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Round and Communication Balanced Protocols for
Oblivious Evaluation of Finite State Machines

Rafael Dowsley, Caleb Horst, Anderson C. A. Nascimento

Abstract—We propose protocols for obliviously evaluating
finite-state machines, i.e., the evaluation is shared between the
provider of the finite-state machine and the provider of the input
string in such a manner that neither party learns the other’s
input, and the states being visited are hidden from both. For
alphabet size |Σ|, number of states |Q|, and input length n,
previous solutions have either required a number of rounds linear
in n or communication Ω(n|Σ||Q| log |Q|). Our solutions require
2 rounds with communication O(n(|Σ|+|Q| log |Q|)). We present
two different solutions to this problem, a two-party one and a
setting with an untrusted but non-colluding helper.

Keywords-Finite State Machines, Oblivious Evaluation, Gar-
bling.

I. INTRODUCTION

Finite-state machines (FSM) are a simple, but useful compu-
tational model. The ability to evaluate a finite-state machine
in a privacy-preserving way allows for some interesting use
cases. Finite-state transducers (which are easily extended from
automata) can be used to count occurrences of multiple strings
or string types in an input text. This allows for uses such
as pre-processing text for machine learning algorithms by
extracting linguistic features (e.g. LIWC1), or comparing an
input text against some text of interest. Many of the previous
works on oblivious FSM evaluation have been targeted at the
application of DNA sequence matching.

This work presents a pair of protocols that allow two parties,
one holding a private FSM and the other holding a private
input string, to determine the outputs of that FSM on the input
string while revealing minimal information (namely the sizes)
about the private inputs. Compared to previous solutions, our
protocols achieve a better balance of round and communica-
tion complexities as the input alphabet grows in size. One
existing line of solutions [1] allows to obtain low constant
round complexity at the cost of having Ω(n|Σ||Q| log |Q|)
communication complexity (where Σ is the input alphabet,
n is the input length, and Q is the set of states). Another line
of solutions [2] allowed very low communication, potentially
as low as O(n log2(|Q||Σ|)), at the cost of n rounds and very
heavy computation. Our proposition is a 2-round protocol that
has communication O(n(|Σ|+|Q| log |Q|)). We present a two-
party protocol and also a way to make the protocol even more
efficient if an additional untrusted but non-colluding server
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is available to help in the computation. As the input alphabet
grows, the communication complexity of our protocol is much
better than the previous constant round protocols, therefore
for applications where the alphabet is significant (such as text
input processing) the communication is significantly improved.

A. Related Works

Several protocols have been previously developed to address
the oblivious evaluation of FSM, starting with Tronosco-
Pastoriza et al. [3] that targeted the application of DNA
sequence matching and used basic secret sharing with ho-
momorphic encryption (HE) and oblivious transfer (OT) to
evaluate the FSM one input symbol at a time. They considered
the evaluation being split between two parties, a server and a
client. The client holds x ∈ Σn and the server holds an FSM.
At each point in the evaluation, the parties hold an additive
secret sharing representing qi ∈ Q, the i-th state. To retrieve
shares of the next state, the server first masks all the entries
of the transition matrix with a round-specific random value
r, then rotates the entire matrix by his share of the previous
state. The client uses an additively HE scheme (e.g. Paillier)
to encrypt a unary encoding of his share, i.e., v1, ...v|Q| with
vi being encryptions of the value 0 except for the index of
his state share that is an encryption of the value 1. Using
the homomorphic properties, the server multiplies his matrix
by this vector and attains an encrypted vector representing
the transition function for the current state. The server and
client then execute a 1-out-of-|Σ| OT protocol to retrieve
the xi’th element (the encrypted entry corresponding to the
client’s input), which the client can decrypt to learn his share
of the next state, while the server keeps the value r as his
share. This process is repeated until the entire input x is
processed.2 Blanton and Aliasgard [2] slightly improved on
this protocol to use only OT and improve the communication
complexity, as well as demonstrating how evaluation can
be outsourced to offload the computational costs from the
input and FSM holders. Instead of using the unary vector
of HE encryptions to select the correct vector then doing
OT on that vector, they perform OT on the entire matrix
by representing it as a vector then fetching the proper index
(as in 2D array indexing). This incurs a 1-out-of-|Σ||Q| OT
per round instead of |Q| Paillier and a 1-out-of|Σ| OT. By
using a bandwidth optimized protocol (such as the one in
[4]) in lieu of the trivial HE, this approach can achieve the

2As pointed out by Tronosco-Pastoriza et al., the order can be switched by
working on the transpose of the matrix, encrypting the input as a vector, and
then doing a 1-out-of-|Q| OT, depending on which is more efficient.
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lowest communication complexity of any known protocol, at
the cost of being the most computationally expensive. The
downside of both of these protocols is that they all suffer
from a heavy computational load due to the large amount of
HE or OT called for, commonly requiring expensive public-
key encryption operations, and are restricted to running in no
fewer than n rounds.

Frikken [1] introduced a different approach that generalizes
the idea behind garbled circuits in order to obtain an oblivious
FSM protocol requiring only two rounds of communication.
Additionally, this technique requires only n OTs, and is
otherwise composed entirely of fast symmetric key operations.
However, it has a high communication overhead, as the entire
FSM is sent in garbled form n times. Mohassel et al. [5]
reformatted the FSM as using binary inputs and obtained better
efficiency. The idea of this approach is that the entire transition
matrix is garbled n times, once for each input character. For
each matrix, first a permutation (rotation) is applied to the
set of next states to hide the order. Then, for each state and
input, the next state is encoded in such a manner that it can
be uncovered only using both the key for the current state
(gained as the FSM is evaluated) and the key for the specific
input (retrieved using OT at the start of the evaluation). To
perform the evaluation, the data holder uses 1-out-of-|Σ| OT
to retrieve the keys corresponding to each symbol in his input
and the FSM holder sends the garbled FSM to the data holder.
From the initial state (which can be made public due to the
garbling) and the input keys, the data holder evaluates the FSM
by ungarbling the correct entry for the current state and input
to determine the next state and next state key until the final
state is reached.

A few more approaches have been used for oblivious FSM
evaluation: Laud and Willemsen [6] utilize an arithmetic black
box, an abstraction of distributed computation such as secret
sharing, and a polynomial representation of the transition
function to achieve quite low ‘online’ communication com-
plexity, however the round complexity is still tied to the
length of the input, and the preprocessing still requires a
large amount of communication. Other works further use
additional permutations and matrix multiplication to complete
Deterministic Finite Automaton (DFA) and Nondeterministic
Finite Automaton (NFA) evaluations [7], [8], [9], sometimes
even working over encrypted inputs. In general these protocols
are less efficient.

Oblivious FSM can be very useful in the pre-processing
phase of privacy-preserving machine learning solutions. Re-
cent advances in privacy-preserving machine learning based on
secure multi-party computation focused mostly on the training
and scoring phases of models such as: linear regression [10],
[11], [12], [13], logistic regression [11], [14], [15], neural
networks [11], [16], [17], [18], [19], [20], [21], [22], [23], [24]
and decision trees (ensembles) [25], [14], [26], [27], [28]. Only
few works considered the privacy-preserving execution of
the (extremely important) data pre-processing stage, obtaining
solutions for privacy-preserving feature extraction [29], [30]
and privacy-preserving feature selection [31].

B. Our Techniques

We improve the performance of previous results in one
key way. Instead of completing each state transition in se-
quence using OT, or garbling and sending the entire transition
matrices, we garble the transition matrices and then select
only the relevant columns to be transmitted. This allows
for a constant number of rounds, as well as communication
O(n(|Σ|+ |Q| log |Q|)).

Our protocol is based on garbling schemes. We select n|Q|
uniformly random keys kiq of length κ to represent the keys
for each of the Q states in each of the n garbled transition
matrices, as well as n uniformly random values ri ∈ ZQ
which are used to rotate the transition matrices. For a transition
function δ : (Q,Σ) 7→ Q, which can be represented as
a |Q| × |Σ| matrix ∆, and for all i ∈ {1, . . . , n}, q ∈
{1, . . . , |Q|}, σ ∈ {1, . . . , |Σ|}, the garbled form of each entry
then becomes

Gfsm(q, σ, i) := H(kiq||σ)⊕ (∆q′,σ + ri+1||ki+1
∆q′,σ+ri+1

),

where q′ = q − ri is the true state and H : {0, 1}κ+log |Σ| 7→
{0, 1}κ+log |Q| is a hash function. This garbled form is an
encryption of the next permuted state for the given permuted
state and input, along with the corresponding key so that it can
be decrypted to continue the evaluation. Any IND-CPA secure
encryption scheme could be used, but for efficiency reasons we
choose to use this encryption with a hash function and assume
the random oracle model. Note that this garbling does not
use keys related to the input string (as in previous solutions),
but the careful usage of OT enables the design of a secure
protocol. Given the current state’s key and the ciphertext, it is
clearly possible to decrypt the permuted state to transition to
and the corresponding key. The key point is that the careful
usage of OT allows the design of a transferring mechanism in
which the client only obtains the ciphertexts corresponding to
his input string. As for the output, there are many possibilities
depending on the applications: sometimes it should be revealed
to the client, other times to the server, and yet in other
scenarios it should be kept secret shared between the client
and the server so that none of them individually know the
output and it can be used in further secure computations. In
the description of our protocols we will keep the output secret
shared since this is more general and it can be easily modified
in order to open the output to one of the parties by just having
the other party forwarding its share. In this type of output, the
server picks a random value r (which will be his share of the
output) and then the output is included in the garbled FSM by
replacing the final transitions with 1 + r if the final state that
would be transitioned to is accepted and r otherwise.

Once the matrices are garbled, the client performs a selec-
tion operation to retrieve the columns corresponding to his
inputs. 3 This is done in parallel for all garbled FSM. He then
proceeds to the evaluation of the FSM. First, the server must
provide the state key for the first transition, i.e., the key k1

qInit
corresponding to the initial state of the garbled FSM. Given

3Technically, for the first transition, only the transitions from q0 need to be
garbled, not the entirety of ∆, and the only entry of interest is the transition
from q0 on the first symbol of x.
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k1
qInit

, the client can clearly use it to decrypt the next state and
the corresponding key. Using that information, he can iterate
through the columns until the evaluation is complete.

II. PRELIMINARIES

A. Finite-State Machines

A finite-state machine (FSM) is a simple model of compu-
tation and a basic FSM is defined to be a tuple

M = (Q, q0,Σ, δ, Qaccept),

where Q is a set of states, q0 ∈ Q is the initial state, Σ is
the alphabet in use, δ is a transition function δ : (Q,Σ) 7→ Q
and Qaccept ⊂ Q is the set of accept states. To mathematically
represent δ, a matrix ∆ is often used. ∆ is a |Q| × |Σ| matrix
where each entry has log2 |Q| bits and represents the state
transitioned to for each state/input pair. An input x ∈ Σn is
accepted onM if the repeated application of δ from q0 using
the input x results in a final transition to a state in Qaccept. We
can considerM as having an output of 1 for accepted strings,
and an output of 0 for any other string.

A more versatile version of the FSM is the finite-state
transducer (FST), in which Qaccept is replaced by Γ, an output
alphabet (usually Z/mZ for some m) and λ, an output rule.
The two common FST models are Moore machines and Mealy
machines. In a Moore machine, we have λ : Q 7→ Γρ, and
in a Mealy machine λ : Q × Σ 7→ Γρ, where ρ represents
the number of output variables. We can represent this readily
as a matrix Λ of either dimension 1 × |Q| or |Σ| × |Q|,
respectively, where each entry is ρ log2 |Γ| bits in size. This
can also be represented by appending the outputs to the entries
of ∆, however doing so will result in redundancy in a Moore
machine.

B. Homomorphic Encryption

Homomorphic encryption (HE) allows one to compute
functions on encrypted data that will be reflected in the
decryption. In this work we will consider additively ho-
momorphic encryption schemes that are IND-CPA secure
[32]. In such schemes, for a public/secret-key pair (pk, sk)
and for ciphertexts Encpk(x) and Encpk(y), there exists
an efficiently computable operation denoted by ∗ such that
Decsk(Encpk(x) ∗ Encpk(y)) = x + y. In other words, the
encryption scheme allows the efficient addition of enciphered
values. Furthermore, we will require that given a constant
c and Encpk(x), there is an efficient way of computing a
ciphertext corresponding to cx and to c+x. One example of a
encryption scheme meeting all those requirements is Paillier’s
encryption scheme [33].

C. Additive Secret Sharing

For an integer q and a value x ∈ Zq , an additive secret
sharing of x between two parties is created by picking uni-
formly random x1, x2 ∈ Zq constraint to x1 +x2 = x mod q
and delivering x1 to the first party and x2 to the second party.
Note that any single party Pi does not learn any information
about x from its share xi, but x1 and x2 can be recombined
to obtain x.

D. Security Model

We use the same half-simulation security model as Mohas-
sel et al. [5], which is briefly explained here. Please refer to
[34] for further details about security models.

Let f = (f1, f2) of the form f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗×{0, 1}∗ be a two party computation and π be a two-
party protocol for computing f between the parties p1 with
input x and p2 with input y.

Full-security (simulation-based security) is defined by re-
quiring indistinguishability between a real execution of the
protocol π and an ideal execution in which there is a trusted
third party (TTP) who receives the parties input, evaluates
the function and outputs the results to them. An admissible
adversary is one that corrupts exactly one of the two party.
A also knows an auxiliary input z. Without loss of generality
we assume that A corrupts the first party. If the adversary
is semi-honest, he follows the protocol instructions but can
try to obtain additional information. On the other hand, if
the adversary is malicious he can deviate from the protocol
instructions.

In the real world, the honest party follows the instructions
of protocol π and responds to messages sent by A on behalf
of the other party. Let Viewπ,A(x, y) denote A’s view through
this interaction, and let Outπ,A(x, y) denote the output of the
honest party. The execution of π in the real model on input
pair (x, y) is defined as follows:

Realπ,A(z)(x, y) = (Viewπ,A(x, y),Outπ,A(x, y)).

In the ideal model, in which there is a TTP, the honest party
always sends its input y to TTP, while the malicious party can
send an arbitrary input x′. The TTP first replies to the first
party with f1(x′, y) (in case it receives only one valid input,
the trusted party replies to both parties with a special symbol
⊥). In case the first party is malicious it may, depending on its
input and the trusted party’s answer, decide to stop the trusted
party by sending it ⊥ after receiving its output. In this case
the trusted party sends ⊥ to the honest party. Otherwise (i.e.,
if not stopped), the trusted party sends f2(x′, y) to the honest
party. The honest party outputs whatever is sent by the trusted
party, and A outputs an arbitrary function of its view. Let
Outf,A(x, y) and Outf (x, y) denote the output of A and the
honest party respectively in the ideal model. The execution of
π in the ideal model on input pair (x, y) is defined as follow:

Idealf,A(z)(x, y) = (Outf,A(x, y),Outf (x, y)).

Protocol π securely computes f in the presence of static
adversaries if for every admissible non-uniform probabilistic
polynomial-time adversary A in the real model, there exists
an admissible nonuniform probabilistic expected polynomial-
time adversary S in the ideal model, such that the distributions
of the real and ideal executions are indistinguishable:

{Realπ,A(z)(x, y)} ≈ {Idealf,S(z)(x, y)}.

We will refer to the two parties based on their input to the
protocol. The Client provides an input string to be run through
the FSM provided by the Server.

The functionality for computing the finite-state machine
FFSM waits for the server to input a FSM M =
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(Q, q0,Σ, δ, Qaccept) and the client to input a string x =
x1 . . . xn ∈ Σn. It is assumed that |Q|, Σ and n are public.
FFSM computes the result of evaluating M on input string x
and secret shares the result between the Client and the Server.

In our protocols, we achieve a weaker notion of security
against a malicious Server. This notion intuitively guarantees
that a corrupted party will not learn any information about the
input of the honest party (however, this does not guarantee
that the parties joint outputs in the real world is simulatable
in an ideal world). Without loss of generality we assume that
the first party is the malicious one. We say that protocol π is
private against a malicious party p1 if the advantage of any
non-uniform polynomial-time adversary A corrupting p1 in the
real world is negligible in the following game:

1) A is given 1λ and generates y0, y1 ∈ {0, 1}n for some
positive integer n. A sends y0, y1 to p2.

2) p2 generates a random bit b $← {0, 1} and uses yb as his
input in protocol π.

3) At the end of the protocol π, A outputs a bit b′. A’s
advantage in the game is defined as Pr(b = b′)− 1/2.

In our protocol with three parties, to achieve a higher
efficiency, we allow for a third Helper party that is expected
to not collude with either of the other two parties, but is not
trusted to see any input.

E. Oblivious Transfer Protocol

In this work we use as a building block an oblivious transfer
(OT) protocol in which the sender Alice has inputs b1, . . . , bt
such that |b1| = . . . = |bt| = ` and the receiver Bob chooses
the index u ∈ {1, . . . , t} of the input bu that he wants
to receive. In order to achieve the desired communication
complexity of O(n(|Σ|+ |Q| log |Q|)) for our oblivious FSM
protocol, the OT protocol needs to have a communication
complexity of O(`+t). We will use the following OT protocol
that is secure against a semi-honest receiver Bob:

1) Bob represents its choice u using an one-hot encoding,
i.e., a binary vector (v1, . . . , vt) such that only vu = 1.
Bob then encrypts each vi using the additively homo-
morphic encryption scheme with his own public-key pk
to obtain Encpk(vi). He sends all ciphertexts to Alice.

2) Alice multiply each Encpk(vi) by bi and sum all the
results to obtain the ciphertext d which corresponds to
the plaintext

∑t
i=1 vibi = bu. In order to re-randomize

the ciphertext, Alice encrypts 0 using pk and uniform
randomness and adds it to d to obtain d′ that also
encrypts bu. Alice sends the ciphertext d′ to Bob.

3) Bob uses his secret key to decrypt d′ and obtain the
chosen input bu.

III. PROTOCOL

We consider the setting in which the server has as input
a FSM M = (Q, q0,Σ, δ, Qaccept), the client has as input a
string x = x1 . . . xn ∈ Σn. It is assumed that the client knows
|Q| and Σ, while the server knows n.

Similarly to [1], [5], we will garble n times the state
transition matrix ∆. Each garbling consists of a permutation

and symmetric encryptions. The suggested permutation is
adding a random mask value modulo |Q|. We will use ri
for these rotation values, and forgo including the modular
reduction notation. The server chooses n · |Q| random keys
denoted kiq of length κ, one for each state in each of the
n matrices. Let q′ = q − ri denote the true state. For all
i ∈ {1, . . . , n}, q ∈ {1, . . . , |Q|}, σ ∈ {1, . . . , |Σ|}, the
garbled form of each entry is

Gfsm(q, σ, i) := H(kiq||σ)⊕ (∆q′,σ + ri+1||ki+1
∆q′,σ+ri+1

),

where H : {0, 1}κ+log |Σ| 7→ {0, 1}κ+log |Q| is a hash function.
Later on this section we will address more thoroughly how the
output can be included in the garbled FSM, for now, we simply
let the server hold a random masking value r and replace the
final transition values in the garbled FSM with the value 1+r
if the final state is accepted and r otherwise.

By combining this garbled FSM scheme with mechanisms
that obliviously and efficiently transmit only the necessary
columns, we can make the |Σ| and |Q| log |Q| communication
factors additive instead of multiplicative while having only a
constant number of rounds.

Once the matrices are garbled, the server and the client
execute n instances of the OT protocol specified in Section
II in order to transmit the necessary columns of the garbled
transition matrices. In each instance, the server’s inputs are the
columns of one garbled transition matrix and the client uses his
input string x to select one column from that garbled transition
matrix that he will receive. This selection is similar to what
happens in the original sequential protocol [3], however all
column selections occur at once and all selected columns are
sent at once, as opposed to completing each state selection
before proceeding to the next round. The initial key k1

qInit
is

also sent to the client, who is then able to decrypt the relevant
garbled entries and use these to evaluate the FSM and retrieve
the output. The protocol π proceeds as follows:

1) The server prepares the garbled transition matrices
Gfsm(q, σ, i).

2) The server and the client execute in parallel n instances
of the 1-out-of-|Σ| OT protocol specified in Section II
in which in the i-th instance the server inputs are the
columns of the i-th garbled transition matrix Gfsm(·, ·, i)
and the client selection is xi.

3) The server sends the key k1
qInit

corresponding to the initial
state of the garbled FSM to the client (note that this can
also be done in parallel with the previous step).

4) The client decrypts the first garbled transition vector and
ungarbles the first state transition using the given key.
He then iteratively evaluates the FSM by decrypting
and ungarbling the entry of the next vector using the
ungarbled key.

A. Security Proof

Theorem 3.1: The protocol π is secure against a semi-
honest client and private against a malicious server.

Security against a Semi-Honest Client: The adversary A
controls the client in the real world. In the ideal world the
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simulator S runs internally a copy of the adversary A and
simulates an execution of the protocol π for A.
S gives the client’s input x = x1 . . . xn to FFSM and gets

the client share z ∈ {r, r + 1} of the FFSM’s output (for a
random masking value r). S proceeds in the following way to
create the relevant columns of the garbled FSM in the internal
simulation of the execution of protocol π:

1) S chooses n · |Q| random keys of length κ denoted by
kiq , for i ∈ {1, . . . , n}, q ∈ {1, . . . , |Q|}.

2) For i = 1, . . . , n, S samples an uniformly random value
qi from {1, . . . , |Q|}.

3) For i = 1, . . . , n− 1, S fixes

Gfsm(qi, xi, i) := H(kiqi ||xi)⊕
(
qi+1||ki+1

qi+1

)
,

and it also fixes

Gfsm(qn, xn, n) := H(knqn ||xn)⊕ z,

so that the path that will be traversed by the client results
in the desired share of the output.

4) For i = 1, . . . , n, and all q ∈ {1, . . . , |Q|} \ {qi}, S fix

Gfsm(q, xi, i) := H(kiq||xi)⊕
(

0κ+log |Q|
)
.

The simulator S then encrypts the columns Gfsm(·, xi, i) for
i = 1, . . . , n using the public-key pk of the client, and sends
to the simulated adversary A the ciphertexts and the key k1

q1
corresponding to the initial state as being the message of the
honest server in the simulated execution of Protocol π. The
simulator outputs the final view of the simulated adversary A.

The security against a semi-honest client follows trivially
from the IND-CPA security of the symmetric encryption
scheme that is used in the garbled transition matrices. A classi-
cal hybrid argument can be employed to replace one by one the
encryptions of zero used by the simulator by the encryptions
of the real garbled values used in the real world, thus proving
that the real and ideal worlds are indistinguishable.

Protocol π can be made secure against malicious clients by
adding zero-knowledge proofs to prove that in each instance
of the OT protocol only one entry of the one-hot encoding
sent by the client is equal to 1.

Privacy against a Malicious Server: The only messages
sent by the client in Protocol π are for performing the
OTs, therefore from the IND-CPA security of the additively
homomorphic encryption scheme used in the OTs, it follows
trivially that Protocol π is private against a malicious server.

B. Output and Transducing

To generate output, we can consider two ways to incorporate
the output function into the garbling scheme. The first being
the one stated before, which applies only to the basic finite
state automaton. On the last state transition, we replace the
next state value with the acceptance value 0/1 (masked with
a random r that is known by the server):

Gfsm(q, σ, n) :=

{
H(knq ||σ)⊕ r, if δ(q′, σ) /∈ Qaccept
H(knq ||σ)⊕ (r + 1), otherwise

Note that this can be readily extended to non-binary outputs
of a function λ,

Gfsm(q, σ, n) := H(knq ||σ)⊕ (r + λ(δ(q′, σ)).

Furthermore, we can extend the protocol to transducers by
adding this into the transitions rules, even if the output rule λ
outputs a number of separate outputs, i.e. λ : (Q,Σ) 7→ Γρ.
We can use separate random masks zi for each i ∈ {1, . . . , n}
and add the additional information in the garbled transition
matrices, so that Gfsm(q, σ, i) now becomes

H(kiq||σ)⊕ (∆q′,σ + ri+1||ki+1
∆q′,σ+ri+1

||zi + λ(δ(q′, σ))).

In Moore’s FST, where the outputs depend only on the states
and not on the inputs, we can cut the communication slightly
by encrypting the outputs for each state using the state keys.

IV. OPTIMIZED THREE-PARTY PROTOCOL

In the case that an untrusted, but non-colluding third party
helper is available we can optimize the protocol by eliminating
the public-key operations. We will denote this new protocol
by πHelper. The main idea is that the client secret shares its
input between the server and the helper. The server and the
helper can then use the secret sharings to compute partial
answers to client, who can then XOR the partial answers
to obtain the necessary columns of the garbled transition
matrices. As explained in the next paragraphs, the protocol
guarantees that the helper can also not learn any information
about the finite state machine and that the partial answers do
not leak additional information to the client.

The server shares the garbled matrices

Gfsm(q, σ, i) := H(kiq||σ)⊕ (∆q′,σ + ri+1||ki+1
∆q′,σ+ri+1

),

with the helper. This will not compromise security as the
helper does not know any of the keys kiq . This sharing can
happen during the protocol execution or at any time in an
offline phase involving only the server and helper. The server
also shares a uniformly random key kSH with the helper.

Each symbol xi in the client’s input x is encoded using one-
hot-encodings, i.e., xi is encoded as (xi,1, . . . , xi,Σ) where
xi,j = 1 if xi = j, and otherwise xi,j = 0. The client then
generates additive secret sharings of the bits xi,j by picking
uniformly random bits xSi,j , x

H
i,j such that xSi,j ⊕ xHi,j = xi,j ,

and send them, respectively, to the server and the helper.
For each i ∈ {1, . . . , n}, and for the garbled transition

matrix Gfsm(q, σ, i), the server computes the XOR of the
columns with index j such that xSi,j = 1, obtaining as the
result the column vector

GSfsm(·, xi, i) :=
⊕

j∈Σ : xSi,j=1

Gfsm(·, j, i).

Similarly, the helper obtains the column vector

GHfsm(·, xi, i) :=
⊕

j∈Σ : xHi,j=1

Gfsm(·, j, i).

Note that

Gfsm(·, xi, i) = GSfsm(·, xi, i)⊕GHfsm(·, xi, i)
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is exactly the column of the garbled transition matrix that the
client should get. If xi,j = 0, then either xSi,j = xHi,j = 0 in
which case the j-th column is XORed in neither GSfsm(·, xi, i)
nor GHfsm(·, xi, i), or xSi,j = xHi,j = 1 in which case the j-th
column is XORed in both GSfsm(·, xi, i) and GHfsm(·, xi, i) (and
so cancelled out in the final XOR). On other hand, for the
single value of j such that xi,j = 1, the column will only be
XORed in one of the partial answers. In order to guarantee
that the partial answers do not leak additional information to
the client, before sending the partial answers the server and
the helper mask them with a random value, which cancels out
when both partial answers are XORed. For a hash function
H ′ whose output size matches the size of one column of the
garbled transition matrix, the server sends

GSfsm(·, xi, i)⊕H ′(kSH ||i)

to the client, while the helper sends

GHfsm(·, xi, i)⊕H ′(kSH ||i)

to the client. By XORing both partial answers, the client
can recover the appropriate column of the garbled transition
matrix. To enable the client to evaluate the FSM, the server
supplies the client with the key k1

qInit
corresponding to the

initial state of the garbled FSM.

A. Security Proof

Security against a Semi-Honest Client:
The adversary A controls the client in the real world. In

the ideal world the simulator S runs internally a copy of the
adversary A and simulates an execution of the protocol πHelper
for A.
S gives the client’s input x = x1 . . . xn to FFSM and gets

the client share z ∈ {r, r + 1} of the FFSM’s output (for a
random masking value r). S proceeds in the following way to
create the relevant columns of the garbled FSM in the internal
simulation of the execution of protocol πHelper:

1) S chooses n · |Q| random keys of length κ denoted by
kiq , for i ∈ {1, . . . , n}, q ∈ {1, . . . , |Q|}.

2) For i = 1, . . . , n, S samples an uniformly random value
qi from {1, . . . , |Q|}.

3) For i = 1, . . . , n− 1, S fixes

Gfsm(qi, xi, i) := H(kiqi ||xi)⊕
(
qi+1||ki+1

qi+1

)
,

and it also fixes

Gfsm(qn, xn, n) := H(knqn ||xn)⊕ z,

so that the path that will be traversed by the client results
in the desired share of the output.

4) For i = 1, . . . , n, and all q ∈ {1, . . . , |Q|} \ {qi}, S fix

Gfsm(q, xi, i) := H(kiq||xi)⊕
(

0κ+log |Q|
)
.

5) For i = 1, . . . , n, all q ∈ {1, . . . , |Q|} and all σ ∈
Σ \ {xi}, S fix

Gfsm(q, σ, i) := H(kiq||σ)⊕
(

0κ+log |Q|
)
.

Additionally, S generates the uniformly random key kSH .
Given the additive secret shares xSi,j , x

H
i,j that the simulator

S receives from A in the internal simulation of an execution
of Protocol πHelper, S computes

GSfsm(·, xi, i)⊕H ′(kSH ||i)

and
GHfsm(·, xi, i)⊕H ′(kSH ||i)

following the normal procedures used by the server and the
helper, respectively, in Protocol πHelper and sends those values
to A as being the messages from the server and the helper.
Additionally, S includes the key k1

q1 corresponding to the
initial state in the simulated message from the server to A. The
simulator outputs the final view of the simulated adversary A.

The security against a semi-honest client follows trivially
from the IND-CPA security of the symmetric encryption
scheme that is used in the garbled transition matrices and
in the XORing of the partial answers given by the server
and the helper. A classical hybrid argument can be employed
to replace one by one the encryptions of zero used by the
simulator by the encryptions of the real garbled values used
in the real world, thus proving that the real and ideal worlds
are indistinguishable.

Privacy against a Malicious Server: The server only
receives the secret shares from the client, but they look
uniformly random from the server’s point of view as long as
the helper does not collude with the server.

Privacy against a Malicious Helper: The helper receives
the secret shares from the client, and the garbled transition
matrices and kSH from the server. As long as the server does
not collude with the helper, the secret shares received from
the client look uniformly random from the helper’s point of
view. From the IND-CPA security of the symmetric encryption
scheme that is used in the garbled transition matrices (and the
fact that he does not know any state key as long as he does not
collude with either the server or the client), the helper does
not learn any information about the FSM.

V. CONCLUSION

In this paper, we presented a new protocol that strikes a
better balance between the amount of communication and
the number of rounds that are required. Furthermore, under
the assumption of an untrusted third party we successfully
achieve substantially low computation, communication, and
round complexities.
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