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Abstract. The construction of linear (minimal) codes from functions over finite fields has been
greatly studied in the literature since determining the parameters of linear codes based on functions
is rather easy due to the nice structures of functions. In this paper, we derive 3-weight and 4-weight
linear codes from weakly regular plateaued unbalanced functions in the recent construction method
of linear codes over the odd characteristic finite fields. The Hamming weights and their weight
distributions for proposed codes are determined by using the Walsh transform values and Walsh
distribution of the employed functions, respectively. We next derive projective 3-weight punctured
codes with good parameters from the constructed codes. These punctured codes may be almost
optimal due to the Griesmer bound, and they can be employed to design association schemes. We
lastly show that all constructed codes are minimal, which approves that they can be employed to
design high democratic secret sharing schemes.

Keywords: Linear code ·minimal code · weight distribution · weakly regular plateaued function
· unbalanced function

1 Introduction

There are many construction methods for linear codes, one of them is derived from functions
over finite fields. Constructing linear codes from functions is a popular research topic in the
literature although considerable progress has been done in this direction. A great number of linear
codes have been obtained from popular cryptographic functions such as quadratic functions
[6,7,10,11,25,29], (weakly regular) bent functions [6,7,19,24,26,29], (almost) perfect nonlinear
functions [4,16,27] and (weakly regular) plateaued functions [6,20,21,23]. Two generic (say, first
and second) construction methods of linear codes from functions can be isolated from the others
in the literature. In the past two decades, several linear codes with excellent parameters have
been derived from cryptographic functions based on the first generic construction method (e.g.
[4,7,19,20]) and the second generic construction method (e.g. [7,11,24,25,29]). Recently, weakly
regular plateaued (especially, bent) functions have been employed to design linear (minimal)
codes with a few weights over the odd characteristic finite fields ([19,20,21,23,24,26]). In this
paper, motivated by [15,26], we use some unbalanced weakly regular plateaued functions so that
we can get minimal linear codes with new parameters. It is worth noting that a very nice survey
[17] written by Li and Mesnager is devoted to the construction methods of linear codes from
cryptographic functions over finite fields.

The rest of this paper is organized as follows. In Section 2, we set the main notation and give
some properties of weakly regular plateaued functions. In Section 3, we introduce the parameters
of 3-weight and 4-weight linear codes derived from these functions over finite fields. We also
propose punctured codes for the constructed codes. We hereby obtain projective 3-weight codes
with flexible parameters. We finally highlight that our codes are minimal codes.
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2 Preliminaries

For a set T , its size is shown by #T , and T ? = T \ {0}. The magnitude of a complex number
z ∈ C is denoted by |z|. The finite field with q elements is represented by Fq, where q = pn for
a positive integer n and an odd prime p. The trace of α ∈ Fq over Fp is defined as Trn(α) =

α + αp + αp
2

+ · · · + αp
n−1

. The set of all non-squares and squares in F?p are represented by
NSQ and SQ, respectively. The quadratic character of F?p is η0, and for simplicity we write
p∗ = η0(−1)p, which is frequently used in the sequel.

A cyclotomic field Q(ξp) can be obtained from the rational field Q by joining the complex
primitive p-th root of unity ξp. The field Q(ξp) is the splitting field of the polynomial xp−1, and so
the field Q(ξp)/Q is a Galois extension of degree p−1. Here, a field basis for an extension Q(ξp)/Q
is the subset {1, ξp, ξ2p , . . . , ξ

p−2
p } of the cyclotomic field Q(ξp). The Galois group Gal(Q(ξp)/Q)

is described as the set {σc: c ∈ F?p}, where σc is the automorphism of Q(ξp) defined as σc(ξp) =
ξcp. The cyclotomic field Q(ξp) has a unique quadratic subfield Q(

√
p∗), and its Galois group

Gal(Q(
√
p∗)/Q) = {1, σγ} for some γ ∈ NSQ. For a, c ∈ F?p, we clearly have σc(ξ

a
p) = ξcap and

σc(
√
p∗

n
) = η0

n(c)
√
p∗

n
. The following lemma is frequently used in the subsequent proofs.

Lemma 1. [18]

i.)
∑

c∈F?
p
η0(c) = 0,

ii.)
∑

c∈F?
p
ξcap = −1 for every a ∈ F?p,

iii.)
∑

c∈F?
p
η0(c)ξ

c
p =
√
p∗.

2.1 Linear codes

A linear [n, k, d] code C over Fp is a subspace with k-dimension of vector space Fnp . Here, n
is the length of C, k is its dimension and d is its minimum Hamming distance. For a vector
v = (v1, . . . , vn) ∈ Fnp , its Hamming weight WH(v) is the size of its support described as
supp(v) = {1 ≤ i ≤ n: vi 6= 0}. We remark that d is the smallest Hamming weight of the
nonzero elements (codewords) of C. The dual code of C is defined to be the set

C⊥ = {(u1, . . . , un) ∈ Fnp : u1v1 + · · ·+ unvn = 0 for all (v1, . . . , vn) ∈ C},

which is represented by [n, n − k, d⊥] over Fp, where d⊥ is the minimum Hamming distance of
C⊥. The weight distribution of C is given by (1, A1, . . . , An) and its weight enumerator is the
polynomial 1 +A1y + · · ·+Any

n, where Aω is the number of nonzero codewords with weight ω
in C. As a result, we say that C is an l-weight linear code if the number of nonzero Aω in {Ai}i≥1
is equal to l, where l is an integer with 1 ≤ l ≤ n. The first two Pless power moments are given
as

n∑
i=0

Ai = pk and

n∑
i=0

iAi = n(p− 1)pk−1 −A⊥1 pk−1,

where A⊥1 is the number of codewords with weight 1 in C⊥. For the proposed codes in this paper,
A⊥1 = 0 since their defining sets do not cover the element (0, 0).
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2.2 Weakly regular plateaued functions

Let f : Fq −→ Fp be a p-ary function. The Walsh transform of f is a complex valued function
defined as

Wf (β) =
∑
x∈Fq

ξp
f(x)−Trn(βx), β ∈ Fq.

A function f is called balanced over Fp if f gets all elements of Fp with the same number of
pre-images; or else, f is said to be unbalanced. Note that f is balanced iff Wf (0) = 0.

A function f is said to be a bent function if |Wf (β)|2 = pn for every β ∈ Fq (see [22] for
Boolean bent and [14] for p-ary bent). In addition, f is said to be s-plateaued if |Wf (β)|2 ∈
{0, pn+s} for every β ∈ Fq, with 0 ≤ s ≤ n, (see [28] for Boolean plateaued and [5] for p-ary
plateaued). For an s-plateaued f , its Walsh support is described as the set

Sf = {β ∈ Fq: |Wf (β)|2 = pn+s}.

From the Parseval identity, we have #Sf = pn−s, and the explicit Walsh distribution of a
plateaued function is given as follows.

Lemma 2. Let f be an s-plateaued function. For β ∈ Fq, |Wf (β)|2 takes the values pn+s and 0
for the times pn−s and pn − pn−s, respectively.

Mesnager et al. [20] have described the notion of weakly regular plateaued functions. An s-
plateaued f is called weakly regular if we have

Wf (β) ∈
{

0, up
n+s
2 ξf

?(β)
p

}
,

where u ∈ {±1,±i}, f? is a p-ary function over Fq with f?(β) = 0 for every β ∈ Fq \ Sf ;
otherwise, f is called non-weakly regular. We remark that a weakly regular 0-plateaued is the
weakly regular bent function.

The following lemma is very useful to compute the Hamming weights of codes.

Lemma 3. [20] Let f be a weakly regular s-plateaued function. Then, we have

Wf (β) = εf
√
p∗

n+s
ξf

?(β)
p

for every β ∈ Sf , where εf = ±1 is the sign of Wf and f? is a p-ary function over Sf .

The following two lemmas are needed to determine the weight distributions of proposed codes.

Lemma 4. [21] Let f be a weakly regular s-plateaued function. For x ∈ Fq,∑
β∈Sf

ξf
?(β)+Trn(βx)
p = εfη

n
0 (−1)

√
p∗

n−s
ξf(x)p ,

where εf = ±1 is the sign of Wf and f? is a p-ary function over Sf .
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Lemma 5. [21] Let f be a weakly regular s-plateaued function with 0 ≤ s < n, and it has

Wf (β) = εf
√
p∗

n+s
ξ
f?(β)
p for every β ∈ Sf , where εf = ±1 is the sign of Wf and f? is a p-ary

function over Sf . For j ∈ Fp, define Nf?(j) = #{β ∈ Sf : f?(β) = j}. Then we have

Nf?(j) =

{
pn−s−1 + εfη

n+1
0 (−1)(p− 1)

√
p∗

n−s−2
, if j = 0,

pn−s−1 − εfηn+1
0 (−1)

√
p∗

n−s−2
, if not,

when n− s is even; otherwise,

Nf?(j) =


pn−s−1, if j = 0,

pn−s−1 + εfη
n
0 (−1)

√
p∗

n−s−1
, if j ∈ SQ,

pn−s−1 − εfηn0 (−1)
√
p∗

n−s−1
, if j ∈ NSQ.

Mesnager et al. [21] have very recently introduced the subclass WRP of weakly regular plateaued
functions over the odd characteristic finite fields. For an integer sf with 0 ≤ sf ≤ n, WRP
defines the set of weakly regular sf -plateaued unbalanced functions f : Fq → Fp that satisfy two
homogeneous conditions:

- f(0) = 0, and

- f(ax) = akf f(x) for all x ∈ Fq and a ∈ F?p, where kf is an even positive integer with
gcd(kf − 1, p− 1) = 1.

In this paper, to construct linear codes with flexible parameters, we use a large class WRP of
functions in the recent construction method of [13,15,26]. The class WRP is a non-trivial and
non-empty set of functions since for example, all quadratic unbalanced functions belong to this
class.

We finalize this section by proposing the following results that are used in the subsequent
proofs.

Proposition 1. [21] If f ∈ WRP, then f?(0) = 0 and f?(aβ) = alf f?(β) for all a ∈ F?p and
β ∈ Sf , where lf is an even positive integer with gcd(lf − 1, p− 1) = 1.

Lemma 6. [21] If f ∈ WRP, then for every β ∈ Sf (resp., β ∈ Fq \ Sf ), we have zβ ∈ Sf
(resp., zβ ∈ Fq \ Sf ) for every z ∈ F?p.

3 Linear codes derived from weakly regular plateaued unbalanced functions
over Fp

In this section, weakly regular plateaued unbalanced functions are employed to obtain minimal
linear codes in the second generic construction method.

3.1 The construction method of linear codes from functions

For a long time, cryptographic functions have been extensively used to design linear codes with
few weights in coding theory. Constructing linear codes from functions including quadratic,
almost bent, (almost) perfect nonlinear, (weakly regular) bent and plateaued functions is a
highly interesting research topic in the literature. Remarkably, determining the parameters of
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the codes derived from these functions is rather easy due to the nice structure of these functions
although it is generally a difficult problem in coding theory.

Two construction methods of linear codes from functions are generic in the sense that several
classes of known codes could be obtained from these construction methods. We below define two
generic construction methods of linear codes from functions. For a polynomial F (x) on Fq, the
first generic construction of linear codes is given by

C(F ) = {(Trn(aF (x) + bx))x∈F?
q
: a, b ∈ Fq}

with length (q − 1) and dimension at most 2n. For a subset D = {d1, . . . , dm} ⊆ Fq, the second
generic construction based on D is defined as

CD = {(Trn(ad1), . . . ,Trn(adm)): a ∈ Fq} (1)

with length m and dimension at most n. The set D is called the defining set of CD, and the
quality of CD depends on the choice of D. The construction method of the form (1) has been
initially studied by Ding et al. [8,9], and many linear codes have been proposed in [6,7,8,9,10,11].
Furthermore, new linear codes have been obtained from some cryptographic functions in this
construction method (see e.g. [21,23,25,24,29]). Motivated by the method of the form (1), for a
subset D = {(x1, y1), . . . , (xm, ym)} ⊆ F2

q , Li et al. [15] have defined the following linear code

CD = {c(a,b) = (Trn(ax1 + by1), . . . ,Trn(axm + bym)): a, b ∈ Fq}, (2)

whose length is m and dimension at most 2n. They have then constructed some linear codes
by using the set D = {(x, y) ∈ F2

q \ {(0, 0)}: Trn(xk + yl) = 0}, where k, l ∈ {1, 2, pn/2 + 1}.
Recently, Jian et al. [13] have constructed further linear codes of the form (2) by using the set
D = {(x, y) ∈ F2

q \ {(0, 0)}: Trn(xk + yp
u+1) = 0}, where k ∈ {1, 2}. Very recently, Wu et al. [26]

have constructed new linear codes of the form (2) based on the set

D = {(x, y) ∈ F2
q \ {(0, 0)}: f(x) + g(y) = 0} ⊂ F2

q , (3)

where f and g are two weakly regular bent functions from Fq to Fp. Motivated by the works
[13,15,26], we in this paper construct minimal linear codes of the form (2) based on the set D
of the form (3) for the following two cases:

1) f(x) = Trn(x) and g(y) ∈WRP,

2) both f(x) ∈WRP and g(y) ∈WRP.

Let f and g be two p-ary functions from Fq to Fp, and let D be the set of the form (3). From
the definition of the code CD of the form (2), we define

N (a, b) = #{(x, y) ∈ F2
q \ {(0, 0)}: f(x) + g(y) = 0 and Trn(ax+ by) = 0} (4)

and hence, the Hamming weight of the nonzero codeword c(a,b) is given by WH(c(a,b)) = #D −
N (a, b) for every (a, b) ∈ F2

q \ {(0, 0)}, and we clearly have WH(c(0,0)) = 0.
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3.2 Three-weight linear codes derived from Trn(x) + g(y) ∈ WRP

In this subsection, we construct the linear code CD of the form (2) based on the set

D = {(x, y) ∈ F2
q \ {(0, 0)}: Trn(x) + g(y) = 0}, (5)

when g(y) ∈ WRP is an sg-plateaued function with 0 ≤ sg < n. From the orthogonality of
exponential sums, we can derive its size #D = p2n−1− 1, which is the length of the code CD. To
find the Hamming weights in CD, for (a, b) ∈ (F2

q)
? we define

N (a, b) = #{(x, y) ∈ D: Trn(ax+ by) = 0}. (6)

We can derive the following lemma from the proof of [26, Lemma 5].

Lemma 7. [26] Let N (a, b) be defined as in (6) for (a, b) ∈ (F2
q)
?. Then, we have

N (a, b) =

{
p2n−2 − 1, if a ∈ Fq \ F?p,
p2n−2 − 1 + A(a,b)

p2
, if a ∈ F?p,

for which the value A(a, b) can be expressed as

A(a, b) = pn
∑
z1∈F?

p

σz1

∑
y∈Fq

ξg(y)−Tr
n(a−1by)

p

 (7)

where a−1 is the multiplicative inverse of a ∈ F?p.

The following lemma calculates the value A(a, b) by using the Walsh spectrum of the em-
ployed plateaued function.

Lemma 8. Let g ∈ WRP and Sg be its Walsh support. Let A(a, b) be defined as in (7) for
a ∈ F?p and b ∈ Fq. Then, for every a−1b ∈ Fq \ Sg we have A(a, b) = 0, and for every a−1b ∈ Sg

A(a, b) =

{
εg(p− 1)pn

√
p∗

n+sg , if g?(a−1b) = 0,

−εgpn
√
p∗

n+sg , if not,

when n+ sg is even; otherwise,

A(a, b) =


0, if g?(a−1b) = 0,

εgp
n√p∗ n+sg+1

, if g?(a−1b) ∈ SQ,
−εgpn

√
p∗

n+sg+1
, if g?(a−1b) ∈ NSQ.

Proof. When a−1b ∈ Fq \ Sg, we clearly get A(a, b) = 0. When a−1b ∈ Sg, we have

A(a, b) = pn
∑
z1∈F?

p

σz1
(
Wg

(
a−1b

))
= pn

∑
z1∈F?

p

σz1

(
εg
√
p∗

n+sg
ξg

?(a−1b)
p

)
= εgp

n√p∗ n+sg
∑
z1∈F?

p

η
n+sg
0 (z1)ξ

z1g?(a−1b)
p ,

where Lemma 3 is used in the second equality. The proof is hence complete by Lemma 1. �

The following lemma helps to determine the weights of codewords in CD.
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Lemma 9. Let g ∈ WRP and Sg be its Walsh support. Let N (a, b) be defined as in (6) for
(a, b) ∈ (F2

q)
?. Then, we have N (a, b) = p2n−2 − 1 if a ∈ Fq \ F?p or if a−1b /∈ Sg where a ∈ F?p.

For every a−1b ∈ Sg where a ∈ F?p, we have

N (a, b) =

{
p2n−2 − 1 + εg(p− 1)pn−2

√
p∗

n+sg , if g?(a−1b) = 0,

p2n−2 − 1− εgpn−2
√
p∗

n+sg , if not,

when n+ sg is even; otherwise,

N (a, b) =


p2n−2 − 1, if g?(a−1b) = 0,

p2n−2 − 1 + εgp
n−2√p∗ n+sg+1

, if g?(a−1b) ∈ SQ,
p2n−2 − 1− εgpn−2

√
p∗

n+sg+1
, if g?(a−1b) ∈ NSQ.

Proof. The proof follows from the combination of Lemmas 7 and 8. �

The following theorem proposes the code CD of the form (2) based on the set D of the form
5.

Theorem 1. Let g ∈ WRP with 0 ≤ sg < n and Sg be its Walsh support. Let D be defined as
in (5). Then, the code CD of the form (2) is a 3-weight linear [p2n−1 − 1, 2n] code over Fp. All
parameters are listed in Tables 1 and 2 when n+ sg is even and odd, respectively.

Proof. From the definition of CD, its length is the size of D, and for every (a, b) ∈ (F2
q)
?,

its Hamming weight WH(c(a,b)) = #D − N (a, b), where N (a, b) is defined as in (6). Then the
Hamming weights can be obtained from Lemma 9. If a ∈ Fq \ F?p or if a−1b /∈ Sg where a ∈ F?p,
then we have WH(c(a,b)) = (p− 1)p2n−2, and its weight distribution is p2n− (p− 1)pn−sg − 1 by
Lemma 2. Additionally, for every a−1b ∈ Sg where a ∈ F?p, we have

WH(c(a,b)) =

{
(p− 1)p2n−2 − εg(p− 1)pn−2

√
p∗

n+sg , if g?(a−1b) = 0,

(p− 1)p2n−2 + εgp
n−2√p∗ n+sg , if not,

when n+ sg is even; otherwise,

WH(c(a,b)) =


(p− 1)p2n−2, if g?(a−1b) = 0,

(p− 1)p2n−2 − εgpn−2
√
p∗

n+sg+1
, if g?(a−1b) ∈ SQ,

(p− 1)p2n−2 + εgp
n−2√p∗ n+sg+1

, if g?(a−1b) ∈ NSQ.

In this case, the weight distribution of each weight is derived from Lemma 5. All Hamming
weights with their weight distributions are given in Tables 1 and 2, completing the proof. �

We below give an example of CD constructed in Theorem 1, which is verified by MAGMA in
[2].

Example 1. The function g : F34 → F3 defined as g(x) = Tr4(2x92) is weakly regular 2-plateaued

function from WRP, and Wg(β) ∈ {0, εgη30(−1)33ξ
g?(β)
3 }, where εg = 1 and g? is a ternary

function with g?(0) = 0. Then, CD is a 3-weight minimal ternary [2186, 8, 1215] code with the
weight enumerator 1 + 16y1215 + 6542y1458 + 2y1944.

Remark 1. When g is a weakly regular 0-plateaued (bent) function in Theorem 1, one can easily
obtain the linear code given in [26, Theorem 3].



8 A. Sınak

3.3 Three-weight and four-weight linear codes derived from f(x), g(y) ∈ WRP

In this subsection, we construct the linear code CD of the form (2) based on the set

D = {(x, y) ∈ F2
q \ {(0, 0)}: f(x) + g(y) = 0}, (8)

where f, g ∈WRP are sf -plateaued and sg-plateaued functions from Fq to Fp, respectively, for
0 ≤ sf , sg < n. For (a, b) ∈ (F2

q)
?, we define

N (a, b) = #{(x, y) ∈ D: Trn(ax+ by) = 0}. (9)

We first introduce three lemmas by using the exponential sums and Walsh spectrum of a
weakly regular plateaued function.

The size of the set D can be calculated by using the Walsh transform values of the employed
functions at the zero points.

Lemma 10. Let f, g ∈WRP and let D be defined as in (8). Then

#D =

{
p2n−1 − 1, if 2n+ sf + sg is odd,

p2n−1 − 1 + εf εg
p−1
p

√
p∗

2n+sf+sg , if not.

Proof. We can write Wf (0) = εf
√
p∗

n+sf and Wg(0) = εg
√
p∗

n+sg from Lemma 3, where
εf , εg ∈ {±1}, since we know f?(0) = g?(0) = 0 from Proposition 1. Hence, from the orthogo-
nality of exponential sums, we have

#D + 1 = 1
p

∑
x,y∈Fq

∑
z∈Fp

ξz(f(x)+g(y))p

= 1
p

p2n +
∑
z∈F?

p

σz

∑
x∈Fq

ξf(x)p

∑
y∈Fq

ξg(y)p


= 1

p

p2n +
∑
z∈F?

p

σz(εf εg
√
p∗

2n+sf+sg
)


= 1

p

p2n + εf εg
√
p∗

2n+sf+sg
∑
z∈F?

p

η
2n+sf+sg
0 (z)

 .

The proof is completed from Lemma 1. �

Lemma 11. Let f, g ∈ WRP and Sf ,Sg be their Walsh supports. Let lf , lg be defined as in
Proposition 1. For (a, b) ∈ (F2

q)
?, define

B(a, b) =
∑

z1,z2∈F?
p

∑
x,y∈Fq

ξz1(f(x)+g(y))−z2Tr
n(ax+by)

p .

Then, for (a, b) /∈ Sf × Sg we have B(a, b) = 0, and for (a, b) ∈ Sf × Sg, we have the following
cases.
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– When 2n+ sf + sg is odd and lf = lg, we have

B(a, b) =


0, if A1,

εf εg(p− 1)
√
p∗

2n+sf+sg+1
, if A2,

−εf εg(p− 1)
√
p∗

2n+sf+sg+1
, if A3,

where

A1 denotes f?(a) = b = 0 or a = g?(b) = 0 or f?(a) + g?(b) = 0 for ab 6= 0,
A2 denotes f?(a) ∈ SQ for b = 0 or g?(b) ∈ SQ for a = 0 or f?(a) + g?(b) ∈ SQ for ab 6= 0,
A3 denotes f?(a) ∈ NSQ for b = 0 or g?(b) ∈ NSQ for a = 0 or f?(a) + g?(b) ∈ NSQ for ab 6= 0.

– When 2n+ sf + sg is even, we have for lf = lg

B(a, b) =

{
εf εg(p− 1)2

√
p∗

2n+sf+sg , if C1,

−εf εg(p− 1)
√
p∗

2n+sf+sg , otherwise,

and for lf 6= lg

B(a, b) =


εf εg(p− 1)2

√
p∗

2n+sf+sg , if C2,

εf εg(p+ 1)
√
p∗

2n+sf+sg , if − f?(a)
g?(b) ∈ SQ,

−εf εg(p− 1)
√
p∗

2n+sf+sg , otherwise,

where

C1 denotes a = g?(b) = 0 or f?(a) = b = 0 or f?(a) + g?(b) = 0 for ab 6= 0,
C2 denotes a = g?(b) = 0 or f?(a) = b = 0 or f?(a) = g?(b) = 0 for ab 6= 0.

Proof. From the definition of B(a, b), we have

B(a, b) =
∑

z1,z2∈F?
p

∑
x∈Fq

ξz1(f(x)−Tr
n(z2ax))

p

∑
y∈Fq

ξz1(g(y)−Tr
n(z2by))

p

=
∑
z1∈F?

p

σz1(
∑
z2∈F?

p

Wf (z2a)Wg(z2b)),

where we use the fact that z2
z1

passes all over F?p for a fixed z1 while z2 passes through F?p in the
first equality.

– If (a, b) /∈ Sf × Sg, equivalently, (z2a, z2b) /∈ Sf × Sg for every z2 ∈ F?p (see Lemma 6), then
we clearly say that B(a, b) = 0.

– If (a, b) ∈ Sf × Sg, equivalently, (z2a, z2b) ∈ Sf × Sg for every z2 ∈ F?p, then there are two
cases: ab = 0 and ab 6= 0.
• In the case of ab = 0, suppose a = 0 and b 6= 0, without loss of generality. We then have

B(a, b) =
∑
z1∈F?

p

σz1

∑
z2∈F?

p

εf
√
p∗

n+sf
εg
√
p∗

n+sg
ξg

?(z2b)
p


=
∑
z1∈F?

p

σz1

∑
z2∈F?

p

εf εg
√
p∗

2n+sf+sg
ξ
z
lg
2 g

?(b)
p


= εf εg

√
p∗

2n+sf+sg
∑
z1∈F?

p

η
2n+sf+sg
0 (z1)

∑
z2∈F?

p

ξ
z1z

lg
2 g

?(b)
p ,
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where we use Lemmas 3, 6 and Proposition 1 in the first and second equality, respectively.
With the help of Lemma 1, we get

B(a, b) =


0, if g?(b) = 0,

εf εg(p− 1)
√
p∗

2n+sf+sg+1
, if g?(b) ∈ SQ,

−εf εg(p− 1)
√
p∗

2n+sf+sg+1
, if g?(b) ∈ NSQ,

when 2n+ sf + sg is odd; otherwise,

B(a, b) =

{
εf εg(p− 1)2

√
p∗

2n+sf+sg , if g?(b) = 0,

−εf εg(p− 1)
√
p∗

2n+sf+sg , if not.

Similarly, for b = 0 and a 6= 0, the analogous computations yield the same results above
with respect to the parameter a.
• In the case of ab 6= 0, we get

B(a, b) =
∑
z1∈F?

p

σz1

∑
z2∈F?

p

εf
√
p∗

n+sf
ξf

?(z2a)
p εg

√
p∗

n+sg
ξg

?(z2b)
p


=
∑
z1∈F?

p

σz1

∑
z2∈F?

p

εf εg
√
p∗

2n+sf+sg
ξ
z
lf
2 f?(a)+z

lg
2 g

?(b)
p


= εf εg

√
p∗

2n+sf+sg
∑
z1∈F?

p

η
2n+sf+sg
0 (z1)

∑
z2∈F?

p

ξ
z1(z

lf
2 f?(a)+z

lg
2 g

?(b))
p ,

where we use Lemmas 3, 6 and Proposition 1 in the first and second equality, respectively.
We hence compute the value B(a, b) by using Lemma 1 and some properties of the
cyclotomic field. When 2n+ sf + sg is odd, we get for lf = lg

B(a, b) =


0, if f?(a) + g?(b) = 0,

εf εg(p− 1)
√
p∗

2n+sf+sg+1
, if f?(a) + g?(b) ∈ SQ,

−εf εg(p− 1)
√
p∗

2n+sf+sg+1
, if f?(a) + g?(b) ∈ NSQ.

When 2n+ sf + sg is even, we get for lf = lg

B(a, b) =

{
εf εg(p− 1)2

√
p∗

2n+sf+sg , if f?(a) + g?(b) = 0,

−εf εg(p− 1)
√
p∗

2n+sf+sg , otherwise,

and for lf 6= lg

B(a, b) =


εf εg(p− 1)2

√
p∗

2n+sf+sg , if f?(a) = g?(b) = 0,

εf εg(p+ 1)
√
p∗

2n+sf+sg , if − f?(a)
g?(b) ∈ SQ,

−εf εg(p− 1)
√
p∗

2n+sf+sg , otherwise.

�

The following lemma helps to compute the weights and their weight distributions.
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Lemma 12. Let f, g ∈ WRP and Sf ,Sg be their Walsh supports. Let lf , lg be defined as in
Proposition 1. Let N (a, b) be defined as in (9) for (a, b) ∈ (F2

q)
?.

– Suppose that 2n+ sf + sg is odd and lf = lg. For every (a, b) /∈ Sf × Sg, we have N (a, b) =
p2n−2 − 1, and for every (a, b) ∈ Sf × Sg, we have

N (a, b) =


p2n−2 − 1, if A1,

p2n−2 − 1 + εf εg
1
p2

(p− 1)
√
p∗

2n+sf+sg+1
, if A2,

p2n−2 − 1− εf εg 1
p2

(p− 1)
√
p∗

2n+sf+sg+1
, if A3,

where

A1 denotes f?(a) = b = 0 or a = g?(b) = 0 or f?(a) + g?(b) = 0 for ab 6= 0,
A2 denotes f?(a) ∈ SQ for b = 0 or g?(b) ∈ SQ for a = 0 or f?(a) + g?(b) ∈ SQ for ab 6= 0,
A3 denotes f?(a) ∈ NSQ for b = 0 or g?(b) ∈ NSQ for a = 0 or f?(a) + g?(b) ∈ NSQ for ab 6= 0.

– Suppose that 2n+ sf + sg is even. For every (a, b) /∈ Sf ×Sg, we have N (a, b) = p2n−2− 1 +

εf εg
1
p2

(p− 1)
√
p∗

2n+sf+sg . For every (a, b) ∈ Sf × Sg, we have for lf = lg

N (a, b) =

{
p2n−2 − 1 + εf εg

1
p(p− 1)

√
p∗

2n+sf+sg , if C1,

p2n−2 − 1, otherwise,

and for lf 6= lg

N (a, b) =


p2n−2 − 1 + εf εg

1
p(p− 1)

√
p∗

2n+sf+sg , if C2,

p2n−2 − 1 + εf εg
2
p

√
p∗

2n+sf+sg , if − f?(a)
g?(b) ∈ SQ,

p2n−2 − 1, otherwise,

where

C1 denotes a = g?(b) = 0 or f?(a) = b = 0 or f?(a) + g?(b) = 0 for ab 6= 0,
C2 denotes a = g?(b) = 0 or f?(a) = b = 0 or f?(a) = g?(b) = 0 for ab 6= 0.

Proof. By the definition of N (a, b) and using the orthogonality of exponential sums, we get

N (a, b) + 1 = p−2
∑

x,y∈Fq

∑
z1∈Fp

ξz1(f(x)+g(y))
p

∑
z2∈Fp

ξ−z2Trn(ax+by)
p = p2n−2 +

1

p2
(A+B(a, b)),

where

A =
∑
z1∈F?

p

∑
x,y∈Fq

ξz1(f(x)+g(y))p and B(a, b) =
∑

z1,z2∈F?
p

∑
x,y∈Fq

ξz1(f(x)+g(y))−z2Tr
n(ax+by)

p .

We clearly have A = p(#D + 1) − p2n in the light of Lemma 10. The proof is then complete
from Lemmas 10 and 11. �

The following lemma is needed to determine the weight distribution.
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Lemma 13. Let f, g ∈ WRP with 0 ≤ sf , sg < n and Sf ,Sg be their Walsh supports. For
a, b ∈ Fq and t ∈ Fp, define Sf,g(t) = #{(a, b) ∈ Sf × Sg: f?(a) + g?(b) = t}. Then, we have

Sf,g(t) =

{
p2n−sf−sg−1, if t = 0,

p2n−sf−sg−1 + εf εgη0(−t)1p
√
p∗

2n−sf−sg+1
, if t 6= 0

when 2n− sf − sg is odd; otherwise,

Sf,g(t) =

{
p2n−sf−sg−1 + εf εg

p−1
p

√
p∗

2n−sf−sg , if t = 0,

p2n−sf−sg−1 − εf εg 1p
√
p∗

2n−sf−sg , if t 6= 0.

Proof. From the orthogonality of exponential sums, we have

Sf,g(t) = 1
p

∑
a∈Sf

∑
b∈Sg

∑
z∈Fp

ξz(f
?(a)+g?(b))−zt

p

= 1
p(p2n−sf−sg +

∑
z∈F?

p

ξ−ztp σz(
∑
a∈Sf

ξf
?(a)
p

∑
b∈Sg

ξg
?(b)
p ))

= p2n−sf−sg−1 + εf εg
1
p

√
p∗

2n−sf−sg
∑
z∈F?

p

η
2n−sf−sg
0 (z)ξ−ztp ,

where Lemma 4 is used in the last equality. The proof is hence complete by Lemma 1. �

We now construct the code CD of the form (2) when 2n+ sf + sg is odd.

Theorem 2. Let f, g ∈WRP with their Walsh supports Sf ,Sg and with lf = lg, where lf , lg are
defined as in Proposition 1. Let D be defined as in (8). Suppose that n+ sf is odd and n+ sg is
even with 0 ≤ sf , sg < n. Then, the code CD of the from (2) is a 3-weight linear [p2n−1 − 1, 2n]
code with parameters listed in Table 3.

Proof. From the definition of CD, its length equals the size of D, and the weight of each
codeword is WH(c(a,b)) = #D − N (a, b) for every (a, b) ∈ (F2

q)
?, where N (a, b) is defined as in

(9). By Lemma 10, we have #D = p2n−1 − 1, and the Hamming weights can be derived from
Lemma 12. To put it more explicitly, for every (a, b) /∈ Sf×Sg, we have WH(c(a,b)) = (p−1)p2n−2,
and the number of such codewords equals p2n − p2n−sf−sg by Lemma 2. Additionally, for every
(a, b) ∈ Sf × Sg, we get

WH(c(a,b)) =


(p− 1)p2n−2, A1 times,

(p− 1)p2n−2 − εf εg 1
p2

(p− 1)
√
p∗

2n+sf+sg+1
, A2 times,

(p− 1)p2n−2 + εf εg
1
p2

(p− 1)
√
p∗

2n+sf+sg+1
, A3 times,

whose weight distribution is determined by Lemmas 12 and 13. Firstly, to compute A1, we define
the following three sets and it can be expressed as the sum of their sizes:

A1 = #{(a, b) ∈ S?f × S?g : f?(a) + g?(b) = 0}
+#{a ∈ S?f : f?(a) = 0}+ #{b ∈ S?g : g?(b) = 0}
= Sf,g(0)− 1 = p2n−sf−sg−1 − 1
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where Sf,g(0) is defined in Lemma 13. Similarly, A2 and A3 can be expressed as

A2 = #{(a, b) ∈ S?f × S?g : f?(a) + g?(b) ∈ SQ}
+#{a ∈ S?f : f?(a) ∈ SQ}+ #{b ∈ S?g : g?(b) ∈ SQ}
= (p−12 )Sf,g(i),

A3 = #{(a, b) ∈ S?f × S?g : f?(a) + g?(b) ∈ NSQ}
+#{a ∈ S?f : f?(a) ∈ NSQ}+ #{b ∈ S?g : g?(b) ∈ NSQ}
= (p−12 )Sf,g(j)

where Sf,g(i) and Sf,g(j) are given in Lemma 13 for i ∈ SQ and j ∈ NSQ. This completes the
proof. �

The following examples for the code CD given in Theorem 2 are verified by MAGMA in [2].

Example 2. Let f, g : F32 → F3 be defined as f(x) = Tr2(ζx4 + ζ8x2) and g(x) = Tr2(x10), for
a primitive element ζ of F32 . Then f, g ∈WRP with sf = 1, sg = 0 and εf = εg = 1, and hence
CD is a 3-weight ternary [26, 4, 12] code with 1 + 12y12 + 62y18 + 6y24.

Example 3. Let f, g : F33 → F3 be defined as f(x) = Tr3(x10) and g(x) = Tr3(ζx4 + ζ8x2), for a
primitive element ζ of F33 . Then f, g ∈WRP with sf = 0, sg = 1 and εf = εg = 1, and hence CD
is a 3-weight minimal ternary [242, 6, 144] code with 1 + 90y144 + 566y162 + 72y180. It is worth
noting that this code is better than the code [242, 6, 135]3, which is obtained in [26, Example 6]
only from quadratic weakly regular bent f(x) = Tr3(x10).

We below construct the code CD of the form (2) when 2n+ sf + sg is even.

Theorem 3. Let f, g ∈ WRP with their Walsh supports Sf ,Sg and let lf , lg be defined as in
Proposition 1. Let D be defined as in (8). Suppose that 2n+ sf + sg is even with 0 ≤ sf , sg < n.

Then, the code CD of the form (2) with parameters [p2n−1 − 1 + εf εg
1
p(p− 1)

√
p∗

2n+sf+sg , 2n]

– is a 3-weight linear p-ary code over Fp when lf = lg,
– is a 4-weight linear p-ary code over Fp when lf 6= lg and p > 3.

The Hamming weights with their weight distributions are given in Tables 4 and 5 when lf = lg
and lf 6= lg, respectively.

Proof. The length of the code CD follows from Lemma 10, and for every (a, b) ∈ (F2
q)
?, the

weight WH(c(a,b)) = #D−N (a, b) can be obtained from Lemmas 10 and 12. To be more precise,
when (a, b) /∈ Sf × Sg, we have

WH(c(a,b)) = (p− 1)(p2n−2 + εf εg
1

p2
(p− 1)

√
p∗

2n+sf+sg
),

whose weight distribution is p2n − p2n−sf−sg from Lemma 2. In addition, when (a, b) ∈ Sf ×Sg,
there are two distinct cases.

– When lf = lg,

WH(c(a,b)) =

{
(p− 1)p2n−2, Aβ1 times,

(p− 1)(p2n−2 + εf εg
1
p

√
p∗

2n+sf+sg), Aβ2 times.
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To determine Aβ1 , we define the following three sets by using the condition C1 given in
Lemma 12, and so

Aβ1 = #{(a, b) ∈ S?f × S?g : f?(a) + g?(b) = 0}
+#{a ∈ S?f : f?(a) = 0}+ #{b ∈ S?g : g?(b) = 0}.

We hence conclude that Aβ1 = Sf,g(0) − 1. Similarly, we can see that Aβ2 = (p − 1)Sf,g(t),
where t ∈ F?p. Hence, the weight distributions follow from Lemma 13. The Hamming weights
with their weight distributions are given in Table 4.

– When lf 6= lg,

WH(c(a,b)) =


(p− 1)p2n−2, Aω1 times,

(p− 1)p2n−2 + εf εg
(p−3)
p

√
p∗

2n+sf+sg , Aω2 times,

(p− 1)(p2n−2 + εf εg
1
p

√
p∗

2n+sf+sg), Aω3 times.

In this case, to determine the weight distribution, we define the following four sets by using
the condition C2 given in Lemma 12. Aω1 and Aω2 can be written as

Aω1 = #{(a, b) ∈ S?f × S?g : f?(a) = g?(b) = 0}+ #{a ∈ S?f : f?(a) = 0}
+#{b ∈ S?g : g?(b) = 0} = #{(a, b) ∈ Sf × Sg: f?(a) = g?(b) = 0} − 1

= Nf?(0) ∗ Ng?(0)− 1,

Aω2 = #{(a, b) ∈ S?f × S?g : −f?(a)
g?(b) ∈ SQ} = (p−1)2

2 Nf?(i) ∗ Ng?(j),

where i, j ∈ SQ. Here, the numbers Nf?(i) and Ng?(j) depend on the parity of sf and sg,
and they are given in Lemma 5. Additionally, we have Aω3 = p2n−sf−sg − 1−Aω1 −Aω2 due
to the fact that the dimension is 2n. Hence, the weight distributions follow from Lemma 5,
and the Hamming weights are given in Table 5.

The proof of this theorem is complete. �

We end this subsection by giving an example for the code CD constructed in Theorem 3,
verified by MAGMA in [2].

Example 4. Let f, g : F35 → F3 be defined as f(x) = Tr5(ζx10 + ζ20x4) and g(x) = Tr5(ζx10 +
2x4 + x2), for a primitive element ζ of F35 . Then f, g ∈ WRP with sf = sg = 1, lf = lg = 2,
εf = 1 and εg = −1. Hence, CD is a 3-weight minimal ternary [19196, 10, 12636] code with
1 + 4428y12636 + 52488y12798 + 2132y13122.

Remark 2. If f and g are two weakly regular 0-plateaued (bent) functions in Theorem 3, then
we get 2-weight and 3-weight linear codes when lf = lg and lf 6= lg, respectively. They were
presented in [26, Theorem 4].

3.4 Three-weight punctured codes

In this subsection, we derive shorter linear codes from the constructed codes by using a special
subset of the defining set D. Such a code is said to be a punctured code of the original code. It is
known that the minimum distance and length of a punctured code are rather smaller than the
original code while its dimension is the same as the original code.
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We deal with the code CD of the form (2) for the defining set D of the form (8). In Theorems
2 and 3, the length and Hamming weights of CD have a common factor (p− 1), which suggests
that CD can be punctured into a shorter linear code over Fp. Let f, g ∈WRP with kf = kg. For
every x, y ∈ Fq, f(cx) + g(cy) = 0 iff f(x) + g(y) = 0 for every c ∈ F?p because f(cx) + g(cy) =

ckf (f(x) + g(y)). We can then choose a subset D of the set D such that
⋃
c∈F?

p
cD is a partition

of D:

D = F?pD = {c(x, y): c ∈ F?p and (x, y) ∈ D}.

Thus, CD can be punctured into a shorter one CD based on the defining set D. Since #D =
(p−1)#D, the length and Hamming weights of the punctured code CD can be derived from that
of CD by dividing by (p− 1).

We introduce the parameters of the punctured codes in the following corollaries.

Corollary 1. Let f, g ∈ WRP with lf = lg and kf = kg. Let D be defined as in (8). Let
CD be the 3-weight code proposed in Theorem 2. Then, its punctured code CD is a 3-weight
[(p2n−1 − 1)/(p− 1), 2n] linear code with parameters documented in Table 6.

As examples, we give the following punctured codes, which are almost optimal.

Example 5. The punctured code CD of the code given in Example 2 is a 3-weight ternary [13, 4, 6]
code with 1 + 12y6 + 62y9 + 6y12. This punctured code is almost optimal ternary code because
the best ternary code with length 13 and dimension 4 has d = 7 in [12].

Example 6. The punctured code CD of the code given in Example 3 is a 3-weight ternary
[121, 6, 72] minimal code with 1 + 90y72 + 566y81 + 72y90. Note that d = 78 for the best ternary
code with length 121 and dimension 6 in [12].

Corollary 2. Let f, g ∈ WRP with kf = kg and lf = lg. Let D be defined as in (8). Let
CD be the 3-weight code proposed in Theorem 3. Then, its punctured code CD is a 3-weight

[(p2n−1 − 1)/(p− 1) + εf εg
1
p

√
p∗

2n+sf+sg , 2n] code whose parameters are listed in Table 7.

3.5 Minimality of the constructed codes

In this subsection, we show that the constructed codes are minimal and investigate the minimum
Hamming distances of their dual codes.

A linear code C is minimal if every nonzero codeword v in C covers only the codewords jv for
all j ∈ Fp. The following lemma introduces the well-known sufficient condition on the minimal
codes.

Lemma 14. (Ashikhmin-Barg,1998) [1] Let C be a linear code over Fp, and let wmin and wmax

represent, respectively, the minimum and maximum Hamming weights of C. Then, C is minimal
if

p− 1

p
<
wmin

wmax
. (10)

By (10), our linear codes are minimal codes for almost all integers sf and sg with 0 ≤ sf , sg <
n. The following proposition finds the bounds on the integers sf and sg that make the associated
codes are minimal.
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Proposition 2. Let f, g ∈ WRP, and let sf and sg be two integers with 0 ≤ sf , sg < n. We
have the following bounds on the parameters.

i.) The code CD in Theorem 1 is minimal for 0 ≤ sg ≤ n − 3 if n + sg is even; otherwise, it is
minimal for 0 ≤ sg ≤ n− 2 and 4 ≤ n.

ii.) The code CD in Theorem 2 is minimal when 0 ≤ sf + sg ≤ 2n− 4 and 3 ≤ n.

iii.) The code CD in Theorem 3 is minimal for 0 ≤ sf+sg ≤ 2n−4 if εf εgη
(2n+sf+sg+1)/2
0 (−1) = 1;

otherwise, it is minimal for 0 ≤ sf + sg ≤ 2n− 6 and 3 ≤ n.

Remark 3. Our punctured codes are minimal for almost all cases.

Since our codes are minimal, we can describe the access structures of the secret sharing schemes
based on their dual codes as described in [4, Theorem 17]. We first consider the minimum
distances d⊥ of the dual codes of our minimal codes.

For the codes CD constructed in Theorems 1, 2 and 3, their dual codes C⊥D have d⊥ = 2
due to the fact that two entries of each codeword in CD are linearly dependent iff the minimum
distance d⊥ of C⊥D is equal to 2. This suggests that these minimal codes can be used to design
high democratic secret sharing schemes with good access structures as introduced in [4, Theorem
17] (and developed in [9, Proposition 2]).

On the other hand, for the punctured codes CD given in Corollaries 1 and 2, the minimum
distances of their dual codes are at least 3 since no two of the vectors are dependent. As a
consequence, the punctured codes are projective minimal codes. The projective 3-weight codes
given in Corollaries 1 and 2 can be employed to design association schemes introduced in [3].
Additionally, they can be employed to design democratic secret sharing schemes as introduced
in [4, Theorem 17].

4 Conclusion

In this paper, motivated by the work of [13,15,26], to construct minimal codes, we consider weakly
regular plateaued unbalanced functions in the recent construction method of linear codes. As
far as we search, our minimal codes have new parameters since we for the first time use a new
class WRP of functions in the recent construction method proposed in [13,15,26]. In conclusion,
the main results of the paper are given as follows.

– We construct new infinite classes of 3-weight and 4-weight linear codes from the class WRP of
plateaued functions over Fp. To find the Hamming weights, we benefit from the exponential
sums and Walsh spectrum of the employed functions f, g ∈WRP. To determine the weight
distributions, we use the exponential sums and Walsh distributions of f, g ∈WRP as well as
the numbers of the pre-images of the associated functions f? and g? on the Walsh supports
Sf and Sg.

– We derive 3-weight punctured codes from the constructed codes, by deleting some special
coordinates in the defining set. Note that they contain almost optimal codes due to the
Griesmer bound.

– We show that our obtained codes are minimal, which says that they can be used to design
high democratic secret sharing schemes with new parameters under the framework introduced
in [9, Proposition 2].

– We lastly consider the minimum distances of the dual codes of our minimal codes. We
conclude that the proposed 3-weight punctured codes are projective, which approves that
they can be used to design association schemes in [3].
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5 Appendix

The appendix lists the Hamming weights with their weight distributions for the proposed mini-
mal codes in this paper. For simplicity, we denote m = 2n+ sf + sg and r = 2n− sf − sg, where
0 ≤ sf , sg < n, in the following tables.

Table 1. The code CD in Theorem 1 when n+ sg is even

Hamming weight ω Multiplicity Aω

0 1
(p− 1)p2n−2 p2n − (p− 1)pn−sg − 1

(p− 1)(p2n−2 − εgpn−2√p∗ n+sg ) (p− 1)(pn−sg−1 + εgη
n+1
0 (−1)(p− 1)

√
p∗

n−sg−2
)

(p− 1)p2n−2 + εgp
n−2√p∗ n+sg (p− 1)2(pn−sg−1 − εgηn+1

0 (−1)
√
p∗

n−sg−2
)

Table 2. The code CD in Theorem 1 when n+ sg is odd

Hamming weight ω Multiplicity Aω

0 1
(p− 1)p2n−2 p2n − (p− 1)2pn−sg−1 − 1

(p− 1)p2n−2 − εgpn−2√p∗ n+sg+1 (p−1)2

2
(pn−sg−1 + εgη

n
0 (−1)

√
p∗

n−sg−1
)

(p− 1)p2n−2 + εgp
n−2√p∗ n+sg+1 (p−1)2

2
(pn−sg−1 − εgηn0 (−1)

√
p∗

n−sg−1
)

Table 3. The code CD in Theorem 2 when n+ sf is odd and n+ sg is even

Hamming weight ω Multiplicity Aω

0 1
(p− 1)p2n−2 p2n − pr + pr−1 − 1

(p− 1)(p2n−2 − εf εg
√
p∗

m−3
) (p−1)

2
(pr−1 + εf εgη0(−1) 1

p

√
p∗

r+1
)

(p− 1)(p2n−2 + εf εg
√
p∗

m−3
) (p−1)

2
(pr−1 − εf εgη0(−1) 1

p

√
p∗

r+1
)

Table 4. The code CD in Theorem 3 when m is even and lf = lg

Hamming weight ω Multiplicity Aω

0 1

(p− 1)(p2n−2 + εf εg(p− 1)
√
p∗

m−4
) p2n − pr

(p− 1)p2n−2 pr−1 + εf εg
1
p
(p− 1)

√
p∗

r − 1

(p− 1)(p2n−2 + εf εg
1
p

√
p∗

m
) (p− 1)(pr−1 − εf εg 1

p

√
p∗

r
)
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Table 5. The code CD in Theorem 3 when p > 3, m is even and lf 6= lg

Hamming weight ω Multiplicity Aω

0 1

(p− 1)(p2n−2 + εf εg(p− 1)
√
p∗

m−4
) p2n − pr

(p− 1)p2n−2 Aω1

(p− 1)p2n−2 + εf εg
(p−3)

p

√
p∗

m
Aω2

(p− 1)(p2n−2 + εf εg
1
p

√
p∗

m
) pr − 1−Aω1 −Aω2

Table 6. The code CD in Corollary 1 when m is odd and kf = kg

Hamming weight ω Multiplicity Aω

0 1
p2n−2 p2n − pr + pr−1 − 1

p2n−2 − εf εg
√
p∗

m−3 (p−1)
2

(pr−1 + εf εgη0(−1) 1
p

√
p∗

r+1
)

p2n−2 + εf εg
√
p∗

m−3 (p−1)
2

(pr−1 − εf εgη0(−1) 1
p

√
p∗

r+1
)

Table 7. The code CD in Corollary 2 when m is even, kf = kg and lf = lg

Hamming weight ω Multiplicity Aω

0 1

p2n−2 + εf εg(p− 1)
√
p∗

m−4
p2n − pr

p2n−2 pr−1 + εf εg
1
p
(p− 1)

√
p∗

r − 1

p2n−2 + εf εg
1
p

√
p∗

m
(p− 1)(pr−1 − εf εg 1

p

√
p∗

r
)


