitner et al. [18].

Definition 3.1 ([18, Def. 2.2]). Let π be two party, interactive Turing machine protocol which
generates communication transcript Γ, and outputs A ∈ {0, 1} (for the first party) and B ∈ {0, 1}
for the second. π is a key-agreement (KA) protocol if on input 1λ, Pr[A = 0] = Pr[B = 0] = 1/2
and for any ppt Turing machine E, for almost all λ it holds that

1. (hiding) Pr[E(1λ,Γ) = A | A = B] < 1/2 + negl(λ).

2. (agreement) Pr[A = B = 0] = Pr[A = B = 1] ≥ 1− negl(λ).

We say that a protocol achieves infinitely often key agreement (io-KA) if for any probabilistic
polynomial time E, (1) and (2) hold for infinitely many values of λ.

We now state the main theorem of this section.

Theorem 3.2. If there exists a constant-round 1-IND-CTA-secure broadcast protocol for the class
Goriented-5-path, then infinitely often key agreement exists.

16In fact, the upper bound holds for a large body of graph classes, where only distance needs to be hidden.
17Our techniques can be extended to show an ε-statistically 1-secure THB for Goriented-5-path in c · log ε−1 rounds,

where c is a constant, requires io-KA, but the gap between this and the upper bound remains exponential.
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The high-level idea of the proof follows the artificial overextension argument, described in
Section 1.2.2. Consider for simplicity that there exists an R-round THB protocol for Goriented-5-path
we will attempt to construct a candidate KA protocol. This protocol works by trying to simulate
the THB protocol on two graphs in the class. The hiding property follows from the security of
THB protocol, but agreement is not clear. What we can argue is that either, there exists a means
achieving agreement (in which case we have a key-agreement protocol) or we can argue that a
new candidate protocol has the hiding property. This new protocol has the feature that one of the
graphs contains a node that is distance 5 from the broadcaster (as opposed to 4, as before). We then
have the same either/or guarantee as before: either there exist a means of achieving agreement,
or a new candidate protocol is hiding (which contains a node distance 6 from the broadcaster).
We continue arguing in this manner. We ultimately conclude that some intermediate KA protocol
must be secure, because the Rth such protocol contains a node distance R+3 from the broadcaster.
There is no hope of the broadcast bit ever reaching such a node, and from this fact, agreement
is trivial. It follows that some intermediate protocol must have achieved both hiding as well as
agreement.

Proof. Let R be a constant and let π be an R-round 1-IND-CTA-secure broadcast protocol for
Goriented-5-path. By the 1-IND-CTA security of π it holds that for each of the nodes 2 , 3 , 4 , and
5 there exist a pair of graphs in Goriented-5-path in which they cannot know their distance to the
broadcaster 1 ; see Figure 10 for an illustration.

We leverage this fact to specify a basic key-agreement protocol, π1 (see Figure 11), that we will
either be able to extend into genuine key agreement or reason about a new protocol, π2, on longer
graphs (that, in turn, we will either be able to extend into key agreement or reason about a new
protocol on longer graphs, π3, etc.). If none of π1, . . . , πR can be extended into key agreement, we
will reach a contradiction.

The basic protocol π1 starts with Alice sending two long and random message m1 and m2 to
Bob. Next, Alice and Bob flip secrets coins A and B, resp., and execute two instances of the
broadcast protocol: the first on m1 and the second on m2. If A = 0, Alice simulates 1 - 2 - 3 in
the first execution and 1 - 5 - 2 - 3 in the second, and if A = 1 she reverses the order. Similarly, if
B = 0, Bob simulates 4 - 5 in the first execution and 4 in the second, and if B = 1 he reverses the
order. If the output of Bob’s “rightmost” node is m1 in the first execution and m2 in the second,
Alice and Bob output A and B, resp.; otherwise they abort. For convenience, we show all possible
graphs that Alice and Bob might jointly simulate the THB protocol on in Figure 12.

Observe that conditioned on A = B (Alice and Bob’s coins agreeing), both executions of π
(within π1) are on graphs in Goriented-5-path. Thus, if Eve is eavesdropping on Alice and Bob’s
communication, her view is a subset of the view of node 3 under protocol π. Because the view of
3 is locally identical in all possible graphs, if Eve can distinguish between the case of A = B = 0
and A = B = 1 with non-negligible advantage, we can use Eve to break the security of π.

Thus, we are halfway to a key agreement. The problem is that A and B are uncorrelated. We
would like to “filter out” the cases where A 6= B, without hurting the security of π too much. We
will focus on a very specific method for doing so which will allow us make progress: distinguishing
via the view of 4 in GB = 4 - 5 .

We have two cases:
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Protocol π1(1λ)

Public Parameters: The security parameter λ and a broadcast protocol π for Goriented-5-path.

The Protocol:

• Initialization: Alice sends two random messages m1,m2 ← {0, 1}λ to Bob.

• Setting the underlying graphs:

– Alice flips a coin A. If A = 0, Alice imagines herself holding the partial graphs:

G1
A = 1 - 2 - 3 G2

A = 1 - 5 - 2 - 3

If A = 1, Alice imagines herself holding the partial graphs:

G1
A = 1 - 5 - 2 - 3 G2

A = 1 - 2 - 3

– Bob flips a coin B. If B = 0, Bob imagines himself holding the partial graphs:

G1
B = 4 - 5 G2

B = 4

If cB = 1, Bob imagines himself holding the partial graphs:

G1
B = 4 G2

B = 4 - 5

• Running the broadcast protocol: Alice and Bob jointly simulate π(1λ), first on G1 = G1
A-G1

B

with broadcast message m1 and then on G2 = G2
A-G2

B with broadcast message m2; in both cases
Alice simulates the broadcaster node 1 . The graphs formed by connecting the rightmost node in
G1
A (resp., G2

A) to the leftmost node in G1
B (resp., G2

B). More specifically, Alice simulates nodes in
G1
A (resp., G2

A) via their next-message functions and Bob simulates nodes in G1
B (resp., G2

B) via
their next-message functions. When the rightmost node of G1

A (resp., G2
A) needs to send a message

to the leftmost node in G1
B (resp., G2

B) and vice versa, Alice sends the message through the channel
to Bob and vice versa.

• Output:

– If the outputs of Bob’s “rightmost” nodes are m1 in the first execution and m2 in the second,
Bob outputs B; otherwise, Bob sends abort to Alice and outputs ⊥.

– If Alice did not receive abort, she output A; Otherwise, she outputs ⊥.

Figure 11: The basic key-agreement protocol π1

Case 1: The view of 4 in 1 - 2 - 3 - 4 - 5 under π(1λ) with message m (denoted VIEW12345
4 (λ,m))

is not computationally indistinguishable from the view of 4 in 1 - 5 - 2 - 3 - 4 - 5 under π(1λ) with
message m (denoted VIEW152345

4 (λ,m)). In particular, there exist a distinguisher D and a constant
cD such that D runs in time λcD and for infinitely many values of λ can distinguish with advantage
λ−cD . Moreover, let pD denote the probability D outputs 1 on VIEW12345

4 (λ,m).18

We will use such a distinguisher, D, to construct an infinitely often key-agreement protocol,
18Note that because the advantage of D is bounded from below by λ−cD , for each λ we can approximate pD in

polynomial time up to a λ−cD/2 factor.
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Alice Bob
Graph G1:

If A = 0 321

If A = 1 3251

If B = 04

If B = 14

5

Graph G2:

If A = 0

321If A = 1

3251 If B = 0

4 If B = 1

4

5

Figure 12: The possible graphs simulated in π1. Color indicate who is responsible for simulation:
Alice - Bob. Eve can see communication on the dotted edges between them.

KAD,cD1 (formally described in Figure 13).19 It is tempting to use D to reject runs where A 6= B,
but we have no guarantee that the view of Eve when A = B = 0 and A = B = 1 remains
indistinguishable after conditioning on D = 1. We get around this by simply amplifying the
distinguisher’s advantage until it effectively never makes a mistake, and thus Eve’s view conditioning
on the amplified decision is statistically close to simply conditioning on A = B.

Claim 3.3. If there exists an infinite set I ⊆ N and a constant cD such that there is a randomized
D that runs in time λcD and for which∣∣∣Pr

[
D
(
1λ,m,VIEW12345

4 (λ,m)
)

= 1
]
− Pr

[
D
(
1λ,m,VIEW152345

4 (λ,m)
)

= 1
]∣∣∣ > λ−cD

(where m is uniformly distributed) for all λ ∈ I, then KAD,cD1 (Figure 13) is a key-agreement
protocol in the infinite set I.

Proof. Without loss of generality assume cD ≥ 1. Let A′ and B′ denote the final outputs of Alice
and Bob. First notice that by symmetry our distinguisher does not bias Alice and Bob’s output
when they agree:

Pr
[
A′ = B′ = 0

∣∣∣ ∑ di ≥ p̃A=B
D · λ2cD/2

]
= Pr

[
A′ = B′ = 1

∣∣∣ ∑ di ≥ p̃A=B
D · λ2cD/2

]
.

Now, we will restrict our attention to λ ∈ I (where |Pr[D(1λ,m,VIEW12345
4 (λ,m)) = 1] −

Pr[D(1λ,m,VIEW152345
4 (λ,m)) = 1]| > λ−cD). Observe that by Hoeffding bounds20 the following

event happens with probability at most exp(−Ω(λ)):∣∣∣p̃A=B
D − E[D(1λ,m,VIEW12345

4 (λ,m))]
∣∣∣ > λ−cD/4,

19Note that our protocol is only infinitely often correlated (A = B); hence, the security property will hold for all
but finitely many λ for any efficient distinguisher.

20Recall that Hoeffding’s bound says that given X1, . . . , Xn i.i.d. indicator random variables, for any δ ≥ 0,
Pr
[
|
∑

Xi − E[
∑

Xi]| ≥ δ
]
≤ 2 exp(−2δ2/n).
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Protocol KAD,cD

1 (1λ)

Public Parameters: The security parameter λ, a broadcast protocol π for Goriented-5-path, and a dis-
tinguisher D that runs in time O(λcD ) (assumed to have advantage λ−cD ).

The Protocol:

• Initialization:

– For each i ∈ [λ2cD ] Alice sends random messages m1
i ,m

2
i ← {0, 1}λ to Bob.

– For each i ∈ [λ2cD ] Bob samplesXi according to VIEW12345
4 (λ,mi) wheremi is drawn uniformly

at random. Let

p̃A=B
D

..=
∑λ2cD

i=1 D(1λ,mi, Xi)
λ2cD

.

• Setting the underlying graphs:

– Alice flips a coin A. If A = 0, Alice imagines herself holding the partial graphs:

G1
A = 1 - 2 - 3 G2

A = 1 - 5 - 2 - 3

If A = 1, Alice imagines herself holding the partial graphs:

G1
A = 1 - 5 - 2 - 3 G2

A = 1 - 2 - 3

– Bob flips a coin B. If B = 0, Bob imagines himself holding the partial graphs:

G1
B = 4 - 5 G2

B = 4

If B = 1, Bob imagines himself holding the partial graphs:

G1
B = 4 G2

B = 4 - 5

• Running the broadcast protocol: For i = 1, . . . , λ2cD ,

– Alice and Bob jointly simulate π(1λ), first on G1 = G1
A-G1

B with broadcast message m1
i and

then on G2 = G2
A-G2

B with broadcast message m2
i (as described in π1).

– Bob sets di to the output of D on the view of party 4 in the graph containing 4 - 5 (G1 if
B = 0 and G2 if B = 1).

• Output:

– If |∑i di − p̃A=B
D · λ2cD | > λcD/2, Bob sends start-over to Alice and starts over. (After λ

start-over messages, halt.) Otherwise, output B.
– If Alice did not receive start-over, output A. Otherwise, start over. (After λ start-over

messages, halt.)

Figure 13: First attempt at secure bit agreement, KAD,cD1
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where p̃A=B
D is the fraction of instances that output 1 in Bob’s sampling of λ2cD i.i.d. instances of

D(1λ,m,VIEW12345
4 (λ,m)) (in the Initialization step).

Note that by our assumption on the distinguisher D, it holds that∣∣∣E[D(1λ,m,VIEW12345
4 (λ,m))]− E[D(1λ,m,VIEW152345

4 (λ))]
∣∣∣ > λ−cD .

Thus from the triangle inequality we can deduce that conditioned on the above event not happening,∣∣∣p̃A=B
D − E[D(1λ,m,VIEW152345

4 (λ,m))]
∣∣∣ > 3λ−cD/4.

Next, by applying Hoeffding’s bound again we have that with probability exp(−Ω(λ)),
|∑i di − E[D(1λ,m,VIEW12345

4 (λ,m))] · λ2cD | > λcD/4 in the case that A = B, and |∑i di −
E[D(1λ,m,VIEW152345

4 (λ,m))] · λ2cD | > λcD/4 in the case that A 6= B.
By a union bound, none of these events happen with probability 1 − exp(−Ω(λ)). If this is

indeed the case, then we can apply the triangle inequality again to deduce that if A = B then
|∑i di − p̃A=B

D · λ2cD | < λcD/2, and if A 6= B then |∑i di − p̃A=B
D · λ2cD | > λcD/2. Therefore, if

A = B, Alice and Bob will output A and B, resp., with overwhelming probability. And if A 6= B,
they will start over with overwhelming probability.

Finally, because A = B with probability 1/2, we expect that Alice and Bob will produce out-
put in λ iterations with overwhelming probability. Let O denote the event that Alice and Bob
produce output. It remains to show that security is preserved. Because VIEW12345

3 is computation-
ally indistinguishable from VIEW15234

3 , by a hybrid argument (X1, . . . , Xλ2cD ) is computationally
indistinguishable from (Y1, . . . , Yλ2cD ) where each Xi ∼ (VIEW12345

3 ,VIEW15234
3 ) (corresponding to

A = B = 0) and each Yi ∼ (VIEW15234
3 ,VIEW12345

3 ) (corresponding to A = B = 1).21

We showed that conditioned on A = B, the event O happens with overwhelming probability.
Thus we have that (X1, . . . , Xd) is computationally indistinguishable from (X1, . . . , Xd) conditioned
on O. Similarly, (Y1, . . . , Yd) is computationally indistinguishable from (Y1, . . . , Yd) conditioned on
O. Thus, no efficient adversary can distinguish the case that the output bits are A′ = B′ = 0 from
the case that the output bits are A′ = B′ = 1.

This concludes the proof of Claim 3.3.

Case 2: The view of 4 in 1 - 2 - 3 - 4 - 5 under π(1λ) is computationally indistinguishable from
the view of 4 in 1 - 5 - 2 - 3 - 4 - 5 under π(1λ).

By the security of π we have that VIEW12345
4 ≈c VIEW13452

4 . Thus, VIEW13452
4 ≈c VIEW152345

4 . In
this case, we construct the basic key-agreement protocol π2 which is defined identically as π1 with
the sole exception that Alice and Bob use different underlying graphs. If Alice’s coin is A = 0, she
simulates G1

A = 1 - 3 - 4 in the first execution and G2
A = 1 - 5 - 2 - 3 - 4 in the second, and if A = 1

she reverses the order. Similarly, if B = 0, Bob simulates G1
B = 5 - 2 in the first execution and

G2
B = 5 in the second, and if B = 1 he reverses the order. See Figure 14 for an illustration.
It follows from a hybrid argument, that conditioned on A = B, no efficient eavesdropper can

distinguish A = 0 from A = 1 in π2. Thus again, we are halfway to key agreement. Notice
(Figure 14) that the length of the longest line graph has increased by 1 over π1.

As before, we have two cases based on whether the view of the second to last node in the
longest graph can be distinguished from the other graph where that node is also penultimate: here,

21Lemma 2.8 implies that eachX1, . . . , Xλ2cD (and similarly, Y1, . . . , Yλ2cD ) is indistinguishable from Z1, . . . , Zλ2cD

where each Zi ∼ (VIEW12345
3 ,VIEW12345

3 ).
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Alice Bob
Graph G1:

If A = 0 431

If A = 1 43251

If B = 05

If B = 15

2

Graph G2:

If A = 0

431If A = 1

43251 If B = 0

5 If B = 1

5

2

Figure 14: The possible graphs simulated in π2. Color indicate who is responsible for simulation:
Alice - Bob. Eve can see communication on the dotted edges between them.

whether or not VIEW15′23452
5 is indistinguishable from VIEW13452

5 (where the prime in 5′ is simply
used to indicate which copy of 5 ’s view we are considering, both copies “think” they are 5 ):

1. If they are not indistinguishable, then we can build an infinitely often key-agreement protocol,
KAD,cD2 (see Figure 15), via the same method as before.

2. If they are indistinguishable, then we will build a new protocol stub, π3, with security prop-
erties that contains a graph longer than any in π2.

We proceed iteratively in this manner for R iterations. Assume for the sake of contradiction
that π does not imply key agreement. If so, it must be that after R iterations, in each protocol πi
the view of the node second from right in the longest graph is indistinguishable from a graph in
Goriented-5-path (i.e., none of π1, . . . , πR could be turned into a key agreement KAD,cDi as described in
Figure 15). But because π only runs for R rounds and the second to last node is distance greater
than R from 1 in the longest graph of πR, the node’s final output is independent of the broadcast
message. Thus, there must exist a distinguisher with success probability at least 1/2−negl(λ) that
simply checks if that node gets the correct output and we reach a contradiction. It follows that
one of the protocols πi, for some i ∈ [R], can be transformed into an infinitely often key agreement
KAD,cDi .

More formally, we can generalize our argument above to via the following.

Claim 3.4. For i ∈ [R] and j ∈ [4] let uj = (i + j − 2 mod 4) + 2. Then, there exists i ∈ [R] for
which the following hold:

1. For all ppt D, the following holds for almost all λ∣∣∣Pr
[
D(1λ,m,VIEW1u1u2u3u4

u2 (λ,m)) = 1
]
− Pr

[
D(1λ,m,VIEW1523452···u1u2u3

u2 (λ,m)) = 1
]∣∣∣ ≤ negl(λ),

where m is uniformly distributed and 15234523452 · · ·u1u2u3 is the graph with i+ 4 nodes.

28



2. There exists an infinite set I ⊆ N and a distinguisher D∗ that runs in time λc∗D , for some
constant c∗D, such that for all λ ∈ I,∣∣∣Pr
[
D∗(1λ,m,VIEW1u1u2u3u4

u3 (λ,m)) = 1
]
− Pr

[
D∗(1λ,m,VIEW1523452···u1u2u3u4

u3 (λ,m)) = 1
]∣∣∣ > λ−c

∗
D ,

where m is uniformly distributed 15234523452 · · ·u1u2u3 is the graph with i+ 4 nodes.

By inspecting KAD
∗,c∗D

i (Figure 15) and following the same argument above, we see that Item 1
in Claim 3.4 implies that KAD

∗,c∗D
i has the hiding property (for any algorithm D∗ and constant c∗D)

where as Item 2 implies that KAD
∗,c∗D

i has the agreement property (infinitely often). Thus given
this claim, we can apply the same analysis from Case 1 above to immediately get that for some i,
KAD

∗,c∗D
i realizes infinitely often key agreement. So it suffices to prove the claim to complete the

proof.
To prove the claim, observe the following:

1. Item 1 of Claim 3.4 is true for i = 1 by the topology-hiding property of π.

2. Item 2 of Claim 3.4 is true for i = R. This is by virtue of the fact that in the case of i = R,
u3 is distance > R from 1 in the graph 1 - 5 - 2 - 3 - 4 - 5 - · · · - u4 - u1 - u2 - u3 - u4 and thus its
output is independent of m and will only coincide with negligible probability. On the other
hand, in the case that graph is 1 - u1 - u2 - u3 - u4 , by the correctness of the topology-hiding
broadcast, u3 will output m with overwhelming probability.

3. If Item 2 of Claim 3.4 is false for i, then Item 1 of Claim 3.4 is true for i+ 1. (Item 1 for i+ 1
is the negation of Item 2 for i, for any i ∈ [R− 1])

Now, suppose the claim is false, then for all i at least one of the properties must be false. Then, by
Observation 1 above, this means Item 2 of Claim 3.4 must be false for i = 1. Further, by Observation
3 and the assumption the claim is false, it follows by induction that Item 2 of Claim 3.4 must be
false for all i. But, this contradicts Observation 2: the validity of Item 2 of Claim 3.4 for i = R.

This concludes the proof of Theorem 3.2.

3.2 Hiding Distance-of-Neighbors Requires KA (The Triangle)

In this section we show that THB on the triangle (with a potential missing edge), in which the
direction/distance of each party to the broadcaster is fixed but the distance-of-neighbors is kept
hidden, implies the existence of a key-agreement protocol.

Consider the class Gtriangle = {G0
tr, G

1
tr, G

2
tr} as defined in Figure 16, which we (abusively) call

‘the Triangle.’ The players are the nodes 1 , 2 , 3 with the broadcaster always being 1 ; nodes
2 and 3 are connected, and 2 and/or 3 is connected to 1 . The secret of the topology can be
summarized as follows: if one of the two non-broadcasting parties 2 or 3 is connected to the
broadcaster, it does not know whether the other is connected as well. In other words, 2 cannot
distinguish between G0

tr and G2
tr while 3 cannot distinguish between G0

tr and G1
tr. As discussed

in Section 1.2.1, an eavesdropper Eve having access to only the communication between 2 and
3 has strictly less information than either 2 or 3 individually. In particular, it follows that Eve
cannot distinguish neither between G0

tr and G2
tr nor between G0

tr and G1
tr, and transitively cannot

distinguish between G1
tr and G2

tr: the paths 1 - 2 (Eve)---------- 3 and 2 (Eve)---------- 3 - 1 , where node 1 is the
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Protocol KAD,cD

i (1λ)

Public Parameters: The security parameter λ, a broadcast protocol π for Goriented-5-path, and a dis-
tinguisher D that runs in time O(λcD ) (assumed to have advantage λ−cD ). Let uj = (i+ j − 2
mod 4) + 2 for j ∈ [4].

The Protocol:

• Initialization:

– For each i ∈ [λ2cD ] Alice sends random messages m1
i ,m

2
i ← {0, 1}λ to Bob.

– For each i ∈ [λ2cD ] Bob samples Xi according to VIEW1u1u2u3u4
u2

(λ,mi) where mi is drawn
uniformly at random. Let

p̃A=B
D

..=
∑λ2cD

i=1 D(1λ,mi, Xi)
λ2cD

.

• Setting the underlying graphs:

– Alice flips a coin A. If A = 0, Alice imagines herself holding the partial graphs:

G1
A = 1 - u1 - u2 G2

A = 1 - 5 - 2 - 3 - 4 - 5 - · · · - u4 - u1 - u2

If A = 1, Alice imagines herself holding the partial graphs:

G1
A = 1 - 5 - 2 - 3 - 4 - 5 - · · · - u4 - u1 - u2 G2

A = 1 - u1 - u2

– Bob flips a coin B. If B = 0, Bob imagines himself holding the partial graphs:

G1
B = u3 - u4 G2

B = u3

If B = 1, Bob imagines himself holding the partial graphs:

G1
B = u3 G2

B = u3 - u4

• Running the broadcast protocol: For i = 1, . . . , λ2cD :

– Alice and Bob jointly simulate π(1λ), first on G1 = G1
A-G1

B with broadcast message m1
i and

then on G2 = G2
A-G2

B with broadcast message m2
i .

– Bob sets di to the output of D on the view of party u3 in the graph containing u3 - u4 (G1

if B = 0 and G2 if B = 1), with the corresponding mb
i and 1λ.

• Output:

– If |∑i di − p̃A=B
D · λ2cD | > λcD/2, Bob sends start-over to Alice and starts over. (After λ

start-over messages, halt.) Otherwise, output B.
– If Alice did not receive start-over, output A. Otherwise, start over. (After λ start-over

messages, halt.)

Figure 15: ith attempt at secure bit agreement, KAD,cDi
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broadcaster. With this observation, we adopt the technique from [4], which shows how 1-THB on
a line implies KA, to show that 1-THB on Gtriangle implies KA.

2

1

3

G0
tr

2

1

3

G1
tr

2

1

3

G2
tr

Figure 16: The class Gtriangle.

Note that preserving the secret of the topology of Gtriangle can also be reformulated as ‘hiding
the neighbor distances’ from the parties. Indeed, for 2 (resp., 3 ) knowing the topology means
knowing if 3 (resp., 2 ) is at distance one or two from the broadcaster.

Theorem 3.5 (THB on Gtriangle requires KA). If there exists a 1-IND-CTA-secure broadcast protocol
for the class Gtriangle then there exists a key-agreement protocol.

The rest of this section is dedicated to proving Theorem 3.5. Given a 1-THB protocol π for
Gtriangle we will construct a key-agreement protocol. The construction of this KA protocol follows
very closely the proof of Theorem 3.1 in [4], but we use the novel phantom bridge argument (see
Remark 3.7) to reduce the security of the key-agreement scheme to the topology-hiding properties
of π. Alice and Bob simulate two executions of the THB protocol π where each of the two players
tosses a coin to determine whether to emulate the broadcaster in the first run or the second. Both
they and an eavesdropper can identify when their coins yield the same outcome, and what it is, and
the parties can try again. When the coins differ however, we show that the eavesdropper cannot
learn what the coins are (only that they indeed differ) and Alice and Bob can therefore use their
coins to establish a secure shared key.

Lemma 3.6. Let π be a 1-IND-CTA-secure broadcast protocol for Gtriangle. Then, the protocol in
Figure 17 is a key-agreement protocol.

Proof. Via sequential composition (Lemma 2.8) we may assume π is a λ-bit broadcast protocol. In
a similar way to [4] we use π to construct the key-agreement protocol in Figure 17.

Correctness. The proof of correctness is analogous to that of [4]. The high-level idea is that if
A 6= B (which occurs with probability 1/2) then both Alice and Bob output⊥ (i.e., fails identifiably)
with probability at least 1 − 21−λ, since in one of the two executions of π neither Alice nor Bob
are simulating a broadcasting node and therefore cannot both output the control string m1 or
m2 with probability ≥ 2−λ. In the case where A = B (which occurs with probability 1/2) the
behavior of the parties simulated by Alice and Bob in both executions falls under the correctness
guarantees of π, which means that with overwhelming probability both will output the same bit
A = B. Wrapping up, both parties output ⊥ with probability 1/2 + negl(λ) and both output the
same bit with probability 1/2− negl(λ). The parties can sequentially repeat the process until both
output the same bit with overwhelming probability.

31



Key-Agreement Protocol

Public Parameters: A broadcast protocol π for Gtriangle.

The Protocol:

• Alice samples two random strings m1,m2 ← {0, 1}λ and sends them to Bob.

• Alice and Bob locally flip random coins A,B ← {0, 1}, resp. Next, they jointly simulate two
instances of the THB protocol, communicating the messages between 2 and 3 .

– If A = 1, Alice will simulate 1 (broadcasting m1) and 2 (connected as in G2
tr) in the first

execution and will only simulate 2 in the second. If A = 0, Alice will simulate 2 in the first
execution and 1 (broadcasting m2) and 2 (connected as in G2

tr) in the second.
– If B = 0, Bob will simulate nodes 1 (broadcasting m1) and 3 (connected as in G1

tr) in the
first execution and will only simulate 3 in the second. If B = 1, Bob will simulate node 3 in
the first execution and 1 (broadcasting m2) and 3 (connected as in G1

tr) in the second.

• Output:

– If node 2 outputs m1 in the first instance of π and m2 in the second, Alice outputs A;
otherwise, Alice outputs ⊥.

– If node 3 outputsm1 in the first instance of π andm2 in the second, Bob outputs B; otherwise,
Bob outputs ⊥.

Figure 17: Key agreement protocol from 1-THB on Gtriangle.

Security. It remains is to prove that this candidate KA construction is secure. It suffices to show
that when A = B an eavesdropper Eve who has access to the communication between Alice and
Bob has no advantage in determining the key-agreement output bit, i.e., in determining whether
A = B = 0 or A = B = 1. Eve has access to the transcript of the communication between 2 and
3 on two different runs of π, one on G1

tr and the other G2
tr. We reduce the problem of determining

the order in which these executions are performed to that of determining, given the transcript of
the communication between 2 and 3 in a single run of π, if π was run on G1

tr or G2
tr. Finally, we

show that this target problem is difficult, by topology-hiding of π. The proof overview is illustrated
in Figure 18. The technical novelty when compared to [4] resides in the proof of the last step,
illustrated in Figure 18a.

We now proceed with the reduction. Let V σ
2,3, V σ

2 , and V σ
3 be the random variables equal to

respectively the transcript of the communication between 2 and 3 , the view of 2 , and the view
of 3 for the execution σ ∈ {1, 2} of the protocol π. We denote π2,3(G), π2(G), and π3(G) their
respective distributions on graph G. From now on condition on the event A = B, which occurs
with probability 1/2. The (conditional) advantage of Eve is the following:

Adv(Eve) ..= |Pr[Eve wins]− 1/2| =
|PrV 1

2,3,V
2

2,3∼π2,3(G2
tr)[Eve(V

1
2,3, V

2
2,3) = 1]− PrV 1

2,3,V
2

2,3∼π2,3(G1
tr)[Eve(V

1
2,3, V

2
2,3) = 1]| (1)

We now use the reduction from [4, Claim 3.3],22 which shows that if Eve has non-negligible advan-
tage then there is an efficient distinguisher between the transcripts of the communication between

22The claim itself cannot be invoked as the graphs are different, but the same proof works verbatim.
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Ind. 3

(a) Indistinguishability of the views of 2 , 3 in differ-
ent topologies by the security of π.

1 2 3 2 3 1Ind. E

E E BobAliceBobAlice

(b) Eve cannot distinguish the two runs of π.

1 2 3

2 3 1

2 3 1

2 31

Ind. E

EAlice Bob EAlice Bob

(c) Eve cannot determine the order of the two runs of π.

Figure 18: Overview of the security proof: (a) =⇒ (b) =⇒ (c).

2 and 3 on graphs G1
tr and G2

tr in a single run of π (whereas Eve has to distinguish between the
transcript for G1

tr followed by the transcript for G2
tr and the reverse). We then get that

Adv(Eve) ≤ 2 · sup
A ppt

∣∣∣PrV2,3∼π2,3(G2
tr)[A(V2,3) = 1]− PrV2,3∼π2,3(G1

tr)[A(V2,3) = 1]
∣∣∣ . (2)

The reduction works by constructing a distinguisher A from Eve. A starts with a view V2,3 ∼
π2,3(Gσtr) for some unknown σ ∈ {1, 2}, and flips two coins σ′ ∈ {1, 2} and b ∈ {0, 1}. A then crafts
a view V ′2,3 ∼ π2,3(Gσ′tr ), and gives both views V2,3, V

′
2,3 to Eve in the order determined by coin b.

With probability 1/2, σ = σ′ and Eve is of no help, and with probability 1/2, σ 6= σ′ and A inherits
Eve’s distinguishing advantage. It can be shown that Adv(A) ≥ Adv(Eve)/2.

Finally, we show that the target problem of the reduction is hard. Namely, for every ppt A it
holds that∣∣∣PrV2,3∼π2,3(G2

tr) [A(V2,3) = 1]− PrV2,3∼π2,3(G1
tr)[A(V2,3) = 1]

∣∣∣ (3)

≤
∣∣∣PrV2,3∼π2,3(G2

tr)[A(V2,3) = 1]− PrV2,3∼π2,3(G0
tr)[A(V2,3) = 1]

−PrV2,3∼π2,3(G1
tr)[A(V2,3) = 1] + PrV2,3∼π2,3(G0

tr)[A(V2,3) = 1]
∣∣∣

≤
∣∣∣PrV2,3∼π2,3(G2

tr)[A(V2,3) = 1]− PrV2,3∼π2,3(G0
tr)[A(V2,3) = 1]

∣∣∣
+
∣∣∣PrV2,3∼π2,3(G1

tr)[A(V2,3) = 1]− PrV2,3∼π2,3(G0
tr)[A(V2,3) = 1]

∣∣∣
≤
∣∣∣PrV2∼π2(G2

tr)[A(V2) = 1]− PrV2∼π2(G0
tr)[A(V2) = 1]

∣∣∣
+
∣∣∣PrV3∼π3(G1

tr)[A(V3) = 1]− PrV3∼π3(G0
tr)[A(V3) = 1]

∣∣∣
≤ 2 · negl(λ).

The third inequality holds since V2 and V3 encapsulate V2,3 and giving more information as
input to A can only increase its distinguishing advantage. The fourth inequality follows from the
topology-hiding properties of π since 2 (resp., 3 ) has the same neighborhood in G2

tr and G0
tr (resp.,

G1
tr and G0

tr). Combining Equations (2) and (3) concludes the proof of Lemma 3.6.
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Remark 3.7 (The Phantom-Bridge). Theorem 3.5 relies on one core property of Gtriangle, and can
be extended to other graph-classes with that same property. If a graph class contains two graphs G1
and G2 with a bridge between two nodes u and v (i.e., an edge whose removal would separate the
graph in two connected components) such that the broadcaster is on u’s side in G1 and on v’s side
in G2, then 1-THB on this class implies KA. This observation is used in Section 7.1 to demonstrate
the generality if this technique.

4 THAB Lower Bounds
In this section we present our lower bounds for topology-hiding anonymous broadcast. In Section 4.1
we show that t-THAB on graphs that are not (t+1)-connected implies key agreement. In Section 4.2
we show that 1-THAB on the class of either 2 or 3 parties connected on a line implies infinitely
often oblivious transfer.

4.1 Low Vertex Connectivity Requires KA

We start by showing how t-THAB on a class which contains even a single graph with at least
t + 2 vertices and which is not (t + 1)-connected implies key agreement. As discussed in the
Introduction, this result does not rely on the topology-hiding aspect of the broadcast protocol, but
on the anonymity aspect, and in fact, it can be derived by combining ideas from Ishai et al. [20]
and Ball et al. [4]. We choose to present the result in this form for completeness and because it
provides a matching lower bound to Theorem 6.1.

Proposition 4.1. Let t be an integer and let G be a class containing a graph with at least t + 2
vertices which is not (t+ 1)-vertex-connected. Then, t-IND-CTA anonymous broadcast with respect
to G implies the existence of key agreement.

Proof sketch. We prove the proposition for the case of t = 1, i.e., for the singleton class G{1-2-3} =
{ 1 - 2 - 3 }. The general case follows via a standard player partitioning argument (in a similar way
to [4, Cor. 3.4]).

The key-agreement protocol follows in a similar way to Section 3.2 (the triangle graph). Alice
simulates nodes 1 - 2 while Bob simulates 3 . Alice and Bob simulate two instances of π, where
each party randomly chooses whether to simulate the anonymous broadcaster in the first instance
or in the second. The protocol is formally described in Figure 19. The proof follows in the same
lines as the proof of Lemma 3.6 (see also [4]), since the transcript that Eve can see forms a partial
view of node 2 ; therefore security of the KA protocol is reduced to the 1-IND-CTA security of π.

4.2 Uncertain Honest Majority Requires io-OT (The 2-vs-3 Paths)

In the previous section we showed that, for a large number of graph classes, key agreement is
necessary to achieve 1-THAB. A natural follow-up question is to ask whether key agreement is
sufficient to achieve 1-THAB on all graphs or not. We answer this question in the negative (at least
in a black-box way) by showing that constant-round 1-THAB on the class of paths of length two
and three implies infinitely often oblivious transfer.

This result may be reminiscent to the result of Ball et al. [3] who showed that without assuming
an honest majority, THB on arbitrary graphs implies the existence of oblivious transfer. We note
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Key-Agreement Protocol

Public Parameters: An anonymous broadcast protocol π for G{1-2-3}.

The Protocol:

• Initialization: Alice samples two random strings m1,m2 ← {0, 1}λ and sends them to Bob.

• Alice locally flips a coin A← {0, 1}; similarly, Bob locally flips a coin B ← {0, 1}. Next, they jointly
simulate two instances of π, communicating the messages between 2 and 3 . Alice simulates 1 - 2
and Bob simulates 3 .

– If A = 1, Alice will simulate 1 broadcasting m1 in the first execution (but not broadcast in
the second), and if A = 0 she simulates 1 broadcasting m2 in the second execution (but not
broadcast in the first).

– If B = 1, Bob simulates 3 broadcasting m1 in the first execution (but not broadcast in the
second), and if B = 0 he simulates 3 broadcasting m2 in the second execution (but not
broadcast in the first).

• Output: If 1 (resp., 3 ) outputs m1 in the first instance of π and m2 in the second, Alice (resp.,
Bob) outputs A (resp., B); otherwise, outputs ⊥.

Figure 19: Key agreement from 1-THAB on G{1-2-3}

that our result requires inherently different techniques, as in the one-corruption setting there exist
only one graph with no honest majority (the path of length 2), and 1-THAB on this graph is trivial.
However, considering in addition the path of length 3 (where an honest majority is guaranteed),
we prove an implication to infinitely often oblivious transfer (io-OT).

Note that this lower bound only applies to anonymous broadcast. In fact, even simple flooding
gives secure THB on the path of length 2 and the path of length 3, because given the identity of
the broadcaster every node can trivially derive its distance from the broadcaster by its local view.

Before stating the result, we need to recall the definition of io-OT and define the class of graphs
we will be working with.

4.2.1 Infinitely Often Oblivious Transfer

We start by recalling the definition of uniform infinitely often security for deterministic two-party
functionalities by Lindell et al. [26, Def. 2.3].

Definition 4.2 (Uniform infinitely often security). A protocol π securely computes a deterministic
functionality F in the presence of semi-honest adversaries with uniform infinitely often security if
there exists an infinite subset I ⊆ N such that:

• Correctness: There exists a negligible function such that for every λ ∈ I and every pair of
inputs x, y ∈ {0, 1}∗ it holds that

Pr [OUTPUTπ(x, y, λ) = F(x, y)] ≥ 1− negl(λ),
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where the probability is taken over the random coins of the parties, and where OUTPUTπ(x, y, λ)
is the random variable denoting the output of both parties in an honest execution on inputs x
and y and with security parameter λ.

• Privacy: There exist two ppt algorithms SAlice and SBob (called “simulators”), such that:{
SAlice(x,FAlice(x, y), 1λ)

}
x,y∈{0,1}∗,λ∈I

≈c {VIEWπ
Alice(x, y, λ)}x,y∈{0,1}∗,λ∈I

and {
SBob(y,FBob(x, y), 1λ)

}
x,y∈{0,1}∗,λ∈I

≈c {VIEWπ
Bob(x, y, λ)}x,y∈{0,1}∗,λ∈I ,

where FAlice and FBob correspond to the output of the functionality F to Alice and Bob,
respectively.

We can now define infinitely often oblivious transfer (io-OT), building on the 1-out-of-2 OT
functionality defined as FOT((m0,m1), b) = (ε,mb), where ε denotes the empty string.

Definition 4.3 (io-OT). A protocol π is an infinitely often oblivious transfer protocol, if π computes
FOT in the presence of semi-honest adversaries with uniform infinitely often security.

4.2.2 The Lower Bound

We define the class of all paths of length two or three labeled with {1, 2, 3} in cyclic order as

G2-vs-3 =
{

1 - 2 , 2 - 3 , 3 - 1 , 1 - 2 - 3 , 2 - 3 - 1 , 3 - 1 - 2
}
.

Theorem 4.4. Let π be a constant-round 1-IND-CTA anonymous broadcast with respect to G2-vs-3.
Then, there exists a uniform io-OT protocol secure in the presence of a semi-honest adversary.

In Section 1.2.2 we gave a high-level overview of the proof of Theorem 4.4. Recall that the proof
in the simple case where π is a 2-round protocol relied on the following properties:

• π is 1-IND-CTA anonymous broadcast with respect to G = { 2 - 3 , 1 - 2 - 3 , 2 - 3 - 1 }.

• π is not 1-IND-CTA anonymous broadcast with respect to G ∪ { 1 - 2 - 3 - 1 }.

To mirror this in the general case we have to find a path P ∗ = u∗1 - u∗2 - u∗3 -P ∗R, where u∗i is a
single node for i ∈ {1, 2, 3} and P ∗R consists of the rest of the nodes, such that

• π is 1-IND-CTA anonymous broadcast with respect to

G =
{
u∗2 - u∗3 , u∗1 - u∗2 - u∗3 , u∗2 - u∗3 -P ∗R

}
.

• π is not 1-IND-CTA anonymous broadcast with respect to G ∪ {P ∗}.

In order to find such a path we perform an over-extension argument, observing that any protocol
π that is 1-IND-CTA with respect to G2-vs-3 either breaks down on P ∗, or is still secure and thus
can be extended to include P ∗ in G.

More precisely, assume we start with G = { 2 - 3 , 1 - 2 - 3 , 2 - 3 - 1 }. Then, either π breaks
down on P ∗ = 1 - 2 - 3 - 1 and we are done, or we use an extension argument as follows. We set the
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new graph class to be G = { 1 - 2 , 3 - 1 - 2 , 1 - 2 - 3 - 1 } and obtain a new P ∗ = 3 - 1 - 2 - 3 - 1 .
As we started with a protocol π that is 1-IND-CTA with respect to G2-vs-3, by assumption π is
indeed 1-IND-CTA with respect to the new graph class G. Now, either π breaks down on P ∗ =
3 - 1 - 2 - 3 - 1 , or we can extend the argument, starting with G = { 3 - 1 , 2 - 3 - 1 , 3 - 1 - 2 - 3 - 1 }
and P ∗ = 2 - 3 - 1 - 2 - 3 - 1 .

Note that for this argument to go through, it is crucial that G2-vs-3 comprises all possible paths
with cyclic labeling of length 2 and 3, as with the extension argument the paths that we use in G
change. Further, note that in order to argue that π has to eventually break down, we need that π
has constant round complexity, and thus breaks down as soon as the length of the path on which
π is run exceeds the round complexity of π.

Proof of Theorem 4.4. We start by defining the class G` of all paths of length ` with cyclic labeling
from {1, 2, 3} as follows: For a path P and an integer a ∈ N denote by (P )a the concatenation
of a copies of P . We use this notation to extend G2-vs-3 to longer paths by defining for every
` = 3a+ b ∈ N

• G` =
{(

1 - 2 - 3
)a
,
(

2 - 3 - 1
)a
,
(

3 - 1 - 2
)a} if b = 0,

• G` =
{(

1 - 2 - 3
)a- 1 ,

(
2 - 3 - 1

)a- 2 ,
(

3 - 1 - 2
)a- 3

}
if b = 1, and

• G` =
{(

1 - 2 - 3
)a- 1 - 2 ,

(
2 - 3 - 1

)a- 2 - 3 ,
(

3 - 1 - 2
)a- 3 - 1

}
if b = 2.

Note that as for ` ≥ 4 labels do not point to a unique nodes anymore; therefore, it is not sufficient
to simply describe a node by its label in {1, 2, 3}. Given a node v ∈ V (P ), the neighborhood
NP (v) ⊆ {1, 2, 3} refers to only the labels of the neighbors of v, which — together with its own
label — correspond to the local view of v.

Claim 4.5. Let R ∈ N be a constant and let π be an R-round 1-IND-CTA anonymous broadcast
(AB) with respect to G2-vs-3. Then, there exists an integer `∗ ≤ R+ 1 such that

1. π is 1-IND-CTA secure AB protocol with respect to G2-vs-3∪G`∗, where the broadcaster is always
the left-most node on a path.23

2. π is not 1-IND-CTA secure AB protocol with respect to G2-vs-3 ∪ G`∗+1, where the broadcaster
is always the left-most node on a path.

Proof. For each ` ∈ N we have:

• either π is 1-IND-CTA secure AB protocol with respect to G2-vs-3 ∪ G` (with left-most broad-
caster) (?)

• or π is not 1-IND-CTA secure AB protocol with respect to G2-vs-3 ∪ G` (with left-most broad-
caster) (??).

We set `∗ ∈ N to be the minimal number such that (?) holds for `∗, but (??) holds for `∗ + 1. By
assumption we have that π is 1-IND-CTA with respect to G2-vs-3, which implies that (?) holds for
` = 3. On the other hand, we know that for ` = R+ 2 the message cannot reach from the left-most
node to the right-most node in R rounds and we thus have a distinguisher with success probability
≥ 1/2. This implies `∗ + 1 ≤ R+ 2 as required.

23Note that the cyclic labeling implicitly defines an orientation of the path, allowing to talk about “left” and
“right”
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Note that by Item 2 of Claim 4.5 there exists a path P ∗ ∈ G`∗+1 that can be efficiently distin-
guished from all paths in G2-vs-3 ∪ G`∗ . In particular, when parsing P ∗ = u∗1 - u∗2 - u∗3 -P ∗R, where u∗i
is a single node for i ∈ {1, 2, 3} and P ∗R consists of `∗− 2 nodes, we have that P ∗ can be efficiently
distinguished from u∗2 - u∗3 , u∗1 - u∗2 - u∗3 ∈ G2-vs-3 and u∗2 - u∗3 -P ∗R ∈ G`∗ as required. In order to sim-
plify the description of the AND protocol in the following we assume that the distinguisher in fact
distinguishes between a run of π on P = u∗2 - u∗3 -P ∗R and P ∗.

More precisely, there exists a constant cD ∈ N, a distinguisher D running in time at most λcD ,
an infinite set I ⊆ N, and a node v∗ ∈ V (P ) ∩ V (P ∗) = V ( u∗2 - u∗3 -P ∗R) such that for all λ ∈ I it
holds that:∣∣∣Pr

[
D
(
1λ,m,VIEWP ∗

v∗ (λ,m)
)

= 1
]
− Pr

[
D
(
1λ,m,VIEWP

v∗(λ,m)
)

= 1
]∣∣∣ ≥ λ−cD ,

where the randomness is taken over the random coins of π, of D, and the choice of m, and where
VIEWP

v (λ,m) denotes the view of node v in an execution of π on the path P on inputm and security
parameter λ.

Given this distinguisher, we can construct a protocol for securely computing the AND of two
bits x ∧ y with infinitely often security. By Kilian [22] (see also Lindell et al. [26]) this implies
io-OT as required. The rest of the proof is thus dedicated to the construction and proof of security
of the protocol for AND.

The high-level idea of our protocol is as follows. In the first step, the parties establish a path P
as follows. Alice will add one node to P if x = 0, and two nodes if x = 1. Bob will add one node
to P if y = 0, and `∗ − 1 nodes if y = 1. Now, the parties can use the distinguisher D (as implied
by Item 2 of Claim 4.5) to distinguish the case of x∧ y = 0 (where P ∈ G2-vs-3 ∪G`∗) from the case
x ∧ y = 1 (where P ∈ G`∗+1). See Figure 20 for an illustration.

Alice Bob

If x = 1 u∗2u∗1

If x = 0 u∗2 If y = 0u∗3

If y = 1u∗3 P ∗R

Figure 20: The possible graphs simulated in the Boolean AND protocol (Figure 21). Color indicate
who is responsible for simulation: Alice - Bob.

Before formally describing the AND protocol, we have yet to deal with one technical issue (in
a similar way to Section 3.1). Namely, let

ρD(λ) ..= Pr
[
D
(
1λ,m,VIEWP ∗

v∗ (λ,m)
)

= 1
]

be the probability of the distinguisher D successfully recognizing the “over-extended” path P ∗. In
order for the parties to distinguish the two cases, they need to know ρD(λ), but ρD might not be
efficiently computable.

This can be dealt with by running the distinguisher λ2cD+1 times on P ∗, each time with a
fresh random message and fresh coins, and let σ = σ(λ) denote the number of times on which
the algorithm D outputs 1 in λ2cD+1 runs. Then, we obtain an approximation of ρD by setting
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ρ̃D(λ) ..= σ/λ2cD+1. Hoeffding’s inequality yields that

Pr
[
ρD(λ)− ρ̃D(λ) > λ−cD/4

]
= Pr

[
σ < (ρD(λ)− λ−cD/4) · λ2cD+1

]
< e−2·(λ−cD/4)2·λ2cD+1

< e−λ/8.

On the other hand, we have

Pr
[
ρ̃D(λ)− ρD(λ) > λ−cD/4

]
= Pr

[
σ > (ρD(λ) + λ−cD/4) · λ2cD+1

]
< e−λ/8.

and thus |ρD(λ)− ρ̃D(λ)| ≤ λ−cD/4 except with probability negligible in λ.

With this we are ready to give a full description of the protocol in Figure 21.

Lemma 4.6. Let π be a constant-round 1-IND-CTA anonymous broadcast with respect to G2-vs-3.
Then, the protocol in Figure 21 securely realizes the Boolean AND functionality with uniform in-
finitely often security in the presence of a semi-honest adversary.

Proof. We prove correctness and security separately.

Correctness. We first show that for all λ ∈ I the protocol yields the correct output with over-
whelming probability in the case that both Alice and Bob follow the protocol. Recall that the
probability that D outputs 1 on the “over-extended” path (i.e., in case x∧ y = 1) is ρD(λ) and the
probability that D outputs 1 on a “short” path (i.e., in case x∧ y = 0) is at most ρD(λ)−λ−cD for
all λ ∈ I. Let B denote the number of runs for which D outputs 1. Applying Hoeffding’s inequality
and ρ̃D ≤ ρD + λ−cD/4 yields

Pr
[
Bob outputs 0 | x ∧ y = 1

]
≤ Pr

[
B < (ρ̃D(λ)− λ−cD/2) · λ2cD+1 | x ∧ y = 1

]
≤ Pr

[
B < (ρD(λ)− λ−cD/4) · λ2cD+1 | x ∧ y = 1

]
< e−λ/8.

On the other hand, applying Hoeffding’s inequality and ρ̃D ≥ ρD − λ−cD/4 yields

Pr
[
Bob outputs 1 | x ∧ y = 0

]
≤ Pr

[
B ≥ (ρ̃D(λ)− λ−cD + λ−cD/2) · λ2cD+1 | x ∧ y = 0

]
≤ Pr

[
B ≥ (ρD(λ)− λ−cD + λ−cD/4) · λ2cD+1 | x ∧ y = 0

]
≤ e−λ/8

for all λ ∈ I.

Security. First, assume that Alice is corrupt. The simulator is given the input x by the environ-
ment, forwards x to the AND functionality and receives the output bit b = x ∧ y. It simulates the
sub-graph GB of P set by Bob as follows. If b = 0, it adds one node u∗3 ; otherwise, it adds `∗ − 1
nodes u∗3 -P ∗R. To simulate the executions of the protocol π (which can be executed independently
of the parties’ inputs) the simulator imitates the parties’ behavior in a real protocol execution.

Now, assume Bob is corrupt. The simulator proceeds exactly as above, but simulates the sub-
graph GA of P set by Alice as follows. If b = 0, it adds one node u∗2 ; otherwise, it adds two nodes
u∗1 - u∗2 .

It is left to show that the simulated run is indistinguishable from a real protocol execution. Note
that if b = x ∧ y = 1, then the simulator behaves exactly according to a real protocol execution.
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Protocol ANDD,cD (1λ)

Public Parameters: The security parameter λ, an anonymous broadcast protocol π for G2-vs-3, an
integer `∗, a path P ∗ ∈ G`∗+1 of the form P ∗ = u∗

1 - u∗
2 - u∗

3 -P ∗R (where P ∗R is a path of length
`∗ − 2), a node v∗ ∈ V ( u∗

2 - u∗
3 -P ∗R), and a distinguisher D that runs in time O(λcD ) (assumed

to have advantage λ−cD ).

Private Inputs: Alice holds an input bit x ∈ {0, 1} and Bob holds an input bit y ∈ {0, 1}.
The Protocol:

• Initialization:

– For each i ∈ [λ2cD+1], the party in control of v∗ (i.e., Alice if v∗ = u∗
2 , and Bob otherwise)

samples Xi according to VIEWP ∗

v∗ (λ, m̃i) where m̃i ← {0, 1} is drawn uniformly at random.
Let

ρ̃D(λ) ..=
∑λ2cD+1

i=1 D(1λ, m̃i, Xi)
λ2cD+1 .

• Setting the underlying graphs:

– Alice sets GA = u∗
2 if x = 0, and GA = u∗

1 - u∗
2 if x = 1.

– Bob sets GB = u∗
3 if y = 0, and GB = u∗

3 -P ∗R if y = 1.

• Running the anonymous broadcast protocol: For i = 1, . . . , λ2cD+1,

– Alice chooses a message mi ← {0, 1} and sends mi to Bob.
– Alice and Bob jointly simulate π(1λ) on the path P = GA-GB with Alice simulating her

“left-most” node as broadcasting message mi.
– The party in control of v∗ runs D on the view of node v∗, i.e., di ← D(1λ,mi,VIEWP

v∗(λ,mi)).
(If v∗ does not exist on the path P , because the input of the party who should be in control
of v∗ is 0, the party simply sets di = 0 for all i.)

• Output:

– If
∑
di ≥ ρ̃D(λ) · λ2cD+1 − λcD/2, the party in control of v∗ sends b = 1 to the other party;

otherwise, it sends b = 0.
– Both parties output the bit b.

Figure 21: Infinitely often Boolean AND protocol

We thus only have to consider the case b = 0. In this case, the adversary is only in control of one
node and the security reduces to the security of π. More precisely, we have to show that{

VIEWP 0
u∗2

(λ,mi)
}
i∈[λ2cD+1]

≈c
{

VIEWP 1
u∗2

(λ,mi)
}
i∈[λ2cD+1]

,

where P 0 = u∗2 - u∗3 and P 1 = u∗2 - u∗3 -P ∗R for the case that Alice is corrupt, and{
VIEWP 0

u∗3
(λ,mi)

}
i∈[λ2cD+1]

≈c
{

VIEWP 1
u∗3

(λ,mi)
}
i∈[λ2cD+1]

,

where P 0 = u∗2 - u∗3 and P 1 = u∗1 - u∗2 - u∗3 for the case that Bob is corrupt. Since all executions of
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π are independent of each other, this follows using the 1-IND-CTA security of π on G2-vs-3 ∪G`∗ and
Lemma 2.8.

This concludes the proof of Lemma 4.6.

This concludes the proof of Theorem 4.4.

5 Information-Theoretic Upper Bounds
In this section, we present our information-theoretic constructions: in Section 5.1, we present 1-IT-
THAB for 2-connected graphs, and in Section 5.2, 1-IT-THB for the 1-connected butterfly graph.

5.1 2-Connectivity is Sufficient for 1-IT-THAB
We start by showing that 1-IT-THAB is possible on all 2-vertex-connected graphs. Our protocol
requires communication scaling polynomially in the number of graphs in the class and computation
additionally scaling exponentially in the maximal degree (i.e., the maximal number of neighbors of
a node in any graph of the class). In fact, we show how to establish a stronger notion, namely 1-IT
topology-hiding anonymous secure channels, where each party can anonymously send a message
to each other party without anyone else learning the content of the message and without leaking
anything about the topology. As we show in Section 7.1, when the number of parties is fixed and
known this communication network can be used to run the BGW protocol, and support 1-IT-THC.

We refer the reader to Section 1.2.3 for a high-level overview of the censored brute force technique
that is used in this section. In Section 5.1.1 we establish the required definitions and terminology
for the protocol; in Section 5.1.2 we state the main technical lemma (Lemma 5.4) and its corollaries;
and finally, in Section 5.1.3 we prove Lemma 5.4.

5.1.1 Definitions and Notations

The sum functionality. The protocol presented in this section will realize the sum function-
ality Fsum(Pτ ), formally described in Figure 22. This functionality takes an input message from
each node and outputs the sum of all messages to the designated receiver Pτ . Note that this in
particular implies topology-hiding anonymous communication between an anonymous sender and
Pτ , by having the sender enter its message and all other parties enter zero as their input.

The functionality Fsum(`,Pτ )

The sum functionality Fsum(Pτ ) is parametrized by the target party Pτ and the input length ` ∈ N,
and proceeds as follows.

Initialization: The functionality receives the communication graph G from the wrapper Wgraph-info.

Input: Record an input message mu ∈ {0, 1}` from each Pu.
Output: Let m =

⊕
mu be the sum of the inputs of every party Pu that is in the same connected

component as Pτ in G and send m to Pτ . All other parties receive no output.

Figure 22: The sum functionality with a single known receiver
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The protocol we present in Figure 24 for realizing Fsum(`,Pτ ) provides perfect privacy but it
has a positive correctness error that can be made arbitrarily small. Stated differently, for adequate
parameters that guarantee a negligible correctness error, the protocol provides statistical security.
We choose to state the slightly stronger form of achiving perfect security albeit for a functionality
that may err with small probability.

Definition 5.1 ((1 − δ)-correct functionality). Let F be a functionality and let δ > 0 be an arbi-
trarily small positive number. The (1− δ)-correct functionality Fδ proceeds just like F, except that
the functionality initially tosses a biased coin that outputs 0 with probability δ, in which case the
functionality outputs ⊥ as the output value for each output party.

A protocol π securely realizes F with (1− δ)-correctness if π realizes Fδ with perfect security.

Bipolar orientation. Our protocol relies on an agreed upon bipolar graph orientation for each
graph in the class. We define bipolar graph orientations in a manner that is convenient for situations
where only an upper bound on the number of nodes is known.

Definition 5.2 (Bipolar graph orientation). Let n ∈ N, let H be an undirected graph with V (H) ⊆
[n], and let σ, τ ∈ V (H). A στ -orientation 〈H〉τ of H is a directed acyclic graph with a unique
sink τ and a unique source σ formed by assigning a direction to each edge in H. A στ -numbering
of H is a topological ordering of a στ -orientation of H, i.e., a map ψH,τ : V (H)→ [n] such that

1. ψH,τ is injective.

2. ψH,τ (σ) = 1.

3. ψH,τ (τ) = n.

4. There exists a στ -orientation 〈H〉τ of H, such that (u, v) ∈ E(〈H〉τ ) =⇒ ψ(u) < ψ(v).

Proposition 5.3 ([14, 15, 30]). For any graph H and vertices σ, τ ∈ V (H), a στ -orientation and
a στ -numbering can be found in polynomial time (in n).

5.1.2 Topology-Hiding Communication for 2-Connected Graphs

We now present our main technical lemma of the section: a protocol for topology-hiding compu-
tation of the sum functionality with (1 − δ)-correctness against one computationally unbounded
semi-honest corruption with respect to 2-connected graphs. Before proving the lemma in Sec-
tion 5.1.3, we present corollaries to THAB and THC.

In the results stated below we denote the class of 2-connected graphs with upto n nodes as

G≤n2-conn = {G graph : V (G) ⊆ [n] and G is 2-connected} ,

and the class of 2-connected graphs with exactly n nodes as

Gn2-conn = {G graph : V (G) = [n] and G is 2-connected} .
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Lemma 5.4. Let n ∈ N, let G ⊆ G≤n2-conn, let dmax be the maximal degree of any graph in G
(dmax ≤ n), let ` ∈ N, let τ ∈ [n], and let δ > 0. Then, protocol πδsum(`,G,Pτ ) (defined in
Figure 24) securely realizes Fsum(`,Pτ ) with (1 − δ)-correctness in a topology-hiding manner with
respect to G, tolerating a single semi-honest corruption.

Moreover, πδsum(`,G,Pτ ) completes within n rounds with total communication complexity

O
(
n · dmax · |G| · (`+ log(1/δ) + dmax · log |G|)

)
and computation complexity O(|G|dmax).

Note that a protocol for Fsum can be used to construct private channels with sender-anonymity
by having the sender enter its input to the protocol and every other party enter zero. In turn,
this enables 1-THAB by having the broadcaster send its message independently to every potential
receiver.

Theorem 5.5. Let n ∈ N, let G ⊆ G≤n2-conn, let dmax is the maximal degree of any graph in G, and
let δ > 0. Then, there exists a protocol that securely realizes Fanon-bc with (1 − δ)-correctness in a
topology-hiding manner with respect to G, tolerating a single semi-honest corruption.

Moreover, the protocol completes within n rounds with total communication complexity

O
(
n2 · dmax · |G| · (`+ log(n/δ) + dmax · log |G|)

)
and computation complexity O(|G|dmax) per node.

Proof (sketch). For δ > 0, We define a (1− δ)-correct 1-THAB protocol in the Fδ/nsum-hybrid model,
by invoking the functionality n times (in parallel) with (1 − δ/n)-correctness, where in the ith
invocation, for each i ∈ [n], the target party is Pi, and each party enters zero as its input to
Fδ/nsum(`,Pi) except for the broadcaster who enters its input. The proof immediately follows from
Lemma 5.4.

Further, by using the sum functionality to construct secure channels between every pair of
parties, we get the communication network needed to run the semi-honest BGW protocol [6]. Since
the BGW protocol works for a fixed and known set of parties under an honest-majority assumption,
we get (1− δ)-correct 1-THC for 2-connected graphs on exactly n nodes, for n ≥ 3.

Theorem 5.6. Let n ≥ 3, let G ⊆ Gn2-conn, let δ > 0, and let f be an n-party function. Then, there
exists a protocol that securely realizes Ff,δsfe with perfect security in a topology-hiding manner with
respect to G, tolerating a single semi-honest corruption.

5.1.3 Security Analysis

Proof of Lemma 5.4. The proof works by considering separately the messages associated with each
graph in G. With that in mind, let H ∈ G denote an arbitrary graph and let G ∈ G denote the
actual graph used by FGgraph (i.e., in the protocol it holds that N (u) = NG(u)). Denote the set of
messages associated with H in the protocol πδsum(`,G,Pτ ) (Figure 23) as,

MH =
{
su→vH ∈ {0, 1}`+κ : (u, v) ∈ E(〈H〉τ ) ∩ E(G)

}
.
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Protocol πδsum(`,G,Pτ )

Public Parameters: Let G ⊆ G≤n2-conn with maximal degree dmax and let τ ∈ [n]. For each H ∈ G,
let 〈H〉τ and ψH,τ denote bipolar orientation and corresponding numbering of H, respectively,
where τ is the unique sink (with ψH,τ (τ) = n). We take N+

H (u) and N−H (u) to denote the
successors and predecessors (respectively) of u in 〈H〉τ . Let κ = log(1/δ)+dmax · log(|G|) denote
the length of the checksum to be added to ensure correctness error δ.

Hybrid Model: The protocol is defined in the FGgraph-hybrid model.

The Protocol:

• Initialization: Upon receiving the input mu from the environment, each party Pu initializes
FGgraph to receive its neighborhood N (u).

• Round 1: In this round for each H ∈ G the source in 〈H〉τ (which can be different for each H ∈ G)
initializes the sub-protocol. That is, for every H ∈ G, if ψH,τ (u) = 1 (i.e., u is the source in 〈H〉τ ),
then Pu does:

– If NH(u) = N (u), then for each v ∈ N+
H (u) sample su→vH ← {0, 1}`+κ uniformly at random

conditioned on
∑
v∈N+

H
(u) s

u→v
H = mu‖1κ.

– If NH(u) 6= N (u), then for each v ∈ N+
H (u) sample su→vH ← {0, 1}`+κ uniformly at random.

• Round i = 2, . . . , n−1: In the ith round, for each H ∈ G the party numbered i in 〈H〉τ will receive a
message from all its predecessors in 〈H〉τ (that are also actual neighbors) and compute its outgoing
messages. That is, for every H ∈ G, let vH,i such that ψH,τ (vH,i) = i. Then, for each H ∈ G party
Pu proceeds as follows:

1. If u ∈ N−H (vH,i) ∩ N (vH,i) (i.e., if u is a predecessor of vH,i in 〈H〉τ and they are neighbors
in the real graph), then Pu sends to PvH,i

the message (H, su→vH,i

H ). (For this step to be
well-defined, note that by the properties of a bipolar numbering for all u ∈ N−1

H (vH,i) we have
ψH,τ (u) < i.)

2. If u = vH,i, receive (H, sv→uH ) from each v ∈ N−H (u)∩N (u). Set suH =
∑
v∈N−

H
(u) s

v→u
H . Then,

– If NH(u) = N (u), for each v ∈ N+
H (u) sample su→vH ← {0, 1}`+κ uniformly at random

conditioned on
∑
v∈N+

H
(u) s

u→v
H = mu‖0κ + suH .

– If NH(u) 6= N (u), for each v ∈ N+
H (u) sample su→vH ← {0, 1}`+κ uniformly at random.

• Round n: In the final round, for each H ∈ G the designated sink τ receives the messages for all
possible H ∈ G and reconstructs the actual message with the help of the checksum.

– For each u 6= τ : if τ ∈ N (u), then Pu sends su→τH for each H such that τ ∈ N+
H (u) to Pτ in a

randomly permuted order.
– For u = τ : Let d = |N (τ)| and N (τ) = {v1, . . . , vd}. Then for each neighbor vi ∈ N (τ),

Pτ receives (s̃vi
1 , . . . , s̃

vi
nvi

) where nvi
= |{H ∈ G : τ ∈ NH(vi)}|. For each I = (i1, . . . , id) ∈

[nv1 ]× · · · × [nvd
], let s̃I =

∑d
j=1 s̃

vj

ij
.

If there is a unique s̃I ∈ {0, 1}`+κ such that s̃I is of the form s̃I = x‖1κ for some x ∈ {0, 1}`
(i.e., a unique value s̃I that passes the checksum test), output x+mτ ; otherwise, abort.

Figure 23: Securely realizing Fsum(Pτ ) in a topology-hiding manner, for 2-connected graphs
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In round i, messages are sent to the ith node (numbered according to ψH,τ ) by each of its prede-
cessors and that node prepares its message for each of its successors. For i ∈ [n− 1] consider

Si = {su→vH ∈MH : ψH,τ (u) ≤ i ∧ ψH,τ (v) > i} .

In other words, if you order the nodes according to ψH,τ and draw a line between nodes i and i+ 1,
Si constitutes the messages corresponding to edges crossing that line.

Further, we define the messages sent to the ith node in 〈H〉τ (i.e., node vH,i such that
ψH,τ (vH,i) = i), as

S−i = {su→vH ∈MH : ψH,τ (u) < i ∧ ψH,τ (v) = i} ⊆ Si−1

and the messages sent from vH,i as

S+
i = {su→vH ∈MH : ψH,τ (u) = i ∧ ψH,τ (v) > i} ⊆ Si.

Note that this constitutes the local view of PvH,i : the set S−i is received in round i (from the 〈H〉T
predecessors in the real graph G), and S+

i is sent in subsequent rounds (to the 〈H〉T successors in
G). The sets Si, S+

i , and S−i are illustrated in Figure 24.

1

2

i− 1

i + 1

n

i

S i

S+
i

S−i

Figure 24: The sets S+
i , S−i , and Si in the intersection of the real graph G and the bipolar ori-

entation of H. Thick arrows are in both G and H while thin arrows are in H but not
in G.

The following lemma says, among other things, that messages received by the ith intermediate
node in 〈H〉τ , S−i , are uniformly random. If the graph H is consistent with the real graph G, then
τ receives random messages conditioned on them summing to the correct value. And as soon as
a neighborhood doesn’t match the real graph, H, everything is uniformly random from that point
on.

Claim 5.7. Recall that vH,i such that ψH,τ (vH,i) = i is the ith node in 〈H〉τ for i ∈ [n].24 For each
h ∈ [n], we distinguish between two cases:

24To account for the case i /∈ Im(ψH,τ ), which can happen if H has less than n nodes, we set vH,i = 0, NH(vH,i) =
{0}, and mvH,i = 0.
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1. If NH(vH,i) = N (vH,i) for all i ≤ h, then for all i ≤ h, the set Si consists of independently and
uniformly distributed strings from {0, 1}`+κ such that

∑
s∈Si s = (

∑
j≤imvH,j )‖1κ. Moreover

for i ≤ h, it holds that:

• If i = 1, the set S−i is empty;
• If 1 < i < n, S−i is a set of independently and uniformly distributed strings from {0, 1}`+κ
(Note that |S−i | only depends on local information and the class itself);
• If i = n, S−i (= Sn−1) is a set of independently and uniformly distributed strings from
{0, 1}`+κ such that

∑
s∈S−i

s = (
∑
u∈V (H)mu)‖1κ.

2. If NH(vH,j) 6= N (vH,j) for some j ≤ h, then Sj is a set of independently and uniformly
distributed strings from {0, 1}`+κ. Moreover for all j′ > h, S−j′ is a set of independently and
uniformly distributed strings from {0, 1}`+κ.

Proof. We prove the claim by induction. By inspection, the claim holds for h = 1. The node vH,1
prepares S1 in round 1 in this manner exactly, i.e., uniform conditioned on the sum being mvH,1‖1κ
if NH(vH,1) = N (vH,1), and uniform otherwise.

To prove the inductive step, assume the statement holds for some h ∈ [n−1], and we will prove
it for h+ 1. Note that,∑

s∈Sh
s =

∑
s∈S−

h+1

s+
∑

s∈Sh\S−
h+1

s and
∑

s∈Sh+1

s =
∑

s∈S+
h+1

s+
∑

s∈Sh\S−
h+1

s.

Therefore, ∑
s∈Sh+1

s =
∑
s∈Sh

s−
∑
S−
h+1

s+
∑

s∈S+
h+1

s.

In addition, note that if h /∈ Im(ψH,τ ), then Sh = Sh+1. So, we will restrict our attention to the
opposite case.

Case 1. In this case, NH(vH,i) = N (vH,i) for all i ≤ h. By the inductive hypothesis, Sh is
uniformly random such that

∑
s∈Sh s = (

∑
i≤hmvH,i)‖1κ. Because NH(vH,h+1) = N (vH,h+1), the

set S+
h+1 consists of independently and uniformly distributed strings conditioned on

∑
s∈S+

h+1
s =

mvH,h+1‖0κ +
∑
s∈S−

h+1
s. Thus, we have that Sh+1 consists of independently and uniformly dis-

tributed strings conditioned on∑
s∈Sh+1

s =
∑
s∈Sh

s−
∑

s∈S−
h+1

s+
∑

s∈S+
h+1

s = (
∑
j≤h

mvH,j )‖1κ +mvH,h+1‖0κ = (
∑

j≤h+1
mvH,j )‖1κ.

Moreover, because G is 2-connected, there are at least two vertex-disjoint source-sink paths in 〈G〉τ .
This means that for h + 1 < n − 1 there is a source-sink path that does not go through vH,h+1,
and thus Sh \ S−h+1 is non-empty. Because Sh is uniform conditioned on summing to some value,
it holds that S−h+1 is uniformly distributed.
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Case 2. In this case, NH(vH,j) 6= N (vH,j) for some j ≤ h. If NH(vH,h+1) = N (vH,h+1), then it
must be the case that NH(vH,j) 6= N (vH,j) for some j ≤ h, in which case Sh is uniformly distributed
by the inductive hypothesis. It follows that Sh \ S−h+1 and S−h+1 are comprised of uniform and
independent values (and S−h+1 is non-empty becauseH is connected and h+1 cannot label a source).
Thus, the set Sh+1 (i.e., the disjoint union of S+

h+1 and Sh\S−h+1) is comprised of uniformly random
values because S+

h+1 is uniformly random conditioned on summing tomvH,h+1‖0κ+
∑
s∈S−

h+1
s, which

is a uniformly random value.
IfNH(vH,h+1) 6= N (vH,h+1), then S+

h+1 consists of (zero or more) uniformly random independent
values. As by assumption we have h + 1 ∈ Im(ψH,τ ) and vH,h+1 is not the source, it holds that
either S−1

h+1 is not empty (i.e., there exists an ingoing edge to vH,h+1 in 〈H〉τ ), or it must be that
NH(vH,j) 6= N (vH,j) for some j ≤ h. In the latter case, Sh is uniformly random by the inductive
hypothesis and thus so is Sh+1 = S+

h+1 ∪ (Sh \ S−h+1) = S+
h+1 ∪ Sh.

If S−h+1 is non-empty, it follows from the inductive hypothesis that Sh \ S−h+1 is comprised of
uniformly random values. So if S+

h+1 is empty, then Sh+1 = Sh \ S−h+1 and thus is uniform. If
S+
h+1 is non-empty, then again by the inductive hypothesis we have that Sh+1 (the disjoint union

of S+
h+1 and Sh \ S−h+1) is comprised of uniform independent values. This concludes the proof of

Claim 5.7.

From Claim 5.7, it follows that the messages sent to τ in round n that correspond to H ∈ G are
uniformly random such that they sum to (

∑
u∈V (H)mu)‖1κ if G = H, and are completely uniformly

random otherwise. Moreover, the messages corresponding to each graph are independent of one
another.

Thus, we can bound correctness error simply by the probability that some other combination
of messages (one from each neighbor of τ) not all corresponding to G sum to x‖1κ. Since τ has
degG(τ) ≤ dmax neighbors, by a union bound (and since κ = log(1/δ) + dmax · log |G|) this happens
with probability at most

2−κ · |G|degG(τ) = δ · |G|degG(τ)

|G|dmax
≤ δ.

Remark 5.8. Note that the probability of bad checksum only depends on G and degG(τ). Thus,
by simply not outputting (conditioned on receiving a unique valid checksum) with the appropriate
probability we can perfectly simulate the functionality that outputs τ with probability (exactly) 1−δ.

Similarly, it follows from Claim 5.7 that for non-terminal parties Pu 6= Pτ , the messages re-
ceived corresponding to any particular H ∈ G are independent, uniform and received from each
neighbor v ∈ N−H (u) ∩ N (u) in round ψH,τ (u). Moreover, messages corresponding to distinct H’s
are independent. Because of that the view of the terminal party Pτ in round n is simply uniformly
random conditioned on a random combination (one from each neighbor) summing to (

∑
jmj)‖1κ.

Thus, the simulator below is a perfect simulation of the view of any party Pu.

The Simulator. The simulator Sim, controlling party Pu, begins by receiving N (u) from
WGgraph-info(Fδsum(`,Pτ )) and the input mu from the environment; denote d = |N (u)| and N (u) =
{v1, . . . , vd} . Sim sends mu to WGgraph-info(Fδsum(`,Pτ )) and if u = τ , it receives the output y.

For Pu = Pτ : Sample random (i1, . . . , id) ∈ [n1]× · · · × [nd], where nj = |{H ∈ G : vj ∈ NH(τ)}|.
For each vj ∈ N (τ), sample a tuple of nvj independent uniformly random strings sj =
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(s̃j1, . . . , s̃jnvj ) conditioned on the fact that
∑d
j=1 s

j
ij

= y‖1κ.

Before round n, the transcript of Pτ is empty. In round n, Pτ receives sj from each neighbor
vj .

For Pu 6= Pτ : In each round i = 2, . . . , n−1, for each graph H ∈ G such that ψH,τ (u) = i and each
neighbor v ∈ N−H (u) ∩ N (u), Sim simulates Pu receiving an independent uniformly random
message, and sending messages as in an honest execution of the protocol on input mu.

This concludes the proof of Lemma 5.4.

5.2 2-Connectivity is Not Necessary for 1-IT-THB (Butterfly Graph)

In prior sections we established a separation between 1-THAB and 1-THB, where the additional
knowledge of the broadcaster can be leveraged. Namely, we presented graph classes for which
1-IT-THB can be trivially achieved via the flooding protocol, but 1-THAB requires computational
cryptographic assumptions; e.g., 1-THAB on the class of three parties on a line implies key agree-
ment (Proposition 4.1), and constant-round 1-THAB on G2-vs-3 implies infinitely often OT (Theo-
rem 4.4). In this section, we provide a stronger separation by presenting classes of graphs on which
1-IT-THAB is impossible and flooding is not topology hiding, but there still exist 1-IT-THB.

One such example is the family of butterfly graphs (Figure 25). As this class is not 2-connected,
Proposition 4.1 rules out 1-IT-THAB. Further, given any graph in this family, a non-center node
cannot tell which of its neighbors is central and which is not, and the center node cannot tell which
of its neighbors are connected. For these reasons the flooding protocol is not topology hiding, since,
for example, a party of distance 2 from the broadcaster will learn which of its neighbors is central
(the one who sends the message in the second round). Nevertheless, we show 1-IT-THB with perfect
security can be achieved for this class.

Definition 5.9 (Butterfly graph). We denote by G12-3-45 the butterfly graph consisting of 5 nodes
{1, 2, 3, 4, 5} and 6 edges {(1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5)} (see Figure 25), in which the center
3 forms one triangle with {1, 2} and a second with {4, 5}. We denote by Gbutterfly the family of all
permutations of the butterfly graph.

3

41

52

Figure 25: The class of butterfly graphs consists of all possible permutations of the graph depicted
above with nodes in {1, 2, 3, 4, 5}.

Theorem 5.10 (IT-THB on butterfly). There exists a 1-IT-THB protocol with respect to Gbutterfly
with perfect security.
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The main idea of the protocol is to run four reliable message transmission (RMT) protocols,25

where the broadcaster PBC acts as the sender and each of the other parties acts as the receiver PR
in one of the RMT executions. In an RMT execution, PBC sends the message in the first round
to the center node, who then forwards it to PR. Two problems arise: First, the center node must
deliver the message to PR obliviously, so that PR won’t realize which of its neighbors is the center.
We overcome this issue by splitting up the message into two additive secret shares and sending one
share to PR directly and the other share via its neighbor. The second problem is that the center
node does not know which is the neighbor of PR, it therefore prepares a share for every possible
neighbor. To hide the identity of the center node, all other parties behave accordingly, preparing
secret shares of 0 for PR. Finally, PR can choose the correct shares, as it knows the identity of its
neighbors, and reconstruct the message.

This protocol almost suffices for transmission of the message to PR without leaking the topology,
but there is one special case left to consider, namely if the center node itself is PR. In this case it
could learn which neighbors are connected (by seeing which pairs of messages can be reconstructed
to 0). We solve this by adding a blinding factor, which only comes into play if PR is the center node.
More precisely: If PR has two neighbors (i.e., is not the center party), then in the first round PR
will send the same value to both its neighbors (in this case the additional blinding will be canceled
out later). If PR has four neighbors (i.e., is the center node), then in the first round PR will send
distinct values to all its neighbors (in order to allow for this we have to work over a field with at
least four elements, say over F4 = Z[X]/〈X2 +X + 1〉), in which case the blinding terms will hide
which of the parties are connected. The blinding term itself is agreed on in the second round by
each pair of neighbors.

The formal description of the protocol is given in Figure 26.

Lemma 5.11. The protocol πbutterfly is a perfectly secure 1-THB protocol with respect to Gbutterfly.

Proof. We start by proving correctness. If PR is the center node then correctness is obvious.
Otherwise, the output equals

γvu ⊕ γuv = m0
v,u ⊕m1

u,v ⊕ βu · (bv,u ⊕ bu,v)⊕m0
u,v ⊕m1

v,u ⊕ βv · (bu,v ⊕ bv,u)
= (m0

v,u ⊕m1
v,u)⊕ (m0

u,v ⊕m1
u,v)⊕ (βu ⊕ βv) · (bv,u ⊕ bu,v)

= m⊕ 0 = m,

as βu = βv.
We proceed to prove security. Let Pv∗ be the corrupted party and mv∗ ∈ {0, 1, ε} its input. The

simulator forwards mv∗ to the wrapped functionality WGbutterfly
graph-info(Fbc(PBC)) and receives m and the

neighbor-set NG(v∗).
The simulator simulates a real execution of πbutterfly(PBC) as follows. If PBC ∈ NG(v∗), the

simulator sends (B,m) to the adversary in the first step. In the second step, for all u ∈ NG(v∗)
the simulator samples random blinding terms bu,v∗

R← F4 and sends (u, bu,v∗) to the adversary. In
each round with R ∈ NG(v∗), to simulate the third step the simulator samples a random βv∗

R← F4
and sends (R, βv∗) to the adversary. Else, the simulator receives βu from the adversary for each

25Reliable message transmission refers to the concept of transmitting messages in an incomplete network such that
the receiver is guaranteed to receive the message [12, 13]. In our setting the challenge is to realize reliable message
transmission in a topology-hiding manner. Note that as described in the following, reliable message transmission in
particular implies broadcast in the semi-honest setting.
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Protocol πbutterfly(PBC)

Hybrid model: The protocol is defined in the FGbutterfly
graph -hybrid model.

Input: The broadcaster PBC holds an input m ∈ {0, 1}.
The protocol:

• Each party Pv sends an initialization message to FGbutterfly
graph and receives its neighbour-set N (v).

• Repeat for each receiver PR:

1. Forwarding the message to the center node. The sender PBC sends the message m to its
neighbors; in particular the center party receives m.

2. Generating blinding terms. Every party Pu 6= PR chooses a random blinding term bu,v
R← F4

for every v ∈ N (u) and sends bu,v to Pv.
3. Generating suitable offsets. Party PR generates values βu for its neighbors as follows:

– If PR is the center party, it samples a fresh βu
R← F4 for each u ∈ N (R), conditioned on

all values being distinct, and sends βu to Pu.
– Otherwise, PR chooses β R← F4, sets βu ..= β for both u ∈ N (R), and sends βu to Pu.

4. First round of forwarding m from the center to PR. Every party Pu 6= PR chooses a message
m0
u,v

R← F4 for every v ∈ N (u) and sends mu,v to Pv. Further:
– If Pu is the center party, it sets m1

u,v
..= m⊕m0

u,v. //secret share m
– Otherwise, if R ∈ N (u), Pu sets m1

u,v
..= m0

u,v. //secret share 0
5. Second round of forwarding m from the center to PR. Note that in this step only parties Pu

with u ∈ N (R) send messages, and only PR receives messages.
For u ∈ N (R), party Pu sets γvu ..= m0

v,u ⊕m1
u,v ⊕ βu · (bv,u ⊕ bu,v) for every v ∈ N (u) \ {R},

and randomly chooses γvu
R← F4 for every v /∈ N (u). Finally, Pu sends {(v, γvu)}v 6=R to PR.

• If PR is the center, it outputs m; otherwise, it outputs γvu ⊕ γuv , where N (R) = {u, v}.

Figure 26: Information-theoretic 1-THB over Gbutterfly

u ∈ NG(v∗). In the fourth step, for each u ∈ NG(v∗), the simulator chooses a random message
m0
u,v∗

R← F4, sends (u,m0
u,v∗) to the adversary, and receives m0

v∗,u.
Finally, in the rounds with v∗ = R, the simulator proceeds as follows:

• If Pv∗ is the center node, then for each u 6= v∗ and for each v /∈ {u, v∗}, the simulator samples
γvu

R← F4 at random and sends (u, {v, γvu}v 6=v∗) to Pv∗ .

• Otherwise, let NG(v∗) = {u, v}; the simulator samples γvu, γuv
R← F4 conditioned on γvu ⊕ γuv =

m. For all w /∈ NG(v∗) ∪ {v∗}, the simulator samples γwu , γwv
R← F4 at random and sends

(u, {w, γwu }w 6=v∗) (and accordingly for v) to the adversary.

Note that the simulation exactly mirrors the protocols behavior except for the last step. We
therefore only have to analyze the round where v∗ is the receiver.
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• If Pv∗ is the center node, note that from the view of Pv∗ in a real protocol execution every
message γvu (for u, v 6= v∗) is distributed uniformly at random, because Pv∗ does not know
m0
v,u. It is left to argue that also the joint distribution of γvu and γuv is uniform, because we

have m0
v,u = m1

u,v. This is true, because γvu ⊕ γuv = βu · (bv,u ⊕ bu,v) ⊕ βv · (bu,v ⊕ bv,u), and
we are guaranteed βu 6= βv (as we only consider semi-honest adversaries). Therefore, the
simulated view is distributed identically to the view of Pv∗ in a real protocol execution.

• Otherwise, the messages γvu and γuv for NG(v∗) = {u, v} in a real execution are indistinguish-
able from random conditioned on γvu⊕γuv = m, since Pv∗ has no knowledge of m1

u,v and m1
v,u.

Further, for all w /∈ NG(v∗) ∪ {v∗}, the values γwu and γwv are random from the point of view
of Pv∗ , as Pv∗ does not know m0

w,u and m0
w,v and each of these terms appear once only.

This concludes the proof of Lemma 5.11.

6 Key-Agreement Upper Bounds
In this section we present our KA-based upper bounds. In Section 6.1 we show that 1-THAB can
be achieved, assuming KA, on every class of graphs that contain at least 3 nodes (i.e., where an
honest majority is guaranteed), and in Section 6.2 that 1-THB can be achieved, assuming KA, on
every class of graphs.

6.1 KA is Sufficient for 1-THAB on All Graphs with at Least Three Nodes

We start by showing that key agreement is sufficient to achieve 1-THAB on all graphs with at least
three nodes; in other words, on all graphs where an honest majority is guaranteed. As shown in
Section 4.2, this is the best we can hope to achieve for general classes of graphs, since if the class
contains a 2-path as well as a 3-path infinitely often OT is required.

At its core, the protocol works by having each pair of neighbors emulate a virtual party, whose
internal state is secret shared between them. These virtual parties—corresponding to edges in the
network—broadcast by running a modified version of flooding on the line graph of the network.
In each round the virtual parties hold a partial OR of some of the inputs, and at each round
will update this by OR-ing it with those of the neighboring parties; then, in the final round, their
(secret shared) outputs are reconstructed by the real parties, who then learn the broadcast message.
Communication from one virtual party to the next can be achieved using a key-agreement protocol,
but we must ensure the “degree” of each virtual party (i.e., the number of other virtual parties it is
adjacent to in the line graph) remains hidden. Indeed, uv, the virtual party emulated by neighbors
u and v, has to communicate with deg(u) + deg(v) other virtual parties and this leaks deg(u) to v
and deg(v) to u. This issue is dealt with by having it update its state with the neighboring virtual
parties in a circular fashion: this way, uv only needs to interact with the previous one on u’s side
and the next one on v’s side. As discussed in the Introduction (Section 1.2.4), we introduce the
dead-end channels technique to deal with the case where u or v has degree one; hence, when the
previous or next virtual party is entirely simulated by u or v (which should not be allowed to learn
the partial-OR too early).

Virtual Parties. The player whose label in the communication graph is u will be denoted u .
In addition to these real players, the protocols in this section will introduce some virtual parties,
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each emulated by a pair of neighbors in the graph. The virtual party emulated by 1 and 2 , for
instance, will be denoted 1-2 . We extend this notion to include “fake” virtual parties, between two
real parties which are not neighbors; it may even be that one of the two is not even in the graph.
Supposing 1 and 2 are two non-neighboring parties in the graph, 1-2 denotes both the virtual
party entirely emulated by 2 (who is pretending to talk to 1 ) and the one entirely controlled
by 1 ; however, this abuse will not lead to any confusion as the notation should be clear from
context. There are therefore two types of virtual parties: those between two (distinct) neighboring
parties in the graph, and which we call good, those which are not—e.g., 1-2 or 2-4 in the graph
2 - 3 - 4 —and which we call bad.

Reminder: OT correlations. Beaver [5] showed that OT can be “precomputed” in the following
sense. Consider a trusted dealer that independently and uniformly samples three bits s,R0, R1 ←
{0, 1}. The dealer gives (s,Rs) to the OT receiver and (R0, R1) to the OT sender. Next, on inputs
b ∈ {0, 1} and (m0,m1) ∈ {0, 1}2, resp., the OT receiver and sender proceed as follows:

1. The receiver sends β ← s⊕ b to the server.

2. The sender crafts the following two messages C0 and C1, then sends (C0, C1) to the receiver:

• If β = 0: Cσ ← mσ ⊕Rσ, for σ ∈ {0, 1}.
• If β = 1: Cσ ← mσ ⊕R1−σ, for σ ∈ {0, 1}.

3. The receiver outputs Cb ⊕Rs (which is equal to mb).

In particular, note that two OT correlations are sufficient for the secure computation of an OR
b0 ∨ b1 between an input bit b0 of the receiver and an input bit b1 of the sender.

6.1.1 High-Level Overview

In the following we describe the THAB protocol, on a graph G = (V,E). We will outline the scheme
for the special case of classes of paths of unknown length (subject to some public upper bound, and
lower-bounded by three) and then provide a generalization to classes of arbitrary graphs with at
least three nodes.

Overview Part 1: Secure Flooding between Good Virtual Parties. For the purposes of
presenting the high-level idea of the protocol it is sufficient to consider as an example the class
containing exactly the paths 1 - 2 - 3 - 4 and 2 - 3 - 4 , as it captures all the technical difficulties.
Here, hiding the topology and the identity of the broadcaster means in particular that parties 3
and 4 should not learn whether party 1 is present, and no party should learn their distance to the
broadcaster. Our protocol will introduce virtual parties 1-2 , 2-3 , and 3-4 which are represented
in Figure 27 by pink bars. The first may be either good or bad depending on the graph, while the
other two are always good.
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b1,2 b3,4

b3,2

b4,3

b2,3

b2,1

Figure 27: Path 1 - 2 - 3 - 4 versus path 2 - 3 - 4 .

The state of virtual party u-v is additively secret shared as two bits bu,v and bv,u, held
respectively by u and v (unless the virtual party is bad, in which case both are held by the same
node). This state is initialized to 0, i.e., bu,v = bv,u ← {0, 1}. Finally, the broadcaster will add the
message m to its shares, i.e., u , if broadcasting, would redefine bu,v ← bu,v ⊕m for each neighbor
v ∈ NG(u). The protocol works by maintaining the following invariant:

Invariant: At the end of round k, the state of every good virtual party u-v is the
OR of the input bits of all parties in the union of the k-neighborhoods of u and v .
Additionally the state of every bad virtual party is random.

It follows that after diameter rounds, each pair of neighbors holds the OR of the input bits of all
the parties, which is the broadcast bit.

We first describe a simplified scheme which two neighboring virtual parties, i.e., virtual parties
sharing a real party, can use to compute the OR of their states. This protocol is always correct,
and is secure if both virtual parties are good. We will then show how to boost security to tolerate
bad ones.

Step 1: Simplified Initialization: Each party establishes a secure channel with each neighbor’s
neighbor. (If 1 is not present, 2 will simulate the key exchange, i.e., establish a secure
channel with 3 by playing the role of 1 ). In the following, we simply write “ 3 sends a
message to 1 ” to signify that 3 sends a message to 1 via the secure channel established
during initialization.

Step 2: Computing the new message: The following updates the state of the virtual party
2-3 as the OR of its message and the message held by 1-2 . For now, assume that if 1 is
not present it is fully simulated by 2 . The parties proceed as follows:

• 2 sends b2,1 to 3 .
• 2 sends b2,3 to 1 .
• 2 sends two OT correlations to 1 and 3 .

Now, 1 and 3 can use the OT correlations to compute β1,3 and β3,1 such that

β1,3 ⊕ β3,1 = (b1,2 ⊕ b2,1) ∨ (b2,3 ⊕ b3,2).

Step 3: Redistributing the new message: Parties 1 and 3 pass on the new message to the
virtual party 2-3 as follows:

• Parties 1 and 3 agree on a random value s1,3 (hidden from 2 if 1 exists).
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• Party 3 chooses a share bnew
3,2 and sends β3,1 ⊕ s1,3 ⊕ bnew

3,2 to 2 .
• Party 3 sends β1,3 ⊕ s1,3 to 2 .
• Party 2 can now receive its share of the new message of 2-3 via:

bnew
2,3 = (β3,1 ⊕ s1,3 ⊕ bnew

3,2 )⊕ (β1,3 ⊕ s1,3).

This protocol is correct, but not topology-hiding because 2 is potentially in control of both party
1 and 2 and therefore may learn in which round the message reaches the virtual party 1-2 . We
thus have to alter the initialization phase, letting 2 simulate the setup of a secure channel between
3 and a non-existing party without learning the key itself. This can be achieved, again, using a
third party to set up OT correlations.

Overview Part 2: “Dead-End Channels.” We now explain how establishing dead-end chan-
nels (as discussed in Section 1.2.4) solves the previous security problem introduced by bad virtual
parties.

Step 1: Initialization: The parties proceed as follows.

• Setting up keys with each neighbor’s neighbor. This step is the exact same as the simplified
initialization from the previous scheme: each party establishes a secure channel with each
neighbor’s neighbor, where we assume that 2 simulates 1 if the latter is not present. We
denote ku,v the key established by u with v . Exemplifying, the result of 3 establishing
a secure channel with 1 is depicted below.
– If 1 is present:

3 421

k3,1 k3,1

– If 1 is not present:

3 421

k3,1 k3,1

• Establishing dead-end channels. If a party is not present—i.e., when a good virtual party
attempts to communicate with a bad one—we want to replace the (in fact in-)“secure”
channel to that party with a dead-end channel, over which the party that is simulating a
bad virtual party cannot gain any information. This replacement must be done obliviously
with respect to the other party. In our example class, the only dead-end channel which
may potentially need to be established is between 3 and 2 —i.e., when 2-3 needs to send
a message to 2-1 . This can be achieved as follows: 3 chooses a fresh key k∗3,2 for its
neighbor 2 . The idea is that 2 can choose, whether it wants to receive the key k∗3,2 or
not, depending whether 1 exists or not. This is done by letting 4 set up OT-correlations
for 3 and 2 , where 3 acts as sender and 2 as receiver. (To pass on the correlation to 2 ,
party 4 uses the secure channel established in the first step.)
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Now, 2 uses the newly generated OT channel with 3 to receive k?3,2 if and only if 1 exists.
Then, if 1 exists, 2 forwards k∗3,2 to 1 , who defines the new key as k∗3,2⊕k3,1, as depicted
below; this key is shared with 3 .
– If 1 is present:

3 421

k∗3,2 ⊕ k3,1 k∗3,2 k∗3,2 ⊕ k3,1

– If 1 is not present:

3

k∗3,2 ⊕ k3,1

421

k3,1 k∗3,2 ⊕ k3,1

In particular, 3 has either established a secure channel to 1 if 1 is present, or a dead-end
channel26 otherwise, but is oblivious to which it is. From now, by sending a message, e.g.,
from 3 to 1 we mean sending a message encrypted with k∗3,2 ⊕ k3,1. When using only the
key k3,1 for encryption (which will be crucial to establish correctness in the following), we
will be explicit.

Note that simulating the OT correlations when establishing dead-end channels (even for more
general graphs) does not leak anything about the topology because when u has degree one it
already knows that its neighbor v must have degree at least two and therefore will choose to
receive the key k?·,· (as we are guaranteed |V | ≥ 3).

One problem left to solve is to ensure that correctness is preserved if 1 does not exist, as 2 no
longer knows the keys used to encrypt the messages to and from 1 . This can be solved by redefining
how the new message of the virtual party is computed, such that 2 can ensure correctness even if
1 does not exist, while keeping the topology—and therefore in particular the message held by the
(simulated) virtual party 1-2 —hidden from 2 .

Note that we assume that 2 can still simulate the messages of 1 (without learning their content)
by simply sending random strings. Assuming that all messages are encrypted via one-time pads
(by either setting up a long enough key or by using the key as seed to a pseudorandom function),
this is indistinguishable from the view of 3 .

Step 2: Computing the new message: 1 and 3 compute β1,3 and β3,1 as before, but now use
the key k∗3,2⊕ k3,1 to encrypt their communication (i.e., any information sent between 1 and
3 is in any case hidden from 2 ).

Step 3: Redistributing the new message: To pass on the message from 1 and 3 to the vir-
tual party 2-3 , the parties proceed as follows:

• Parties 1 and 3 agree on a random value s1,3 (hidden from 2 if 1 exists).

26The channel is a dead-end because 3 used a KA protocol to set up a shared key with who they thought was
1 , simulated by 2 , but 2 obliviously elected not to learn this key. Therefore, whatever information 3 sends over
this channel is lost.
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• 1 (potentially simulated by 2 ) sends a random message r1,3 to 3 , encrypted by k3,1.
(Note that if 1 exists this message is hidden from 2 , but if 1 does not exist, 2 has
full control over the channel.)
• 2 sends a random message r2,3 to 3 .
• 1 sends β1,3 ⊕ s1,3 to 2 .
• 3 sets bnew

3,2 ← b3,2 ⊕ r1,3 ⊕ r2,3 and sends β3,1 ⊕ s1,3 ⊕ bnew
3,2 to 2 .

• If 1 exists, 2 defines its new share as: bnew
2,3 ← (β3,1 ⊕ s1,3 ⊕ bnew

3,2 )⊕ (β1,3 ⊕ s1,3).
If 1 does not exist, 2 defines its new share as: bnew

2,3 ← b2,3 ⊕ r1,3 ⊕ r2,3.

We re-established correctness, as now the new value of the virtual party 2-3 is simply a re-
randomization of its previous shares. Note that if 1 exists, bnew

2,3 constitutes a perfectly random
fresh share both from the view of 2 and 1 individually, therefore the above change does not hurt
security.

Overview Part 3: From Paths to General Graphs. The setting for general graphs is more
difficult, because parties no longer know the identities of their neighbors. We solve this by organizing
communication in a particular way that is locally determined and globally consistent. Again, we
consider each pair of neighbors as a virtual party, i.e., in the example below the virtual parties are
z-w , v-w , u-v , and v-x . Second, to decide on how the message is passed along, each node
with degree > 1 establishes a cyclic ordering on their neighbors, e.g., (Figure 28) v established
the ordering u → w → x → u . The parties that only have one neighbor will simulate another
neighbor, for example (Figure 28) z will set up w → z → w . Note that it is crucial that the
neighbors never learn the actual identity of their next node and predecessor according to such an
ordering.

v x

u

wz

Figure 28: Examples of cyclic orderings.

Now, the idea is that the message is passed along node-by-node according to this cyclic ordering.
In each step, one node will act as the center node. These steps are predetermined by the label in
[n], therefore each node (and its neighbors) know exactly in which round it is their turn. Further,
the operations are local, so all nodes that are not direct neighbors are not affected. In the following
we will describe the protocol at the example of v .

When it is v ’s turn, each neighbor will set up a key with their next node (without learning
their identity), i.e., u will set up a key with w , w will set up a key with x , and x will set up
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a key with u . In the next step the parties potentially set up dead-end channels — exactly as 2
did when 1 was not present in our example of a line. This will, e.g., prevent z from learning the
messages sent by w to its simulated next node.

Once the secure channels are established, the message is passed through the graph as follows: Let
mv,w,mv,x, andmv,u be the messages held by the parties v-w , v-u , and v-x , respectively, before
it is v ’s turn in the protocol. Then, afterwards, all three virtual parties will holdmv,w∨mv,x∨mv,u.
To achieve this, in each step (in parallel) v-? and v-nextv? will compute the OR of their messages
and pass it on to v-? , for each neighbor ? of v . For example, v-u and v-w will compute
mv,u ∨mv,w (by v acting as the center node and dealing out OT correlations), and pass it on to
the virtual party v-u . By repeating this sufficiently many times (in particular, at most n), in
the end all virtual parties containing v will hold the value mw,v ∨mv,x ∨mv,u. Parties that have
degree one proceed exactly according to party 2 before, simulating dealing out OT correlations
and computing the secure OR (obliviously) and finally set their shares as a fixed re-randomization
of the old shares.

Note that in one round of the protocol, with this strategy the message travels at least distance
one (as was the case for the line). Thus, after n rounds, all virtual parties will hold the broadcast
message.

6.1.2 The Protocol

For an integer n, denote the set of all graphs with V ⊆ [n] that consist of at least 3 nodes by

G3≤V≤n = {G graph : V (G) ⊆ [n], |V (G)| ≥ 3} .

Theorem 6.1 (KA is sufficient for 1-THAB on all graphs of size at least 3). Let n ∈ N and let
G ⊆ G3≤V≤n. Assuming the existence of a key-agreement protocol, there exists a 1-THAB protocol
with respect to G.

Proof. For the protocol we refer to Figure 29.

Correctness. We first consider the case that all parties are honest and show that in this case
every party obtains the correct output, conditioned on all the key agreements being successful,
which occurs with all but negligible probability.

We start by considering the first phase of the protocol, where the parties set up secure channels.

Setting up secure pre-channels. The parties invoke the KA protocol poly(n) times, such that
each pair of parties obtains long enough keys to encrypt all further communication. Since we
conditioned on all the KA protocols being correct, for each v ∈ NG(u) parties u and nextv(u)
established a functioning channel channel1

u→nextv(u) encrypted by ku,nextv(u).

Setting up secure/dead-end channels. As the OT correlations are perfect, v and thus nextv(u)
will learn k∗u,v (generated by u ) whenever it has degree at least two. Thus, for all v ∈ [n] and
u ∈ NG(v), the parties u and nextv(u) established a functioning channel channel2

u→nextv(u)
encrypted via ku,nextv(u) ⊕ k∗u,v.

After initialization, for each edge {u, v} in the graph, we have b0u,v ⊕ b0v,u = m if either u or v is
the broadcaster, and b(0)

u,v ⊕ b0v,u = 0, otherwise. We will prove the following invariant:
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Protocol πAB

Hybrid model: The protocol is defined in the FG3≤V ≤n

graph -hybrid model.

Input: The broadcaster holds an input m ∈ {0, 1}.
The protocol:

• Each party v sends an initialization message to FG3≤V ≤n

graph and receives its neighbor-set N (v).

• Setting up secure channels.

– Establishing an ordering on the neighbors. For each v ∈ [n]:
∗ If v has degree ≥ 2: v sets an arbitrary cyclic permutation on its neighborhood; we use

nextv(·) and predv(·) to denote the successor or predecessor of neighbors of v respective
to permutation. //Note that the neighbors will not learn who their actual successor and
predecessor is.

∗ If v has degree 1: v will simulate a second neighbor, i.e., for the unique u ∈ N (v) we set
nextv(u) = predv(u) = v. In particular, throughout the protocol execution in this case v
will delay the messages accordingly to perfectly simulate a real neighbor.

– Setting up pre-channels. For each v ∈ [n] and u ∈ N (v):
∗ u and nextv(u) establish a (long) key ku,nextv(u) using KA ( v acting as relay between

them to exchange their messages). In the following, “ u sends a message m to nextv(u) via
channel1

u→nextv(u)” is used as shorthand for “ u encrypts m under (a portion of) ku,nextv(u),
then sends the ciphertext to v who passes it on to nextv(u) , who then decrypts it using
ku,nextv(u)”. //In case v has degree one, v simulates nextv(u) and therefore has full access
to channel1

u→nextv(u)(otherwise, the channel is secure).

– Setting up secure/dead-end channels. For each v ∈ [n] and u ∈ N (v):
∗ predu(v) deals (many) OT correlations to u and — via channel1

predu(v)→v— to v , such that
u acts as sender and v as receiver.

∗ u chooses a (long) fresh key k∗u,v, sets m0 = k∗u,v and m1 = 0, and v sets b = 0 if and only
if it has degree at least two. The parties use the OT correlations dealt by predu(v) to allow v
to securely receive mb. //Even if u has degree one and therefore sets up the OT correlations
itself, it does not learn anything as in this case it already knows that v must have degree at
least 2 (and therefore pick b = 0).

∗ If v has degree at least two, it forwards k∗u,v to nextv(u) . In the following, u sends a message
m to nextv(u) via channel2

u→nextv(u) is used as shorthand for u encrypts m under (a portion
of) ku,nextv(u)⊕k∗u,v, then sends the ciphertext to v who passes it on to nextv(u) for decryption.
//In any case, v has no access to messages sent via channel2

u→nextv(u)(the channel is either
secure or has a dead-end).

• Initializing the messages of the virtual parties to m or 0.

– For each v ∈ [n] and u ∈ N (v), party v sends a random share ρv,u to u .
– For each v ∈ [n], party v sets b0

v,u = ρv,u ⊕ ρu,v ⊕mv, where mv = m if v is the broadcaster
and mv = 0, otherwise. //A virtual party u-v holds message b0

u,v ⊕ b0
v,u = m at the end of this

step, if and only if it contains the broadcaster.

Figure 29: 1-THAB on the class G3≤V≤n.
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Protocol πAB (cont’d)

• Passing on the message along the virtual parties. In each round k ∈ [n], for each party
v ∈ [n] (one by one), for each neighbor u ∈ N (v) (in parallel):
Set bk−1,0

(·,·)
..= b

(k−1)
(·,·) . For each i ∈ [n] proceed as follows:

– Computing the new message.
∗ v sends bk−1,i−1

v,nextv(u) to u if nextv(u) 6= v. Otherwise, v sends a random message to u .
∗ v sends bk−1,i−1

v,u to nextv(u) .
∗ v distributes two OT correlations to u and nextv(u) .

Now, u and nextv(u) can use the OT correlations to securely compute values βk−1,i
u,nextv(u),

βk−1,i
nextv(u),u (held by u and nextv(u) , respectively) such that

βk−1,i
u,nextv(u) ⊕ β

k−1,i
nextv(u),u = (bk−1,i−1

u,v ⊕ bk−1,i−1
v,u ) ∨ (bk−1,i−1

nextv(u),v ⊕ b
k−1,i−1
v,nextv(u)),

where all communication goes via channel2
u→nextv(u). If nextv(u) = v, then v simulates the

above step by replacing all messages sent via channel2
u→nextv(u) by random values. //Note that

communication via channel2
u→nextv(u) is encrypted using one-time-pad encryption and the OR

is computed by each opening two OT correlations (and sending no other messages).
– Redistributing the new message. To pass on the message from u and nextv(u) to the virtual

party u-v , the parties proceed as follows.
∗ u sends a random message sk−1,i

u,nextv(u) to nextv(u) via channel2
u→nextv(u).

∗ u sends a random message rk−1,i
u,nextv(u) to nextv(u) via channel1

u→nextv(u).
∗ u sends a random message rk−1,i

u,v to v .
∗ u sets bk−1,i

u,v
..= bk−1,i−1

u,v ⊕ rk−1,i
u,nextv(u) ⊕ rk−1,i

u,v and sends to v

bk−1,i
u→v

..= βk−1,i
u,nextv(u) ⊕ s

k−1,i
u,nextv(u) ⊕ bk−1,i

u,v .

∗ nextv(u) sends bk−1,i
nextv(u)→v

..= βk−1,i
nextv(u),u ⊕ s

k−1,i
u,nextv(u) to v .

∗ If u exists, v defines its new share as bk−1,i
v,u

..= bk−1,i
u→v ⊕ bk−1,i

nextv(u)→v.
If u does not exist, v defines its new share as bk−1,i

v,u
..= bk−1,i−1

v,u ⊕ rk−1,i
u,nextv(u) ⊕ rk−1,i

u,v .

Finally, set bk(·,·) ..= bk−1,n
(·,·) .

• Output. For each v ∈ [n] and u ∈ N (v), u and v exchange b(n)
u,v and b(n)

v,u and output b(n)
u,v ⊕ b(n)

v,u.

Figure 29 (cont.): 1-THAB on the class G3≤V≤n.
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Invariant: At the end of round k, the state of every virtual party u-v is the OR of the input
bits of all parties in the union of the k-neighborhoods of u and v .

This is obviously true after initialization. Assume this is true at the end of round k − 1 and let us
show this is also true at the end of round k, i.e.,

For each v ∈ [n] and u,w ∈ NG(v) the following is true: If the virtual party w-v holds
message m at the end of round (k − 1), then u-v holds message m at the end of the kth

round.
Recall that computing and passing on the message for each v ∈ [n] proceeds in n steps i = 1, . . . , n.
We will show the following: If (in the kth round) the virtual party nextv(u)-v or u-v holds message
m at the end of step i− 1, then u-v holds the message after the ith step. We will further use the
following: If at the end of step i − 1 all virtual parties hold either 0 or m, the same holds true at
the end of ith step. As the protocol runs for i ∈ [n] and v chose a cyclic permutation on its (at
most n) neighbors, this suffices to prove that the message eventually reaches u-v as required.

In the following, we consider the cases that v has degree at least two and v has degree one
separately.
Case I: Node v has degree at least two. In the ith step the parties proceed as follows:
• Computing the new message. u and nextv(u) compute shares βk−1,i

u,nextv(u), β
k−1,i
nextv(u),u such that

βk−1,i
u,nextv(u) ⊕ β

k−1,i
nextv(u),u = (bk−1,i−1

u,v ⊕ bk−1,i−1
v,u ) ∨ (bk−1,i−1

nextv(u),v ⊕ b
k−1,i−1
v,nextv(u)).

We thus have the following:

– If before the ith step all virtual parties hold either 0 or m, then u and v now hold
shares of either 0 or m.

– If the virtual parties u-v or nextv(u)-v hold message m before the ith step, then u and
nextv(u) now hold shares of m.

• Redistributing the new message. We have

bk−1,i
v,u = (βk−1,i

u,nextv(u) ⊕ s
k−1,i
u,nextv(u) ⊕ bk−1,i

u,v )⊕ (βk−1,i
nextv(u),u ⊕ s

k−1,i
u,nextv(u))

= βk−1,i
u,nextv(u) ⊕ β

k−1,i
nextv(u),u ⊕ bk−1,i

u,v .

With the previous considerations this yields:

– If before the ith step all virtual parties hold either 0 or m, then u and v now hold
shares of either 0 or m.

– If the virtual parties u-v or nextv(u)-v hold message m before the ith step, then u and
v now hold shares of m.

Case II: Node v has degree one. In this case we only have to show that the message of the
virtual party u-v = nextv(v)-v is not affected. This is true, as we have:

bk−1,i
v,u ⊕ bk−1,i

u,v = bk−1,i−1
v,u ⊕ rk−1,i

u,nextv(v) ⊕ rk−1,i
u,v ⊕ bk−1,i−1

u,v ⊕ rk−1,i
u,nextv(v) ⊕ rk−1,i

u,v

= bk−1,i−1
v,u ⊕ bk−1,i−1

u,v .

As the protocol runs for n rounds, we can be sure that all virtual parties hold the correct
message m.
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Security. It remains to prove that we can simulate the above protocol for a corrupted party. We
now describe the simulator. Let v∗ be the corrupted party, mv∗ ∈ {0, 1, ε} (where ε denotes the
empty string) its input and NG(v∗) its neighborhood. The simulator forwards mv∗ to the wrapped
functionality WGBgraph-info(Fanon-bc) and receives m. Then the simulator proceeds by running the
protocol on one of two graphs, depending on the degree of v∗:

• If v∗ has degree at least two, then the simulator simulates all parties u ∈ NG(v∗) following
the protocol as if they have degree one (v∗ then being their sole neighbor), i.e., the protocol
is simulated using a star graph centered in v∗.

• If v∗ has degree one, then the simulator simulates a single degree-two neighbor u for it (i.e.,
the simulated graph is a path of length three, with u in the center).

Additionally, in both cases, if mv∗ = ε then an arbitrary one of the neighbors of v∗ is chosen to
broadcast m.

Let’s now show that this is indistinguishable from a real protocol execution for v∗ . For the
following we assume that the key-agreement primitive is perfectly secure, and show that in this case
simulation is perfect. Security is then reduced to the security of the key agreement, via a hybrid
argument.

• Setting up pre-channels. This step is perfectly indistinguishable from the real protocol execu-
tion, since v does not learn the identity of the node with which it performs key agreement,
allowing u to perfectly simulate having another neighbor than v∗ is it does not.

• Setting up secure/dead-end channels. The first step of this phase is also perfectly simulated,
as it only depends on the local view of the graph.
If channel channel1

u→nextv∗ (u) is secure for all u ∈ NG(v∗), then the simulation of the second
step is perfect, as in this case the only information that v∗ can learn is the receivers bit if it
set up the OT correlations itself. Note though that in this case it already knows that u has
degree at least two and therefore picks b = 0.
The last step is perfectly indistinguishable from a real protocol execution, as the only case
where party v does not forward k∗u,v to nextv(u) is if v has degree one and thus nextv(u) = v .

• Initializing the messages of the virtual parties to m or 0. This step is perfectly indistinguish-
able from a real execution, because only the local shares held by parties u with u ∈ NG(v∗)
might differ.

• Passing on the message along the virtual parties. We will show this by replacing progressively,
via a sequence of hybrids, the messages received by v∗ with independent uniformly random
messages, and show that the adversary cannot distinguish between the hybrids and the real
world. In particular, this shows that the view of the adversary is independent of the graph
and the identity of the broadcaster (assuming it is not v∗), and therefore that the adversary
cannot distinguish between the real world and our simulator (which runs the protocol on a
certain star or path graph with an arbitrarily chosen broadcaster).
For each k ∈ [n], v ∈ [n], and i ∈ [n], we define the following hybrids:
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– H0 simulates the real world exactly.
– H1,k,v,i simulates the real world exactly up to the end of step (k, v, i), then replaces all

the subsequent messages received by v∗ (until the output reconstruction phase) with
independent random messages.

We will show that

1. H0 and H1,1,1,1

2. H1,k,v,i and H1,k,v,i+1 (for i < n)
3. H1,k,v,n and H1,k,v+1,1 (for k, v < n)
4. H1,k,n,n and H1,k+1,1,1 (for k < n)

are indistinguishable given the view of u . For simplicity we will only show point (2), as
the others work in exactly the same way (although, as will become apparent in what follows,
it is crucial that we show the indistinguishability of the hybrids in the correct order). Fix
therefore (k, v, i) ∈ [n]× [n]× [n− 1]; the difference between H1,k,v,i and H1,k,v,i+1 is at step
(k, v, i + 1). If v is neither v∗ nor one of its neighbors, then v∗ receives no message and the
hybrids are tautologically indistinguishable.

– If v = v∗ and v∗ has degree at least two:
∗ In the phase of “computing the new message” all the messages v∗ receives are those
its neighbors exchange over channels of the form channel2u→nextv∗ (u) (where u is a
neighbor of v∗), but v∗ does not have the key associated to these channels so all
messages received look independent and random.
∗ In the phase of “Redistributing the message,” again whenever two of its neighbors
communicate over a channel of the form channel1u→nextv∗ (u) or channel2u→nextv∗ (u),
the messages v∗ receives look independent and pseudorandom. Since sk−1,i+1

u,nextv(u)→v
is random and unknown to v (by the security of the channel from u to nextv(u) ),
bk−1,i+1
v,nextv(u) looks random to v . Finally, since rk−1,i+1

u,v is random bk−1,i+1
nextv(u),v also looks

random to v .
– If v = v∗ and v∗ has a single neighbor u:
∗ In the phase of “computing the new message,” since channel2u→nextv∗ (u) is a dead-end
channel, all messages v∗ receives look random.
∗ In the phase of “Redistributing the message,” all the messages received by v∗ over

channel2u→nextv∗ (u), which is a dead-end channel, look random. In particular, v does
not learn sk−1,i

u,nextv(u)→v and so bk−1,i+1
u→v looks random. Finally, by definition, rk−1,i+1

u,v

is random.
– If v is a neighbor of v∗:
∗ In the phase of “computing the new message” v∗ receives bk−1,i

v,nextv(v∗) (or a random
message instead if v has degree one, which immediately solves the question) and
bk−1,i
v,next−1

v (v∗) from v. But since hybrid H1,k,v,i is indistinguishable from H0, these
two messages, which v∗ received in the previous phase, are indistinguishable from
random. Additionally, v∗ receives two sets of random OT selection bits, which
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look random, and two independent sets of random OT messages, which also look
random. Finally, since the OT correlations are perfect, all the communication over
channel1u→nextv∗ (u) or channel2u→nextv∗ (u) looks random to v∗ (whether v has degree
one or not).
∗ In the phase of “Redistributing the message,” the messages v∗ receives from nextv(v∗)
and next−1

v (v∗) are random by definition.

In any case, all messages received by v∗ at step (k, v, i+ 1) look random to v∗ and so H1,k,v,i
andH1,k,v,i+1 are indistinguishable to v∗. Then, composing all these hybrids yields the desired
result.

• Output Phase. This phase is perfectly indistinguishable from a real execution as in both cases
v∗ gets the correct shares it was missing of the broadcast bit.

This concludes the proof of Theorem 6.1.

Achieving 1-THC. Note that for graph classes that are over a fixed set of nodes, if all parties can
broadcast in a manner that hides topology, every pair of parties can run a key-agreement protocol
to establish a secure channel. Thus, assuming an honest majority, we can use the BGW protocol [6]
to securely compute any function in a topology-hiding manner. For an integer n, denote the class
of graphs with exactly n nodes as

Gn = {G graph : V (G) = [n]} .

Corollary 6.2. Let n ≥ 3, let G ⊆ Gn, and let f be an n-party function. Then, assuming the
existence of a key-agreement protocol, there exists a 1-THC protocol for f with respect to G.

6.2 KA is Sufficient for 1-THB on All Graphs

In this section we show that a minor tweak of the 1-THAB protocol in Section 6.1, gives a 1-THB
protocol for the class of all graphs of at most n nodes.

For an integer n, denote the class of graphs with at most n nodes as

G≤n = {G graph : V (G) ⊆ [n]} .

Theorem 6.3 (KA is sufficient for 1-THB on all graphs). Let n ∈ N and let G ⊆ G≤n. Assuming
the existence of a key-agreement protocol, there exists a 1-THB protocol with respect to G.
Proof. The protocol is exactly as in Figure 29, except during the setup of the potentially dead-end
channels. There, we replace the second step as follows:

• u chooses a (long) fresh key k∗u,v, sets m0 = k∗u,v and m1 = 0, and v sets b = 0 if and only if
it has degree at least two or u or v is the broadcaster. The parties use the OT correlations
dealt by predv(v) to allow v to securely receive mb.

This change does not affect correctness. It is left to prove security.
Again, let v∗ be the corrupted party, let mv∗ ∈ {0, 1, ε} be its input, let NG(v∗) be its neigh-

borhood, and let u∗ be the broadcaster. The simulator forwards mv∗ to the wrapped functionality
WG≤ngraph-info(Fbc(u∗)) and receives m.

The simulator proceeds with simulations as follows: If u∗ = v∗ or if u∗ ∈ NG(v):
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• If v∗ has degree at least two, then the simulator simulates all parties u with u ∈ NG(v∗)
following the protocol as if all nodes u have degree one.

• If v∗ has degree one, then the simulator simulates the single party u with u ∈ NG(v∗)
according to the protocol as if u has degree two.

Otherwise:

• The simulator chooses an arbitrary node w ∈ NG(v) and simulates party w as if it has
another neighbor u∗ (of degree one) and all other parties u for u ∈ NG(v) as if they have
degree one.

The proof of the latter case is analogous to the proof of anonymous broadcast, as the special
case does not affect v∗ . We therefore focus on proving security in case u∗ = v∗ or u∗ ∈ NG(v∗).
For setting up channels, we only have to reconsider the step of setting up dead-end channels:

Setting up secure/dead-end channels. If channel channel1
u→nextv∗ (u) is secure for all u ∈ NG(v∗),

then also the simulation of the second step is perfect, as in this case the only information
that v∗ can learn is the receivers bit if it set up the OT correlations itself. Note though that
as either u or v∗ is the broadcaster, v∗ already knows that u will always choose b = 0,
regardless of its degree.

The main difference in the rest of the proof is that if v∗ is of degree one, v∗ has access to all
messages sent via channel2

u→nextv∗ (u). Intuitively, this does not harm security as v∗ already knows
that it always shares the message with its (unique) neighbor. As we only consider the case where
the adversary knows its distance from the broadcaster (either 0 or 1), we only have to show that
passing the message does not leak anything about the topology of the graph. The only step that
might leak something about the topology of the graph is computing the new message, as this step
is simulated if and only if v has degree one. Adapting the proof of Theorem 6.1 boils down the
following claim:

Claim 6.4. Let k ∈ [n], let v ∈ [n], let u ∈ NG(u), and let i ∈ [n]. At the end of the ith step, if
nextv(u) 6= v, then bk−1,i

nextv(u),v and bk−1,i
v,nextv(u) are individually indistinguishable from random from

the view of u , and bk−1,i
u,v and bk−1,i

v,u are individually indistinguishable from random from the view
of nextv(u) .

Proof.

• Computing the new message. In this step party v learns bk−1,i−1
v,nextv(u) and party nextv(u) learns

bk−1,i−1
v,u . If v has degree one and is in the neighborhood of the broadcaster, then v can learn
bk−1,i−1
u,v in this step, as it has access to channel2

u→nextv(u). Note though that this does not leak
anything about the topology of the graph to v , as v already knows bk−1,i−1

u,v = bk−1,i−1
v,u ⊕m.

• Redistributing the new message. Since nextv(u) 6= v, nextv(u) cannot gain any information
about bk−1,i

u,v , bk−1,i
v,u (even conditioned on knowing bk−1,i−1

v,u ), because rk−1,i
u,v is random and

hidden from nextv(u) .

Altogether, this shows that u , nextv(u) can not distinguish whether they received the real value
or a random message in the first step.
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This shows that regardless of the role that v∗ has in a specific round of the protocol, its
simulated view is perfectly indistinguishable from a real protocol execution regarding the degree
of its neighbors. By the correctness of the protocol, again, outputs are distributed according to
a real protocol execution. As the party v∗ already knows its distance from the broadcaster, this
concludes the proof of Theorem 6.3.

7 Corollaries and Implications of our Techniques
In this section, we derive corollaries from the techniques and the results given in previous sections.
In Section 7.1, we present a characterization of 1-THAB and 1-THC. In Section 7.2 we consider the
more complex case of 1-THB and provide a characterization for graphs with at most four nodes.

7.1 Characterization of 1-IT-THAB and 1-IT-THC
We start by characterizing 1-THAB and 1-THC. In a similar spirit to Sections 5.1 and 6, we denote
the class of graphs with up to n nodes as

G≤n = {G graph : V (G) ⊆ [n]} ,

and the class of graphs with exactly n nodes as

Gn = {G graph : V (G) = [n]} .

1-THAB. Recall that by Theorem 5.5, 1-IT-THAB can be achieved (albeit inefficiently) with
respect to a class G that consists of only 2-connected graphs. Further, by Proposition 4.1, 1-IT-
THAB cannot be achieved with respect to a class G that contains at least one graph with ≥ 3 nodes
which is not 2-connected.

The degenerate case of the 2-path (two connected nodes) trivially enables 1-IT-THAB even
though it is not 2-connected. We note that augmenting a class of 2-connected graphs with additional
2-path graphs still enables 1-IT-THAB, since each party can locally check if it has degree one (in
which case it is on a 2-path with its sole neighbor) or if its degree is at least two, in which case the
graph is guaranteed to be 2-connected. Therefore, we get the following corollary.

Corollary 7.1 (Characterization of 1-IT-THAB). Let n ∈ N and let G ⊆ G≤n. Then, 1-IT-THAB
is possible with respect to G if and only if every G ∈ G is either 2-connected or is a 2-path.

Recall that by Theorem 4.4, if a class includes both a 2-path and a 3-path, then (constant-round)
1-THAB implies infinitely often OT. By considering graphs that contain at least three nodes, we
achieve a cleaner characterization. Denote by Kn

2 the class of all 2-path graphs over n nodes and
recall that G≤n2-conn stands for the class of 2-connected graphs with at most n nodes whereas Gn2-conn
for the class of 2-connected graphs with exactly n nodes.

Corollary 7.2 (Characterization of 1-THAB with ≥ 3 parties). Let n ∈ N and let G ⊆ G≤n \Kn
2 .

• 1-IT-THAB is possible with respect to G if and only if G ⊆ G≤n2-conn (i.e., all graphs in G are
2-connected).

• If G \ G≤n2-conn 6= ∅ (i.e., there exist graphs that are not 2-connected), then 1-THAB is possible
with respect to G if and only if key agreement exists.
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We note that the communication complexity of the 1-IT-THAB protocol in Corollaries 7.1 and 7.2
is polynomial in |G| and the computation complexity is polynomial in |G| and exponential in the
maximum degree in G.

1-THC. To achieve 1-THC we consider a fixed and publicly known set of parties and an honest
majority, i.e., Gn for some n ≥ 3. Recall that by Theorem 5.6, 1-THC can be computed with respect
to a class G ⊆ Gn that consists of only 2-connected graphs with information-theoretic security. This
matches the lower bound given in Proposition 4.1, showing that otherwise key agreement is needed
even for computing 1-THAB. Finally, by Corollary 6.2, 1-THC can be achieved over any class of
graphs (with at least three nodes) assuming key agreement. Therefore, we conclude with the
following corollary.

Corollary 7.3. Let n ≥ 3, let G ⊆ Gn, and let f be an n-party function.

• If G ⊆ Gn2-conn (i.e., all graphs in G are 2-connected), then Ffsfe can be securely realized with
statistical information-theoretic security in a topology-hiding manner with respect to G, toler-
ating a single semi-honest corruption.
The communication complexity of the protocol is polynomial in |G| and the computation com-
plexity is polynomial in |G| and exponential in the maximal-degree in G.

• If G \ Gn2-conn 6= ∅ (i.e., there exist graphs that are not 2-connected), then Ffsfe can be se-
curely realized in a topology-hiding manner with respect to G, tolerating a single semi-honest
corruption, if and only if key agreement exists.

7.2 Characterization of 1-IT-THB on Small Graphs

We proceed to consider 1-THB. As indicated from previous sections, this case is more complex since
the lower bounds for 1-THAB (presented in Section 4) that were strong enough to provide a clear-
cut characterization in Section 7.1 do not carry over. In this section, we present a characterization
for small graphs (with at most four nodes).

Isomorphically-closed classes of small graphs. There are nine connected graphs on four
parties or fewer, up to isomorphism: the complete graph of size four ( ), the diamond ( ), the
four-cycle ( ), the claw ( ), the paw ( ), the four-path ( ), the three-cycle ( ), the three-path ( ),
and the two-path ( ).

Figure 30: The nine connected graphs of size at most four

Rather than considering all graph classes, we only study those which are isomorphically closed: if
a network (defined here as a labeled graph) is in the class, then so must all isomorphic networks be
(where the label set is implicitly {1, 2, 3, 4}, corresponding to players 1 , 2 , 3 , 4 ). In particular,
there are 29−1 = 511 non-empty classes.
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Definition 7.4 (Isomorphic Closure). Let n ∈ N. We say a graph class G comprised of graphs with
at most n vertices and labeled by a subset of {1 . . . n} is isomorphically closed—if, for every graph
G = (V,E) ∈ G and for every injective function p : V → {1, . . . , n}, the graph H = (p(V ), EH) is
also in G, where EH is defined by (u, v) ∈ E ⇔ (p(u), p(v)) ∈ EH .

In other words, if a graph is in an isomorphically closed class, then so must also be all the
graphs obtained by relabeling it using a subset of {1, . . . , n}.

Without this restriction, which allows for a purely graph-theoretic property-based dichotomy,
the theorems in this section do not characterize when 1-IT-THB and 1-IT-THAB are possible on
every single graph class. However, since our impossibility results rely on only specific combinations
of labeled graphs being in the class (which are guaranteed to be there under an isomorphic closure
hypothesis) they may be carefully applied to more, albeit often less natural, graph classes on a case
by case basis.

Note that the class Goriented-5-path from Section 3.1 is an example of a class which does not have
this closure property: the node labeled 1 is always the root of the directed path.

Theorem 7.5 (Characterization of 1-IT-THB on small graphs). Let G be an isomorphically closed
graph class containing only (connected) graphs of size at most four.

1. If the class is a superset of any of the six following sets, then 1-IT-THB on G is infeasible: { },
{ }, { , }, { , }, { , }, and { , }. Specifically, 1-THAB with respect to such G implies
key agreement.

2. Conversely, if the class is not a superset of any of the six aforementioned sets, then 1-IT-THB
is possible. Note that these are the subsets of the following four maximal sets: { , , , , },
{ , , , }, { , , , }, and { , , , }.

The proof of Theorem 7.5 follows from Lemmas 7.6 and 7.7 below. In Lemma 7.6 we identify
the six minimal classes for which 1-THB implies KA. The main proof technique employed is the
phantom bridge argument (that was discussed in Remark 3.7). It follows that 1-THB on a superclass
of any of these six classes implies KA.

Figure 31: The six forbidden classes for 1-IT-THB

In Lemma 7.7, we show that on all other classes 1-IT-THB is possible. To that end, we identify the
maximal classes which are not superclasses of any of the six aforementioned forbidden patterns: it
suffices to show that 1-IT-THB is feasible on each of these four classes.
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Figure 32: The four maximal forbidden-pattern-free classes for 1-IT-THB

7.2.1 Key-Agreement Implications

Lemma 7.6. 1-THB on each of the following classes implies key agreement:
1. { } (“The Path”)

2. { , } (“The Triangle”)

3. { } (“The Paw”)

4. { , } (“The Full Claw”)

5. { , } (“The Diamond Claw”)

6. { , } (“The Diamond Path”)

Proof (sketch). We prove the lemma for each class separately.

1. By Ball et al. [4, Thm. 3.1], 1-THB on { } implies KA.

2. By Theorem 3.5, 1-THB on { , } implies KA.

3. We prove that 1-THB on { } implies KA via the phantom bridge argument, and using a
similar construction to Figure 17 in Section 3.2. The following proof sketch lists the points
which need to be adapt the construction to { }:

• If Alice’s coin cA is 1, she simulates parties 1 , 2 , and 4 (fully pairwise connected); if
her coin is 0 she only simulates party 2 .
• If Bob’s coin cB is 1, he simulates parties 1 , 3 , and 4 (fully pairwise connected); if his

coin is 0 he only simulates party 3 .
• In the event Alice and Bob toss different coins, the topology is either one of the two
paws where 2 and 3 are connected, and where either { 1 , 2 , 4 } or { 1 , 3 , 4 } are fully
connected. The reason why an eavesdropper between Alice and Bob (having access only
to communication between nodes 2 and 3) cannot determine whether cA = 1 − cB = 1
or cA = 1− cB = 0 with more than negligible probability follows from a standard hybrid
argument (similar to the one used in the proof of Theorem 3.5) and is sketched in the
following diagram:
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E E

4. We prove that 1-THB on { , } implies KA via the phantom bridge argument. We list the
differences needed to adapt Figure 17 to this case:

• If Alice’s coin cA is 1, she simulates parties 1 , 2 , and 4 ; if her coin is 0 she only
simulates party 2 .
• If Bob’s coin cB is 1, he simulates parties 1 , 3 , and 4 ; if his coin is 0 he only simulates

party 3 .
• In the event Alice and Bob toss different coins, the topology is either (1, 4)-2-3 or

2-3-(1, 4). The proof follows from a similar hybrid argument, as depicted in the dia-
gram below.

1

2

3

4

1

2

3

4

Ind. 2 1

2

3

4

Ind. 3

1

2 3

4

2 3

1

4

Ind. E

E E

5. We prove that 1-THB on { , } implies KA via the phantom bridge argument. We list the
differences needed to adapt Figure 17 to this case:

• If Alice’s coin cA is 1, she simulates parties 1 , 2 , and 4 ; if her coin is 0 she only
simulates party 2 .
• If Bob’s coin cB is 1, he simulates parties 1 , 3 , and 4 ; if his coin is 0 he only simulates

party 3 .
• In the event Alice and Bob toss different coins, the topology is either the claw (1, 4)-2-3
or the claw 2-3-(1, 4). The proof follows from a similar hybrid argument, as depicted in
the diagram below.
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6. We prove that 1-THB on { , } implies KA via the phantom bridge argument. We list the
differences needed to adapt Figure 17 to this case:

• If Alice’s coin cA is 1, she simulates both parties 1 and 2; if her coin is 0 she only
simulates party 2.
• If Bob’s coin cB is 1, he simulates both parties 1 and 3; if his coin is 0 he only simulates

party 3.
• In the event Alice and Bob toss different coins, the topology is either 1-2-3 or 2-3-1. The
proof follows from a similar hybrid argument, as depicted in the diagram below.
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This concludes the proof of Lemma 7.6.

7.2.2 Information-Theoretic Feasibility Results

The proof of Lemma 7.7 below is of little technical interest as the techniques are unlikely to extend
to graph classes far beyond those considered here. In fact the lemma itself is of little intrinsic value,
and is only considered because it presents an upper bound to match the lower bound of Lemma 7.6.

Lemma 7.7. Let G be an isomorphically closed graph class containing only (connected) graphs of
size at most four. If G satisfies one of the two equivalent conditions, then 1-IT-THB is possible:

1. The class is not a superset of any of the six following sets, { }, { }, { , }, { , }, { , },
{ , };
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2. The class is a subset of the following four maximal sets: { , , , , }, { , , , }, { , , , },
and { , , , }.

Proof. We now show that there is an 1-IT-THB protocol for each of the four maximal sets:
{ , , , , }, { , , , }, { , , , }, and { , , , }.

1. 1-IT-THB is possible on { , , , , }: First of all, note that all parties can locally identify if
the topology is isomorphic to the 2-path (if they have degree one). Therefore, it suffices to
provide a protocol for the class { , , , }. Consider the following protocol; without loss of
generality we consider the broadcaster to be 1 .

• In the first round, party 1 sends the output bit to each of its neighbors.
Notice that the following holds: since 1 has at least two neighbors, there is at most one
of the three nodes 2 , 3 , 4 which does not hold the bit at this point. If 1 has degree
only two then either that means there is no party which isn’t a neighbor of 1 (topology
) or that there is (topology or ), but in the latter case it must hold that 1 and that

party have exactly the same neighborhood.
• In the second round (could be done unambiguously in the first round instead), 1 sends
to each of its neighbors two messages: each one tagged with the ID ( 2 , 3 , or 4 ) of
one of the two remaining potential parties (e.g., 1 sends messages tagged “ 2 ” and “ 4 ”
to party 3 ). The messages tagged with the ID of a party which is a neighbor of 1 are
random and those tagged with the ID of a non-neighbor of 1 are additive secret-shares
of the broadcast bit (i.e., the broadcast bit is reconstructed by XOR-ing all the messages
tagged “Pj” if Pj /∈ NG( 1 )).
• In the third round, each neighbor of 1 passes on the messages received in the previous
round according to the ID tags (i.e., sends the message tagged “Pj” to Pj if they are
neighbors). If there is a party which is not a neighbor of 1 it sends a random message
to each of its neighbors instead.

Each party can now compute the sum of the messages received in this third round: neighbors
of 1 get a random bit, and if there is a party which is not a neighbor of 1 it gets the
broadcast bit now.

Claim 7.8. The protocol is 1-IT-THB.

Proof (sketch). To prove security of the protocol we provide a sketch of the simulator:

• If the corrupt party is 1 , it gets no messages;
• If the corrupt party is a neighbor of 1 , it gets the broadcast bit ‘from 1’ in the first

round, random messages appropriately tagged in the second round, and then random
messages ‘from’ each of its neighbors;
• If the corrupt party is neither 1 nor one of its neighbors, then in the third round it gets
secret shares (i.e., a pair of messages which XOR to the broadcast bit) of the broadcast
bit from its neighbors.
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2. 1-IT-THB is possible on { , , , }: First of all if the topology is of type then all parties
have degree three. Since this is the only topology in the class in which any of the parties
have degree three, all parties already know the topology and since there is only one network
isomorphic to there is nothing to hide about the topology. We therefore only need to
consider the class { , , } (see below).

3. 1-IT-THB is possible on { , , }, { , , , }, and { , , , }: On these classes, the flooding
protocol is already topology hiding. Recall that each party learns from the flooding protocol
the distance of each of its neighbors to the broadcaster. One can check that in these classes
this information is already contained in the local view of each party:

• For the broadcaster 1 , the distance of each of its neighbors is one.
• For a neighbor of 1 , the distance of its neighbors except 1 is two.
• Otherwise (for a node that is not 1 and is not a neighbor of 1 ) the distance of each of

its neighbors is one.

This concludes the proof of Lemma 7.7.
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A UC Framework
We present a highly informal overview of the UC framework and refer the reader to [8] for further
details. The framework is based on the real/ideal paradigm for arguing about the security of a
protocol.

The real model. An execution of a protocol π in the real model consists of n ppt interactive
Turing machines (ITMs) P1, . . . ,Pn representing the parties, along with two additional ITMs: an
adversary A, describing the behavior of the corrupted parties and an environment Z, representing
the external network environment in which the protocol operates. The environment gives inputs
to the honest parties, receives their outputs, and can communicate with the adversary at any
point during the execution. It is known that security against the dummy adversary (that forwards
every message it sees to the environment and acts according to the environment’s instructions) is
sufficient to achieve security against arbitrary adversaries. Throughout, we consider synchronous
protocols that proceeds in rounds (this can be formally modeled using the Fsync functionality [8],
or using the synchronous framework of [21]) and semi-honest (passive) security (where corrupted
parties continue following the protocol, but reveal their internal state to the adversary). We will
consider both static corruptions (where A chooses the corrupted parties at the onset of the protocol)
and adaptive corruptions (where A can dynamically corrupt parties based on information gathered
during the computation), and will explicitly mention at any section which type of corruptions are
considered. An t-adversary can corrupt up to t parties during the protocol.

The ideal model. A computation in the ideal model consists of n dummy parties P̃1, . . . , P̃n, an
ideal-model adversary (simulator) Sim, an environment Z, and an ideal functionality F. As in the
real model, the environment gives inputs to the honest (dummy) parties, receives their outputs, and
can communicate with the ideal-model adversary at any point during the execution. The dummy
parties act as channels between the environment and the ideal functionality, meaning that they
send the inputs received from Z to F and vice-versa. The ideal functionality F defines the desired
behaviour of the computation. F receives the inputs from the dummy parties, executes the desired
computation and sends the output to the parties. The ideal-model adversary does not see the
communication between the parties and the ideal functionality, however, Sim can corrupt dummy
parties (statically or dynamically) and may communicate with F according to its specification.

Security definition. We present the definition for static and semi-honest adversaries.
We say that a protocol π UC-realizes (with computational security) an ideal functionality F in

the presence of static semi-honest t-adversaries, if for any ppt static semi-honest t-adversary A
and any ppt environment Z, there exists a ppt ideal-model t-adversary Sim such that the output
distribution of Z in the ideal-model computation of F with Sim is computationally indistinguishable
from its output distribution in the real-model execution of π with A.

We say that a protocol π UC-realizes (with information-theoretic security) an ideal functionality F
if the above holds even for computationally unbounded A, Z, and Sim. In that case the requirement
is for the output distribution of Z in the ideal-model computation to be statistically close to
its output distribution in the real-model execution. If the environment’s outputs are identically
distributed, we say that π UC-realizes F with perfect security.
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The hybrid model. The F-hybrid model is a combination of the real and ideal models, it extends
the real model with an ideal functionality F. The parties communicate with each other in exactly
the same way as in the real model; however, they can also interact with F as in the ideal model.
An important property of the UC framework is that the ideal functionality F in an F-hybrid model
can be replaced with a protocol that UC-realizes F. The composition theorem of Canetti [8] states
the following.

Theorem A.1 ([8], informal). Let ρ be a protocol that UC-realizes F in the presence of adaptive
semi-honest t-adversaries, and let π be a protocol that UC-realizes G in the F-hybrid model in
the presence of adaptive semi-honest t-adversaries. Then, for any ppt adaptive semi-honest t-
adversary A and any ppt environment Z, there exists a ppt adaptive semi-honest t-adversary Sim
in the F-hybrid model such that the output distribution of Z when interacting with the protocol π
and Sim is computationally indistinguishable from its output distribution when interacting with the
protocol πρ (where every call to F is replaced by an execution of ρ) and A in the real model.

B DC-Nets are Topology-Hiding: From THB to THAB
In this section we show that t-THB implies t-THAB with respect to classes of n-node graphs that
are (t + 1)-connected. Recall that in Sections 4.1 and 5.2 we showed a separation between t-THB
and t-THAB over non-(t+ 1)-connected graphs.

Our starting point is the Dining-Cryptographers Network that was introduced by Chaum [10]
with the aim of transforming a broadcast primitive into an anonymous broadcast channel, secure
in the semi-honest setting. The procedure works as follows on a (public, connected) incomplete
network of point-to-point secure channels, where an anonymous party holds as input a bit bBC to be
broadcast and all other parties hold a dummy input bit set to zero. Each party starts by sending a
random message to each of its neighbors, and keeps the sum of all these outgoing messages. Each
party then adds to this sum the messages it received in the previous round, one per neighbor.
This new sum is now used as a one-time pad to mask the party’s input; we call this ciphertext
the party’s randomized input. These randomized inputs sum to the broadcast bit. Note that the
key observation is that so long as a passive adversary cannot corrupt a vertex-cut of the graph,
the adversary learns nothing (other than the value of bBC) about the honest parties’ inputs, even
if additionally given the list of randomized inputs. It is therefore safe for the parties to broadcast
their randomized inputs to reconstruct the output bBC.

Correctness follows by inspection. Let us recall the high-level idea of why the broadcaster is
anonymous. Consider any non-empty proper subset of the vertices S ⊂ V such that the union of
their closed neighborhoods NG[S] ..= ∪v∈SNG[v] is connected. At the end of the input randomiza-
tion phase, the partial sum of the inputs in S (i.e., the indicator of the event ‘the broadcaster is
in S’) is secret shared amongst the randomized inputs of S and the shares the parties in S sent
to the parties in V \ S. Therefore to learn anything about the partial sum of the inputs in S, the
adversary has to corrupt the set Z of vertices at the frontier of S, i.e., the vertices in V \ S which
are neighbors of S. Given any set Z of at most t corruptions, the adversary can isolate the set of
players S = V \ Z, but no other one because the graph is (t + 1)-connected. For this specific set,
the adversary is not learning anything he should not as he knows if the broadcaster is corrupted or
not, i.e., in Z or in S.

We make the simple observation that if the underlying broadcast primitive is topology hiding,
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and if the number and identity of the parties participating in the protocol is publicly known (so
they have a way of knowing in which order they can broadcast the randomized inputs), then the
anonymous broadcast protocol is topology hiding. Indeed the input randomization phase is purely
information local and cannot leak the topology of the graph, while the reconstruction phase inherits
the topology-hiding properties of the broadcast primitive used.

Recall that for n ∈ N we denote by Gn = {G connected graph : V (G) = [n]} the class of
connected graphs with exactly n nodes.

Theorem B.1. Let n ∈ N and let G ⊆ Gn be a class of (t+1)-connected graphs. Then, the existence
of a t-THB protocol with respect to G implies a t-THAB protocol with respect to G.

Remark B.2. Note that Theorem B.1 can be strengthened in two ways. Firstly, if a slight variation
on the DC-net protocol is run on an arbitrary class of (t + 1)-connected graphs (where the set of
players/vertices is not known a priori), then correctness and privacy of input are still guaranteed
and the only leakage27 about the topology is the set of players participating in the protocol. In fact it
can be strengthened so only the number of players participating in the protocol is leaked. Secondly,
if the parties set their input arbitrarily (rather than all non-broadcasters setting theirs to 0), the
DC-net protocol actually constructs a t-secure sum protocol from a broadcast primitive, which is
also topology-hiding.

C Statistically Secure, Round-Inefficient THB on Oriented-5-Path
In this appendix we justify our remark that the class Goriented-5-path from Section 3.1 admits an uncon-
ditionally ε-statistically 1-secure 1/ε-round topology-hiding broadcast protocol, via a more general
lemma. In particular, we observe that the following delayed-flooding protocol is ε-statistically se-
cure for any graph class for which the flooding protocol can be simulated given distance (i.e., only
distance need be hidden).28 The core idea is quite straightforward: if the usual flooding protocol
only leaks distance (via the round in which the broadcast bit is received), then by simply having
the broadcaster delay flooding for a random number of rounds, this leakage is diluted.

Lemma C.1. Let 0 < ε ≤ 1. Let G be a class of graphs such that each node can always deduce a
unique neighbor through which they are connected to the broadcaster 1 and let d be an upper bound
on distance of any node from 1 .29

Then, the ε-Delayed Flooding Protocol (defined in Figure 33) is an ε-statistically 1-secure
topology-hiding broadcast protocol with round complexity d(1 + 1/ε).

Proof. Let ∆ = d/ε be the upper bound on the random delay and let R = d/ε + d be the upper
bound on round complexity, as defined in Figure 33.

We begin by observing that the ε-Delayed Flooding Protocol will deliver the broadcast message
to all nodes because for any choice of delay r ∈ [∆], since r+ d ≤ R (recall d is an upper bound on
the distance from the broadcaster). So, the protocol is, in fact, perfectly correct.

27See Ball et al. [3] for a more in-depth definition of leakage in the context of topology-hiding computation.
28We actually show a slightly restricted case for simplicity, but the result can easily be extended.
29In other words, G is a set of trees on some potential vertex set V such that for every v ∈ V , dG(v, 1) ≤ d if

v ∈ V (G) (for all G ∈ G) and if NG(v) = NH(v) for H,G ∈ G then there exists a (unique) u ∈ NG(v) = NH(v) that
disconnects 1 and v in both G and H.
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Broadcast Protocol πBC

Public Parameters: Let d be an upper bound on the distance of any node from the broadcaster
1 , let ε be the statistical security parameter, let ∆ = d/ε be the upper bound on the random
delay, and let R = d/ε+ d be the upper bound on round complexity.

The Protocol:

• Broadcaster: Sample r uniformly from [∆]. Send the broadcast message m in round r to all
neighbors. In round R, halt and output m.

• All other parties: Upon receipt of broadcast message m, forward to all neighbors that did not
send the message. In round R, halt and output m.

Figure 33: ε-Delayed Flooding Protocol: A simple, inefficient, distance-hiding broadcast protocol

It remains to show ε-statistical security. Let v be the corrupt node with neighborhood N (v).
By the properties of G, this means that there exists a fixed u ∈ N (v) such that u is a bridge to 1
in all graphs G ∈ G such that NG(v) = N (v).

Because the protocol follows the same message pattern as the naïve flooding protocol and G
consists of trees, we can represent the distribution of the view of v on any graph G ∈ G as a the
tuple p(G) = (p1(G), . . . , pR(G)) where pi is the probability v receives the broadcast message in
round i (for i ∈ [R]) and p⊥ is the probability v sees nothing.

Observe that if v is distance dv from 1 in any graph G ∈ G, the view of v in G is simply the
broadcast message at round rv = r + dv, where r is a random variable distributed uniformly over
[∆]. Thus, we have that p1(G) = · · · = pdv(G) = p∆−(d−dv)+1(G) = · · · = p∆(G) = 0, and that
pdv+1(G) = · · · = pR(G) = 1/(∆− (d− dv)).

The simulator Sim works by sampling r ← [∆] and sending the broadcast message m in round
r + d/2 from the neighbor u, specified above. We can write the distribution of the simulated
view as the tuple p̃ = (p̃1, . . . , p̃R, p̃⊥) where p̃1 = · · · = p̃d/2 = p̃R−d/2+1 = · · · = p̃R = 0 and
p̃d/2+1 = · · · = p̃R−d/2 = 1/∆.

Thus, we can explicitly compute the statistical difference as |d/2−dv |∆ ≤ d/2
∆ ≤ ε/2. We

can therefore deduce that under the simulation notion we have security ε/2 and under the
indistinguishability-based definition (Definition 2.4), we have statistical security ε.
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