
Memory Optimization Techniques for
Computing Discrete Logarithms in Compressed

SIKE

Aaron Hutchinson1, Koray Karabina1,2, and Geovandro Pereira1,3

1 University of Waterloo, Waterloo, Canada
{a5hutchinson,koray.karabina,geovandro.pereira}@uwaterloo.ca

2 National Research Council Canada
koray.karabina@nrc-cnrc.gc.ca

3 evolutionQ Inc., Kitchener, Canada

Abstract. The supersingular isogeny-based key encapsulation (SIKE)
suite stands as an attractive post-quantum cryptosystem with its rela-
tively small public keys. Public key sizes in SIKE can further be com-
pressed by computing pairings and solving discrete logarithms in certain
subgroups of finite fields. This comes at a cost of precomputing and
storing large discrete logarithm tables. In this paper, we propose several
techniques to optimize memory requirements in computing discrete log-
arithms in SIKE, and achive to reduce table sizes by a factor of 4. We
implement our techniques and verify our theoretical findings.

Keywords: SIKE · isogeny-based cryptography · public key compres-
sion · discrete logarithms.

1 Introduction

The supersingular isogeny-based key encapsulation suite (SIKE) stands as an
attractive post-quantum cryptosystem with its relatively small public keys. SIKE
[4], a post-quantum key-encapsulaion mechanism (KEM) candidate based on the
original supersingular isogeny-based Diffie-Hellman key exchange (SIDH) [7], was
submitted to the NIST standardization process on post-quantum cryptography,
and has recently advanced as one of the eight alternate candidates in public-key
encryption/KEMs.

Public key sizes in SIKE can further be compressed by computing pairings
and solving discrete logarithms in certain subgroups of finite fields. This comes
at a cost of precomputing and storing large discrete logarithm tables. The pro-
cess involves evaluating pairings over elliptic curves, and using Pohlig-Hellman
algorithm to solve discrete logarithms in order-`e multiplicative subgroups of
F∗p2 ; [5,6,8,10]. Computing discrete logarithms is one of the main key compres-

sion bottlenecks as shown in [6,8] and the SIKE submission to NIST Round 2
[3], which make use of large precomputed tables (megabytes in some cases) for
speeding up such calculation. Alternatively, a recent approach is to instead of

2 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

computing pairings and computing discrete logarithms over F∗p2 , project a point

P onto particular subgroups 〈R0〉, 〈S0〉 ∈ E0(Fp)[`e] of a curve defined over Fp
and solve the elliptic curve discrete logarithm directly via Pohlig-Hellman [11].
This approach can also be optimized by using possibly large precomputed tables,
but in that case the technique seems to loose its advantage over the previously
known techniques according to [11].

We should also note that a related work allowed for completely discarding
precomputed tables during the Decapsulation operation by eliminating the need
of computing discrete logarithms [12]. On the other hand, large tables still appear
in both KeyGen and Encapsulation of SIKE, and a constrained-memory device
running more than just decapsulation would still benefit from reducing table
sizes. A great progress has been made towards improving computation time
in compressed SIKE, but they all come with a non-trivial overhead of static
memory due to precomputed tables. In this paper, we propose several techniques
to optimize memory requirements in computing discrete logarithms in SIKE.

1.1 The Organization and Contributions:

The contributions of this paper can be summarized as follows.

– First, we exploit signed digit representation of exponents in radix-`w and
show how to compress discrete logarithm tables by a factor of 2 1.

– Second, we utilize torus-based representation of cyclotomic subgroup ele-
ments and compress tables by an additional factor 2. Unfortunately, this rep-
resentation introduces extra Fp multiplications during the Pohlig-Hellman
algorithm when computing small discrete logarithms at each leaf. We devise
new algorithms to overcome this challenge and keep torus-based representa-
tions competitive (actually faster for the case where ` = 2).

– Finally, we implement our techniques in C for the SIKE parameters as pro-
posed to NIST. We verified that our factor-4 table reduction does not add
computational time overhead for the case where ` = 2, and add an overall
4-9% overhead to SIKE KeyGen for ` = 3 as analyzed in Section 5. Our
code signed-digits-based optimizations can be found on the NIST submis-
sion package of SIKE Round 3, and the torus-based optimizations were also
made available online 2.

The rest of this paper is organized as follows. Section 2 serves as an overview
of some well-known techniques used for computing discrete logarithms and mo-
tivates the problem of reducing table sizes. Section 3 shows how to compress
discrete logarithm tables by a factor of 2. Section 4 utilizes torus-based repre-
sentations to compress tables by another factor of 2. We present our implemen-
tation results in Section 5 and conclude in Section 6. All algorithms in this work
can be found in Appendix B.

1 This technique was originally introduced by the authors of this paper; implemented
in SIKE round 3 [2]; and recently reused in [11].

2 https://github.com/microsoft/PQCrypto-SIDH/commit/

e990bc6784c68426f69ac11ada3dd5fbfed8b714

https://github.com/microsoft/PQCrypto-SIDH/commit/e990bc6784c68426f69ac11ada3dd5fbfed8b714
https://github.com/microsoft/PQCrypto-SIDH/commit/e990bc6784c68426f69ac11ada3dd5fbfed8b714

Memory Optimizations for SIKE 3

1.2 Notation

We let p denote a large prime number with p ≡ 3 (mod 4), Fp denote a field
with p elements, and Fp2 := Fp[i]/〈i2 +1〉. For a+bi ∈ Fp2 , we let a+ bi = a−bi
denote conjugation. We let G denote the cyclotomic subgroup of F∗p2 of order
p + 1. We let ` denote a small prime number, often taken to be 2 or 3, which
divides p+ 1, and we let e be the largest integer such that `e divides p+ 1. For
k an integer such that `k divides p + 1, we let G`,k denote the (unique) cyclic
subgroup of G of order `k. When ` and e are fixed, we let g be a fixed generator
of G`,e so that G`,e = 〈g〉. We let w be a small positive integer determining the

size of various tables, and define L = `w and m = de/we. We let ρ = g`
e−w

be
the generator of G`,w. We use T to denote the table of Fp2 elements defined by
T [u][d] = g−d·L

u

for 0 ≤ u ≤ m − 1 and 0 ≤ d < L. Throughout the paper,
additional tables T sgn, CT , and T exp will be defined as they are introduced. We
let m and s denote the costs of multiplication and squaring in Fp.

2 The Pohlig-Hellman Algorithm with width-w Windows

Given an instance G`,e, g, and h ∈ G of a discrete logarithm problem (DLP) in
G`,e, Pohlig-Hellman algorithm (PH) [13] uses width-w windows and computes
d = logg h as follows. Let w be a positive integer with w | e 3, define m = de/we,
and write the exponent d in base L = `w as d =

∑m−1
i=0 DiL

i with Di ∈ [0, L).

Define the sequence hk = g
∑m−1

i=k DiL
i

, which satisfies

h0 = h, hk+1 = hkg
−DkL

k

, hL
m−1−k

k =
(
gL

m−1
)Dk

(1)

for k = 0, . . . ,m − 2. Note that Dk = logρ h
Lm−1−k

k ∈ [0, L), where ρ = gL
m−1

generates a group G`,w of order `w. In PH, a table T of elements are precomputed

and stored such that T [k][D] = g−DL
k

, for 0 ≤ k ≤ m− 1 and 0 ≤ D < L. Note

that the table T consists of m · L elements of G`,e. One computes hL
m−1

0 , and
determines D0 by looking up the last row T [m−1] of T . For k = 1, . . . ,m−1, first

hk = hk−1T [k− 1][Dk−1] is computed (one multiplication), and then hL
m−1−k

k is
computed ((m− 1− k) exponentiations by L), and Dk is determined by looking

up the row T [m − 1]. Once D0, . . . , Dm−1 are known, d =
∑m−1
i=0 DiL

i can be
recovered.

As previously observed in the literature [8,15], the steps of the above PH
algorithm can be associated with subgraph of a directed graph Te,w. The vertices
of Te,w are labeled as ∆j,k for 0 ≤ k ≤ m − 1 and 0 ≤ j ≤ m − 1 − k, with
∆0,0 being the top-most vertex and ∆j,k being the vertex lying at the end of the
path starting at ∆0,0 and following j many left edges and k many right edges.
The vertices ∆m−1−k,k for 0 ≤ k ≤ m − 1 are referred to as leaves, and ∆0,0 is
the root. We make a correspondence between vertices ∆j,k of Te,w and elements

3 The case when w - e requires more attention as explained in [15].

4 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

of G`,e by associating ∆j,k with hL
j

k , and it will be convenient to use “=” for

this association: ∆j,k = hL
j

k , for 0 ≤ k ≤ m − 1 and 0 ≤ j ≤ m − 1 − k In
particular, the root ∆0,0 is associated with the input h0 = h to the DLP, and

the leaves ∆m−1−k,k correspond to the elements hL
m−1−k

k used to determine Dk.
The outgoing edges of non-leaf vertices ∆j,k can then be interpreted as group
operations in G`,e as follows:

left traversal: ∆j,k → ∆j+1,k = ∆L
j,k;

right traversal: ∆j,k → ∆j,k+1 = ∆j,k · g−DkL
j+k

.

Note that an edge with a positive slope in Te,w (a left traversal) corresponds
to exponentiation by L, and an edge with a negative slope in Te,w (a right
traversal) corresponds to a multiplication by a group element, assuming access
to the lookup table T , as previously defined.

One can notice that the computational steps in the generalized PH algorithm
correspond to traversing a spanning subgraph S of Te,w, where the edge set of S
consists of all the positive slope edges of Te,w, and all negative slope edges of the
form {∆0,k, ∆0,k+1} for k = 0, . . . ,m−1. One can do better by assigning weights
p (the cost of exponentiation by `w in G`,e) and q (the cost of multiplication in
G`,e) to the edges of Te,w with positive and negative slopes, respectively, and
determining an optimal strategy (originally introduced in the context of isogeny
computation [7] and then extended to discrete logarithms [8]) to minimize the
cost of solving DLP. Such strategies are typically represented in linear form as
a list of positive integers of length m. This yields a recursive algorithm to solve
discrete logarithms; see Algorithm 6.3 in [15].

3 Optimization 1: Signed Digits in the Exponent

As described in Section 2, large tables are used in SIKE for solving discrete
logarithms using the Pohlig-Hellman (PH) algorithm. Here we detail a simple
technique which we use to reduce table sizes by a factor of 2. The main idea is
to switch to a signed representation of the digits Dk of d and use the fact that
inversion in G has negligible cost to save from storing half of the entries in each
row of the table. We give the details below.

For any a+bi ∈ G ⊂ Fp2 , we use the facts that p ≡ 3 (mod 4) and |G| = p+1
to derive the equality

1 = (a+ bi)p+1 = (a+ bi)(a+ bi)p = (a+ bi)(ap + bpip) = (a+ bi)(a− bi),

from which it immediately follows that (a + bi)−1 = a+ bi. If G`,e = 〈g〉 is an
order `e subgroup of G and h ∈ G`,e is the input to a DLP, we may instead

represent d = logg h in base L = `w using signed digits [1] as d =
m−1∑
k=0

D′kL
k,

where D′k ∈ [−d(L− 1)/2e, d(L− 1)/2e]. We modify the table size by defining a
new table T sgn as

T sgn[k][D] = g−DL
k

, for 0 ≤ k ≤ m− 1, 1 ≤ D ≤ d(L− 1)/2e.

Memory Optimizations for SIKE 5

In addition to the upper bound on D decreasing, notice that we’ve also discarded
the entries corresponding to D = 0 since they are all the identity element.

The PH algorithm then proceeds nearly identically to Section 2: define the

sequence hk = g
∑m−1

i=k D′iL
i

and determine D′k by solving D′k = logs h
Lm−1−k

k ,

where s = gL
m−1

. The latter equality can be solved by iterating through T sgn[m−
1] and performing two equality checks per entry:

1. If T sgn[m− 1][D]
?
= hL

m−1−k

k succeeds, then set D′k ← D.

2. If T sgn[m− 1][D]
?
= hL

m−1−k

k succeeds, then set D′k ← D − L.

Using the notation from Section 2, when a right traversal ∆j,k → ∆j,k ·g−D
′
kL

j+k

is to be performed, there are three cases: D′k = 0, D′k > 0, or D′k < 0. If D′k = 0,

then no action needs to be taken since g−D
′
kL

j+k

= 1. If D′k > 0, then we perform

∆j,k → ∆j,k · T sgn[j + k][D′k] as before. When D′k < 0, then ∆j,k · g−D
′
kL

j+k

is

computed as ∆j,k · T sgn[j + k][−D′k].
One can easily replace the table T in SIKE with T sgn with minor modifica-

tions, which reduces the table sizes by a factor of 2. The only computational
overhead of this approach is that of performing a conjugation at each equality
check and right traversal, the cost of which is quite negligible.

4 Optimization 2: Torus-based Representation and
Arithmetic in Cyclotomic Subgroups

This section details the second optimization we make, which offers an additional
factor 2 compression of table sizes. In particular, we take advantage of the torus
representation a + bi 7→ [a + 1 : b] of elements of G detailed in [14] to store
elements of G ⊂ Fp2 using only a single element of Fp. This trade-off comes
at additional computational effort introduced from the torus-based projective
representation, in which checking for equality between two elements becomes a
nontrivial expense. Compressing table sizes using torus-based representations are
detailed in Section 4.1, and the resulting computational overheads are addressed
in Sections 4.2-4.4.

4.1 Torus-based Representations

We summarize the torus-based compressed representation of elements of G as
detailed in [14]. Elements of G written in the form a+bi are said to be in standard
representation, and we must have a2 + b2 = 1 (see Section 3). When b 6= 0, one
can write a + bi = (α + i)/(α − i), where α := (a + 1)/b. Since taking α = 0
produces a+ bi = −1 + 0i, we can represent cyclotomic subgroup elements with
a single element in Fp as follows:

G = {1} ∪
{
α+ i

α− i
: α ∈ Fp

}
. (2)

6 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

Projective Squaring (2m): [x : y]2 = [(x+ y)(x− y) : 2xy]

Projective Cubing (2m+2s): [x : y]3 = [x(x2 − 3y2) : y(3x2 − y2)]

Projective Multiplication (3m): [x : y][z : t] = [xz − yt : (x+ y)(z + t)− xz − yt]
Mixed Multiplication (2m): [x : y][α, 1] = [xα− y : x+ yα]

Inversion (0m): [x : y]−1 = [−x : y]

Projective Equality check (2m): [x : y] = [z : t] ⇐⇒ xt− yz = 0

Mixed Equality check (1m): [x : y] = [α : 1] ⇐⇒ x− yα = 0

Table 1: Summary of operations and their costs for elements of G in projective
coordinates. Here, x, y, z, t, α, a, b ∈ Fp with x and y not both 0, z and t not
both 0, and a2 + b2 = 1.

Under this correspondence, we define the compression function C : G\{1,−1} →
Fp as C(a+bi) := (a+1)/b. Group operations respect compressed representation
of elements in G in the following sense: If C(a+ bi) = α and C(c+di) = β, then
we have C((a+ bi)−1) = −α, and

C((a+ bi) · (c+ di)) =

{
(αβ − 1)/(α+ β) α+ β 6= 0

1 α+ β = 0

Compressed representations inherit a projective representation as follows. For

x, y ∈ Fp not both zero, if we define [x : y] :=
(
x+yi
x−yi

)
, then we can write the

identity element as 1 = [1 : 0] (the point at infinity), and for any [x : y] with
y 6= 0 we have [x : y] = [x/y : 1]. In other words, we can rewrite (2) as

G = {[1 : 0]} ∪ {[α : 1] : α ∈ Fp} = {[x : y] : x, y ∈ Fp not both 0}. (3)

Note that the compression function C is undefined for 1,−1 ∈ Fp, but these
elements are represented in projective coordinates as [1 : 0] and [0 : 1], respec-
tively. Passing from regular to projective representation is easy, but the reverse
direction requires at least an inversion in Fp: for a + bi 6= −1 and x2 + y2 6= 0
we have

a+ bi 7−→ [a+ 1 : b], [x : y] 7−→ x2 − y2

x2 + y2
+

2xy

x2 + y2
i

We summarize the group operations of G in projective coordinates in Table 1.
Each formula can be directly verified by converting to the regular representations
of the involved elements using the above mappings.

Table Compression via Torus Representation The table T sgn from Section
3 used in generalized PH can be compressed by a factor of 2 (giving a net factor

Memory Optimizations for SIKE 7

4 compression over the original T) into a compressed table CT by applying the
compression function C(a + bi) = (a + 1)/b to each entry in T sgn as follows,
taking C(−1) = 0 when necessary:

CT [k][D] = C(T sgn[k][D]) = C(g−DL
k

), for 0 ≤ k ≤ m− 2, 1 ≤ D ≤
⌈
L− 1

2

⌉
.

Despite the number of table entries appearing the same when compared to T sgn,
factor 2 compression is achieved since each entry of CT is a single element of Fp
whereas T sgn stores elements of Fp2 . Entries of CT are interpreted as elements
of G by taking CT [k][D] to be the projective element [CT [k][D] : 1].

Computational Overheads Although the table CT has very appealing stor-
age space over the original table T and its factor-2 compressed form T sgn, the
savings comes at some nontrivial computational cost. When using projective rep-
resentation and CT throughout the PH algorithm, right traversals become mixed
multiplications (see Table 1), left traversals become projective exponentiations
by L, and the discrete logarithms in G`,w computed at the leaf nodes require
mixed equality checks between the DLP input and table elements of the form
[α : 1]. If a sequential search through the table is still used, the incurred cost for
this DLP in G`,w is at most d(L− 1)/2eE at each leaf, where E is the cost of an
equality check; across the entire PH algorithm, this cost quickly accumulates to
a significant slow down in run time. The remainder of this section is devoted to
developing alternatives to an exhaustive search approach designed to mitigate
the overhead incurred by projective equality checks.

In the remainder, we will let E, L, and M denote the costs of an equality
check, exponentiation by `, and mixed multiplication, respectively, in projective
coordinates.

4.2 Linear time algorithms

The previous subsection showed that nontrivial overhead is introduced during
the DLP solved in the leaf nodes of generalized PH when using projective repre-
sentation of G with the compressed table CT . We therefore find great interest in
algorithms which can more efficiently solve the following DLP: given ρ = g`

e−w

so that G`,w = 〈ρ〉, some [x : y] ∈ G`,w, and access to the table CT [m− 1], find
D ∈ [−d(L − 1)/2e, d(L − 1)/2e] such that ρD = [x : y]. This subsection will
detail algorithms for solving this problem which run in time that is linear in w.

The steps of the algorithm we will define correspond to traversing an almost-
full `-ary tree G`,w of depth-w; we describe this tree now. Intuitively, the tree
G`,w represents the exponentiation-by-` structure of the cyclic group G`,w, which
has order `w. Specifically, the vertex set V = V (G`,w) =

⋃w
j=0 Vj of G`,w is the

disjoint union of the vertex sets Vj at depth j for j = 0, 1, . . . , w, where

V0 = {v0,0}, V1 = {v1,i : i = 0, . . . , (`− 2)},

Vj = {vj,i : j = 2, . . . , w, i = 0, . . . , `j−1(`− 1)− 1}.

8 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

The edge set E = E(G`,w) of G`,w is E =
⋃w
j=1Ej , where

E1 = {vw : v = v0,0, w ∈ V1},
Ej = {vw : v = vj−1,bi/`c ∈ Vj−1, w = vj,i ∈ Vj , i ∈ [0, `j−1(`− 1))}.

Note that |V | = |G`,w| = `w and |E| = `w − 1. We assign integer values to each
vertex in V as follows:

v0,0 = `w, (4)

v1,i =
v0,bi/`c

`
+ `w−1(i mod `) = (i+ 1)`w−1, for i ∈ [0, `− 2] (5)

vj,i =
vj−1,bi/`c

`
+ `w−1(i mod `), for j ∈ [2, w], i ∈ [0, `j−1(`− 1)). (6)

The vertex v0,0 represents the identity of G`,w, and any two vertices are
connected with an edge if and only if one of them is the `-power of the other.
We make this precise in Theorem 1, where we relate the vertices of G`,w to the
elements of G`,w.

Theorem 1. Let G`,w = 〈ρ〉 and G`,w = (V,E) as above. Define gj,i = ρvj,i for
all vj,i ∈ V . Then

G`,w = {gj,i = ρvj,i : vj,i ∈ V }.

Furthermore, g0,0 is the identity element; we have g`j,i = gj−1,bi/`c for j =

1, . . . , w, i = 0, . . . , `j−1(`−1); and the order of gj,i is exactly `j for j = 0, . . . , w.

Proof. Clearly, g0,0 = ρv0,0 = ρ`
w

= 1. For j ≥ 1, we have g`j,i = (ρvj,i)` =
ρvj−1,bi/`c = gj−1,bi/`c. Observing that 1 ≤ vj,i ≤ `w are pairwise distinct inte-
gers, and that the highest power of ` that divides vj,i is (w − j) proves the rest
of the claims.

Theorem 2. Let h ∈ G`,w be an element of order `k for some arbitrary k ∈
{1, . . . , w}. Define a sequence H = [h0, . . . , hk] such that hk = h and hj−1 = h`j
for j = 1, . . . , k. Then, there exists a unique path P0,k = v0,0, v1,i1 , . . . , vk,ik in
G`,w such that vj,ij ∈ Vj and hj = gj,ij for j = 0, . . . , k.

Proof. We prove this by induction on k. For the base case k = 1, we have

h1 = h = ρ(i1+1)`w−1

= ρv1,i1 = g1,i1 ,

for some i1 ∈ {0, . . . , (`− 2)} because the order of h1 is `. Also,

h0 = h`1 = 1 = ρ`
w

= ρv0,0 = g0,0.

This proves the base case because v0,0v1,i1 is an edge in G`,w. Now, suppose that
k ≥ 2. By Theorem 1, hk = gk,ik for some ik ∈ {0, . . . , `k−1(` − 1)} because hk
is of order `k. Next, using Theorem 1, we write

hk−1 = h`k = g`k,ik = gk−1,bik/`c = gk−1,ik−1
,

Memory Optimizations for SIKE 9

where ik−1 = bik/`c. Note that ek = vk−1,ik−1
vk,ik ∈ Ek is an edge of G`,w. By

the induction hypothesis, there exists a unique path P0,k−1 = v0,0, v1,i1 , . . . , vk−1,ik−1

in G`,w such that vj,ij ∈ Vj and hj = gj,ij for j = 0, . . . , (k − 1). Concatenating
P0,k−1 and ek yields the desired path P0,k.

Theorem 3. Let 1 6= h ∈ G`,w = 〈ρ〉. Given h and ρ, one can determine

1. k, i1, i2, . . . , ik, that corresponds to the path P0,k = v0,0, v1,i1 , . . . , vj,ik as in
Theorem 2;

2. s1, s2, . . . , sk such that , s1 = i1+1, sj ∈ {0, . . . , (`−1)}, and ij = `·ij−1+sk
for j = 2, . . . , k.

Moreover, h = ρd, where d = `w−k
∑k
j=1 sj`

j−1.

Proof. Given 1 6= h, we first determine the least positive integer k such that

h`
k

= 1, by performing k exponentiations by ` in G`,w. We also store the inter-

mediate values hi = h`
k−i

, i = 0, . . . , k, in an array H = [h0 = 1, h1, . . . , hk = h].
By Theorem 2, there is a unique path P0,k = v0,0, v1,i1 , . . . , vj,ik in G`,w such
that vj,ij ∈ Vj and hj = gj,ij for j = 0, . . . , k. By the proof of Theorem 2,
i1 ∈ {0, . . . , (` − 2)} can be determined as the integer satisfying h1 = g1,i1 ,
and we set s1 = i1 + 1. Next, we inductively assume that ij−1 and sj−1 are
already known for some 2 ≤ j ≤ w. By the definition of Ej , and the fact
that vj−1,ij−1

vj,ij ∈ Ej , ij = ` · ij−1 + sj for some sj ∈ {0, . . . , (` − 1)}.
Since ij−1 is already known, the value of sj (and ij) can be determined as
the integer satisfying hj = gj,ij = gj,`·ij−1+sj . As a result, we can recover
all ij and sj for all j = 1, . . . , k, where s1 = i1 + 1 and ij = ` · ij−1 + sj .
To prove the last claim of our theorem, we need to show d = vk,ik , because
h = hk = gk,ik = ρvk,ik . For k = 1, Theorem 3 yields d = s1`

w−1, and it follows
from (5) that v1,i1 = (i1 + 1)`w−1 = s1`

w−1 = d, as required. In the following,
we assume that k ≥ 2. Using (4)-(6), we write

vk,ik =
vk−1,ik−1

`
+ sk`

w−1 =
vk−2,ik−2

`2
+ sk−1`

w−2 + sk`
w−1

=
v1,i1
`k−1

+ s2`
w−k+1 + · · ·+ sk`

w−1 = s1`
w−k + s2`

w−k+1 + · · ·+ sk`
w−1

= `w−k
k∑
j=1

sj`
j−1 = d, which finishes the proof.

Algorithm 1 uses the graph G`,w and its properties to solve the DLP in G`,w.
The algorithm applies to solving the DLP in any cyclic group of order `w, but
is stated specifically for G`,w. The computational and storage complexities of
Algorithm 1 are completely described in Theorem 4.

Theorem 4. For h ∈ G`,w let Cost1(h) denote the total cost of running Algo-
rithm 1 with input h in terms of L and E. By Theorem 1, h = ρvj′,i′ for some
j′ and i′.

– If j′ = 0, then Cost1(h) = 0.

10 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

– If 1 ≤ j′ ≤ w and 0 ≤ i′ ≤ `j
′−1(` − 1) − 1, then Cost1(h) = j′L +(

j′ +
j′−1∑
j=0

(bi′/`jc mod `)

)
E.

Consequently, the average case complexity of Algorithm 1 on a uniformly random
input is exactly(

w − 1

`− 1
+

1

(`− 1)`w

)
L +

(
w(`+ 1)

2
− `

`− 1
+

1

`w−1(`− 1)

)
E,

and Algorithm 1 has a worst case cost of Cost1(ρvw,`w−1(`−1)−1) = wL+(w`−1)E.
Furthermore, the total storage space required by Algorithm 1 is at most `w+w−2
elements of G`,w.

Proof. The proof of Theorem 4 is given in Appendix A. The proof also provides
some correctness verifications for the algorithm.

Refinements of Algorithm 1 If the cost of finding the inverse of an element
in G`,w is negligible, then Algorithm 1 can be improved. Intuitively, one can
eliminate half of the paths P0,k in Theorem 3 at a cost of inverting elements in
H in the beginning of the algorithm. This reduces the number of elements to be
stored in Algorithm 1 by a factor of 2. One can further improve on the storage
requirement and the number of equality checks by a factor of (`−1)/` because, in
practice, we do not need to run the comparison H[j] = G[j][ij + s] for s = `− 1
(one out of ` comparisons) in Algorithm 1. Implementing these optimizations
differs slightly when ` = 2 and ` > 2 because of the unique situation of the root
vertex of G`,w having only one child when ` = 2. Therefore, we present these
cases separately in Algorithm 2 and Algorithm 3, and Theorems 5 and 6 (for
` = 3) give the time and storage complexities for these algorithms.

Theorem 5. For h ∈ G2,w, let Cost2(h) denote the total cost of running Algo-
rithm 2 with input h in terms of L and E. By Theorem 1, h = ρvj′,i′ for some
j′ and i′.

– If j′ = 0 (so h = 1), then Cost2(h) = 0.
– If 1 ≤ j′ ≤ w (so h 6= 1), then Cost2(h) = j′L + (j′ − 1)E.

Consequently, the average case complexity of Algorithm 2 on a uniformly random
input is exactly (

w − 1 +
1

2w

)
L +

(
w − 2 +

1

2w−1

)
E,

and Algorithm 2 has a worst case cost of Cost2(ρvw,i′) = wL+(w−1)E occurring
at any i′ ∈ [0, 2w−1). Furthermore, the total storage space required by Algorithm
2 is at most 2w−2 + w + 2 elements of G2,w.

Memory Optimizations for SIKE 11

Proof. Algorithm 2 performs exactly j′ many squarings in the first loop and sets
k = j′. If j′ = 0, then no squarings are performed and the algorithm immediately
returns 0 at no cost. If j′ = 1, one squaring is performed and 2w−1 is returned at
a cost of 1L = j′L+(j′−1)E. Otherwise, the second loop is entered and exactly
j′ − 1 equality checks are performed, giving a total cost of j′L + (j′ − 1)E. This
proves the first two claims in the theorem. The worst case complexity follows
immediately from the second claim. The average case complexity can now be
computed as

∑
h∈G2,w

Pr[h] · Cost2(h) =
1

2w

1L +

w∑
j′=2

2j
′−1−1∑
i′=0

Cost2(ρvj′,i′)


which one can check simplifies to the expression given in the theorem. The table
G stores exactly |Vj |/4 = 2j−3 elements in row G[j] for j ≥ 3 and one element in
G[2], and so G stores 2w−2 +2 elements of G. Accounting for at most w elements
stored in the list H, the total storage is then 2w−2 + w + 2. This completes the
proof.

Theorem 6. The average case complexity of Algorithm 3 for ` = 3 on a uni-
formly random input is exactly(

79

15
w − 33

10
+

33

10 · 3w

)
m,

assuming L = 4m and E = 1m. Furthermore, the total storage space required
by Algorithm 3 is at most 3w−1 + w − 1 elements of G3,w.

Remark 1. In Theorems 5 and 6, we assume the algorithms use only a single
multiplication when checking if some element H[j] is equal to some table entry
G[j][k] or its inverse G[j][k]−1. If projective coordinates are used with H[j] =
[x : y] and G[j][k] = [α : 1], then both equalities can be tested at cost 1m by

checking x
?
= y · α and x

?
= −y · α.

4.3 An Exponential Time Algorithm for ` = 2

The algorithm described in the previous section has asymptotically linear time
in w for ` = 2, but performs relatively poorly for small values of w. In this section
we describe an algorithm specific to projective coordinates and ` = 2, which uses
exponentially many Fp multiplications but performs very well for small values of
w. In Section 4.4, we will combine both of these algorithms together to achieve
an algorithm with better performance than Algorithm 2 for ` = 2. We move
toward describing this exponential algorithm now.

The projective points of order 2k in G2,e for k ≥ 1 have a quite simple form
and can be solved for explicitly. There is a single point of order 2 which is found
to be [0 : 1] by solving the equation [x : 1]2 = [1 : 0] for x. To find points of order
2k for k > 1 we solve the equation [x : 1]2 = [a : 1] for x, which leads to the

12 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

quadratic equation x2 − 2ax − 1 = 0 with solution x = a ±
√
a2 + 1. We apply

this formula iteratively starting with the point [0 : 1] to generate all points of
order 2k for any k ≥ 1. To study these points, we define the following recursive
sequence: let a1 = 0 and for j ≥ 1 and 0 ≤ i < 2j−1 define

a2j+2i = a2j−1+i +
√
a22j−1+i + 1, a2j+2i+1 = a2j−1+i −

√
a22j−1+i + 1. (7)

The first 7 terms of this sequence are: a1 = 0, a2 = 1, a3 = −1, a4 = 1 +
√

2,
a5 = 1 −

√
2, a6 = −1 +

√
2, a7 = −1 −

√
2. One can use straight-forward

induction on j to show that a2j+2i = −a2j+1−2i−1 and that [a2j+i : 1] has order
2j+1 for j ≥ 0 and 0 ≤ i < 2j .

As may be apparent, terms in the sequence a are linear {−1, 0, 1}-combinations
of a smaller set of terms. We get a hold on this sequence explicitly by defining
a new sequence b as

b2j+i = a2j+2+2i − a2j+1+i =
√
a22j+1+i + 1

for j ≥ 0 and 0 ≤ i < 2j . The first 3 terms of this sequence are:

b1 =
√

2, b2 =
√

2

√
2 +
√

2, b3 =
√

2

√
2−
√

2.

Notice that terms a1, . . . , a15 are {−1, 0, 1}-combinations of 1, b1, b2, and b3.
As expected, the following theorem shows that we can write any term of the
sequence a as a combination of terms from the sequence b.

Theorem 7. Let j ≥ 2 and 0 ≤ i < 2j−1. Let (βj−2 · · ·β0)2 be the binary
representation of i so that i = βj−22j−2 + · · ·+ β12 + β0. Then

a2j+i = 1 + (−1)βj−2b1 + (−1)βj−3b21+(βj−2)2 + · · ·+ (−1)β0b2j−2+(βj−2···β1)2

= 1 +

j−2∑
k=0

(−1)βkb2j−k−2+(βj−2···βk+1)2 .

Proof. We use induction on j. When j = 2 we have i ∈ {0, 1}, and

a22+0 = 1 +
√

2 = 1 + (−1)0b1, a22+1 = 1−
√

2 = 1 + (−1)1b1.

Now let j > 2 and assume that the equality holds for any a2j′+i′ with j′ < j and

0 ≤ i′ < 2j
′−1. Let 0 ≤ i < 2j−1 with i = (βj−2 · · ·β0)2. By the formula which

defines the sequence a (Equations (7)) and the inductive hypothesis, we have

a2j+(βj−2···β0)2 = a2j−1+(βj−2···β1)2 + (−1)β0

√
(a2j−1+(βj−2···β1)2)2 + 1

= a2j−1+(βj−2···β1)2 + (−1)βj−1b2j−2+(βj−2···β1)2

=
(

1 + (−1)βj−2b1 + (−1)βj−3b21+(βj−2)2 + · · ·+ (−1)β1b2j−3+(βj−2···β2)2

)
+ (−1)βj−1b2j−2+(βj−2···β1)2

where we’ve used the inductive hypothesis on j′ = j−1 and i′ = (βj−2 · · ·β1)2 <

2j−2 = 2j
′−1.

Memory Optimizations for SIKE 13

Note that the theorem gives a representation of all ak with k ∈ N as a
linear combination of terms from b, since if 2j−1 ≤ i < 2j we have a2j+i =
−a2j+(2j−i−1), and 0 ≤ 2j − i− 1 < 2j−1.

Algorithm 4 can be used to compute discrete logarithms by means of Theorem
7 using a table T exp defined by T exp[j][i] = b2j+i for j ∈ [0, w− 3] and i ∈ [0, 2j).
Given some [x : y] such that [x : y] = [ak : 1] for some ak with k ∈ [1, 2w),
Algorithm 4 first finds k. A precomputed conversion table Log can then be
used to translate points [ak : 1] into the corresponding discrete logarithm in the
desired base ρ; i.e. a table Log is defined by Log[k] = D where ρD = [ak : 1] for
1 ≤ k < 2w and D ∈ [−2w−1, 2w−1].

Theorem 8. Let Cost4(h) denote the total number of Fp multiplications used
by Algorithm 4 when ran with input h with w ≥ 2. Then for j′ ∈ [2, w) and
i′ ∈ [0, 2j

′−1), we have

Cost4([a2j′+i′ : 1]) = Cost4([a2j′+(2j′−i′−1) : 1]) = 2j
′−2 + bi′/2c,

and consequently the average number of Fp multiplications used by Algorithm 4
on a uniformly random input is exactly 2w−3− 1

2 . Furthermore, the total storage
required by Algorithm 4 is at most 2w−1 − 1 many elements of Fp.

Proof. By Theorem 7, Algorithm 4 achieves a successful equality check on iter-
ation j = j′ of loop 6 and iteration i = i′ of loop 7, after which it immediately
terminates. The only Fp multiplication in the algorithm occurs on line 11, and
so we count how many times this line is executed. When j < j′ the loop on
variable i executes in full, whereas when j = j′ only iterations 0 ≤ i ≤ bi′/2c are
performed before the algorithm returns. Line 11 is executed exactly on iterations
when i is even, and so we have

Cost4([a2j′+i′ : 1]) = bi′/2c+ 1 +

j′−1∑
j=2

2j−2 = 2j
′−2 + bi′/2c.

Since a2j′+2i′ = −a2j′+1−2i′−1, it follows that Algorithm 4 also terminates on
iteration j = j′ and i = i′ when ran with input [a2j′+1−2i′−1 : 1], and so
Cost4([a2j′+i′ : 1]) = Cost4([a2j′+(2j′−i′−1) : 1]).

Treating the identity, a1, a2, and a3 as special cases with 0 cost, the sum of
the costs of Algorithm 4 on all inputs is computed as

2w−1∑
k=4

Cost4([ak : 1]) =

w−1∑
j′=2

2j
′
−1∑

i′=0

Cost4([a2j′+i′ : 1])

= 2

w−1∑
j′=2

2j
′−1−1∑
i′=0

2j
′−2 + bi′/2c = 22w−3 − 2w−1.

Dividing by 2w gives 2w−3− 1
2 as the average cost of Algorithm 4 on a uniformly

random input, as claimed.

14 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

Restriction Average Complexity Storage

Alg. 1 ` = 2
(
7
2
w − 4 + 4

2w

)
m 2w + w − 2

Alg. 2 ` = 2
(
3w − 4 + 1

2w−2

)
m 2w−2 + w + 2

Alg. 4 ` = 2
(
2w−3 − 1

2

)
m 2w−1 + 1

Alg. 1 ` = 3
(
28
5
w − 33

10
+ 33

10·3w
)
m 3w + w − 2

Alg. 3 ` = 3
(
79
15
w − 33

10
+ 33

10·3w
)
m 3w−1 + w − 1

Table 2: Summary of algorithm computational and storage complexities. Storage
is the total number of Fp elements stored.

There are 2w−2 − 1 elements of Fp stored in the table T exp, and line 11
potentially populates all of prods with a copy of T exp multiplied by y. Accounting
for the variable sum gives a total storage of at most 2w−1 − 1. This completes
the proof.

A summary of the average complexities and storage costs of the algorithms
discussed so far is given in Table 2.

4.4 A Hybrid Algorithm for ` = 2

In this section we formulate a hybrid of Algorithms 2 and 4, resulting in our
most efficient algorithm for computing discrete logarithms in G`,w when using
projective representation. Algorithm 2 performs very well asymptotically, but
Algorithm 4 has much better performance for small values of w. Intuitively, the
hybrid algorithm will square the input element until the order of the element is
guaranteed to be small, pushing it toward the root of G`,w; then Algorithm 4 is
ran on this small order element to compute its discrete logarithm, and finally
the path which was taken through G`,w is traced backwards as in Algorithm 2
to compute the full discrete logarithm.

Specifically, let w1, w2 ∈ N such that w = w1 + w2. The hybrid algorithm,
detailed in Algorithm 5, first performs (at most) w2 many squarings on the input

element h to produce a list H of length k satisfying H[j] = h2
k−j

for j ∈ [0, k).
The element H[0] is then guaranteed to be in G2,w1

, and Algorithm 4 is then
called with H[0] as input. It could be the case that H[0] is the identity element,
in which case we instead call Algorithm 4 with input H[w1]. Once Algorithm
4 completes and returns some logarithm d, the values ord and ij are computed
such that d = vord,ij . If necessary, the list H is inverted so that the path through
G2,w lies in the region corresponding to the elements stored in the table G. The
remainder of the algorithm then proceeds as in Algorithm 2 by backtracing the
path through G2,w. To simplify the indexing on the computation of d in the latter
part of the algorithm, a bit-shift and bit-set approach is used instead.

In the event that H[0] is the identity and the number of squarings performed
was no more than w1, Algorithm 4 is instead called on h and Algorithm 5
immediately returns the proper logarithm.

Memory Optimizations for SIKE 15

To compute the value of ij from d in Algorithm 5, the following lemma is
used. The statement for j ∈ {1, 2} can be easily verified by hand, after which
the general proof follows easily with induction on j using the definition of vj,i.

Lemma 1. Let j ∈ [2, w] and i ∈ [0, 2j−1). Write

i = βj−22j−2 + βj−32j−3 + · · ·+ β12 + β0 for βk ∈ {0, 1}.

Then vj,i = (2(β02j−2 +β12j−3 + · · ·+βj−32 +βj−2) + 1)2w−j. When j = 1, we
have v1,0 = (2 · 0 + 1)2w−1.

Theorem 9. Let 2 ≤ w1 < w and let w2 = w − w1. Let Cost5(h) denote the
total number of Fp multiplications used by Algorithm 5 when ran with input h,
using w1 as the parameter for Algorithm 4.

1. If j ≤ w1 and j ≤ w2, then Cost5(ρvj,i) = jL + Cost4(ρvj,i).

2. If w1 < j ≤ w2, then Cost5(ρvj,i) = jL + (j − w1)E + Cost4(ρ2
j−w1vj,i).

3. If j > w2, then Cost5(ρvj,i) = w2L + w2E + Cost4(ρ2
w2vj,i).

When L = 2m and E = 1m, the average number of Fp multiplications used by
Algorithm 5 on a uniformly random input is given by the following table:

if w2 ≤ 2 and w2 ≤ w1 3w2 + 2w1−3 − 1
2 −

w2+2
2w1

+ 2
2w

if 2 < w2 and w2 ≤ w1 3w2 + 2w1−3 − 1
2 +

2w2−3−w2− 5
2

2w1
+ 2

2w

if w1 = 2 and 2 < w2 3w2 − 5
4 + 6

2w

if 2 < w1 and w1 < w2 3w2 + 2w1−3 − 2w1−w2−4 − 5
16 −

w1+
7
2

2w1
+ 1

2w2
+ 2

2w

Proof. Recall that the element ρvj,i has order 2j . If j ≤ w1 and j ≤ w2, then
Algorithm 5 performs j many squarings in the initial loop 2 and terminates
on line 10 after calling Algorithm 4 on ρvj,i . When w1 < j ≤ w2, the algorithm
performs j many squarings, calls Algorithm 4 on the element H[w1] = ρ2

j−w1vj,i ,
and then performs j−w1 equality checks in the loop on line 33. Finally if j > w2,
the maximal number w2 of squarings is performed in loop 2, Algorithm 4 is called
on H[0] = ρ2

w2vj,i , and w2 many equality checks are performed in loop 33.
To compute the average case complexity, we first sum over all j and i values in

each of the three cases. We take L = 2m and E = 1m. Letting m = min{w1, w2}
for the first case, we have

m∑
j=0

2j−1−1∑
i=0

Cost5(ρvj,i) =

m∑
j=0

2j−1−1∑
i=0

2j +

m∑
j=0

2j−1−1∑
i=0

Cost4(ρvj,i)

= (2(m− 1)2m + 2)m +

m∑
j=0

2j−1−1∑
i=0

Cost4(ρvj,i).

When m ≤ 2 the final summation above is 0. Otherwise, by Theorem 7 we get
2(m − 1)2m + 2 + 2m−3 − 1

2 multiplications. For the second case, we have that

16 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

w2∑
j=w1+1

2j−1−1∑
i=0

jL + (j − w1)E = (2w1(3 − 2w1) − 2w2(w1 − 3w2 + 3))m, and by

repeated use of Theorem 1 we get

w2∑
j=w1+1

2j−1−1∑
i=0

Cost4(ρ2
j−w1vj,i) =

w2∑
j=w1+1

2j−1−1∑
i=0

Cost4(ρ
v
w1,bi/2j−w1 c)

=

w2−w1∑
j=1

2j+w1−1−1∑
i=0

Cost4(ρ
vw1,bi/2jc) =

w2−w1∑
j=1

2w1−1−1∑
i=0

2jCost4(ρvw1,i).

When w1 ≤ 2, the sum above is 0. Otherwise, the inner summation totals the
cost of all order w1 elements under Algorithm 4. By Theorem 7, we get

w2∑
j=w1+1

2j−1−1∑
i=0

Cost4(ρ2
j−w1vj,i) =

w2−w1∑
j=1

2w1−1−1∑
i=0

2j(2w1−3 + bi/2c)

=
1

16
(3 · 2w1 − 8)(2w2 − 2w1).

Finally we sum all j and i values in the third case. We have
w∑

j=w2+1

2j−1−1∑
i=0

w2L+

w2E = 3w2(2w − 2w2)m, and

w∑
j=w2+1

2j−1−1∑
i=0

Cost4(ρ2
w2vj,i) =

w1∑
j=1

2j+w2−1−1∑
i=0

Cost4(ρ2
w2vj+w2,i)

=

w1∑
j=1

2j+w2−1−1∑
i=0

Cost4(ρvj,bi/2w2c) =

w1∑
j=1

2j−1−1∑
i=0

2w2Cost4(ρvj,i)

If w1 ≤ 2, the sum is 0. Otherwise, by Theorem 7 it equals 2w2(2w1−3 − 1
2)m =

(2w−3 − 2w2−1)m.
The above calculations yield all the necessary components to derive the aver-

age case complexity of Algorithm 5. To reach the expressions given in the table
in the theorem statement, one takes the sum over the components corresponding
to each case and divides the result by 2w. We omit the details. This completes
the proof.

5 Implementation results and comparisons

We have implemented our proposal in C language on top of the Microsoft SIDH
library [9]. Our contributions were incrementally included in the SIDH library [9].
The signed-digits technique (Section 3) was integrated during the SIKE submis-
sion to Round 3 of the NIST process and can be found in the submitted package

Memory Optimizations for SIKE 17

Dlog in G2,e source
w = 3 w = 4 w = 5

time size time size time size

e = 216 (SIKEp434)
previous [8] 1944 70 1600 105 1415 342

ours 1818 18 1542 27 1408 86

e = 250 (SIKEp503)
previous [8] 2340 186 1937 279 1662 221

ours 2184 47 1859 70 1649 56

e = 305 (SIKEp610)
previous [8] 2973 268 2482 405 2126 321

ours 2761 67 2368 102 2095 81

e = 372 (SIKEp751)
previous [8] 3765 197 3126 296 2748 954

ours 3476 49 2964 74 2688 240

Dlog in G3,e source
w = 2 w = 3 w = 4

time size time size time size

e = 137 (SIKEp434)
previous [8] 1845 151 1407 301 1185 688

ours 2371 34 2029 73 1868 172

e = 159 (SIKEp503)
previous [8] 2208 199 1680 198 1407 895

ours 2828 44 2397 48 2185 221

e = 192 (SIKEp610)
previous [8] 2757 142 2121 284 1767 639

ours 3496 32 2994 68 2703 158

e = 239 (SIKEp751)
previous [8] 3621 429 2793 859 2337 1932

ours 4542 95 3886 207 3507 477

Table 3: Comparative results of the average cost (in Fp multiplications) and table
sizes (in KiB) to compute logarithms in G2,e and G3,e using Pohlig-Hellman with
torus-based representations, and using Algorithm 5 (or Algorithm 3) vs. previous
Pohlig-Hellman with standard Fp2 representations [8,15]. We set w1 = w − 1 in
Algorithm 5 as it gives the best speed.

[2]. More recently the torus-based optimizations (Section 4) were included in the
official Microsoft SIDH library 4.

Table 3 showcases the result of our memory optimized approach for com-
puting discrete logarithms in G2,e using signed-digits with torus-based represen-
tations and Algorithm 5 for leaf computations. We compare discrete logarithm
computation time against previous work in terms of number of Fp multiplica-
tions. In this case, our approach turns out to be slightly faster in addition to the
factor-4 reduction in table sizes. Despite leaf computations being more expen-
sive than [8], savings are gained through cheaper edge traversal costs by using
projective squaring and mixed multiplications (each costing 2m instead of 3m).

Table 3 also illustrates our results for computing discrete logarithms in G3,e

using signed-digits with torus-based representations and Algorithm 3 for leaf
computations. One can see that for practical values of w (i.e., tables not too
large), the time overhead significantly increases ranging from 29− 58% for w ∈
[2, 4]. Such large time overheads, which do not occur for ` = 2, arise for two
reasons: 1) left edge traversals for ` = 3 consist of projective cubings that take

4 https://github.com/microsoft/PQCrypto-SIDH/commit/

e990bc6784c68426f69ac11ada3dd5fbfed8b714

https://github.com/microsoft/PQCrypto-SIDH/commit/e990bc6784c68426f69ac11ada3dd5fbfed8b714
https://github.com/microsoft/PQCrypto-SIDH/commit/e990bc6784c68426f69ac11ada3dd5fbfed8b714

18 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

4m, which is more expensive than the cost of standard cyclotomic cubing (3m);
and 2) Algorithm 3 cannot exploit the extra structures that were present in the
G2,w subgroup and were exploited in Algorithm 5. On the other hand, this is not
as bad as it may seem, since according to benchmarks we ran on the compressed
SIKE code, the discrete logarithm phase takes only ≈ 15% of the whole KeyGen.
Hence, the overall computational overheads would reduce to 4-9% from an end
user perspective.

For integrating our results into the official SIKE suite [2], we decided to use
the torus-based method only for the ` = 2 to obtain a factor-4 reduction in
table sizes. For ` = 3, in order not to impact the runtime negatively, we use the
signed-digits technique and obtain a factor-2 reduction in table sizes with no
time overhead. Thus, SIKE enjoys an average factor-3 reduction in table sizes
with negligible overhead in computation time. Overall cycle count benchmarks
with our C code can be seen in Table 2.1 in the SIKE specification document
[2], in particular in the rows named SIKEpXXX compressed.

6 Concluding remarks

We have proposed methods to reduce the table sizes in compressed SIKE by a
factor of 4, with minimal computational overheads. For ` = 2, new table sizes
can range from 18KiB to 240KiB for all SIKE parameter sets and from 34KiB to
477KiB for ` = 3. We have confirmed our theoretical estimates experimentally
and our C implementation has been effectively integrated into the official SIKE
library.

Acknowledgements The authors would like to thank the SIKE team members
for their comments on the paper and support with integrating our results into the
official SIKE suite. G. Pereira is supported in part by NSERC, CryptoWorks21,
Canada First Research Excellence Fund, Public Works and Government Ser-
vices Canada, and by the National Research Council Canada and University of
Waterloo Collaboration Center (NUCC) program 927517.

References

1. Avizienis, A.: Signed-digit number representations for fast parallel arithmetic.
IEEE Transactions on Electronic Computers EC-10, 389–400 (1961)

2. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Hutchinson,
A., Jalali, A., Jao, D., Karabina, K., Koziel, B., LaMacchia, B., Longa, P., Naehrig,
M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: Supersingular isogeny key
encapsulation. Submission to the 3rd Round of the NIST Post-Quantum Standard-
ization project (2020)

3. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali, A.,
Jao, D., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Pereira, G., Renes, J.,
Soukharev, V., Urbanik, D.: Supersingular isogeny key encapsulation. Submission
to the 2nd Round of the NIST Post-Quantum Standardization project (2019)

Memory Optimizations for SIKE 19

4. Azarderakhsh, R., Campagna, M., Costello, C., DeFeo, L., Hess, B., Jalali, A.,
Jao, D., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Pereira, G., Renes,
J., Soukharev, V., Urbanik, D.: Supersingular Isogeny Key Encapsulation. SIKE
Team, https://sike.org/ (2020)

5. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography. pp. 1–10 (2016)

6. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
compression of SIDH public keys. In: Advances in Cryptology – Eurocrypt 2017.
pp. 679–706. No. 10210 in Lecture Notes in Computer Science, Springer, Paris,
France (2017)

7. De Feo, L., Jao, D., Plût, J.: Towards Quantum-Resistant Cryptosystems from
Supersingular Elliptic Curve Isogenies. Journal of Mathematical Cryptology pp.
209–247 (2014)

8. Gustavo H. M. Zanon and Marcos A. Simplicio and Geovandro C. C. F. Pereira and
Javad Doliskani and Paulo S. L. M. Barreto: Faster Key Compression for Isogeny-
Based Cryptosystems. IEEE Transactions on Computers 68, 688–701 (2018)

9. Longa, P.: SIDH Library. https://github.com/microsoft/PQCrypto-SIDH
10. Naehrig, M., Renes, J.: Dual isogenies and their application to public-key com-

pression for isogeny-based cryptography. In: Galbraith, S.D., Moriai, S. (eds.) Ad-
vances in Cryptology – Asiacrypt 2019. Lecture Notes in Computer Science, vol.
11922, pp. 243–272. Springer (2019). https://doi.org/10.1007/978-3-030-34621-8 9,
https://doi.org/10.1007/978-3-030-34621-8_9

11. Pereira, G., Barreto, P.: Isogeny-based key compression without pairings. Cryptol-
ogy ePrint Archive, Report 2021/272 (2021), http://eprint.iacr.org/2021/272

12. Pereira, G., Doliskani, J., Jao, D.: x-only point addition formula and faster
compressed SIKE. Journal of Cryptographic Engineering pp. 1–13 (2020).
https://doi.org/10.1007/s13389-020-00245-4

13. Pohlig, S., Hellman, M.: An Improved Algorithm for Computing Logarithms over
GF (p) and its Cryptographic Significance. IEEE Transactions on Information The-
ory 24, 106–110 (1978)

14. Rubin, K., Silverberg, A.: Compression in finite fields and torus-based cryptogra-
phy. SIAM Journal on Computing 37, 1401–1428 (2008)

15. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto,
P.S.L.M.: Faster isogeny-based compressed key agreement. In: International Con-
ference on Post-Quantum Cryptography. pp. 248–268. Springer (2018)

A Proof of Theorem 4

This section gives a proof of Theorem 4. To complete the proof, we will need the
following lemma.

Lemma 2. For i′ ∈ [0, `w), we have i′ =
w−1∑
k′=0

(bi′/`k′c mod `)`k
′
, and for j ∈

[0, w) we have bi′/`jc =
w−1∑
k′=j

(bi′/`k′c mod `)`k
′−j.

Proof. Informally, bi′/`k′c mod ` is simply the k′-th digit of i′ when i′ is written
in base `. The first summation is therefore just the base ` representation of i′.

https://sike.org/
https://github.com/microsoft/PQCrypto-SIDH
https://doi.org/10.1007/978-3-030-34621-8_9
https://doi.org/10.1007/978-3-030-34621-8_9
http://eprint.iacr.org/2021/272
https://doi.org/10.1007/s13389-020-00245-4

20 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

Formally, let i′ =
w−1∑
k′=0

i′k′`
k′ be the standard base ` representation of i′ with

each i′k′ ∈ [0, `). Then bi′/`jc =

⌊
w−1∑
k′=0

i′k′`
k′−j

⌋
=

w−1∑
k′=j

i′k′`
k′−j for any j ∈ [0, w),

and so bi′/`jc mod ` = i′j .

We now prove Theorem 4, which we restate here for convenience.

Theorem 4. Let L denote the cost of exponentiation by ` in G`,w, let E denote
the cost of an equality check in G`,w, and for h ∈ G`,w let Cost1(h) denote the
total cost of running Algorithm 1 with input h in terms of L and E. For any

h ∈ G`,w, assume that checking h
?
= 1 has cost 0.

Let h ∈ G`,w. By Theorem 1, h = ρvj′,i′ for some j′ and i′.

– If j′ = 0, then Cost1(h) = 0.
– If 1 ≤ j′ ≤ w and 0 ≤ i′ ≤ `j

′−1(` − 1) − 1, then Cost1(h) = j′L +(
j′ +

j′−1∑
j=0

(bi′/`jc mod `)

)
E.

Consequently, the average case complexity of Algorithm 1 on a uniformly random
input is exactly(

w − 1

`− 1
+

1

(`− 1)`w

)
L +

(
w(`+ 1)

2
− `

`− 1
+

1

`w−1(`− 1)

)
E,

with a worst case cost of Cost1(ρvw,`w−1(`−1)−1) = wL + (w`− 1)E.

Proof. For the storage requirement of the algorithm, note that
∑w
j=0 |Vj | =

|V | = `w, and so Algorithm 1 precomputes and stores all of the elements of G`,w
in the list G. Algorithm 1 also keeps track of k ≤ w group elements in the list
H. Ignoring the two identity elements in G and H, Algorithm 1 requires to store
at most `w + w − 2 group elements.

We prove the computational complexity statements now. Note that the worst
case complexity statement follows from Lemma 2 by taking j′ = w and i′ =
(`− 1)`w−1 − 1 in the cost formula given for Cost1(ρvj′,i′) in the theorem.

Theorem 1 guarantees that h can be written in the form ρvj′,i′ with either
j′ = i′ = 0, or j′ = 1 and 0 ≤ i′ ≤ `−2, or 2 ≤ j′ ≤ w and 0 ≤ i′ ≤ `j′−1(`−1)−1.
We examine each case individually to determine the number of operations used
by Algorithm 1 when ran with input ρvj′,i′ .

When j′ = i′ = 0, we have h = ρv0,0 = ρ`
w

= 1 since ρ has order `w.
Algorithm 1 then skips the loop on line 3 and returns 0 on line 7 at no cost.

Suppose j′ = 1 and 0 ≤ i′ ≤ `−2. By Theorem 1, we have that |h| = |ρvj′,i′ | =
|gj′,i′ | = `j

′
= `. Algorithm 1 then executes loop 3 exactly once at a cost of

1L = j′L (we’ve assumed the associated equality checks have negligible cost),
and we have H = [1, h] and k = 1. Loop 9 then executes until H[1] = G[1][i], if
and only if h = g1,i, if and only if ρv1,i′ = ρv1,i , if and only if i′ = i. Therefore

Memory Optimizations for SIKE 21

exactly i′ + 1 =
∑1−1
j=0(di′/`je mod `) equality checks are used. Since k = 1,

loop 16 is skipped and the algorithm terminates on line 27.

Suppose now that 2 ≤ j′ ≤ w and 0 ≤ i′ ≤ `j
′−1(` − 1) − 1. By Theorem

1 |h| = `j
′
, and so loop 3 executes exactly j′ times at a cost of j′L, ending

with H = [1, h`
j′−1

, . . . , h`, h] and k = j′. By Theorem 1, we have h` = g`j′,i′ =

gj′−1,bi′/`c, h
`2 = g`j′−1,bi′/`c = gj′−2,bbi′/`c/`c = gj′−2,bi′/`2c, and so on. In this

manner, the elements of H can then be written as

H[j] = h`
j′−j

= gj,bi′/`j′−jc = ρ
v
j,bi′/`j′−jc . (8)

Next loop 9 is executed, which iterates until H[1] = G[1][i], if and only if
ρ
v
1,bi′/`j′−1c = ρv1,i , if and only if bi′/`j′−1c = i. The cost incurred by loop 9 is

then (bi′/`j′−1c+ 1)E, and the variable ij is initialized to value ij = bi′/`j′−1c.
The initial iteration j = 2 of loop 16 updates ij to ij = bi′/`j′−1c` and loop

18 runs until H[2] = G[2][ij +s], if and only if ρ
v
2,bi′/`j′−2c = ρv2,ij+s , if and only

if

s = bi′/`j
′−2c − ij = bi′/`j

′−2c − bi′/`j
′−1c`

=

w−1∑
k′=j′−2

(bi′/`k
′
c mod `)`k

′−(j′−2) − `
w−1∑

k′=j′−1

(bi′/`k
′
c mod `)`k

′−(j′−1)

= bi′/`j
′−2c mod `,

where we’ve used two applications of Lemma 2. For j = 2, loop 18 therefore
incurs cost (bi′/`j′−2c mod `+ 1)E and updates variable ij to

ij = bi′/`j
′−1c`+ s = bi′/`j

′−1c`+ (bi′/`j
′−2c mod `)

=

1∑
k′=0

(bi′/`j
′+k′−2c mod `)`k

′
.

For the remaining iterations of loop 16, we prove the following claim.

Claim: For 2 ≤ j ≤ k = j′, the j-th iteration of loop 16 incurs
cost (bi′/`j′−jc mod ` + 1)E and updates variable ij to value ij =
j−1∑
k′=0

(bi′/`j′+k′−jc mod `)`k
′

We prove the claim using induction on j, with the base case j = 2 already given
above. Assume the claim holds after the j-th iteration. The (j + 1)-th iteration

begins by updating ij to ij = `
j−1∑
k′=0

(bi′/`j′+k′−jc mod `)`k
′
. As before, loop 18

22 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

continues until

s = bi′/`j
′−(j+1)c − ij = bi′/`j

′−(j+1)c −
j−1∑
k′=0

(bi′/`j
′+k′−jc mod `)`k

′+1

=

w−1∑
k′=0

(bi′/`j
′+k′−(j+1)c mod `)`k

′
−

j−1∑
k′=0

(bi′/`j
′+k′−jc mod `)`k

′+1

= (bi′/`j
′−(j+1)c mod `) +

w−1∑
k′=1

(bi′/`j
′+k′−(j+1)c mod `)`k

′
−

j∑
k′=1

(bi′/`j
′+k′−(j+1)c mod `)`k

′

= bi′/`j
′−(j+1)c mod `,

where we’ve again used Lemma 2, and since i′ ∈ [0, `j
′
) the last two summations

cancel entirely. The iteration therefore incurs cost (bi′/`j′−(j+1)c mod `+ 1)E,

and ij updates to ij = bi′/`j′−(j+1)c mod ` + `
j−1∑
k′=0

(bi′/`j′+k′−jc mod `)`k
′

=

j∑
k′=0

(bi′/`j′+k′−(j+1)c mod `)`k
′
. This proves the claim.

By the claim just proved, loop 16 completes on iteration j = k = j′ with

ij =
j′−1∑
k′=0

(bi′/`k′c mod `)`k
′

= i′ and the algorithm returns on line 27. Notice

that by the end of the algorithm we have (k, ij) = (j′, i′) and the variable d
has computed vj′,i′ = logρ(h), and so we have a correctness verification of the
algorithm. The total cost used by the algorithm is

Cost1(h) = j′L + (bi′/`j
′−1c+ 1)E +

j′∑
j=2

(bi′/`j
′−jc mod `+ 1)E

= j′L +

j′ + j′−1∑
j=0

(bi′/`jc mod `)

E,

as claimed by the theorem.

Memory Optimizations for SIKE 23

We may now compute the average case complexity of Algorithm 1 as

∑
h∈G`,w

Pr[h] · Cost1(h) =
1

`w

 w∑
j′=1

`j
′−1(`−1)−1∑
i′=0

Cost1(ρvj′,i′)


=

1

`w

 w∑
j′=1

`j
′−1(`−1)−1∑
i′=0

j′L +

j′ + j′−1∑
j=0

(bi′/`jc mod `)

E


=

1

`w

 w∑
j′=1

`j
′−1(`−1)−1∑
i′=0

j′(L + E) +

w∑
j′=1

`j
′−1(`−1)−1∑
i′=0

j′−1∑
j=0

(bi′/`jc mod `)E


=

1

`w

w`w+1 − (w + 1)`w + 1

`− 1
(L + E) +

w∑
j′=1

`j
′−1(`−1)−1∑
i′=0

j′−1∑
j=0

(bi′/`jc mod `)E

 .

The value of the remaining summations above will be computed through the
following lemma. After substitution, one may simplify the resulting expression
to that which is stated in Theorem 4. This will conclude the proof of the theorem.

Lemma 3. The expression
`j
′−1−1∑
i′=0

j′−2∑
j=0

(bi′/`jc mod `) computes the sum of the

digit sum of all numbers i′ ∈ [0, `j
′−1) written in base `, and equals (`− 1)(j′ −

1)`j
′−1/2. Consequently, we have

(`−1)`j
′−1−1∑

i′=0

j′−1∑
j=0

(bi′/`jc mod `) =
(`− 1)(j′(`− 1)− 1)`j

′−1

2
.

Proof. That the expression computes the sum of the digit sums follows from
Lemma 2; we compute the value of this expression using this fact. Suppose
that ` is even and for simplicity write the base ` digits of any i′ as ij′−2 · · · i0,
using leading 0’s if necessary. Then the number with base ` digits (` − 1 −
ij′−2) · · · (` − 1 − i0) is another distinct integer in [0, `j

′−1), and the sum of
the digits of these two integers is (` − 1)(j′ − 1). In this way, every integer
has a unique corresponding complement, and so the sum of the digit sums is
(`− 1)(j′ − 1)`j

′−1/2. When ` is odd the same argument works, except that the
integer with digits ((`−1)/2) · · · ((`−1)/2) is its own complement and is the only
number with this property. The sum of this number’s digits is (`−1)(j′−1)/2, and
so the sum of the digit sums is then (`−1)(j′−1)(`j

′−1−1)/2+(`−1)(j′−1)/2 =
(`− 1)(j′ − 1)`j

′−1/2 as before.

24 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

Lastly, we compute the final statement of the lemma as

(`−1)`j
′−1−1∑

i′=0

j′−1∑
j=0

(bi′/`jc mod `) =

`−1∑
k=1

k`j
′−1−1∑

i′=(k−1)`j′−1

j′−1∑
j=0

(bi′/`jc mod `)

=

`−1∑
k=1

`j
′−1−1∑
i′=0

j′−1∑
j=0

(⌊
i′ + (k − 1)`j

′−1

`j

⌋
mod `

)

=

`−1∑
k=1

`j
′−1−1∑
i′=0

j′−1∑
j=0

((⌊
i′

`j

⌋
+ (k − 1)`j

′−j−1
)

mod `

)

=

`−1∑
k=1

`j
′−1−1∑
i′=0

k − 1 +

j′−2∑
j=0

(⌊
i′

`j

⌋)
mod `


=
`j
′−1(`− 2)(`− 1)

2
+

`−1∑
k=1

`j
′−1−1∑
i′=0

j′−2∑
j=0

(⌊
i′

`j

⌋
mod `

)

=
`j
′−1(`− 2)(`− 1)

2
+

`−1∑
k=1

(`− 1)(j′ − 1)`j
′−1

2

=
`j
′−1(`− 2)(`− 1)

2
+

(`− 1)2(j′ − 1)`j
′−1

2
=

(`− 1)(j′(`− 1)− 1)`j
′−1

2
.

Memory Optimizations for SIKE 25

B Algorithms

Algorithm 1: Discrete Logarithm Computation in G`,w
Parameters: ` (prime), w ≥ 1, a precomputed table

G[j][i] = gj,i = ρvj,i ∈ G`,w for j ∈ [1, w], vj,i ∈ Vj .
Input : h ∈ G`,w
Output : d ∈ [0, `w) such that h = ρd

1 H = [h]
2 k ← 0
3 while H[0] 6= 1 do // Exponentiate until reaching root of G`,w
4 H.insert(0, H[0]`)
5 k ← k + 1

6 end
7 if k = 0 then return 0
8 d← 1
9 for i = 0 to `− 2 do // Initial branch of G`,w

10 if H[1] = G[1][i] then
11 ij ← i
12 d← (ij + 1)
13 break

14 end

15 end
16 for j = 2 to k do // Backtrace path taken through G`,w
17 ij ← ` · ij
18 for s = 0 to (`− 1) do
19 if H[j] = G[j][ij + s] then
20 d← d+ s · `j−1

21 ij ← ij + s
22 break

23 end

24 end

25 d← `w−k · d
26 end
27 return d

26 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

Algorithm 2: Discrete Logarithm Computation in G2,w (a variant of
Algorithm 1 for ` = 2)

Parameters: ` = 2, w ≥ 1, a precomputed table G such that G[0], G[1] are

null, G[2][0] = g2,0 = ρv2,0 = ρ2
w−2

, and
G[j][ij] = gj,2ij = ρ

vj,2ij ∈ G2,w for j ∈ [3, w],
ij = 0, . . . , |Vj |/4− 1.

Input : h ∈ G2,w

Output : d ∈ [0, 2w) such that h = ρd

1 H = [h]
2 k ← 0
3 while H[0] 6= 1 do // Square until reaching root of G2,w
4 H.insert(0, H[0]2)
5 k ← k + 1

6 end
7 if k = 0 then return 0
8 if k = 1 then return 2w−1 // Initial ‘branch’ of G2,w
9 d← 1

10 inv ← False
11 if H[2] 6= G[2][0] then // Force path to lie in correct half of G2,w
12 H[i]← H[i]−1 for i = 2, . . . , k
13 inv ← True

14 end
15 ij ← 0
16 for j = 3 to k do // Backtrace path taken through G2,w
17 ij ← 2 · ij
18 if H[j] 6= G[j][ij/2] then
19 d← d+ 2j−1

20 ij ← ij + 1

21 end

22 end

23 d← 2w−k · d
24 if inv = True then
25 d← 2w − d
26 end
27 return d

Memory Optimizations for SIKE 27

Algorithm 3: Discrete Logarithm Computation in G`,w (a variant of
Algorithm 1 for ` > 2)

Parameters: ` > 2, w ≥ 1, a precomputed table G such that G[0] is null,
G[1][i] = g1,i = ρv1,i for i = 0, . . . , (`− 1)/2− 1,
G[j][bj(`− 1) + s] = gj,bj`+s = ρ

vj,bj`+s , for j ∈ [2, w],

bj = 0, . . . , `j−2(`− 1)/2− 1, s = 0, . . . , (`− 1)− 1.
Input : h ∈ G`,w
Output : d ∈ [0, `w) such that h = ρd

1 H = [h]
2 k ← 0
3 while H[0] 6= 1 do // Exponentiate until reaching root of G`,w
4 H.insert(0, H[0]`)
5 k ← k + 1

6 end
7 if k = 0 then return 0
8 d← 1
9 inv ← False

10 for i = 0 to (`− 1)/2− 1 do // Initial branch of G`,w
11 if H[1] = G[1][i] then
12 ij ← i
13 d← (ij + 1)
14 break

15 else if H[1] = G[1][i]−1 then
16 ij ← i
17 d← (ij + 1)
18 inv ← True
19 break

20 end

21 end
22 if inv = True then H[i]← H[i]−1 for i = 2, . . . , k
23 for j = 2 to k do // Backtrace path taken through G`,w
24 ij ← ` · ij
25 cont← True
26 for s = 0 to (`− 1)− 1 do
27 b← ij/`
28 if H[j] = G[j][b(`− 1) + s] then
29 d← d+ s · `j−1

30 ij ← ij + s
31 cont← False
32 break

33 end

34 end
35 if cont = True then
36 d← d+ (`− 1) · `j−1

37 ij ← ij + (`− 1)

38 end

39 d← `w−k · d
40 end
41 if inv = True then d← `w − d
42 return d

28 Aaron Hutchinson, Koray Karabina, and Geovandro Pereira

Algorithm 4: 2w Discrete Logarithm Computation

Parameters: w ≥ 2; ρ ∈ G`,w of order 2w; precomputed table
T exp[j][i] = b2j+i ∈ Fp for j ∈ [0, w − 3], i ∈ [0, 2j); precomputed

table Log of size 2w such that ρLog[k] = [ak : 1].
Input : [x : y] such that [x : y] = [ak : 1] for some k ∈ [1, 2w), or

[x : y] = [1 : 0].
Output : Digit D ∈ [−2w−1, 2w−1] such that [x : y] = ρD.

1 if y = 0 then return Log[0].
2 if x = 0 then return Log[1].
3 if x = y then return Log[2].
4 if x = −y then return Log[3].
5 Initialize an empty list prods.
6 for j = 2 to w − 1 do
7 for i = 0 to 2j−1 − 1 do
8 Let (βj−2, . . . , β0) be the bits such that

9 i = βj−22j−2 + · · ·+ β12 + β0.
10 if β0 = 0 then
11 prods[2j−2 + i/2]← y · T exp[j − 2][i/2].
12 sum← y.

13 end
14 for k = 0 to j − 2 do

15 sum← sum+ (−1)βj−k−2prods[2k + (βj−2 · · ·βj−k−1)2].
16 end

17 if x = sum then return Log[2j + i].

18 if x = −sum then return Log[2j+1 − i− 1].

19 end

20 end

Memory Optimizations for SIKE 29

Algorithm 5: A hybrid of Algorithms 2 and 4 for computing discrete
logarithms in G`,w.

Parameters: ` = 2, w ≥ 2; precomputed table G such that G[0], G[1] are null,
G[2][0] = ρ2

w−2, G[j][ij] = ρ
vj,2ij for j ∈ [3, w], ij ∈ [0, |Vj |/4);

w1 with 2 ≤ w1 < w; precomputed table T exp[j][i] = b2j+i for
j ∈ [0, w1 − 3], i ∈ [0, 2j); precomputed table Log of size 2w1

such that ρLog[k] = [ak : 1]; w2 = w − w1.
Input : h ∈ G2,w.
Output : d ∈ [0, 2w) such that h = ρd.

1 H ← [h]; k ← 0
2 for i = 1 to w2 do
3 if H[0] 6= 1 then
4 H.insert(0, H[0]2)
5 k ← k + 1

6 else
7 break
8 end

9 end
10 if H[0] = 1 and k ≤ w1, then return 2w2 ·Algorithm4(h)
11 if H[0] 6= 1 then
12 d← Algorithm4(H[0]) mod 2w1

13 Hindex← 0

14 else
15 d← Algorithm4(H[w1]) mod 2w1

16 Hindex← w1

17 end
18 ord← w1 − t, where 2t | d and 2t+1 - d with t ≥ 0
19 tmp← (d/2w1−t − 1)/2 // tmp has at most ord− 1 bits

20 Let (βord−2 · · ·β0) be the bits such that tmp = βord−22ord−2 + · · ·+ β12 + β0

21 ij ← β02ord−2 + · · ·+ βord−32 + βord−2; inv ← False
22 if H[0] = −1 then
23 if H[1] 6= G[2][0] then
24 H ← [H[i]−1 : i ∈ [0, k]]; inv ← True
25 end

26 else

27 if ij ≥ 2ord−2 then

28 ij ← 2ord−1 − ij − 1; d← 2w1 − d
29 H ← [H[i]−1 : i ∈ [0, k]]; inv ← True

30 end

31 end
32 d← 2w2d
33 for j = Hindex+ 1 to k do
34 ij ← 2ij ; d← d/2
35 if H[j] 6= G[j −Hindex+ ord+ 1][ij/2 + 1] then
36 d← d+ 2w−1; ij ← ij + 1
37 end

38 end
39 if inv then d← 2w − d
40 return d

	Memory Optimization Techniques for Computing Discrete Logarithms in Compressed SIKE
	Introduction
	The Organization and Contributions:
	Notation

	The Pohlig-Hellman Algorithm with width-w Windows
	Optimization 1: Signed Digits in the Exponent
	Optimization 2: Torus-based Representation and Arithmetic in Cyclotomic Subgroups
	Torus-based Representations
	Linear time algorithms
	An Exponential Time Algorithm for l=2
	A Hybrid Algorithm for l=2

	Implementation results and comparisons
	Concluding remarks
	Proof of Theorem 4
	Algorithms

