
On the Impossibility of Post-Quantum Black-Box Zero-Knowledge

in Constant Rounds

Nai-Hui Chia1, Kai-Min Chung2, Qipeng Liu3, and Takashi Yamakawa∗4

1QuICS, University of Maryland
1Luddy School of Informatics, Computing, and Engineering, Indiana University

Bloomington naichia@iu.edu
2Institute of Information Science, Academia Sinica kmchung@iis.sinica.edu.tw

3Princeton University qipengl@cs.princeton.edu
4NTT Secure Platform Laboratories takashi.yamakawa.ga@hco.ntt.co.jp

June 14, 2021

Abstract

We investigate the existence of constant-round post-quantum black-box zero-knowledge pro-
tocols for NP. As a main result, we show that there is no constant-round post-quantum
black-box zero-knowledge argument for NP unless NP ⊆ BQP. As constant-round black-box
zero-knowledge arguments for NP exist in the classical setting, our main result points out a fun-
damental difference between post-quantum and classical zero-knowledge protocols. Combining
previous results, we conclude that unless NP ⊆ BQP, constant-round post-quantum zero-
knowledge protocols for NP exist if and only if we use non-black-box techniques or relax certain
security requirements such as relaxing standard zero-knowledge to ε-zero-knowledge. Addition-
ally, we also prove that three-round and public-coin constant-round post-quantum black-box
ε-zero-knowledge arguments for NP do not exist unless NP ⊆ BQP.

∗This work was done while the author was visiting Princeton University.

mailto:naichia@iu.edu
mailto:kmchung@iis.sinica.edu.tw
mailto:qipengl@cs.princeton.edu
mailto: takashi.yamakawa.ga@hco.ntt.co.jp

1 Introduction

Zero-knowledge (ZK) interactive proof, introduced by Goldwasser, Micali, and Rackoff [GMR89], is
a fundamental primitive in cryptography. ZK protocols provide privacy to the prover by proving a
statement without revealing anything except that the statement is true even though the verifier is
malicious. After many decades of study, what languages ZK protocols can express is quite under-
stood. There have been many positive results for ZK protocols for particular languages, including
quadratic residuosity [GMR89], graph isomorphism [GMW91], statistical difference problem [SV03]
etc., and for all NP languages assuming one-way functions [GMW91, Blu86].

In addition to the expressiveness, round complexity is an important complexity measure for
ZK protocols. One fascinating question regarding ZK is whether languages in NP have constant-
round ZK protocols. In this aspect, the ZK protocol for 3-coloring [GMW91] is not ideal since
that requires super-constant number of rounds if we require negligible soundness error. (In the
following, we require negligible soundness error by default.) Feige and Shamir [FS90] and Brassard
et al. [BCY91] presented constant-round ZK arguments1 for NP. Then, under reasonable crypto-
graphic assumptions, Goldreich and Kahan [GK96a] gave the first constant-round ZK proof2 for
NP.

On the other hand, generalizing above results to obtain ZK protocols against malicious quantum
verifiers is nontrivial. Briefly speaking, a protocol is ZK if there exists an efficient simulator such
that for all malicious verifiers, the simulator can simulate the view generated by the prover and the
malicious verifier. In the quantum setting, the malicious verifier can have quantum auxiliary input
and can use quantum algorithms, which gives the verifier additional power to cheat even though
the simulator is also quantum. This difference fails the security proofs of previous classical results.
Specifically, those security proofs rely on a technique called rewinding, enabling the simulator to
complete the simulation by using only black-box access to the malicious verifier. This rewinding
technique often cannot be applied when an adversary is quantum due to the no-cloning theorem.

Watrous [Wat09] presented the first classical ZK protocol against malicious quantum verifiers
for languages in NP. For simplicity, we call such a protocol post-quantum ZK protocol. In par-
ticular, he introduced the quantum rewinding lemma and showed that, given black-box access to
the malicious quantum verifier, there exists a quantum simulator assuming quantum-secure one-
way functions. However, to achieve negligible soundness, Watrous’s protocol needs super-constant
number of rounds. Therefore, it does not satisfy the constant-round requirement.

Recently, Bitansky and Shmueli [BS20] gave the first constant-round post-quantum ZK argu-
ment for NP assuming Quantum Learning with Error (QLWE) and Quantum Fully Homomorphic
Encryption (QFHE) assumptions. However, their result relies on a novel technique for non-black-
box simulation, i.e., the simulator requires the actual description of the malicious verifier instead
of using it in a black-box manner. Along this line, Chia et al. [CCY21] presented a constant-round
black-box ε-ZK (BB ε-ZK) argument for NP assuming quantum-secure one-way functions and a
constant-round BB ε-ZK proof for NP assuming QLWE (or more generally, the existence of collaps-
ing hash function [Unr16]). ε-ZK is a security notion weaker than standard ZK. Roughly speaking,
while standard ZK requires that the simulator can only fail with negligible probability, ε-ZK allows
the simulator to run in time poly(1/ε) with failing probability at most ε.

Nevertheless, all these results in [BS20, CCY21, Wat09] cannot achieve constant-round post-
quantum black-box ZK (BBZK) for NP. In contrast, constant-round classical ZK protocols can
be obtained by black-box simulation [FS90, GK96a, PW09, BCY91]. Observing this inconsistency
between classical and quantum settings, one may start wondering if non-black-box simulation is

1The protocol only guarantees to be computationally sound.
2The protocol has statistical soundness.

1

necessary for post-quantum ZK or if we really need to sacrifice ZK security for black-box simulation.
In this work, we aim to satisfy all these curiosities by answering the following question:

Do there exist constant-round post-quantum BBZK protocols for NP?

Classical impossibility results. In the classical setting, certain constant-round BBZK protocols
are unlikely to exist. Goldreich and Krawczyk [GK96b] showed that there do not exist three-
round BBZK protocols and public-coin constant-round BBZK protocols for NP unless NP ⊆
BPP. Barak and Lindell [BL02] proved that there is no constant-round BBZK protocol with
strict-polynomial-time simulation unless NP ⊆ BPP.3 We note that a simulator is allowed to
run in expected-polynomial-time in the standard definition of the ZK property, which we also
follow. Indeed, all known constant-round BBZK protocols for NP rely on expected-polynomial-
time simulation to circumvent the above impossibility result.

1.1 Our Results

In this work, we give a negative answer to the above question. In particular, we show that

Theorem 1.1. There do not exist constant-round post-quantum BBZK protocols for NP unless
NP ⊆ BQP.

We stress that Theorem 1.1 rules out constant-round post-quantum BBZK protocols with
expected-polynomial-time simulation. This indicates a fundamental difference between classical
and post-quantum BBZK. That is, although there exist constant-round classical BBZK protocols
(with expected-polynomial-time simulation) for NP, such a protocol does not exist in the quantum
setting unless NP ⊆ BQP.

Along this line, to fully understand the feasibility of various constant-round post-quantum ZK
protocols for NP, we also prove other impossibility results.

Theorem 1.2. There do not exist constant-round public-coin post-quantum BB ε-ZK protocols for
NP unless NP ⊆ BQP.

Theorem 1.3. There do not exist three-round post-quantum BB ε-ZK protocols for NP unless
NP ⊆ BQP.

In summary, combining previous works on post-quantum ZK, we are able to give detailed
characterizations of the feasibility of constant-round post-quantum BBZK and BB ε-ZK protocols
for NP. We summarize them as follows:

1. For post-quantum ZK, non-black-box simulation is sufficient [BS20] and necessary (Theo-
rem 1.1) for constant round. Otherwise, one has to relax the security of ZK to ε-ZK for
black-box simulation [CCY21].

2. For post-quantum BB ε-ZK, private coin is sufficient [CCY21] and necessary (Theorem 1.2)
for constant round.

3. In the last, although it is unlikely to have three-round post-quantum BB ε-ZK protocols for
NP by Theorem 1.3, there exists a five-round post-quantum BB ε-ZK protocol when assuming
QLWE [CCY21]. Whether there exists a four-round post-quantum BB ε-ZK protocol for NP
is still open.

3A ZK protocol has strict-polynomial-time simulation if the simulator always runs in a fixed polynomial time.

2

1.2 Technical Overview

1.2.1 Impossibility of Constant-Round ZK

In this section, we start by recalling the classical impossibility result by Barak and Lindell [BL02]
and provide overviews for our techniques that extend the classical impossibility to the quantum
setting as well as expected polynomial time quantum simulator.

We first fix some notations that will be used in this overview. Let (P, V) be a (classical or
post-quantum) zero-knowledge proof or argument system for a language L with a BB simulator
Sim, with negligible soundness error and perfect completeness4. The number of rounds is a constant
number 2k−1, where the first message is sent by P . We can assume all messages sent by the prover
P or the verifier V are elements in a classical set M.

Barak-Lindell Impossibility Result. As observed by Barak and Lindell [BL02], to construct
constant-round zero-knowledge proofs or arguments for languages not in BPP, one has to either
allow expected polynomial time simulators or non-black-box simulators (that make inherent use of
the code of the verifier). More precisely, they show that all languages that have constant round
zero-knowledge proofs or arguments with strict polynomial-time black-box (BB) simulators must
be trivial, i.e. in BPP. We give the proof sketch below and explain the potential barriers for
quantizing this proof.

The simulator Sim with oracle access to a (dishonest) verifier V ∗ uses V ∗(x, aux, ·) as a black-
box routine. Here V ∗(x, aux, ·) is the next-message function of V ∗, which takes a statement x, an
auxiliary input aux, a random tape r and a message transcript m = (m1, · · · ,mi) (all messages
sent by P , of length at most k), and outputs the next message sent to the prover.

To show an algorithm that decides L, we first define a random aborting verifier V ∗. V ∗ works
almost in the same way as the honest verifier V , except on each input transcript m, it refuses
to answer and aborts with some probability. In other words, let H be a random oracle that
independently on each input transcript m of length i ≤ k, outputs 0 (aborting) with probability
1 − εi and 1 (non-aborting) with some non-negligible probability εi

5; then V ∗ works in the same
way as V if H(mj) = 1 for all prefix mj of m and aborts otherwise. Note that H is treated as the
auxiliary input feed to V ∗.

We are now ready to define an algorithm B that decides L: on input x, it samples a random tape
r and a random aborting oracle H, then runs Sim(x) with oracle access to V ∗(x, aux := (H, r), ·);
B outputs 1 (accepts) if and only if the simulator outputs an accepting transcript.

The proof consists of two parts:

• On x ∈ L, B accepts with non-negligible probability.

• On x 6∈ L, B accepts with negligible probability.

The first bullet point is easier, simply invoking zero-knowledge property. For the second bullet
point, a more delicate argument is needed. The core of the proof is to turn B into a cheating prover
that tries to prove a statement x which is not in the language L.

For x ∈ L, the simulator will output the same transcript distribution as the distribution induced
by the interaction between the honest prover P and the random aborting verifier V ∗. When V ∗

aborts, it never gives an accepting transcript. When V ∗ never aborts, the transcript is always an

4Though our main theorem also rules out protocols with negligible completeness error, we assume perfect com-
pleteness in this overview for simplicity.

5In the actual proof by Barak and Lindell, the probability εi is set as ε2
i

for some chosen ε.

3

accepting one, by the perfect completeness of the underlying proof system Π = (P, V). Since in
each round V ∗ aborts with probability 1− εi, the probability that V ∗ never aborts in the execution
is ε∗ =

∏
i εi. By zero-knowledge property, the simulator will output an accepting transcript with

probability roughly ε∗, which is non-negligible as all εi are chosen to be some non-negligible function.
Thus, B on input x ∈ L, accepts with non-negligible probability.

For x 6∈ L, we argue that the simulator will almost never output an accepting transcript, thus B
on x 6∈ L never outputs 1. By a delicate argument6, one can show that except with small probability,
Sim can never make two queries m = (m1, · · · ,mi−1,mi) and m′ = (m1, · · · ,mi−1,m

′
i) whose

mi 6= m′i and V ∗ does not abort on both m and m′. In other words, during the whole execution of
Sim, it never gets to see two different continuations of the same transcript. Therefore, the execution
of Sim with oracle access to V ∗ can be roughly simulated by an algorithm with only interaction
to V ∗. Further notice that the interaction with V ∗ is simply an interaction with V plus random
aborting, the execution of Sim can be therefore simulated by an algorithm (cheating prover) P ∗

with interaction with V (instead of V ∗). If the simulator outputs an accepting transcript, then the
interaction between P ∗ and V also outputs an accepting transcript. Since the statement x is not
in L, by the soundness of the proof system Π, any (efficient) prover P ∗ can not convince V . We
then conclude that B on x 6∈ L never accepts.

We notice that the first half of the proof (for x ∈ L) relies only on the zero-knowledge property
of Π. This part can be generalized to the quantum setting. The barrier of quantizing the proof is
from the second part (for x 6∈ L). Recall that in the second part of the proof, we need to argue
that Sim never sees two different continuations of the same transcript. However, for a quantum
simulator, even a single quantum query would completely reveal answers of possibly all transcripts.
We resolve the problem in the next section.

Impossibility for Strictly Polynomial-Time Simulator. We first extend the classical result
to the quantum setting, showing that all languages that have constant round post-quantum zero-
knowledge proofs or arguments with strict polynomial-time BB simulators must be trivial, i.e. in
BQP.

Let Sim be the quantum strict polynomial-time BB simulator. Roughly speaking7, the simulator
Sim uses a (dishonest) V ∗(x, aux, ·) as a quantum black-box routine. It will be more clear when we
define V ∗ below. Similar to the classical proof, we construct a random aborting verifier V ∗ based
on the honest V and we show that there is an efficient quantum algorithm that makes use of the
simulator and the random aborting verifier and decides language L. As mentioned in the previous
section, although the idea follows from [BL02], we show barriers for lifting the proof and how we
overcome them.

Random Aborting Verifier. A random aborting verifier V ∗ is similar to that defined in the
classical proof, except the aborting probability ε1 = · · · = εk = ε are the same. Let H be a random
oracle that independently on each input transcript m of length i ≤ k, outputs 0 (aborting) with
probability 1 − ε and 1 (non-aborting) with some non-negligible probability ε. Thus, a quantum

6By choosing each εi properly. This is the place where the proof requires the running time of the simulator is
strict polynomial, instead of expected polynomial. Otherwise, such εi may not exist.

7To formally define it, we follow the definition in [Unr12], see Section 2.1.

4

query made by the simulator Sim will become

|m, 0〉 → |m, V (x, r,m)〉 H(m) = 1;

|m, 0〉 → |m, 0〉 otherwise.

In the above notation, V (x, r, ·) is the next-message function of V corresponding to the statement
x and its random tape r. Importantly, the quantum oracle access to V ∗(x, r, ·) can be simulated
by constant number of quantum oracle access to V (x, r, ·) and H. Later in the construction of
our algorithm, Sim chooses a random tape for V , we assume Sim has oracle access to H and can
compute V (x, r, ·) by itself.

First Attempt. A natural approach is to consider the following algorithm B: on input x, it
samples a random tape r, a random oracle H and runs the simulator Sim on input x with oracle
access to H, outputs 1 if the transcript produced by Sim is an accepting transcript and compatible
with H. Here “compatible” means that conditioned on this transcript, it never aborts.

For x ∈ L, Sim would output an accepting transcript with probability roughly εk, which is the
same probability as that the random aborting verifier accepts a proof. Because ε will be chosen as
an inverse polynomial and k is a constant, B on x ∈ L accepts with non-negligible probability.

Although this algorithm works on input x ∈ L, there is an issue for x 6∈ L. As briefly mentioned
at the end of the last section, the idea underlines the classical proof is: a strict polynomial-time BB
simulator will not have “enough time” to obtain two non-abort responses from the verifier; thus
one would use any execution of Sim that outputs 1 to convince an honest verifier V . Such a claim
is not trivial in the quantum setting as a single quantum query to V ∗, even if V ∗ aborts with very
high but still non-negligible probability, reveals exponentially many non-abort responses. Thus, we
can not conclude that the algorithm does not accept x 6∈ L.

Measure-and-Reprogram. A naive solution would be to measure all quantum queries made by
the simulator. As long as all queries become classical, we can resolve the issue. Though, this
approach works for x 6∈ L, the modified algorithm may never accept x ∈ L, as measuring all the
quantum queries can be easily identified. Our idea is to apply a refined way of measuring and
extracting quantum queries – the “measure-and-reprogram” technique that was first introduced
for proving the post-quantum security of Fiat-Shamir [DFMS19, DFM20]. Very informally, by

applying the technique, we obtain the following oracle algorithm S̃im
H

:

• It picks k queries out of all q queries made by Sim, which will be measured later and runs
Sim as a subroutine.

• Every time Sim makes a query that is supposed to be measured, S̃im measures the query and
reprograms the oracle H on the measured point in a “certain” way.

Intuitively, this allows us to exactly measure the transcript that will be outputted by Sim at
the end of the execution while still preserving its success probability. Followed by the “measure-
and-reprogram” lemma8, the probability that the output transcript of S̃im gets measured during
“measure-and-reprogram” and it is an accepting transcript is non-negligible.

We can then define a new algorithm B′ based on S̃im: on input x, it samples a random tape
r, a random oracle H and runs the algorithm S̃im on input x with oracle access to H, outputs 1
if the output transcript is an accepting transcript and compatible with the updated H. Here H
gets updated in the measure-and-reprogram process. This algorithm only partially solves the issue.

8We rely on a variant by [YZ21], also see [DFMS19, DFM20].

5

Recall our goal is to show the algorithm can be turn into a cheating prover, thus all its queries can
be simulated by only having interaction with a honest verifier V . It now makes k out of q queries
classical, and these k queries are exactly what will be the output transcript. These k queries can
then be simulated by the interaction with V . However, for the other q − k queries, they are still
quantum queries and may be hard to answer if it only sees an interaction with V .

Finish the Proof. Actually, it turns out that the other q − k queries can be easily answered, by
preparing an empty oracle H0 (which outputs 0 on every input) instead of a real random oracle H.
Thus, the algorithm for deciding L is the following:

B̃: On input x, it samples a random tape r, an empty oracle H0 and runs the algorithm S̃im on
input x with oracle access to H0, outputs 1 if the output transcript is an accepting transcript
and compatible with the updated H0.

The only difference between B̃ and B′ is that the underlying S̃im gets either an empty oracle H0

or a sparse oracle H (each output is 1 with probability ε). By [HRS15, Lemma 3], the advantage
of distinguishing an empty oracle from a sparse oracle by a q-quantum-query algorithm is at most
8q2ε. Therefore, for any x ∈ L, B̃ outputs 1 with probability at least that of B′ outputs 1 minus
8q2ε. By carefully tuning ε, we can show that B̃ still accepts x ∈ L with non-negligible probability.

For x 6∈ L, we want to turn B̃ into a cheating prover P ∗. Because P ∗ can never convince V
on x 6∈ L, B̃ should never accept x unless with negligible probability. Assuming the first quantum
query made by S̃im is not going to be measured. In this case, H0 does not get updated and S̃im
makes the first quantum query to V ∗(x, r,H0, ·). By the definition of the random aborting verifier,
it always aborts on any input. Therefore, it can answer the first quantum query by simply always
returning 0, without getting any response from the real verifier V (x, r, ·). If the first quantum query
needs to be measured, it will be part of the final output transcript. P ∗ can obtain and record the
response by doing the interaction with V (x, r, ·).

Similarly, whenever S̃im makes a quantum query to V ∗(x, r,H0, ·) (where H0 is the updated
oracle so far), the only non-abort responses come from the input m such that all its prefix mj

satisfying H0(mj) = 1. Because H0 is initialized as an empty oracle, every input m satisfying

H0(m) = 1 must be measured and reprogrammed at certain point in the execution of S̃im, its
response V (x, r,m) is already known and recorded. For m such that H(m) = 0, we do not need

to know its response. Overall, P ∗ can simulate any quantum query in the execution of S̃im
H0

.
Therefore, B̃ never accepts x 6∈ L except with negligible probability.

Thus, post-quantum constant-round zero-knowledge proofs or arguments with strict polynomial-
time BB simulators for all languages in NP do not exist unless NP ⊆ BQP.

Impossibility for Expected Polynomial-Time Simulator. As discussed by Barak and Lin-
dell [BL02], a natural attempt to extend the classical impossibility proof to expected-time BB
simulators is by truncating the execution of a simulator (see Section 1.3 of [BL02]); they pointed
out that such an attempt would fail. Imagine a expected polynomial-time BB simulator (with ex-
pected running time q/2) has oracle access to an aborting verifier V ∗ with a very small non-aborting
probability, say ε = q−10. As long as we truncate the execution of the simulator when the running
time is significantly smaller than q10, it would never get any non-abort response from the aborting
verifier and is not able to produce any accepting transcript.

Another way to interpret the above argument is: by the impossibility of strict-poly BB simula-
tion, we can say that a simulator has to “learn” the aborting probability. If a BB simulator is only

6

allowed to make a bounded number of queries (which is independent of the aborting probability ε),
it almost can never learn ε, as long as 1/ε is significantly larger.

We show that, informally, if there is an expected polynomial-time BB simulator, then by trun-
cating this simulator, it is still a “good-enough” simulator for a specific aborting verifier while
it does not measure/learn the aborting probability. We know that this can not happen for all
languages in NP unless NP ⊆ BQP.

A crucial difference between quantum and classical malicious verifiers is that the quantum
malicious verifier can use an auxiliary input qubit to control the aborting probability in “super-
position”. This implies that this auxiliary qubit can somehow “entangle with the runtime” of the
protocol or the simulation. Therefore, conditioned on accepting, the state of this auxiliary qubit
after the interaction between the real prover and the verifier can be far from the state after the
simulation since the black-box simulator requires to “measure” the aborting probability (and thus
measures the control bit). By combining this observation and our impossibility result on the strict
polynomial-time simulation, we can also fail the expected polynomial-time simulation. To be more
specific, consider the following verifier Ṽ ∗ that runs a honest verifier V and a random aborting
verifier V ∗ (with non-aborting probability ε) in superposition:

• It prepares a control bit |ψ〉 = 1√
2
(|0〉+ |1〉) at the beginning.

• It runs V and V ∗ in superposition: on input m, if the control bit is 0, it never aborts and
behaves as V ; otherwise the control bit is 1, it aborts with probability 1−ε as V ∗, by querying
an internal random oracle.

• Finally, it outputs a classical bit b indicating whether it accepts and a single qubit in the
control bit register.

If the control bit is 0, we know that V always accepts by perfect completeness of Π. If the control
bit is 1, it accepts with εk. Thus, if Ṽ ∗ accepts (the classical output b = 1), the output qubit is
proportional to |0〉+

√
εk |1〉9.

Let Sim be the expected polynomial-time BB simulator that makes q/2 queries in expectation.
Consider a truncated simulator Simtrunc for Ṽ ∗ which halts after Sim tries to make the (q + 1)-th
query. By Markov inequality, we know the probability that Sim will halt within the first q queries
is at least 1/2. When Sim makes at most q queries, it outputs b = 1 with probability at least 1/2
(because when the control bit is 0, V always accepts). It is worth noting that this two events are
independent. Thus, Simtrunc would output b = 1 with probability at least 1/4. As we know when
b = 1, Ṽ ∗ always outputs the qubit |0〉+

√
εk |1〉. By zero-knowledge property, Simtrunc should also

output a state close to |0〉+
√
εk |1〉 when the classical output b = 1. However, this can not happen

for languages outside BQP. By our impossibility result for strict poly-time simulators, such a
bounded query BB simulator would essentially need to measure the aborting probability of Ṽ ∗,
which necessarily collapse the control qubit (as the aborting probability for control bit 0 is 0, and
for control bit 1 is ε). Therefore, we conclude that post-quantum constant-round zero-knowledge
proofs or arguments with (expected) polynomial-time BB simulators for all languages in NP do
not exist unless NP ⊆ BQP.

On the Efficiency of Malicious Verifier. In the explanation so far, we considered a malicious
verifier that relies on a random oracle. For making the verifier efficient, a standard technique is to

9In the real execution, Ṽ ∗ would be entangled with its internal random oracle H and make the final qubit a mixed
state. Nonetheless, we show such entanglement can be uncomputed by Ṽ ∗ and the final qubit is a pure state. For
simplicity, we omit the details here.

7

simulate a random oracle by using a 2q-wise independent function when the number of queries is
at most q [Zha12b]. Though we show that this works in our setting, it is not as trivial as one would
expect due to some technical reasons.10 Therefore, in the main body, we first consider an inefficient
malicious verifier that simulates the random oracle by a completely random function, and then we
explain how we make the verifier be efficient without affecting the proof.

1.2.2 Impossibility of Constant-Round Public-Coin or Three-Round ε-ZK

In the classical setting, Goldreich and Krawczyk [GK96b] proved the impossibility of constant-
round public-coin or three-round ZK arguments. It is easy to see that their result also rules out
ε-ZK arguments by essentially the same proof. Roughly speaking, we translate their proof into
the quantum setting by again relying on the measure-and-reprogram technique [DFMS19, DFM20].
We give more details of each case below.

Constant-Round Public-Coin Case. For a constant-round public-coin protocol Π = (P, V)
for an NP language L, we consider a malicious verifier V ∗ that derives its messages by applying
a random oracle on the current transcript. From the view of the honest prover, V ∗ is perfectly
indistinguishable from the honest verifier V . Thus, if V ∗ interacts with the honest prover given on
common input x ∈ L and prover’s private input w ∈ RL(x), it always accepts by the completeness
of the protocol. Let Sim be a simulator for the ε-ZK property. By the above observation, when Sim
is given oracle access to V ∗ on input x ∈ L, it should let V ∗ accept with probability at least 0.9
since otherwise V ∗ may notice the difference with a constant advantage, which violates the ε-ZK
property.11 On the other hand, we observe that an accepting transcript between V ∗ is essentially an
accepting proof for the non-interactive argument Πni obtained by applying Fiat-Shamir transform
to the protocol Π since the way of deriving the verifier’s messages is the same as that in the Fiat-
Shamir transform. Noting that V ∗ can be simulated given oracle access to the random oracle,
if Sim lets V ∗ accept on some x /∈ L with non-negligible probability, such a simulator can be
directly translated into an adversary that breaks the soundness of Πni in the quantum random
oracle model. On the other hand, it is shown in [DFM20] that Fiat-Shamir transform preserves
soundness up to polynomial security loss for constant-round public-coin protocols, and thus Πni has
negligible soundness error. This means that Sim lets V ∗ accept with negligible probability for any
x /∈ L. Combining the above, we can decide if x ∈ L by simulating an interaction between Sim and
V ∗ and then seeing if V ∗ accepts finally. This means L ∈ BQP. Therefore, such a protocol for all
NP does not exist unless NP ⊆ BQP.

Three-Round Case. This case is similar to the constant-round public-coin case except that we
apply a random oracle to obtain verifier’s private randomness rather than a verifier’s message itself.
Due to this difference, we cannot directly relate the x /∈ L case to the soundness of Fiat-Shamir,
and we need more careful analysis.

For a three-round protocol Π = (P, V) for an NP language L, we consider a malicious verifier
V ∗ that derives its private randomness by applying a random oracle on prover’s first message. From
the view of the honest prover, V ∗ is perfectly indistinguishable from the honest verifier V . Thus,
if V ∗ interacts with the honest prover given on common input x ∈ L and prover’s private input
w ∈ RL(x), it always accepts by the completeness of the protocol. Let Sim be a simulator for the
ε-ZK property. By the above observation, when Sim is given oracle access to V ∗ on input x ∈ L, it

10The reason is related to that we have to uncompute the entanglement between H and Ṽ ∗’s final qubit as explained
in Footnote 9

11The choice of the constant is arbitrary.

8

should let V ∗ accept with probability at least 0.9 similarly to the constant-round public-coin case.
However, unlike the constant-round public-coin case above, we cannot directly say that Sim let V ∗

accept with negligible probability on input x /∈ L because V ∗ derives the private randomness by the
random oracle, which is different from the Fiat-Shamir transform. Therefore we need additional
ideas.

Sim can be seen as an algorithm that makes quantum queries to the next-message-generation
function Fnext, which outputs V ∗’s second-round message taking prover’s first-round message on
input, and output-decision function Fout, which decides if V ∗ accepts taking a transcript as input.
(Note these functions depend on the random oracle.) Finally, it outputs an accepting transcript
with probability at least 0.9. First, we claim that we can assume that Sim only has the oracle Fnext

and does not make any query to Fout if we admit a polynomial security loss. Intuitively, this is
because if it makes a query on which Fout returns “accept”, then it could have used this query as
its final output. Though this is trivial in the classical setting, it is not in the quantum setting.
Fortunately, we can prove this by relying on the one-way to hiding lemma [Unr15, AHU19] in the
quantum setting as well. Thus, we think of Sim as an algorithm that makes quantum queries to
Fnext and outputs an accepting transcript with probability at least 1

poly(λ) when x ∈ L.

Next, we apply the measure-and-reprogram lemma of [DFM20] to SimFnext . That is, we consider
an experiment ExpMaR(x) which roughly works as follows: The experiment simulates SimFnext(x)
except that a randomly chosen Sim’s query is measured (let mP be the outcome), its response is
replaced with a freshly sampled message mV independently of Fnext, and the oracle is updated to
be consistent to this response thereafter. Finally, the experiment outputs the transcript output by
Sim.

By using the measure-and-reprogram lemma, the probability (which we denote by p(x) in the
following) that ExpMaR(x) outputs an accepting transcript whose first and second messages match
mP and mV is 1

poly(λ) times the probability that SimFnext(x) outputs an accepting transcript. Thus,

p(x) is at least 1
poly(λ) for all x ∈ L.

On the other hand, we can prove that p(x) is negligible for all x /∈ L by using soundness of the
protocol Π. Indeed, we can construct a cheating prover P ∗ that simulates SFnext(x) where Fnext is
simulated according to a random oracle chosen by P ∗, sends mP to the external verifier as the first
message, embeds verifier’s response as mV , and sends the third message derived from the output
of SFnext(x) to the external verifier. It is easy to see that P ∗ perfectly simulates the environment of
ExpMaR(x) for SFnext(x) and thus the probability that the verifier accepts is at least p(x). Therefore,
by the assumed soundness, p(x) is negligible.

By combining above, we can decide if x ∈ L by simulating ExpMaR(x) and then seeing if the
output is an accepting transcript whose first and second messages match mP and mV . (Note that
we can efficiently check if the transcript is accepting if we sample mV by ourselves so that we
know the corresponding verifier’s private randomness). This means L ∈ BQP. Therefore, such a
protocol for all NP does not exist unless NP ⊆ BQP.

1.3 More Related Work

Jain et al. [JKMR09] showed that there does not exist constant-round public-coin or three-round
post-quantum BBZK proofs for NP unless BQP ⊆ NP. Indeed, they showed that this holds even if
the last message in the protocol can be quantum. We believe that our impossibility results can also
be extended to this setting, but we focused on classical protocols in the context of post-quantum
security for simplicity. If we focus on classical protocols, our impossibility results are stronger than
theirs as we also rule out BB ε-ZK arguments. To the best of our knowledge, the work of [JKMR09]

9

is the only known result on the impossibility of quantum BBZK.
We review additional related works on lower bounds of ZK protocols in the classical setting.

Katz [Kat08] proved that there does not exist four-round BBZK proofs for NP unless NP ⊆ coMA.
It is interesting to study if we can extend this to rule out four-round post-quantum BB ε-ZK proofs
for NP under a reasonable complexity assumption. We note that there exists four-round (classical)
BBZK arguments for NP under the existence of one-way functions [BJY97]. It is also interesting
to study if we can extend their construction to construct four-round post-quantum BB ε-ZK for
NP. (Note that it is necessary to relax ZK property by Theorem 1.1.)

Kalai, Rothblum, and Rothblum [KRR17] proved that there does not exist constant-round
public-coin ZK proofs for NP even with non-BB simulation under certain assumptions on obfus-
cation. Fleischhacker, Goyal, and Jain [FGJ18] proved that there does not exist three-round ZK
proofs for NP even with non-BB simulation under the same assumptions. Though these results are
shown in the classical setting, it might be possible to extend them to the quantum setting by assum-
ing similar assumptions against quantum adversaries. However, that would result in impossibility
for proofs whereas our impossibility covers arguments though limited to BB simulation.

2 Preliminaries

Basic Notations. We denote by λ the security parameter throughout the paper. For a positive

integer n ∈ N, [n] denotes a set {1, 2, ..., n}. For a finite set X , x
$← X means that x is uniformly

chosen from X . For a finite set X and a positive integer k, X≤k is defined to be
⋃
i∈[k]X i. For

finite sets X and Y, Func(X ,Y) denotes the set of all functions with domain X and range Y.
A function f : N → [0, 1] is said to be negligible if for all polynomial p and sufficiently large

λ ∈ N, we have f(λ) < 1/p(λ); it is said to be overwhelming if 1 − f is negligible, and said to be
noticeable if there is a polynomial p such that f(λ) ≥ 1/p(λ) for sufficiently large λ ∈ N. We denote
by poly an unspecified polynomial and by negl an unspecified negligible function.

We use PPT and QPT to mean (classical) probabilistic polynomial time and quantum poly-

nomial time, respectively. For a classical probabilistic or quantum algorithm A, y
$← A(x) means

that A is run on input x and outputs y. When A is a classical probabilistic algorithm, we denote
by A(x; r) the execution of A on input x and randomness r. When A is a quantum algorithm that
takes a quantum advice, we denote by A(x; ρ) the execution of A on input x and an advice ρ.

We use the bold font (like X) to denote quantum registers, and HX to mean the Hilbert space
corresponding to the register X. For a quantum state ρ, MX ◦ ρ means a measurement in the
computational basis on the register X of ρ. For quantum states ρ and ρ′, TD(ρ, ρ′) denotes trace
distance between them. We say that ρ is negligibly close to ρ′ if TD(ρ, ρ′) = negl(λ).

Standard Computational Models.

• A PPT algorithm is a probabilistic polynomial time (classical) Turing machine. A PPT
algorithm is also often seen as a sequence of uniform polynomial-size circuits.

• A QPT algorithm is a polynomial time quantum Turing machine. A QPT algorithm is also
often seen as a sequence of uniform polynomial-size quantum circuits.

• An adversary (or malicious party) is modeled as a non-uniform QPT algorithm A (with
quantum advice) that is specified by sequences of polynomial-size quantum circuits {Aλ}λ∈N
and polynomial-size quantum advice {ρλ}λ∈N. When A takes an input of λ-bit, A runs Aλ
taking ρλ as an advice.

10

Indistinguishability of Quantum States. We define computational and statistical indistin-
guishability of quantum states similarly to [BS20].

We may consider random variables over bit strings or over quantum states. This will be clear
from the context. For ensembles of random variables X = {Xi}λ∈N,i∈Iλ and Y = {Yi}λ∈N,i∈Iλ over

the same set of indices I =
⋃
λ∈N Iλ and a function δ, we write X

comp
≈ δ Y to mean that for any

non-uniform QPT algorithm A = {Aλ, ρλ}, there exists a negligible function negl such that for all
λ ∈ N, i ∈ Iλ, we have

|Pr[Aλ(Xi; ρλ)]− Pr[Aλ(Yi; ρλ)]| ≤ δ(λ) + negl(λ).

Especially, when we have the above for δ = 0, we say that X and Y are computationally indistin-

guishable, and simply write X
comp
≈ Y.

Similarly, we write X
stat
≈ δ Y to mean that for any unbounded time algorithm A, there exists a

negligible function negl such that for all λ ∈ N, i ∈ Iλ, we have

|Pr[A(Xi)]− Pr[A(Yi)]| ≤ δ(λ) + negl(λ).12

Especially, when we have the above for δ = 0, we say that X and Y are statistically indistinguishable,

and simply write X
stat
≈ Y. Moreover, we write X ≡ Y to mean that Xi and Yi are distributed

identically for all i ∈ I

2.1 Interactive Proof and Argument.

We define interactive proofs and arguments similarly to [BS20, CCY21].

Notations. For an NP language L and x ∈ L, RL(x) is the set that consists of all (classical)
witnesses w such that the verification machine for L accepts (x,w).

A classical interactive protocol is modeled as an interaction between interactive classical polynomial-
time machines P referred to as a prover and V referred to as a verifier. We denote by 〈P (xP), V (xV)〉(x)
an execution of the protocol where x is a common input, xP is P ’s private input, and xV is V ’s
private input. We denote by OUTV 〈P (xP), V (xV)〉(x) the final output of V in the execution. An
honest verifier’s output is > indicating acceptance or ⊥ indicating rejection. We say that the pro-
tocol is public-coin if the honest verifier V does not use any private randomness, i.e., each message
sent from V is a uniform string of a certain length and V ’s final output is derived by applying an
efficiently computable classical function on the transcript.

Definition 2.1 (Interactive Proof and Argument for NP). A classical interactive proof or argument
Π for an NP language L is an interactive protocol between a PPT prover P and a PPT verifier V
that satisfies the following:

Completeness. For any x ∈ L, and w ∈ RL(x), we have

Pr[OUTV 〈P (w), V 〉(x) = >] ≥ 1− negl(λ)

12In other words, X
stat
≈ δ Y means that there exists a negligible function negl such that the trace distance between

ρXi and ρYi is at most δ(λ)+negl(λ) for all λ ∈ N and i ∈ Iλ where ρXi and ρYi denote density matrices corresponding
to Xi and Yi.

11

Statistical/Computational Soundness. We say that an interactive protocol is statistically
(resp. computationally) sound if for any unbounded-time (resp. non-uniform QPT) cheating prover
P ∗, there exists a negligible function negl such that for any λ ∈ N and any x ∈ {0, 1}λ \L, we have

Pr[OUTV 〈P ∗, V 〉(x) = >] ≤ negl(λ).

We call an interactive protocol with statistical (resp. computational) soundness an interactive proof
(resp. argument).

Malicious verifier and black-box simulator. For a formal definition of black-box quantum
zero-knowledge, we give a model of quantum malicious verifiers against classical interactive proto-
cols. A malicious verifier V ∗ is specified by a sequence of unitary U∗λ over the internal register Vλ

and the message register Mλ (whose details are explained later) and an auxiliary input ρλ indexed
by the security parameter λ ∈ N. We say that V ∗ is non-uniform QPT if the sizes of U∗λ and ρλ
are polynomial in λ. In the rest of this paper, λ is always set to be the length of the statement x
to be proven, and thus we omit λ for notational simplicity.

Its internal register V consists of the statement register X, auxiliary input register Aux, and
verifier’s working register W, and part of V is designated as the output register Out. V ∗ interacts
with an honest prover P of a protocol Π on a common input x and P ’s private input w ∈ RL(x) in
the following manner:

1. X is initialized to x, Aux is initialized to ρ, and W and M are initialized to be |0〉.

2. P (with private input w) and V ∗ run the protocol Π as follows:

(a) On V ∗’s turn, it applies the unitary U∗, measures M, and sends the measurement
outcome to P .

(b) On P ’s turn, when it sends a message to the verifier, M is overwritten by the message.
Note that this can be done since M is measured in the previous V ∗’s turn.

3. After P sends the final message of Π, V ∗ applies U∗ and outputs the state in Out, tracing
out all other registers.

We denote by 〈P (w), V ∗(ρ)〉(x) the above execution and by OUTV ∗〈P (w), V ∗(ρ)〉(x) the final out-
put of V ∗, which is a quantum state over Out.

A quantum black-box simulator Sim is modeled as a quantum oracle Turing machine (e.g., see
[BBBV97]). We say that Sim is expected-QPT (resp. strict-QPT) if the expected (resp. maximum)
number of steps is polynomial in the input length counting an oracle access as a unit step. For an
input x and a malicious verifier V ∗ specified by a unitary U∗ and auxiliary input ρ, Sim works over
the input register Inp, verifier’s internal register V, message register M, and its working register
S as follows. Inp and the sub-register X of V are initialized to x, the sub-register Aux of V is
initialized to ρ, and all other registers (W, M, and S) are initialized to |0〉. Sim is given oracle
access to U∗ and its inverse U∗† and can apply any unitary over Inp, M, and S, but it is not
allowed to directly act on V (except for the invocations of U∗ or U∗†). We denote by SimV ∗(x;ρ)(x)
the above execution and by OUTV ∗(SimV ∗(x;ρ)(x)) the output of V ∗, i.e., final state in Out tracing
out all other registers after the execution.

Based on the above formalization, we define post-quantum black-box zero-knowledge proof/argument
as follows.

12

Definition 2.2 (Post-Quantum Black-Box Zero-Knowledge Proof and Argument). A post-quantum
black-box zero-knowledge proof (resp. argument) for an NP language L is a classical interactive
proof (resp. argument) for L that satisfies the following property in addition to completeness and
statistical (resp. computational) soundness:

Quantum Black-Box Zero-Knowledge. There exists an expected-QPT simulator Sim such
that for any non-uniform QPT malicious verifier V ∗ with an auxiliary input ρ, we have

{OUTV ∗〈P (w), V ∗(ρ)〉(x)}λ,x,w
comp
≈ {OUTV ∗(SimV ∗(x;ρ)(x))}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(λ).

Quantum Black-Box Zero-Knowledge for Inefficient Verifiers. In the above definition,
we restrict a malicious verifier V ∗ to be non-uniform QPT. On the other hand, We say that Sim
works for inefficient verifiers if the above holds even for all possibly inefficient malicious verifiers V ∗.
To the best of our knowledge, all known black-box simulation techniques (in classical or quantum
settings) work even for inefficient verifiers. The reason of defining this notion is that we first prove
the impossibility of quantum black-box simulation for inefficient verifiers (Theorem 3.7) as it is
simpler than that for efficient verifiers (Theorem 3.1). (Remark that the impossibility of quantum
black-box simulation for inefficient verifiers is weaker than the impossibility of quantum black-box
simulation for efficient verifiers.) We stress that we finally extend it to prove the impossibility of
quantum black-box simulation for efficient verifiers (Theorem 3.1).

We next define a weaker version of zero-knowledge called ε-zero-knowledge following [CCY21].

Definition 2.3 (Post-Quantum Black-Box ε-Zero-Knowledge Proof and Argument). A post-quantum
black-box ε-zero-knowledge proof (resp. argument) for an NP language L is a classical interactive
proof (resp. argument) for L that satisfies the following property in addition to completeness and
statistical (resp. computational) soundness:

Quantum Black-Box ε-Zero-Knowledge. For any noticeable ε, there exists a strict-QPT sim-
ulator Sim such that for any non-uniform QPT malicious verifier V ∗ with an auxiliary input ρ, we
have

{OUTV ∗〈P (w), V ∗(ρ)〉(x)}λ,x,w
comp
≈ ε {OUTV ∗(SimV ∗(x;ρ)(x))}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(λ). Note that the running time of Sim may depend on
1/ε.

Remark 1. In the definition of quantum black-box ε-zero-knowledge, we assume that Sim runs in
strict-QPT rather than expected-QPT without loss of generality. Indeed, if we have a expected-QPT
simulator, then we can consider a truncated version of it that immediately halts if its running time
exceeds the expected running time too much. It is easy to see that this truncated version of the
simulator is still good enough for ε-zero-knowledge (unlike for the full-fledged zero-knowledge). A
similar observation is also given in [BL02].

2.2 Useful Lemmas

The following lemma is heavily used throughout the paper.

13

Lemma 2.4 ([Zha12b]). For any sets X and Y of classical strings and q-quantum-query algorithm
A, we have

Pr[AH = 1 : H
$← Func(X ,Y)] = Pr[AH = 1 : H

$← H2q]

where H2q is a family of 2q-wise independent hash functions from X to Y.

The following two lemmas are used in Section 3.

Lemma 2.5 ([HRS15, Lemma 3]). Let X be a finite set, ε ∈ [0, 1] be a non-negative real number,
and Hε be a distribution over H : X → {0, 1} such that we have Pr[H(x) = 1] = ε independently
for each x ∈ X . Let H0 : X → {0, 1} be the function that returns 0 for all inputs x ∈ X . Then for
any algorithm A that makes at most q quantum queries, we have∣∣∣Pr

[
AH = 1 : H

$← Hε
]
− Pr

[
AH0 = 1

]∣∣∣ ≤ 8q2ε.

Lemma 2.6 (SWAP test). There is a QPT algorithm, called the SWAP test, which satisfies the

following: the algorithm takes a product state ρ⊗ σ as input, and accepts with probability 1+Tr(ρσ)
2 .

Especially, when ρ is a pure state |φ〉 〈φ|, the probability is 1+〈φ|σ|φ〉
2 .

We will use a corollary of the one-way to hiding lemma [Unr15, AHU19] in Section 5. First, we
introduce a special case of the one-way to hiding lemma in [AHU19].

Lemma 2.7 (A Special Case of One-Way to Hiding Lemma [AHU19]). Let S ⊆ X be random. Let
z be a random bit string. (S and z may have an arbitrary joint distribution.) Let FS : X → {0, 1}
be the function defined by

FS(x) :=

{
1 if x ∈ S
0 otherwise

.

Let F∅ : X → {0, 1} be the function that outputs 0 on all inputs. Let A be an oracle-aided quantum
algorithm that makes at most q quantum queries. Let B be an algorithm that on input z chooses

i
$← [q], runs AF∅(z), measures A’s i-th query, and outputs the measurement outcome. Then we

have ∣∣Pr[AFS (z) ∈ S]− Pr[AF∅(z) ∈ S]
∣∣ ≤ 2

√
(q + 1) Pr[B(z) ∈ S].

We show a simple corollary of the above lemma, which roughly says that if we can find an
element of S by making polynomial number of quantum queries to FS , then we can find an element
of S without making any query to FS with a polynomial reduction loss.

Corollary 2.8. Let S, z, FS, F∅, A, and B be defined as in Lemma 2.7. Let C be an algorithm

(without any oracle) that works as follows: On input z, it flips a bit b
$← {0, 1}. If b = 0, then it

runs AF∅(z) by simulating F∅ by itself and if b = 1, then it runs B(z). Then we have

√
Pr[C(z) ∈ S] ≥ Pr[AFS (z) ∈ S]

4
√
q + 1

.

Proof. By Lemma 2.7, we have∣∣Pr[AFS (z) ∈ S]− Pr[AF∅(z) ∈ S]
∣∣ ≤ 2

√
(q + 1) Pr[B(z) ∈ S].

14

which implies

Pr[AFS (z) ∈ S] ≤ 2
√

(q + 1) Pr[B(z) ∈ S] + Pr[AF∅(z) ∈ S]

≤ 2
√

(q + 1) Pr[B(z) ∈ S] + 2
√

(q + 1) Pr[AF∅(z) ∈ S]

≤ 2
√

2(q + 1)(Pr[B(z) ∈ S] + Pr[AF∅(z) ∈ S])

= 2
√

2(q + 1)(2 Pr[C(z) ∈ S]).

Corollary 2.8 immediately follows from the above.

2.3 Measure-and-Reprogram Lemma

We review the measure-and-reprogram lemma of [DFM20] with notations based on those in [YZ21].
We first give intuitive explanations for these notations, which are taken from [YZ21]. For a
quantumly-accessible classical oracle O, we denote by O ← Reprogram(O, x, y) to mean that we re-
program O to output y on input x. For a q-quantum-query algorithm A, function H : X → Y, and
y = (y1, ..., yk) ∈ Yk, we denote by Ã[H,y] to mean an algorithm that runs A w.r.t. an oracle that
computes H except that randomly chosen k queries are measured and the oracle is reprogrammed
to output yi on i-th measured query. Formal definitions are given below:

Definition 2.9 (Reprogramming Oracle). Let A be a quantum algorithm with quantumly-accessible
oracle O that is initialized to be an oracle that computes some classical function from X to Y. At
some point in an execution of AO, we say that we reprogram O to output y ∈ Y on x ∈ X if we
update the oracle to compute the function Hx,y defined by

Hx,y(x
′) :=

{
y if x′ = x

H(x′) otherwise

where H is the function computed by O before the update. This updated oracle is used in the rest
of execution of A. We denote by O ← Reprogram(O, x, y) the above reprogramming procedure.

Lemma 2.10. (Measure-and-Reprogram Lemma, Rephrasing of [DFM20, Lemma 4]) Let X , Y,
and Z be sets of classical strings and k be a positive integer. Let A be a q-quantum-query algorithm
that is given quantum oracle access to an oracle that computes a function from X to Y and a
(possibly quantum) input inp and outputs x ∈ X k and z ∈ Z. For a function H : X → Y and
y = (y1, ..., yk) ∈ Yk, we define a measure-and-reprogram algorithm Ã[H,y] as follows:

Ã[H,y](inp): Given a (possibly quantum) input inp, it works as follows:

1. For each i ∈ [k], uniformly pick (ji, bi) ∈ ([q] × {0, 1}) ∪ {(⊥,⊥)} conditioned on that
there exists at most one i ∈ [k] such that ji = j∗ for all j∗ ∈ [q].

2. Run AO(inp) where the oracle O is initialized to be a quantumly-accessible classical oracle
that computes H, and when A makes its j-th query, the oracle is simulated as follows:

(a) If j = ji for some i ∈ [k], measure A’s query register to obtain x′i, and do either of
the following.

i. If bi = 0, reprogram O ← Reprogram(O, x′i, yi) and answer A’s ji-th query by
using the reprogrammed oracle.

ii. If bi = 1, answer A’s ji-th query by using the oracle before the reprogramming
and then reprogram O ← Reprogram(O, x′i, yi).

15

(b) Otherwise, answer A’s j-th query by just using the oracle O without any measure-
ment or reprogramming.

3. Let (x = (x1, ..., xk), z) be A’s output.

4. For all i ∈ [k] such that ji = ⊥, set x′i := xi.

5. Output x′ := ((x′1, ..., x
′
k), z).

Then for any q-quantum query algorithm A, inp, H : X → Y, x∗ = (x∗1, ..., x
∗
k) ∈ X k such that

x∗i 6= x∗i′ for all i 6= i′, y = (y1, ..., yk) ∈ Yk, and a relation R ⊆ X k × Yk ×Z, we have

Pr[x′ = x∗ ∧ (x′,y, z) ∈ R : (x′, z)
$← Ã[H,y](inp)]

≥ 1

(2q + 1)2k
Pr[x = x∗ ∧ (x,y, z) ∈ R : (x, z)

$← AHx∗,y(inp)].

where Hx∗,y : X → Y is defined as

Hx∗,y(x′) :=

{
yi if ∃i ∈ [k] s.t. x′ = x∗i
H(x′) otherwise

.

Remark 2. The above lemma is a rephrasing of [DFM20, Lemma 4] (taking [DFM20, Remark 5]
into account) given in [YZ21, Definition 4.5, Lemma 4.6].13

Especially, we will rely on the following special case of Lemma 2.10.

Lemma 2.11 (Measure-and-Reprogram Lemma, Ordered Queries). Let Xand Y be sets of classical
strings and k be a positive integer. Let A be a q-quantum-query algorithm that is given quantum
oracle access to an oracle that computes a function from X to Y and outputs x ∈ X k. For a
function H : X≤k → Y and y = (y1, ..., yk) ∈ Yk, we define an algorithm Ãord[H,y] as follows:

Ãord[H,y]: It works as follows:

1. For each i ∈ [k], uniformly pick (ji, bi) ∈ ([q] × {0, 1}) ∪ {(⊥,⊥)} conditioned on that
there exists at most one i ∈ [k] such that ji = j∗ for all j∗ ∈ [q].

2. Run AO where the oracle O is initialized to be a quantumly-accessible classical oracle
that computes H, and when A makes its j-th query, the oracle is simulated as follows:

(a) If j = ji for some i ∈ [k], measure A’s query register to obtain x′i = (x′i,1, ..., x
′
i,ki

)
where ki ≤ k is determined by the measurement outcome, and do either of the
following.

i. If bi = 0, reprogram O ← Reprogram(O,x′i, yi) and answer A’s ji-th query by
using the reprogrammed oracle.

ii. If bi = 1, answer A’s ji-th query by using the oracle before the reprogramming
and then reprogram O ← Reprogram(O,x′i, yi).

(b) Otherwise, answer A’s j-th query by just using the oracle O without any measure-
ment or reprogramming.

3. Let x = (x1, ..., xk) be A’s output.

4. For all i ∈ [k] such that ji = ⊥, set x′i = xi where xi := (x1, · · · , xi).
5. Output x′k if for all i ∈ [k], x′i is a prefix of x′k, and output ⊥ otherwise.

13Note a minor notational difference from [YZ21] that the roles of i and j are swapped.

16

Then for any q-quantum query algorithm A, H : X≤k → Y, x∗ = (x∗1, ..., x
∗
k) ∈ X k, and y =

(y1, ..., yk), we have

Pr[Ãord[H,y] = x∗] ≥ 1

(2q + 1)2k
Pr
[
AH

ord
x∗,y = x∗

]
where Hord

x∗,y : X≤k → Y is defined as

Hord
x∗,y(x′) :=

{
yi if ∃i ∈ [k] s.t. x′ = (x∗1, ..., x

∗
i)

H(x′) otherwise
.

Proof. We apply Lemma 2.10 for the following setting, where we append [2.10] and [2.11] to char-
acters to distinguish those in Lemma 2.10 and 2.11, respectively (e.g., X [2.10] and X [2.11] are X
in Lemma 2.10 and 2.11, respectively).

• X [2.10] := X [2.11]≤k, Y[2.10] := Y[2.11], Z[2.10] := ∅

• inp[2.10] is a null string and H[2.10] := H[2.11].

• x∗[2.10] := (x∗1[2.11], (x∗1[2.11], x∗2[2.11]), ..., (x∗1[2.11], ..., x∗k[2.11])).

• A[2.10] works similarly to A[2.11] except that A[2.10] outputs

(x1[2.10], ..., xk[2.10]) := (x1[2.11], (x1[2.11], x2[2.11]), ..., (x1[2.11], ..., xk[2.11]))

where (x1[2.11], ..., xk[2.11]) is the output of A[2.11].

• R[2.10] is a trivial relation, i.e., R[2.10] := X [2.10]k × Y[2.10]k.

Then we have Hx∗,y[2.10] = Hord
x∗,y[2.11] are defined as the same functions in Lemmas 2.10 and 2.11,

and thus the r.h.s. of the inequalities in Lemmas 2.10 and 2.11 are the same probability. The l.h.s
of the inequality in Lemma 2.10 corresponds to the probability that we have x′i = (x∗1, ..., x

∗
i) for all

i ∈ [k] such that x′i is defined (i.e., i = k or ji 6= ⊥) where the probability is taken over randomness

of Ãord[H,y]. Especially, when this event happens, we have x′k = x∗ and x′i is a prefix of x′k for all

i ∈ [k] such that ji 6= ⊥, i.e., Ãord[H,y] = x∗. Therefore, Lemma 2.10 implies Lemma 2.11.

3 Impossibility of BB ZK for Constant-Round Arguments

In this section, we prove the following theorem.

Theorem 3.1. If there exists a constant-round post-quantum black-box zero-knowledge argument
for a language L, then L ∈ BQP.

The rest of this section is devoted to prove the above theorem. Specifically, we prove the
theorem by the following steps:

1. In Section 3.1, we prove the impossibility for a strict-polynomial-time simulator that works
for inefficient verifiers. (See the paragraph after Definition 2.2 for the meaning of that “a
simulator works for inefficient verifiers”.) This part can be seen as a quantum version of the
classical impossibility result of [BL02] (except that we consider inefficient verifiers).

17

2. In Section 3.2, we prove the impossibility for a expected-polynomial-time simulator that works
for inefficient verifiers. This is proven by reducing it to the strict-polynomial-time case, which
relies on a novel inherently quantum technique.

3. In Section 3.3, we prove Theorem 3.1, i.e., the impossibility for a expected-polynomial-time
simulator that only works for efficient verifiers. This part is basically done by replacing
a random function with 2q-wise independent function relying on Lemma 2.4, where some
delicate argument is needed due to technical reasons.

First, we define notations that are used throughout this section. Let Π = (P, V) be a classical
constant-round interactive argument for a language L. Without loss of generality, we assume that
P sends the first message, and let (P, V) be (2k − 1)-round protocol where P sends k = O(1)
messages in the protocol and V sends (k − 1) messages.

We assume that all messages sent between P and V are elements of a classical set M (e.g.,
we can take M := {0, 1}` for sufficiently large `). Let R be V ’s randomness space. For any fixed
statement x and randomness r ∈ R, V ’s message in (2i+1)-th round can be seen as a deterministic
function of (m1, ...,mi) where (m1, ...,mi) are prover’s first i messages. Similarly, V ’s final decision
can be seen as a deterministic function of all prover’s messages (m1, ...,mk). We denote this function
by F [x, r] :M≤k →M∪ {>,⊥}. Here, F [x, r] outputs an element of M if the input is in M≤k−1
and outputs > or ⊥ if the input is in Mk. We denote by Acc[x, r] ⊆ Mk the subset consisting
of all (m1, ...,mk) such that F [x, r](m1, ...,mk) = >, i.e, all accepting transcripts corresponding to
the statement x and randomness r. A quantum algorithm having black-box access to V means the
algorithm has quantum superposition access to the function F [x, r].

3.1 Strict-Polynomial-Time Simulation for Inefficient Verifier

Our first goal is to prove the impossibility of strict-polynomial-time black-box simulation for inef-
ficient verifiers. Assuming Π = (P, V) is a constant-round post-quantum black-box zero-knowledge
argument for a language L. We will show the impossibility for random aborting verifiers, which
works similarly to the honest verifier V except that it aborts with probability 1−ε for some ε ∈ [0, 1]
in each round. More precisely, for any ε ∈ [0, 1], we consider a malicious verifier V ∗ with an auxiliary
input |ψε〉R,H as follows.

Intuitively, V ∗ works in the same way as V except on each input (m1, · · · ,mi) ∈M≤k, it returns
F [x, r](m1, · · · ,mi) with probability ε and aborts (outputs ⊥) with probability 1 − ε. Therefore,
V ∗ prepares randomness r for V ’s decision function F [x, r] and a random function H that decides if
it outputs ⊥. Here H is drawn from a distribution Hε where Hε is a distribution over H :M≤k →
{0, 1} such that we have Pr[H(m1, ...,mi) = 1] = ε independently for each (m1, ...,mi) ∈M≤k.

|ψε〉R,H is a superposition of (r,H) according to the distribution {(r,H) : r
$← R, H $← Hε}

Formally,

|ψε〉R,H =
∑

r∈R,H∈Func(M≤k,{0,1})

√
D(H)

|R|
|r,H〉R,H

where D is the density function corresponding to Hε. Here, H is represented as a concate-
nation of function values H(m) for all m ∈ M≤k. We denote by Hm the sub-register of H
that stores H(m).

Remark 3. Note that the state |ψε〉R,H is exponentially large (of length O(|M|k)). Therefore
our malicious verifier V ∗ (which uses this state as its auxiliary input) is inefficient.

18

V ∗ works over its internal register (X,Aux = (R,H),W = (Count,M1, ...,Mk,B)) and an
additional message register M. We define the output register as Out := B. It works as
follows where Count stores a non-negative integer smaller than k (i.e. {0, 1, · · · , k − 1}),
each register of M1, ...,Mk and M stores an element of M and B stores a single bit. M is
the register to store messages from/to external prover, and Mi is a register to record the i-th
message from the prover.

We next explain the unitary U∗ for V ∗. The interaction between V ∗ and the honest prover
P has been formally defined in Section 2.1. We recall it here.

1. V ∗ takes inputs a statement x and a quantum auxiliary input |ψε〉: X is initialized to
be |x〉X where x is the statement to be proven, Aux is initialized to be |ψε〉R,H, and all
other registers are initialized to be 0.

2. Verifier V ∗ on round < k: Upon receiving the i-th message from P for i < k in M, swap
M and Mi and increment the value in Count14. We note that V ∗ can know i since it
keeps track of which round it is playing by the value in Count. Let (m1, ...,mi) be the
messages sent from P so far. Then do the following in superposition where (m1, ...,mi),
r, H and m are values in registers (M1, ...,Mi), R, H and M:

• If H(m1, ...,mi) = 0, then do nothing.

• If H(m1, ...,mi) = 1, then add F [x, r](m1, ...,mi) to the message register m.

It then measures the register M and sends the result to the prover P .

Unitary U∗ on Count < k − 1: It acts on registers Count (whose value is less than
k − 1), X, (M1, ...,Mk), R, H and M:

• It reads the value j in Count and increments it to i := j + 1. It swaps M and Mi

(in superposition).

• Let x, (m1, · · · ,mi), r,H and m be the values in registers X, (M1, · · · ,Mi),R,H
and M. Let F ∗[x, r,H] be the following function: on input (m1, · · · ,mi) ∈M≤k−1,

F ∗[x, r,H](m1, ...,mi) :=

{
F [x, r](m1, ...,mi) if H(m1, ...,mi) = 1

0 otherwise
.

It then applies the function in superposition.

|x,m1, · · · ,mi, r,H,m〉 → |x,m1, · · · ,mi, r,H,m+ F ∗[x, r,H](m1, · · · ,mi)〉 .

3. Verifier V ∗ on round k: Upon receiving the k-th message from P in M, swap M and
Mk and increment the value in Count. Then flip the bit in B if (m1, ...,mk) ∈ Acc[x, r]
and H(m1, ...,mi) = 1 for all i ∈ [k] where (m1, ...,mk), r, and H are values in registers
(M1, ...,Mk), R, and H.

Unitary U∗ on Count = k− 1: It acts on registers Count (whose value is exactly equal
to k − 1), X, (M1, ...,Mk), R, H and B:

• It reads the value j = k − 1 in Count and sets it to 0. It swaps M and Mk (in
superposition).

14More precisely, this maps |i〉 to |(i+ 1) mod k〉.

19

• Let x, (m1, · · · ,mk), r,H and b be the values in registers X, (M1, · · · ,Mk),R,H
and B. Let F ∗[x, r,H] be the following function: on input (m1, · · · ,mk) ∈Mk,

F ∗[x, r,H](m1, ...,mk) :=

{
1 if H(m1,...,mi)=1,∀i∈[k]

and F [x,r](m1,··· ,mk)=>
0 otherwise

.

It applies the function in superposition.

|x,m1, · · · ,mk, r,H, b〉 → |x,m1, · · · ,mk, r,H, b+ F ∗[x, r,H](m1, · · · ,mk)〉 .

With the description of V ∗ above, we have the following observation.

Observation 1. Let MR,H be the measurement on registers R,H. For any (inefficient) black-box
simulator Sim it has zero advantage of distinguishing if it has black-box access to V ∗(x; |ψ〉R,H) or
V ∗(x;MR,H ◦ |ψ〉R,H).

Observation 1 says that even for an unbounded simulator with black-box access to V ∗(x; |ψ〉R,H),
it has no way to tell if the auxiliary input |ψ〉R,H gets measured at the beginning or never gets
measured.

This is because registers H and R are only used as control qubits throughout the execution of
SimV ∗(x;|ψε〉)(x), we can trace out registers R,H while preserving the behavior of this simulator.

Observation 2. V ∗ can be simulated giving oracle access to F ∗[x, r,H].

This can be easily seen from the description of U∗ above.

Observation 3. Given x and r, a quantum oracle that computes F ∗[x, r,H] can be simulated by
2k quantum oracle access to H.

This is can be easily seen from the definition of F ∗[x, r,H]. Note that we require 2k queries
instead of k queries since we need to compute k values of H to compute F ∗[x, r,H] (when the input
is in Mk) and then need to uncompute them.

We then prove the following lemma.

Lemma 3.2. For any q = poly(λ) there exists noticeable ε∗q such that the following holds for any
noticeable ε ≤ ε∗q: if there exists a quantum black-box simulator Sim that makes at most q quantum
queries, such that we have

Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψε〉)(x)

)
= 1
]
≥ εk

4
− negl(λ)

for all x ∈ L ∩ {0, 1}λ where MB means measuring and outputting the register MB, then we have
L ∈ BQP.

The above lemma immediately implies the following corollary, which can be seen as the quantum
generalization of the result of [BL02].

Corollary 3.3. If there exists a constant-round post-quantum black-box zero-knowledge argument
for a language L with a simulator that makes a fixed polynomial number of queries and works for
all possibly inefficient verifiers, then L ∈ BQP.

20

Proof. Let Π = (P, V) be a constant-round post-quantum black-box zero-knowledge argument for
a language L where P sends k = O(1) messages and V ∗ and |ψε〉 are defined above. Suppose that
there exists a fixed polynomial q = poly(λ) such that there exists a quantum black-box simulator
Sim for Π that works for all possibly inefficient verifiers. When V ∗ takes an auxiliary input |ψε〉,
it can be seen as a verifier that works similarly to the honest verifier except that it aborts with
probability 1− ε in each round, and B takes 1 if and only if it does not abort until the end of the
protocol. Therefore, for any x ∈ L ∩ {0, 1}λ and its witness w ∈ RL(x), we have

Pr[MB ◦ OUTV ∗ (〈P (w), V ∗(|ψε〉)〉(x)) = 1] = εk.

By the zero-knowledge property, the above equality implies

Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψε〉)(x)

)
= 1
]

= εk − negl(λ) ≥ εk

4
− negl(λ).

Since this holds for arbitrary ε, by Lemma 3.2, this implies L ∈ BQP.

Remark 4. The above proof assumes that the simulator works for possibly inefficient verifiiers
since V ∗ is inefficient as noted in Remark 3. Actually, we can generalize it to rule out a strict-
polynomial-query simulator that only works for efficient verifiers by considering an efficient variant
of V ∗ that is indistinguishable from V ∗ from the view of Sim that makes at most q queries. Since
this generalized version is also subsumed by Theorem 3.1, we omit the details.

Then we prove Lemma 3.2.

Proof of Lemma 3.2. By Observation 1, we can assume |ψε〉 is measured at the beginning. In other

words, the auxiliary state is sampled as |r〉R |H〉H for r
$← R, H $← Hε. Once r and H are fixed,

the unitary U∗ (corresponding to V ∗) and its inverse can be simulated by a single quantum access
to a classical function F ∗[x, r,H] (defined in the description of V ∗).

Moreover, if we let Acc∗[x, r,H] ⊆ Acc[x, r] be the set of m = (m1, ...,mk) ∈ Acc[x, r] such that
H(m1, ...,mi) = 1 for all i ∈ [k], after the execution of SimV ∗(x;|r〉|H〉)(x), B contains 1 if and only
if (M1, ...,Mk) contains an element in Acc∗[x, r,H]. Therefore, for proving Lemma 3.2, it suffices
to prove the following lemma.

Lemma 3.4. For any q = poly(λ) there exists noticeable ε∗q such that the following holds for any
noticeable ε ≤ ε∗q: if there exists an oracle-aided quantum algorithm S that makes at most q quantum
queries,15 such that we have

Pr
r

$←R,H $←Hε

[
SF ∗[x,r,H](x) ∈ Acc∗[x, r,H]

]
≥ εk

4
− negl(λ)

for all x ∈ L ∩ {0, 1}λ, then we have L ∈ BQP.

We prove the above lemma below. Assuming Lemma 3.4, we show Lemma 3.2 holds. For any
quantum black-box simulator Sim that makes at most q quantum queries, such that

Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψε〉)(x)

)
= 1
]
≥ εk

4
− negl(λ).

15Though S can be seen as a quantum black-box simulator for a malicious classical verifier, we do not call it a
simulator since this deviates our syntax of quantum black-box simulators defined in Section 2.1

21

By Observation 1, we have

Pr
r

$←R,H $←Hε

[
MB ◦ OUTV ∗

(
SimV ∗(x;|r,H〉)(x)

)
= 1
]

= Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψε〉)(x)

)
= 1
]
≥ εk

4
− negl(λ).

Finally, we note that MB ◦ OUTV ∗
(

SimV ∗(x;|r,H〉)(x)
)

can be computed by only having black-

box access to F ∗[x, r,H] (by Observation 2). It outputs 1 (the register B is 1) if and only if
the values (m1, · · · ,mk) in M1, · · · ,Mk are in Acc∗[x, r,H]. Thus, there is an algorithm S that
computes MB ◦SimV ∗(x;|r,H〉)(x) and measures registers M1, · · · ,Mk. Such an algorithm S satisfies
the requirement in Lemma 3.4. Therefore L is in BQP.

The remaining part is to prove Lemma 3.4.

Proof of Lemma 3.4. We let ε∗q := 1/(256k2q2(4kq + 1)2k) and ε ≤ ε∗q be an arbitrary noticeable
function in λ. In the following, we simply write r and H in subscripts of probabilities to mean

r
$← R and H

$← Hε for notational simplicity. As observed in Observation 3, F ∗[x, r,H] can be
simulated by 2k quantum invocations of H if we know x and r. Therefore, we can view SF ∗[x,r,H](x)
as an oracle-aided algorithm with quantum access to H in which x and r are hardwired, and makes
at most 2kq queries to H. We denote this algorithm by A[x, r]H . Then for any x ∈ L∩ {0, 1}λ, we
have

Pr
r,H

[
A[x, r]H ∈ Acc∗[x, r,H]

]
= Pr

r,H

[
SF ∗[x,r,H](x) ∈ Acc∗[x, r,H]

]
≥ εk

4
− negl(λ). (1)

We apply Lemma 2.11 to A[x, r]. For any x, r,H, m∗ = (m∗1, ...,m
∗
k) ∈ Mk, and β =

(β1, ..., βk) ∈ {0, 1}k, we have

Pr

[
Ã[x, r]

ord
[H,β] = m∗

]
≥ 1

(2 · 2kq + 1)2k
Pr
[
A[x, r]

Hord
m∗,β = m∗

]
(2)

where Ã[x, r]
ord

[H,β] and Hord
m∗,β are as defined in Lemma 2.11 and 2kq is the number of queries

to H made by A[x, r].
Let 1 := (1, ..., 1) ∈ {0, 1}k and H0 :M≤k → {0, 1} be the zero-function i.e., H0(m1, ...,mi) = 0

for all (m1, ...,mi) ∈M≤k. Then we prove the following claims.

Claim 3.5. For any x ∈ L ∩ {0, 1}λ, we have

Pr
r

[
Ã[x, r]

ord
[H0,1] ∈ Acc[x, r]

]
≥ 1

8(4kq + 1)2k
− negl(λ).

Claim 3.6. For any x ∈ {0, 1}λ \ L, we have

Pr
r

[
Ã[x, r]

ord
[H0,1] ∈ Acc[x, r]

]
= negl(λ).

Roughly, we prove Claim 3.5 by using the ordered version of measure-and-reprogram lemma
(Lemma 2.11) and Claim 3.6 by reducing to soundness of the protocol Π. Proofs of these claims
are given later.

In the rest of this proof, we prove Lemma 3.4 assuming that Claim 3.5 and 3.6 are true. We
construct a QPT algorithm B that decides L.

22

B takes x as input, and its goal is to decide if x ∈ L. It randomly chooses r
$← R, runs

Ã[x, r]
ord

[H0,1], and outputs 1 if the output is in Acc[x, r] (by computing F [x, r]).

By Claim 3.5, for any x ∈ L ∩ {0, 1}λ, we have

Pr[B(x) = 1] ≥ 1

8(4kq + 1)2k
− negl(λ).

On the other hand, by Claim 3.6 for any x ∈ {0, 1}λ \ L, we have

Pr[B(x) = 1] ≤ negl(λ).

This means L ∈ BQP. This completes the proof of Lemma 3.4.

What are left are proofs of Claim 3.5 and 3.6.

Proof of Claim 3.5. Noting that Ã[x, r]
ord

[H,β] can be seen as an oracle-aided algorithm that
makes at most 2kq quantum queries to H, by the indistinguishability of sparse and zero func-
tions (Lemma 2.5), for any x, r,β, we have∣∣∣∣Pr

H

[
Ã[x, r]

ord
[H,β] ∈ Acc[x, r]

]
− Pr

[
Ã[x, r]

ord
[H0,β] ∈ Acc[x, r]

]∣∣∣∣ ≤ 32k2q2ε. (3)

Let Dε be a distribution over {0, 1}k whose each coordinate takes 1 with probability ε indepen-
dently and Ĥ(m) := (H(m1), H(m1,m2), ...,H(m1, ...,mk)) for m = (m1, ...,mk). Then for any

23

x ∈ L ∩ {0, 1}λ, we have

Pr
r

[
Ã[x, r]

ord
[H0,1] ∈ Acc[x, r]

]
≥ Pr
r,H

[
Ã[x, r]

ord
[H,1] ∈ Acc[x, r]

]
− 32k2q2ε

=
∑

m∗∈Acc[x,r]

Pr
r,H

[
Ã[x, r]

ord
[H,1] = m∗

]
− 32k2q2ε

≥ 1

(4kq + 1)2k

∑
m∗∈Acc[x,r]

Pr
r,H

[
m = m∗ : m

$← A[x, r]
Hord
m∗,1

]
− 32k2q2ε

=
ε−k

(4kq + 1)2k

∑
m∗∈Acc[x,r]

Pr
r,H,β

$←Dε

[
m = m∗ ∧ β = 1 : m

$← A[x, r]
Hord
m∗,β

]
− 32k2q2ε

=
ε−k

(4kq + 1)2k

∑
m∗∈Acc[x,r]

Pr
r,H

[
m = m∗ ∧ Ĥ(m) = 1 : m

$← A[x, r]H
]
− 32k2q2ε

=
ε−k

(4kq + 1)2k
Pr
r,H

[
m ∈ Acc[x, r] ∧ Ĥ(m) = 1 : m

$← A[x, r]H
]
− 32k2q2ε

=
ε−k

(4kq + 1)2k
Pr
r,H

[
A[x, r]H ∈ Acc∗[x, r,H]

]
− 32k2q2ε

≥ ε−k

(4kq + 1)2k

(
εk/4− negl(λ)

)
− 32k2q2ε

=
1

4(4kq + 1)2k
− 32k2q2ε− negl(λ)

=
1

8(4kq + 1)2k
− negl(λ),

where the first inequality follows from Eq. 3 for β := 1, the second inequality follows from
Eq. 2, the third inequality follows from Eq. 1, and the last equality follows from ε ≤ ε∗q =

1/(256k2q2(4kq + 1)2k). This completes the proof of Claim 3.5.

Proof of Claim 3.6. We consider a cheating prover P ∗ described as follows. Intuitively, P ∗ just runs

Ã[x, r]
ord

[H0,1] where r is chosen by the external verifier. We first look at how Ã[x, r]
ord

[H0,1]
runs: it runs S in the experiment and uses the oracle access to H and F [x, r] to simulate the oracle
F ∗[x, r,H].

The only difference between Ã[x, r]
ord

[H0,1] and P ∗ is that Ã[x, r]
ord

[H0,1] can compute F [x, r]
on its own because it samples and knows the random tape r but P ∗ does not know the randomness
r of the honest verifier. However, we show that it can still answer queries to F [x, r] because it
needs r only when responding to measured queries, and P ∗ can then send such (classical) queries
to the external verifier to get the response.

More precisely, P ∗ only makes queries to F [x, r] on measured inputsm, because only in this case
the updated oracle in the game O(m) may not be 0; in all inputs m, because O(m) is initialized
as 0 and never gets updated in the experiment, the output of F [x, r] on that input is not needed.

24

Formally, P ∗ is described as follows. We will mark the difference between P ∗ and Ã[x, r]
ord

[H0,1]
with underline.

P ∗(x): The cheating prover P ∗ interacts with the external verifier as follows:

1. For each i ∈ [k], uniformly pick (ji, bi) ∈ ([2kq]× {0, 1}) ∪ {(⊥,⊥)} conditioned on that
there exists at most one i ∈ [k] such that ji = j∗ for all j∗ ∈ [2kq].

2. Run S where the oracle F ∗[x, r,H] is simulated by additional oracles O and F where O
and F play the roles of H and F [x, r], respectively.

The oracle O (for simulating H) and F (for simulating F [x, r]) are initialized to be an
oracle that just return 0. For the rest of the description, we can assume S is now making
queries to both O and F .

When S makes its j-th query to O,

(a) If j = ji for some i ∈ [k], measure S’s query register to obtain m′i = (m′i,1, ...,m
′
i,ki

)
for some ki ≤ k. If the transcript between V at this point is inconsistent to m′i (i.e.,
there is ` ∈ [ki] such that P ∗ already sent an `-th message different from m′i,` to the
external verifier), then just abort. Otherwise, run the protocol between the external
verifier until 2ki-th round by using (m′i,1, ...,m

′
i,ki

) as the first ki prover’s messages.
It then updates F such that for each j ∈ [ki], F on input (m′i,1, · · · ,m′i,j) is com-
patible with the current transcript.

i. If bi = 0, reprogram O ← Reprogram(O,m′i, 1) and answer S’s ji-th query by
using the reprogrammed oracle.

ii. If bi = 1, answer S’s ji-th query by using the oracle before the reprogramming
and then reprogram O ← Reprogram(O,m′i, 1).

(b) Otherwise, answer S’s j-th query by just using the oracle O.

When S makes its query to F , it uses the current updated oracle F .

3. Let m = (m1, ...,mk) be S’s output. If the protocol between the external verifier has
not been completed yet, complete the protocol by using messages m. Again, if m is
inconsistent to the transcript so far, just abort.

Note that since P ∗ uses the interaction with V to perfectly simulate the oracle access to F [x, r],

by definitions of Ã[x, r]
ord

[H0,1], it is straightforward to see that P ∗ succeeds in letting V accept

with probability at least Prr[Ã[x, r]
ord

[H0,1] ∈ Acc[x, r]]. Noting that Ã[x, r]
ord

[H0,1] returns ⊥
whenever any two of measured queries are inconsistent (i.e., one is not a prefix of the other), and
thus when it does not return ⊥, P ∗ does not abort either in the corresponding execution. Therefore,

the negligible soundness of the protocol ensures Prr[Ã[x, r]
ord

[H0,1] ∈ Acc[x, r]] = negl(λ).
This completes the proof of Claim 3.6.

3.2 Expected-Polynomial-Time Simulation for Inefficient Verifiers

In the previous section, we proved that strict-polynomial-time black-box simulation is impossible.
In this section, as a first step to prove Theorem 3.1, we prove that even expected-polynomial-time
black-box simulation is impossible if we require it to work for all inefficient malicious verifiers.

Theorem 3.7. If there exists a constant-round post-quantum black-box zero-knowledge argument
for a language L with a simulator that works for all inefficient malicious verifiers, then L ∈ BQP.

25

Though this theorem is subsumed by Theorem 3.1, we first prove this since the proof is simpler
and thus we believe that it is easier for readers to understand the proof of Theorem 3.1 if we first
give the proof of Theorem 3.7.

Our main idea is to consider a malicious verifier Ṽ ∗ that runs the honest verifier and a random
aborting verifier in superposition. Roughly, Ṽ ∗ works over the same registers as those of V ∗ and
one additional register Cont that stores 1-qubit that plays the role of a “control qubit”. We define
an auxiliary input

|ψ̃ε〉Cont,R,H :=
1√
2

(|0〉Cont + |1〉Cont)⊗ |ψε〉R,H

where |ψε〉R,H is as defined in Section 3.1. Given a statement x and an auxiliary input |ψ̃ε〉Cont,R,H,

Ṽ ∗ runs the honest verifier V if the value in Cont is 0 and the random aborting verifier V ∗ if the
value in Cont is 1 in superposition. Then it “adjusts H” so that the states in H becomes the same
in both cases of Cont = 0 and Cont = 1. The motivation of introducing this step is to make the
final state in Cont be a pure state, which is essential for our analyses to work (in particular for
latter Lemma 3.9). For describing this “adjusting” procedure, we first prove the following lemma.

Lemma 3.8. For any m = (m1, ...,mk) ∈Mk, let Sm ⊆ Func(M≤k, {0, 1}) be the subset consisting
of all H such that H(m1, ...,mi) = 1 for all i ∈ [k]. There exists a unitary Um such that

Um
∑

H∈Func(M≤k,{0,1})

√
D(H) |H〉H =

∑
H∈Sm

√
D(H)

εk
|H〉H .

Proof. Recall that H is encoded as a concatenation of H(m′) for all m′ ∈M≤k and Hm′ denotes
the register to store H(m′). Then it is easy to see that we have∑

H∈Func(M≤k,{0,1})

√
D(H) |H〉H =

⊗
m′∈M≤k

(√
1− ε |0〉Hm′ +

√
ε |1〉Hm′

)
and

∑
H∈Sm

√
D(H)

εk
|H〉H =

 ⊗
m′∈Prefixm

|1〉Hm′

⊗
 ⊗
m′ /∈Prefixm

(√
1− ε |0〉Hm′ +

√
ε |1〉Hm′

)
where Prefixm ⊆M≤k is the set of all prefixes of m, i.e., Prefixm = {m1, (m1,m2), ..., (m1, ...,mk)}.
For each m′ ∈M≤k, we define U ′m′ as a unitary on Hm′ that satisfies

U ′m′ |1〉Hm′ =
√

1− ε |0〉Hm′ +
√
ε |1〉Hm′ .

We define Um as
Um :=

∏
m′∈Prefixm

U ′m′
†
.

Then the equation in Lemma 3.8 clearly holds.

The formal description of Ṽ ∗ is given below.

26

Ṽ ∗ works over its internal register V = (X,Aux = (Cont,R,H),W = (Count,M1, ...,Mk,B))
and an additional message register M where Cont is a single-qubit register and all other
registers are similar to those of V ∗ in Section 3.1 except that Aux contains an additional
register Cont. The output register is designated as Out := (Cont,B). The unitary Ũ∗ for
Ṽ ∗ is defined as follows

Ũ∗ (|0〉Cont |other0〉Other + |1〉Cont |other1〉Other)

= |0〉Cont (Uhon |other0〉Other) + |1〉Cont (U∗ |other1〉Other),

where Other denotes all registers except for Cont, U∗ is the unitary for V ∗ as defined in
Section 3.1, and Uhon is the unitary that corresponds to the honest verifier with an additional
“adjusting unitary” Um on H. Formally, Uhon is defined as follows.

Unitary Uhon: It non-trivially acts on registers Count, X, (M1, ...,Mk), R, H, M, and B:

• It reads the value j in Count and increments it to i = j + 1 mod k. It swaps M
and Mi (in superposition).

• It does either of the following depending on the value in Count in superposition.

1. If the value in Count is i 6= 0 (i.e., it is not in the final round), it applies the
following unitary over X, M1, ...,Mi, R, and M:

|x,m1, · · · ,mi, r,m〉 → |x,m1, · · · ,mi, r,m⊕ F [x, r](m1, · · · ,mi)〉 .

2. If the value in Count is 0 (i.e., it is in the final round), it applies the following
unitary over X, M1, ...,Mk, R, and B:

|x,m1, · · · ,mk, r, b〉 → |x,m1, · · · ,mk, r, b⊕ F [x, r](m1, · · · ,mk)〉 .

Then it applies the “adjusting unitary” over M1, ...,Mk, and H:

|m1, · · · ,mk, H〉 → Um |m1, · · · ,mk, H〉 .

where m := (m1, ...,mk). That is, it first puts F [x, r](m) into B, then adjusts
H using the unitary Um.

Lemma 3.9. For any x ∈ L ∩ {0, 1}λ and w ∈ RL(x), suppose that we run 〈P (w), Ṽ ∗(|ψ̃ε〉)〉(x)
and measure B and the outcome is 1. Then the resulting state in Cont (tracing out other registers)

is negligibly close to |φε〉Cont :=
√

1
1+εk

|0〉Cont +
√

εk

1+εk
|1〉Cont.

Proof. By the completeness of Π and a simple averaging argument, for an overwhelming fraction of
P ’s randomness, the completeness error is negl(λ) even if we fix P ’s randomness to that value. In the
following, we fix P ’s randomness to such a value. Let |η〉 be the final state of the internal register of
Ṽ ∗ after executing 〈P (w), Ṽ ∗(|ψ̃ε〉)〉(x). For β ∈ {0, 1}, let |ηβ〉 be the final state of the internal reg-

ister of Ṽ ∗ after executing 〈P (w), Ṽ ∗(|ψ̃(β)
ε 〉)〉(x). where |ψ̃(β)

ε 〉Cont,R,H := |β〉Cont⊗|ψε〉R,H. Since

Ṽ ∗ only uses Cont as a control register and |ψ̃ε〉Cont,R,H = 1√
2

(
|ψ̃(0)
ε 〉Cont,R,H + |ψ̃(1)

ε 〉Cont,R,H

)
,

it is easy to see that we have

|η〉 =
1√
2

(|η0〉+ |η1〉) . (4)

27

In the following, when we consider summations over r and H, they are over all r ∈ R and H ∈
Func(M≤k, {0, 1}), respectively, unless otherwise specified.

By the definition of Ṽ ∗ and Lemma 3.8, we have

|η0〉 = Um |0〉Cont |x〉X |0〉Count ⊗
∑
r,H

(√
D(H)

|R|
|r,H〉R,H ⊗ |mr〉M1,...,Mk

⊗ |br〉B

)

= |0〉Cont |x〉X |0〉Count ⊗
∑

r,H∈Smr

(√
D(H)

εk · |R|
|r,H〉R,H ⊗ |mr〉M1,...,Mk

⊗ |br〉B

)

where mr is prover’s messages when verifier’s randomness is r (note that we fix P ’s randomness)
and br is a bit such that br = 1 if and only if F [x, r](mr) = >, i.e., the verifier accepts when the
randomness is r. By the completeness of Π (with the fixed value of P ’s randomness), we have
Pr[MB ◦ |η0〉 = 1] = 1− negl(λ). This implies

|η0〉 ≈ |0〉Cont |x〉X |0〉Count ⊗
∑

r,H∈Smr

(√
D(H)

εk · |R|
|r,H〉R,H ⊗ |mr〉M1,...,Mk

)
⊗ |1〉B (5)

where ≈ means that the trace distance between both sides is negl(λ).
On the other hand, by the definition of Ṽ ∗, the value in B of |η1〉 can be 1 only if H ∈ Sm for

the transcript m. Therefore we have

|η1〉 = |1〉Cont |x〉X |0〉Count ⊗

(∑
r,H∈Smr

(√
D(H)
|R| |r,H〉R,H ⊗ |mr〉M1,...,Mk

⊗ |br〉B
)

+ |garbage〉R,H,M1,...,Mk
⊗ |0〉B

)

for some (sub-normalized) state |garbage〉R,H,M1,...,Mk
. By a similar argument to that for |η0〉, we

have

|η1〉 ≈ |1〉Cont |x〉X |0〉Count ⊗

(∑
r,H∈Smr

(√
D(H)
|R| |r,H〉R,H ⊗ |mr〉M1,...,Mk

)
⊗ |1〉B

+ |garbage〉R,H,M1,...,Mk
⊗ |0〉B

)
(6)

By Eqs. (4) to (6), we have

(|1〉 〈1|)B |η〉 ≈
1√
2

(√
1

εk
|0〉Cont + |1〉Cont

)
⊗ |x〉X |0〉Count

⊗
∑

r,H∈Smr

(√
D(H)

|R|
|r,H〉R,H

)
⊗ |1〉B .

Here we omit the identity operator on registers other than B and (|1〉 〈1|)B simply means the
projection onto states whose values in B is 0. By normalization, we can see that the final state in
Cont conditioned on the measurement outcome of B is 1 is negligibly close to |φε〉Cont. Since this
holds for overwhelming fraction of P ’s randomness, Lemma 3.9 follows by an averaging argument.

28

Suppose that there is a quantum black-box simulator Simexp (exp stands for ‘expected’) for the
protocol Π whose expected number of queries is at most q/2 = poly(λ) that works for all possibly
inefficient verifiers.16 Especially, we assume that for any ε, we have

{OUT
Ṽ ∗〈P (w), Ṽ ∗(x; |ψ̃ε〉)〉(x)}λ,x,w

comp
≈ {OUT

Ṽ ∗(Sim
Ṽ ∗(x;|ψ̃ε〉)
exp (x))}λ,x,w (7)

where λ ∈ N, x ∈ L∩{0, 1}λ, w ∈ RL(λ). By Lemma 3.9, we can show that the final state in Cont

after the execution Sim
Ṽ ∗(x;|ψ̃ε〉)
exp (x) conditioned on that Ṽ ∗ accepts (i.e., the value in B is 1) should

be close to |φε〉. (Remark that the probability that Ṽ ∗ accepts is larger than 1/2 since it always
accepts if the value in Cont is 0.) In the following, we show stronger claims. Specifically, we show
that

1. the probability that Ṽ ∗ accepts and the number of Simexp’s queries is at most q is at least
1/4− negl(λ) (Lemma 3.10), and

2. the final state in Cont after the execution Sim
Ṽ ∗(x;|ψ̃ε〉)
exp (x) conditioned on the above event is

close to |φε〉 (Lemma 3.11).

By combining Lemmas 3.10 and 3.11, we can show that the “truncated version” of Simexp that

makes at most q queries can let V ∗(x; |ψε〉) accept with probability at least εk

4 − negl(λ) (Lemma
3.12). By Lemma 3.2, this implies L ∈ BQP, which completes the proof of Theorem 3.7. The
details follow.

Similarly to Observation 1, because registers Cont is only used as a control qubit throughout

the execution of SimV ∗(x;|ψ̃ε〉)(x), we can trace out registers Cont while preserving the behavior of
this simulator. We have the following observation:

Observation 4. Let MCont be the measurement on the register Cont. For any (inefficient) black-
box simulator Sim it has zero advantage of distinguishing if it has black-box access to V ∗(x; |ψ̃〉) or
V ∗(x;MCont |ψ̃〉).

For any x ∈ L∩ {0, 1}λ, we consider an experiment Exp(x, ε) where we run Sim
Ṽ ∗(x;|ψ̃ε〉)
exp (x) and

then measure B. Let Q≤q be the event that the number of queries made by Simexp is at most q and
EB=1 be the event that the measurement outcome of B is 1. Then we prove the following lemmas.

Lemma 3.10. For any x ∈ L ∩ {0, 1}λ and ε ∈ [0, 1], we have

Pr
Exp(x,ε)

[Q≤q ∧ EB=1] ≥ 1/4− negl(λ).

Proof. First, we recall that no black-box simulator can distinguish oracle access to Ṽ ∗(x; |ψ̃ε〉) and
Ṽ ∗(x;MCont |ψ̃ε〉) (see Observation 4). Let Exp0(x, ε) be the same as Exp(x, ε) except that the
auxiliary input of Ṽ ∗ is replaced with |0〉Cont |ψε〉R,H. Remark that |0〉Cont |ψε〉R,H is the post-

measurement state after measuring Cont of |ψ̃ε〉 conditioned on that the measurement outcome is
0, which happens with probability 1/2. By the above observation, we have

Pr
Exp(x,ε)

[Q≤q ∧ EB=1] ≥
1

2
Pr

Exp0(x,ε)
[Q≤q ∧ EB=1]. (8)

16We write exp in the subscript to differentiate this from strict-polynomial query simulators that appear in previous
subsection. We take the expected number of queries to be q/2 instead of q just for convenience of the proof. Since q
can be arbitrary polynomial, this does not lose generality.

29

Since the expected number of queries made by Sim is at most q/2 for any malicious verifier given
as an oracle, by Markov’s inequality, we have

Pr
Exp0(x,ε)

[Q≤q] ≥
1

2
. (9)

When we run 〈P (w), Ṽ ∗(|0〉Cont |ψε〉R,H)〉(x) for some w ∈ RL(x) and then measure B, the mea-

surement outcome of B is always 1 noting that Ṽ ∗ just runs the honest verifier followed by an
additional “adjusting unitary” Um, which does not affect the value in B, when its auxliary input
is |0〉Cont |ψε〉R,H. Therefore, by our assumption that Simexp is a simulator for the protocol Π, we
must have

Pr
Exp0(x,ε)

[EB=1] = 1− negl(λ). (10)

By combining Eq. 8, 9, and 10, we obtain Lemma 3.10:

Pr
Exp(x,ε)

[Q≤q ∧ EB=1] ≥
1

2
Pr

Exp0(x,ε)
[Q≤q ∧ EB=1]

≥1

2

(
Pr

Exp0(x,ε)
[Q≤q]− Pr

Exp0(x,ε)
[¬EB=1]

)
≥1

4
− negl(λ).

Lemma 3.11. For any x ∈ L ∩ {0, 1}λ and ε, let σx,ε be the state in Cont (tracing out other
registers) after executing Exp(x, ε) conditioned on Q≤q ∧ EB=1. Then we have

TD(σx,ε, |φε〉 〈φε|) = negl(λ)

where |φε〉 is as defined in Lemma 3.9.

Proof. Let w ∈ RL(x) be an arbitrary witness for x. Let ρreal
x,w,ε := OUT

Ṽ ∗〈P (w), Ṽ ∗(|ψ̃ε〉)〉(x) and

ρsim
x,ε := OUT

Ṽ ∗Sim
Ṽ ∗(x;|ψ̃ε〉)
exp (x). We note that they are states over Out = (Cont,B). We consider

the following distinguisher D that tries to distinguish ρreal
x,w,ε and ρsim

x,ε .

D(ρ): It measures the register B. If the measurement outcome is 0, then it outputs 0. Otherwise,

it generates a state |φε〉Cont′ :=
√

1
1+εk

|0〉Cont′ +
√

εk

1+εk
|1〉Cont′ in a new register Cont′,

runs the SWAP test (Lemma 2.6) between registers Cont and Cont′, and outputs 0 if the
SWAP test accepts and 1 otherwise.

D will output 1 if and only if B is measured as 1, and the SWAP test rejects. When D’s input is
ρreal
x,w,ε, if B is measured as 1, then the state at this point is negligibly close to |φε〉Cont by Lemma 3.9.

Moreover, the SWAP test accepts |φε〉Cont with probability 1 by Lemma 2.6. Therefore we have

Pr[D(ρreal
x,w,ε) = 1] = negl(λ).

Since ρreal
x,w,ε and ρsim

x,ε are computationally indistinguishable by Eq. 7, the above equation implies

Pr[D(ρsim
x,ε) = 1] = negl(λ). (11)

30

On the other hand, by Lemma 2.6, we have

Pr[D(ρsim
x,ε) = 1] ≥ Pr

Exp(x,ε)
[Q≤q ∧ EB=1]

1− 〈φε|σx,ε |φε〉
2

.

since the r.h.s. is the probability that D(ρsim
x,ε) returns 1 and Simexp made at most q queries when

generating ρsim
x,ε . By Lemma 3.10, PrExp(x,ε)[Q≤q ∧ EB=1] ≥ 1/4− negl(λ). Therefore, for satisfying

Eq. 11, we must have 〈φε|σx,ε |φε〉 = 1− negl(λ), which implies TD(σx,ε, |φε〉 〈φε|) = negl(λ).

Lemma 3.12. Let Sim be the “truncated version” of Simexp that works similarly to Simexp except
that it immediately halts when Simexp tries to make (q + 1)-th query. Then for any x ∈ L ∩ {0, 1}λ
and ε, we have

Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψε〉)(x)

)
= 1
]
≥ εk

4
− negl(λ).

Remark that in the above lemma, Sim is given the oracle V ∗, which is the random-aborting
verifier defined in Section 3.1, rather than Ṽ ∗

Proof of Lemma 3.12. Let σx,ε be as in Lemma 3.11. By TD(σx,ε, |φε〉 〈φε|) = negl(λ) as shown in

Lemma 3.11, if we measure Cont of σx,ε, then the outcome is 1 with probability εk

1+εk
± negl(λ).

Combining this with Lemma 3.10, we have

Pr
Exp′(x,ε)

[Q≤q ∧ EB=1 ∧ ECont=1] ≥
εk

4(1 + εk)
− negl(λ) ≥ εk

8
− negl(λ) (12)

where Exp′(x, ε) is the same as Exp(x, ε) except that Cont is also measured at the end, and ECont=1

is the event that the measurement outcome of Cont is 1. Since Sim works similarly to Simexp when
Q≤q occurs, we have

Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψε〉)(x)

)
= 1
]
≥ Pr[MB ◦ Sim

V ∗(x;|ψε〉)
exp (x) = 1 ∧ Q≤q].

By Observation 4, there is no difference if we measure Cont at the beginning of the experiment
instead of at the end, and when the measurement outcome of Cont is 1, Ṽ ∗ with auxiliary input
|ψ̃ε〉 works similarly to V ∗ with auxiliary input |ψε〉. Therefore, we have

Pr[MB ◦ Sim
V ∗(x;|ψε〉)
exp (x) = 1 ∧ Q≤q] = Pr

Exp′(x,ε)
[Q≤q ∧ EB=1|ECont=1]

=
PrExp′(x,ε)[Q≤q ∧ EB=1 ∧ ECont=1]

PrExp′(x,ε)[ECont=1]

≥ εk

4
− negl(λ)

where the last inequality follows from Eq. 12 and PrExp′(x,ε)[ECont=1] = 1/2, which is easy to
see.

Finally, we prove Theorem 3.7 based on Lemma 3.12.

Proof of Theorem 3.7. Let ε∗q be as in Lemma 3.2 and ε := ε∗q . Since Sim makes at most q queries,
Lemma 3.2 and 3.12 immediately imply L ∈ BQP.

31

3.3 Expected-Polynomial-Time Simulation for Efficient Verifier

In this section, we extend the proof of Theorem 3.7 in Section 3.2 to prove Theorem 3.1. That is,
we prove that black-box simulation is impossible even for QPT malicious verifiers.

The reason why the malicious verifier Ṽ ∗ in Section 3.2 is inefficient is that it has to apply the
unitary Um given in Lemma 3.8, which works over an exponential-qubit register H. Therefore, if
we have an analogue of Lemma 3.8 for a family of efficiently computable functions that is indistin-
guishable from a random function taken from Hε by at most Q quantum queries. We prove such a
lemma in the following.

Lemma 3.13. Let ε ∈ [0, 1] be a rational number expressed as ε = B
A for some A,B ∈ N such that

logA = poly(λ) and logB = poly(λ).17 For any Q = poly(λ), there exists a family H̃ε = {H̃κ :
M≤k → {0, 1}}κ∈K of classical polynomial-time computable functions that satisfies the following
properties.

1. For any algorithm A that makes at most Q quantum queries and any quantum input ρ, we
have

Pr
H

$←Hε

[
AH(ρ) = 1

]
= Pr

κ
$←K

[
AH̃κ(ρ) = 1

]
.

2. For any m = (m1, ...,mk) ∈ Mk, let Sm ⊆ K be the subset consisting of all κ such that

H̃κ(m1, ...,mi) = 1 for all i ∈ [k]. There exists a unitary U
(Q)
m such that

U
(Q)
m

√
1

|K|
∑
κ∈K
|κ〉 =

√
1

|Sm|
∑
κ∈Sm

|κ〉 .

Um can be implemented by a quantum circuit of size poly(λ).

Proof. Let H′2Q,A = {H ′κ′ :M≤k → [A]}κ′∈K′ be a 2Q-wise independent hash family from M≤k to
[A]. By Lemma 2.4, for any A that makes at most Q quantum queries and any quantum input ρ,
we have

Pr
H′

$←Func(M≤k,[A])

[
AH′(ρ) = 1

]
= Pr

κ′
$←K′

[
AH

′
κ′ (ρ) = 1

]
. (13)

We define H̃ε = {H̃κ :M≤k → {0, 1}}κ∈K as follows.

• K := K′ × [A]k. In other words, a key κ′ for H′2Q,A is sampled, and k additional random
additive terms {ai} for each input length is sampled, as explained below.

• For κ = (κ′, {ai}i∈[K]) and (m1, ...,mi) ∈M≤k, we define

H̃κ(m1, ...,mi) :=

{
1 if (H ′κ′(m1, ...,mi) + ai mod A) ≤ B
0 otherwise

.

In the above definition, if we use a uniformly random function H ′
$← Func(M≤k, [A]) instead of

H ′κ′ , H̃κ is distributed according to Hε. Therefore, Eq. 13 implies the first item of Lemma 3.13.
For proving the second item, we consider unitaries Uadd,m,i, U≤A, and U≤B that satisfy the

following.

17Note that ε is also a function of λ, but we omit to explicitly write the dependence on ε for simplicity.

32

• For any m = (m1, ...,mk) ∈Mk, i ∈ [k], and (κ′, a1, ..., ak) ∈ K, we have

Uadd,m,i |κ′, a1, ..., ak〉 = |κ′, a1, ..., ai−1, (H ′κ′(m1, ...,mi) + ai mod A), ai+1, ..., ak〉 .

• For any κ′ ∈ K′, we have

U≤A |κ′, 0, ..., 0〉 =

√
1

Ak

∑
(a1,...,ak)∈[A]k

|κ′, a1, ..., ak〉 .

• For any κ′ ∈ K′, we have

U≤B |κ′, 0, ..., 0〉 =

√
1

Bk

∑
(a1,...,ak)∈[B]k

|κ′, a1, ..., ak〉 .

We can see that such unitaries exist and are implementable by polynomial-size quantum circuits.
For any m = (m1, ...,mk) ∈M≤k, we define Um as

U
(Q)
m :=

(
U≤AU

†
≤B

k∏
i=1

Uadd,m,i

)†
.

Then U
(Q)
m is implementable by a polynomial-size quantum circuit. For any κ′ ∈ K′ and m =

(m1, ...,mk), we let Tκ′,m ⊆ [A]k be the subset consisting of all (a1, ..., ak) such that we have
(H ′κ′(m1, ...,mi) + ai mod A) ≤ B for all i ∈ [k]. Then we have

U
(Q)
m

†
√

1

|Sm|
∑
κ∈Sm

|κ〉 = U
(Q)
m

†
√

1

|K′| ·Bk

∑
κ′∈K′

|κ′〉
∑

(a1,...,ai)∈Tκ′,m

|a1, ..., ai〉

= U≤AU
†
≤B

√
1

|K′| ·Bk

∑
κ′∈K′

|κ′〉
∑

(a1,...,ai)∈[B]k

|a1, ..., ai〉

= U≤A

√
1

|K′|
∑
κ′∈K′

|κ′〉 |0, ..., 0〉

=

√
1

|K′| ·Ak
∑
κ′∈K′

|κ′〉
∑

(a1,...,ai)∈[A]k
|a1, ..., ai〉

=

√
1

|K|
∑
κ∈K
|κ〉 .

By applying U
(Q)
m on both sides, the second item of Lemma 3.13 follows.

With Lemma 3.13 in hand, we can prove Theorem 3.1 similarly to the proof of Theorem 3.7
except that we consider the efficient version of Ṽ ∗ using Lemma 3.13. Here, we remark that we
only need to take sufficiently small yet noticeable ε (depending on q) in the proof of Theorem 3.7,
and thus we can assume that ε satisfies the assumption of Lemma 3.13 without loss of generality.
Specifically, we modify the auxiliary input to

|ψ̃(q)
ε 〉Cont,R,H :=

1√
2

(|0〉Cont + |1〉Cont)⊗ |ψ
(q)
ε 〉R,H

33

where

|ψ(q)
ε 〉R,H :=

∑
r∈R,κ∈K

√
1

|R| · |K|
|r, κ〉R,H

and modify Ṽ ∗ to apply Hκ whenever it applies H and apply U
(Q)
m instead of Um for the case of

Cont = 0 and Count = k − 1 (i.e., in the final round) where Q := 2kq In this setting, we can
prove an analogue of Lemma 3.9 by using the second item of Lemma 3.13 instead of Lemma 3.8.
We can prove analogues of Lemma 3.10, 3.11, and 3.12 in the exactly the same way to the original
ones since these proofs do not use anything on the state in H. Finally, when we can prove Theorem
3.1 by Lemma 3.2 and the analogue of Lemma 3.12 noting that Sim that makes at most q queries
to the verifier can be seen as an algorithm that makes at most Q = 2kq quantum queries to H by

Observations 2 and 3, and thus it cannot distinguish Hκ for κ
$← K and H

$← Hε by the first item
of Lemma 3.13.

Malicious verifier with fixed polynomial-time. In the proof of Theorem 3.1, we consider
a malicious verifier whose running time depends on q, which is twice of the simulator’s expected
number of queries. Though this is sufficient for proving the impossibility of quantum black-box
simulation (since Definition 2.2 requires a simulator to work for all QPT verifiers whose running
time may be an arbitrarily large polynomial), one may think that it is “unfair” that the running
time of the malicious verifier is larger than that of the simulator. We can resolve this issue if we use
a quantumly-accessible PRF, which exists under the existence of post-quantum one-way functions
[Zha12a].18 Specifically, if we use a quantumly-accessible PRF instead of 4q-wise independent
function in Lemma 3.13, we can prove a similar lemma with a unitary whose size does not depend

on q instead of U
(Q)
m , which naturally yields a malicious verifier whose running time does not depend

on q.

4 Impossibility of BB ε-ZK for Constant-Round Public-Coin Ar-
guments

In this section, we prove the following theorem.

Theorem 4.1. If there exists a constant-round public-coin post-quantum black-box ε-zero-knowledge
argument for a language L, then L ∈ BQP.

First, we define notations that are used throughout this section. Let Π = (P, V) be a classical
constant-round public-coin interactive argument for a language L. Without loss of generality, we
assume that P sends the first message, and let (P, V) be (2k − 1)-round protocol where P sends
k = O(1) messages in the protocol and V sends k − 1 messages (which are public-coin). We use
mi to mean P ’s i-th message and ci to mean V ’s i-th message. We assume that all messages sent
from P are elements of a classical set M and V ’s messages are uniformly chosen from a classical
set C. Without loss of generality, we assume that C is a subset of M. (If it is not the case, we can
simply augment M to include C.) For any c = (c1, ..., ck−1) ∈ Ck−1, we denote by Acc[x, c] ⊆ Mk

the subset consisting of all (m1, ...,mk) ∈Mk such that (m1, c1, ...,mk−1, ck−1,mk) is an accepting

18A similar idea is used to resolve a similar issue in the context of the impossibility of strict-polynomial-time
simulation in the classical setting [BL02].

34

transcript. (Note that this is well-defined as we assume that Π is public-coin). For any q, let
H4(k−1)q be a family of 4(k − 1)q-wise independent hash functions from M≤(k−1) to C.

A high level structure of the rest of this section is similar to Section 3.1. To prove Theorem 4.1,
we consider a malicious verifier that derives its messages by applying a random function on the
transcript so far. More precisely, for any q = poly(λ), we consider a malicious verifier V ∗ with an
auxiliary input |ψq〉H as follows.

|ψq〉H is the uniform superposition over H ∈ H4(k−1)q.

V ∗ works over its internal register (X,Aux = H,W = (Count,M1, ...,Mk,B)) and an additional
message register M. We define the output register as Out := B. It works as follows where
Count stores a non-negative integer smaller than k (i.e. {0, 1, · · · , k − 1}), each register of
M1, ...,Mk and M stores an element of M and B stores a single bit. M is the register to
store messages from/to external prover, and Mi is a register to record the i-th message from
the prover.

We next explain the unitary U∗ for V ∗.

1. V ∗ takes inputs a statement x and a quantum auxiliary input |ψ〉: X is initialized to be
|x〉X where x is the statement to be proven, Aux is initialized to be |ψ〉H, and all other
registers are initialized to be 0.

2. Verifier V ∗ on round < k: Upon receiving the i-th message from P for i < k in M,
swap M and Mi and increment the value in Count. We note that V ∗ can know i since
it keeps track of which round it is playing by the value in Count. Let (m1, ...,mi) be
the messages sent from P so far. Then it returns H(m1, ...,mi) ∈ C to P as its next
message.

Unitary U∗ on Count < k − 1: It acts on registers Count (whose value is less than
k − 1), X, (M1, ...,Mk), H and M:

• It reads the value j in Count and increments it to i := j + 1. It swaps M and Mi

(in superposition).

• It applies the following unitary.19

|x,m1, · · · ,mi, H,m〉 → |x,m1, · · · ,mi, H,m+H(m1, · · · ,mi)〉 .

3. Verifier V ∗ on round k: Upon receiving the k-th message from P in M, swap M
and Mk and increment the value in Count. Then flip the bit in B if (m1, ...,mk) ∈
Acc[x, (c1, ..., ck−1)] where ci := H(m1, ...,mi) for all i ∈ [k − 1] and (m1, ...,mk) and H
are values in registers (M1, ...,Mk) and H.

Unitary U∗ on Count = k− 1: It acts on registers Count (whose value is exactly equal
to k − 1), X, (M1, ...,Mk), H and B:

• It reads the value i = k − 1 in Count and sets it to 0. It swaps M and Mk (in
superposition).

• Let x, (m1, · · · ,mk), H and b be the values in registers X, (M1, · · · ,Mk),H and B.
Let F ∗[x,H] be the following function: on input (m1, · · · ,mk) ∈Mk,

F ∗[x,H](m1, ...,mk) :=

{
1 if (m1, ...,mk) ∈ Acc[x, (c1, ..., ck−1)]

0 otherwise

19Here, H(m1, · · · ,mi) is seen as an element of M by using our assumption C ⊆M.

35

where ci := H(m1, ...,mi) for i ∈ [k − 1].
It applies the function in superposition.

|x,m1, · · · ,mk, r,H, b〉 → |x,m1, · · · ,mk, r,H, b+ F ∗[x,H](m1, · · · ,mk)〉 .

With the description of V ∗ above, we have the following observation.

Observation 5. Let MH be the measurement on the register H. For any (inefficient) black-box
simulator Sim it has zero advantage of distinguishing if it has black-box access to V ∗(x; |ψ〉H) or
V ∗(x;MH ◦ |ψ〉H).

Observation 5 says that even for an unbounded simulator with black-box access to V ∗(x; |ψq〉H),
it has no way to tell if the auxiliary input |ψq〉H gets measured at the beginning or never gets
measured. This is because the register H is only used as control qubits throughout the execution
of SimV ∗(x;|ψq〉)(x), we can trace out the register H while preserving the behavior of this simulator.

Observation 6. An oracle that applies U∗ can be simulated by 2(k − 1) quantum oracle access to
H.

This can be easily seen from the description of U∗ above. Note that we require 2(k− 1) queries
instead of k − 1 queries since we need to compute k − 1 values of H to compute F ∗[x, r,H] (when
the input is in Mk) and then need to uncompute them.

We then prove the following lemma.

Lemma 4.2. If there exists a quantum black-box simulator Sim that makes at most q = poly(λ)
queries such that

Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψq〉)(x)

)
= 1
]
≥ 1

poly(λ)

for all x ∈ L ∩ {0, 1}λ where MB means measuring and outputting the register MB, then we have
L ∈ BQP.

The above lemma immediately implies Theorem 4.1.

Proof of Theorem 4.1. Let Π = (P, V) be a constant-round public-coin post-quantum black-box
ε-zero-knowledge argument for a language L where P sends k = O(1) messages and V ∗ and |ψq〉
are defined above. By definition, for any noticeable ε, there exists a quantum black-box simulator
Sim for Π that makes at most q = poly(λ) queries such that

{OUTV ∗〈P (w), V ∗(|ψq〉)〉(x)}λ,x,w
comp
≈ ε {OUTV ∗(SimV ∗(x;|ψq〉)(x))}λ,x,w

where λ ∈ N, x ∈ L∩{0, 1}λ, and w ∈ RL(λ). (Note that we can assume that the number of queries
by the simulator is strict-polynomial as explained in Remark 1.) Especially, we take ε := 1/2. By
completeness of Π and the definitions of V ∗ and |ψq〉, for any x ∈ L ∩ {0, 1}λ and its witness
w ∈ RL(x), we have

Pr[MB ◦ OUTV ∗ (〈P (w), V ∗(|ψq〉)〉(x)) = 1] ≥ 1− negl(λ).

By combining the above, we have

Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψq〉)(x)

)
= 1
]
≥ 1− negl(λ)− ε =

1

2
− negl(λ) >

1

poly(λ)
.

By Lemma 4.2, this implies L ∈ BQP.

36

Remark 5. As one can see from the above proof, we can actually prove a stronger statement than
Theorem 4.1. That is, even a black-box simulation with approximation error as large as 1− 1

poly(λ)
is still impossible for a language outside BQP.

Then we prove Lemma 4.2.

Proof of Lemma 4.2. By Observation 5, we can assume |ψq〉 is measured at the beginning. In

other words, the auxiliary state is sampled as H
$← H4(k−1)q. Once H is fixed, the unitary U∗

(corresponding to V ∗) and its inverse can be simulated by 2(k − 1) quantum access to a classical
function H as observed in Observation 6. Moreover, since the simulator makes at most q queries,
by Lemma 2.4, the simulator’s behavior does not change even if H is uniformly sampled from
Func(M≤(k−1), C).

We let Acc∗[x,H] ⊆Mk be the set ofm = (m1, ...,mk) such that (m1, ...,mk) ∈ Acc[x, (c1, ..., ck−1)]
where ci := H(m1, ...,mi) for i ∈ [k − 1]. After the execution of SimV ∗(x;|H〉)(x), B contains 1 if
and only if (M1, ...,Mk) contains an element in Acc∗[x,H]. Therefore, for proving Lemma 4.2, it
suffices to prove the following lemma.

Lemma 4.3. If there exists an oracle-aided quantum algorithm S that makes at most poly(λ)
quantum queries such that

Pr
H

$←Func(M≤(k−1),C)

[
SH(x) ∈ Acc∗[x,H]

]
≥ 1

poly(λ)

for all x ∈ L ∩ {0, 1}λ, then we have L ∈ BQP.

We prove the above lemma below. Assuming Lemma 4.3, we show Lemma 4.2 holds. Let Sim
be a quantum black-box simulator that makes at most q quantum queries, such that

Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψq〉)(x)

)
= 1
]
≥ 1

poly(λ)
.

By Observation 5 and Lemma 2.4, we have

Pr
H

$←Func(M≤(k−1),C)

[
MB ◦ OUTV ∗

(
SimV ∗(x;|H〉)(x)

)
= 1
]

= Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψq〉)(x)

)
= 1
]
≥ 1

poly(λ)
.

Finally, we note that MB ◦ OUTV ∗
(

SimV ∗(x;|r,H〉)(x)
)

can be computed by only having black-

box access to H (by Observation 6). It outputs 1 (the register B is 1) if and only if the values
(m1, · · · ,mk) in M1, · · · ,Mk are in Acc∗[x,H]. Thus, there is an algorithm S that computes MB ◦
SimV ∗(x;|H〉)(x) and measures registers M1, · · · ,Mk. Such an algorithm S satisfies the requirement
in Lemma 4.3. Therefore L is in BQP.

The remaining part is to prove Lemma 4.3.

Proof of Lemma 4.3. As shown in [DFM20], Fiat-Shamir transform for constant-round public-coin
protocol preserves the soundness up to a polynomial security loss in the quantum random oracle
model where an adversary may quantumly query the random oracle. Let Πni be the non-interactive
protocol that is obtained by applying Fiat-Shamir transform to Π. More concretely, Πni is a non-
interactive argument in the random oracle model where a proof is of the form (m1, ...,mk) and it

37

is accepted for a statement x if and only if (m1, ...,mk) ∈ Acc∗[x,H]. Since we assume that Π has
a negligible soundness error, so does Πni by the result of [DFM20].20 This means that we have

Pr
H

$←Func(M≤(k−1),C)

[
SH(x) ∈ Acc∗[x,H]

]
≤ negl(λ)

for all x ∈ {0, 1}λ \ L since otherwise we can use S to break the soundness of Πni. Therefore, we
can use S to decide L by simulating a random function H by itself, which implies L ∈ BQP. (Note
that one can efficiently simulate a random function for quantum-query adversaries that makes at
most 2(k − 1)q queries by using 4(k − 1)q-wise independent hash function by Lemma 2.4.)

5 Impossibility of BB ε-ZK for Three-Round Arguments

In this section, we prove the following theorem.

Theorem 5.1. If there exists a three-round post-quantum black-box ε-zero-knowledge argument for
a language L, then L ∈ BQP.

First, we define notations that are used throughout this section. Let Π = (P, V) be a classical
three-round interactive argument for a language L. We assume that all messages sent between P
and V are elements of a classical set M (e.g., we can take M := {0, 1}` for sufficiently large `).
Let R be V ’s randomness space. For any fixed statement x and randomness r ∈ R, V ’s message
in the second round can be seen as a deterministic function of the prover’s first message m1. We
denote this function by F [x, r] : M → M. We denote by Acc[x, r] ⊆ M2 the subset consisting
of all (m1,m2) such that the verifier accepts when its randomness is r and prover’s messages in
the first and third rounds are m1 and m2, respectively. For any q, let H4q be a family of 4q-wise
independent hash functions from M to R.

A high level structure of the rest of this section is similar to Section 3.1. To prove Theorem 5.1,
we consider a malicious verifier that derives its randomness by applying a random function on the
prover’s first message. More precisely, for any q = poly(λ), we consider a malicious verifier V ∗ with
an auxiliary input |ψq〉H as follows.

|ψq〉H is the uniform superposition over H ∈ H4q.

V ∗ works over its internal register (X,Aux = H,W = (Count,M1,M2,B)) and an additional
message register M. We define the output register as Out := B. It works as follows where
Count stores an integer 0 or 1,21 each register of M1,M2, and M stores an element of M
and B stores a single bit. M is the register to store messages from/to a external prover, and
M1 and M2 are registers to record the prover’s first and second messages, respectively.22

We next explain the unitary U∗ for V ∗. The interaction between V ∗ and the honest prover
P has been formally defined in Section 2.1. We recall it here.

1. V ∗ takes inputs a statement x and a quantum auxiliary input |ψq〉: X is initialized to
be |x〉X where x is the statement to be proven, Aux is initialized to be |ψq〉H, and all
other registers are initialized to be 0.

20Though the way of applying the Fiat-Shamir is slightly different from that in [DFM20] (where they derive a
challenge by nested applications of the random oracle), their proof still works for the above way as noted in [DFM20,
Remark 12]

21We view them as an integer rather than a bit for the consistency to the description of V ∗ in Section 3.1.
22Remark that the prover’s second message is a message sent in the third round.

38

2. Verifier V ∗ on the first message: Upon receiving the first message from P in M, swap
M and M1 and increment the value in Count23. We note that V ∗ can know i since
it keeps track of which round it is playing by the value in Count. Let m1 be the first
message sent from P . Then return F [x,H(m1)](m1) to P .

Unitary U∗ on Count = 0: It acts on registers Count (whose value is exactly equal to
0), X, (M1,M2), H and M:

• It reads the value i = 0 in Count and increments it to 1. It swaps M and M1 (in
superposition).

• Let x,m1, r,H and m be the values in registers X,M1,H and M. Let F ∗[x,H] be
the following function: on input m1 ∈M,

F ∗[x,H](m1) := F [x,H(m1)](m1).

It then applies the function in superposition:

|x,m1, H,m〉 → |x,m1, H,m+ F ∗[x,H](m1)〉 .

3. Verifier V ∗ on the second message: Upon receiving the second message from P in M,
swap M and M2 and increment the value in Count. Then flip the bit in B if (m1,m2) ∈
Acc[x,H(m1)] where (m1,m2) and H are values in registers (M1,M2), and H.

Unitary U∗ on Count = 1: It acts on registers Count (whose value is exactly equal to
1), X, (M1,M2), H and B:

• It reads the value i = 1 in Count and sets it to 0. It swaps M and M2 (in
superposition).

• Let x, (m1,m2), H and b be the values in registers X, (M1,M2),H and B. Let
FAcc∗[x,H] be the following function: on input (m1,m2) ∈M2,

FAcc∗[x,H](m1,m2) :=

{
1 if (m1,m2) ∈ Acc∗[x,H]

0 otherwise

where Acc∗[x,H] ⊆M2 is the set of all (m1,m2) such that (m1,m2) ∈ Acc[x,H(m1)].
It applies the function in superposition.

|x,m1,m2, H, b〉 → |x,m1,m2, H, b+ FAcc∗[x,H](m1,m2)〉 .

With the description of V ∗ above, we have the following observation.

Observation 7. Let MH be the measurement on register H. For any (inefficient) black-box sim-
ulator Sim it has zero advantage of distinguishing if it has black-box access to V ∗(x; |ψ〉H) or
V ∗(x;MH ◦ |ψ〉H).

Observation 7 says that even for an unbounded simulator with black-box access to V ∗(x; |ψ〉H),
it has no way to tell if the auxiliary input |ψ〉H gets measured at the beginning or never gets
measured. This is because the register H is only used as control qubits throughout the execution
of SimV ∗(x;|ψ〉)(x), we can trace out the register H while preserving the behavior of this simulator.

23This is a NOT gate that maps |i〉 to |(i+ 1) mod 2〉.

39

Observation 8. V ∗ can be simulated giving oracle access to F ∗[x,H] and FAcc∗[x,H].

This can be easily seen from the description of U∗ above.

Observation 9. Given x and r, a quantum oracle that computes F ∗[x,H] or FAcc∗[x,H] can be
simulated by 2 quantum oracle access to H.

This can be easily seen from the definitions of F ∗[x,H] and FAcc∗[x,H]. Note that we require
2 queries instead of 1 query since we need to compute the value of H to compute F ∗[x,H] or
FAcc∗[x,H] and then need to uncompute it.

We then prove the following lemma.

Lemma 5.2. If there exists a quantum black-box simulator Sim that makes at most q = poly(λ)
queries such that

Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψq〉)(x)

)
= 1
]
≥ 1

poly(λ)

for all x ∈ L ∩ {0, 1}λ where MB means measuring and outputting the register MB, then we have
L ∈ BQP.

The above lemma immediately implies Theorem 5.1.

Proof of Theorem 5.1. This is exactly the same as the proof of Theorem 4.1 based on Lemma 4.2
Let Π = (P, V) be a three-round post-quantum black-box ε-zero-knowledge argument for a language
L and V ∗ and |ψq〉 are defined above. By definition, for any noticeable ε, there exists a quantum
black-box simulator Sim for Π that makes at most q = poly(λ) queries such that

{OUTV ∗〈P (w), V ∗(|ψq〉)〉(x)}λ,x,w
comp
≈ ε {OUTV ∗(SimV ∗(x;|ψq〉)(x))}λ,x,w

where λ ∈ N, x ∈ L∩{0, 1}λ, and w ∈ RL(λ). (Note that we can assume that the number of queries
by the simulator is strict-polynomial as explained in Remark 1.) Especially, we take ε := 1/2. By
completeness of Π and the definitions of V ∗ and |ψq〉, for any x ∈ L ∩ {0, 1}λ and its witness
w ∈ RL(x), we have

Pr[MB ◦ OUTV ∗ (〈P (w), V ∗(|ψq〉)〉(x)) = 1] ≥ 1− negl(λ).

By combining the above, we have

Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψq〉)(x)

)
= 1
]
≥ 1− negl(λ)− ε =

1

2
− negl(λ) >

1

poly(λ)
.

By Lemma 5.2, this implies L ∈ BQP.

Remark 6. As one can see from the above proof, we can actually prove a stronger statement than
Theorem 5.1. That is, even a black-box simulation with approximation error as large as 1− 1

poly(λ)
is still impossible for a language outside BQP.

Then we prove Lemma 5.2.

40

Proof of Lemma 5.2. By Observation 7, we can assume |ψq〉 is measured at the beginning. In other

words, the auxiliary state is sampled as |H〉H for H
$← H4q. Once H is fixed, the unitary U∗

(corresponding to V ∗) and its inverse can be simulated by a single quantum access to a classical
function F ∗[x,H] or FAcc∗[x,H] defined in the description of V ∗ (Observation 8). Moreover, since the
simulator makes at most q queries to the verifier and a single query can be simulated by two queries
to H as observed in Observation 9, the simulator can be seen as an oracle-aided algorithm that
makes at most 2q quantum queries to H. Therefore, by Lemma 2.4, the simulator’s behavior does
not change even if H is uniformly sampled from Func(M,R). After the execution of SimV ∗(x;|H〉)(x),
B contains 1 if and only if (M1,M2) contains an element in Acc∗[x,H].

Therefore, for proving Lemma 5.2, it suffices to prove the following lemma.

Lemma 5.3. If there exists an oracle-aided quantum algorithm S that makes at most poly(λ)
quantum queries such that

Pr
H

$←Func(M,R)

[
SF ∗[x,H],FAcc∗[x,H](x) ∈ Acc∗[x,H]

]
≥ 1

poly(λ)

for all x ∈ L ∩ {0, 1}λ, then we have L ∈ BQP.

We prove the above lemma below. Assuming Lemma 5.3, we show Lemma 5.2 holds. We note
that this proof is similar to the proof of Lemma 4.2 based on Lemma 4.3.

Let Sim be a quantum black-box simulator that makes at most q quantum queries, such that

Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψq〉)(x)

)
= 1
]
≥ 1

poly(λ)
.

By Observation 7 and Lemma 2.4, we have

Pr
H

$←Func(M,R)

[
MB ◦ OUTV ∗

(
SimV ∗(x;|H〉)(x)

)
= 1
]

= Pr
[
MB ◦ OUTV ∗

(
SimV ∗(x;|ψq〉)(x)

)
= 1
]
≥ 1

poly(λ)
.

Finally, we note that MB ◦ OUTV ∗
(

SimV ∗(x;|r,H〉)(x)
)

can be computed by only having black-

box access to F ∗[x,H] and FAcc∗[x,H] (by Observation 8). It outputs 1 (the register B is 1) if
and only if the values (m1,m2) in M1,M2 are in Acc∗[x,H]. Thus, there is an algorithm S that
computes MB ◦ SimV ∗(x;|H〉)(x) and measures registers M1,M2. Such an algorithm S satisfies the
requirement in Lemma 5.3. Therefore L is in BQP.

For proving Lemma 5.3 we reduce it to a simplified lemma (Lemma 5.4 below) where S is not
given the oracle FAcc∗[x,H].

Lemma 5.4. If there exists an oracle-aided quantum algorithm S that makes at most poly(λ)
quantum queries such that we have

Pr
H

$←Func(M,R)

[
SF ∗[x,H](x) ∈ Acc∗[x,H]

]
≥ 1

poly(λ)

for all x ∈ L ∩ {0, 1}λ, then we have L ∈ BQP.

We first prove Lemma 5.3 assuming Lemma 5.4 by using Corollary 2.8.

41

Proof of Lemma 5.3. Let S be an algorithm that satisfies the assumption of Lemma 5.3. We
apply Corollary 2.8 by considering S as A in Corollary 2.8. Then we can see that the algorithm
corresponding to C in Corollary 2.8 satisfies the assumption of Lemma 5.4, which implies L ∈ BQP.
(Note that though S has an additional oracle F ∗[x,H], Corollary 2.8 is still applicable by considering
an augmented algorithm S ′ that takes H as part of its input and simulates F ∗[x,H] by itself.)

The remaining part is to prove Lemma 5.4.

Proof of Lemma 5.4. In the following, we simply write r and H in subscripts of probabilities to

mean r
$← R and H

$← Func(M,R) for notational simplicity.
We apply Lemma 2.10 to SF ∗[x,H] where k := 1, X :=M, Y :=M, Z :=M, and we define a

relation R ⊆ X×Y×Z by (m1,mV ,m2) ∈ R if and only if (m1,mV ,m2) ∈ Acc′[x, r] where Acc′[x, r]
is the set of all accepting transcripts w.r.t. the randomness r (i.e., (m1,mV ,m2) ∈ Acc′[x, r] if and
only if F [x, r](m1) = mV and (m1,m2) ∈ Acc[x, r]). By Lemma 2.10, for any x,H, r, and m∗1
(where we set mV := F [x, r](m∗1)), we have

Pr
[
m′1 = m∗1 ∧ (m′1, F [x, r](m∗1),m2) ∈ Acc′[x, r] : (m′1,m2)

$← S̃[F ∗[x,H], F [x, r](m∗1)](x)
]

≥ 1

(2q + 1)2
Pr
[
m1 = m∗1 ∧ (m1, F [x, r](m∗1),m2) ∈ Acc′[x, r] : (m1,m2)

$← SF
∗[x,H]m∗1,F [x,r](m∗1)(x)

]
(14)

where S̃[F ∗[x,H], F [x, r](m∗1)] and F ∗[x,H]m∗1,F [x,r](m∗1)
are as defined in Lemma 2.10. Note that

F ∗[x,H]m∗1,F [x,r](m∗1)
≡ F ∗[x,Hm∗1,r

] and Hm∗1,r
is uniformly distributed over Func(M,R) if H and

r are randomly chosen for any fixed m∗1. Therefore, by taking the average over all H and r for Eq.
14, for any fixed m∗1 we have

Pr
H,r

[
m′1 = m∗1 ∧ (m′1, F [x, r](m∗1),m2) ∈ Acc′[x, r] : (m′1,m2)

$← S̃[F ∗[x,H], F [x, r](m∗1)](x)
]

≥ 1

(2q + 1)2
Pr
H

[
m1 = m∗1 ∧ (m1, F [x,H(m∗1)](m

∗
1),m2) ∈ Acc′[x,H(m∗1)] : (m1,m2)

$← SF ∗[x,H](x)
]

(15)

When m′1 = m∗1 and m1 = m∗1, (m′1, F [x, r](m∗1),m2) ∈ Acc′[x, r] and (m1, F [x,H(m∗1)](m
∗
1),m2) ∈

Acc′[x,H(m∗1)] are equivalent to (m′1,m2) ∈ Acc[x, r] and (m1,m2) ∈ Acc∗[x,H], respectively.
Therefore, by taking a summation over all m∗1 for Eq. 15, we have∑

m∗1∈M
Pr
H,r

[
m′1 = m∗1 ∧ (m′1,m2) ∈ Acc[x, r] : (m′1,m2)

$← S̃[F ∗[x,H], F [x, r](m∗1)](x)
]

≥ 1

(2q + 1)2
Pr
H

[
SF ∗[x,H](x) ∈ Acc∗[x,H]

]
≥ 1

poly(λ)

(16)

for all x ∈ L ∩ {0, 1}λ where the last inequality follows from the assumption of Lemma 5.4.
For any H and r, we consider an algorithm B[H, r](x) that “imitates” the LHS of Eq. 16.

Specifically, B[H, r](x) works as follows:

B[H, r](x): It works as follows.

1. Pick (j∗, b∗)
$← ([q]× {0, 1}) ∪ {(⊥,⊥)}.

2. Run S where its oracle is simulated by O that is initialized to be F ∗[x,H]. When S
makes its j-th query to O,

42

(a) If j = j∗, measure S’s query register to obtain m′1.

i. If b∗ = 0, reprogram O ← Reprogram(O,m′1, F [x, r](m′1)) and answer S’s j-th
query by using the reprogrammed oracle.

ii. If b∗ = 1, answer S’s j-th query by using the oracle before the reprogramming
and then reprogram O ← Reprogram(O,m′1, F [x, r](m′1)).

(b) Otherwise, answer S’s j-th query by just using the oracle O.

3. Let (m1,m2) be S’s output. If j∗ = ⊥ (in which case m′1 has not been defined), set
m′1 := m1. Output (m′1,m2).

Then we prove the following claims.

Claim 5.5. For any x ∈ L ∩ {0, 1}λ, we have

Pr
H,r

[B[H, r](x) ∈ Acc[x, r]] ≥ 1

poly(λ)
.

Proof of Claim 5.5. By definition, we can see that B[H, r] works similarly to S̃[F ∗[x,H], F [x, r](m∗1)](x)
conditioned on that the measured query m′1 is equal to m∗. Therefore we have

Pr
H,r

[
m′1 = m∗1 ∧ (m′1,m2) ∈ Acc[x, r] : (m′1,m2)

$← B[H, r](x)
]

= Pr
H,r

[
m′1 = m∗1 ∧ (m′1,m2) ∈ Acc[x, r] : (m′1,m2)

$← S̃[F ∗[x,H], F [x, r](m∗1)](x)
]

By substituting this for the LHS of Eq. 16, Claim 5.5 follows.

Claim 5.6. For any x ∈ {0, 1}λ \ L, we have

Pr
H,r

[B[H, r](x) ∈ Acc[x, r]] ≤ negl(λ).

Proof of Claim 5.6. We construct a cheating prover P ∗ against the protocol Π that wins with
probability PrH,r [B[H, r](x) ∈ Acc[x, r]], which immediately implies Claim 5.6 by the soundness
of Π. Intuitively, P ∗(x) just runs B[H, r](x) where H is chosen by itself and r is chosen by the
external verifier. Though P ∗ does not know r, it can simulate B[H, r](x) because it needs r only
when responding to the measured query, and P ∗ can then send such a (classical) query to the
external verifier to get the response.

Formally, P ∗ is described as follows. We will mark the difference between P ∗ and B[H, r] (for

H
$← H4q and r

$← R) with underline.

P ∗(x): The cheating prover P ∗ interacts with the external verifier as follows:

1. Choose a function H
$← H4q where H4q is a family of 4q-wise independent hash function,

and initialize an oracle O to be a (quantumly-accessible) oracle that computes F ∗[x,H].

2. Pick (j∗, b∗)
$← ([q]× {0, 1}) ∪ {(⊥,⊥)}.

3. Run S where its oracle is simulated by O. When S makes its j-th query to O,

(a) If j = j∗, measure S’s query register to obtain m′1. Send m′1 to the external verifier
as the first message, and receives the response mV .

i. If b∗ = 0, reprogram O ← Reprogram(O,m′1,mV) and answer S’s j-th query by
using the reprogrammed oracle.

43

ii. If b∗ = 1, answer S’s j-th query by using the oracle before the reprogramming
and then reprogram O ← Reprogram(O,m′1,mV).

(b) Otherwise, answer S’s j-th query by just using the oracle O.

4. Let (m1,m2) be S’s output. If j∗ = ⊥ (in which case P ∗ has not sent the first message
to the external verifier yet), complete the protocol by sending m1 and m2 as first and
second messages to the external verifier (regardless of the verifier’s response in the sec-
ond round). Otherwise, P ∗ should have already run the protocol until the second round,
so it completes the protocol by sending m2 to the external verifier as the prover’s second
message.

By definitions, we can see that P ∗ perfectly simulates B[H, r] for H
$← H4q and r

$← R where
r is chosen by the external verifier. Moreover, P ∗ wins (i.e., the verifier accepts) if and only if the
output of B[H, r] is in Acc[x, r]. Moreover, by Lemma 2.4 and that we can simulate B[H, r](x) by
at most 2q oracle access to H, the probability that B[H, r](x) ∈ Acc[x, r] does not change if we
choose a completely random function H instead of one from H4q. Therefore, the soundness of the
protocol ensures PrH,r[B[H, r](x) ∈ Acc[x, r]] ≤ negl(λ). This completes the proof of Claim 5.6.

Finally, we conclude the proof of Lemma 5.4 by using Claim 5.5 and 5.6. Since B[H, r](x) can
be seen as an oracle-aided algorithm that makes at most 2q queries to H, we have

Pr
H

$←H4q ,r

[B[H, r](x) ∈ Acc[x, r]] = Pr
H,r

[B[H, r](x) ∈ Acc[x, r]]

by Lemma 2.4. Then we can decide if a given element x is in L by running B[H, r](x) for H
$← H4q

and r
$← R and seeing if the output is in Acc[x, r]. This means L ∈ BQP. This completes the

proof of Lemma 5.4.

References

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs
using semi-classical oracles. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 269–295. Springer, Heidelberg,
August 2019.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–1523,
Oct 1997.

[BCY91] Gilles Brassard, Claude Crépeau, and Moti Yung. Constant-round perfect zero-
knowledge computationally convincing protocols. Theoretical Computer Science,
84(1):23–52, 1991.

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge ar-
guments based on any one-way function. In Walter Fumy, editor, EUROCRYPT’97,
volume 1233 of LNCS, pages 280–305. Springer, Heidelberg, May 1997.

[BL02] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and extraction.
In 34th ACM STOC, pages 484–493. ACM Press, May 2002.

44

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of
the International Congress of Mathematicians, page 1444–1451, 1986.

[BS20] Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in constant rounds. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and
Julia Chuzhoy, editors, 52nd ACM STOC, pages 269–279. ACM Press, June 2020.

[CCY21] Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. A black-box approach to post-
quantum zero-knowledge in constant rounds. CRYPTO 2021 (To appear), 2021.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram technique
2.0: Multi-round fiat-shamir and more. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 602–631. Springer,
Heidelberg, August 2020.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-
Shamir transformation in the quantum random-oracle model. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages
356–383. Springer, Heidelberg, August 2019.

[FGJ18] Nils Fleischhacker, Vipul Goyal, and Abhishek Jain. On the existence of three round
zero-knowledge proofs. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part III, volume 10822 of LNCS, pages 3–33. Springer, Heidelberg,
April / May 2018.

[FS90] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds. In
Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 526–544. Springer,
Heidelberg, August 1990.

[GK96a] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–190, June 1996.

[GK96b] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 25(1):169–192, 1996.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–
729, 1991.

[HRS15] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks in
hash-based signatures. Cryptology ePrint Archive, Report 2015/1256, 2015. https:

//eprint.iacr.org/2015/1256.

[JKMR09] Rahul Jain, Alexandra Kolla, Gatis Midrijanis, and Ben W. Reichardt. On parallel
composition of zero-knowledge proofs with black-box quantum simulators. Quantum
Inf. Comput., 9(5&6):513–532, 2009.

[Kat08] Jonathan Katz. Which languages have 4-round zero-knowledge proofs? In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 73–88. Springer, Heidelberg, March
2008.

45

https://eprint.iacr.org/2015/1256
https://eprint.iacr.org/2015/1256

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 224–251. Springer, Heidelberg,
August 2017.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from
one-way functions. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages
403–418. Springer, Heidelberg, March 2009.

[SV03] Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J.
ACM, 50(2):196–249, 2003.

[Unr12] Dominique Unruh. Quantum proofs of knowledge. In David Pointcheval and Thomas Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 135–152. Springer,
Heidelberg, April 2012.

[Unr15] Dominique Unruh. Revocable quantum timed-release encryption. J. ACM, 62(6):49:1–
49:76, 2015.

[Unr16] Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 497–527. Springer, Heidelberg, May 2016.

[Wat09] John Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput., 39(1):25–
58, 2009.

[YZ21] Takashi Yamakawa and Mark Zhandry. Classical vs quantum random oracles. Eurocrypt
2021 (To appear), 2021.

[Zha12a] Mark Zhandry. How to construct quantum random functions. In 53rd FOCS, pages
679–687. IEEE Computer Society Press, October 2012.

[Zha12b] Mark Zhandry. Secure identity-based encryption in the quantum random oracle model.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 758–775. Springer, Heidelberg, August 2012.

46

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Technical Overview . 3

1.2.1 Impossibility of Constant-Round ZK . 3
1.2.2 Impossibility of Constant-Round Public-Coin or Three-Round ε-ZK 8

1.3 More Related Work . 9

2 Preliminaries 10
2.1 Interactive Proof and Argument. 11
2.2 Useful Lemmas . 13
2.3 Measure-and-Reprogram Lemma . 15

3 Impossibility of BB ZK for Constant-Round Arguments 17
3.1 Strict-Polynomial-Time Simulation for Inefficient Verifier 18
3.2 Expected-Polynomial-Time Simulation for Inefficient Verifiers 25
3.3 Expected-Polynomial-Time Simulation for Efficient Verifier 32

4 Impossibility of BB ε-ZK for Constant-Round Public-Coin Arguments 34

5 Impossibility of BB ε-ZK for Three-Round Arguments 38

	Introduction
	Our Results
	Technical Overview
	Impossibility of Constant-Round ZK
	Impossibility of Constant-Round Public-Coin or Three-Round -ZK

	More Related Work

	Preliminaries
	Interactive Proof and Argument.
	Useful Lemmas
	Measure-and-Reprogram Lemma

	Impossibility of BB ZK for Constant-Round Arguments
	Strict-Polynomial-Time Simulation for Inefficient Verifier
	Expected-Polynomial-Time Simulation for Inefficient Verifiers
	Expected-Polynomial-Time Simulation for Efficient Verifier

	Impossibility of BB -ZK for Constant-Round Public-Coin Arguments
	Impossibility of BB -ZK for Three-Round Arguments

