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Abstract. With the development of Bitcoin, Ethereum and other projects,
blockchain has been widely concerned with its outstanding characteristics
such as non-centralization, collective maintenance, openness and trans-
parency. Blockchain has been widely used in finance, logistics, copyright
and other fields. However, as transactions are stored in plaintext in the
blockchain for public verification, the privacy of users is not well guar-
anteed such that many financial applications can not be adopted widely.
How to securely and economically protect the privacy of transactions is
worth further research.
In this paper, we have proposed two efficient and regulatory confidential
transaction schemes using homomorphic encryption and zero-knowledge
proof. ERCO, the first scheme, turns the standard ElGamal algorithm
to be additively homomorphic and expands it into four ciphertexts such
that (m, r) in the transaction can be decrypted. Its security can be re-
duced to DDH assumption and the transaction size is less. PailGamal,
the second scheme, is based on the combination of Paillier and ElGamal
algorithms. Its security can be reduced to DDH assumption and it em-
powers regulators greater powers to obtain transaction-related specific
content. In contrast to other ElGamal based schemes, PailGamal makes
any token amount directly decrypted without calculating a discrete log-
arithm problem. As any (m, r) in transactions can be decrypted directly,
game theory is applied to further reduce transaction size.

Keywords: confidential transactions · zero-knowledge proof · regula-
tory · game theory · modified ElGamal · modified Paillier
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1 Introduction

In most blockchain systems such as Bitcoin [Sat08] and Ethereum [Woo14], the
content of a transaction is broadcast in plaintext and each user can access all the
on-chain contents. These characteristics also bring the problem of privacy protec-
tion [DSPSNAHJ18]. With the increasing concerning of privacy, it is extremely
important to protect the privacy of on-chain content. The privacy of transac-
tions can be divided into two aspects [BBB+18]: one is anonymity, meaning
that the sender and the receiver of a transaction are anonymous; the other is
confidentiality, meaning that the amount is known only to both parties in the
transaction. However, enhancing the privacy of transactions brings new chal-
lenges to the regulation of transactions [Fin18]. Cryptographic techniques are
used in many blockchain applications and academic studies to ensure the pri-
vacy of participants, but in some cases, the overuse or even abuse of privacy
protections can make it difficult to regulate and audit on-chain transactions.
So, under the condition of protecting user privacy, new research needs to give
regulators greater authority to access transaction information and find a bal-
ance between regulation and privacy to achieve controlled privacy. An efficient,
privacy-preserving, and regulatory transaction system will promote the adoption
of blockchain applications.

1.1 Related Work

1.1.1 The Importance of Privacy Protection. In Cryptocurrencies, attack-
ers can analyze a user’s trading habits through transaction records stored on-
chain. In the application of finance, attackers can not only analyze the user’s per-
sonal trading habits with the help of the on-chain content, but also infer macro
trends of the whole market, which is damage to users’ privacy and leaks the core
data of financial enterprises in some ways. In the energy industry, transaction
records may leak energy exchange information, which is very important and sen-
sitive for a country. In short, for the original system with completely transparent
records, analysts can analyze the transaction rules by records, and obtain the
amount and relationship in the transactions, which makes the user’s privacy se-
riously threatened. Therefore, many privacy protection related researches have
emerged and can be divided into two categories, depending on the used commit-
ment scheme.

1.1.2 Commitment Based Scheme. One is to use Pedersen Commitment
[Ped92] scheme, whose main problem is the commitment opening must be trans-
ferred to the receiver off-chain. If the receiver fails to open the commitment even
for a single transfer, this could render the whole account unusable. Maxwell
[Max15] first proposed the concept of confidential transactions and apply them
to Bitcoin, using Pedersen Commitment and OR-proofs to establish a payment
mechanism that hides the amount, and applies range proof to ensure the correct-
ness of transactions. Mimblewimble/Grin [Poe16], [Gri] improves Maxwell’s work
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by reducing signature consumption. Another research direction is anonymity. A
lot of work has been done to enhance anonymity through Coinjoin [Max13].
The third direction is to improve privacy and anonymity. Monero [NM+16] uses
a similar approach to Maxwell to achieve privacy protection, which enhances
the anonymity of transactions using ring signatures [MP15] and StealthAddress.
However, the signature size used by Monero increases linearly as ring mem-
bers increase. Zcash [SCG+14] offers two trading modes. One is a transparent
transaction similar to Bitcoin, and the other is confidential transaction using
zk-SNARKs proofs, which requires generating larger trusted common reference
strings (CRS) in advance.

1.1.3 Encryption Based Scheme. The other is to use the ElGamal encryption
scheme which has been studied more recently. The advantage of this scheme is
that the ciphertext part can not only keep the amount confidential, perform
homomorphic calculation, but also decrypt the transaction amount. Quisquis
[FMMO19] proposed by Fauzi et al. is an anonymous confidential transaction
system. Bünz et al. [BAZB20] proposed Zether, a smart contract on Ethereum.
They modified standard ElGamal encryption to be additively homomorphic and
used the twisted ElGamal encryption to hide balances and transfer amounts.
Chen et al. [CMTA20] proposed PGC and another form of twisted ElGamal,
and the second part of the twisted ElGamal is Pedersen commitment which can
directly be used in Bulletproofs [BBB+18] protocol.

All the three schemes design accompanying zero-knowledge proofs using
Sigma protocol [Dam02] and Bulletproofs, but in different ways to solve the in-
teroperation of ElGamal encryption and Bulletproof. Quisquis introduced Sigma
protocol to prove that ElGamal commitment and Pedersen commitment are com-
mitted to the same amount, then used Bulletproofs to the Pedersen commitment.
Zether proposed Σ−Bullets, which directly combined the Sigma protocol with
Bulletproofs. This enhancement in turn enables proofs on many different en-
codings such as ElGamal encryption. But this requires the special design and
analysis of a more complex Sigma protocol. PGC modified the standard ElGa-
mal algorithm, where the private key is independent of the commitment such
that Bulletproofs could be used directly on the twisted ElGamal encryption.
However, all these schemes require brute-force to calculate m by solving discrete
logarithms [Sha71] and this is possible only if the transaction amount m is small
(less than 232).

In addition to the limitation on the transaction amount, new randomness r
is also needed to re-encrypt a sender’s balance. There are three disadvantages:
(1) private key is required to prove the equality for re-encryption, which may
bring some security risks (2) re-encryption adds extra computation (3) the newly
added ciphertexts increase the transaction size.

1.1.4 Regulatory Studies. While trading systems provide privacy protection,
transactions should also comply with regulatory requirements. A simple regula-
tory solution is to have the participant provide the private key for the regulator,



Two Efficient and Regulatory Confidential Transaction Schemes 5

but this exists a huge security risk and is inconsistent with the privacy pol-
icy. Zcash has two features that enable the disclosure of shielded transaction
information [Zca]. Both of them need to generate a key that can be provided
for a regulator, thereby allowing them to view the details of the transaction.
As mentioned in PGC, the range proof and zero-knowledge proof can be used
to determine that the regulatory requirements are met. However, the specific
amount of the transaction cannot be obtained by the regulator, and the content
of regulation is limited, resulting in some audit, statistical and other functions
cannot be completed.

1.2 Our Contributions: ERCO

We proposed the ERCO(means efficient, regulatory and confidential), a scheme
can be directly used in most public blockchain systems with advantages of higher
encryption speed and lower communication and computational complexity. We
change the ciphertexts to be C1 = pkr0 , C2 = gr0hm, C3 = pkr1 , C4 = r0g

r1 ,
where pk = gsk is the public key, and decrypting as r0 = C4/C

sk−1

3 , hm =

C2/C
sk−1

1 . To get m from hm is easy when m is small. And in most cases, the
transaction amount m is known to both parties, and the receiver only needs to
get hm with the sk and verifys it with the known m. The benefits of this are as
following:(1) we can run the Bulletproofs on C2 directly, without a complicated
Sigma protocol like Zether (2) (m, r0) can be calculated, without additional
channel to transmit, and re-encryption is not required for range proof of sender’s
balance (3) achieving the same functionality as Zether and PGC but with less
on-chain data and time complexity.

1.3 Our Contributions: PailGamal

In ElGamal-based schemes, it is difficult to get m from hm when m is large. We
propose a new scheme, PailGamal(means combined Paillier and ElGamal), where
C1 = pkr0 mod n2, C2 = kmhr0 mod n2, C3 = pkr1 mod n2, C4 = kr0hr1 mod
n2, and amount m and the randomness r0 can both be decrypted directly. As
(m, r0) can be decrypted, the receiver can use them to check if the ciphertexts
are right. If the ciphertexts are found illegal, the receiver can submit a ZK-
proof to the blockchain and make the transaction invalid. the sender will lose
his tokens and cause no harm to the system. By game theory, the sender will
not construct illegal ciphertext and it is unnecessary to generate proofs for the
legality of ciphertexts. The new solution ensures the security and correctness of
the transaction while greatly reducing on-chain data.

In order to give regulators more power than ordinary users and complete
the regulation more effectively, we propose a new method that can compute
the private key securely. Under the condition of guaranteeing the privacy of
users’ transactions, the regulators can master all the on-chain transactions, and
achieve controllable privacy. According to Paillier encryption [Pai99], the user’s
private key sk = L(pku mod n2)/L(hu mod n2) mod n can be calculated by the
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system’s private key u, which can be used only if it is authorized by multiple
trusted parties.

The PailGamal scheme is more suitable for systems with large transaction
amount or some consortium blockchain systems. It gives full play to the advan-
tages of high trading efficiency of consortium blockchain. The system private key
can be strictly controlled by a trusted party. Users can choose one of these two
schemes according to their own needs.

2 Preliminaries

2.1 Basic Notations.

In this article, λ denotes the security parameter, and a negligible probability is
written as negl(λ). Let GroupGen be a polynomial time algorithm, input as 1λ.
The output of the GroupGen for the Modified ElGamal scheme is (p, g,G), p is a
large prime number, G is a cyclic group of order p, g is the generator of the group
G, Zp represents the integer ring of modulus p. The output of the GroupGen
for the Modified Paillier scheme is (k, n,Z∗n2), n is the modulus of the product
of two large prime numbers, Z∗n2 represents the multiplication group of natural
numbers less than n2 which are mutual prime with n2. Let x ←R Zp represent
a randomness x from Zp.

2.2 Assumptions

Definition 1 (Decisional Diffie-Hellman Assumption). Let G be the group
with the order of large prime p, and g be the generator of G, and randomly select
x, y, z ∈ Zp. Then the following two distributions
· Random quadruple R = (g, gx, gy, gz) ∈ G4

· Quadruple D = (g, gx, gy, gxy) ∈ G4(called Diffie-Hellman quadruple, short for
DH quadruple).
is computationally indistinguishable and is called the DDH assumption.

Specifically, for any adversary A, A′s advantage in distinguishing R from D
is negligible:

AdvA (λ) = |Pr [A (R) = 1]− Pr [A (D) = 1]| 6 negl(λ)

Definition 2 (Discrete Log Relation). Given g, a generator of G, and h,
a random element in G, loggh is considered difficult to compute. The specific
definition is as follows:

If for all PPT adversary A, we have

Pr [A(g, h) = x s.t. gx = h] 6 negl (λ)

It can be said that the discrete logarithm problem is difficult in G.
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2.3 Commitment

The non-interactive commitment scheme is composed of the sender and the
receiver, mainly divided into three stages. In the key generation stage, input
security parameters λ and output public parameters pp such as the public key
and private key. In the commitment stage, input the message m from message
space Mpp, and randomness r from randomness space Rpp, and calculate the
commitment Com = Com(m, r). In the opening stage, the sender can send
(m, r) to the receiver by encrypted ways or some private secure channel so that
the receiver can verify the correctness of the commitment. Formal commitment
schemes are defined by the following three algorithms.

Setup
(
1λ
)

: Input the security parameter λ, and output the public parameter
pp, which defined the message space Mpp, and the randomness space Rpp, and
the commitment space C.

Com(m, r) : The sender makes a commitment to the message m and ran-
domness r, calculates C = Com (m, r), and sends C to the receiver.

Open(C,m, r) : The sender sends (m, r) to the receiver, who verifies that the
commitment is correct, outputs accept or reject.

Definition 3 (Homomorphism Commitment). Homomorphism commitment
means that the commitment scheme satisfies homomorphism, that is, for mes-
sages m1,m2 ∈ Zp, randomness r1, r2 ∈ Zp, which satisfies the following for-
mula:

Com (m1, r1)⊗ Com (m2, r2) = Com (m1 +m2, r1 + r2)

This means that the commitment scheme satisfies additive homomorphism,
where ⊗ represents an operator, such as multiplication.

Definition 4 (Hiding Commitment). A hiding commitment scheme refers
to Com (m, r) do not leak any information related to m, protecting the safety
of the sender. Let A be an adversary against hiding, and the advantage of the
adversary is defined as

AdvA (λ) = Pr

[
β′ = β

∣∣∣∣∣ pp← Setup(1λ);m0,m1 ← A(pp);
β ←R {0, 1}, r ←R Rpp, C = Com (mβ , r) ;

β′ ← A(c)

]
− 1/2

If AdvA (λ) = 0 for the adversary with unbounded power, then this com-
mitment satisfies perfect hiding, that is the distribution of Com (m0, r0) is
the same as Com (m1, r1); If AdvA (λ) = negl (λ) for the adversary with un-
bounded power, this commitment satisfies the statistical hiding that is the dis-
tribution of Com (m0, r0) and Com (m1, r1) is statistically indistinguishable; If
AdvA (λ) = negl (λ) for adversary with PPT power, this commitment satisfies
computational hiding, that is the distribution of Com (m0, r0) and distribution
Com (m1, r1) is computationally indistinguishable.
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Definition 5 (Binding Commitment). A binding commitment scheme refers
to a commitment C can not be opened into two different (m, r), protecting the
safety of the receiver. A′s advantage is defined as

AdvA(λ) = Pr

[
Com(m0, r0) = Com(m1, r1)

∧m0 6= m1

∣∣∣∣∣ pp← Setup(1λ);
(C,m0, r0,m1, r1)← A(pp)

]
If AdvA (λ) = 0 for the unbounded adversary, this commitment scheme

satisfies perfect binding. If AdvA(λ) = negl(λ) for the unbounded adversary,
this commitment scheme satisfies statistical binding; If for any PPT adversary,
AdvA(λ) = negl(λ), this commitment scheme satisfies computational binding.

Pedersen Commitment [Ped92]. In the cyclic group G of prime order p, and
g, h ∈ G are randomly selected.

Commitment: For the input message m ∈ Zp, and randomness r ∈ Zp and
calculate C ← gmhr ∈ G.

Opening: Using (m, r) to verify the correctness of commitment C. If C =
gmhr, the receiver accepts the commitment to message m, otherwise rejects. Un-
der the discrete logarithm assumption, Pedersen commitment is perfect hiding
and computational binding. Pedersen commitment also satisfies additive homo-
morphism.

Fujisaki-Okamoto Commitment [FO97]. Suppose sender and receiver do
not know the decomposition of n, g ∈ Z∗n, h ∈ (g), the order of g and h is
large prime, which makes it infeasible to calculate the discrete logarithm in
the generated cyclic group. Sender doesn’t know loggh and loghg, randomly
selected from r ∈ {−2sn + 1, 2sn − 1}, calculate E(m, r) = gmhr mod n, send
receiver E(m, r) as a commitment to m. Sender doesn’t know the decomposition
of n and loggh, it’s impossible to find m1 6= m2 satisfy E(m1, r1) = E(m2, r2);
receiver is also unable to obtain any information about m from E(m, r), which
is statistically secure, and the commitment scheme is referred to as the Fujisaki-
Okamoto commitment, or FO commitment.

2.4 Combined Signature and Encryption Schemes

A combined signature and encryption scheme is a combination of a signature
scheme and a public key encryption scheme that share a key generation algorithm
and hence the same keypair (pk, sk). Paterson et al. [PSST11] revisited this topic
and gave a generic construction of combined public key scheme from identity-
based encryption. The scheme comprises signature scheme (Setup,KeyGen, Sign,
V erify) and PKE scheme (Setup,KeyGen,Enc,Dec). When defining a secu-
rity game against a component of the scheme, the nature of any oracles depends
on the required security of the other components. This means that the PKE
component is IND-CPA secure even in the presence of a signing oracle, while
the signature component is EUF-CMA secure even in the presence of encryption
oracle. The formal security definition of the scheme as following:
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IND-CPA security in the presence of a signing oracle. Let (KeyGen, Sign,
V erify, Encrypt,Decrypt) be a combined signature and encryption scheme. In-
distinguishability of the encryption component under an adaptive chosen plain-
text attack in the presence of an additional signing oracle is defined through the
following game between a challenger and an adversary A. The advantage of A
can be defined in the following experiment:

Adv (λ) = Pr

[
β′ = β

∣∣∣∣∣
pp← Setup(λ); (pk, sk)← keyGen(pp);

m0,m1 ← AOsign(pk);
β ←R {0, 1};C ← Enc(pk,mβ);

β′ ← AOsign(C)

]
− 1/2

The signature oracle Osign returns the result of signing the message m using
the private key sk. The encryption scheme is IND-CPA secure, if no adversary
wins the security game by non-negligible advantage, the encryption component
is IND-CPA secure in the presence of a signing oracle.

EUF-CMA security in the presence of a decryption oracle. Let (KeyGen,
Sign, V erify,Encrypt,Decrypt) be a combined signature and encryption scheme.
Existential unforgeability of the signature component under an adaptive chosen
message attack in the presence of an additional decryption oracle is defined
through the following game between a challenger and an adversary A. The ad-
vantage of A can be defined in the following experiment:

Adv (λ) = Pr

[
V erify(pk,m∗, σ∗) = 1

∧m∗ 6∈ Q

∣∣∣∣∣
pp← Setup(λ);

(pk, sk)← keyGen(pp);
(m∗, σ∗)← AOsign(pp, pk)

]
− 1/2

The set Q represents a request to the signing oracle and returns the signed
result Sign(sk,m) when the input is m. The encryption scheme is EUF-CMA
secure, if no adversary wins the security game by non-negligible advantage, the
signature component is EUF-CMA secure in the presence of a decryption oracle.

2.5 Zero-knowledge Proof

The zero-knowledge proof system consists of two parties, called Prover(P ) and
V erifier(V ), where P knows a secret, and after several rounds of interaction
between P and V , V believes that P really has the secret, without revealing any
information except that the statement is true. For example, P can convince V
that a confidential transaction is valid without revealing the exact amount of
the transaction. Zero-knowledge proof can be consist of the following three PPT
algorithms (Setup, P, V ).

Setup algorithm inputs 1λ, outputs the public parameter pp used in the proof,
such as the common reference string(CRS). Let R ⊆ X×W be the discriminable
NP relation in polynomial time, w ∈ W is the witness to statement x, and the
NP language L dependent on the public parameter pp can be defined as
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Lpp = {x|∃w : (x,w) ∈ R}

P and V are a pair of interactive algorithms that use tr ← 〈P (s), V (t)〉 to
represent the interaction between P and V , where the input for P is s and the
input for V is t. We write 〈P (s), V (t)〉 = b depending on whether the verifier
rejects, b = 0, or accepts, b = 1.

Any zero-knowledge proof should satisfy the following three requirements:
(1) Completeness: If the statement is true, the honest verifier will pass the

verification. The verifier always returns TRUE if the prover’s input is TRUE.
That is, for any (x,w) ∈ R, the following relation holds:

Pr [〈P (x,w) , V (x)〉 = 1] ≥ 1− negl (λ)

(2) Soundness: If the statement is false, the verifier cannot pass with any
cheating methods. If the input is wrong, the verifier always returns FALSE, that
is, for any x /∈ L, all dishonest prover P ∗, the following relation holds:

Pr [〈P ∗ (x) , V (x)〉 = 1] ≤ negl (λ)

(3) Zero-knowledge: No one else can get any information about the input
other than the corresponding statement.

Definition 6 (Computational Witness-Extended Emulation). (Setup, P, V )
has witness-extended emulation [BCC+16], if there is an expected polynomial
time emulator E for all deterministic polynomial time P , and for all interactive
adversaries A1,A2, there exists a negligible function negl (λ) such that:

Pr

[ pp← Setup(λ);
(x, s)← A1(pp);

tr ← 〈P ∗(x, s), V (x)〉;
A2(tr) = 1

]
− Pr

[ pp← Setup(λ);
(x, s)← A1(pp);

(tr, w′)← EO(x);
(x,w′) ∈ Rpp;
A2(tr) = 1

]
≤ negl(λ)

Where the O = 〈P ∗ (x,w) , V (x)〉 permits rewinding to a specific point and
resuming with fresh randomness for the verifier from this point onwards.

In this definition, s can be interpreted as the state of P ∗, including the
randomness. So, whenever P ∗ is able to make a convincing argument in state s,
E can extract the witness. This is why we call it an argument of knowledge.

Definition 7 (Public coin). An argument of knowledge (Setup, P, V ) is public
coin if all messages sent from V are chosen uniformly at random and indepen-
dently of the P’s messages.

Definition 8 (Range Proof). For a commitment scheme (Setup,Com) over
message space Mpp and randomness space Rpp, a zero-knowledge range proof is
a argument of knowledge for the following relation:

L = {C|∃m ∈Mpp, r ∈ Rpp s.t. C = Com (m, r) ∧ m ∈ [a, b]}
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Definition 9 (Sigma Protocol). Sigma Protocol [Dam02] is used by P to
prove that P knows some secrets. The main procedure of the protocol is as follows:

(1) Commitment: P calculates a commitment c.
(2) Challenge: V sends a random challenge e to P.
(3) Response: After receiving challenge e, P calculates response z and sends

it to V .
(4) Verification: V checks the response and outputs to accept or reject.

A sigma protocol satisfies standard completeness, special soundness and zero-
knowledge.

Definition 10 (Standard completeness). For any x and the correct (c, e, z)
and (c, e′, z′), where e 6= e′, the witness w can be calculated.

Definition 11 (Perfect Special Honest Verifier Zero-Knowledge). A pub-
lic coin argument of knowledge (Setup, P, V ) is a perfect special honest verifier
zero-knowledge argument if there exists a PPT simulator S for the interactive
adversaries A1,A2 satisfying the following relations.

Pr

[
(x,w) ∈ R;
A2 (tr) = 1

∣∣∣∣∣ pp← Setup (λ) ;
(x,w)← A1 (pp) ;

tr ← 〈P ∗ (x,w) , V (x)〉

]
= Pr

[
(x,w) ∈ R;
A2 (tr) = 1

∣∣∣∣∣ pp← Setup (λ) ;
(x,w)← A1 (pp) ;

tr ← S(x)

]

In the definition, the proof system is zero-knowledge if the adversary cannot
distinguish between real scheme and simulated scheme.

3 Security model

For the sake of simplicity as Quisquis, we focus solely on the transaction layer of
a cryptocurrency and assume network-level or consensus-level attacks are out of
scope. Intuitively, the confidential transaction system should provide authentic-
ity, confidentiality and soundness. Correctness requires that an adversary can-
not create a transaction, and transactions can only be generated by an honest
sender, that is, an attacker cannot make a transfer from any honest account. For
an adversary, the only way to success is to calculate the sk of a honest account.
Confidentiality requires that only the sender and the receiver can see the amount
of a confidential transaction, and that the encrypted amount is indistinguishable
from m0 or m1 with non-negligible advantage. Soundness requires that a sender
cannot generate an illegal but verified transaction, which is against cheating on
his own.

The main purpose of the security experiment is to capture the way an ad-
versary can interact with a honest user in the trading system. For example, an
adversary can establish a transaction through a honest user or generate a valid
transaction by himself. An adversary can initiate a specific transaction using
transact queries by an honest user, or inject a malicious transaction. An adver-
sary can also get the private key through disclose queries for any account in the



12 Min Yang, Changtong Xu, Zhe Xia, Li Wang, and Qingshu Meng

system, except for the account in the challenge stage. Below we describe oracles
adversaries can access.

Oregister: Adversary A queries this oracle to register an honest account, and
challenger CH puts the result of the query into an initially empty list called
Thonest. After receiving the query, CH responds as follows: CH generates the
sequence number i and a keypair (pki, ski), returns (i, pki, ski, balance, C) to A,
and records it in Thonest.

Odisclose(pk): A queries this oracle with an honest public key, if pki in Thonest,
removes it from Thonest to Tcorrupt, which records some dishonest account. Then
CH returns (i, pki, skibalance, C) to A. This kind of oralce captures that the
adversary can control an honest account.

Overify(tx): A queries this oracle with a transaction tx. If it is a valid trans-
action, CH returns 1; otherwise, CH returns 0.

Oinject(pks, pkr, v): A queries this oracle with parameter (pks, pkr, v) to gen-
erate a confidential transaction, where pks ∈ Tcorrupt. If V erifyTX(tx) = 1,
CH updates the state of relevant account. This means that A can generate a
transaction itself (possibly a malicious transaction).

4 Our Construction

4.1 Confidential Transaction System

Setup(1λ) : Input a security parameter λ to generate relevant parameters for
encryption and zero-knowledge proof.

CreateAddress(1λ) : Input a security parameter λ, and get some public
parameters, then execute PKE algorithm to get a keypair(pk, sk), and generate
the account according to the encryption scheme designed in this paper, calculate
C0 = Enc(pk,m0, r0) as the initial balance of the account, where m0 = 0. It
then outputs (pk, sk) and uses the public key as the address for subsequent
transactions.

Transact(sks, pks, pkr,m) : On input sender’s keypair (pks, sks) and re-
ceiver’s address pkr, suppose the sender transfer m tokens to the receiver. And
E∗s = (pkr

∗

s , g
r∗hm

∗
) represent the sender’s current balance, the specific trans-

action process is as follows:
Sender: Sender first checks whether m ∈ [0, 2n − 1] and m∗ ∈ [0, 2n − 1],

and encrypts m with pks and pkr respectively to get Es = (C1 = pkr0s , C2 =
gr0hm), Er = (C1 = pkr0r , C2 = gr0hm, C3 = pkr1r , C4 = r0g

r1), the ciphertext
of the transaction amount has five parts. The ciphertext of the balance con-
sists of two parts: E′s = (pkr

∗−r0
s , gr

∗−r0hm
∗−m) = (pkrs

′
, gr

′
hm
′
), and r0 can

be calculated. Since the r0 of each transaction can be solved, it is considered
that the randomness in the sender’s balance is known and r′ can be calculated.
The sender is also required to use zero-knowledge proofs to prove (1) that the
transaction amount m is within the specified range with range proofs π1; (2)
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that the sender’s current balance is a positive value with range proofs π2; (3)
and that the randomness in Er1 and Er2 are the same r0 with the corresponding
evidence π3. More formally, a user proves the following statement:

Srange1 = {(pks, Es) : ∃r0,m s.t. Es = Enc(pks,m, r0) ∧m ∈ [0, 2n − 1]}

Srange2 = {(pks, E′s) : ∃r′,m′ s.t. E′s = Enc(pks,m
′, r′) ∧m′ ∈ [0, 2n − 1]}

Sequal = {(pkr, Er1, Er2) : ∃r0,m s.t. Er1 = pkr0r ∧ Er2 = gr0hm}

Here, only part of the ciphertext of the receiver is proved to be valid, because
(1) Er1 and Er2 with the same randomness can compute the correct transaction
amount m, where Er1 represents the first ciphertext of Er, (2) the correctness
of r0 can be ensured by the receiver’s verification, without increase on-chain
content and (3) an adversary gets no benefit from constructing another pkr0s
and does not change the balance in the commitment. Then run the signature
algorithm to the transaction with the sender’s private key. And the final trans-
action is tx = (pks, pkr, Es, E

′
s, Er, π1, π2, π3) and corresponding signature Sig.

Intuitively, it is the receiver to verify the correctness of ciphertext. If it is a ma-
licious transaction, the receiver calls the smart contract to punish the sender,
eliminating the sender’s evil idea from the sources.

V erifyTX(tx, sig) : Verify the validity of Sig with the sender’s public key,
verify E′s = E∗s/Es and π1, π2, π3. If all the verifications pass, miners confirm that
the transaction is valid and record it on the blockchain via consensus protocol.

ConfirmTX(tx) : After the receiver obtains the on-chain transaction in-
formation, verify E′s = E∗s/Es and validity of π1, π2, π3. Then decrypt Er =

(C1 = pkr0r , C2 = gr0hm, C3 = pkr1r , C4 = r0g
r1) to get r0 = C4/C

sk−1

3 , hm =

C2/C
sk−1

1 , receiver check if gr0hm = gr0hm. If the verification pass, tx is a valid
transaction, and the reveiver update corresponding balance and randomness. If
not, then this is a malicious transaction, indicating that the sender changes the
randomness r0 in C4 so that the receiver cannot solve the correct randomness,
but the receiver can calculate pkr0 and compare with on-chain content to de-
termine whether it is a malicious transaction. During the challenge stage, the
receiver can prove that the transaction is malicious with proof of fraud, and
the honest receiver will execute the Report(tx). If the receiver does not report
the malicious transaction, the future transaction can not be constructed because
there is no correct randomness.

Report(tx) : When the receiver finds a malicious transaction, the receiver
reports the transaction to the smart contract. Record the wrong r0 on the
blockchain and prove that r0 is actually calculated by the on-chain ciphertext.
More formally, the receiver proves the following statement:

Senc =
{

(skr, r0) : ∃r0, s.t. Er4 = E
sk−1
r

r3 r0

}
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where Er3 represents the third ciphertext of Er, and generates a zero-knowledge
proof π4. After the smart contract verification, it is confirmed that this is a
malicious transaction, and then it performs a homomorphism calculation on the
receiver’s account E∗s = E′s ·Es, returns to the state before the malicious trans-
action is completed, and destroys the tokens corresponding to this transaction.
Because normal users only need to input transaction amount m when perform-
ing confidential transactions, the reason for the above malicious transaction is
that the sender changed the randomness in r0g

r1 to make it different from the
randomness r0 in gr0hm. It can be considered that this kind of transaction must
be maliciously constructed by the sender, so the smart contract can destroy the
token in the transaction to punish the malicious sender.

ReadBalance(E, sk) : Taking the sender as an example, input the private
key sks of the sender and the corresponding ciphertext Es to obtain the balance
m = Dec (Es, sks) of the sender.

Above all, the attack cannot succeed in this process, from the perspective
of game theory, an adversary will not execute an attack that is unprofitable or
even at a loss, and does not effect on the honest receiver, so we can assume that
malicious transactions won’t appear and the system can operate safely.

4.2 Security Proof

Theorem 1. The confidential transaction system satisfies correctness if there
is no PPT adversary to win the following game with non-negligible advantage.

Proof of correctness.

Game 0. A real experiment for correctness. The interaction between adver-
sary A and Challenger CH is as follows.

1. Setup: CH generates the system, sends the public key and other public
parameters to A.

2. Training: A queries the following oracles Oregister, Odisclose (pk) ,
Overify (tx) , Otransact (pks, pkr, v) , Oinject (pks, pkr, v) adaptively, and CH an-
swers these queries with corresponding results.

3. Challenge: If the adversary generates a legitimate transaction through an
honest user, then the adversary succeeds, otherwise fails.

Game 1. Game 1 is the same as Game 0, except that the extractor runs every
time an adversary creates a malicious transaction. If an adversary generates a
transaction through Otransact (pks, pkr,m), the extractor can extract the witness
w = (sks, balance,m, r).

Game 2. Game 2 is the same as Game 1, except that CH randomly selects
an honest user that the adversary wants to forge at the beginning, such as pkj
from Thonest. If the adversary obtains the private key of pkj in the training stage
or pks 6= pkj in the challenge stage, CH terminates and starts Game 2 again.
Obviously, Game 2 executes a round in polynomial time, let W be the event



Two Efficient and Regulatory Confidential Transaction Schemes 15

that CH does not terminate, the probability of Pr[W ] ≥ 1
Qhonest

. Qhonest is the
number of the honest set.

Game 3. Game 3 is the same as Game 2, except that the real zero-knowledge
proof system is replaced with the simulator and generates a simulated π. When
the adversary accesses the oracle Otransact (pks, pkr,m), the oracle runs tx ←
Transact(sks, pks, pkr,m), but the zero-knowledge proof parameters such as
CRS are replaced by simulated parameters.

The above experiments show that the system is zero-knowledge and the ad-
versary cannot obtain additional information from the interaction. If A suc-
ceeds it means that A controls an honest account to execute a transaction,
w = (sks, balance,m, r) can be obtained from the extractor, indicating that A
calculates the sender’s private key sks from public parameter, which is impossible
according to Theorem 6.

Theorem 2. The confidential transaction system satisfies confidentiality, if there
is no PPT adversary to win the following game with non-negligible advantage.

If the adversary can tell E = (C1 = pkr0 , C2 = gr0hmβ , C3 = pkr1 , C4 = r0g
r1)

is encrypted to m0 or m1. The adversary can only distinguish from the evidence
π of zero knowledge proof, or according to the final ciphertext discrimination.
The difference between Em0

and Em1
is the randomness and the encrypted mes-

sage mβ , and we conclude that the adversary cannot distinguish the ciphertext
based on hiding property of commitment.

Proof of confidentiality.

Game 0. A real experiment, the interaction between adversary A and Chal-
lenger CH is as follows.

1. Setup: CH generates the system, sends the public key and other public
parameters to A.

2. Training Stage 1: A queries the following oracles Oregister, Odisclose (pk) ,
Overify (tx) , Otransact (pks, pkr, v) , Oinject (pks, pkr, v) adaptively, and CH an-
swers these queries with corresponding results.

3. Challenge: The adversary selects pks, pkr, and two transaction amounts
m0,m1, where pks, pkr ∈ Thonest. Both m0,m1 can form a legal transaction
issued by pks. CH selects random bits β, runs tx← Transact(sks,
pks, pkr,mβ), and sends tx to A.

4. Training Stage 2: A queries the following oracles Oregister, Odisclose (pk) ,
Overify (tx) , Otransact (pks, pkr, v) , Oinject (pks, pkr, v) adaptively, and CH an-
swers these queries as stage 1. But at this time A is denied to use pks and pkr to
query the oracle Odisclose (pk), and pks to query the oracle Otransact (pks, pkr, v).

5. Guess: A outputs β′ and wins if β = β′.
Game 1. Game 1 is the same as game 0, except that the real zero-knowledge

proof system is replaced with the simulator and generates a simulated π. Based
on the property of NIZK, we can conclude that Game 0 and Game 1 are indis-
tinguishable.
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Game 2. Game 2 is the same as game 1, except that changing the encryption
of m0 in Game 1 to the encryption of m1, Game 1 and Game 2 are indistin-
guishable because of the hiding property of the commitment.

Game 3. Game 3 is the same as game 2, except that simulator is replaced
with the real zero-knowledge proof system. Game 2 and Game 3 are indistin-
guishable because of the property of NIZK. So we have:

|Pr(G3)− Pr(G0)| < negl(λ)

Theorem 3. The confidential transaction system satisfies soundness if there is
no PPT adversary to win the following game with non-negligible advantage.

Soundness requires that the sender cannot generate an illegal but verified
transaction and cannot cheat on his own. A successful attack by an adversary
means that the transferred amount is greater than the account balance, and the
transaction is valid, indicating that the adversary has constructed another pair
of opening (m′, r′) that can also open the commitment. The binding property of
commitment shows that the adversary cannot success.

The specific proof process is similar to the correctness proof, omitted here.

4.3 Regulation of Transactions

We use zero-knowledge proof to regulate the legality of transactions, mainly
proving the following two aspects: the total amount of transactions within a pe-
riod of time is in a certain range, and a transaction can be opened in accordance
with the requirements of the regulator.

Each transaction Ei needs to prove a relationship as blow:

Ssum = {(pk,Ei,MAX) : ∃sk s.t. sum = Σn
i=1Ei ∧Dec(sum, sk) < MAX},

where Ei = (C1 = pkr0i , C2 = gr0hmi , C3 = pkr1i , C4 = r0g
r1). According to

additive homomorphism of modified ElGamal, we can calculate the sum of these
values, mi and ri satisfy summ = Σn

i=1mi, sumr = Σn
i=1ri, and prove that the

sum of values in a given range.
If the user opens a particular transaction, the relation to prove can be ex-

pressed as:

Sopen = {(pk,E,m) : ∃sk s.t. pkr = (E2/h
m)sk ∧ pk = gsk}

That is, the private key is used to prove that the amount m corresponding to
this transaction is indeed encrypted in the ciphertext.

5 ERCO, the Instantiation of the Conifdential
Transaction System

In this section, we instantiate our transaction system by instantiating the newly
proposed modified ElGamal encryption and Schnorr signature and then design-
ing a zero-knowledge proof scheme with Bulletproofs.
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5.1 Instantiation of Signature and Encryption Part

4.1.1 Modified ElGamal

· Setup(1λ) : run (p, g,G)← GroupGen
(
1λ
)
, select h←R G∗, set(p, g, h,G)

as public parameter pp and m, r ∈ Zp.
· KeyGen(pp): select sk ←R Zp and calculate pk = gsk.
· Enc(pk,m, r) : calculate C1 = pkr0 , C2 = gr0hm, C3 = pkr1 , C4 = r0g

r1 ,
output E = (C1, C2, C3, C4).

· Dec(sk, C): according to E = (C1, C2, C3, C4), calculate hm = C2/C
sk−1

1 ,

r0 = C4/C
sk−1

3 , m can be calculated from hm.
In general, the transaction amount m is known to both parties of the transac-

tion, so user can take known m into calculation. If user wants to quickly calculate
m from hm, then m needs to be small enough(less than 232), and most transac-
tions are less than 232, so user can uses the algorithm of fast discrete logarithm
to compute m efficiently.

Obviously, the new algorithm satisfies correctness and homomorphism, and
at the same time, it satisfies IND-CPA security based on DDH assumption in
the standard model.The specific proof is given in Appendix A.

Kurosawa et al. [Kur02] first proved that in the standard ElGamal encryp-
tion, randomness can be reused in the single-plaintext multi-receiver setting,
that is, use pks and pkr to encrypt the same (m, r). Zether and PGC also use
Kurosawa’s result to make their zero-knowledge component more efficient. Our
modified ElGamal encryption scheme is also secure when reusing randomness.
This technique not only reduces the size of the transaction, but also makes re-
lated zero-knowledge proof more efficient.

Theorem 4. Modified ElGamal encryption scheme that reuses randomness is
IND-CPA secure based on the DDH assumption.

Game 0. In the real IND-CPA security experiment, the interaction between
challenger CH and adversary A is as blow. Let Si be the probability that A wins
in Game i.

1. Setup. CH generate system and related parameters, sends public keys
pk0 = gsk0 , pk1 = gsk1 to A.

2. Training. A generates messages to obtain encrypted ciphertext (bounded
polynomial times).

3. Challenges. A outputs two messages of equal length m0 and m1. CH selects
random bit β and randomness r0, r1, calculate X0 = pkr00 , X1 = pkr01 , Y =
gr0hmβ , Z0 = pkr10 , Z1 = pkr11 , U = r0g

r1 , and send X0, X1, Y, Z0, Z1, U to A
4. Guess. A outputs β′, and wins if β′ = β.
The adversary’s advantage in Game 0 can be defined as below.

AdvA (λ) = Pr [S0]− 1/2

Game 1. Same as Game 0, except that CH picks a random bit β and random-
ness r0, r1, s0, s1, compute X0 = pkr00 , X1 = pkr01 , Y = gs0hmβ , Z0 = pkr10 , Z1 =
pkr11 , U = r0g

s1 and send X0, X1, Y, Z0, Z1, U to A.
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In Game 1, ciphertext distribution is independent of β, so A has no message
about β, Pr [S1] = 1/2. Random quad (g, gs0 , gsk0,1 , gsk0,1·r0), (g, gs1 , gsk0,1 , gsk0,1·r1)
can be expressed as follows. In the quad (g, ga, gb, gc), assume that c = c′b, a =
c′′+c′, ciphertext can be expressed as (gc

′
0b0 , gc

′
0b1 , gc

′
0(gc

′′
0 hm), gc

′
1b0 , gc

′
1b1 , gc

′
1(gc

′′
1 a0)),

and (g, gc
′
0+c

′′
0 , gb0,1 , gc

′
0b0,1), (g, gc

′
1+c

′′
1 , gb0,1 , gc

′
1b0,1) constitute a random quad.

Next, it is proved that the difference between Pr[S0] and Pr[S1] is negligi-
ble. We construct adversary B with the same advantage as A to attack DDH
assumption. Given a quad

(
g, ga, gb, gc

)
, B determines whether it is a random

quad or a DH quad. B is constructed as follows.
1. Setup. B generates system and related parameters, treats gb0 , gb1 as the

public keys pk0 and pk1, b0 and b1 are corresponding private keys, which is
unknown to B. Then B sends pk0 = gb0 , pk1 = gb1 to A.

2. Training. A generates messages to obtain encrypted ciphertext (bounded
polynomial times).

3. Challenges.A outputs two messages of equal lengthm0,m1 and sends them
to B. B selects random bits β, calculate X0 = gc0 , X1 = gc1 , Y = ga0hmβ , Z0 =
gc
′
0 , Z1 = gc

′
1 , U = a0g

a1 , sends X0, X1, Y, Z0, Z1, U to A.
4. Guess. A outputs β′, and wins if β′ = β.
If the quad

(
g, ga, gb, gc

)
is a DH quad, that is, (g, gr0 , gsk0,1 , gsk0,1·r0),

(g, gr1 , gsk0,1 , gsk0,1·r1) consist of a DH quad, then B is the same view as Game 0,
where c = ab. If

(
g, ga, gb, gc

)
is a random quad, that is, (g, gs0 , gsk0,1 , gsk0,1·r0),

(g, gs1 , gsk0,1 , gsk0,1·r1) consist of a random quad, then B is the same view as
Game 1. Therefore, if A can distinguish between B representing Game 0 and
Game 1 with non-negligible advantage, then B can break the DDH assumption
with the same advantage.

5.1.2 Signature scheme In the signature part, Schnorr signature [Sch91] that
satisfies EUF-CMA security was selected for two reasons: (1) Schnorr signature
is the same as modified ElGamal algorithm in the key generation process (2)
signature procedure and the encryption procedure is unrelated to each other.
In addition, Schnorr signature is an efficient and multi-signature scheme that
can be constructed easily. At present, multi-signature scheme is widely used in
blockchain [BDN18].

5.2 Zero-knowledge Proof

5.2.1 Range Proof for Transaction Amount. For the transaction generated
by the sender Es = (C1 = pkr0s , C2 = gr0hm), we can directly use Bulletproofs
with input C2 = gr0hm. Readers can refer to the original Bullteproofs [BBB+18]
for more details.

5.2.2 Range Proof for Sender’s Balance. According to additive homo-
morphism of modified ElGamal, we can calculate the balance of the sender
by C ′2 = C∗2/C2 = gr

∗−rhm
∗−m = gr

′
hm
′
, where r∗ can be considered as al-

ready known, because r0 of each received transaction can be calculated from
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E = (pkr0 , gr0hm, pkr1 , r0g
r1), and the randomness of self-initiated transaction

is also known, so r′,m′ is computable. So we can directly use Bulletproofs with
input gr

′
hm
′
.

5.2.3 Aggregating Logarithmic Proofs. The two range proofs can also be
combined. As both (m, r) of the two transactions are known, we can use the
method of aggregate range proofs Σrange = (Setup, P, V ) to prove Srange. Mul-
tiple range proofs can only increase the proof size at logarithmic level. The
relationship can be written as

Srange = {(Es2, E′s2,m, r0,m′, r′) : Es2 = gr0hm∧E′s2 = gr
′
hm
′
∧m ∈ [0, 2n−1]∧m′ ∈ [0, 2n−1]}

where (m, r0) is the transaction amount and the corresponding randomness.

Lemma 1. Σrange is a public-coin SHVZK argument of knowledge for Srange.

5.2.4 Validity of Er1 and Er2. Here we need to prove that Er1 and Er2 use
the same randomness r0, and the relationship to be proved is

Sequal = {(pkr, Er1, Er2) : ∃r0,m s.t. Er1 = pkr0r ∧ Er2 = gr0hm}

We construct a non-interactive Sigma protocol Σequal = (Setup, P, V ) of
Sequal using the Fiat-Shamir heuristic [FS86]:

(1) P selects randomness a, b, and calculates A1 = pkar , A2 = gahb

(2) P computes random challenge e = Hash(Er1, Er2, A1, A2)
(3) P calculates s1 = a+ er0, s2 = b+ em, and sends A1, A2, s1, s2 to V
(4) V calculates

pks1r = A1(Er1)e

gs1hs2 = A2(Er2)e

If the two equations hold, a verifier accepts Er1, Er2 are correctly constructed.

Lemma 2. Σequal is a public-coin SHVZK argument of knowledge for Sequal.

Security Proof of Sigma protocol

Completeness: From the above process, the correctness is clear if the P
and V are executed as specified in the protocol.

Special Soundness: For certain (A1, A2), suppose there are two different
accepting transcripts (e, s = (s1, s2)) and (e′, s′ = (s′1, s

′
2)), e 6= e′, then r0,m

can be extracted by the following method. We have s1 = a+ er0, s
′
1 = a+ e′r0,

from which we can get r0 = (s1 − s′1) / (e− e′). And we can extract m with the
same method.

Special Honest-Verifier Zero-Knowledge: Assuming there is a polynomial-
time simulator S, where the simulator picks a random challenge e and response
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s1, s2, and computes A1 = pks1r (Er1)−e, A2 = gs1hs2(Er2)−e, it is clear that
(A1, A2, Er1, Er2, s1, s2) is a valid transcript, and for any probabilistic polynomial-
time verifier, these parameters are computationally indistinguishable from the
parameters in the real protocol.

5.2.5 Prove that r0 is calculated by on-chain ciphertext. When a receiver
finds a malicious transaction, the receiver can use the private key as witness to
prove the wrong randomness are indeed solved by the on-chain ciphertext, and
send it to the smart contract, the relationship to prove is

Senc =
{

(skr, r0) : Er4 = E
sk−1
r

r3 r0

}
A non-interactive Sigma protocol Σenc = (Setup, P, V ) of Senc is as below:

(1) P selects a randomness a, and calculates A1 = Ear3, A2 = pkar
(2) P computes random challenge e = Hash(Er3, Er4, A1, A2)

(3) P calculates s = a+ e · sk−1, and sends A1, A2, s to V

(4) V calculates

Esr3 = A1(Er4/r0)e

pksr = A2 · ge

If the two equations hold, the verifier accepts r0 is decrypted from the trans-
action. After the smart contract verified and confirmed that this is a malicious
transaction, it can homomorphically subtract the transaction amount and at the
same time punish the malicious sender.

Lemma 3. Σenc is a public-coin SHVZK argument of knowledge for Senc.

Security Proof of Sigma protocol

Completeness: From the above process, the correctness is clear if the P
and V are executed as specified in the protocol.

Special Soundness: For certain A1, suppose there are two different ac-
cepting transcripts (e, s) and (e′, s′), e 6= e′, then sk can be extracted by the
following method. We have s = a + e · sk, s′ = a + e′ · sk, which can get
sk = (s− s′) / (e− e′).

Special Honest-Verifier Zero-Knowledge: Assuming there is a polynomial-
time simulator S, where the simulator picks a random challenge e and response
z, and computes A1 = Esr3(gr0)−e, it is clear that (A1, Er3 , s) is a valid tran-
script , and for any probabilistic polynomial-time verifier , these parameters are
computationally indistinguishable from the parameters in the real protocol.



Two Efficient and Regulatory Confidential Transaction Schemes 21

6 Scheme Based On the Combination of Paillier and
ElGamal Algorithms

6.1 Regulatory Enhanced Schemes

From the perspective of regulation, the regulator should have the ability to know
the specific amount and destination of each transaction when necessary. The
regulator needs to access the total amount of transactions in an account over
a period to monitor criminal acts such as money laundering. But the method
based on zero-knowledge proof unable to get the specific amount, Zcash chooses
a new keypair which they can provide for a third party. It works but increases
the complexity of transaction system and on-chain content, which also brings
additional troubles to regulation and audit of transactions.

6.2 Audit and Regulation of Transactions

With the rapid development of cryptocurrencies, different suggestions have been
put forward on how to regulate them. A basic idea is that the system should
verify the legitimacy of participating entities, that is, users who have completed
authentication can proceed with subsequent transactions. Narula et al. [NVV18]
proposed an alternative approach to digital currency regulation that would re-
quire changing the structure of ledger. At present, some confidential transaction
schemes provide too strong anonymity and privacy, which might be abused in
some cases. For example, Pedersen commitment are used to hide transaction
amount, and regulators cannot obtain the specific transaction information of
users in the blockchain network. If users engage in transactions with high fre-
quency and large amount, such as money laundering, the regulator will not get
any relevant information, which will lead to some illegal behaviors that are dif-
ficult to restrain. Therefore, it is an important challenge to realize controllable
privacy and give the regulator higher authority while protecting users’ transac-
tion privacy.

According to our investigation, the US Securities and Exchange Commission
(SEC), the US Federal Bureau of Investigation (FBI), the US Financial Con-
sumer Protection Bureau (CFPB) and other law enforcement agencies have taken
regulatory actions against financial activities on the blockchain, involving anti-
money laundering, tax evasion and other issues. Especially in the rapid devel-
opment of Decentralized Finance (DeFi) in recent years, the need to strengthen
regulation is more urgent. In order to design a practical and efficient regulation
scheme, we choose the idea of verifying the legitimacy of the transaction partici-
pant, and expect to realize the regulatory confidential transaction system at the
minimum cost. Our proposal satisfies the following requirements:

(1) Every user in the system is under regulation, that is, regulation is not an
option for users.

(2) The activities of the regulator and the transactions between users are
independent of each other, that is, the implementation of regulation and audit
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does not require users to be online, and users do not have to go through the
regulator when conducting transactions.

(3) Make the minimum change to the existing user account structure. As far
as users are concerned, there is no difference between the new regulatory scheme
and the existing scheme.

The following are detailed introductions from cryptographic algorithms to
the construction of the regulated confidential transaction system.

6.3 Confidential Transaction System Based on PailGamal

6.3.1 Modified Paillier

· Setup : The Setup procedure is similar to Paillier encryption [Pai99]. We
first generate two safe primes p, q and set n = pq, u = lcm(p − 1, q − 1), where
u is the system private key controlled by a trusted party(regulator). We denote
by Bα ⊂ Z∗n2 the set of elements of order nα and by B their disjoint union for
α = 1, · · · , u. Then randomly select a base g1 ∈ B and g1 satisfy gcd(L(gu1 mod
n2), n) = 1. We compute k = gu1 mod n2, select randomness r ∈ Z∗n2 , compute
h = gr1 mod n2.

· Interact with the trusted party : It can be approximated that u = lcm(p−
1, q − 1) ≈ n/2. The user and the trusted party can interact as follows.

(1) The user chooses sk < n2

2 as the private key and randomness rs ∈ Z∗n2 , and
the user sends sk · rs to the trusted party.
(2) The trusted party computes tmp = (sk ·rs)−1 mod u · n, pkt = htmp mod n2,
and send pkt to the user.
(3) The user computes pk = pkrst mod n2 as the public key and the system
parameter (k, h, n) is public.

· Enc(m, r0, r1) : For message m, select randomness r0, r1 < n, and calculate
C1 = pkr0 mod n2, C2 = kmhr0 mod n2, C3 = pkr1 mod n2, C4 = kr0hr1 mod
n2. The ciphertext is (C1, C2, C3, C4), and C2, C4 are in the form of FO commit-
ment.

· Dec(C1, C2, C3, C4, sk): Compute Cm = C2/C
sk
1 = km mod n2,

m = L(Cm mod n2)/L(k mod n2) mod n to recover m, and compute Cr0 =
C4/C

sk
3 = kr0 mod n2, r0 = L(Cr0 mod n2)/L(k mod n2) mod n to recover r0

Obviously, the new algorithm satisfies correctness. For r0 in C2, its modulus
or the order of h is un, but for r0 in C4 its modulus or the order of k is n. To
keep the algorithm’s homomorphism in applications, we suggest r0 ∈ [0,

√
n]. At

the same time, it satisfies IND-CPA security based on DDH assumption in the
standard model. For security reasons, we choose ECDSA on the secp256k1 curve
as the signature scheme.

Obviously, the new algorithm satisfies correctness and homomorphism, and
at the same time, it satisfies IND-CPA security based on DDH assumption in
the standard model. The specific proof is given in Appendix B.

6.3.2 Combine FO Commitment and Bulletproofs
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Unlike the modified ElGamal, the ciphertext of PailGamal is the form of FO
commitment and can not be used in Bulletproof directly. We should construct a
Pedersen commitment containing the same (m, r) and construct an extra proof
that Pedersen commitment and FO commitment hiding the same (m, r) using
a new Sigma protocol that differs from above and is similar to that in Zether.
The relations are proved as below:

(1) Transaction amount m is non-negative and within the correct range (less
than 264)

(2) The sender’s balance is non-negative
Any sender does not need to prove the correctness of the ciphertext, but

the receiver needs to check the correctness. If the receiver receives a malicious
transaction, the transaction can be reported. According to the idea of game
theory, the sender will actively eliminate evil thoughts. So all the sender needs
to do is recording the ciphertext of the transaction (C1 = pkr0 mod n2, C2 =
kmhr0 mod n2, C3 = pkr1 mod n2, C4 = kr0hr1 mod n2) and range proofs evi-
dence on the blockchain, greatly reducing the on-chain data.

6.4 Construction of Transaction System

The transaction system is similar to ERCO. The main difference lies in the way
of dealing with malicious transactions, because PailGamal can directly calculate
the transaction amount m, while the algorithm in ERCO has to calculate m from
hm by brute-force enumeration, and it is almost impossible to get m from the
wrong hm. Therefore, if the amount calculated is different from the commitment
amount, the malicious transaction can be reported by a zero-knowledge proof.
The specific transaction process is as follows.

Setup(1λ) : Input a security parameter λ to generate relevant parameters for
encryption and zero-knowledge proof.

AccountInitialization(1λ) : The user selects randomness sk as the pri-
vate key and gets the public key pk following the PailGamal algorithm. Then
generates account according to the algorithm designed in this paper, calculates
C0 = Enc(pk,m0, r0) as the initial balance of the account, where m0 = 0. It
then outputs (pk, sk).

Transact(sks, pks, pkr,m) : With a sender’s keypair (pks, sks) and a re-
ceiver’s public key pkr, suppose the sender transfer m tokens to the receiver.
And E∗s = (pkr

∗

s , k
m∗hr

∗
) represents the sender’s current balance, the specific

transaction process is as follows:
Sender: The sender first checks whether m ∈ [0, 2n− 1] and m∗ ∈ [0, 2n− 1],

and encrypts m with pks and pkr respectively to get Es = (C1 = pkr0s , C2 =
kmhr0), Er = (C1 = pkr0r , C2 = kmhr0 , C3 = pkr1r , C4 = kr0hr1), the ciphertext
of the transaction has five parts. The ciphertext of the balance consists of two
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parts: E′s = (pkr
∗−r0
s , km

∗−mhr
∗−r0 = km

′
hr
′
) , and r0 can be calculated. Since

r0 of each transaction can be solved, it is considered that the randomness in the
sender’s balance is known and r′ can be calculated. The sender is also required
to use zero-knowledge proof to prove (1) the transaction amount m is within
the specified range and (2) the sender’s current balance is a positive value, then
output the evidence π5. More formally, a user proves the following statement:

Srange1 = {(pkr, Er) : ∃r0, r1,m s.t. Er = Enc(pkr,m, r0, r1) ∧m ∈ [0, 2n − 1]}

Srange2 = {(pks, E′s) : ∃r′,m′ s.t. E′s = Enc(pks,m
′, r′) ∧m′ ∈ [0, 2n − 1]}

Then run signature algorithm to the transaction with the sender’s private
key. And the final transaction is tx = (pks, pkr, Es, E

′
s, Er, π5) and corresponding

signature Sig. There is no needs for the sender to prove the ciphertext is correct,
that is, the ciphertext of Es and Er is encrypted with the same (m, r0) with the
public keys of both parties. Instead, it is the receiver who check the correctness
of ciphertext. If it is a malicious transaction, the receiver calls the smart contract
to punish the sender, which makes the sender give up the will to construct illegal
transactions.

V erifyTX(tx, sig) :Verify the validity of Sig with the sender’s public key,
verify E′s = E∗s/Es and π5. If all the verifications pass, miners confirm that
transaction is valid and record it on the blockchain via consensus protocol.

ConfirmTX(tx) :After the receiver receives a transaction, verify E′s = E∗s/Es
and validity of π5. Then decrypts to get m, r0 and checks if kmhr0 = Er2 =
kmhr0 . If the verification pass, tx is a valid transaction, and the reveiver updates
corresponding balance and randomness. If not, this is a malicious transaction,
indicating that the sender changes the randomness r0 in Er1 , or the randomness
r0 in Er4 so that the receiver cannot solve the correct randomness or transac-
tion amount. The receiver must execute the Report(tx) or the receiver can not
construct any new transaction.

When the sender and the receiver are both malicious users, the receiver does
not report after receiving malicious transactions. However, the receiver’s updated
balance in the on-chain commitment is the true amount, not the wrong amount
m(which may be greater than m), so the receiver cannot obtain more tokens.

Report(tx) :When the receiver finds a malicious transaction, he/she first gets
km = Er2/E

sk
r1 and kr0 = Er4/E

sk
r3 , and proves that they are calculated from the

on-chain ciphertext. More formally, the receiver proves the following statement:

Senc =
{(
skr, k

m, kr0
)

: ∃km, kr0 s.t. Er2 = Eskrr1 km ∧ Er4 = Eskrr3 kr0
}

and generate a zero-knowledge proof π6. If the smart contract checks the proof π6
is not valid, the report is rejected. If the proof is valid, the smart contract calcu-
late m = L(km mod n2)/L(k mod n2) mod n and r0 = L(kr0 mod n2)/L(k mod
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n2) mod n and check if kmhr0 = Er2 = kmhr0 holds. If the equation holds, the
report is rejected. If the equation does not hold, the smart contract confirms the
transaction is malicious and it returns the receiver’s account state to E∗s = E′s ·Es
by homomorphic calculation and automatically destroys the tokens correspond-
ing to this transaction. Because normal users only needs to input transaction
amount m when performing confidential transactions, the reason for the above
malicious transaction is that the attacker intentionally changed the randomness
in Er1 or Er4. It can be considered that this kind of transactions must be mali-
ciously constructed by the sender, so the smart contract can destroy the tokens
in the transaction to punish the malicious sender.

ReadBalance(E, sk) :Taking the sender as an example, input the private key
sks and the corresponding ciphertext Es to obtain the balancem = Dec (Es, sks).

Above all, attacks cannot succeed in this process. From the perspective of
game theory, an adversary will not execute an attack that is unprofitable or even
at a loss, and has no effect on the honest receiver.

6.5 Construction of Regulatory System

A regulator can calculate a user’s private key sk through the system private
key u when regulation or audit is needed. There are two advantages of this
method: (1) It is not necessary to save the user’s private key, but to calculate
it when regulation or audit is necessary. (2) There is no interaction between the
regulator and the user, and the operation of regulation or audit can be completed
independently. Compared with the scheme of encrypting a user’s private key
with the public key of the regulator, this scheme does not need to save user’s
private key in the database, does not need to transfer the private key, and avoids
the trouble of keeping user’s private key. The system private key should be
strictly controlled by a trusted party. The algorithms involved in regulation are
as follows:

Setup
(
1λ
)

: Input a security parameter λ to generate relevant parameters used
by the system, including system private key u, system parameter (k, h, n), etc.

GetUserSk (pk, u) : First, determine the user to be regulated or audited and
calculate the private key sk = L

(
pku mod n2

)
/L
(
hu mod n2

)
mod n according

to the public key pk. And put the fact that the regulator decrypted a user’s
private key on the blockchain, and then the private key can be used to verify
the validity of each transaction.

GetAmount(T id, pk, tx, sk) : With the knowledge of the user’s private key,
the regulator can obtain mi of a specific transaction or the sum of the transac-
tions within a certain period. And then record relevant information.
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AuditTx (pk,m, sum) : Audit the information obtained and the total trans-
actions of the user during a certain period. Use relevant audit tools such as range
proof etc. If the audit result is TRUE, the user is honest; FALSE indicates that
the user committed some illegal acts.

6.6 Zero knowledge Proof

6.6.1 Aggregating Logarithmic Proofs. According to additive homomor-
phism of PailGamal, a sender’s new balance is C ′2 = C∗2/C2 = km

∗−mhr
∗−r =

km
′
hr
′
. Because km

′
hr
′

is FO commitment, we need to construct a Pedersen
commitment and prove they hide the same (m′, r′) and then use Bulletproofs
with input the Pedersen commitment. Moreover, (m′, r′) is computable, and
(m, r) is the amount and randomness of the transaction, so the aggregate range
proof can directly use (m′, r′), (m, r) as witness. The relationship to be proved
consists of two parts (1)using Bulletproofs to prove m′ and m is non-negative and
within the correct range (2)proving that the balance m,m′ in FO commitment
are equal to m,m′ in Pedersen commitment, and we generalize the protocol by
simply requiring that the prover proves that t̂ =

∑m
i=1 vi ·zi+δ(y, z)+Open(T )5.

The relationship in (2) can be written as:

Sequal1 = {(C2, C
′
2) : ∃ m, r0,m′, r′0 s.t. C2 = kmhr0 ∧ C ′2 = km

′
hr
′
0∧

g
t̂−δ(y,z)−m·z2−m′·z3
1 h

τ−r0z2−r′0z
3

1 = T1,2}, T1,2 = T x1 T
x2

2

A non-interactive Sigma protocol Σequal1 = (Setup, P, V ) of Sequal1 is as
below:

(1) P selects two random numbers a, b, and calculates A1 = kahb mod
n2, A2 = g−a1 h−b1 mod p.

(2) P computes the random challenge e = Hash(C ′s, C
′, A1, A2).

(3) P calculates s1 = a+ e(mz2 +m′z3), s2 = b+ e(r0z
2 + r′0z

3), and sends
A1, A2, s1, s2 to V .

(4) V calculates

ks1hs2 = A1(C2)ez
2

(C ′2)
ez3

g
(t̂− δ(y,z))e−s1
1 hτe−s21 = A2T

e
1,2

If the two equations hold, the verifier accepts the statement above.

Lemma 4. Σequal1 is a public-coin SHVZK argument of knowledge for Sequal1.

Security Proof of Sigma protocol

Completeness: From the above process, the correctness is clear if the P
and V are executed as specified in the protocol.

5 You can see the details in [BBB+18] , equaltion (65)
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Special Soundness: For certain (A1, A2), suppose there are two different
accepting transcripts (e, s = (s1, s2)) and (e′, s′ = (s′1, s

′
2)), e 6= e′, then m can

be extracted by the following method. We have s1 = a + e(mz2 + m′z3), s′1 =
a+ e′(mz2 +m′z3), which can imply mz2 +m′z3 = (s1 − s′1)/(e− e′). In order
to extract m′ and m we need to rewind the whole Sigma protocol twice, and
use the same extraction procedure for the Sigma protocol we get the extracted
m,m′. Now we form the equations M1 = mz21 + m′z31 ,M2 = mz22 + m′z32 , and
then extract m′ and m. And we can extract r0, r

′
0 in the same way.

Special Honest-Verifier Zero-Knowledge: Assuming there is a polynomial-
time simulator S, where the simulator picks a random challenge e and response

(s1, s2), and computes A1 = ks1hs2 ·C−ez
2

2 (C ′2)
−ez3

, A2 = g
(t̂− δ(y,z))e−s1
1 hτe−s21 ·

T−e1,2 , it is clear that A1, A2, e, s1, s2 is a validate transcript, and for any proba-
bilistic polynomial-time verifier, these parameters are computationally indistin-
guishable from the parameters in the real protocol.

6.6.2 Prove that (km, kr0) is calculated from on-chain ciphertext.

When a receiver finds a malicious transaction, the receiver can use the pri-
vate key as witness to prove the wrong transaction amount and randomness are
indeed solved from the on-chain ciphertext, and sends it to smart contract, the
relationship to prove is

Senc1 =
{(
skr, k

m, kr0
)

: Er2 = Eskrr1 km ∧ Er4 = Eskrr3 kr0

}
A non-interactive Sigma protocol Σenc1 of Senc1 is as below:
(1) P selects a random number a, and calculates A1 = Ear1, A2 = Ear3, A3 =

pkar
(2) P computes the random challenge e = Hash(Er1, Er2, Er3, Er4, A1, A2, A3)
(3) P calculates s = a+ e · skr, and sends A1, A2, A3, s to V
(4) V calculates

Esr1 = A1(Er2/k
m)e

Esr3 = A2(Er4/k
r0)e

pksr = A3 · he

If the three equaations hold, the verifier believes that (km, kr0) is calculated
from on-chain transaction ciphertexts.

Lemma 5. Σenc1 is a public-coin SHVZK argument of knowledge for Senc1.

Security Proof of Sigma protocol

Completeness: From the above process, the correctness is clear if the P
and V are executed as specified in the protocol.
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Special Soundness: For certain (A1, A2), suppose there are two different
accepting transcripts (e, s) and (e′, s′), e 6= e′, then sk can be extracted by the
following method. We have s = a + e · sk, s′ = a + e′ · sk, which can imply
sk = (s− s′) / (e− e′).

Special Honest-Verifier Zero-Knowledge: Assuming there is a polynomial-
time simulator S, where the simulator picks a random challenge e and response s,
and computes A1 = Esr1(hr0)−e, A2 = Esr3(hr1)−e, it is clear that (A1, A2, e, s) is
a validate transcript , and for any probabilistic polynomial-time verifier , these
parameters are computationally indistinguishable from the parameters in the
real protocol.

6.7 Security Analysis

The on-chain content has passed the range proof and legality verification, so it
can be considered that the transaction data obtained by the regulator from the
blockchain is correct. If the ciphertext with error exists on the blockchain, that
is, there is a wrong but verified transaction. The correctness and soundness of
the transaction system ensure that the probability of such a transaction is neg-
ligible. And the ciphertext is the format of FO commitment, which has global
homomorphism. The regulator can first analyze the total transaction amount of
an address in a period, and if there is a problem, analyze the specific transaction
amount. According to the correctness of the transaction system and the correct-
ness of homomorphic encryption, it can be inferred that the scheme is auditable
and meets audit reliability.

7 Performance

7.1 Benchmark of the Scheme

We have given the prototype implementation of the scheme and implemented a
standalone cryptocurrency in C++ to evaluate the specific performance of our
project in communication and computational costs. Recall that the confidential
transaction we designed consists of the following aspects: (1) the transaction
information tx (2) the sender’s signature sig of the transaction (3) and the evi-
dence of the aggregate Bulletproofs. For ERCO, we implemented the code based
on OpenSSL and GMP, and selected elliptic curve prime256v1 at 128-bit security
level, in which each element in G requires 33Byte (32Byte for the x-coordinate
and 1 bit for the sign), and each element in Zp requires 32Byte. For PailGamal,
we implemented the code based on OpenSSL with 1536-bit security level, each
element in B requires 384Byte, and each element in Zn requires 192Byte. We im-
plemented it on the AMD Ryzen 3700X 3.59GHz CPU, and the specific results
are as follows.

7.2 Communication and Computational Costs

Scheme Based on ERCO scheme. The size of a confidential transaction
is O((2log2 (2l) + 16)G + 8Zp), where l = 32. It includes 9 elements in G for
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transaction information, 1 element in G for digital signature, aggregation range
proof (2log2 (2l) + 4)G and 5 elements in Zp, and 2G+3Zp elements for validity
proof.

Scheme Based on PailGamal. The size of a confidential transaction is
O((2log2 (2l) + 6)G+ 10B+ 5Zp + 2Zn), where l = 64. It includes 9 elements in
B for transaction information, 1 element in G for digital signature, aggregation
range proof need (2log2 (2l) + 5)G + B + 5Zp + 2Zn elements.

Table 1. The computation and communication complexity of the transaction

transaction size transaction cost(ms)

big-O byte generation verify

ERCO (2log2 (2l) + 16)G + 8Zp 1180 230.7 60.2

PailGamal (2log2 (2l) + 6)G + 10B + 5Zp + 2Zn 5044 607.3 341.2

PGC (2log2 (2l) + 20)G + 10Zp 1376 40 14

Table 2. The computation and communication complexity of reporting

Report big-O byte time cost(ms)

ERCO 2G + 2Zp 130 0.5

PailGamal 5B + Zn 2112 202.3

Concretely, Table 1 shows the result of the comparison of our two schemes
with PGC, we can say that ERCO generates a confidential transaction with
1180 bytes and the performance of ERCO is better than PGC while the aim
of PailGamal is to enhance regulation. What’s more, Table 2 shows that both
the two schemes can complete reporting operations quickly although it rarely
happens.

8 Conclusions

In this paper, we have introduced two efficient regulatory confidential trans-
action schemes. ERCO allows users to achieve a confidential transaction with
low communication and computational complexity. PailGamal allows regulators
to achieve strong power of regulation. The uncomplicated NIZK protocol we
designed can also be applied to many more scenarios.
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pkr1 , C4 = r0g
r1 , and send C1, C2, C3, C4 to A. Now DH quad

(
g, ga, gb, gab

)
corresponding to (g, gr0 , gsk, gr0·sk), (g, gr1 , gsk, gr1·sk).

4. Guess. A outputs β′, and wins if β′ = β.

The adversary’s advantage in Game 0 can be defined as below.

AdvA (λ) = Pr [S0]− 1/2

Game 1. The same as Game 0, except that CH picks a random bit β and
randomness r0, r1, s0, s1, compute C1 = pkr0 , C2 = gs0hmβ , C3 = pkr1 , C4 =
r0g

s1 and send C1, C2, C3, C4 to A.

In Game 1, ciphertext distribution is independent of β, so A has no mes-
sage about β, Pr [S1] = 1/2. (g, gs0 , gsk, gsk·r0), (g, gs1 , gsk, gsk·r1) constitute a
random quad. Assume that c = c′b, a = c′ + c′′, ciphertext can be represented
as (gc

′
0b, gc

′
0(gc

′′
0 hm), gc

′
1b, gc

′
1(gc

′′
1 a0)) and (g, gc

′
0+c

′′
0 , gb, gc

′
0b), (g, gc

′
1+c

′′
1 , gb, gc

′
1b)

constitute a random quad.

Next, it is proved that the difference between Pr[S0] and Pr[S1] is negligi-
ble. We construct adversary B with the same advantage as A to attack DDH
assumption. Given a quad

(
g, ga, gb, gc

)
, B determines whether it is a random

quad or a DH quad. B is constructed as follows.

1. Setup. B generates system and related parameters, treats gb as the public
keys pk, b is the corresponding private key, which is unknown to B. Then B sends
pk = gb to A.

2. Training. A generates messages to obtain encrypted ciphertext (bounded
polynomial times).

3. Challenges. A outputs two messages of equal length m0,m1 and sends
them to B. B selects random bits β, calculate C1 = ga0 , C2 = gc0hmβ , C3 =
ga1 , C4 = a0g

c1 , sends C1, C2, C3, C4 to A.

4. Guess. A outputs β′, and wins if β′ = β.

If the quad
(
g, ga, gb, gc

)
is a DH quad, that is, (g, gr0 , gsk, gr0·sk),

(g, gr1 , gsk, gr1·sk) consist of a DH quad, then B is the same view as Game 0,
where a = bc. If

(
g, ga, gb, gc

)
is a random quad, that is, (g, gc

′
0+c

′′
0 , gb, gc

′
0b),

(g, gc
′
1+c

′′
1 , gb, gc

′
1b) consist of a random quad, then B is the same view as Game

1. Therefore, if A can distinguish between B representing Game 0 and Game 1
with non-negligible advantage, then B can break the DDH assumption with the
same advantage.

A.2 Private key cannot be obtained from public parameters.

Theorem 6. It is known that pk = gsk mod p, the public key is pk, g, p, and
the private key is sk. Computing the private key sk from the public key pk, g, p
belongs to the discrete logarithm problem on the group, where g is the generator
of the group, and pk is the element on the group. It is difficult to calculate loggpk.
So it can be concluded that sk cannot be obtained from the public keys pk, g, p.
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B Appendix

B.1 Security Proof of Modified Paillier

Theorem 7. The modified Paillier encryption scheme is IND-CPA secure based
on the DDH assumption.

Game 0. In the real IND-CPA security experiment, the interaction between
challenger CH and adversary A is as blow. Let Si be the probability that A wins
in Game i.

1. Setup. CH generates system and related parameters, sends public keys
pk = gsk to A.

2. Training. A generates messages to obtain encrypted ciphertext (bounded
polynomial times).

3. Challenges. A outputs two messages of equal length m0 and m1. CH se-
lects random bit β and randomness r0, r1, calculates C1 = pkr0 mod n2, C2 =
hr0kmβ mod n2, C3 = pkr1 mod n2, C4 = hr1kr0 mod n2, and sends C1, C2, C3, C4

to A
4. Guess. A outputs β′, and wins if β′ = β.
The adversary’s advantage in Game 0 can be defined as below.

AdvA (λ) = Pr [S0]− 1/2

Game 1. The same as Game 0, except that CH picks a random bit β
and randomness r0, r1, s0, s1, compute C1 = pkr0 mod n2, C2 = hs0kmβ mod
n2, C3 = pkr1 mod n2, C4 = hs1kr0 mod n2 and send C1, C2, C3, C4 to A.

In Game 1, ciphertext distribution is independent of β, so A has no message
about β, Pr [S1] = 1/2. (h, hs0 , hsk, hsk·r0), (h, hs1 , hsk, hsk·r1) constitute a ran-
dom quad. Assume that c = c′b, a = c′ + c′′, ciphertext can be represented as
(hc
′
0b, hc

′
0(hc

′′
0 km), hc

′
1b, hc

′
1(hc

′′
1 ka0)) and (h, hc

′
0+c

′′
0 , hb, hc

′
0b), (h, hc

′
1+c

′′
1 , hb, hc

′
1b)

constitute a random quad.
Next, it is proved that the difference between Pr[S0] and Pr[S1] is negligi-

ble. We construct adversary B with the same advantage as A to attack DDH
assumption. Given a quad

(
h, ha, hb, hc

)
, B determines whether it is a random

quad or a DH quad. B is constructed as follows.
1. Setup. B generates system and related parameters, treats hb as the public

keys pk, b is the corresponding private key, which is unknown to B. Then B sends
pk = hb to A.

2. Training. A generates messages to obtain encrypted ciphertext (bounded
polynomial times).

3. Challenges. A outputs two messages of equal length m0,m1 and sends
them to B. B selects random bits β, calculate C1 = pkr0 = ha0 = hb·c0 , C2 =
hc0kmβ , C3 = pkr1 = ha1 = hb·c1 , C4 = hc1kc0 , sends C1, C2, C3, C4 to A.

4. Guess. A outputs β′, and wins if β′ = β.
If the quad

(
h, ha, hb, hc

)
is a DH quad, that is, (h, hr0 , hsk, hsk·r0),

(h, hr1 , hsk, hsk·r1) consist of a DH quad, then B is the same view as Game 0,
where c = a · b. If

(
h, ha, hb, hc

)
is a random quad, that is, (h, hs0 , hsk, hsk·r0),
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(h, hs1 , hsk, hsk·r1) consist of a random quad, then B is the same view as Game
1. Therefore, if A can distinguish between B representing Game 0 and Game 1
with non-negligible advantage, then B can break the DDH assumption with the
same advantage.

B.2 Private key cannot be obtained from public parameters

Theorem 8. For N = pv11 . . . p
vm
m .λ(N) = lcm(pv1−11 (p1− 1), . . . pvm−1m (pm− 1))

L is a multiple of λ(N). So there is a polynomial time algorithm, when input
(N,L), decomposes N with non-negligible probability.

Set pk = hsk mod n2, user’s public key is h, n2, pk, and private key is sk.
To obtained the private key sk from the public key h, n2, pk, which is a

class[n] problem of pk = 1, we can say the problem is still unsolvable. The
reason for this is that, assuming that from the public key h, n2, pk gives sk such
that pk = hsk mod n2 is true, we can also compute x such that h = pkx mod n2.
So sk · x = 1 mod λ(n2), that λ(n2)|(sk · x− 1), so based on Theorem 7, we can
decomposes n2, which solves the problem of large number decomposition. So the
public key h, n2, pk cannot be used to obtain the private key sk.
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