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Abstract. This note solves the open problem of finding a closed formula
for the bias of a rotational differential-linear distinguisher proposed in
TACR ePrint 2021/189 (EUROCRYPT 2021), completely generalizing
the results on ordinary differential-linear distinguishers due to Blondeau,
Leander, and Nyberg (JoC 2017) to the case of rotational differential-
linear distinguishers.
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1 Introduction

In [LSL21], the framework of rotational differential-linear cryptanalysis was
established by replacing the differential part of the differential-linear frame-
work [LH94ILGZL0O9Lul5BLNI17IBDKWI19/BLT20] with rotational-xor differ-
entials [KNTOKNRIOKNP T 15/KAR20/AINTAMPST3/ALI6ICWRATTILLA T 20).
This work left it as an open problem to derive a closed formula for the bias of a
rotational differential-linear distinguisher. In this note, we solve this open prob-
lem and investigate the so-called multidimensional rotational differential-linear
distinguishers, which completely generalizes the results on ordinary differential-
linear distinguishers due to Blondeau, Leander, and Nyberg [BLN17] to the case
of rotational differential-linear distinguishers.

2 Notations and Preliminaries

Let Fo = {0,1} be the field with two elements. We denote by x; the i-th bit
of a bit string « € Fy. For a vectorial Boolean function F' : Fy — F5* with
y = F(x) € F7", its i-th output bit y; is denoted by (F'(z));. The XOR-difference
and rotational-xor difference with offset ¢ of two bit strings x and 2’ in F% are
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defined as @z’ and (r <K t) ®2’, respectively. For the rotational-xor difference
§ = (z <« t) ® 2/, we may omit the rotation offset and write § = & & 2’
or 6 = rot(z) ® 2’ to make the notation more compact when it is clear from
the context. Correspondingly, 7 and rot~!(z) rotate x or its substrings to the
right. Similar to differential cryptanalysis with XOR-difference, we can define
the probability of an RX-differential as follows.

Definition 1 (RX-differential probability). Let f : F} — F4 be a vectorial
boolean function. Let o and B be n-bit words. Then, the RX-differential proba-
bility of the RX-differential o — B for f is defined as

Prfa BX, Bl =27 "#{x € Fy : rot(f(x)) @ f(rot(z) ® ) = B}

Finally, the definitions of correlation, bias, and some lemmas concerning
Boolean functions together with the piling-up lemma are needed.

Definition 2 ([Car06/Canl6]). The correlation of a Boolean function f :
F3 — Fo is defined as cor(f) = 27"(#{x € Fy : f(z) = 0} — #{z € Fy :
flx) =1}).

Definition 3 ([Car06l/Can16]). The bias (f) of a Boolean function f : Fy —
Fy is defined as 2 "#{x € F} : f(z) =0} — 3.

From Definition [2] and Definition [3] we can see that cor(f) = 2¢(f).

Definition 4. Let f : F§ — Fy be a Boolean function. The Walsh-Hadamard
transformation takes in f and produces a real-valued function f : Fy — R such
that

Vw e By, flw)= 3 f@)(~1)",

z€Fy

Definition 5. Let f : F3 — Fo and g : F§ — Fo be two Boolean functions. The
convolutional product of f and g is a Boolean function defined as

VyeFs, (fx9)y) =) g@)f(zay).

zelFy

Lemma 1 ([Car06], Corollary 2). Let f be the Walsh-Hadamard transfor-
mation of f. Then the Walsh-Hadamard transformation of f is 2™ f.

L?rznma 2 ([Car06], Proposition 6). (f/*\g)(z) = f(2)§(2) and thus (ﬂ\f) =
(f)*

Lemma 3 (Piling-up Lemma [Mat93]). Let Zy, -+, Zmn—1 be m indepen-
dent binary random variables with Pr[Z; = 0] = p;. Then we have that

m—1
1 1
Pr[Zo @ @ Zpmoy = 0] = 5 +277" ”(Pi—i),
=0

or alternatively, 2Pr[Zo @ -+ ® Zpyp—1 =0] — 1 = H;’;Bl(gpi —1).



3 Rotational Differential-linear cryptanalysis

A natural extension of the differential-linear cryptanalysis is to replace the differ-
ential part of the attack by rotational-xor (RX) differentials. Let E = Fj o Ej be
an encryption function. Assume that we have an RX-differential § — A covering
Ey with Pr[rot(Ep(z)) ® Eo(rot(x) ® J) = A] = p and a linear approximation
I' — ~ of Fj such that

ery =Pl y®y- Ei(y) =0] - 3,
€rot—1(I"),rot=1(y) = PI‘[I‘Otil(F) YD I‘Otil(’” : El(y) = ] - %

Let 2’/ = rot(x) @ 4. If the assumption
Pr(L - (rot(Eo(e)) & Bo(x') = 0 | rot(Bo(x) @ Eofa') # A = 1 (1)
holds. We have
Pr(I" - (rot(Eo(z)) & Eo(z')) = 0] = T P

Since
v (rot(E(z)) ® E(z") =~ -rot(E(z)) ® I' - rot(Ey(x))
@ I+ (rot(Eo(z)) & Eo(a'))
&I Ey(a")®~-E@)
= rot(rot (v) - E(z) ® rot ' (I") - Ey(x))
® I (rot(Eg(z)) ® Eo(2))
@I Eo(z') &v- B(z'),

the bias of the rotational differential-linear distinguisher can be estimated by
piling-up lemma as
1

5R PL PI‘[’)/ : (E(Z’) @ E(SU/)) = 0] - 5 = (_1)F.A . 2p6F,'y€rot_1(F),rot_1('y)v

and the corresponding correlation of the distinguisher is

CR Ph= ZSR Pr ( 1)F'A ’ 4pEF,'y€rot_1(F),rot_1('y)'

We can distinguish E from random permutations if the absolute value of 5?7_ bL

or CR DL is sufficiently high. Note that if we set the rotation offset to zero,
the rotatlonal differential-linear attack is exactly the ordinary differential-linear
cryptanalysis. Therefore, the rotational differential-linear attack is a strict gen-
eralization of the ordinary differential-linear cryptanalysis. However, as in ordi-
nary differential-linear attacks, the assumption described by Equation (1) may
not hold in practice, and we prefer a closed formula for the bias & R,YDL without
this assumption for much the same reasons leading to Blondeau, Leander, and
Nyberg’s work [BLN17].



4 The Bias of A Rotational Differential-Linear
Distinguisher

In [BLNT7], Blondeau, Leander, and Nyberg proved the following theorem based
on the general link between differential and linear cryptanalysis [CV94].

Theorem 1 ([BLN17]). If Ey and E- are independent, the bias of a differential-
linear distinguisher with input difference § and output linear mask v can be com-
puted as

Esy = Z 65,11012;;\/; (2)

velFy

for all 6 #£ 0 and v # 0, where

€50 = Pr[v- (Eo(z) ® Eo(xz ©9)) =0] — %
Coy =cor(v-y @7y - Ei(y))

To replay Blondeau, Leander, and Nyberg’s technique in an attempt to derive
the rotational differential-linear counterpart of Equation , we have to first
establish the relationship between rotational differential-linear cryptanalysis and
linear cryptanalysis.

4.1 The Link between RX and Linear Cryptanalysis

Let F : F§ — FZ be a vectorial Boolean function. The cardinality of the set
{zeF}: F(z)® F(T ®a) =b)

is denoted by &r(a,b), and the correlation of w-z@v- F(x) is cor(u-x Bv- F(x)).
Let F : Fy — F3 be the vectorial Boolean function mapping z to (Z). It is

easy to show that cor(u-z@®wv - E(m)) = cor(¥ -2 ® U - F(z)). In what follows,
we are going to establish the relationship between

¢p(a,b), cor(u-z@®v-F(z)), and cor(d -z @& ¥ - F(x)).

Definition 6. Given a vectorial Boolean function F : F§ — Fy, the Boolean
function O : F3" — Fy is defined as

1 if y=F(z),

0 otherwise.

GF(x’y) = {

Lemma 4. Let F : Iy — F5 be a vectorial Boolean function. Then for any
(a,b) € F3", we have &p(a,b) = (04 * 0p)(a,b).
=



Proof. According to Definition [B] we have
(Hg*ep)(a b) Z Gﬁ z,y)0r(a ®z,bdy)

z||lyer3™
= > > @ ylraonboy)
z€Fy yelky
ZH? ,_) x))0p(a @ x, b@? Zﬁp(a@x,béBE(:zz))
zeFy zeFy

=#{zx eFy: bEBE(x) =Fla®z)} =&p(a,b).
O
Lemma 5. Let F' : Fy — F3 be a vectorial BAoolecm function. Then for any
(a,b) € F3", we have cor(a-z @ b- F(z)) = 27"0r(a,b).
Proof. According to Definition 4] we have

Op(a.b)= Y Op(z,y)(-1)Clv-e®)

x||lyeF3™

= 3 3 Opla,y) (-1

z€Fy yelFy
= Z (—1) =@ F@) — 9ncor(a -z @ b- F(x)).
z€FY
O

e . A= 1A
In addition, applying Lemma 5 to F gives cor(a-x®b- E(.ﬁ)) = ﬁﬁi(a, b).

Theorem 2. The link between RX-differentials and linear approximations can
be summarized as

£p(a,b) Z Z Nwa®vbeor(W -z @ W - F(x))cor(u -z @ v - F(x)).
u€lFy velFy

Proof. According to Lemma[4 and Lemma [2] we have

—
L —

221 (a,b) = (05 + 0r) (a,b) = O5-0r(a, )
= =
Since HA?OAF =2%cor(u-z®v- E(m))cor(u -z @v-F(x)) due to Lemma

égé r(a,b) = 22" Z (=)@ ey z @ v - E(x))cor(u ~xdv- F(z))
uH’UE]F%"

= 2" Z (—1)“*®eor(u -z v - E(m))cor(u cz®v- F(z))

u,vEFY

=2 Z (—1)“*®eor(W -z ® T - F(x))cor(u -z ® v - F(x))

u,vEFY



If the function F' is rotation invariant, i.e., (}_7’(1’.) =F (Y), then we have
cor(U -2 @® U - F(x)) = cor(u-x @ v-F(x)). As a result, the theoretical link
between rotational-xor and linear cryptanalysis degenerates to the link between
ordinary differential cryptanalysis and linear cryptanalysis. Moreover, based on
the link between differential and linear cryptanalysis, Blondeau, Leander, and
Nyberg derived a closed formula for the bias of an ordinary differential-linear
distinguisher as shown in Equation . We now try to mimic Blondeau, Leander,
and Nyberg’s approach to obtain a closed formula for the bias of rotational
differential-linear distinguishers.

Note that this attempt was failed in [LSL21] and it was noted that this was
due to a fundamental difference between rotational-xor differentials and ordinary
differentials: the output RX-difference is not necessarily zero when the input RX-
difference rot(z) @ 2’ is zero. In this work, we show that the difficulty brought
by the difference is only technical.

4.2 A Closed Formula

Hereafter, we will denote cor(w - @ ¥ - F(z))cor(u-z @ v- F(z)) by Ap(u,v).

Definition 7. Let V C F3 be a linear space and 6 € 5 be a given vector. The
probability of an RX-differential from § to V is defined as

Pr] E:Méaab
beVv

Definition 8. Let F': F§ — F4 be a vectorial Boolean function. The probability
of the RX-differential from a linear space U C F§ to a linear space V- C F% for
F' is defined as

1
Pr[U&V]:W#{(x,a)EFSXU:?(QZ)EBFCEEB&)EV}
— 1 n ? A _
_2n |U‘#{(xab YEFE XU XV : YO F(r ®a) =0}
= ZZPra—H) T ZPra—H/]
|anb€V 1ol |an

Denote by sp(d) the linear space spanned by §. According to Definition [8|and
Definition [7} we have

1
Pr[sp(9) % V] = B Pr[é RX,

1
V] + = Prj0 25 v,
2 F
which implies that

Pr[s % V] = 2Pr[sp(6) Bp-f% V] - P[0 B;X» V). (3)



Lemma 6 ([Bon20]). Let H be an additive subgroup of FY and f : Fy — R be
a function. Then

_ _1\z-h _ |H|’ T € Hl
f(x)_hezﬂ( 1) _{07 JCerHJ‘.

Proof. Let {hy, -+ ,h.} be a basis of H, and thus H = {mhs + - - + 7ch. :

(11, -+ ,7c) € F$} has totally 2¢ elements. Consequently, we have
Z (_1)w‘h — Z (_1)a:~(7'1h1+~~+7'chc)
heH (11, ,7c)€EFS

= Z (=1)= b (—1)FTehe

(11, ,7c) €EFS

Z (_1)37-7—1h1 Z (_1).%'7—6}1,6

T1€F2 TcEFy

= (L (21 (L4 (D7),

which equals to H =2¢ifand only if x-hy =---=x - h, = 0. a

Theorem 3. Let U and V be linear spaces in F5, then we have

Pr[U+ == RFX Zcor @ - F(x))cor(u-z®v- F(z)).

u€U
veV

Proof. Let Mu,v) = cor(¥ - & ¥ - F(x))cor(u - & v - F(x)). According to
Definition [§] and Theorem [2} we have

1 RX ua@vb
Priy T) |U¢| Z on Z A, v)

acUL u€Fy
beVJ- veF"

:27 ULI > Aw,v) > (=D > (-0t

u€Fy acU+ bev+
UEF"

Applying Lemma [0] gives

1 1
PrUt 25 v = U VY Au,)

1
r 2n |U | uelU
veV
Z Au,v)
|V| uelU
veV



Lemma 7. Let Au,v) = cor(U -z @& U - F(z))cor(u -z & v - F(z)). For A,

w € F5, we have
RX n 1 1 1
Pr[A — sp(w)~] = 3 Z Au,w) — 3 Z Au, w) + 7 (4)
uEsp(A)J- uEJFE‘\S];)(A)l
Proof. According to Equation (3)), we have
RX
Pr(A 2 —> sp(w) "] = 2Pr[sp(4) 4+ sp(w)*] = Pr[0 = sp(w)™]
1 1
=2- 3 Z AMu,v) — 3 Z AMu, v) (Theorem [3))

u€sp(A)* u€Fy
veEsp(w) vEsp(w)

:% Z )\(u,v)—% Z Au,v) — Z Au,v)

u€sp(A)*+ u€Fy u€sp(A)*
vesp(w) vEsp(w) vesp(w)
1 1
—L Y - Y A
u€sp(A)* u€FP\sp(A)*
vEsp(w) vEsp(w)

Since A(u,0) = 0 for u # 0 and A(u,0) =1 for u =0,
RX 1,1 1 1
Pr[A - sp(w)~] = B Z AMu,w) — = Z AMu, w) + 3
u€sp(A)* uelFy \sp(A)™

Theorem 4. If two parts Ey and E1 of an n-bit block cipher E = Fy o Ey are
RX-differentially independent, that is, for all (a,b) € FZ x Fg,

P[a—>b > Pra—m} Pr[AZ—XHJL

A€EF
then we have
RX, ooviq L RX, i 1Y)
Pr[é T sp(w)~] 5= u%b;n (Pr[5 E—O> sp(u)~] 2) Ag, (u, w).

Proof. Substituting Equation into the right-hand side of

1
[5—>sp ZPr5—>APr[A—>sp( )i]_5
PAYS)
gives
% STPs S AN ww) — > Pr[d s A (uw) | (5)
A€F} Fo A€Fy Fo
uEsp(A)L ’UJE]F;\sp(A)L



Since S = {(u, A) : A € F&,u € sp(A)+} = {(u, Q) : u € F}, A € sp(u)*} and
thus (F3,F3\S = {(u,A) : A € F2,u € F3\sp(A)1} = {(v,A) : u € F}, A €
F2\sp(u)*}, Equation can be written as

1 RX RX
5 > Prfs o A, w) - > Prfs o A, w)
u€ly u€Fy
AEsp(u)L AE]FS\S})(u)L
1 RX 1 RX, mn L
=5 | 22 Prld 25 sp(u) A w) = Y Pris 5 F\sp(u) A(u, w)
u€ly u€Fy
= <Pr[5 EfEE% sp(u)t] — ;) Au, w).
u€Fy 0

4.3 The Multidimensional Case

Let U and W be subspaces of F5, we define the bias of the rotational differential-
linear distinguisher in the multidimensional case by

R-DL _ il RX, rpo1y 1
The following lemma can be regarded as the dual of Theorem
Lemma 8. For any permutation F : Fy — F5, we have
1 RX
_ _1\u-adv-b
Ap(u,v) = o Z (-1 Prfa — b].

a,beFy

Proof. According to Lemma [4] and Lemma 2| we have

Er(u,v) = (0 x 0p)(u,v) = é?ép(’lh’l)).
= =
Applying Definition [f] and Lemma [5] gives

n U-apv- R‘X n
2" > (~1)" ¥ Prja — b= 22"\ (u, v),
a,belFy
which completes the proof. a
Lemma 9. If two parts Ey and E, of an n-bit block cipher E = FE, o Ey are
RX-differentially independent, that is, for all (a,b) € FZ x F3,
RX RX RX
Prla == b] = A%F:” Prla - A] - Pr[A - bl,
2

then for all u, w € F%, we have Ag(u,w) = ZveJF; AE, (U, 0) A g, (v, w).



Proof. According to Lemma[8 we have
1 RX
_ _1\u-adv-b
Ag(u,w) = o Z (-1) Pr[a - b].
a,beFy

Since Fy and E; are RX-differentially independent,

1
Ag(u,w) = o a%n( 1)wady i;) Prfa —> c] - Prle —> b].

Applying Theorem [2] gives

Ag(u,w) = 2% Z Z Z (“eam)“@”)\]; (m,v ZPrc%b]

ceFY m,veFy a€Fy beFy

g X X Anm e () 3 (<1 3 (1) 3 gy

m,veFy s,peFy a€lFy beFy cefFy

= Z )\Eo (U, U))\El (Ua w)

veFy
O
Theorem 5. If two parts Ey and E1 of an n-bit block cipher E = F, o Ey are
RX-differentially independent, that is, for all (a,b) € F} x Fy,
Prla 5 8] = Y Prla o5 A] - PrlA 25 0],
P AEFy Fo El
2

then we have

UW Z RDL RDL
, ‘W| velFy

where e )" = Pr{U+\{0} % sp(v)*] and CJP% = 32, cun (o) ABa (U, 0).

Proof. According to the Theorem |ZL we have

Pr[U*+ —> sp(w Z A, (U, v)
uelU
v€sp(w)
1 1
=5 D Aso(w0) + 5 Y Any(u.0)
uelU ueU
1
=3 Z Mg, (u,v) + =
uclU
Thus,
2Pr[U+ ~—>Sp Y =1=> Ap,(u,v) (6)

uelU

10



For any subspaces U and W C 3 | we have
[UL K W]

Z)\Euw

uelU
wGW

_ Z Ag, (U, v)Ag, (v, w) (Lemma@

| | uelU
weW
veFY

| Z Z AE, (U, v) Z A, (v, w) (Equation @)

vEFY uel weWw

—ZWQPr A—>Sp |-1 Z/\Elvw
vEIF”' I weW

Thus, when U = {0} = (F3)+,

Pr [Ui L= % |W‘(2Pr[0 —>Sp [=1) ) Mg, (v,w)

veEFY weW
According to Definition [8] for any F', the following relation holds

(U4 = ) P\ (0} 255 Wy = U Pt 25 ) — Pafo 5

Then, we have

U+ - 1)Pr[UL\{0} = W

—Z \W|‘Ul (2Pr[U+ —>sp 1-1) Z)\Elvw
vEFY weW
1
_Z ‘W|(2Pr[0—>sp ]—1) Z)\Elvw
velFy weW
372Ut Pr{U 5 sp(v)t] = Pr[0 <5 sp(o)t]) — (UL = 1) Y Ap, (v, w)
\W| Eo Eo R
velFy weWw
RX
\W| > 2(|ut - 1) PrU\{0} = = sp(0) ] = (UM = 1) Y7 Ap, (v,0)
veFY o weW
Dividing both sides by |[U+| — 1 gives
RX
Pr[U+\{0} ? |W| Z (Pr UL\{O} —> sp(v)~] — = Z Mg, (v, w)
weWw

velFy

11



Since Pr[U+\{0} F;—X> sp(0)t] = 1, A(u,0) = 0 for u # 0 and A(u,0) = 1 for
0

u =0, PrlU+\{0} BI;X% W+] can be computed as

2 RX 1 1
— PrlU\{0} =5 -z g, (v, —.
7] 2 (U0 55000 = 5) 3 A (00 +
2 w#0
O
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