
Attacks and weaknesses of BLS aggregate signatures

Nguyen Thoi Minh Quan *�

Abstract

This article discusses existing attacks and known weaknesses of BLS aggregate signatures.
The goal is clarify the threat model of BLS aggregate signatures, what security properties
that they have and do not have. It’s unfortunate that the weaknesses are not documented
anywhere in BLS RFC draft v4 [1]. Confusion, ambiguity, misunderstanding all may cause
security issues in practice. We hope that this article can help cryptographic practitioners
make informed decisions when using BLS aggregate signatures and deploy mitigations at
the application/protocol layer because BLS aggregate signatures might not have security
guarantees that you need.

Contents

1 Introduction 2

2 Weaknesses of BLS aggregate signature’s definition 3
2.1 BLS aggregate signature’s definition . 3
2.2 What does the definition say? . 3
2.3 What does the definition not say? . 3
2.4 Which use case the aggregate signature definition is appropriate? 4
2.5 Which use case the aggregate signature definition is not appropriate? 4

3 Known attacks against BLS aggregate signatures 4
3.1 ”Splitting zero” attack . 4
3.2 Consensus attacks . 5

3.2.1 Equivalent interfaces return different verification results 5
3.2.2 FastAggregateVerify’s aggregation order leads to different verification results 6
3.2.3 Is batch verification a rescue? . 8

3.3 Denial-of-service attack . 8
3.4 Do we know all the attacks? . 9

4 Acknowledgements 9

A Proof of concept consensus attacks 9

*https://www.linkedin.com/in/quan-nguyen-a3209817, https://scholar.google.com/citations?user=9uUqJ9IAAAAJ,
https://github.com/cryptosubtlety, msuntmquan@gmail.com, 2021-03-22

�Disclaimer: This is my personal research, and hence it does not represent the views of my employer.

1

1 Introduction

Besides ”splitting zero” attack[2], there is also consensus bug in BLS RFC draft v4 standard [2],
[3] where 2 equivalent interfaces return conflicting results: FastAggregateV erify((pk1, pk2),m, 0) =
falsec, AggregateV erify((pk1, pk2), (m,m), 0) = true, pk1 + pk2 = 0. Please read the article
[2] for background as this article is not self-contained. Consensus bugs looked hilarious to me so
I dug deeper in that direction. After a month, I thought I found new consensus attacks in the
standard. Later, I’ve learned that the ”new” consensus attacks that I found have been discovered
14 years ago by Jan Camenisch et al. [4]. Jan Camenisch et al. [4] deserve full credit for their
consensus attack in this article. In summary, there are 2 known types of attacks against BLS
aggregate signature:

1. ”Splitting zero” attack[2]. Proof of concept attacks were provided in [2].

2. Consensus attacks by Jan Camenisch et al.[4]. I will provide concrete proof of concept
attack in this article.

After seeing the above attacks, I was confused. How can those attacks exist? BLS aggregate
signatures standardized in BLS RFC draft v4 have security proofs. I dug deeper into BLS
aggregate signature definition and read Jan Camenisch et al. [4] article and I’ve realized that the
threat model in BLS aggregate signature definition might not be appropriate for certain practical
applications/protocols. I want to raise awareness to cryptographic practitioners so that you can
make informed decisions. I don’t say that we shouldn’t use BLS aggregate signature, but using
cryptographic primitives without knowing their weaknesses is dangerous.

2

2 Weaknesses of BLS aggregate signature’s definition

2.1 BLS aggregate signature’s definition

Let’s take a look at the definition from Dan Boneh and Victor Shoup’s book [5].

2.2 What does the definition say?

+ If individual signatures are correct then the aggregate signature is correct.

+ The attack game models a malicious aggregator that tries to forge a valid signature for a
signer’s key it doesn’t control.

2.3 What does the definition not say?

1. If the aggregate signature is correct then individual signatures are correct with high prob-
ability.

2. What happens when the signers collude with each other?

3

3. What happens when the signers are malicious?

In regard to ”existential unforgeability” security property, the aggregate definition does cover
2. and 3. However, the definition doesn’t cover what malicious (colluded) signers can achieve
with regard to other security problems such as message binding or causing conflicting views
among verifiers.

2.4 Which use case the aggregate signature definition is appropriate?

The classic use case in aggregate signature is aggregation of certificate authorities (CA)’s signa-
tures. This use case has the correct threat model because the client (e.g. browser and pre-installed
cert store in iOS/Android) completely trust the CAs. In other words:

+ The CAs are modeled as honest signers.

+ Each client’s view is local, i.e., the global view of signatures among clients doesn’t matter.

+ The only potential malicious actor is the aggregator.

Aggregate signature’s definition perfectly captures the above scenario.

2.5 Which use case the aggregate signature definition is not appropri-
ate?

Cryptocurrency is the use case where aggregate signature’s threat model is not appropriate.

+ Cryptocurrency always has to deal with malicious signers.

+ Cryptocurrency has to deal with colluded signers. For instance, proof-of-work or proof-of-state
have to deal with 1/2 or 1/3 colluded signers’ attacks.

+ The global view of signatures is important as it needs consensus.

It’s worth stressing that I don’t say we shouldn’t use BLS aggregate signature in cryptocurrency.
What I’m saying is that the cryptographic layer (BLS aggregate signature) fails to model the
threat that we need and we have to achieve certain security properties by other means at the
application/protocol layer. I also don’t claim that attacks at the cryptographic layer lead to
attacks at the application/protocol layer. This is my and offensive security engineers’ future
research. What I’m saying is that attacks at the cryptographic layers are real and you have to
design applications/protocols with those attacks in mind.

3 Known attacks against BLS aggregate signatures

Note that rogue public key attack [6] [1] is captured in the aggregate signature’s definition, so it
will be ignored in this article. The following 2 attacks in the next sections do not violate BLS
aggregate signatures’ definition, i.e., BLS aggregate signatures’ definition fails to capture them.

3.1 ”Splitting zero” attack

See the article [2]. This attack needs colluded signers whose sum of their public keys is 0.

4

3.2 Consensus attacks

At a high level, the attacker’s goal is to create a set of invalid individual signatures, but their
aggregate signature is valid. Therefore, some users will see valid signatures while others see
invalid signatures, i.e., the views among users are split. Note that the attack only requires a few
(2,3 or 4) malicious individual signatures to cause conflicting views 1 among users as long as the
set of to-be-verified signatures include attacker-controlled signatures. In other words, the attack
does not require majority signatures.

Jan Camenisch et al. [4] found the attack 14 years ago. I’ll describe the attack from the
BLS standard’s interfaces perspective. The attacks work for all schemes: basic scheme, proof-of-
possession, message augmentation and there are multiple variants. For clarity, I’ll only describe
2 simplest variants for proof-of-possession.

3.2.1 Equivalent interfaces return different verification results

Let’s say there are 4 messages and signatures where m1 = m2,m3 = m4:

m1 = ”message0”, σ1

m2 = ”message0”, σ2

m3 = ”message1”, σ3

m4 = ”message1”, σ4

The attacker’s goal is create malicious signatures so that 2 different users who see the same
malicious signatures, but use 2 equivalent interfaces will get 2 different verification results. The
attacker creates the following malicious signatures

σ′
1 = σ1 − 2P

σ′
2 = σ2 + P

σ′
3 = σ3 − P
σ′
4 = σ4 + 2P

where P is a valid point in the subgroup. You may ask how does the attacker create σ′
1, σ

′
2, σ

′
3, σ

′
4?

Here are a few scenarios:

+ The attacker has the private keys sk1, sk2, sk3, sk4, the attacker signs m1,m2,m3,m4 and
immediately modify σ1, σ2, σ3σ4 to σ′

1, σ
′
2, σ

′
3, σ

′
4 to mount consensus attack.

+ The attacker doesn’t have the private keys sk1, sk2, sk3, sk4 but the attack can observe the
traffic on the wire. For instance, the attacker is a proxy who sees σ1, σ2, σ3, σ4 and the attacker
modifies the signatures to σ′

1, σ
′
2, σ

′
3, σ

′
4 to mount consensus attack.

Note that σ′
1 + σ′

2 + σ′
3 + σ′

4 = σ1 + σ2 + σ3 + σ4. Furtheremore, as σ1, σ2, σ3, σ4, P are all in
the subgroup, σ′

1, σ
′
2, σ

′
3, σ

′
4 are in the correct subgroup. In other words, the subgroup check can’t

detect and prevent the attack.
User1 uses the AggregateV erify interface to verify 4 messages together AggregateV erify

([pk1, pk2, pk3, pk4], [m1,m2,m3,m4], σ′
1 + σ′

2 + σ′
3 + σ′

4) = true

1In term of terminology, consensus bugs in this article means different interpretation/views of the same data
such as the same signatures.

5

User2 wants to achieve the same goal but wants to optimize the verification, so user2 decides
to FastAggregateVerify the first 2 messages and the last 2 messages and AggregateVerify the
final result.

In the first step, user2 computes the following

σ′
12 = Aggregate([σ′

1, σ
′
2])

σ′
34 = Aggregate([σ′

3, σ
′
4])

pk12 = AggregatePKs([pk1, pk2])

pk34 = AggregatePKs([pk3, pk4])

FastAggregateV erify([pk1, pk2],m1, σ′
12)

FastAggregateV erify([pk3, pk4],m3, σ′
34)

In the second step, user2 computes the followingAggregateV erify ([pk12, pk34], [m1,m3], σ′
12+

σ′
34). However, we notice that

σ′
12 = σ1 − 2P + σ2 + P = σ1 + σ2 − P
σ′
34 = σ3 − P + σ4 + 2P = σ3 + σ4 + P

Therefore FastAggregateV erify([pk1, pk2],m1, σ
′
12) = false, FastAggregateV erify([pk3, pk4],m3, σ

′
34) =

false. It means that user2 sees invalid signatures in the first step and so it won’t continue the
second step. In other words, user1 sees valid signatures while user2 sees invalid signatures.

We can succinctly explain the bug by using math as follows. We expect that

AggregateV erify([pk1, pk2, pk3, pk4], [m1,m2,m3,m4], σ′
1 + σ′

2 + σ′
3 + σ′

4)

= FastAggregateV erify([pk1, pk2],m1, σ
′
12)

and FastAggregateV erify([pk3, pk4],m3, σ
′
34)

and AggregateV erify([pk12, pk34], [m1,m3], σ′
12 + σ′

34)

Both sides of the equation should return the same result because the right hand side is just an
optimization of the left hand side. However, with the above test vector, the left hand side returns
true, while the right hand side returns false.

3.2.2 FastAggregateVerify’s aggregation order leads to different verification results

Similar to the above section, let’s say users want to FastAggregateVerify the message m with 3
signatures σ1, σ1, σ3. The attacker creates the following malicious signatures

σ′
1 = σ1 − 2P

σ′
2 = σ2 − P
σ′
3 = σ3 + 3P

Note that σ′
1 +σ′

2 +σ′
3 = σ1 +σ2 +σ3. Furtheremore, as σ1, σ2, σ3, P are all in the subgroup,

we have σ′
1, σ

′
2, σ

′
3 are in the correct subgroup. In other words, the subgroup check can’t detect

and prevent the attack.

6

User1 computes FastAggregateV erify([pk1, pk2, pk3, m,σ′
1 + σ′

2 + σ′
3)) = true

User2 first FastAggregateVerify first 2 signatures σ′
12 = σ′

1 + σ′
2 = σ1 + σ2 − 3P and then

FastAggregateVerify the whole thing in the final step:

1. FastAggregateV erify([pk1, pk2],m, σ′
12)

2. FastAggregateV erify([pk12, pk3],m, σ′
12 + σ′

3)

As the first step return false, user2 discards σ′
12 and won’t continue with the second step. In

other words, user2 sees invalid signatures while user1 sees valid signatures.

7

3.2.3 Is batch verification a rescue?

It’s worth mentioning that while aggregate signatures is vulnerable to the above consensus at-
tacks, it’s not the weakness of stronger definition ”Definition 2.1 (Batch Verification of Signa-
tures)” in the Jan Camenisch et al.’s paper [4]

One might ask whether batch verification a rescue? Not really. It’s true that batch verifi-
cation definition prevents consensus attacks. However, you have to pay a significant cost. The
advantage of aggregate signature is you only need 1 aggregate signature which saves bandwidth
and storage. On the other hand, batch verification requires all individual signatures, so it doesn’t
save bandwidth or storage.

3.3 Denial-of-service attack

This attack was discussed by Justin Drake and DavidYakira [7]. BLS aggregate signature’s
verification is fast in the best case when all signatures are valid. However, if there are invalid
individual signatures, the verifier has to hunt down the invalid individual signatures. It’s worth
mentioning that anyone can create invalid signatures, not just the malicious signers, so we are
never sure who created invalid signatures to punish them. It’s not clear what the worst complexity
of finding k invalid signatures among n signatures is.

You may wonder that in the worst case scenario, the verifier will just verify all n individual
signatures, so BLS aggregate signatures is a clear win over other signatures like Ed25519 [8] or
NIST P-256? Not really. To make a fair comparison, let’s design the system from scratch. In one
system, we use Ed25519/NIST P-256 without aggregate signatures and in another system, we use
BLS aggregate signatures. Security-wise, BLS signatures are strictly riskier than Ed25519/NIST
P-256 because besides elliptic curve discrete log attack, BLS signatures face additional risk of
finite field discrete log attack [9]. Therefore, in summary

+ In the best case scenario when all individual signatures are valid, BLS aggregate signatures
are riskier but faster and saves bandwidth.

+ In the worst case scenario when there are multiple invalid individual signatures, the verifier
has to hunt down and verify many invalid individual signatures then BLS signatures are
both slower and riskier than Ed25519/NIST P-256. Note that single signature verification of
Ed25519 is faster than single BLS signature’s verification.

From my perspective, deciding to use BLS aggregate signature is a challenging security perfor-
mance trade-off and only you, depending application/protocol, can make such a decision.

8

3.4 Do we know all the attacks?

As discussed in section ”What does the definition not say?”, there are multiple scenarios that the
aggregate signatures’ definition and its proof doesn’t capture. It’s not clear whether we found
all the attacks that are outside the scope of the definition.

4 Acknowledgements

Thanks twitter account @psiv 2 for valuable feedback.

A Proof of concept consensus attacks

The proof of concept attacks should only be used for educational purposes. I make PoC attacks
in py ecc [10] because it’s easy to use, but it’s not the libraries’ bugs. It’s the inherent weakness
of BLS aggregate signatures.

git clone -n https://github.com/ethereum/py_ecc.git && cd py_ecc

git checkout -b poc 8ddea32b693f7c71fff3b68fca9fd8804ebf33cb

pip install .

from py ecc . b l s import G2ProofOfPossess ion as b l s
from py ecc . b l s import G2Basic as b l s b a s i c

from py ecc . b l s . hash import i2osp , o s2 ip
from py ecc . b l s . g 2 p r i m i t i v e s import *

from py ecc . op t im i z ed b l s12 381 . opt imized curve import *

sk0 = 1234
sk1 = 1111
sk2 = 2222
sk3 = 3333
sk4 = 4444
pk1 = b l s . SkToPk(sk1)
pk2 = b l s . SkToPk(sk2)
pk3 = b l s . SkToPk(sk3)
pk4 = b l s . SkToPk(sk4)

We i n t e n t i o n a l l y choose P as v a l i d s i g n a t u r e so that i t s tay s in a c o r r e c t
subgroup .
msg0 = b”message”
s i g 0 = b l s . Sign (sk0 , msg0)
P = s ignature to G2 (s i g 0)

p r i n t (’ \n\nConsensus attack aga in s t proof−of−p o s s e s s i o n . . . ’)
msg1 = b”message 0”
msg2 = b”message 0”
msg3 = b”message 1”

2Sorry, I don’t know the real name to give a proper thank you.

9

msg4 = b”message 1”
s i g 1 = b l s . Sign (sk1 , msg1)
s i g 2 = b l s . Sign (sk2 , msg2)
s i g 3 = b l s . Sign (sk3 , msg3)
s i g 4 = b l s . Sign (sk4 , msg4)

The at tacke r c r e a t e s the f o l l o w i n g s i g n a t u r e s
s i g 1 − 2P
s i g1 pr ime = G2 to s i gnature (add (s i gnature to G2 (s i g 1) , neg (mult ip ly (P, 2))))
s i g 2 + P
s ig2 pr ime = G2 to s i gnature (add (s i gnature to G2 (s i g 2) , P))
s i g 3 − P
s ig3 pr ime = G2 to s i gnature (add (s i gnature to G2 (s i g 3) , neg (P)))
s i g 4 + 2P
s ig4 pr ime = G2 to s i gnature (add (s i gnature to G2 (s i g 4) , mul t ip ly (P, 2)))

p r i n t (’ subgroup check s i g1 pr ime : ’ , subgroup check (s i gnature to G2 (s i g1 pr ime)))
p r i n t (’ subgroup check s i g2 pr ime : ’ , subgroup check (s i gnature to G2 (s i g2 pr ime)))
p r i n t (’ subgroup check s i g3 pr ime : ’ , subgroup check (s i gnature to G2 (s i g3 pr ime)))
p r i n t (’ subgroup check s i g4 pr ime : ’ , subgroup check (s i gnature to G2 (s i g4 pr ime)))

s i g1234 pr ime = b l s . Aggregate ([s ig1 pr ime , s ig2 pr ime , s ig3 pr ime , s i g4 pr ime])

p r i n t (’ User1 aggregate v e r i f y 4 messages : ’ ,
b l s . AggregateVer i fy ([pk1 , pk2 , pk3 , pk4] , [msg1 , msg2 , msg3 , msg4] , s i g1234 pr ime))
s i g12 pr ime = b l s . Aggregate ([s ig1 pr ime , s i g2 pr ime])
s i g34 pr ime = b l s . Aggregate ([s ig3 pr ime , s i g4 pr ime])
pk12 = b l s . AggregatePKs ([pk1 , pk2])
pk34 = b l s . AggregatePKs ([pk3 , pk4])
p r i n t (’ User2 f a s t aggregate v e r i f y the f i r s t 2 messages and the l a s t 2 messages .
They a l l r e turn f a l s e so user2 d i s c a r d s s ig12 pr ime , s i g34 pr ime : ’ ,
b l s . FastAggregateVer i fy ([pk1 , pk2] , msg1 , s i g12 pr ime) ,
b l s . FastAggregateVer i fy ([pk3 , pk4] , msg3 , s i g34 pr ime))

p r i n t (’ User2 never execute s the t h i s l a s t s tep because s i g12 pr ime and s ig34 pr ime
are i n v a l i d : ’ , b l s . AggregateVer i fy ([pk12 , pk34] , [msg1 , msg3] ,
b l s . Aggregate ([s ig12 pr ime , s i g34 pr ime])))

p r i n t (’ Mathematical ly , we expect both s i d e s re turn the same r e s u l t ,
but they do not : ’ ,
b l s . AggregateVer i fy ([pk1 , pk2 , pk3 , pk4] , [msg1 , msg2 , msg3 , msg4] ,
s i g1234 pr ime) ,
b l s . FastAggregateVer i fy ([pk1 , pk2] , msg1 , s i g12 pr ime)
and b l s . FastAggregateVer i fy ([pk3 , pk4] , msg3 , s i g34 pr ime)
and b l s . AggregateVer i fy ([pk12 , pk34] , [msg1 , msg3] ,
b l s . Aggregate ([s ig12 pr ime , s i g34 pr ime])))

m = b”message”

10

s i g 1 = b l s . Sign (sk1 , m)
s i g 2 = b l s . Sign (sk2 , m)
s i g 3 = b l s . Sign (sk3 , m)
The at tacke r c r e a t e s the f o l l o w i n g modi f i ed s i g n a t u r e s
s i g 1 − 2P
s i g1 pr ime = G2 to s i gnature (add (s i gnature to G2 (s i g 1) , neg (mult ip ly (P, 2))))
s i g 2 − P
s ig2 pr ime = G2 to s i gnature (add (s i gnature to G2 (s i g 2) , neg (P)))
s i g 3 + 3P
s ig3 pr ime = G2 to s i gnature (add (s i gnature to G2 (s i g 3) , mul t ip ly (P, 3)))

p r i n t (b l s . FastAggregateVer i fy ([pk1 , pk2 , pk3] , m,
b l s . Aggregate ([s ig1 pr ime , s ig2 pr ime , s i g3 pr ime])))
s i g12 pr ime = b l s b a s i c . Aggregate ([s ig1 pr ime , s i g2 pr ime])
p r i n t (b l s . FastAggregateVer i fy ([pk1 , pk2] , m, s i g12 pr ime))
p r i n t (b l s . FastAggregateVer i fy ([pk12 , pk3] , m,
b l s . Aggregate ([s ig12 pr ime , s i g3 pr ime])))

References

[1] Dan Boneh, Sergey Gorbunov, Riad S. Wahby, Hoeteck Wee, and Zhenfei Zhang.
https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04.

[2] Nguyen Thoi Minh Quan. 0. https://eprint.iacr.org/2021/323.pdf.

[3] Nguyen Thoi Minh Quan. Proposals to fix bls rfc v4’s message binding security property.
https://github.com/cfrg/draft-irtf-cfrg-bls-signature/issues/38.

[4] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch verification
of short signatures.

[5] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography.

[6] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps.

[7] Justin Drake and DavidYakira. Pragmatic signature aggregation with bls.
https://ethresear.ch/t/pragmatic-signature-aggregation-with-bls/2105.

[8] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures.

[9] Yumi Sakemi, Tetsutaro Kobayashi, Tsunekazu Saito, and Riad S. Wahby.
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-09.

[10] https://github.com/ethereum/py ecc/commit/8ddea32b693f7c71fff3b68fca9fd8804ebf33cb.

11

https://github.com/ethereum/py_ecc/commit/8ddea32b693f7c71fff3b68fca9fd8804ebf33cb

	Introduction
	Weaknesses of BLS aggregate signature’s definition
	BLS aggregate signature's definition
	What does the definition say?
	What does the definition not say?
	Which use case the aggregate signature definition is appropriate?
	Which use case the aggregate signature definition is not appropriate?

	Known attacks against BLS aggregate signatures
	"Splitting zero" attack
	Consensus attacks
	Equivalent interfaces return different verification results
	FastAggregateVerify's aggregation order leads to different verification results
	Is batch verification a rescue?

	Denial-of-service attack
	Do we know all the attacks?

	Acknowledgements
	Proof of concept consensus attacks

