
A Note on Algebraic Decomposition Method for
Masked Implementation

Shoichi Hirose

University of Fukui, Fukui, Japan
hrs shch@u-fukui.ac.jp

Abstract. Side-channel attacks are a serious problem in the implemen-
tation of cryptosystems. Masking is an effective countermeasure to this
problem and it has been actively studied for implementations of block
ciphers. An obstacle to efficient masked implementation is the complex-
ity of an evaluation of multiplication, which is quadratic in the order of
masking. A natural approach to this problem is to explore ways to re-
duce the number of multiplications required to compute an S-box. Alge-
braic decomposition is another interesting approach proposed by Carlet
et al. in 2015, which gives a way to represent an S-box as composition of
polynomials with low algebraic degrees. In this paper, for the algebraic
decomposition, we propose to use a special type of low-algebraic-degree
polynomials, which we call generalized multiplication (GM) polynomials.
The masking scheme for multiplication can be applied to GM polyno-
mials, which is more efficient than the masking scheme for general low-
algebraic-degree polynomials. Our performance evaluation based on some
experimental results shows the effectiveness of masked implementation
using the proposed decomposition compared to masked implementation
using the decomposition of Carlet et al.

Keywords: Algebraic decomposition · Boolean function · masking · S-
box

1 Introduction

Background. Side channel attacks introduced by Kocher [15] are a serious prob-
lem in implementing cryptosystems. Chari et al. [6] proposed a sound approach
based on secret sharing [3,20] against a class of side-channel attacks analyzing
power consumption [16]. It is usually called masking [17] in this context. The d-
th order masking splits each internal variable into (d+ 1) shares so that at most
d shares do not leak any information of the internal variable. The complexity of
a successful side channel attack against a masked implementation was shown to
be exponential in the masking order d [6].

Masked implementation has often been discussed for block ciphers. A block
cipher can be manipulated as a function over the finite field F2 or its exten-
sions. For a scalar multiplication or an addition, the number of operations to
compute shares of the result from the shares of an input is O(d). It is also O(d)



for a square, while it is O(d2) for a multiplication. Due to the difference, a
multiplication is especially called a nonlinear multiplication. Thus, for efficient
masked implementation of block ciphers, it is appropriate to explore ways to
reduce the number of nonlinear multiplications to compute an S-box. Algebraic
decomposition [5] is another approach, which gives a way to represent an S-box
as composition of polynomials with low algebraic degrees.

Our Contribution. We propose a method for algebraic decomposition inspired
by the method of Carlet et al. [5] and the method of Goudarzi et al. [11] for
reducing the number of nonlinear multiplications. The proposed method can be
applied to any function from {0, 1}n to {0, 1}n for even n. It regards a given
function h(x) as a pair of bivariate polynomials (h0(x0, x1), h1(x0, x1)), where
hb : F2n/2 × F2n/2 → F2n/2 for b ∈ {0, 1}. Then, it decomposes h using pairs

of linear combinations of x2
i0

0 x2
i1

1 , where 0 ≤ ib ≤ n/2 − 1 for b ∈ {0, 1}.
We call such a pair of linear combinations a generalized multiplication (GM)
polynomial. The difference between our proposed method and the method of
Carlet et al. [5] is that the former uses GM polynomials instead of polynomials
of low algebraic degrees such as 2 or 3. To a GM polynomial, the masking
scheme for a multiplication can be applied, which is more efficient than the
masking scheme for a polynomial of low algebraic degree [5,18,21]. Due to this
property, for masked implementation, in terms of the number of evaluations of
nonlinear functions (GM polynomials, polynomials of low algebraic degree, or
multiplications), the proposed decomposition method is more efficient than the
method of Goudarzi et al. [11] for n = 4, 6, 8 and than the method of Carlet et
al. [5] for n = 4, 6 and for n = 8 if the masking order is higher than 1. We further
provide detailed analysis on performance of masked implementation using the
proposed decomposition and the decomposition by Carlet et al. [5] and show the
effectiveness of our proposal.

Related Work. Ishai, Sahai and Wagner presented a higher-order masking method
for multiplication over F2 in their seminal paper [13]. Rivain and Prouff [19]
generalized the method of Ishai et al. [13] to any finite field multiplication and
applied it to the AES S-box. Carlet et al. [4] extended the method of Rivain
and Prouff [19] and proposed a generic method for masking any S-box based on
cyclotomic classes and the Knuth-Eve polynomial evaluation algorithm [9,14].
Coron, Roy and Vivek [8] improved the method of Carlet et al. [4] and presented
a heuristic but generic method for masking any S-box. Goudarzi et al. [11] gener-
alized the method of Coron, Roy and Vivek [8] and proposed a method treating
any S-box from {0, 1}wiν to {0, 1}woν as a tuple of polynomials over F2ν .

Inspired by the work of Coron, Roy and Vivek [8], Carlet et al. [5] introduced
a new approach to decompose any S-box using polynomials of low algebraic de-
grees. They also presented a masking method for such polynomials. The masking
method adapted to polynomials with algebraic degree 2 is essentially equivalent
to the masking method of Coron et al. [7] for x · l(x), where l(x) is a linear
function. Its efficiency was improved by Zhang, Qiu and Zhou [21] and Qiu et
al. [18].
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Organization. Section 2 introduces some notations and definitions necessary for
the discussions. Section 3 presents the proposed algebraic decomposition method
using GM polynomials and its experimental results including an example of
the decomposition of a 4-bit S-box. Section 5 shows results on performance
evaluation of masked implementation using the proposed decomposition and the
decomposition of Carlet et al. Section 6 gives a brief concluding remark.

A preliminary version [12] has been extended to this manuscript as follows:
(i) The description of the proposed method in Sect. 3 has been made simpler;
(ii) Section 3.3 has been added; (iii) Section 5 has been largely extended and
provided detailed analysis of the proposed method.

2 Preliminaries

2.1 Notations

For a positive integer ν, let F2ν be the finite field with 2ν elements. For a set
S and a variable s, let s ←← S represent that an element chosen uniformly at
random from S is assigned to s.

2.2 Functions over Finite Fields

A function h : Fwi
2ν → Fwo

2ν is a tuple of functions (h0, h1, . . . , hwo−1), where
hj : Fwi

2ν → F2ν for 0 ≤ j ≤ wo − 1. hj can be represented as

hj(x0, x1, . . . , xwi−1) =

2ν−1∑
k0=0

· · ·
2ν−1∑

kwi−1=0

αj,k0,...,kwi−1
xk00 · · ·x

kwi−1
wi−1 ,

where αj,k0,...,kwi−1
∈ F2ν . We only refer to the cases that (wi, wo) ∈ {1, 2} ×

{1, 2} in the remaining parts.

Definition 1 (Algebraic degree). The algebraic degree of a function h :
F2ν → F2ν such that

h(x) =

2ν−1∑
k=0

αkx
k

is the maximum of the Hamming weight of the binary representation of k such
that αk 6= 0 for 0 ≤ k ≤ 2ν − 1.

Definition 2 (Linearized polynomial). A function ` : F2ν → F2ν is called a
linearized polynomial if it can be represented as

`(x) =

ν−1∑
k=0

αkx
2k ,

where αk ∈ F2ν .
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For any linearized polynomial `(x), its algebraic degree is 1, and it holds that

`
( d∑
i=0

xi

)
=

d∑
i=0

`(xi) . (1)

We introduce generalized multiplication polynomials, which are used in our
proposed decomposition method:

Definition 3 (Generalized multiplication polynomial). We call a function
m : F2ν × F2ν → F2ν × F2ν a generalized multiplication (GM) polynomial if it
can be represented as m(x) = (m0(x),m1(x)) such that, for b ∈ {0, 1}, mb :
F2ν × F2ν → F2ν and

mb(x) =

ν−1∑
k=0

ν−1∑
l=0

αb,k,lx
2k

0 x
2l

1 ,

where x = (x0, x1) ∈ F2ν × F2ν and αb,k,l ∈ F2ν .

For any GM polynomial m(x0, x1),

m
( d∑
i=0

x0,i,

d∑
j=0

x1,j

)
=

d∑
i=0

d∑
j=0

m(x0,i, x1,j) (2)

holds since( d∑
i=0

x0,i

)2k( d∑
j=0

x1,j

)2l
=
( d∑
i=0

x2
k

0,i

)( d∑
j=0

x2
l

1,j

)
=

d∑
i=0

d∑
j=0

x2
k

0,ix
2l

1,j . (3)

For Eq. (3), multiplication is the case that k = l = 0.

3 Algebraic Decomposition

In the remaining parts of the paper, ν is a positive integer and n = 2ν.

3.1 Algebraic decomposition using GM polynomials

A function h : {0, 1}n → {0, 1}n is regarded as h(x) = (h0(x0, x1), h1(x0, x1)),
where x = (x0, x1) and hb : F2ν × F2ν → F2ν for b ∈ {0, 1}. The decomposition
of h proceeds as follows:

1. For 1 ≤ i ≤ r, fi : F2ν × F2ν → F2ν × F2ν is a GM polynomial chosen
uniformly at random.

2. For 1 ≤ i ≤ r, gi : F2ν × F2ν → F2ν × F2ν is defined as follows:

g1(x) = f1(x) ,

g2(x) = f2(g1(x) + `0(x0) + `1(x1)) ,

gi(x) = fi(gi−1(x)) for 3 ≤ i ≤ r,
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where `b : F2ν → F2ν × F2ν is a tuple of linearized polynomials for b ∈
{0, 1}. Namely, `b(xb) = (`b,0(xb), `b,1(xb)) and `b,0 and `b,1 are linearized
polynomials over F2ν . `b,0 and `b,1 are chosen uniformly at random.

3. For 1 ≤ j ≤ t, qj : F2ν × F2ν → F2ν × F2ν is defined as follows:

qj(x) =

r∑
i=1

(
`j,i,0(gi,0(x)) + `j,i,1(gi,1(x))

)
+ `j,0,0(x0) + `j,0,1(x1) , (4)

where `j,0,0, `j,0,1, . . . , `j,i,0, `j,i,1 are tuples of linearized polynomials over
F2ν chosen uniformly at random.

4. Search GM polynomials µ1, . . . , µt over F2ν × F2ν , tuples λ0,0, λ0,1, . . . , λr,0,
λr,1 of linearized polynomials over F2ν and a tuple δ of constants in F2ν

satisfying

h(x) =

t∑
j=1

µj(qj(x)) +

r∑
i=1

(
λi,0(gi,0(x)) + λi,1(gi,1(x))

)
+ λ0,0(x0) + λ0,1(x1) + δ . (5)

If the search fails, then return to the first step.

The amount of computation for an evaluation of h based on the decomposi-
tion is summarized in Table 1.

Table 1. The amount of computation based on the proposed decomposition

# GM polynomials r + t

# tuples of linearized polynomials 2((r + 1)(t + 1) + 1)

# additions 2((r + 1)(t + 1) + 1)

The algebraic decomposition method of Carlet et al. [5] is given in Ap-
pendix A. Essentially, our proposed method uses GM polynomials instead of
polynomials with low algebraic degrees for the decomposition method of Car-
let et al. Another minor difference is that our proposed method uses linearized
polynomials to compose g2 in the second step. Our preliminary experiments
suggest that our proposed method does not work well without these linearized
polynomials.

As well as the decomposition method of Carlet et al. [5], the search in the
4th step above can be carried out by solving a system of linear equations over
F2ν :

A · vb = cb (6)

for b ∈ {0, 1}. cb is a 2n-dimensional column vector over F2ν such that

cb = (hb(e1), hb(e2), . . . , hb(e2n))T ,
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where ei = (ei,0, ei,1) ∈ F2ν × F2ν and ei1 6= ei2 if i1 6= i2. vb is the column
vector of unknowns representing the coefficients of GM polynomials µ1,b, . . . , µt,b,
linearized polynomials λ0,0,b, λ0,1,b, . . . , λr,0,b, λr,1,b and δb. The matrix A, which
does not depend on the value of b, is defined as follows:

A = (Aq1 Aq2 · · · Aqt Ag1,0 · · · Agr,0 Ag1,1 · · · Agr,1 Ae∗,0 Ae∗,1 1) .

For 1 ≤ j ≤ t, Aqj is a 2n × ν2 matrix such that

Aqj =


Q

(0,0)
j,1 · · · Q(0,ν−1)

j,1 Q
(1,0)
j,1 · · · Q(1,ν−1)

j,1 · · · Q(ν−1,0)
j,1 · · · Q(ν−1,ν−1)

j,1

Q
(0,0)
j,2 · · · Q(0,ν−1)

j,2 Q
(1,0)
j,2 · · · Q(1,ν−1)

j,2 · · · Q(ν−1,0)
j,2 · · · Q(ν−1,ν−1)

j,2

· · · · · · · · · · · ·
Q

(0,0)
j,2n · · · Q

(0,ν−1)
j,2n Q

(1,0)
j,2n · · · Q

(1,ν−1)
j,2n · · · Q(ν−1,0)

j,2n · · · Q(ν−1,ν−1)
j,2n


and Q

(k,l)
j,i = qj,0(ei)

2kqj,1(ei)
2l for 1 ≤ i ≤ 2n, 0 ≤ k ≤ ν − 1, and 0 ≤ l ≤ ν − 1.

For 1 ≤ i ≤ r and b′ ∈ {0, 1}, Agi,b′ is a 2n × ν matrix represented as follows:
gi,b′(e1)2

0

gi,b′(e1)2
1 · · · gi,b′(e1)2

ν−1

gi,b′(e2)2
0

gi,b′(e2)2
1 · · · gi,b′(e2)2

ν−1

· · ·
gi,b′(e2n)2

0

gi,b′(e2n)2
1 · · · gi,b′(e2n)2

ν−1

 .

For b′ ∈ {0, 1},

Ae∗,b′ =


e2

0

1,b′ e2
1

1,b′ · · · e2
ν−1

1,b′

e2
0

2,b′ e2
1

2,b′ · · · e2
ν−1

2,b′

· · ·
e2

0

2n,b′ e
21

2n,b′ · · · e2
ν−1

2n,b′


is a 2n × ν matrix. 1 is the column vector whose 2n coordinates equal 1.

The matrix A has 2n rows and t · ν2 + 2(r + 1)ν + 1 columns. In order for
the system of linear equations Eq.(6) to have a solution for any cb, the rank of
A must be 2n and it is required that

t · n2/4 + (r + 1)n+ 1 ≥ 2n . (7)

It is also required that the algebraic degree of the polynomial in the right side
of Eq.(5) is n/2 with respect to each of x0 and x1. Thus,

2r ≥ n/2 . (8)

Once we obtain a matrix A with its rank 2n from some g1, . . . , gr and
q1, . . . , qt, we can use it to decompose any function h : {0, 1}n → {0, 1}n.

3.2 Experimental Result

Table 2 lists the values of parameters of successful decomposition minimizing
the number of GM polynomials, that is, r + t. For n = 4, 6, all optimal values
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satisfying inequalities (7) and (8) and minimizing r+ t are achieved. For n = 8,
optimal values are also achieved. On the other hand, though (r, t) = (2, 15) are
also optimal, they cannot be achieved by one hundred trials. For n = 10, all
optimal values (r, t) = (3, 40), (4, 39) as well as (r, t) = (3, 41), (4, 40) cannot
be achieved by one hundred trials. Notice that, for n = 4 and (r, t) = (1, 2),
two tuples of linearized polynomials used to compose g2 is not necessary for the
proposed algebraic decomposition method.

Table 2. Achievable parameters minimizing r + t. #GMP represents the number of
GM polynomials. #TLP represents the number of tuples of linearized polynomials.
#Add represents the number of additions.

n (r, t) #GMP #TLP #Add

4 (1, 2) 3 12 12
(2, 1) 3 14 14

6 (2, 5) 7 38 38

8 (3, 14) 17 122 122

10 (5, 39) 44 482 482

Remark 1. Precisely, in the third step, we only searched the tuples of linearized
polynomials `j,i,0 = (`j,i,0,0, `j,i,0,1) and `j,i,1 = (`j,i,1,0, `j,i,1,1) such that `j,i,0,1 =
0 and `j,i,1,0 = 0 for i ≥ 1. We found no degradation in the parameters minimiz-
ing r + t achieved by this restricted search.

3.3 Example: Decomposition of SKINNY 4-Bit S-box

As an example, a decomposition of the 4-bit S-box of the tweakable block ci-
pher SKINNY [2], which is given in Table 3, is presented. The decomposition is
performed with (r, t) = (1, 2).

Table 3. The 4-bit S-box of SKINNY

input 0 1 2 3 4 5 6 7 8 9 a b c d e f

output c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

For f1(x0, x1) = (f1,0(x0, x1), f1,1(x0, x1)),

f1,0(x0, x1) = 0x0x1 + 2x0x
2
1 + 0x20x1 + 3x20x

2
1 ,

f1,1(x0, x1) = 0x0x1 + 1x0x
2
1 + 2x20x1 + 3x20x

2
1

are chosen. For Eq.(4),

q1(x) = `1,1,0(g1,0(x)) + `1,1,1(g1,1(x)) + `1,0,0(x0) + `1,0,1(x1) ,

q2(x) = `2,1,0(g1,0(x)) + `2,1,1(g1,1(x)) + `2,0,0(x0) + `2,0,1(x1) ,
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and

`1,1,0(y0) = (0y0 + 1y20 , 0) ,

`1,1,1(y1) = (0, 1y1 + 1y21) ,

`1,0,0(x0) = (3x0 + 0x20, 0x0 + 2x20) ,

`1,0,1(x1) = (0x1 + 1x21, 0x1 + 1x21) ,

`2,1,0(y0) = (2y0 + 2y20 , 0) ,

`2,1,1(y1) = (0, 2y1 + 1y21) ,

`2,0,0(x0) = (1x0 + 3x20, 1x0 + 3x20) ,

`2,0,1(x1) = (3x1 + 3x21, 2x1 + 0x21)

are chosen. Notice that the second linearized polynomials of `1,1,0 and `2,1,0 are
0 as well as the first linearized polynomials of `1,1,1 and `2,1,1 as described in
Remark 1. For Eq.(5),

h(x) = µ1(q1(x)) + µ2(q2(x))

+ λ1,0(g1,0(x)) + λ1,1(g1,1(x)) + λ0,0(x0) + λ0,1(x1) + δ ,

where

µ1,0(z0, z1) = 0z0z1 + 0z0z
2
1 + 1z20z1 + 2z20z

2
1 ,

µ1,1(z0, z1) = 2z0z1 + 2z0z
2
1 + 3z20z1 + 0z20z

2
1 ,

µ2,0(z0, z1) = 0z0z1 + 0z0z
2
1 + 1z20z1 + 2z20z

2
1 ,

µ2,1(z0, z1) = 2z0z1 + 1z0z
2
1 + 3z20z1 + 0z20z

2
1 ,

λ1,0(y0) = (3y0 + 3y20 , 0y0 + 0y20) ,

λ1,1(y1) = (0y1 + 0y21 , 1y1 + 0y21) ,

λ0,0(x0) = (0x0 + 0x20, 3x0 + 2x20) ,

λ0,1(x1) = (2x1 + 3x21, 1x1 + 0x21) ,

and δ = (3, 0) are obtained by solving the system of linear equations (6).

4 Comparison

Table 4 shows the smallest number of nonlinear functions achieved by our de-
composition method and the decomposition methods of Carlet et al. [5] and of
Goudarzi et al. [11]. For algebraic decomposition of Carlet et al., methods using
polynomials of algebraic degrees 2 and/or 3 were presented, and the most efficient
method was shown to be the method using only quadratic polynomials (polyno-
mials of algebraic degree 2), which is mentioned in Table 4. The decomposition
method of Goudarzi et al. [11] for reducing the number of multiplications is able
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to process any function over {0, 1}n by regarding it as a function over Fn/ξ
2ξ

for
any ξ such that ξ |n. Table 4 mentions only the case that ξ = n/2.

In terms of the number of multiplications or GM polynomials, our decompo-
sition is slightly more efficient than the decomposition of Goudarzi et al. [11].
On the other hand, if implementation adopts table lookup for evaluation of mul-
tiplications or GM polynomials, then our decomposition needs a lookup table
for each GM polynomial, while the decomposition of Goudarzi et al. needs just
a single lookup table for multiplication. Thus, the total table size of our de-
composition is 2(r + t) times as large as that of the decomposition of Goudarzi
et al. For example, for n = 8, the total table size of GM polynomials for our
decomposition is 4352(= 17× 256) Bytes.

In terms of the number of quadratic polynomials or GM polynomials, our
decomposition does not seem so good as decomposition of Carlet et al. [5] ap-
parently from Table 4. For masked implementations, on the other hand, the
masking scheme for GM polynomials is more efficient than the masking scheme
for quadratic polynomials. Thus, in the next section, we will compare the per-
formance of masked implementation using our proposed method with that of
masked implementation using the method of Carlet et al. [5].

Table 4. Comparison of best achievable parameters

n = 4 n = 6 n = 8

# quadratic polynomials [5] 3 5 11

# multiplications [11] 4 9 18

# GM polynomials (Ours) 3 7 17

5 Application to Masking

In this section, the decomposition method of Carlet et al. [5] is referred to as
the CPRR15 decomposition.

Algorithm 1 presents an algorithm of the d-th order masking for a GM poly-
nomial. Due to the property of GM polynomials shown by Eq. (2), it is similar
to the d-th order masking for multiplication. For reference, the algorithm of the
d-th order masking for a quadratic polynomial [18,21] is shown in Algorithm 2.
It is a modified version of the algorithm presented by Carlet et al. [5]. It reduces
the required number of random sequences. Both of Algorithms 1 and 2 were
shown to satisfy strong d-non-interference (d-SNI) [1,21].

Table 5 shows complexity of the d-th order masking for an evaluation of a
quadratic polynomial or a GM polynomial. From Tables 4 and 5, in terms of
the number of evaluations of nonlinear functions (quadratic polynomials or GM
polynomials), the proposed decomposition yields more efficient masking for n-
bit S-boxes than the CPRR15 decomposition using quadratic polynomials for
n = 4, 6, and for n = 8 if d ≥ 2.
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Algorithm 1: The d-th order masking for a GM polynomial m : F2ν ×
F2ν → F2ν × F2ν , where ν = n/2

input : Shares (a0, . . . , ad) of a and (b0, . . . , bd) of b
output: Shares (c0, c1, . . . , cd) of c = m(a, b)
for i = 0 to d do

for j = i + 1 to d do
ri,j ←← F2ν × F2ν ;
rj,i ← (ri,j + m(ai, bj)) + m(aj , bi);

for i = 0 to d do
ci ← m(ai, bi);
for j = 0 to d do

if j 6= i then
ci ← ci + ri,j ;

return (c0, c1, . . . , cd)

Let us see more details on the total cost required to evaluate masked im-
plementation of a function over {0, 1}n. Table 6 shows the values of parameters
(r′, t′) of successful decomposition minimizing the number of quadratic poly-
nomials (r′ + t′) of the CPRR15 decomposition. The amount of computation
for an evaluation of a function based on the CPRR15 decomposition is summa-
rized in Table 7. The parameters (r′, t′) defined in Appendix A correspond to
the parameters (r, t) of our proposed decomposition. Goudarzi and Rivain [10]
claimed that λ0(x), λ1(g1(x)), . . . , λr′(gr′(x)) can be avoided in Eq. (9) for every
n ∈ {4, . . . , 10}. Namely, it can be replaced with

h(x) =

t′∑
j=1

µj(qj(x)) .

The amount of computation in Table 7 is evaluated based on this fact.
To evaluate the total cost for the evaluation of masked implementation of

a function, we assume that the evaluation of a quadratic polynomial, a GM
polynomial or a (tuple of) linearized polynomial(s) is done by a table-lookup.
Then, the total numbers of table-lookups and additions of the d-th order masked
implementation are as follows: For the CPRR15 decomposition,

Table-lookups (r′ + t′)(d+ 1)(2d+ 1) + (r′ + 1)t′(d+ 1),
Additions (r′ + t′)(4d(d+ 1) + 1) + (r′t′ + t′ − 1)(d+ 1),

and for our decomposition,

Table-lookups

(r + t)(d+ 1)2 +

{
2(r + 1)(t+ 1)(d+ 1) if r = 1,

2((r + 1)(t+ 1) + 1)(d+ 1) otherwise,
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Algorithm 2: The d-th order masking for a quadratic polynomial f :
F2n → F2n

input : Shares (a0, a1, . . . , ad) of a
output: Shares (b0, b1, . . . , bd) of b = f(a)
for i = 0 to d do

for j = i + 1 to d do
ri,j ←← F2n ;
ti,j ← f(ri,j);
tj,i ← f(ai + ri,j) + f((ai + ri,j) + aj) + f(aj + ri,j);

for i = 0 to d do
bi ← f(ai);
for j = 0 to d do

if j 6= i then
bi ← bi + ti,j ;

if d is odd then
b1 ← b1 + f(0);

return (b0, b1, . . . , bd)

Table 5. Complexity of the d-th order masking. “# eval,” “# rand” and “# add,”
represent the required number of evaluations of a nonlinear function (a quadratic poly-
nomial or a GM polynomial), random sequences and additions, respectively.

# eval # rand # add

Quadratic poly. eval. (Algorithm 2) (d + 1)(2d + 1) d(d + 1)/2 4d(d + 1) + 1

GP poly. eval. (Algorithm 1) (d + 1)2 d(d + 1)/2 2d(d + 1)

Additions (r + t)2d(d+ 1) + 2((r + 1)(t+ 1) + 1)(d+ 1).

They are also shown in Fig. 1, Fig. 2, and Fig. 3 for a function over {0, 1}n
for n = 4, 6, 8, respectively. In terms of the number of operations, the proposed
decomposition is more efficient than the CPRR15 decomposition if d ≥ 3, 11, 21
for n = 4, 6, 8, respectively.

In terms of the total table size, the proposed decomposition is more efficient
than the CPRR15 decomposition. The total table size of the CPRR15 decom-
position is

(r′ + t′)n2n + (r′ + 1)t′n2n bits,

and that of our decomposition is

(r + t)n2n +

{
2(r + 1)(t+ 1)n2n/2 bits, if r = 1,

2((r + 1)(t+ 1) + 1)n2n/2 bits, otherwise,

where the table-size reduction implied by Remark 1 is not taken into considera-
tion. The total table sizes are shown in Table 8 for n = 4, 6, 8.
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Table 6. Achievable parameters minimizing r′ + t′ of the CPRR15 decomposition for
functions over {0, 1}n

n (r′, t′)

4 (1, 2), (2, 1)

6 (2, 3)

8 (2, 9), (3, 8)

Table 7. The amount of computation based on the CPRR15 decomposition

# quadratic polynomials r′ + t′

# linearized polynomials (r′ + 1)t′

# additions r′t′ + t′ − 1

CPRR15 (Table-lookup)

CPRR15 (Addition)

Ours (Table-lookup)

Ours (Addition)
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Fig. 1. The number of operations for n = 4. CPRR15 adopts (r′, t′) = (2, 1), which
yields smaller values than (r′, t′) = (1, 2). Ours adopts (r, t) = (1, 2).
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Fig. 2. The number of operations for n = 6
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CPRR15 (Table-lookup)

CPRR15 (Addition)

Ours (Table-lookup)

Ours (Addition)
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Fig. 3. The number of operations for n = 8. CPRR15 adopts (r′, t′) = (2, 9), which
yields smaller values than (r′, t′) = (3, 8).

Table 8. Total table size (Bytes). CPRR15 adopts (r′, t′) = (2, 1) for n = 4 and
(r′, t′) = (2, 9) for n = 8. They yield smaller values than (r′, t′) = (1, 2) for n = 4 and
(r′, t′) = (3, 8) for n = 8, respectively. Ours adopts (r, t) = (1, 2) for n = 4.

n = 4 n = 6 n = 8

CPRR15 48 672 9728

Ours 48 564 6304

For the amount of random sequences, from Tables 2, 5 and 6, the CPRR15
decomposition is more efficient than the proposed decomposition for n = 4, 6, 8.

6 Conclusion

We have presented an algebraic decomposition method for masked implementa-
tion of any S-box. Essentially, our proposal is to use GM polynomials instead of
polynomials with low algebraic degrees for decomposition. Future work is per-
formance evaluation of masked implementation of S-boxes in software using the
proposed decomposition method.
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A Algebraic decomposition by Carlet et al.

The decomposition of h : {0, 1}n → {0, 1}n proceeds as follows. h is regarded as
a function over F2n .
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1. For 1 ≤ i ≤ r′, fi : F2n → F2n is a low-algebraic-degree polynomial chosen
uniformly at random.

2. For 1 ≤ i ≤ r′, gi : F2n → F2n is defined as follows:

g1(x) = f1(x) ,

gi(x) = fi(gi−1(x)) for 2 ≤ i ≤ r′ .

3. For 1 ≤ j ≤ t′, qj : F2n → F2n is defined as follows:

qj(x) =

r′∑
i=1

`j,i(gi(x)) + `j,0(x) ,

where `j,0, `j,1, . . . , `j,r′ are linearized polynomials over F2n chosen uniformly
at random.

4. Search low-algebraic-degree polynomials µ1, . . . , µt′ over F2n , linearized poly-
nomials λ0, λ1, . . . , λr′ over F2n , and a constant δ ∈ F2n satisfying

h(x) =

t′∑
j=1

µj(qj(x)) +

r′∑
i=1

λi(gi(x)) + λ0(x) . (9)

If the search fails, then return to the first step.
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