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ABSTRACT
We propose Veksel, a simple generic paradigm for constructing

efficient non-interactive coin mixes. The central component in

our work is a concretely efficient proof 𝜋1-many that a homomor-

phic commitment c
∗
is a rerandomization of a commitment c ∈

{c1, . . . , cℓ } without revealing c. We formalize anonymous account-

based cryptocurrency as a universal composability functionality

and show how to efficiently instantiate the functionality using

𝜋1-many in a straightforward way (Veksel). We instantiate and im-

plement 𝜋1-many from Strong-RSA, DDH and random oracles tar-

geting ≈ 112 bits of security. The resulting NIZK has constant

size (|𝜋1-many | = 5.3KB) and constant proving/verification time (≈
90ms), on an already accumulated set. Compared to ZCash—which

offers comparable marginal verification cost and an anonymity set

consisting of every existing transaction—our transaction are larger

(6.2 KB) and verification is slower. On the other hand, Veksel relies
on more well-studied assumptions, does not require an expensive

trusted setup for proofs and is arguably simpler (from an imple-

mentation standpoint). Additionally we think that 𝜋1-many might

be interesting in other applications, e.g. proving possession of some

credential posted on-chain. The efficiency of our concrete NIZK re-

lies on a new Ristretto-friendly elliptic curve, Jabberwock, that is of

independent interest: it can be used to efficiently prove statements

on “committments on commitments” in Bulletproofs.
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1 INTRODUCTION
Cryptocurrencies allow for fully decentralized and publicly verifi-

able currency systems. An interesting problem in cryptocurrencies

is that of guaranteeing some level of privacy by making impossible

to an observer to learn anything about the “flow of money". While

users in the network only require known pseudonyms to be identi-

fied, we know that they are not sufficient to achieve an acceptable

level of privacy [29, 31].

Several prior works address this problem (ZeroCash, Monero,

OmniRing). The main challenge they face is to build solutions

that are private but can still scale. An important requirement for

scalability are the efficiency of spending and verifying transactions

as well as their size. Often this boils down to the efficiency and proof

size of their underlying non-interactive zero-knowledge schemes—or
NIZKs—these works rely on (a NIZK is a cryptographic primitive

allowing to prove knowledge of a secret without leaking anything

about it).

Some protocols (e.g., Monero
1
and OmniRing [27]) inherently

trade efficiency against privacy requirements. They need to keep

a relatively small anonymity set
2
(a ring of signatures, in their

specific constructions) for each transaction: a set of “coins” that

a spending transaction can refer to. Other solutions (e.g. Zcash

[24]) do not have this limitation, but have other caveats. First, they

rely on NIZKs where the setup needs to be performed by a trusted

authority. For this type of setup, even emulating the trusted au-

thority through a distributed protocol can be expensive in terms

of resources and organization[3]. Second, their underlying NIKZ

depends on cryptographic assumptions that are not well-studied

yet and hard to scrutinize in general (i.e., knowledge-of-exponent-

flavored assumptions [20]).

In this work we address the question of how to design cryptocur-
rencies whose efficiency does not degrade with privacy requirements.
A focus on transaction-size is particularly important since nodes

need to store transaction histories whose size is often in the tens

of millions. Addressing this question, we also focus on solutions

that rely on “minimal” cryptographic assumptions. In particular we

want to design solutions that rely on transparent proof systems, i.e.

that do not require a trusted setup and avoid the use of non-well

studied assumptions such as knowledge-of-exponent.

Along the way, we study the problem of formalizing and obtain-

ing privacy in account-based cryptocurrencies. We believe that this

model is of interest because many existing cryptocurrencies (e.g.

Ethereum) are account-based. Additionally, some of the approaches

in literature to balance privacy and accountability are account-

based [16]. In this setting where users maintain fixed accounts over

time, however, we cannot hope to achieve the same levels of pri-

vacy of the UTXO (Unspent Transaction Output) model where each

transfer can refer to freshly created pseudonyms. Though weaker,

this privacy model is still interesting in some applications. To the

best of our knowledge it has not been formally investigated before.

1.1 Contribution
Our main contribution is a concrete construction for a cryptocur-

rency with privacy-preserving properties that supports arbitrary-
sized anonymity sets. We obtain small concrete transaction sizes

compared to other solutions in literature (see Figure 1) and efficient

marginal costs of verification and spending (see Figure 2 and Section

5). Our construction relies on standard cryptographic assumptions

and on transparent non-interactive zero-knowledge proofs (secure

in the random oracle model). Our concrete efficiency relies on im-

provements on the state of art of zero-knowledge arguments over

1
https://www.getmonero.org/

2
This is roughly the subset of existing transactions a spent transaction can be narrowed

down to. If a protocol supports a full anonymity set then this set consists of the whole

history of transactions so far.



Anonymity Set Concrete Tx Size
Monero [1] < 2

4
1.4 KB

QuisQuis 2
4

13 KB

Lelantus
2
10 2

10
2.7 KB

Lelantus
2
14 2

14
3.9 KB

Lelantus
2
16 2

16
5.6 KB

Omniring
2
10 2

10
1.0 KB

Omniring
2
14 2

14
1.3 KB

Omniring
2
16 2

16
1.4 KB

Zcash
†

Any < 1 KB

Zerocoin Any 45 KB

Veksel Any < 6.3 KB

†
: relies on large-scale trusted setup and relatively new assumptions.

Figure 1: Comparison of transaction size depending on
anonymity sets. Veksel obtains the best concrete size for
arbitrary anonimity sets from well-studied assumptions.

accumulators that may be of independent interests (more details

below). We implement our construction in Rust; its code is open

source and available at [2].

Along the way we make the following contributions:

• We formalize privacy-preserving cryptocurrencies with ac-

counts (Section 6) through a UC functionality.

• We provide a highly general and modular construction for

this functionality (Section 3). By a modular description, our

construction can be further improved by simply replacing

some of its building blocks without having to prove its se-

curity again. Its more concrete version is described (in light

of following sections) in Appendix A. Our solution support

coins of arbitrary value and can be extended to the UTXO

setting (see Appendix D).

• We describe a new concrete transparent NIZK to prove a

one-out-of-many relation [23], to prove that one public com-

mitment is rerandomized from a set of existing commitments.

Our techniques rely on commit-and-prove
3
zero-knowledge

proof accumulators in unknown-order groups [7] and on

optimized relations in Bulletproofs [11]. One challenge we

need to solve is how to commit (and accumulate) to coins.

Since coins are also “commitments” it is not immediate to

have an efficient proof system that supports this double level

of commitments. In our solutions we adopt a new SNARK-

friendly elliptic curve that is compatible with Curve25519.
We believe this curve (which we dub Jabberwock) and its sur-
rounding techniques can be of independent interest. Among

others, its applications can be directly used to obtain efficient

anonymous credentials [12].

1.2 Prior Works
Groth&Kohlweiss: In [23], Groth and Kohlweiss constructed an

efficient proof of size 𝑂 (log𝑛) for relation {𝑟 : ∃𝑖 st Comm(0; r) =
ci} where c1, . . . , c𝑛 are Pedersen commitments given as input. Us-

ing this they showed how to exploit the homomorphic property

3
As in [13] we label as “commit-and-prove” a proof system that works efficiently over

a commitment representation and can thus be composed with others of the same type.

Spend (time) Verify (time) Tx Size Amounts
Monero 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛) Yes

QuisQuis 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛) Yes

Lelantus 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (log𝑛) Yes

Omniring 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (log𝑛) Yes

Zerocash 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (1) Yes

Zerocoin 𝑂 (1) 𝑂 (1) 𝑂 (1) No

Veksel 𝑂 (1) 𝑂 (1) 𝑂 (1) Yes

Figure 2: Asymptotic marginal cost of verification / spending
time and transaction size. Above 𝑛 is the anonymity set size.

of the commitment scheme to create concretely efficient anony-

mous transactions. Similar techniques has since been widely ex-

plored in Omniring [27], RingCT3.0 [32] and Lelantus [25]. These

works have different concrete efficiency, but share the same as-

ymptotic efficiency: 𝑂 (log𝑛) transaction size and inherent 𝑂 (𝑛)
spending/verification time since the size of the statement proved

in zero-knowledge is linear in the anonymity set. Due to the linear

verification time these approaches only scale to anonymity sets of

size ≈ 2
16

in practice, even with batch verification techniques.

Zerocoin: Zerocoin [30] uses an RSA accumulator to “compress”

the set of coins, a coin is spent by opening the unique serial num-

ber of the coin and proving its membership in the accumulator in

zero-knowledge. This enables𝑂 (1) spending/verification assuming

the coins have been aggregated ahead of time. Unfortunately the

“double discrete-log” proof in Zerocoin relies on cut-and-choose and

is therefore concretely inefficient: over 45 KB for 128-bits of secu-

rity. Additionally Zerocoin does not enable coins to have arbitrary

denominations.

Zcash: Zcash (which roughly implements Zerocash [6]) applies

the same technique of “compressing the statement" using an ac-

cumulator (Merkle tree) which enables it to achieve logarithmic

marginal spending/verification cost. Zcash verifies the Merkle path

inside a zk-SNARK (Groth16 [22] in the current implementation),

which hides the index of the coin to be spent and compresses the

membership proof down to 𝑂 (1) with very small constants. In

terms of concrete efficiency, Zcash is currently the most efficient

decentalized payment system with a “full” anonymity set.

QuisQuis: QuisQuis [19] seeks to mitigate the issue of an ever-

growing set of “spending tags” which must be maintained by the

nodes in Zerocash to avoid double spending. This is achieved by

having the spender essentially do a shuffle locally: the spender

picks 𝑛 other unspend coins along with the coin he wishes to spend,

then proves that she can spend one of the 𝑛 + 1 coins, correctly

rerandomize the remaining 𝑛 coins and post the 𝑛 new rerandom-

ized coins on the chain. Since QuisQuis relies on posting the new

set of outputs to the chain, the transaction size of this approach is

𝑂 (𝑛). The anonymity set also inherently consists (at best) of the

set of unspent outputs (as oppose to the set of all coins created).

1.3 Technical Overview
2



cn cn
∗𝐴 𝑐 = Comm

□ (cn; 𝑟𝑐 )𝐴 = Accum(𝑆coins)

𝜋
rerand

𝑐 = Comm
□ (cn; 𝑟𝑐 )

cn
∗ = cn + Comm

⃝ (0; 𝑟 )

𝜋set-mem

𝑐 = Comm
□ (cn; 𝑟𝑐 )

cn ∈ Set(𝐴)

Figure 3: The 𝜋1-many = (𝜋set-mem, 𝜋rerand) argument consists of two sub-proofs: a) A set membership proof, proving that
𝑐 = Comm

□ (cn; 𝑟𝑐 ) commits to cn ∈ 𝐴. b) A rerandomization proof, showing that the same 𝑐 = Comm
□ (cn; 𝑟𝑐 ) commits to

cn = cn
∗ − Comm

⃝ (0; 𝑟 ) where cn∗ is a part of the statement (public).

Basic Setting. At a basic level our approach to decentralized pay-

ments is similar to that of Zerocoin[30], however we aim at sup-

porting coins of arbitrary (hidden) denominations, in this sense we

diverge from the simpler setting in [23, 30] where all coins have

the same denomination. For sake of providing intuition, in this

section we describe the account-based model where each party has

a commitment (bal𝑖 )𝑖 stored on-chain and locally holds the private
balance 𝑣𝑖 that is the opening of bal.

To transfer a certain amount 𝑣 , a sender party S will create a
coin spendable by the recipient R, that is a commitment to a triple

consisting of: a) 𝑣 the value of the coin (payment amount) b) the
identity of the recipient c) a random spending tag 𝑡 . The sender then

broadcasts this commitment together with an encryption through

pkR of its opening. Naturally the sender should also be able to show

they can afford the transfer; we temporarily ignore this issue and

discuss how to approach it later in this section. Once they have

observed that someone created a new coin, all users keep track of

it in a set 𝑆coins of existing coins.

In order to claim the transfer—to collect the coin—user R will

need to do two things: (i) show that it knows the opening of one

among the existing coins; (ii) reveal its tag 𝑡 so that the coin cannot

be spent again. The first step requires some care because we want

the transfer to be somewhat private, i.e. with the exception of S
and R, no observer of the system should learn anything about the

coin being collected. To do that we need to apply a zero-knowledge

proof showing we know the opening of some coin in 𝑆coins such

that this coin encodes tag 𝑡 .

Because we require each coin to denote a custom transferred

amount, we now have an additional challenge. When parties ob-

serve that R collects a coin, they should have a way to update R’s
balance balR without having R reveal the value of the coin. While

this could be done using the homomorphic properties of commit-

ments by “adding” the coin
4
to the balance, we cannot reveal the

coin itself either (that would, at the least, leak the sender!). Thus we

4
We temporarily ignore the issue that a coin also commits to other elements, such as

the tag 𝑡 , when performing this homomorphic operation; this can be simply addressed.

We refer the reader to our main construction.

let R produce a rerandomization
5
cn
∗
of the collected coin; parties

can now use homomorphically add the latter to balR .
Following the approach outlined above, collecting a coin requires

R to prove in zero-knowledge that the rerandomized coin cn
∗
opens

to same amount (and tagging information) as one of the coins in

𝑆coins
6
. In the remainder of this section we describe our technical

solutions to efficiently produce and verify this proof.

Our techniques. As a first step towards our goal, we let parties keep

a compressed digest to the set 𝑆coins, through algebraic accumula-
tors [4, 7, 9, 12]. Thus, given a set 𝑆 , we can produce 𝐴 = accum(𝑆),
a binding (but usually not hiding) compressing commitments to

𝑆 . An important feature of accumulators is that it allows to prove

membership of elements “inside” 𝐴 efficiently (that is, with short

certificates and fast verification). In order to efficiently prove the de-

sired relation in zero-knowledge we adopt a modular approach and

we split it in two components, set membership and rerandomiza-

tion. We thus apply two proof systems that are specifically efficient
for each of the two relation components. To ensure that they refer

to the same content, we use a commit-and-prove approach, and

link them through a hiding commitment to the coin cn𝑘 we are

collecting. We now describe this process in more detail.

Recall that coins are commitments to pairs of amounts and ad-

ditional information (tags and recipient identity). We denote by

Comm
⃝ (·; ·) the commitment procedure that produces coins and

by Comm
□ (·; ·) the commitment procedure we use to link the two

proofs mentioned above. The first parameter in each is the mes-

sage we are committing to (which possibly has additional structure)

while the second parameter denotes the randomness. For our con-

crete case, the two commitment schemes can be thought of as

variants of Pedersen commitments in different groups. In order to

prove that a coin 𝑐𝑘 is valid without revealing it, R first produces a

5
In an homomorphic commitment scheme we can always achieve rerandomization by

adding a commitment to 0.

6
Obviously cn

∗
should also open to the same tag and recipient as the collected coin in

𝑆coins . These are public values and we do not to include them in the “zero-knowledge”

part of the proof. We solve this instead by exploiting the homomorphic properties of

commitments. See main construction.
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commitment 𝑐 ← Comm
□ (cn𝑘 , 𝑟𝑐 ) where 𝑟𝑐 is some freshly sam-

pled randomness. Then R broadcasts 𝑐 together with two proofs

(𝜋set-mem, 𝜋rerand) with the following semantics:

• 𝜋set-mem: “I know (cn𝑘 , 𝑟𝑐 ) such that cn𝑘 ∈ Set(𝐴) and 𝑐 =

Comm
□ (cn𝑘 , 𝑟𝑐 )”.

• 𝜋
rerand

: “I know (cn𝑘 , 𝑟𝑐 , 𝑟 ) such that cn∗ = cn𝑘+Comm
⃝ (0; 𝑟 )

and 𝑐 = Comm
□ (cn𝑘 , 𝑟𝑐 )”.

In addition to the above, user R needs to prove knowledge of

an actual opening of cn
∗
that refers to the revealed tag, identity

R and some secret value 𝑣 . In our concrete construction we use

standard sigma protocols to prove knowledge of (𝑣, 𝑟 ) such that

cn
∗ = 𝑓 𝑣𝑔H(t | |R)ℎ𝑟 , where H is a collision resistant function that

maps to a valid exponent for 𝑔. In a sense we prove only a partial

opening of cn
∗
since 𝑔H(t | |R) can be subtracted publicly from cn

∗
.

We now discuss how we efficiently instantiate 𝜋set-mem and

𝜋
rerand

. We choose to efficiently instantiate 𝜋set-mem with some of

the components in [7]—which describes efficient commit-and-prove

zkSNARKs over accumulated sets—and 𝜋
rerand

with Bulletproofs,

a transparent zero-knowledge schemes with short proofs that are

compatible with some instantiations of [7].

We need some care in applying these techniques. Notice that the

proof of rerandomization involves two different types of commit-

ments in the statements (Comm
⃝
and Comm

□
). Since their output

may correspond to different groups, this can make it hard to ef-
ficiently instantiate the rerandomize relation for Bulletproofs. To

solve these efficiency challenges we restrict what coins we can

use in our systems (what coins are permissible) and describe a

new SNARK-friendly curve whose arithmetic can be efficiently

described as field operations when instantiating Bulletproofs over

Ristretto25519.

Figure 3 illustrates a simplified version of our approach. We refer

the reader to Section 4 for details.

Outline. In the next section we describe preliminaries. In Section 3

we describe the bulk of our construction with a simplified model

which we also introduce informally in the same section. Our formal

model in UC (and respective adaptation of our construction in UC)

is deferred to Section 6. Section 4 describes our instantiations (proof

schemes, curves, etc.). We evaluate Veksel in Section 5.

2 PRELIMINARIES
2.1 Notation
When describing an NP relation that we prove through a zero-

knowledge argument, we use a semicolon to distinguish between

public input and private witness as in 𝑅(𝑥 ;𝑤). In the context of

commitments we use a semicolon to distinguish between the com-

mitted value and the masking randomness as in Comm(ck, 𝑢; 𝑟 )
where 𝑢 is the committed value.

We assume all cryptographic algorithms implicitly take as in-

put their respective public parameters whenever this yields no

unambiguity, For example we may write Comm(𝑢; 𝑟 ) to denote

Comm(ck, 𝑢; 𝑟 ) whenever ck is obvious from the context.

2.2 Commitments
We use the following syntax for commitments:

Definition 2.1 (Commitments). A commitment scheme C is a pair

of algorithms (Setup,Comm) with syntax:

• Setup(1𝜆) → ck : generates a commitment key ck;

• Comm(ck,𝑚; 𝑟 ) → 𝑐𝑚 : produces commitment 𝑐𝑜𝑚𝑚 to

message𝑚 with randomness 𝑟 .

As it is standard, we callmessage space the set of of𝑚-s for which

Comm is defined and commitment space its range, Rng(Comm).
We require commitments to be perfectly hiding—the distribution
of Comm(ck,𝑚; 𝑟 ) is identical to the uniform distribution over

the commitment space—and computationally binding—no efficient

adversary can produce two pairs (𝑚, 𝑟 ), (𝑚′, 𝑟 ′) such that𝑚 ≠𝑚′

and Comm(ck,𝑚; 𝑟 ) = Comm(ck,𝑚′; 𝑟 ′). Sometimes we want to

require binding only with respect to messages from a set P of

permissible messages, a subset of the message space. In that case

we say the scheme is binding “with respect to set P”.

2.3 Accumulators
Definition 2.2 (Accumulator scheme). An accumulator scheme

Acc over universeU𝜆 (Acc) (where 𝜆 is a security parameter) con-

sists of PPT algorithms Acc = (Setup,Accum, PrvMem,VfyMem)
with the following syntax:

Setup(1𝜆) → (pp) generates public parameters pp.

Accum(pp, 𝑆) → 𝐴 deterministically computes accumulator 𝐴 for

set 𝑆 ⊆ U𝜆 (Acc).
PrvMem(pp, 𝑆, 𝑥) →𝑊 computes witness𝑊 that proves 𝑥 is in

accumulated set 𝑆 .

VfyMem(pp, 𝐴, 𝑥,𝑊 ) → 𝑏 ∈ {0, 1} verifies throughwitnesswhether

x is in the set accumulated in𝐴. We do not require parameter

𝑥 to be inU𝜆 (Acc) from the syntax.

An accumulator scheme should satisfy correctness—the accu-

mulator works as expected—and soundness—no efficient adver-

sary can choose a set 𝑆 and then find a witness that checks on

Acc.Accum(pp, 𝑆) and 𝑥 ∉ 𝑆7.

Remark 1 (Efficient Insertion). Throughout this work we as-
sume an additional (deterministic) algorithm Acc.Add for a scheme
Acc such that for all 𝜆, 𝑥 ∈ U𝜆 (Acc), 𝑆 ⊆ U𝜆 (Acc)𝐴′ = Acc.Add(𝐴, 𝑥)
is such that, if 𝐴 = Acc.Accum(𝑆) then 𝐴′ = Acc.Accum(𝑆 ∪ {𝑥}).

2.4 NIZKs
Non-Interactive Zero-Knowledge schemes (or NIZKs) require a

reference string which can be either uniformly sampled (a urs), or

structured (a srs). In the latter case it needs to be sampled by a

trusted party. In this work we use and assume transparent NIZKs,
i.e. whose algorithms use a reference string urs sampled uniformly.

Definition 2.3. A NIZK for a relation family ℜ = {ℜ𝜆}𝜆∈N is

a tuple of algorithms ZK = (Prove,VerProof) with the following

syntax:

• ZK.Prove(urs, 𝑅, 𝑥,𝑤) → 𝜋 takes as input a string urs, a

relation description 𝑅, a statement 𝑥 and a witness𝑤 such

that 𝑅(𝑥,𝑤); it returns a proof 𝜋 .

7
These definitions are standard and we refer the reader to [9] for a formal treatment.
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• ZK.VerProof (urs, 𝑅, 𝑥, 𝜋) → 𝑏 ∈ {0, 1} takes as input a

string urs, a relation description 𝑅, a statement 𝑥 and a proof

𝜋 ; it accepts or rejects the proof.

We require a NIZK to be complete, that is, for any 𝜆 ∈ N, 𝑅 ∈
ℜ and (𝑥,𝑤) ∈ 𝑅 it holds with overwhelming probability that

VerProof (urs, 𝑅, 𝑥, 𝜋) where urs ←$ {0, 1}poly(𝜆) and proof 𝜋 ←
Prove(urs, 𝑅, 𝑥,𝑤).

We also require knowledge-soundness and zero-knowledge to

hold. Informally, the former states we can efficiently “extract” a

valid witness from a proof that passes verification; the latter states

that the proof leaks nothing about the witness (this is modeled

through a simulator that can output a valid proof for an input in

the language without knowing the witness). We use variants of

these notions with certain composability properties, e.g. requiring

auxiliary inputs and relation generators. For a full formal treatment

of these, we refer the reader to Sections 2.2 and 2.5 in [7].

Whenever the relation family is obviously defined, we talk about

a “NIZK for a relation 𝑅”.

Remark 2 (Relations and Public Inputs). In the algorithms
above we have both a relation 𝑅 and a public input 𝑥 as inputs.
The reason is that in a soundness experiment, 𝑅 may be constrained
to be from a certain distribution on ℜ whereas 𝑥 can be be chosen
arbitrarily by the adversary. See for example Section 2.2 in [7]. In our
constructions we often assume prover and verifier to implicitly take
as input the relation description8.

In the proof of security of our construction we require an ad-

ditional property for one of our NIZKs, simulation-extractability.
Namely, extractability should hold even with respect to an adver-

sary that has access to simulated proofs. We refer the reader to [21]

for formal definitions.

Trusted Accumulator-Model. In our concrete constructions

we will use NIZKs for relations parametrized by accumulators. This

requires a tweak in the soundness definition: a malicious adver-

sary should be able to select an arbitrary set, but the accumulator

over that set should be computed honestly. Given an accumulator

scheme Acc, we informally talk about this specific notion as “se-

curity under the Trusted Accumulator-Model for Acc”. We do not

provide formal details since this model corresponds to the notion

of partial-extractable soundness in Section 5.2 in [7]
9
; we refer the

reader to this work for further details. This weaker model fits our

applications where an accumulator of existing coins is maintained

by the network.

Modular NIZKs through Commit-and-Prove. We use the

framework for black-box modular composition of commit-and-

prove NIZKs (or CP-NIZKs) in [13] and [7]. Informally a CP-NIZK

is a NIZK that can efficiently prove properties of committed inputs

through some commitment scheme C
□
. Let 𝑥 be a public input and

𝑐□ a commitment. Such a scheme can for example prove knowl-

edge of (𝑢,𝜔, 𝑟 ) such that 𝑐□ = Comm
□ (𝑢; 𝑟 ) and that relation

8
This parameter is usually short. For example, in Section 4.1 we let relations be

described by a specific accumulator.

9
We notice that their model uses a slightly different language and formalizes accumu-

lators as (binding-only) commitments for commit-and-prove NIZKs.

𝑅inner (𝑥 ;𝑢,𝜔) holds. We can think of 𝜔 as a non-committed part

of the witness. Besides the proof, the verifier’s inputs are 𝑥 and 𝑐□.

In Section 4.2 we will make use of the following folklore composi-

tion to obtain efficient NIZKs from CP-NIZKs. Fixed a commitment

scheme and given two CP-NIZKs CP,CP′ respectively for two “in-

ner” relations 𝑅 and 𝑅′, we can prove their conjunction (for a shared
witness 𝑢) 𝑅∗ (𝑥, 𝑥 ′, 𝑢, 𝜔, 𝜔 ′) = 𝑅(𝑥,𝑢, 𝜔) ∧ 𝑅′(𝑥 ′, 𝑢, 𝜔 ′) like this:

the prover commits to 𝑢 as 𝑐□ ← Comm
□ (𝑢, 𝑟 ); generates proofs

𝜋 and 𝜋 ′ from the respective schemes; it outputs combined proof

𝜋∗ := (𝑐□, 𝜋, 𝜋 ′). The verifier checks each proof over respective

inputs (𝑥, 𝑐□) and (𝑥 ′, 𝑐 ′□).
The following theorem (informally stated) is a direct conse-

quence of Theorem 3.1 in [13].

Theorem 2.4 (Black-Box Composition of CP-NIZKs). The con-
struction above is a secure NIZK for the conjunction relation 𝑅∗.

We can see Bulletproof [11] as a CP-NIZK since it works effi-

ciently over an implicit commitment representation (see discussion

in [13]). We use this fact in our instantiations (in Section 4).

3 A CONSTRUCTION FOR ANONYMOUS
ACCOUNT-BASED PAYMENTS

In this section we provide intuitions about our model and our main

construction. Our description tries to be as general as possible

and to push all features that can be seen as optimizations to our

instantiations in Section 4. The bulk of our construction is in Figure

4. A more concrete and optimized version is in Appendix A.

3.1 Intuition on the Model and an Auxiliary
Syntax

While we present a fully formal model in section 6, here we describe

our construction of an anonymous payment system through a sim-

plified syntax which we dub a “Decentralized Unlinkable-Payments”

scheme (DUP). Thus we can present our scheme without having to

dive into the technicalities of universal composability right away.

Model Intuition. The intuition about our architecture is a as

follows (more information about syntax further in this section):

• we assume a setup stage where parties are assigned initial

balances and public parameters of the system. Each party

holds a current ledger state which contains their knowledge

about the current state of affairs depending on the history

of transactions.

• a transfer from S to R occurs with party S producing a

“create” transaction. This contains a coin and a proof of its

validity. At the same time party S will also privately send

auxiliary information to R which the latter can later use to

claim the coin.

• to claim a coin and update their balance, a receiver of a coin

will produce a “collect” transaction through the auxiliary

information received earlier. Notice that which coin is being

collected should remain hidden by the security properties.

• verification and processing of a coin: after a transaction (of

type create or collect) is broadcast, all parties verify their

validity and update their state accordingly. Verification of

create-transactions should ensure the sender can afford them;
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verification of collect-transactions should ensure receivers

are collecting existing coins to them and that these have not

been claimed before.

Security Intuition. Our security properties are later modeled

though the functionality in section 6, but intuitively our model cap-

tures: anonymity (the adversary cannot link honest create/collects

and values of transactions are hidden), balance conservation (no

money can be created in the system), security of balances (the adver-
sary cannot “steal money” from honest parties) and “Faerie gold”-
type attacks where a corrupted party can create multiple coins

accepted by honest parties of which only a subset can be spent.

Syntax. A formal description of the syntax we assume:

Definition 3.1. A DUP scheme consists of a tuple of PPT algo-

rithms DUP = (Setup,CreateCoin,CollectCoin,Vfy, Process) with
the following syntax:

Setup(1𝜆) → (pp,L0, (st𝑖 )𝑖∈[𝑚] ) Generates public parameters, an

initial ledger L0 and the initial private state of all users;

CreateCoin(pp, stS, pkR , 𝑣) → (st′𝑆 , auxcoin, txcreate) Makes a coin

c of value 𝑣 payable to user R; it embeds the coin in a public

transaction txcreate; auxcoin contains information sent pri-

vately to R; it also outputs a new private state st
′
𝑆
.

CollectCoin(pp, stR , auxcoin,L) → (st′R , txclct) It takes as input a
a private state stR , a string auxcoin and a ledgerL; it outputs
a new private state st

′
R and a “collect” transaction tx

clct
.

Vfy(pp, tx,L) → accept/reject It verifies a transaction tx with re-

spect to ledger L.
Process(pp, tx,L) → L′ It processes a transaction tx with respect

to ledger L and returns a new ledger.

3.2 Building Blocks for Our Construction
Commitment schemes We assume a commitment scheme C

⃝ =

(Setup⃝,Comm
⃝). We concretely instantiate it later in Figure 6 as

a Pedersen commitment over pairs. We also make the following

assumptions:

• We assume that we can commit to pairs and they are ho-

momorphic with respect to pairs, that is Comm((𝑎, 𝑏); 𝑟 ) +
Comm((𝑐, 𝑑); 𝑟 ′) = Comm((𝑎 + 𝑐, 𝑏 + 𝑑); 𝑟 + 𝑟 ′).
• Given a value 𝑣 , a tag 𝑡 and an identity R we assume that

the concatenation 𝑡 | |R is such that (𝑣, 𝑡 | |R) is always a pair
in the message space of the commitment scheme.

• We assume all commitment invocations take as input the

public commitment key ck although not explicitly included.

We assume the same for zero-knowledge proofs over com-

mitment in the protocol.

Zero-Knowledge Arguments We assume the following zero-

knowledge arguments. We assume the commitment key to be part

of the relation description. Although we keep it implicit, one should

think of the following relations as parametrized by it.

We use three zero knowledge proofs for the following tasks:

• Knowledge of opening: at collection time, we prove knowl-

edge of opening of a coin we are collecting. For technical

reasons (see construction) we require the second component

to be zero, that is this argument shows knowledge of opening

to a pair (𝑣, 0).
• Ranges: whenever we transfer an amount (“create” tx), we

prove that we can afford the transfer. We also prove that

the transferred amount is non-negative (so that we are not

subtracting a negative value from our balance increasing

it!). This involves proving that the opening of two distinct

commitments—an updated balance and a coin—are both in a

range [0, 𝐵max] where we consider 𝐵max a parameter of the

construction. Although the commitments we assume here

bind to pairs of values (𝑎, 𝑏) (rather than single value), we

are interested only in ensuring that the first component 𝑎 is

in range.

• One coin out ofmany:wheneverwe claim an amount (“collect”

tx), we also need to prove that the coin we are collecting

actually exists. We want to do this without revealing that

coin we are collecting, thus we prove that a rerandomized

commitment c
∗
(which we revealed publicly) actually refers

to “one out of many” in the set of existing coins.

Formally we assume the following NIZKs:

ZKOpen is an extractable NIZK argument for the relation

𝑅opn (c; 𝑣, 𝑟 ) = 1 ⇐⇒ c = Comm
⃝ ((𝑣, 0); 𝑟 )

ZKDblRange is a NIZK argument for the relation

𝑅DRng (c, c′; (𝑎, 𝑏), 𝑟 , (𝑎′, 𝑏 ′), 𝑟 ′) = 1 ⇐⇒
𝑎 ∈ [0, 𝐵max] ∧ 𝑎 ∈ [0, 𝐵max]
∧ c = Comm

⃝ ((𝑎, 𝑏); 𝑟 )
∧ c
′ = Comm

⃝ ((𝑎′, 𝑏 ′); 𝑟 ′)
ZK-1-many is a simulation-extractable NIZK argument for the re-

lation
10

𝑅1-many (c∗, 𝑆 ; c, 𝑟∗) = 1 ⇐⇒ c ∈ 𝑆 ∧ c
∗ = c + Comm

⃝ ((0, 0); 𝑟∗)
For simplicity we assume a single uniform reference string urs

for all of them that can be sampled from a space large enough

parametrized by security parameter 𝜆 and maximum balance 𝐵max.

3.3 Construction Description
Our construction is in fig. 4.

Ledger, states and transactions We assume a ledger to be struc-

tured as a triple L = (𝑆
null

, 𝑆coins,
(
bal)𝑖∈[𝑚]

)
containing: a set

𝑆
null

of “nullified” coin tag–recipient identity 𝑡 | |R; an set 𝑆coins
of coins created so far; a tuple of commitments

(
bal)𝑖∈[𝑚]

)
to the

balances of parties. Within the construction we implicitly parse the

ledger according to this syntax. We let states contain the opening

of their committed balances. Notice that, for technical reasons, bal𝑖

is not a commitment to a single scalar 𝐵 representing the balance

amount. Instead a private state st𝑖—the opening of bal𝑖—is a triple

(𝐵, aux𝑡 , 𝑟𝑖 ) such that bal𝑖 = Comm((𝐵, aux𝑡 ), 𝑟𝑖 ), that is it opens
to the pair (𝑣, aux𝑡 ) where aux𝑡 is a “hint” to open the balance

10
Notice that, in contrast with the first two relations, relation 𝑅1-many does not require

showing any opening of the commitments c and c
∗
. This implies that a honest prover

does not need to know these openings. Although we do not use this property in our

construction, this could be useful in efficiently delegating to a service (such as a wallet)

that, for example, we trust enough not to publicly reveal which coin we are collecting,

but enough not to steal our coin.
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and depends on the transfers that user 𝑖 carried out till any given

moment in time (see construction for details). Transactions can be

of two types, Create or Collect; we prepend a type description to

each transaction.

4 EFFICIENT INSTANTIATIONS OF OUR
ARGUMENTS

In this section we describe how to instantiate our construction

from the previous section through transparent and efficient proof

systems. We describe this at different levels of abstraction.

First we replace a set (of coins) with a compressed representation,

an accumulator. Thus we replace relation 𝑅1-many with 𝑅
𝐴
1-many

that

works over an accumulator 𝐴. We then proceed how to decompose

the latter efficiently through a commit-and-prove approach. In the

rest of the section we describe our specific instantiations using:

RSA accumulators, zero-knowledge techniques on them from [7],

and Bulletproofs.

Our main technical challenge is how to have commitments over

coins (which are themselves commitments) that support efficient

proofs over them. We do this introducing a new SNARK-friendly

curve (in the pairing-free group of Curve25519) and embedding

its arithmetic in a Bulletproof relation in an optimized manner (see

also Appendix C).

Onnotation. Wewill use and describe two commitments schemes

in this section, C
⃝
and C

□
. The scheme C

⃝
is the scheme we use

in our construction for payments in the previous section; we can

think of its output as coins and we denote them by a circle as in 𝑐◦.
The elements of the accumulated set are the output of Comm

⃝
. The

commitment scheme C
□
is the one we use for commit-and-prove

NIZKs (see also construction for Theorem 2.4). We denote its output

as Comm
□
.

4.1 One-out-of-many Relations over
Accumulators

Here we define a variant of the one-out-of-many relation 𝑅1-many

introduced in Section 3.2. Instead of taking as input a set we let the

relation be parametrized by an accumulator, a binding commitment

to the set. Thus we can reduce prover and verifier’s complexity to

that of proving PrvMem and VfyMem which both run in constant

time in our instantiation.

Given an accumulator scheme Acc and an accumulator 𝐴, the

relation 𝑅𝐴
1-many

is defined as:

𝑅𝐴
1-many

(𝑐∗◦; 𝑐◦, 𝑟∗◦,𝑊 ) = 1 ⇐⇒
Acc.VfyMem(𝐴, c,𝑊 )
∧ 𝑐∗◦ = 𝑐◦ + Comm

⃝ ((0, 0); 𝑟∗◦)

4.2 One-out-of-many from Commit-and-Prove
NIZKs

Here we use the construction in Theorem 2.4. For that we need

CP-NIZKs that work over commitments to 𝑐◦. As usual we denote
the commitment scheme for CP-NIZKs as C

□
.

Permissible Set. We assume a permissible set P of coins 𝑐◦. This
allows us to model security requirements in a fine-grained way, e.g.

we assume computational binding of C
□
to hold only for coins in

P and similarly the soundness of the accumulator (we ensure this

implicitly; see Figure 5). In this section we keep the permissible set

abstract but we specify it completely in Section 4.3.1.

Breaking Down 𝑅𝐴setmem. We can decompose the above through

two commit-and-prove schemes for the following two relations.

The first one proves set membership, but does not guarantee that

the coin is permissible (this is for technical reasons we explain in

Section 4.4). The other relation guarantees that we can open (in C
□
)

to a rerandomized permissible commitment (in C
⃝
).

𝑅𝐴
setmem

(𝑐□; 𝑐◦, 𝑟□,𝑊 ) = 1 ⇐⇒
(Acc.VfyMem(𝐴, 𝑐◦,𝑊 ) ∨ 𝑐◦ ∉ P)
∧ 𝑐□ = Comm

□ (𝑐◦; 𝑟□)

𝑅
rrnd&prms

(𝑐□, 𝑐∗◦; 𝑐◦, 𝑟□, 𝑟∗◦) = 1 ⇐⇒
𝑐∗◦ = 𝑐◦ + Comm

⃝ ((0, 0); 𝑟∗◦)
∧ 𝑐◦ ∈ P
∧ 𝑐□ = Comm

□ (𝑐◦; 𝑟□)

We can now obtain a proof scheme for 𝑅𝐴
1-many

by composing

ZKCP
𝐴
setmem

and ZKCP
rrnd&prms

and applying Theorem 2.4 in the

Trusted-Accumulator Model
11
.

Corollary 4.1. Let Acc be an accumulator scheme and C
□ a

commitment scheme that is computationally binding w.r.t. set P. Then
the composition of ZKCP𝐴setmem and ZKCPrrnd&prms as for Theorem
2.4 is a NIZK for 𝑅𝐴1-many in the Trusted-Accumulator Model for Acc.

4.3 Instantiating Accumulators and
Commitment Schemes

We first describe our accumulator and commitment schemes con-

struction and then describe the concrete groups in which they

operate in Section 4.3.1.

We assume a group of unknown order G? for our accumulator

construction. For our commitments we assume two groups G⃝ and

G□. The two groups are related as we assume we can represent G⃝

elements as pairs (F |G□ |, F |G□ |) (see also Section 4.3.1).

Our accumulator schemes supports sets of G⃝ elements with a

special structure (the first component should be prime, the standard

encoding for elements in accumulators in groups of unknown or-

der). The commitment scheme Comm
⃝
has as message space pairs

(F |G⃝ |, F |G⃝ |) and commitment space G⃝ . The scheme G□ has as
message space elements in G⃝ .

Constraints on Permissible Set. The permissible set P is a set

of pairs in (F |G□ |, F |G□ | . We require that the permissible set P is

such that there are no “collisions in the second components” that

11
The latter requires the composition results for “partially-extractable” NIZKs in [7].
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Setup(1𝜆) → (pp,L0, (st𝑖 )𝑖∈[𝑚] )
ck← Setup

⃝ (1𝜆)

urs←$𝑈ZK (1𝜆, 𝐵max)
for 𝑖 = 1..𝑚 do

// Create balances for all parties at default 𝑣0

𝑟𝑖 ←$ F

bal𝑖 ← Comm
⃝ (𝑣0; 𝑟𝑖 )

st𝑖 := (𝑣0, 0, 𝑟𝑖 )
L0 :=

(
∅, ∅, (bal𝑖 )𝑖∈[𝑚]

)
return

(
pp := ck, L0, (st𝑖 )𝑖∈[𝑚]

)
CreateCoin(pp, stS,R, 𝑣) → (st′S, auxcoin, txcreate)

Parse stS as (𝐵, aux𝑡 , 𝑟S)

𝑡 ←$ {0, 1}𝜆 ; 𝑟𝑐 ←$ F

c← Comm
⃝ ( (𝑣, 𝑡 | |R) ; 𝑟𝑐 )

𝑜𝑐 := ( (𝑣, 𝑡 | |R), 𝑟𝑐 )
// Update balance subtracting coin from current balance

bal
′
𝑖 ← Comm

⃝ ( (𝐵, aux𝑡 ) ; 𝑟S) − c
𝑜′ := ( (𝐵 − 𝑣, aux𝑡 − 𝑡 | |R), 𝑟S − 𝑟𝑐 )
// Prove coin amount is positive and that S can afford it

𝜋create ← ZKDblRange.Prove(urs, c, bal′;𝑜𝑐 , 𝑜′)
st
′
S := (𝐵 − 𝑣, aux𝑡 − 𝑡 | |R, 𝑟S − 𝑟𝑐 )

Let auxcoin := (𝑣, 𝑡, 𝑟𝑐 )
txcreate := (Create, c, 𝜋create)
return (st′S, auxcoin, S, txcreate)

CollectCoin(pp, stR , auxcoin,L) → (st′R , txclct)
Parse stS as (𝐵, aux𝑡 , 𝑟R )
Parse auxcoin as (𝑣, 𝑡, 𝑟𝑐 )
c← Comm

⃝ ( (𝑣, 𝑡 | |R) ; 𝑟𝑐 )// reconstruct coin
// Rerandomize coin

𝑟 ∗ ←$ F; c∗ ← c + Comm
⃝ ( (0, 0) ; 𝑟 ∗)

// Prove one out of many w.r.t. accumulator

𝜋1-many ← ZK-1-many.Prove(urs, c∗, 𝑆coins; 𝑟 ∗)
// Prove “partial” opening of c

∗

𝑐𝑣 ← c
∗ − Comm

⃝ ( (0, 𝑡 | |R) ; 0)
𝜋opn ← ZKOpen.Prove(urs, 𝑐𝑣 ; 𝑣, 𝑟𝑐 + 𝑟 ∗)
𝑟 ′R ← 𝑟R + 𝑟𝑐 + 𝑟 ∗

st
′
R := (𝐵 + 𝑣, aux𝑡 + 𝑡 | |R, 𝑟 ′R )

tx
clct

:= (Collect, c∗, 𝑡, R, 𝜋
clct

:= (𝜋1-many, 𝜋opn))
return (st′R , txclct)

Process(pp, tx,L) → L′
Run Vfy(pp, tx, L) and abort if it fails

if type(tx) = Create then

Parse tx as (Create, c, S, 𝜋create)
// add coin to set

𝑆′
coins
← 𝑆coins ∪ {c}

// homomorphically update balance of sender

bal
′
S ← balS − c

elseif type(tx) = Collect then

Parse tx as (Collect, c∗, 𝑡, R, 𝜋
clct
)

// add tag to nullifier set

𝑆′
null
← 𝑆

null
∪ {𝑡 | |R }

// homomorphically update balance of receiver

𝑐𝑣 ← c
∗ − Comm

⃝ ( (0, 𝑡 | |R) ; 0)
bal
′
R ← balR + 𝑐𝑣

Let L′ be L updated with new set and balance

return L′

Vfy(pp, tx,L) → accept/reject
if type(tx) = Create then

Parse tx as (Create, c, S, 𝜋create)
Assert ZKDblRange.Vfy(urs, c, balS − c, , 𝜋create) = 1

elseif type(tx) = Collect then

Parse tx as (Collect, c∗, 𝑡, R, 𝜋
clct

:= (𝜋1-many, 𝜋opn))
Assert ZK-1-many.Vfy(urs, c∗, 𝑆coins, 𝜋1-many) = 1

𝑐𝑣 ← c
∗ − Comm

⃝ ( (0, 𝑡 | |R) ; 0)
Assert ZKOpen.Vfy(urs, 𝑐𝑣) = 1

Assert 𝑡 | |R ∉ 𝑆
null

Figure 4: Procedures describing the bulk of our construction; we use them as auxiliary syntax when we show our construction
in more detail in Section 6 (where we also take care of authentication/channels) and it is fully unfolded in Appendix A . These
procedures have no side-effects (except for sampling randomness) and return pure functions of their inputs.

8



Setup(1𝜆) → (pp, 𝐴0)
(G?, 𝑔?) ← G? (1𝜆)
return (pp = (G?, 𝑔?), 𝐴0 = 𝑔?)

VfyMem(pp, 𝐴, 𝑐◦,𝑊 )
Parse 𝑐◦ as 𝑐◦ := (x,y)
Accept iff𝑊 x = 𝐴

Add(pp, 𝑐◦, 𝐴) → 𝐴′

Parse 𝑐◦ as 𝑐◦ := (x,y)
if 𝑐◦ ∉ P ∨ x not a prime then

return ⊥
else

return 𝐴x

PrvMem(pp, 𝑆, 𝑐◦) →𝑊

𝑆′ := {x′ : (x′,y′) ∈ 𝑆 \ {𝑐◦ }}

prd←
∏
x′∈𝑆′

x
′

return 𝑔
prd

?

Figure 5: Accumulator Instantiation for Acc.

Setup
⃝ (1𝜆) → ck◦

(G⃝, 𝑓◦) ← G◦ (1𝜆)
Sample random 𝑠, 𝑠′ in F|G⃝ |

𝑔◦ := 𝑓 𝑠◦ ;ℎ◦ := 𝑓 𝑠
′
◦

return ck◦ = (G⃝, 𝑓◦, 𝑔◦, ℎ◦)

Setup
□ (1𝜆) → ck□

(G□, 𝑔□) ← G□ (1𝜆)
Sample random 𝑠 in F|G□ |

ℎ□ := 𝑔𝑠□

return ck□ = (G□, , 𝑔□, ℎ□)

Comm
⃝ (ck◦, (𝑎, 𝑏) ∈ (F |G⃝ |, F |G⃝ |), 𝑟 ) → 𝑐◦

return 𝑓 𝑎◦ 𝑔
𝑏
◦ℎ

𝑟
◦

Comm
□ (ck□, 𝑐◦ ∈ G⃝, 𝑟 ) → 𝑐□

Parse 𝑐◦ as 𝑐◦ := (x,y)
return 𝑔x□ ℎ

𝑟
□

Figure 6: Commitment Instantiations for C⃝ and C
□.

is: for all (x,y) ∈ P there exists no y
′ ≠ y such that (x,y′) ∈ P.

This is the case for permissible sets over elliptic curves such as the

one we define in Section 4.3.1.

Constructions. We now proceed to describe our constructions

for accumulators and commitments. We denote by G a group gen-

eration function which we assume returns a group description

together with a generator.

In Figure 5 we describe our accumulator instantiation. This con-

struction is secure under under the Strong-RSA assumption
12

and is

based on the construction from Barić and Pfitzmann [4], later used

in the context of efficient proofs in [7, 9, 12] among other works. In

the accumulator construction we describe explicitly the structure

of the messages (elements in G⃝) as pairs of components and we

accumulate using first component only. Notice that we describe

the construction through a variant of the syntax in the preliminar-

ies (Definition 2.2): we define only an insertion algorithm and let

the setup return an accumulator 𝐴0 to an empty set. We assume

the Strong-RSA property holds for G? (and its group generation

algorithm).

The commitment schems C
⃝
and C

□
are described in Figure 6.

They are both standard Pedersen commitments, but we make the

following tweaks: in C
⃝
the messages are pairs; in C

□
we describe

12
See [9], Definition 2.

explicitly the structure of the messages (elements in G⃝) as pairs
of components and we commit to the first component discarding

the second. Recall that we can do this in light of the constraint on

the second component from P. We assume that the discrete-log

assumption holds for G⃝ and G□.
We do not prove security of the schemes in Figures 5 and 6 since

it is standard.

Theorem 4.2 (Security of Schemes in Figures 5 and 6).

• If the Strong-RSA assumption holds for G? then the construc-
tion in Figure 5 is a secure accumulator for sets 𝑆 ⊂ P where
all the (x,y) ∈ 𝑆 have all distinct primes x.
• If the DLOG assumption holds for G◦ (resp. G□) C⃝ (resp. C□) is
a computationally binding (resp. binding w.r.t P) and perfectly
hiding commitment scheme with message space (F |G⃝ |, F |G⃝ |)
(resp. G⃝) and commitment space G⃝ (resp. G□).

Remark 3 (Accumulators without Trapdoors). We observe
that our accumulator scheme construction can be instantiated in class
groups [10] or constructions based on hyperelliptic curve constructions
[17, 28] assuming the Low-Order Assumption holds for G?. We also
refer the reader to Appendix E in [7].

Remark 4 (Trapdoors in RSA Groups and MPC). We note that
there exist practical MPC protocols to securely construct RSA moduli,
e.g., [15].
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4.3.1 Group Instantiations and Set of Permissible Coins. We now

describe concrete instantiations targeting 128-bits of security.

GroupG□ The groupG□—used in our commit-and-prove NIZKs—

is Ristretto25519, the Ristretto subgroup of Curve2551913.

Group G⃝ and the Jabberwock Curve Group G⃝ = E(F |G□ |)—
used to represent coins and other commitments in our constructions—

is derived from an elliptic curve over the scalar field F⃝ = F |G□ | of
the curve G□ (Ristretto25519) with:

|G□ | = 2
252 + 27742317777372353535851937790883648493

In particular, we instantiate G⃝ as the Edwards curve [8, 18] with
equation:

𝑥2𝑦2 = 1 − 698𝑥2𝑦2

The curve has a cofactor of 4 and a prime order group of 2
250 −

28148165643402996844773726717916548891.

Similar techniques has previously been used in the C∅C∅ [26]
framework and Zcash [24] (JubJub curve

14
).

Group G? The group G? is a 2048-bit RSA group.

Permissible Set The set P of commitments, parametrized by an

integer 𝜇, consists of points on G⃝ , where the x-coordinate is a
𝜇-bit prime and the y-coordinate is the “canonically chosen” square

root so that the point can be described by its x-coordinate alone.

P = {(x,y) ∈ G⃝ ⊆ (F |G□ |, F |G□ |) |
x ∈ [2𝜇−1, 2𝜇 ) ∧ y ≡ 0 mod 2}

For our concrete instantiations we use 𝜇 = 251 bits. We note

that the results in Section 4.2 hold for any definition of P (with

the collision constraint on the second component described earlier).

Other choices of 𝜇 are also possible if one appropriately changes

other parameters in the instantiations.

4.4 Instantiating Our ZK Building Blocks
4.4.1 ZKCPrrnd&prms . We instantiate ZKCP

rrnd&prms
(Section 4.2)

with a Bulletproof relation described in Appendix in Section C.

4.4.2 ZKCP
𝐴
setmem . We instantiateZKCP

𝐴
setmem

(Section 4.2) through

a simplified variant of the (commit-and-prove) SNARK for set mem-

bership in [7], described below.

ZKCP
𝐴
setmem

.Prove(𝑐□; 𝑐◦, 𝑟 ,𝑊 ) → 𝜋∗

Parse 𝑐◦ as 𝑐◦ := (x,y)
// Make integer commitment to x

Sample randomness 𝑟 ′

𝑐int ← 𝑔x
?
ℎ𝑟
′

?

𝜋
modEq

← CP
modEq

.Prove(𝑐int, 𝑐□;x, 𝑟 ′, 𝑟 )

𝜋root ← CP
𝐴
root

.Prove(𝑐int;x, 𝑟 ,𝑊 )
return 𝜋∗ := (𝑐int, 𝜋modEq

, 𝜋root)

13
https://ristretto.group/

14
https://z.cash/technology/jubjub/

The corresponding verifier checks both proofs using 𝑐int and the

rest of the public input.

Above we use an integer commitment in the RSA groupG? using
an appropriately sampled element ℎ?. The proof system CP

modEq

roughly shows knowledge of integers 𝑥, 𝑟 ′ and of x, 𝑟 such that

𝑥 ≡ x mod |F□ |, 𝑐int = 𝑔x
?
ℎ𝑟
′
?
and 𝑐□ = 𝑔x□ ℎ

𝑟
□ . The scheme CP

𝐴
root

proves knowledge of𝑊 ∈ G?, an integer 𝑥 that opens 𝑐int as above

and such that𝑊 is a 𝑥-root for the accumulator 𝐴 (this is roughly

Acc.VfyMem), that is𝑊 𝑥 = 𝐴.

Above we skip some technical details from that are not relevant

to understand our construction at a high-level. We however elab-

orate on one of them that is important in our larger context: the

full scheme in [7] crucially relies on x being in some correct range.

Without this guarantee on range, the construction above does not

prove set membership w.r.t. 𝐴 for elements that are not permissible

(that is why we have “∨𝑐◦ ∉ P" in 𝑅𝐴
setmem

). On the other hand,

once we prove 𝑐◦ = (x,y) is permissible through ZKCP
rrnd&prms

,

we ensure x is in range, and our scheme is secure as of the analysis

in [7]. For further details and a proof of the following theorem, we

refer to Section 4 in [7].

Theorem 4.3. The construction above is a NIZK for the relation
𝑅𝐴setmem (Section 4.2) in the Trusted-Accumulator Model for accumu-
lator scheme Acc in Figure 5.

4.4.3 ZKOpen . We instantiate ZKOpen from Section 6 with a

Schnorr proof. On public input 𝑐◦ (the coin) and a commitment

key ck◦ for C⃝ containing 𝑓◦ and ℎ◦, the schemes proves (in zero-

knowledge) knowledge of (𝑣, 𝑟 ) such that 𝑐◦ = 𝑓 𝑣◦ ℎ
𝑟
◦. This protocol

is very standard and we do not describe it in further details here.

4.4.4 ZKDblRange . We instantiateZKDblRangewith Bulletproofs.

5 EVALUATION
5.1 Performance of ZK-1-many

We implemented our instantiation of ZK-1-many in Rust and ex-

perimentally evaluate its performance. Our code is open source

and available at [2]. The performance of our implementation of

ZK-1-many is shown in Figure 7.

Proof Size 5309 B

Proving Time 460 ms

Verification Time 93 ms

Figure 7: Concrete performance of ZK-1-many from our Rust
implementation. All benchmarking is done on a single core
of AMD EPYC 7601 (@ 2.2 GHz).

5.2 Transaction Size in Veksel
We estimate the transaction size of Veksel to be 6261 bytes (break-

down shown in Figure 8), based on: implementation of 𝜋1-many, the

formula for the size of a Bulletproof (used as 𝜋create) and the size

of a generalized Schnorr for two generators used to ‘partially open’

the coin (used as 𝜋opn). We note that both 𝜋1-many and 𝜋opn can be

used as signatures of knowledge.
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𝜋1-many 5309 B

𝜋create: Bulletproof with 128 constrains. 736 B

𝜋opn: Schnorr proof with 2 generators. 128 B

𝑡 : Spending tag 16 B

EncR (t||v||r): Elgamal encrypted spending info 72 B

Total 6261 B

Figure 8: Breakdown of estimated transaction (Create and
Collect) size in Veksel.

6 FORMALIZING AND CONSTRUCTING
ANONYMOUS ACCOUNT-BASED PAYMENTS
IN UC

Here we formally describe our functionality for account-based

payments with privacy requirements.

Universal Composability (UC). We formalize our model in the

Universal Composability framework by Canetti (see [14] for more

details). Recall that, in the UC model, we specify an “ideal func-

tionality” in order to state what a protocol is supposed to do. The

functionality accepts input from the parties and computes outputs

in a specific way that an adversary by definition cannot modify. We

say that a protocol securely implements the functionality if running

the protocol is, in a certain well-defined sense, “equivalent” to inter-

acting with the functionality. We denote by ^ compositions of UC

functionalities and protocols e.g. Π𝐴^F𝐵 denotes the protocol A in

the B-hybrid model (a protocol for A assuming B an ideal function-

ality B). We denote by 𝐴 ≥ 𝐵 that “A implements B”, i.e. the exists

an efficient simulator Sim𝐴 st. 𝐴
c≈ Sim𝐴^𝐵 for any enviroment;

thoughout this paper we only consider PPT enviroments.

Formal Model. We describe our functionality in Figure 9. See

section 3.1 for intuitions about its semantics. In our construction we

will make use of an idealized communication F𝐶𝑜𝑚𝑚 functionality

described in Figure 10.

Remark 5 (Simplifications in F𝐶𝑜𝑚𝑚). In practice the simulta-
neously delivery in F𝐶𝑜𝑚𝑚 is impossible to implement, however we
deliberately simplify the functionality since the omitted details in the
modelling of the distributed ledger seem unlikely to affect the security
of our anonymous transactions and it simplifies explication.

Remark 6 (Implementation of F𝐶𝑜𝑚𝑚). In practice the anony-
mous message delivery (of𝑀) in F𝐶𝑜𝑚𝑚 can be achieved by having
the sender encrypt the message to the receiver using a public-key
encryption scheme wherein the correct public key for a ciphertext is
indistinguishable from a random public key. The same technique is
used in Zerocash. Standard Elgamal encryption is one such scheme.
The authenticated broadcast (of 𝐵) can be achieved by using digital
signatures.

The use of port ids in Figure 10 to identify which player sends a

message avoids the explicit use of public keys in the constructions,

however in practice F𝐶𝑜𝑚𝑚 will be instantiated by identifying a

peer by its public key and signing the broadcast messages.

F𝐴𝑛𝑜𝑛

Initialize: On input 𝐵𝑎𝑙𝑎𝑛𝑐𝑒, C on infl:

(1) Corrupt the players in C.
(2) Set𝐶𝑜𝑖𝑛𝑠 ← [], 𝐸𝑣𝑒𝑛𝑡𝑠 ← [].
(3) Store the initial balances 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 .

(4) Assert MAX-MONEY ≥ ∑𝑛
𝑖=1 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 [𝑖 ].

Create coin: Input (Create, 𝑖, 𝑣) on P𝑗 :

(1) Assert 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 [ 𝑗 ] ≥ 𝑣.

(2) Set 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 [ 𝑗 ] ← 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 [ 𝑗 ] − 𝑣.
(3) If 𝑖 ∉ C send (Create, 𝑗) on leak.

(4) If 𝑖 ∈ C send (Create, 𝑗, 𝑖, 𝑣) on leak.

(5) Receive fresh 𝑖𝑑 on infl.

(6) Set 𝐸𝑣𝑒𝑛𝑡𝑠 [𝑖𝑑 ] ← (Create, 𝑗, 𝑖, 𝑣)
Collect coin: Input (Collect, 𝑖𝑑′) on P𝑖 :

(1) Assert (𝑖𝑑′, 𝑣, 𝑗, 𝑖) in𝐶𝑜𝑖𝑛𝑠 .
(2) Remove (𝑖𝑑′, 𝑣, 𝑗, 𝑖) from𝐶𝑜𝑖𝑛𝑠 .

(3) If 𝑗 ∉ C send (Collect, 𝑖) on leak.

(4) If 𝑗 ∈ C send (Collect, 𝑖𝑑′, 𝑗, 𝑖, 𝑣) on leak.

(5) Receive fresh 𝑖𝑑 on infl.

(6) Set 𝐸𝑣𝑒𝑛𝑡𝑠 [𝑖𝑑 ] ← (Collect, 𝑗, 𝑖, 𝑣)
Process: Input (Process, 𝑖𝑑) on infl:

(1) If 𝐸𝑣𝑒𝑛𝑡𝑠 [𝑖𝑑 ] = (Create, 𝑗, 𝑖, 𝑣)
(a) Output (𝑖𝑑, 𝑣) on P𝑖

(b) Add (𝑖𝑑, 𝑣, 𝑗, 𝑖) to𝐶𝑜𝑖𝑛𝑠
(2) If 𝐸𝑣𝑒𝑛𝑡𝑠 [𝑖𝑑 ] = (Collect, 𝑗, 𝑖, 𝑣)

(a) Output 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 [𝑖 ] ← 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 [𝑖 ] + 𝑣 on P𝑖 .

(3) Remove 𝐸𝑣𝑒𝑛𝑡 [𝑖𝑑 ]

Figure 9: Ideal functionality for account based anonymous
transactions. The functionality enables the environment to
learn when an account creates a transaction, but not the link
between create/pickup unless the sender is corrupted. If an
assertion is violated, the message is ignored and the state of
functionality reverts to before receiving the message.

F𝐶𝑜𝑚𝑚

Initialize: Given C on infl

(1) Set𝑚𝑠𝑔← []
(2) Corrupt the players in C

Message: Input (Msg, 𝐵,𝑀,𝑑) on P𝑖 :

(1) If 𝑑 ∈ C output (Msg, 𝑖, 𝐵,𝑀,𝑑) on leak.

(2) If 𝑑 ∉ C output (Msg, 𝑖, 𝐵, |𝑀 |) on leak.

(3) Receive fresh 𝑖𝑑 on infl.

(4) Add (𝑖𝑑, 𝑖, 𝐵,𝑀,𝑑) to𝑚𝑠𝑔

Deliver: Input (Deliver, 𝑖𝑑) on infl:

(1) Assert (𝑖𝑑, 𝑖, 𝐵,𝑀,𝑑) ∈𝑚𝑠𝑔

(2) For 𝑗 ∈ [1, 𝑛]:
(a) If 𝑑 = 𝑗 output (𝐵,𝑀) on P𝑗

(b) If 𝑑 ≠ 𝑗 output 𝐵 on P𝑗

(3) Remove (𝑖𝑑, 𝑖, 𝐵,𝑀,𝑑) from𝑚𝑠𝑔

Figure 10: The above models broadcast and private messages.
For simplicity it assumes that every player receives the mes-
sages simultaneously and that they have instant “finality”.

11



Formal description of our construction. Here we describe

Π𝐴𝑛𝑜𝑛^F𝐶𝑜𝑚𝑚 through the Interface in Figure 4. We do not for-

mally describe the initialization stage but we assume that honest

parties receive initial public parameters, ledger for a common ini-

tial balance 𝑣0
15

and initial private states as described in Setup in

Figure 4. The rest of the protocol looks as follows:

Create Coin: On input (Create, 𝑗, 𝑣) on Π𝐴𝑛𝑜𝑛 .P𝑖
(1) Run (st𝑖 , auxcoin, txcreate) ← CreateCoin(pp, st𝑖 , 𝑗, 𝑣)
(2) Broadcast txcreate and send coin privately by outputting

(Msg, txcreate, auxcoin,R) on F𝐶𝑜𝑚𝑚 .PS
Receive Coin: On input (Msg, 𝑗, txcreate, auxcoin) on F𝐶𝑜𝑚𝑚 .P𝑖 :

(1) Assert Vfy(pp, tx,L) = 1

(2) Update L ← Process(pp, txcreate,L)
(3) Parse auxcoin as (𝑣, 𝑡, 𝑟𝑐 )
(4) If 𝑡 ∈ MyTags return early, o.w. add 𝑡 toMyTags.

(5) Sample local 𝑖𝑑 randomly.

(6) Store mycoins[𝑖𝑑] ← auxcoin

(7) Output (𝑖𝑑, 𝑣) on P𝑖

Collect Coin: On input (Collect, 𝑖𝑑 ′) on Π𝐴𝑛𝑜𝑛 .P𝑖 :

(1) Assert ∃ entry mycoins[𝑖𝑑 ′]
(2) Update (st𝑖 , txclct) ← Collect(st𝑖 ,mycoins[𝑖𝑑 ′],L)
(3) Remove mycoins[𝑖𝑑 ′]
(4) Output (Msg, tx

clct
,⊥,⊥) on F𝐶𝑜𝑚𝑚 .PR

Process Tx: On input (Msg,S, tx) on F𝐶𝑜𝑚𝑚 .P𝑖 :

(1) Assert Vfy(pp, tx,L) = 1

(2) Update L ← Process(pp, tx,L)
Completeness of the construction above follows by observation;

we prove its security in the Appendix in Section B.
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A EXPLICIT ACCOUNT-BASED
CONSTRUCTION

For the sake of completeness, we describe a concrete and optimized

version of our construction in Section 3. We assume all the instan-

tiations described in Section 4.3. The main differences with Figure

4 are:

Set of coins: Rather than explicitly maintaining 𝑆coins each party

keeps the currenct (group of unknown order) accumulator

𝐴coins containing all coins 𝑆coins and a membership proof

of all coins that she posseses (an accumulator of all coins

except hers). Hence Collect transactions can be generated in

𝑂 ( |mycoins|) time by proving 𝑅
𝐴coins

1-many
using Corollary 4.1.

Similarly Collect transactions can be verified in 𝑂 (1) time.

Identies: In Figure 4 the abstract identities of the parties R =

(pk𝜎 , pk𝑒 ) takes the concrete form of public keys (pk𝜎 , pk𝑒 )
for a strongly unforgable signature scheme (e.g. Schnorr)

and IND-CPA + IK-CPA [5] (key-privacy) secure public key

encryption pk𝑒 (e.g. Elgmal) respectively.

FComm: To send (Msg, 𝐵,𝑀,R) interpret R = (pk(R)𝜎 , pk
(R)
𝑒 ), en-

crypt 𝑐 ← Enc(pk
(R)
e

,M), then produce signature 𝜎 ←
Sign(pk(S)𝜎 , pk

(S)
𝜎 ||𝐵 ||𝑐), broadcast (𝜎, pk(S)𝜎 , 𝐵, 𝑐). Hence in

the explicit construction auxcoin is encrypted with pk
(R)
𝑒 of

the reciever and the ciphertext is broadcast on a public bul-

letin board (‘blockchain’) with a signature from the sender

S. The network checks the signatures 𝜎 on the transactions.

Compressing 𝑡 ||R: Since | (𝑡 ||R) | > log
2
( |G⃝ |) in general, we use

a collision resistance function H : {0, 1}∗ → F |G⃝ | be-
fore committing to the second component through Comm

⃝

i.e. compute Comm
⃝ (𝑣,H(t||R); r). Since these fields are re-

vealed during ‘collect’ this hash can be recomputed by the

verifier and is never proven in zero-knowledge (does not

affect the efficiency of the proof schemes). Given the last

two items, a coin with value 𝑣 and tag 𝑡 to recipient R is

concretely computed as c← 𝑓 𝑣◦ 𝑔
H(t | |pkR )
◦ ℎ𝑟◦ where 𝑟 is the

randomness and pkR is the public key of the recipient;

Permissibility A sender must produce a permissible coin 𝑐 , to

ensure that 𝑐 ∈ P she keep sampling new randomness 𝑟

until she obtains such a coin (e.g., the x component should

be a prime). When validating a transactions, the network

checks that 𝑐 ∈ P and adds it the accumulator (see Figure 5).

B SECURITY OF OUR CONSTRUCTION
Theorem B.1 (Π𝐴𝑛𝑜𝑛^F𝐶𝑜𝑚𝑚 ≥ F𝐴𝑛𝑜𝑛). For the three different

NIWI/NIZK arguments in the construction we require:

ZK-1-many: Simulation sound and zero-knowledge.
ZKOpen: Witness indistinguishable.
ZKDblRange: Witness indistinguishable.

Proof. Construct Sim𝐴𝑛𝑜𝑛 as follows: Get initial balances (gen-

esis block) (𝑣1, . . . , 𝑣𝑛).
Initialize: Input 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = (𝑣1, . . . , 𝑣𝑛) to F𝐴𝑛𝑜𝑛 . Initialize the

empty ledger L ← 𝜖 .

Create coin (honest sender, honest receiver): Receiving as in-
put (Create, 𝑗) on F𝐴𝑛𝑜𝑛 .leakwhere 𝑗 ∉ C. Pick 𝑟 ←$ F, pick

𝑡 ←$ {0, 1}𝜆 , let 𝑣 = 0, let 𝑖 = 0, let c← Comm
⃝ ((𝑣, 𝑡 ||𝑖); 𝑟 ).

Run ZKDblRange on the statement (c, bal
′ = bal− c), where

bal = Comm
⃝ (𝑣𝑖 ; 𝑟𝑖 ) or bal = Comm

⃝ (𝑣𝑖 ; 0)16 using 𝑣, 𝑣𝑖 , 𝑖, 𝑡, 𝑟 , 𝑟𝑖
as thewitness, obtain𝜋create. Output (Msg, 𝑗, (Create, c, 𝜋create),
| (𝑡, 𝑣, 𝑟 ) |) on F𝐶𝑜𝑚𝑚 .leak (pick random id for F𝐴𝑛𝑜𝑛)

Collect coin (honest sender, honest receiver): Receiving as in-
put (Collect, 𝑖) on F𝐴𝑛𝑜𝑛 .leak where 𝑖 ∉ C. Pick 𝑟∗ ←$

F, pick 𝑡 ←$ {0, 1}𝜆 , let 𝑣 = 0, simulate the ZK-1-many

proof for the commitment c
∗ ← Comm

⃝ ((𝑣, 𝑡 ||𝑖); 𝑟 ) using
𝜏 , get 𝜋1-many. Run ZKOpen.Prove with statement (𝑖, 𝑡, cΔ =

c
∗ −Comm

⃝ ((0, 𝑡 ||𝑖); 0)) and witness (𝑟, 𝑣), get 𝜋opn Output

(Msg, 𝑖, (Collect, c∗, 𝑡, (𝜋1-many, 𝜋opn)), 0) onF𝐶𝑜𝑚𝑚 .leak (pick

random id for F𝐴𝑛𝑜𝑛)
Create/collect coin (corrupt sender/receiver): Since the contents

of the coin (𝑖𝑑 ′, 𝑗, 𝑖, 𝑣) is revealed during both Create and

Collect, simulation is trivial.

Deliver On input (Deliver, 𝑖𝑑) on F𝐶𝑜𝑚𝑚 .infl. Lookup 𝑖𝑑 (from

F𝐶𝑜𝑚𝑚) and retrieve the associated broadcast message 𝐵. If

Vfy(pp, 𝐵,L) = reject ignore themessage. IfVfy(pp, 𝐵,L) =
accept, input (Process, 𝑖𝑑) on F𝐴𝑛𝑜𝑛 .infl, update the ledger
L ← Process(pp, 𝐵,L) and set of coins 𝑆coins.

Note that the simulator only simulates proofs for ZK-1-many,

for the other proofs a random statement and witness is sampled,

which is intuitively why witness indistinguishablity is sufficient.

Now formally showing Sim𝐴𝑛𝑜𝑛^F𝐴𝑛𝑜𝑛 c≈ Π𝐴𝑛𝑜𝑛^F𝐶𝑜𝑚𝑚 using

a sequence of hybrids:

(1) Consider the hybrid H (Create) which extracts (𝑣, 𝑖) from
F𝐴𝑛𝑜𝑛 during Create (rather than fixing 𝑣 = 0 and 𝑖 = 0)

and creates coins c← Comm
⃝ ((𝑡, 𝑣, 𝑖); 𝑟 ) for honest parties

with the real denomination and destination. Observe that

H (Create,𝑣,𝑖) = Sim𝐴𝑛𝑜𝑛^F𝐴𝑛𝑜𝑛 by the perfect hiding of the

commitment and witness indistinguishablity of ZKRange.

(2) ConsiderH (Create+Collect+𝑆𝑖𝑚) , which additionally extracts

(𝑖𝑑 ′, 𝑣, 𝑗, 𝑖) from F𝐴𝑛𝑜𝑛 during Collect and retrieves the gen-

erated tag 𝑡 and 𝑟 (created during simulated Create) associ-

ated with 𝑖𝑑 ′. Reconstructs the coin c← Comm
⃝ ((𝑡, 𝑣, 𝑖); 𝑟 )

(rather than creating a new randomly generated coin), sam-

ples 𝑟∗ ←$ F, defines c∗ ← c + Comm
⃝ ((0, 0); 𝑟∗) and sim-

ulates ZK-1-many with the statement (c∗, 𝑆coins). Observe
thatH (Create+Collect+𝑆𝑖𝑚) = H (Create,𝑣,𝑖) , by the perfect hid-
ing of C (distribution over statements c

∗
are the same), note

also that the distribution over witnesses and statements for

ZKOpen NIWI is unchanged.

(3) Observe that inH (Create+Collect,𝑆𝑖𝑚) ,𝑤 = (𝑣, 𝑡 ||𝑖, 𝑟 + 𝑟∗) is a
witness for the statement𝑥 = (c∗, 𝑆coins). DefineH (Create+Collect)
which generates 𝜋1-many by running the prover (rather than

simulation)with thewitness𝑤 . Observe thatH (Create+Collect,𝑆𝑖𝑚) ≈
H (Create+Collect) by simulation indistinguishablity and sim-

ulation soundness of ZK-1-many.

(4) ConsiderH (Create+Collect+CRS) which extendsH (Create+Collect)
by sampling the common reference string for theZK-1-many

NIZKwithout a simulation trapdoor. ObserveH (Create+Collect) ≈
H (Create+Collect+CRS) by reference string indistinguishablity

of the ZK-1-many NIZK.

16
First transaction after genesis.
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Now use soundness of ZK-1-many,ZKOpen,ZKDblRange to ar-

gue that the outputs on {P𝑖 }𝑖∉C are indistinguishablity betwen

H (Create+Collect+CRS) and the real world ΠF𝐴𝑛𝑜𝑛
^F𝐶𝑜𝑚𝑚 : Define

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑠𝑖𝑚 with the initial entries (𝑣1, . . . , 𝑣𝑛). Maintain a set C =

{(c, 𝑜, 𝑟𝑐 )} of created coins computed by extracting fromZKDblRange

in every Create broadcast message 𝐵:

In Deliver, if 𝐵 = (Create, c, 𝜋create)
(1) Extract 𝑜𝑐 = ((𝑣, 𝑡 || 𝑗), 𝑟c) from 𝜋create

(with statement c)

(2) Update 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑠𝑖𝑚 [𝑖] ← 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑠𝑖𝑚 [𝑖] − 𝑣 .
(3) Add (c, (𝑣, 𝑡 || 𝑗), 𝑟c) to C

The set of coins c in C is exactly 𝑆coins. Additionally maintain a

set O = {(c, 𝑜, 𝑟𝑐 )} of opened coins computed by extracting from

ZK-1-many and ZKOpen in every Collect broadcast message 𝐵:

In Deliver, if 𝐵 = (Collect, c∗, 𝑡, (𝜋1-many𝜋opn)):
(1) Extract 𝑟∗ from 𝜋1-many

(with the statement c
∗
and 𝑆coins).

(2) Extract 𝑣 and 𝑟 ′ from 𝜋opn
(with the statement c

∗
, c𝑣 , 𝑗 , 𝑡 ).

(3) Compute 𝑟c = 𝑟 ′ − 𝑟∗
(4) Recompute c← Comm

⃝ ((𝑣, 𝑡 || 𝑗), 𝑟c)
(5) Define 𝑜 = (𝑣, 𝑡 || 𝑗)
(6) If (c, 𝑜, ·) ∉ C, this violates soundness of 𝜋1-many or 𝜋opn:

since 𝑟∗ is the re-randomization and 𝑟 ′ is the randomness

of c
∗
, it follows that c is uniquely defined.

(7) If (c, 𝑜 ′, 𝑟 ′
c
) ∈ O for some 𝑜 ′, 𝑟 ′

c
with 𝑜 ′ ≠ 𝑜 , this breaks

computational binding of the commitment: stop and out-

put (c, 𝑜 ′, 𝑜, 𝑟c, 𝑟 ′c) as a collision in the binding game of the

commitment scheme C.

(8) Update 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑠𝑖𝑚 [ 𝑗] ← 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑠𝑖𝑚 [ 𝑗] + 𝑣 .
(9) Add (c, 𝑜, 𝑟c) to O

Conclude that every coin c ∈ 𝑆coins can occure at most once in the

computation of C and that O ⊆ C. Construct hybrids:
(1) H (Create+Collect+CRS+𝑣) , which on Process of 𝐸𝑣𝑒𝑛𝑡𝑠 [𝑖𝑑] =
(Create, 𝑗, 𝑖, 𝑣) outputs (𝑖𝑑, 𝑣 ′) from O on F𝐴𝑛𝑜𝑛 .P𝑖 rather
than (𝑖𝑑, 𝑣) from the functionality F𝐴𝑛𝑜𝑛 . By the previous

observation that the commited values claimed O is a subset

of O we get that:

(a) When the simulator inputs (Process, 𝑖𝑑) on F𝐴𝑛𝑜𝑛 .infl it
always leads to an output (𝑖𝑑, 𝑣) on F𝐴𝑛𝑜𝑛 .P𝑗

(b) By O ⊆ C and the observation that every (𝑐, (𝑣, 𝑡 || 𝑗), 𝑟𝑐 ) ∈
C corresponds to a coin (𝑖𝑑 ′, 𝑣, 𝑗, 𝑖) ∈ 𝐶𝑜𝑖𝑛𝑠 for some 𝑗 .

In conclusion:H (Create+Collect+CRS) c≈ H (Create+Collect+CRS+𝑣)
(2) H (Create+Collect+CRS+𝑣+𝐵𝑎𝑙𝑎𝑛𝑐𝑒) , which onProcess of𝐸𝑣𝑒𝑛𝑡𝑠 [𝑖𝑑] =
(Collect, 𝑗, 𝑖, 𝑣) outputs 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑠𝑖𝑚 [𝑖] on F𝐴𝑛𝑜𝑛 .P𝑖 rather
than 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 [𝑖] from the functionality F𝐴𝑛𝑜𝑛 . Since the bal-
ance is just the sum of outputs for the player this follows

fromH (Create+Collect+CRS) c≈ H (Create+Collect+CRS+𝑣) and by
inspection of the ‘bookkeeping’ done in the functionality

and hybrid.

Note that all the ports (input/output) of F𝐴𝑛𝑜𝑛 are now completely

controlled by the simulator inH (Create+Collect+CRS+𝑣+𝐵𝑎𝑙𝑎𝑛𝑐𝑒) . Lastly
show that H (Create+Collect+CRS+𝑣+𝐵𝑎𝑙𝑎𝑛𝑐𝑒) p

= Π𝐴𝑛𝑜𝑛^F𝐶𝑜𝑚𝑚 : the

F𝐶𝑜𝑚𝑚 functionality ensures that every message to every player

is delivered in the same order and simultanously for all honest

players. Hence the local state of the ledger L𝑖 of every honest

player 𝑃𝑖 is exactly the same at all times. The only distinction be-

tweenH (Create+Collect+CRS+𝑣+𝐵𝑎𝑙𝑎𝑛𝑐𝑒) and Π𝐴𝑛𝑜𝑛^F𝐶𝑜𝑚𝑚 is that

every player maintains its own local ledger state, where hybrid

H (Create+Collect+CRS+𝑣+𝐵𝑎𝑙𝑎𝑛𝑐𝑒) mainstains a single ledger state for

simulation. □

C BULLETPROOF RELATION FOR 𝜋rerand
Here we describe how we instantiate ZKCP

rrnd&prms
from Section

4.2. We use Bulletproofs over groupG□ = Curve25519 for a relation
(described below) equivalent to 𝑅

rrnd&prms
(section 4.1). Let 𝑔□, ℎ□

from ck□ and ℎ◦ from ck◦ (Figure 6). Given randomness 𝑟∗◦ we

parametrize the relation by a fixed group element
˜ℎ = ℎ

𝑟 ∗◦
◦ = (x̃, ỹ).

The family of relations we consider is then:

𝑅
˜ℎ (
𝑐□, 𝑐
∗
◦; (x,y) , 𝑟

)
⇐⇒

𝑐∗◦ = (x̃, ỹ) +G⃝ (x,y)
∧ 𝑐□ = 𝑔x□ ℎ

𝑟
□

∧ (x,y) ∈ P

Above we use additive notation for G⃝ to denote explicitly the

group operations expressed in the circuit. We consider permissible

set P from Section 4.3.1 with 𝜇 = 251. Below we use · to denote

multiplication by constant (linear operation) and × to denote mul-

tiplication of two free variables. More details follow.

Statement
The statement is defined by a commitment 𝑐□ = 𝑔x□ ℎ

𝑟
□ ∈ G□ and two

field elements (x′,y′) ∈ F□ × F□ (representing 𝑐∗◦).

Witness
The witness consists of: a bit-decomposition of the rerandomization

scalar a bitwise decomposition of 𝑥 (in 𝑐□), a bitwise decomposition

of 𝑦:

(1) A bit-decomposition (𝑟0, . . . , 𝑟251) ∈ {0F□ , 1F□ }252 of the

rerandomization randomness 𝑟 =
∑
251

𝑖=0 𝑟𝑖 · 2
𝑖 ∈ F |G□ | .

(2) A bit-decomposition (𝑥0, . . . , 𝑥249) ∈ {0F□ , 1F□ }250 of the x-
coordinate x =

∑
249

𝑖=0 𝑥𝑖 · 2
𝑖 ∈ F□ of the ‘input commitment’

(x,y) ∈ P.
(3) A bit-decomposition (𝑦1, . . . , 𝑦255) ∈ {0F□ , 1F□ }251 of the y-

coordinate y =
∑
255

𝑖=1 𝑦𝑖 · 2
𝑖 ∈ F□ of the ‘input commitment’

(x,y) ∈ P.

Relation
We denote by × a product between (linear combinations) of vari-

ables and by · a linear combination of variables. Every line repre-

sents a single multiplicative constraint. The relation has a total of

1514 constraints.
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Part 1: Permissibility (758 constrains). Check that the point

(x,y) ∈ P (i.e. is ‘permissible’).

∀𝑖 ∈ [0, 251] : 0 = (1 − 𝑟𝑖 ) × 𝑟𝑖 // Bit range check

∀𝑖 ∈ [1, 255] : 0 = (1 − 𝑦𝑖 ) × 𝑦𝑖 // Bit range check

∀𝑖 ∈ [0, 249] : 0 = (1 − 𝑥𝑖 ) × 𝑥𝑖 // Bit range check

x =

249∑︁
𝑖=0

𝑥𝑖 · 2𝑖 // Range check of x

y =

255∑︁
𝑖=1

𝑦𝑖 · 2𝑖 // Check y is ‘even’

𝑞x = x × x // Curve check

𝑞y = y × y // Curve check

𝑞x × 𝑞y = 1 − 𝑑 · 𝑞x × 𝑞y // Curve check

Part 2: Rerandomization (756 constrains). Rerandomization

of (x,y) ∈ G⃝ is done by repeated conditional Edwards addition of

ℎ2
𝑖

◦ ∈ G⃝ (constants in the circuit). Recall the group law for addition

on Edwards curves:

(x1,y1) +G⃝ (x2,y2) =
(
x1y2 + x2y1
1 + 𝑑x1x2y1y2

,
y1y2 − x1x2
1 − 𝑑x1x2y1y2

)
When 𝑑 is not a square (as in our case), then the formula is com-

plete. The circuit is optimized by borrowing techniques from the

Zcash specification ([24], sec. A.3.3.7), employing ‘limb-wise ad-

dition’ with 3-bit limbs. The scalar 𝑟 =
∑
251

𝑖=0 𝑟𝑖 · 2
𝑖
is split into

84 ‘windows’ 𝑗 ∈ [0, 83) of 3 bits (𝑏0, 𝑏1, 𝑏2) = (𝑟3𝑗 , 𝑟3𝑗+1, 𝑟3𝑗+2),
the table of points 𝑇 ( 𝑗) = [(u𝑖 ,v𝑖 ) = ℎ2

3𝑗+𝑖
◦ ]𝑖∈[0,8) is precom-

puted for each window and the circuit does a lookup in 𝑇 : verify-

ing (x( 𝑗+1) ,y( 𝑗+1) ) = 𝑇 ( 𝑗) [𝑏 ( 𝑗) ] +G⃝ (x( 𝑗) ,y( 𝑗) ) where 𝑏 ( 𝑗) =∑
2

𝑖=0 2
𝑖 · 𝑏𝑖 = 𝑟3𝑗 + 2 · 𝑟3𝑗+1 + 4 · 𝑟3𝑗+2.

Define the constraint R ( 𝑗) (𝑏0, 𝑏1, 𝑏2, x𝑖𝑛, y𝑖𝑛, x𝑜𝑢𝑡 , y𝑜𝑢𝑡 ),
consisting of two parts, the table lookup (enforcing

(u𝑏 ,v𝑏 ) = 𝑇 [𝑏]) and the point addition (enforcing

(x𝑜𝑢𝑡 ,y𝑜𝑢𝑡 ) = (u𝑏 ,v𝑏 ) +G⃝ (x𝑖𝑛,y𝑖𝑛)):

Part 2.1: Table Lookup (3 constraints). Let (u𝑖 ,v𝑖 ) = ℎ2
3𝑗+𝑖
◦ .

Constrain (u𝑏 ,v𝑏 ) = 𝑇 ( 𝑗) [𝑏] where 𝑏 =
∑
2

𝑖=0 2
𝑖 · 𝑏𝑖 :

𝑏& = 𝑏1 × 𝑏2
𝑏0 × ( −u0 · 𝑏& + u0 · 𝑏2 + u0 · 𝑏1 − u0 + u2 · 𝑏&

− u2 · 𝑏1 + u4 · 𝑏& − u4 · 𝑏2 − u6 · 𝑏&
+ u1 · 𝑏& − u1 · 𝑏2 − u1 · 𝑏1 + u1 − u3 · 𝑠&
+ u3 · 𝑏1 − u5 · 𝑏& + u5 · 𝑏2 + u7 · 𝑏&) =
u𝑏 − u0 · 𝑏& + u0 · u2 + u0 · 𝑏1 − u0 + u2 · 𝑏&

− u2 · 𝑏1 + u4 · 𝑏& − u4 · 𝑏2 − u6 · 𝑏&
𝑏0 × ( −v0 · 𝑏& + v0 · 𝑏2 + v0 · 𝑏1 − v0 + v2 · 𝑏&

− v2 · 𝑏1 + v4 · 𝑏& − v4 · 𝑏2 − v6 · 𝑏&
+ v1 · 𝑏& − v1 · 𝑏2 − v1 · 𝑏1 + v1 − v3 · 𝑠&
+ v3 · 𝑏1 − v5 · 𝑏& + v5 · 𝑏2 + v7 · 𝑏&) =
v𝑏 − v0 · 𝑏& + v0 · v2 + v0 · 𝑏1 − v0 + v2 · 𝑏&

− v2 · 𝑏1 + v4 · 𝑏& − v4 · 𝑏2 − v6 · 𝑏&

Part 2.2: Point Addition (6 constraints). Constrain

(x𝑜𝑢𝑡 ,y𝑜𝑢𝑡 ) = (u𝑏 ,v𝑏 ) +G⃝ (x𝑖𝑛,y𝑖𝑛):
(x𝑖𝑛 + y𝑖𝑛) × (v𝑏 − u𝑏 ) = 𝑇

x𝑖𝑛 × v𝑏 = 𝐴

y𝑖𝑛 × u𝑏 = 𝐵

(𝑑 · 𝐴) × 𝐵 = 𝐶

(1 +𝐶) × x𝑜𝑢𝑡 = (𝐴 + 𝐵)
(1 −𝐶) × y𝑜𝑢𝑡 = (𝑇 −𝐴 + 𝐵)

Where 𝑇,𝐴, 𝐵,𝐶,u𝑏 ,v𝑏 , 𝑏& are otherwise free ‘intermediate’

variables, local to R ( 𝑗) (not used anywhere else).

Part 2.3: Constrain windows (84 × 9 constraints) Constrain

every 3-bit window: define x
(0) = x, y(0) = y, x(84) = x′, y(84) =

y
′
and add the 84 relations ∀𝑗 ∈ [0, 84) : R 𝑗 (𝑟3𝑗 , 𝑟3𝑗+1, 𝑟3𝑗+2,

x
( 𝑗) ,y( 𝑗) ,x( 𝑗+1) ,y( 𝑗+1) )

D UTXO CONSTRUCTION
Our construction can be adapted to the UTXO setting obtaining

stronger unlinkability properties: rather than having one 𝜋1-many

proof every transaction would reference two previous coins
17

and

create two new coins. In a UTXO instantiation the 𝜋create and 𝜋opn
can be combined into a single Bulletproof. The two 𝜋1-many proofs

can be optimized as well: the 𝜋
rerand

can be extended to rerandom-

ize two commitments in parallel, the two 𝜋
modEq

proofs can be

combined to check congruency of a random linear combination.

We estimate the size of such a construction to be ≈ 10 KB.

17
Where one of them may be a dummy.

15
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